WO2021080352A1 - 전립선 암의 영상 또는 치료를 위한 동위원소 표지 화합물 - Google Patents

전립선 암의 영상 또는 치료를 위한 동위원소 표지 화합물 Download PDF

Info

Publication number
WO2021080352A1
WO2021080352A1 PCT/KR2020/014501 KR2020014501W WO2021080352A1 WO 2021080352 A1 WO2021080352 A1 WO 2021080352A1 KR 2020014501 W KR2020014501 W KR 2020014501W WO 2021080352 A1 WO2021080352 A1 WO 2021080352A1
Authority
WO
WIPO (PCT)
Prior art keywords
prostate cancer
acid
compound
imaging
pharmaceutically acceptable
Prior art date
Application number
PCT/KR2020/014501
Other languages
English (en)
French (fr)
Inventor
정재민
로디나딤아메드
이윤상
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Priority to US17/770,315 priority Critical patent/US20220402951A1/en
Publication of WO2021080352A1 publication Critical patent/WO2021080352A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • C07F13/005Compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/20Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • C07C275/24Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0497Organic compounds conjugates with a carrier being an organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/004Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2123/00Preparations for testing in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention is a derivative of glutamate-urea-lysine (GUL) and isonitrile linked with a linker, a radioactive isotope-labeled compound comprising the same, and a pharmaceutical composition for the treatment and diagnosis of prostate cancer containing the same as an active ingredient It is about.
  • GUL glutamate-urea-lysine
  • Prostate cancer is one of the most common urinary tumors in the world.In 1997 alone, about 380,000 people were newly diagnosed and 41,800 people died in the United States, the second highest death toll after lung cancer. As it is showing an increasing pattern, early imaging diagnosis and treatment of prostate cancer is becoming a big issue not only in Korea but also worldwide.
  • Prostate cancer usually starts in the tissues around the prostate and, as it grows, can metastasize to other vital organs in the body, such as bones and lungs. Initially, there are almost no symptoms, but as the cancer grows, it can cause problems such as compression of the urethra or obstruction of the urinary tract, and metastases to the spine or pelvic bones can occur, leading to serious complications.
  • Biochemical changes occurring in tumor cells such as Computed Tomography, SPECT) or Positron Emission Tomography (PET), are expressed in tomography and three-dimensional images using radioactive isotope labels that emit gamma rays or positrons.
  • Imaging methods to indicate the presence and distribution of cancer are being used. These imaging methods have recently been developed in combination with CT, SPECT-CT/MRI and PET-CT/MRI, improving cancer imaging performance and spreading at a faster rate.
  • Radiopharmaceuticals used as imaging agents for prostate cancer use a ligand that binds to a protein (Prostate Specific Membrane Antigen: PSMA) that is specifically expressed in prostate cancer.
  • PSMA Protein
  • the most famous of the ligands that bind to PSMA are peptide derivatives such as Glu-urea-Lys (GUL) or Glu-urea-Cys (GUC). Therefore, radiopharmaceuticals labeled with radioactive isotopes suitable for these peptide ligands can specifically image or treat PSMA-expressing prostate cancer by PET or SPECT.
  • Radioisotopes used to label various peptides are mainly alpha-ray-emitting nuclides, beta-ray-emitting nuclides, gamma-ray-emitting nuclides, and positron-ray-emitting nuclides. Of these, alpha-ray and beta-ray-emitting nuclides are used for treatment, and gamma rays and positron rays. Emitter nuclides are used for diagnosis by nuclear imaging.
  • the method of labeling the radioisotope on the ligand includes direct binding to the ligand, or a bifunctional chelating agent (BFCA) such as DTPA, DOTA, TETA, HYNIC, N2S2, MAG3, etc., first bound to the peptide, and then radioactive.
  • a bifunctional chelating agent such as DTPA, DOTA, TETA, HYNIC, N2S2, MAG3, etc.
  • the direct coupling method is a method mainly used to bind radioactive iodine or F-18, and it cannot bind various radioisotopes, but a method using a bifunctional chelating agent (BFCA) is used to obtain various metallic radioisotopes. Element can be labeled.
  • BFCA bifunctional chelating agents
  • BFCA Bifunctional chelating agent
  • the most widely used radioisotope for in vivo imaging is 99mTc. This has a short half-life of 6 hours and only emits gamma rays of 140 keV, so that an excellent image can be obtained with a small amount of exposure to the body. In addition, since it is produced in a generator, it can be obtained conveniently and economically. Due to these advantages, it occupies most of the radioisotopes used in hospital nuclear medicine, and therefore, it is very important to develop technetium-labeled radiopharmaceuticals. There are 188 Re and 186 Re as isotopes with chemical properties similar to technetium, and these are used for treatment by emitting beta rays and gamma rays.
  • Technetium-labeled radiopharmaceuticals are HMPAO and ECD for brain imaging, MDP, DPD, HDP for bone imaging, DTPA for kidney imaging. , MAG3, DMSA, mebrofenin for hepatobiliary imaging, HIDA, DISIDA, and gluconate for hydrogen sulfide imaging have been developed and used.
  • technetium and rhenium are metals belonging to the soft acid and are stable with ligands belonging to the soft base as a metal belonging to the soft base. It forms a complex compound.
  • An isonitrile-based compound is a representative soft base compound.
  • Non-Patent Document 1 Jones AG, Abrams MJ, Davison A, Brodack JW, Toothaker AK , Adelstein SJ, Kassis AI, Biological studies of a new class of technetium complexes: the hexakis(alkylisonitrile)technetium(I) cations.Int J Nucl Med Biol. 11:225-234, 1984).
  • MIBI methoxyisobutylisonitrile
  • a ligand that belongs to the soft base is carbon monoxide CO.
  • CO also binds well with +1 valent technetium, in which 3 CO and 3 water molecules bind with +1 valent technetium in an aqueous solution
  • Patent Document 1. WO 98/48848; Non-Patent Document 3.
  • Alberto R, Schibli . R, Egli A, Schubiger AP A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99m Tc (OH 2) 3 (CO) 3] + from [99m TcO 4] - in aqueous solution and its reaction with a bifunctional ligand.J Am Chem Soc. 120:7987-7988, 1998).
  • This compound has the property of binding to various other ligands, so it has been widely used to label other compounds.
  • Patent Document 2 CN 1506372A; Non-Patent Document 4. Chen X, Guo Y, Zhang Q, Hao G, Jia H, Liu B. Preparation and biological evaluation of 99mTc-CO-MIBI as myocardial perfusion imaging agent.J Organometal Chem. 693:1822-1828, 2008).
  • Non-Patent Document 6 Ruan Qing, Zhang X, Lin X, Duan X, Zhang J. Novel 99mTc labeled complexes with 2-nitroimidazole isocyanide: design, synthesis and evaluation as potential tumor hypoxia imaging agents.MedChemComm 9:988-994, 2018), and isonitrile and technetium compounds including folic acid have also been reported (Non-Patent Document 7.
  • US 2012/0269726 A1, US 2015/0246144 A1, WO 2015/055318 A1 and KP 10-1639599 describe compounds that combine a GUL derivative and a chelating agent with a linker. It has a good hard base to contain isotopes such as the hard acids Ga-68 and Lu-177, so it is not suitable for labeling the soft acids technetium or rhenium isotopes.
  • WO 2010/014933 A2 describes a GUL derivative in which a halogen is introduced into the phenyl ring and labeled with F-18 or I-125, so this patent cannot be labeled with a metallic isotope such as technetium or rhenium.
  • Compounds labeled with radioactive isotopes in the above-described bifunctional chelating agents are water-soluble radiopharmaceuticals, and these water-soluble drugs are mainly excreted to the kidneys, and at this time, the properties of binding to the kidneys are strong, so that they remain in the kidneys for a long time. Then, the radiation absorbed dose of the kidney is increased, and when used for treatment, the dose is limited, and thus the therapeutic effect may be reduced. Therefore, it is sometimes used to increase the intake of cancer cells by increasing the fat solubility and increasing the serum albumin binding rate to control the rate of excretion to the kidneys and increasing the blood concentration.
  • Non-Patent Document 8 C Mueller, H Struthers, C Winiger, K Zhernosekov, R Schibli. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy. J Nucl Med 54:124-131 , 2013.
  • the inventors of the present invention were making efforts to develop radiopharmaceuticals effective for imaging and treatment of prostate cancer by labeling technetium or rhenium on the GUL ligand to have higher binding power to PSMA expressed on the surface of prostate cancer.
  • 3 or 6 GUL ligands bind to technetium or rhenium and have high binding power to PSMA, and as a result, when administered in the body, specific intake for prostate cancer increases, improving the quality of images and further enhancing the therapeutic effect. It was found that the present invention was completed in order to use it as a pharmaceutical composition for prostate cancer treatment or diagnosis.
  • Another object of the present invention is to provide a labeled compound in which a metallic radioisotope is coordinated with the GUL and isonitrile derivatives or pharmaceutically acceptable salts thereof.
  • Another object of the present invention is to provide a pharmaceutical composition for treatment or diagnosis of prostate cancer comprising the labeling compound as an active ingredient.
  • Another object of the present invention is to provide a radiopharmaceutical for imaging prostate cancer comprising the GUL and isonitrile derivatives or pharmaceutically acceptable salts thereof as active ingredients.
  • Another object of the present invention is to provide a kit for the treatment or diagnosis of prostate cancer comprising the GUL and an isonitrile derivative or a pharmaceutically acceptable salt thereof.
  • the present invention provides a compound represented by the following formula (1) or a pharmaceutically acceptable salt or complex thereof.
  • L is a linker
  • the linker L is a C 1- 10 alkyl of straight or branched chain, 4- C 10 aryl group, a urea, thiourea, triazole, mono-peptide, dipeptide, tripeptide 4- C 10 cycloalkyl, benzyl, halogenated benzyl, phenyl , Halogenated phenyl, ether, thioether, amine, amide, ketone, ester, thioester, hydrazine, hydrazide, pentose and at least one complex selected from the group of hexoses.
  • the present invention provides a radioisotope-labeled compound represented by the following formula (2) or a pharmaceutically acceptable salt thereof.
  • M is a metal
  • R 1 is ego
  • R 2 is R 1 or -CO.
  • the present invention provides a pharmaceutical composition for treatment or diagnosis of prostate cancer comprising the labeling compound of Formula 2 as an active ingredient.
  • the present invention provides a radiopharmaceutical for imaging of prostate cancer comprising the compound represented by Formula 2 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a kit for treating or diagnosing prostate cancer, including the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof, and preparing the labeling compound represented by Formula 2 above.
  • the present invention provides a compound represented by Formula 2 or a pharmaceutically acceptable salt thereof, which is used to prepare a drug for diagnosis or treatment of prostate cancer.
  • the present invention provides a use of the compound represented by Formula 2 or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for diagnosis or treatment of prostate cancer.
  • the present invention provides a method for diagnosing or treating prostate cancer by administering the compound represented by Formula 2 or a pharmaceutically acceptable salt thereof.
  • the present invention provides a method of obtaining a radiographic image by administering the compound represented by Chemical Formula 2 or a pharmaceutically acceptable salt thereof.
  • the GUL-isonitrile derivative and the radioactive metal complex according to the present invention not only have simple labeling, but also have high labeling efficiency, have excellent stability in human serum when administered into the body, and bind well to PSMA expressed in prostate cancer.
  • it since it is excreted by the kidneys rather than the hepatobiliary tract due to its high water solubility, it is very low intake in the intestines, accumulates in prostate cancer tissues, and radiates radiation from the prostate cancer tumor site, thereby being useful as a therapeutic or diagnostic pharmaceutical composition.
  • FIGS. 1A to 1C are the results of HPLC for viewing the labeling efficiency after radioisotope labeling, and an Xterra RP18 3.5 ⁇ m (4.6 mm x 100 mm) column was used, and a solvent A (0.1% trifluoroacetic acid (TFA) aqueous solution) and a solvent B (acenitrile) was used, and a concentration gradient starting with 100% solvent A and 30 minutes later to 100% solvent B was used, and the flow rate was 3 mL/min.
  • Tc trifluoroacetic acid
  • solvent B acenitrile
  • Figures 2a and 2b are [ 99m Tc]Tc- 15 and [ 99m Tc]Tc- 16 according to the present invention by incubating for 6 hours at 37 °C with human serum, as a result of the stability test [ 99m Tc]Tc- 15 and [ 99m Tc]Tc- 16 is shown in Figs. 2a and 2b, respectively, and both showed 98% or more stability even after 6 hours.
  • Figures 3a and 3b show the saturation binding curve as a result of the in vitro cell binding test of [99m Tc]Tc- 15 and [ 99m Tc] Tc- 16 according to the present invention, respectively.
  • Kd values of [99m Tc]Tc- 15 and [ 99m Tc]Tc- 16 by nonlinear regression analysis 5.5 nM and 0.2 nM were obtained, respectively.
  • FIG. 4A and 4B are SPECT images after 1 hour and 3 hours of intravenous injection into a mouse transplanted with [99m Tc]Tc- 15 according to the present invention with 22Rv1 cells.
  • the cancer tumor is on the right shoulder indicated by the arrow, and although the radioactivity on the lower kidney side is high, and the radioactivity slightly increases, it is shown in FIG. 4A that no apparent intake was observed at both 1 and 3 hours.
  • Figure 4b has shown the MIP-1072 on [99m Tc] Tc- 15 cancer tumors by selectively blocking the PSMA was injected with [99m Tc] Tc- 15.
  • 5A and 5B are SPECT images after 1 hour and 4 hours of intravenous injection into a mouse transplanted with [99m Tc]Tc- 16 according to the present invention with 22Rv1 cells.
  • the cancer tumor is on the right shoulder indicated by the arrow, and the radioactivity toward the lower kidney is high, but the increase in radioactivity is evident even from 1 hour, and especially at 4 hours, the peripheral radioactivity is low, showing a more pronounced intake.
  • FIG. 5B shows that [ 99m Tc] Tc- 16 is not seen in cancer tumors by selectively blocking PSMA by injecting MIP-1072 together with [99m Tc]Tc- 16.
  • embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
  • embodiments of the present invention are provided in order to more completely explain the present invention to those with average knowledge in the art.
  • "including" certain elements throughout the specification means that other elements may be further included rather than excluding other elements unless specifically stated to the contrary.
  • the present invention provides a compound represented by the following formula (1) or a pharmaceutically acceptable salt or complex thereof.
  • L is a linker
  • linker L is a linear or branched C 1- 10 alkyl, C 4- 10 aryl, urea, thiourea, triazole, mono-peptide, dipeptide, tripeptide, benzyl, halogenated benzyl, 4- C 10 cycloalkyl, Phenyl, halogenated phenyl, ether, thioether, amine, amide, ketone, ester, thioester, hydrazine, hydrazide, pentose and hexose.
  • the linker works to connect the GUL part that binds to prostate cancer cells and the isonitrile group that forms a complex with technetium.
  • Glutamate-urea-Lysine-bound GUL portion has a property of strongly binding to PSMA, an antigen that is frequently expressed in prostate cancer cells. Therefore, there are patents such as KR 10-1639599 and US 2012/0269726 A1 that use these properties as a radiopharmaceutical by binding various bifunctional chelating agents with a linker to label metallic radioisotopes.
  • the present invention provides a radioisotope-labeled compound represented by the following formula (2) or a pharmaceutically acceptable salt thereof.
  • M is a radioactive metal
  • R 1 is ego
  • R 2 is R 1 or -CO).
  • the combination of R 1 and M is that the isonitrile group of R 1 is bonded to M.
  • the present invention provides a pharmaceutical composition for treatment or diagnosis of prostate cancer comprising the labeling compound of Formula 2 as an active ingredient.
  • a pharmaceutical composition for treatment or diagnosis of prostate cancer comprising the labeling compound of Formula 2 as an active ingredient.
  • 99m Tc the most widely used radioactive isotope in nuclear medicine, is used, and 188 Re or 186 Re is used for treatment.
  • the M may be copper (Cu), technetium (Tc), or rhenium (Re).
  • M may be 60 Cu, 61 Cu, 62 Cu, 63 Cu, 64 Cu, 65 Cu, 67 Cu, 96 Tc, 96m Tc, 97m Tc, 99m Tc, 101 Tc, 186 Re or 188 Re have.
  • Radiopharmaceuticals for imaging of prostate cancer comprising the compound represented by Formula 1 or Formula 2 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • Radiopharmaceuticals for imaging of prostate cancer include compositions for treatment or diagnosis of prostate cancer.
  • the present invention provides a kit for treating or diagnosing prostate cancer, including the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof, and preparing the labeling compound represented by Formula 2 above.
  • the compound represented by Formula 1 of the present invention can be used in the form of a pharmaceutically acceptable salt, and an acid addition salt formed by a pharmaceutically acceptable free acid is useful.
  • a pharmaceutically acceptable salt is a concentration that is relatively non-toxic and harmless to the patient, and side effects caused by this salt do not degrade the beneficial efficacy of the basic compound of formula (1).
  • inorganic acids and organic acids can be used as free acids, hydrochloric acid, bromic acid, nitric acid, sulfuric acid, perchloric acid, phosphoric acid, etc.
  • citric acid can be used as inorganic acids, and citric acid, acetic acid, lactic acid, maleic acid, fumarin Acid, gluconic acid, methanesulfonic acid, glycolic acid, succinic acid, tartaric acid, galacturonic acid, embonic acid, glutamic acid, aspartic acid, oxalic acid (D) or (L) malic acid, maleic acid, methanesulfonic acid, ethanesulfonic acid , 4-toluenesulfonic acid, salicylic acid, citric acid, benzoic acid or malonic acid, and the like can be used.
  • citric acid acetic acid, lactic acid, maleic acid, fumarin Acid, gluconic acid, methanesulfonic acid, glycolic acid, succinic acid, tartaric acid, galacturonic acid, embonic acid, glutamic acid, aspartic acid, oxalic acid (D) or (L) malic acid, maleic acid, me
  • these salts include alkali metal salts (sodium salt, potassium salt, etc.) and alkaline earth metal salts (calcium salt, magnesium salt, etc.), and the like.
  • alkali metal salts sodium salt, potassium salt, etc.
  • alkaline earth metal salts calcium salt, magnesium salt, etc.
  • the compound represented by Formula 1 of the present invention includes all salts, isomers, hydrates, solvates, and complexes that can be prepared by conventional methods, as well as pharmaceutically acceptable salts.
  • the addition salt according to the present invention can be prepared by a conventional method.
  • the compound of Formula 1 is dissolved in a water-miscible organic solvent such as acetone, methanol, ethanol, or acetonitrile, and an excessive amount of organic acid is added or inorganic acid It can be prepared by precipitation or crystallization after adding an aqueous acid solution of Subsequently, the solvent or excess acid is evaporated from the mixture and dried to obtain an addition salt, or the precipitated salt can be prepared by suction filtration.
  • the present invention is a compound represented by Formula 1 or a drug thereof
  • a metallic radioisotope is coordinated with a scientifically acceptable salt to provide a labeled compound represented by Formula 2 above.
  • the metallic radioactive isotope is preferably 99m Tc, 188 Re, or 186 Re.
  • the present invention provides a pharmaceutical composition for treatment or diagnosis of prostate cancer comprising the labeling compound as an active ingredient. Furthermore, the present invention provides a radiopharmaceutical for imaging prostate cancer comprising the labeling compound as an active ingredient.
  • Radioactive isotopes mainly include alpha-ray emitting nuclides, beta-ray emitting nuclides, gamma-ray emitting nuclides, and positron ray emitting nuclides. Of these, alpha-ray and beta-ray emitting nuclides are used for treatment, and gamma-ray and positron-ray emitting nuclides are used for nuclear imaging. It is used for diagnosis.
  • the radioisotope of the labeling compound is preferably 99m Tc, and when used for the treatment of prostate cancer, it is preferably 188 Re or 186 Re. Do.
  • the pharmaceutical composition according to the present invention When administered into the body, the pharmaceutical composition according to the present invention has excellent stability in human serum, competitively binds well to PSMA expressed in prostate cancer, and has excellent PSMA inhibitory efficacy at low concentrations, and has excellent water solubility. It was found that it is not only excreted by the kidneys, but also by the kidneys, and is ingested into the prostate cancer tissues, so it can be usefully used as a therapeutic or diagnostic pharmaceutical composition by emitting radiation to the prostate cancer tumor site.
  • the present invention is a compound represented by Formula 1 or a drug thereof
  • It provides a kit for the treatment or diagnosis of metallic radioisotope-labeled prostate cancer in a pharmaceutically acceptable non-pyrogenic sterilized form comprising a pharmaceutically acceptable salt.
  • the kit for treatment or diagnosis of prostate cancer according to the present invention includes 10 ng to 100 mg of the compound represented by Chemical Formula 1.
  • the kit for treating or diagnosing prostate cancer according to the present invention is prepared by adding a compound represented by Formula 1, a suitable buffer solution, and a reducing agent in a liquid state in advance to facilitate labeling of the metallic radioisotope of the compound represented by Formula 1 above. It can be dispensed into a pharmaceutically desirable sterilized vial and used sealed or refrigerated, frozen, or freeze-dried for storage, and then usefully used when necessary.
  • 0.01 mL to 10 mL of a buffer solution having a pH of 1 to 9 and a concentration of 1 ⁇ M to 10 M is added and sealed in a dissolved, frozen or freeze-dried state. can do.
  • the buffer solution is acetic acid, phosphoric acid, citric acid, fumaric acid, ascorbic acid, butyric acid, succinic acid, tartaric acid, carbonic acid, glucoheptonic acid, gluconic acid, glucuronic acid, gluconic acid, boric acid, or sodium salt or potassium thereof. Salts are preferred.
  • kit of the present invention may contain a reducing agent to reduce technetium or rhenium in a +7 valent state to a +1 valent state, and tin chloride is the most widely used, and other NaBH 4 , ascorbic acid, etc. can be used. .
  • the kit of the present invention may further include an antioxidant, and the antioxidant prevents the compound represented by Formula 1 labeled with a radioactive isotope from deteriorating by radiation decomposition, and vitamin C or gentisic acid And the like are preferred, and 0 to 500 mg per unit dose are preferred in the kit of the present invention.
  • the kit may be supplemented with buffered sterile vials, saline, syringes, filters, columns and other auxiliary devices to prepare injections for use by a clinical pathologist or technician. It is well known to those of ordinary skill in the art that the kit can be changed and modified according to the individual needs or diet of the patient, as well as changes in the form in which radioactive isotopes can be provided or obtained. .
  • the kit may be reacted for 0.1 to 30 minutes by adding a radioactive isotope of 0.1 to 500.1 to 500 mCi per 1 mg of the compound represented by Formula 1 immediately before use to prepare a radioisotope-labeled compound.
  • RP-HPLC was performed using a Gilson, 506C system interface, a 155 UV/VIS detector (dual wavelength 220, 254 nm) and 321 pumps.
  • the operation of the Gilson HPLC system was controlled using Trilution software. Purification intermediates and final compounds were performed on a semi-preparative XTerra RP18 10 ⁇ m (10 mm ⁇ 250 mm) column (Waters Co., USA).
  • Mobile phase consists of 0.1%TFA/water (solvent A), acetonitrile (solvent B) (gradient method), flow rate 5 mL/min 0-40 min, 0-100% B (method 1 ), flow rate 3 mL /min, 0-5 min, 0% B; 5-30 min, 0-100% B (method 2 ), flow rate 5 mL/min, 0-35 min, 0-100% B (method 3 ), flow rate 5 mL/min, 0-40 min, 0-100 %B (Method 4 ), or flow rate 3 mL/min, water (solvent A), acetonitrile (solvent B) for 0-5 minutes gradient method, flow rate 3 mL/min, 0% B; 5-40 min, 0-100% B (Method 5 ), or 0-30 min, 10-100% B (Method 6 ).
  • GUL-NC compound 15 was prepared according to the following Schemes 1 and 2.
  • a Reagents and reaction conditions (a) formic acid, acetic anhydride, refluxed, 3 h (b) 2,3,5,6-tetrafluorophenol, DCC, DMF, RT, 24 h (c) triphosgene, DCM, TEA, 0 °C , 1.5 h (d) 5 , DIPEA, rt, 5 h (e) 10 , DIPEA, rt, 5 h (f) [Re(CO) 3 (H 2 O) 3 ]Br (g) [ 99m Tc]Tc(H 2 O) 3 (CO ) 3 ] + .
  • Step 1-1 try - tert - Butyl (13S)-3,11- Dioxo Preparation of -1-phenyl-2-oxa-4,10,12-triazopentadecane-9,13,15-tricarboxylate (1).
  • Step 1-2 die - tert - Butyl ((6-amino-1-( tert - Butoxy )-One- Oxohexane Preparation of -2-yl)carbamoyl)-L-glutamate (2).
  • Step 1-3 try - tert - Butyl (20S)-1-(9H- Fluorene -9-day)-3,10,18- Trioxo -2-oxa-4,11,17,19-tetraazadococein-16,20,22-tricarboxylate ( 3) of Produce.
  • Step 1-4 die - tert - Butyl ((6-(6- Aminohexaneamido )-One-( tert - Butoxy Preparation of )-1-oxohexane-2-yl)carbamoyl)-L-glutamate (4).
  • Step 1-5 ((5-(6- Aminohexaneamido )-One- Carboxypentyl ) Carbamoyl ) -L-Glutamic acid (5) preparation
  • the product 4 (200 mg, 0.33 mmol) was dissolved in a mixture of TFA and DCM (2 mL, 1: 1 v/v), and then stirred at room temperature overnight. After the reaction was completed, the solvent was removed under reduced pressure, and the residue was purified by HPLC (Method 2 ) to obtain a white solid product 5 (56, 39%).
  • Step 2-1 Preparation of 3-formamidopropanoic acid (12).
  • Step 2- 2 2 ,3,5,6- Tetrafluorophenyl 3- Formamidopropanoate ( 13) of Produce
  • Step 2- 3 2 ,3,5,6- Tetrafluorophenyl 3- Isocyanopropanoate ( 14) of Produce
  • Step 2-4 (3S)-22- Isocyano -5,13,20- Trioxo -4,6,12,19- Tetraazadococein Preparation of -1,3,7-tricarboxylic acid (15)
  • GUL-NC compound 16 was prepared according to Scheme 2 and Scheme 3 below.
  • Reagents and reaction conditions (a) Fmoc-Phe-OH, HBTU, DIPEA, 0 °C-RT overnight (b) 20% pepridine/DMF, 1 h (c) Fmoc-Phe-OH, HBTU, DIPEA, 0 °C-RT overnight (d) 20% pepridine/DMF, 1 h (e) Boc-6-Ahx-OH, HBTU, DIPEA, 0° C.-RT overnight (f) TFA:DCM (1:1, v/v).
  • Step 3-1 try - tert - Butyl (23S)-5- benzyl -1-(9H- Fluorene Of -9-yl)-3,6,13,21-tetraoxo-2-oxa-4,7,14,20,22-pentazapentacosein-19,23,25-tricarboxylate (6) Produce
  • Step 3-2 try - tert - Butyl (3S)-21-amino-5,13,20- Trioxo Preparation of -22-phenyl-4,6,12,19-tetraazadococein -1,3,7-tricarboxylate (7)
  • Step 3-3 try - tert - Butyl (8R,26S)-5,8-dibenzyl-1-(9H-fluoren-9-yl)-3,6,9,16,24-pentaoxo-2-oxa-4,7,10,17 Preparation of ,23,25-hexaazaoctacocein-22,26,28-tricarboxylate (8)
  • Step 3-4 try - tert - Butyl ( 3S,21R )-24-amino-21- benzyl -5,13,20,23- Tetraoxo -25-phenyl-4,6,12,19,22-pentazapentacosein-1,3,7-tricarboxylate ( 9) of Produce
  • the 8 (300 mg, 0.3 mmol) was dissolved in 20% piperidine/DMF solution (1 mL) by stirring at room temperature for 1 hour. The solvent was removed under vacuum, and the product was purified by HPLC (Method 4 ) to give the product 9 as a white solid (215 mg, 90%).
  • Step 3-5 try - tert - Butyl (16R,34S)-13,16-dibenzyl-2,2-dimethyl-4,11,14,17,24,32-hexaoxo-3-oxa-5,12,15,18,25,31 Preparation of ,33-heptaazahexatriacontein-30,34,36-tricarboxylate (10)
  • Step 3-6 ( 3S,21R )-31-amino-21,24- Dibenzyl -5,13,20,23,26- Pentaoxo Preparation of -4,6,12,19,22,25-hexaazahentriacontain-1,3,7-tricarboxylic acid (11)
  • Step 3-7 ( 3S,21R )-21,24- Dibenzyl -35- Isocyano Preparation of -5,13,20,23,26,33-hexaoxo-4,6,12,19,22,25,32-heptaazapentatriacontain-1,3,7-tricarboxylic acid (16)
  • the prepared [ 99m Tc][Tc(H 2 O) 3 (CO) 3 ] + (500 ⁇ L, 370 MBq) solution was added to 15 of a mixture of methanol and water (100 ⁇ g, 200 ⁇ L, 3:1 v/v). It was added to the containing vial. The vial was heated at 100° C. for 30 minutes and then purified by radio-HPLC. The eluted fraction containing the 99m Tc-labeled conjugate was collected, diluted with water (20 mL) and then passed through a Sep-Pak C18 cartridge of ethanol (12 mL) and water (12 mL). The Sep-Pak C18 cartridge was washed with water (5 mL), then the 99m Tc labeled conjugate was eluted with ethanol (1 mL) and then diluted with saline for further in vitro and imaging studies.
  • the prepared [ 99m Tc][Tc(H 2 O) 3 (CO) 3 ] + (500 ⁇ L, 370 MBq) solution was added to 16 of a mixture of methanol and water (100 ⁇ g, 200 ⁇ L, 3:1 v/v). It was added to the containing vial. The vial was heated at 100° C. for 30 minutes and then purified by radio-HPLC. The eluted fraction containing the 99m Tc-labeled conjugate was collected, diluted with water (20 mL) and then passed through a Sep-Pak C18 cartridge of ethanol (12 mL) and water (12 mL). The Sep-Pak C18 cartridge was washed with water (5 mL), then the 99m Tc labeled conjugate was eluted with ethanol (1 mL) and then diluted with saline for further in vitro and imaging studies.
  • Re- 15 was prepared according to Scheme 3.
  • the rhenium precursor Re(CO) 3 (H2O) 3 ]Br was prepared by the reported method. Bromopentacarbonylenium (I) (100 mg, 0.25 mmol) was heated in deionized water (5 mL) for 24 hours to obtain [Re(CO) 3 (H 2 O) 3 ]Br at a concentration of 2 mg/mL I got it.
  • Re- 15 [Re(CO) 3 (H 2 O) 3 ]Br (400 ⁇ L, 1 ⁇ mol) was added to precursor 15 (11 mg, 0.02 mmol) in methanol (2 mL) and then 100 °C Heated at for 4 hours. The reaction mixture was heated at 100° C. for 3 hours. The resulting mixture was concentrated with a vacuum concentrator and purified by HPLC.
  • Re- 16 was prepared according to Scheme 3.
  • the rhenium precursor [Re(CO) 3 (H2O) 3 ]B was prepared by the reported method, by heating in bromopentacarbonylenium (I) (100 mg, 0.25 mmol) deionized water (5 mL) for 24 hours. [Re(CO) 3 (H 2 O) 3 ] Br was obtained at a concentration of 2 mg/mL.
  • Re- 16 [Re(CO) 3 (H 2 O) 3 ]Br (400 ⁇ L, 1 ⁇ mol) was mixed with a mixture of methanol (2 mL) and water (3 mL, 1:1 v/v). 16 (10 mg, 0.01 mmol) was added. The reaction mixture was heated at 100° C. for 2 hours. The resulting mixture was concentrated with a vacuum concentrator and purified by HPLC.
  • the stability in human serum is to test the stability when contacted with human serum after administration to the human body, and is to partially test the stability in the body in vitro.
  • [99m Tc]Tc- 15 3.7 MBq (100 ⁇ L) prepared in Example 3 was added to 1 mL of human serum. After mixing well, the mixture was incubated with stirring at 36.5°C. After 2 hours the reaction mixture was analyzed by ITLC.
  • [99m Tc]Tc- 16 3.7 MBq (100 ⁇ L) prepared in Example 4 was added to 1 mL of human serum. After mixing well, the mixture was incubated with stirring at 36.5°C. After 2 hours the reaction mixture was analyzed by ITLC.
  • [99m Tc] Tc- 15 or [ 99m Tc] Tc- 16 according to the present invention is sufficiently stable to obtain an image because technetium, a soft acid, and isonitrile, a soft base, are very strongly bonded to each other and have excellent stability in human serum. Do.
  • PSMA positive prostate cancer cell line 22Rv1 to 1 x 10 5 each put and cultured in 5% CO 2 incubator for °C 37 24 hours on each well in 24-well plates.
  • [99m Tc]Tc- 15 and [ 99m Tc]Tc- 16 prepared in Examples 3 and 4 were sequentially diluted 2 times with a cell culture solution containing 0.5% bovine serum albumin. 0.5 mL of this was taken and put into the cultured cells and incubated in a 37° C. CO 2 incubator for 1 hour.
  • [99m Tc]Tc- 15 and [ 99m Tc]Tc- 16 according to the present invention were administered to an animal implanted with prostate cancer, and an experiment was performed as follows to verify targeting of cancer tissues through PET imaging.
  • RPMI1640 culture solution containing 5 x 10 6 22Rv1 cells was injected subcutaneously on the right side of a male BALB/c nude mouse of 4 weeks of age. After 2 to 3 weeks, it was confirmed that the tumor tissue had reached an appropriate size and used in the experiment.
  • [ 99m Tc]Tc- 15 and [ 99m Tc]Tc- 16 were diluted in physiological saline for injection to 10.2 MBq/100 ⁇ L. This was injected into the tail vein to each mouse implanted with cancer cells, followed by 1 hour and 3 hours, and then photographed with an animal SPECT for 10 minutes.
  • [99m Tc] Tc- 15 and [ 99m Tc] Tc- 16 according to the present invention are not only excreted by the kidneys, but also ingested into prostate cancer tissues.
  • [ 99m Tc] Tc- 16 is prostate It showed higher intake in cancer (Fig. 4A, Fig. 5A). This shows that albumin-binding [ 99m Tc]Tc- 16 maintained higher blood levels and increased prostate cancer intake.
  • [99m Tc] Tc- 15 and [ 99m Tc] Tc- 16 according to the present invention specifically bind to PSMA, so they can be usefully used for prostate cancer imaging.
  • [ 99m Tc ]It can be seen that the Tc- 16 shows a better image.
  • [99m Tc]Tc- 15 or [ 99m Tc]Tc- 16 according to the present invention was administered to an animal implanted with prostate cancer, and an in vivo distribution experiment was performed to verify whether it was actually observed in cancer tissues.
  • RPMI1640 culture solution containing 5 x 10 6 22Rv1 cells was injected subcutaneously into the left flank of a male BALB/c nude mouse of 4 weeks of age. After 2 to 3 weeks, it was confirmed that the tumor tissue had reached an appropriate size and used in the experiment.
  • [ 99m Tc]Tc- 15 prepared in Example 3 and [99m Tc]Tc- 16 prepared in Example 4 were diluted in physiological saline for injection to 0.74 MBq/100 ⁇ L. The mice were injected with cancer cells through the tail vein, and 1 hour and 4 hours later, cancer, blood, muscle, and heart.
  • [ 99m Tc] Tc- 15 or [ 99m Tc] Tc- 16 according to the present invention showed a high intake in the kidney like a conventional radiopharmaceutical for peptide imaging, and then It can be seen that it shows the highest intake in cancer tissues.
  • [ 99m Tc]Tc- 15 appears to have a slightly higher liver intake and [ 99m Tc]Tc- 16 has a slightly higher spleen intake than that of cancer, but both have no statistical significance.
  • both [ 99m Tc]Tc- 15 and [ 99m Tc]Tc- 16 show that the intake decreases when PSMA is blocked with PMPA, indicating that ingestion by cancer cells is a specific intake for PSMA.
  • [99m Tc] Tc- 15 or [ 99m Tc] Tc- 16 according to the present invention is effective for prostate cancer imaging, so it can be usefully used as a radiopharmaceutical, among which [ 99m Tc] Tc including an albumin binding site in a linker -You can see that 16 is better.
  • the GUL-isonitrile derivative and the radioactive metal complex according to the present invention not only have simple labeling, but also have high labeling efficiency, have excellent stability in human serum when administered into the body, and bind well to PSMA expressed in prostate cancer.
  • it since it is excreted by the kidneys rather than the hepatobiliary tract due to its high water solubility, it is very low intake in the intestines, accumulates in prostate cancer tissues, and radiates radiation from the prostate cancer tumor site, thereby being useful as a therapeutic or diagnostic pharmaceutical composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 Glumate -urea-Lysine (GUL)과 이소니트릴을 링커로 연결한 유도체 및 이를 포함하는 방사성동위원소 표지 화합물 및 이를 유효 성분으로 함유하는 전립선암 치료 및 진단용 약학적 조성물에 관한 것이다. 본 발명에 따른 유도체는 테크네튬이나 레늄 한 원자에 3개 혹은 6개가 결합하여 다중 리간드로 작용하여 전립선암에서 발현되는 PSMA에 결합력이 크고, 체내에 투여될 경우 인혈청 내에서 안정성이 우수하고, 수용성이 높아 간담도가 아닌 신장으로 배설이 되어 전립선암 종양 부위의 선명한 영상을 얻을 수 있어서, 전립선암 치료 또는 진단용 약학적 조성물로 유용하게 사용될 수 있다.

Description

전립선 암의 영상 또는 치료를 위한 동위원소 표지 화합물
본 발명은 글루타메이트-우레아-리신(Glutamate-urea-Lysine, GUL)과 이소니트릴을 링커로 연결한 유도체 및 이를 포함하는 방사성 동위원소 표지 화합물 및 이를 유효성분으로 함유하는 전립선암 치료 및 진단용 약학적 조성물에 관한 것이다.
전립선암은 전 세계적으로 가장 흔한 비뇨기계 종양 중 하나로서, 미국에서는 1997년에만 약 380,000명이 새로 진단되어 41,800명이 사망하여, 폐암 다음으로 높은 사망자 수를 보이고, 국내에서도 고령화와 식생활의 서구화 등에 의하여 급격히 증가하는 양상을 보이고 있어 전립선암의 조기 영상 진단 및 치료는 국내뿐만 아니라 전세계적으로도 큰 이슈가 되고 있다.
전립선암은 주로 전립선 주변 조직에서 시작되어 점점 커지면 뼈나 폐 등 신체의 다른 중요 장기에까지 전이를 일으킬 수 있다. 초기에는 증상이 거의 없으나 암이 커지면서 요도의 압박이나 요로폐색 등의 문제를 야기시킬 수 있고 척추나 골반뼈 등에 전이를 잘 일으켜 심각한 합병증을 일으킬 수 있다.
전립선암의 핵의학적 진단에는 단일광자단층촬영 (Single Photon Emission
Computed Tomography, SPECT) 또는 양전자단층촬영 (Positron Emission Tomography, PET)과 같이 종양세포에서 일어나는 생화학적 변화를 감마선이나 양전자를 방출하는 방사성 동위원소 표지 물질을 이용하여 단층 영상 및 3차원의 영상으로 표현하여 암의 유무 및 분포를 나타내는 영상진단법이 사용되고 있다. 이들 영상진단법은 최근에 CT와 결합한 SPECT-CT/MRI 및 PET-CT/MRI가 개발됨으로써 암 영상 성능이 개선되어 더욱 빠른 속도로 보급되고 있다.
전립선암의 영상화제로 사용되는 방사성의약품은 전립선암에서 특이적으로 발현되는 단백질(Prostate Specific Membrane Antigen: PSMA)에 결합하는 리간드를 이용하는 것이다. PSMA에 결합하는 리간드로 가장 유명한 것은 Glu-urea-Lys (GUL) 또는 Glu-urea-Cys (GUC)와 같은 펩타이드 유도체이다. 따라서 이러한 펩타이드 리간드에 적당한 방사성동위원소를 표지한 방사성 의약품은 PET이나 SPECT 등으로 PSMA를 발현하는 전립선암을 특이적으로 영상화하거나 치료할 수 있다.
각종 펩타이드를 표지하는데 사용하는 방사성동위원소는 주로 알파선 방출핵종, 베타선 방출핵종, 감마선 방출핵종, 양전자선 방출핵종 등이 있는데, 이중 알파선과 베타선 방출핵종은 치료용으로 사용이 되고, 감마선과 양전자선 방출핵종은 핵영상화에 의한 진단용으로 사용이 된다.
리간드에 방사성동위원소를 표지하는 방법에는 리간드에 직접 결합시키는 방법, 또는 DTPA, DOTA, TETA, HYNIC, N2S2, MAG3 등과 같은 양기능성 킬레이트화제(bifunctional chelating agent, BFCA)를 먼저 펩타이드에 결합한 다음에 방사성동위원소를 킬레이트화 시켜 표지하는 방법이 있다. 직접 결합시키는 방법은 주로 방사성요드나 F-18을 결합시키는데 사용되는 방법으로서, 다양한 방사성동위원소를 결합시킬 수 없으나, 양기능성 킬레이트화제(bifunctional chelating agent, BFCA)를 이용하는 방법을 쓰면 다양한 금속성 방사성동위원소를 표지할 수 있다. 이들 양기능성 킬레이트화제(bifunctional chelating agent, BFCA)는 방사성동위원소나 리간드에 따라 사용되는 종류가 다르다.
리간드 펩타이드의 종류에 따라 사용되는 양기능성 킬레이트화제 (bifunctional chelating agent, BFCA)
Group Peptide BFCA Targeted disease
Somatostatin (SST) analogues octreotide DTPA
TETA
HYNIC
tumor (neuroendocrine)
Tyr 3-octreotide (Y3-TETA) TETA
HYNIC
tumor (neuroendocrine)
vapreotide (RC-160) S-S (direct)HYNIC tumor (neuroendocrine)
BN/GRP analogues BN N2S2
HYNIC
tumor
VIP analogues VIP MAG3 tumor
RGD-containing peptides/RGD-peptidomimetics HYNIC thrombosis
R-MSH analogues CCMSH S-S (direct) tumor (breast, prostate)
SP analogues SP DATA tumor
Chemotactic peptides fMLF HYNIC Infection/inflammation
체내 영상용 방사성동위원소로 가장 널리 사용되는 것은 99mTc이다. 이는 반감기가 6시간으로 짧고 140 keV의 감마선만 방출하므로 체내 피폭선량이 적으면서 뛰어난 영상을 얻을 수 있다. 또한 제너레이터에서 생산되므로 편리하고 경제적으로 얻을 수 있다. 이러한 장점으로 병원 핵의학과에서 사용되는 방사성동위원소의 대부분을 차지하고 있으며 따라서 테크네튬 표지 방사성의약품을 개발하는 것은 매우 중요하다. 테크네튬과 유사한 화학적인 성질을 가지는 동위원소로 188Re과 186Re이 있는데 이들은 베타선과 감마선을 방출하여 치료용으로 사용이 된다. 따라서 같은 화합물에 용도에 따라서 99mTc 또는 186Re이나 188Re을 표지하여 사용할 수 있다.테크네튬 표지 방사성의약품은 두뇌영상용으로 HMPAO와 ECD, 뼈 영상용으로 MDP, DPD, HDP, 신장영상용으로 DTPA, MAG3, DMSA, 간담도 영상용으로 메브로페닌, HIDA, DISIDA, 황화수소 영상용으로 글루코네이트 등 수많은 것들이 개발되어 사용되고 있다.한편 테크네튬이나 레늄은 소프트 산에 속하는 금속으로서 소프트 염기에 속하는 리간드와 안정한 착화합물을 형성한다. 대표적인 소프트염기 화합물로 이소니트릴계 화합물이 있다. 6개의 이소니트릴기를 가진 리간드는 +1가의 테크네튬과 안정적으로 결합하여 최종적으로 +1가의 착화합합물을 만든다는 것이 보고되었다 (비특허문헌 1. Jones AG, Abrams MJ, Davison A, Brodack JW, Toothaker AK, Adelstein SJ, Kassis AI, Biological studies of a new class of technetium complexes: the hexakis(alkylisonitrile)technetium(I) cations. Int J Nucl Med Biol. 11:225-234, 1984). 이를 이용하여 메톡시이소부틸이소니트릴 (MIBI) 6개가 테크네튬에 결합한 화합물을 만들었는데 이는 심근의 미토콘드리아에 섭취되어 심근 영상에 널리 사용된다. 이렇게 6개의 MIBI가 결합한 것을 세스타미비라고 한다 (비특허문헌 2. Wackers FJT, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Inglese E, Delaloye B, Bischof-Delaloye A, Camin L, McKusick K. Technetium-99m hexakis 2-methoxyisobutyl.isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med. 30:301-311, 1989).
소프트 염기에 속하는 리간드로 일산화탄소 CO가 있다. CO도 역시 +1가의 테크네튬과 잘 결합하는데, 수용액 속에서 3개의 CO와 3개의 물분자가 +1가의 테크네튬과 결합한다 (특허문헌 1. WO 98/48848; 비특허문헌 3. Alberto R, Schibli R, Egli A, Schubiger AP. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [ 99mTc(OH 2) 3(CO) 3] + from [ 99mTcO 4] - in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc. 120:7987-7988, 1998). 이 화합물은 여러가지 다른 리간드와 결합하는 성질이 있어 다른 화합물들을 표지하는데 널리 사용이 되었다.
그 후 CO 3개와 이소니트릴 3개를 +1가의 테크네튬에 결합하여 +1가의 심근영상용 화합물을 합성한 보고가 있으나 널리 사용되지는 못하였다 (특허문헌 2. CN 1506372A; 비특허문헌 4. Chen X, Guo Y, Zhang Q, Hao G, Jia H, Liu B. Preparation and biological evaluation of 99mTc-CO-MIBI as myocardial perfusion imaging agent. J Organometal Chem. 693:1822-1828, 2008).
한편 이소니트릴기를 포함한 리간드가 테크네튬에 여러 개가 결합할 수 있다는 점에 착안하여 신생혈관 부위에 발현하는 α vβ 3 인티그린에 결합하는 RGD 잔기를 포함한 이소니트릴 리간드 3개와 CO 3개를 +1가의 테크네튬에 결합한 멀티발렌트 화합물이 개발되었다 (비특허문헌 5. Mizuno Y, Uehara T, Hanaoka H, Endo Y, Jen CW, Arano Y. Purification-free method for preparing technetium-99m-labeled multivalent probes for enhanced in vivo imaging of saturable systems. J Med Chem. 59:3331-3339, 2016). 이는 이러한 식으로 결합한 이소니트릴 리간드가 충분히 안정하게 멀티발렌트 리간드로 작용한다는 것을 보여주었다. 멀티발렌트 리간드는 단일 리간드보다 결합력이 증가한다는 장점이 있다. 같은 방법으로 니트로이미다졸을 포함한 이소니트릴기의 테크네튬 화합물이 보고되었고 (비특허문헌 6. Ruan Qing, Zhang X, Lin X, Duan X, Zhang J. Novel 99mTc labelled complexes with 2-nitroimidazole isocyanide: design, synthesis and evaluation as potential tumor hypoxia imaging agents. MedChemComm 9:988-994, 2018), 또 엽산을 포함한 이소니트릴기와 테크네튬 화합물도 보고되었다 (비특허문헌 7. Lodhi NA, Park JY, Hong MK, Kim YJ, Lee YS, Cheon GJ, Jeong JM. Development of 99mTc-labeled trivalent isonitrile radiotracer for folate receptor imaging. Bioorg Med Chem. 27:1925-1931, 2019).
전립선암 영상용 방사성 의약품에 관한 특허로는, US 2012/0269726 A1, US 2015/0246144 A1, WO 2015/055318 A1과 KP 10-1639599에 GUL 유도체와 킬레이트제를 링커로 결합한 화합물이 기재되어 있지만 이는 하드 산인 Ga-68이나 Lu-177 같은 동위원소를 포함하기에 좋은 하드 염기를 가지고 있어서 소프트 산인 테크네튬이나 레늄 동위원소를 표지하기에는 적당하지 않다. 또한 WO 2010/014933 A2에는 페닐링에 할로겐을 도입하고 F-18이나 I-125로 표지한 GUL 유도체가 기재되어 있어 이 특허도 테크네튬이나 레늄과 같은 금속성 동위원소로 표지할 수는 없다.
상술한 양기능성 킬레이트제에 방사성동위원소가 표지된 화합물들은 수용성 방사성의약품이며, 이들 수용성 의약은 주로 신장으로 배설되는데 이 때 신장에 결합하는 성질이 강하여 신장에 오래 남아 있는 수가 많다. 그러면 신장의 방사선 흡수선량이 높아져 치료용으로 사용시 투여 용량에 제한을 받고 따라서 치료효과가 줄어드는 수가 있다. 따라서 지용성을 좀 높이고 혈청 알부민 결합률을 높여 신장으로 배설하는 속도를 조절하고 혈중 농도를 높임으로써 암세포에 섭취를 늘이는 방법을 쓰기도 하는데, 특히 엽산과 킬레이트 유도체에 알부민 결합 부위인 요드화페닐기를 삽입하여 신장 섭취를 줄인 보고가 있다. (비특허문헌 8. C Mueller, H Struthers, C Winiger, K Zhernosekov, R Schibli. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy. J Nucl Med 54:124-131, 2013.)
이에, 본 발명자는 GUL 리간드에 테크네튬이나 레늄을 표지하여 전립선암 표면에 발현되는 PSMA에 보다 높은 결합력을 가져 전립선암 영상 및 치료에 효과적인 방사성 의약품을 개발하기 위해 노력을 하던 중, 이소니트릴기를 포함한 GUL 유도체를 이용하면 3개 또는 6개의 GUL 리간드가 테크네튬 또는 레늄에 결합하여 PSMA에 높은 결합력을 가지고 또한 결과적으로 체내 투여시 전립선암에 특이적인 섭취가 높아져 영상의 품질을 높이고 더 나아가 치료효과도 높일 수 있음을 알아내어, 이를 전립선암 치료 또는 진단용 약학적 조성물로 사용하기 위하여 본 발명을 완성하였다.
본 발명의 목적은 GUL과 이소니트릴 유도체 또는 이의 약학적으로 허용가능한 염을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 GUL과 이소니트릴 유도체 또는 이의 약학적으로 허용가능한 염에 금속성 방사성 동위원소가 배위된 표지 화합물을 제공하는 것이다.
본 발명의 다른 목적은 상기 표지 화합물을 유효성분으로 포함하는 전립선암의 치료 또는 진단용 약학적 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 GUL과 이소니트릴 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 전립선암의 영상용 방사성의약품을 제공하는 것이다.
본 발명의 다른 목적은 상기 GUL과 이소니트릴 유도체 또는 이의 약학적으로 허용가능한 염을 포함하는 전립선암의 치료 또는 진단용 키트를 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염 또는 복합체를 제공한다.
[화학식 1]
Figure PCTKR2020014501-appb-img-000001
이때, 상기 L은 링커(linker)이다.
상기 링커 L은 직쇄 또는 분지쇄의 C 1- 10알킬, C 4- 10아릴, 유레아, 티오유레아, 트리아졸, 모노펩타이드, 다이펩타이드, 트리펩타이드 C 4- 10사이클로알킬, 벤질, 할로겐화 벤질, 페닐, 할로겐화 페닐, 에테르, 티오에테르, 아민, 아미드, 케톤, 에스테르, 티오에스테르, 하이드라진, 하이드라지드, 오탄당 및 육탄당 그룹으로부터 선택되는 적어도 하나의 복합체를 포함할 수 있다.
또한 본 발명은 하기 화학식 2로 표기되는 방사성동위원소 표지화합물 또는 이의 약학적으로 허용가능한 염을 제공한다.
[화학식 2]
Figure PCTKR2020014501-appb-img-000002
또는
Figure PCTKR2020014501-appb-img-000003
이때, 상기 화학식 2에서,
M은 금속이고,
R 1
Figure PCTKR2020014501-appb-img-000004
이고,
R 2는 R 1 또는 -CO 이다.
또한, 본 발명은 상기 화학식 2의 표지 화합물을 유효성분으로 포함하는 전립선 암의 치료 또는 진단용 약학적 조성물을 제공한다.
나아가, 본 발명은 상기 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 전립선암의 영상용 방사성 의약품을 제공한다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 포함하여 상기 화학식 2로 표시되는 표지화합물을 제조하는 전립선암의 치료 또는 진단용 키트를 제공한다.
또한, 본 발명은 전립선 암의 진단 또는 치료용 약제를 제조하기 위해 사용하는 상기 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 제공한다.
또한, 본 발명은 전립선 암의 진단 또는 치료용 약제의 제조를 위한 상기 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염의 용도를 제공한다.
또한, 본 발명은 상기 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 투여하여 전립선 암을 진단 또는 치료하는 방법을 제공한다.
또한, 본 발명은 상기 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 투여하여 방사선 이미지를 획득하는 방법을 제공한다.
본 발명에 따른 GUL-이소니트릴 유도체와 방사성 금속 복합체는 표지가 간단할 뿐만 아니라 표지 효율이 높고, 체내에 투여될 경우 인혈청 내에서 안정성이 우수하고, 전립선암에서 발현되는 PSMA에 잘 결합할 뿐만 아니라, 수용성이 높아 간담도가 아닌 신장으로 배설이 되므로 내장에 섭취가 매우 적고, 전립선암 조직에 축적되어, 전립선암 종양 부위에서 방사선을 방출함으로써 치료 또는 진단용 약학적 조성물로 유용하게 사용될 수 있다.
도 1a 내지 도 1c는 방사성동위원소 표지 후 표지효율을 보기 위한 HPLC의 결과이며 Xterra RP18 3.5 μm (4.6 mm x 100 mm) 칼럼을 사용하였고 용매 A (0.1% 트리플루오르아세트산 (TFA) 수용액)와 용매 B (아세트나이트릴)를 사용하였는데 처음에 100% 용매 A로 시작하여 30분후에 100% 용매 B로 되는 농도구배를 사용하였고 유속은 3 mL/min로 하였다. 그 결과 [ 99mTc][Tc(H 2O) 3(CO) 3] + 와 본 발명에 따른 [ 99mTc]Tc- 15 및 [ 99mTc]Tc- 16이 각각 도 1a, 도 1b, 도 1c에 나타나 있는데 [ 99mTc]Tc- 15 과 [ 99mTc]Tc- 16의 표지효율은 거의 100%로 볼 수 있다.
도 2a 및 도 2b는 본 발명에 따른 [ 99mTc]Tc- 15 및 [ 99mTc]Tc- 16을 인혈청과 37 ℃에서 6시간 동안 배양하여 본 안정성 시험 결과로 [ 99mTc]Tc- 15 및 [ 99mTc]Tc- 16이 각각 도 2a와 도 2b에 표시되어 있는데 모두 6시간이 지나도 98% 이상의 안정성을 보여 주었다.
도 3a와 3b는 각각 본 발명에 따른 [ 99mTc]Tc- 15 및 [ 99mTc]Tc- 16의 시험관내 세포 결합 시험 결과로 포화 결합 곡선을 보여 준다. 비선형회귀분석에 의한 [ 99mTc]Tc- 15 및 [ 99mTc]Tc- 16의 Kd 값을 계산한 결과 각각 5.5 nM과 0.2 nM이 나왔다.
도 4a 및 도 4b는 본 발명에 따른 [ 99mTc]Tc- 15를 22Rv1 세포 이식한 마우스에 정맥주사 1시간 및 3시간 경과 후의 SPECT 영상사진이다. 암 종양이 화살표한 오른쪽 어깨에 있는데 아래 신장 쪽의 방사능이 높아 방사능이 아주 약간 증가하긴 했어도 1시간과 3시간째에 모두 뚜렷한 섭취가 보이지 않고 있는 것이 도 4a에 나타났다. 도 4b는 MIP-1072를 [ 99mTc]Tc- 15와 함께 주사하여 PSMA를 선택적으로 차단함으로써 [ 99mTc]Tc- 15가 암종양에 보이지 않고 있다.
도 5a 및 도 5b는 본 발명에 따른 [ 99mTc]Tc- 16을 22Rv1 세포 이식한 마우스에 정맥주사 1시간 및 4시간 경과 후의 SPECT 영상사진이다. 암 종양이 화살표한 오른쪽 어깨에 있는데 아래 신장 쪽의 방사능이 높지만 1시간째부터도 방사능의 증가가 뚜렷하고 특히 4시간째에는 주변 방사능이 낮아 더욱 더 뚜렷한 섭취를 보여 주는 것이 도 5a에 잘 나타났다. 도 5b는 MIP-1072를 [ 99mTc]Tc- 16과 함께 주사하여 PSMA를 선택적으로 차단함으로써 [ 99mTc]Tc- 16이 암종양에 보이지 않고 있다.
이하, 본 발명을 상세하게 설명한다.
한편, 본 발명의 실시 형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 나아가, 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
이하, 본 발명을 구체적으로 상세히 설명한다.
본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염 또는 복합체를 제공한다.
[화학식 1]
Figure PCTKR2020014501-appb-img-000005
(상기 화학식 1에서 L은 링커(linker)이다.
상기 링커 L은 직쇄 또는 분지쇄의 C 1- 10알킬, C 4- 10아릴, 유레아, 티오유레아, 트리아졸, 모노펩타이드, 다이펩타이드, 트리펩타이드, 벤질, 할로겐화 벤질, C 4- 10사이클로알킬, 페닐, 할로겐화 페닐, 에테르, 티오에테르, 아민, 아미드, 케톤, 에스테르, 티오에스테르, 하이드라진, 하이드라지드, 오탄당 및 육탄당 그룹으로부터 선택되는 적어도 하나의 복합체를 포함할 수 있다.
링커는 전립선암 세포에 결합하는 GUL 부분과 테크네튬과 착화합물을 만드는 이소니트릴기를 서로 연결하는 작용을 한다. Glutamate-urea-Lysine이 결합된 GUL 부분은 전립선암 세포에 많이 발현되는 항원인 PSMA와 강하게 결합하는 성질이 있다. 따라서 이러한 성질을 이용하여 각종 양기능성 킬레이트제를 링커로 결합하여 금속성 방사성동위원소를 표지하여 방사성의약품으로 사용하는 특허로 KR 10-1639599, US 2012/0269726 A1 등이 있다. 그런데 이러한 특허들은 모두 하드 염기인 킬레이트제로 구성되어 있어서 68Ga, 111in, 177Lu, 90Y 등과 같은 하드 산에 속하는 금속성 동위원소를 표지하기에 좋다. 본 발명에서는 핵의학적으로 가장 널리 사용되어 시장성이 뛰어난 소프트 산에 속하는 금속성 동위원소인 99mTc, 188Re, 186Re 같은 것들을 표지하기에 좋도록 소프트 염기에 속하는 이소니트릴 기를 도입하였다. GUL과 이소니트릴기를 연결하는 링커는 원칙적으로 어떠한 화학결합을 사용하여도 된다. 그런데 알부민 결합을 할 수 있는 벤질 또는 요드화벤질 같은 기가 있으면 혈 중 농도를 높게 오래 유지할 수가 있어서 신장 섭취를 줄이고 암세포 섭취를 늘이는 작용을 할 수가 있어서 더 바람직하다.
또한 본 발명은 하기 화학식 2로 표기되는 방사성동위원소 표지화합물 또는 이의 약학적으로 허용가능한 염을 제공한다.
[화학식 2]
Figure PCTKR2020014501-appb-img-000006
또는
Figure PCTKR2020014501-appb-img-000007
(상기 화학식 2에서,
M은 방사성 금속이고
R 1
Figure PCTKR2020014501-appb-img-000008
이고,
R 2는 R 1 또는 -CO 이다).
이때, 상기 R 1와 상기 M의 결합은 R 1의 이소니트릴(isonitrile)기가 M과 결합하는 것이다.
산화수 +1인 테크네튬이나 레늄은 6개의 이소니트릴기를 가진 리간드와 결합하거나 3개의 CO와 3개의 이소니트릴기를 가진 리간드와 결합하여 안정한 착체를 만드는 것으로 알려져 있다. 따라서 상기 화학식 2와 같은 정팔면체 구조를 형성함으로써 GUL을 3개 또는 6개 포함한 멀티발렌트의 착화합물을 합성할 수 있다. 이러한 멀티발렌트 구조는 특히 결합력이 증가하여 체내 투여시 타겟팅 효율이 증가하는 것으로 알려져 있다.
또한, 본 발명은 상기 화학식 2의 표지 화합물을 유효성분으로 포함하는 전립선 암의 치료 또는 진단용 약학적 조성물을 제공한다. 진단용으로는 핵의학적으로 가장 널리 사용되는 방사성동위원소인 99mTc를 사용하고 치료용으로는 188Re이나 186Re를 사용한다.
상기 M은 구리(Cu), 테크네튬(Tc) 또는 레늄(Re)일 수 있다.
또 다른 측면에서 상기 M은 60Cu, 61Cu, 62Cu, 63Cu, 64Cu, 65Cu, 67Cu, 96Tc, 96mTc, 97mTc, 99mTc, 101Tc, 186Re 또는 188Re일 수 있다.
나아가, 본 발명은 상기 화학식 1 또는 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 전립선암의 영상용 방사성 의약품을 제공한다. 전립선암의 영상용 방사성 의약품은 전립선암의 치료 또는 진단용 조성물을 포함한다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 포함하여 상기 화학식 2로 표시되는 표지화합물을 제조하는 전립선암의 치료 또는 진단용 키트를 제공한다.
본 발명의 상기 화학식 1로 표시되는 화합물은 약학적으로 허용 가능한 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용가능한 유리산(free acid)에 의해 형성된 산부가염이 유용하다. 약학적으로 허용가능한 염이란 표현은 환자에게 비교적 비독성이고 무해한 유효작용을 갖는 농도로서 이 염에 기인한 부작용이 화학식 1의 염기 화합물의 이로운 효능을 떨어뜨리지 않는 화학식 1의 염기화합물의 어떠한 유기 또는 무기 부가염을 의미한다. 이들 염은 유리산으로는 무기산과 유기산을 사용할 수 있으며, 무기산으로는 염산, 브롬산, 질산, 황산, 과염소산, 인산 등을 사용할 수 있고, 유기산으로는 구연산, 초산, 젖산, 말레산, 푸마린산, 글루콘산, 메탄설폰산, 글리콘산, 숙신산, 타타르산, 갈룩투론산, 엠본산, 글루탐산, 아스파르트산, 옥살산(D) 또는 (L) 말산, 말레산, 메테인설폰산, 에테인설폰산, 4-톨루엔술폰산, 살리실산, 시트르산, 벤조산 또는 말론산 등을 사용할 수 있다. 또한, 이들 염은 알칼리 금속염(나트륨염, 칼륨염 등) 및 알칼리 토금속염 (칼슘염, 마그네슘염 등) 등을 포함한다. 예를 들면, 산부가염으로는 아세테이트, 아스파테이트, 벤즈에이트, 베실레이트, 바이카보네이트/카보네이트, 바이설페이트/설페이트, 보레이트, 캄실레이트, 시트레이트, 에디실레이트, 에실레이트, 포메이트, 퓨마레이트, 글루셉테이트, 글루코네이트, 글루큐로네이트, 헥사플루오로포스페이트, 하이벤제이트, 하이드로클로라이드/클로라이드, 하이드로브로마이드/브로마이드, 하이드로요오디드/요오디드, 이세티오네이트, 락테이트, 말레이트, 말리에이트, 말로네이트, 메실레이트, 메틸설페이트, 나프틸레이트, 2-나프실레이트, 니코티네이트, 나이트레이트, 오로테이트, 옥살레이트, 팔미테이트, 파모에이트, 포스페이트/수소 포스페이트/이수소 포스페이트, 사카레이트, 스테아레이트, 석시네이트, 타르트레이트, 토실레이트, 트리플루오로아세테이트, 알루미늄, 알기닌, 벤자틴, 칼슘, 콜린, 디에틸아민, 디올아민, 글라이신, 라이신, 마그네슘, 메글루민, 올아민, 칼륨, 나트륨, 구리, 트로메타민, 아연염 등이 포함될 수 있으며, 이들 중 하이드로클로라이드 또는 +1가 구리가 바람직하다.
또한, 본 발명의 상기 화학식 1로 표시되는 화합물은 약학적으로 허용되는 염뿐만 아니라, 통상의 방법에 의해 제조될 수 있는 모든 염, 이성질체, 수화물, 용매화물 및 착화물을 모두 포함한다.
본 발명에 따른 부가염은 통상의 방법으로 제조할 수 있으며, 예를 들면 화학식 1의 화합물을 수혼화성 유기용매, 예를 들면 아세톤, 메탄올, 에탄올, 또는 아세토니트릴 등에 녹이고 과량의 유기산을 가하거나 무기산의 산 수용액을 가한 후 침전시키거나 결정화시켜서 제조할 수 있다. 이어서 이 혼합물에서 용매나 과량의 산을 증발시킨 후 건조시켜서 부가염을 얻거나 또는 석출된 염을 흡인 여과시켜 제조할 수 있다.
나아가, 본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약
학적으로 허용가능한 염에 금속성 방사성 동위원소가 배위되어 상기 화학식 2로 표시되는 표지 화합물을 제공한다.
상기 금속성 방사성 동위원소는 99mTc, 188Re, 또는 186Re인 것이 바람직하다.
또한, 본 발명은 상기 표지 화합물을 유효성분으로 포함하는 전립선암의 치료 또는 진단용 약학적 조성물을 제공한다. 나아가, 본 발명은 상기 표지화합물을 유효성분으로 포함하는 전립선암의 영상용 방사성의약품을 제공한다.
방사성 동위원소로는 주로 알파선 방출핵종, 베타선 방출핵종, 감마선 방출핵종, 양전자선 방출핵종 등이 있는데, 이중 알파선과 베타선 방출핵종은 치료용으로 사용이 되고, 감마선과 양전자선 방출핵종은 핵영상화에 의한 진단용으로 사용이 된다. 본 발명에 따른 약학적 조성물이 전립선암의 영상용으로 사용되는 경우에는 표지 화합물의 방사성 동위원소가 99mTc인 것이 바람직하고, 전립선암의 치료용으로 사용되는 경우에는 188Re 또는 186Re인 것이 바람직하다.
본 발명에 따른 약학적 조성물은 체내에 투여될 경우, 인혈청 내에서 안정성이 우수하고, 경쟁적으로 전립선암에서 발현되는 PSMA에 잘 결합할 뿐만 아니라, 낮은 농도에서 PSMA 저해 효능이 우수하며, 수용성이 높아 간담도가 아닌 신장으로 배설이 될 뿐만 아니라 전립선암 조직에 섭취됨을 알아낸 바, 전립선암 종양 부위에 방사선을 방출함으로써 치료 또는 진단용 약학적 조성물로 유용하게 사용될 수 있다.
나아가, 본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약
학적으로 허용가능한 염을 포함하는 약제학적으로 허용되는 비발열성 멸균 형태의 금속성 방사성 동위원소 표지된 전립선암의 치료 또는 진단용 키트를 제공한다.
구체적으로, 본 발명에 따른 전립선암의 치료 또는 진단용 키트는 상기 화학식 1로 표시되는 화합물 10 ng ~ 100 mg을 포함한다.
본 발명에 따른 전립선암의 치료 또는 진단용 키트는 상기 화학식 1로 표시되는 화합물의 금속성 방사성 동위원소의 표지를 편리하게 하기 위하여 미리 화학식 1로 표시되는 화합물과 적당한 완충용액과 환원제를 액체 상태로 첨가하여 약학적으로 바람직한 멸균 바이알에 분주하여 밀봉한 채 사용하거나 냉장, 냉동 또는 냉동 건조시켜 보관한 후 필요시에 유용하게 사용할 수 있다.
이때, 동위원소 표지시의 수소이온 농도를 조절하기 위하여 pH 1~9이고 농도가 1 μM~10 M인 완충용액 0.01 mL~10 mL를 첨가하여 용해상태, 냉동상태 또는 냉동건조 상태로 밀봉하여 제조할 수 있다.
또한, 상기 완충용액은 초산, 인산, 구연산, 푸마르산, 아스코르빈산, 낙산, 숙신산, 타타르산, 탄산, 글루코헵톤산, 글루콘산, 글루쿠론산, 글루카르산, 붕산 또는 이들의 나트륨염 또는 칼륨염이 바람직하다.
또한, 본 발명의 키트는 +7가 상태의 테크네튬이나 레늄을 +1가 상태로 환원하여 줄 환원제를 포함할 수 있는데 이로는 염화주석이 가장 널리 사용되고 기타 NaBH 4, 아스코르빈산 등이 사용될 수 있다.
나아가, 본 발명의 키트는 추가로 산화방지제를 포함할 수 있으며, 상기 산화방지제는 방사성 동위원소로 표지된 화학식 1로 표시되는 화합물이 방사선 분해에 의하여 변질되는 것을 방지하는 것으로, 비타민 C 또는 겐티식산 등이 바람직하며, 본 발명의 키트에는 단위투여량당 0~500 ㎎ 이 바람직하다.
상기 키트는 임상 병리사 또는 기술자가 사용하기 위한 주사제를 제조하기 위해 완충액 멸균 바이알, 식염수, 주사기, 필터, 칼럼 및 기타 보조 장치를 보충할 수 있다. 상기 키트가 환자 개인적인 필요 또는 식이 요법에 따라 변화 및 변형될 뿐 아니라 방사성 동위원소가 제공되거나 얻어질 수 있는 형태에서의 변화도 가능하다는 것은 본 기술 분야의 통상적인 지식을 가진 사람에게 널리 공지되어 있다.
또한, 상기 키트는 사용하기 바로 전에 화학식 1로 표시되는 화합물 1 ㎎ 당 0.1~500.1~500 mCi의 방사성 동위원소를 첨가하여 0.1~30분 동안 반응을 시켜 방사성 동위원소 표지 화합물을 제조할 수 있다.
이하, 본 발명의 실시예 및 실험예를 하기에 구체적으로 예시하여 설명한다. 다만, 후술하는 실시예 및 실험예는 본 발명의 일부를 예시하는 것일 뿐, 본 발명에 이에 한정되는 것은 아니다.
RP-HPLC 정제 비방사능 화합물
RP-HPLC는 Gilson, 506C 시스템 인터페이스, a 155 UV/VIS 디텍터 (듀얼 파장 220, 254 nm) 및 321 pumps을 이용하여 수행하였다. Gilson HPLC 시스템의 작동은 Trilution software를 사용하여 컨트롤 하였다. 정제(purification) 중간체와 최종 화합물은 semi-preparative XTerra RP18 10 μm (10 mm Х 250 mm) 컬럼 (Waters Co., U.S.A)으로 수행되었다. 이동상은 0.1%TFA/물 (용매 A), 아세토나이트릴 (용매 B)로 이루어지고(gradient method), 유속 5 mL/min 0-40 min, 0-100 % B (방법 1), 유속 3 mL/min, 0-5 min, 0% B; 5-30 min, 0-100% B (방법 2), 유속 5 mL/min, 0-35 min, 0-100% B (방법 3), 유속 5 mL/min, 0-40 min, 0-100%B (방법 4), 또는 유속 3 mL/min, 물 (용매 A), 아세토나이트릴 (용매 B)의 0-5분 gradient method, 유속 3 mL/min의 , 0%B; 5-40 min, 0-100%B (방법 5), 또는 0-30 min, 10-100% B (방법 6)으로 수행하였다.
< 실시예 1> (3S)-22- 아이소사이아노 -5,13,20- 트라이옥소 -4,6,12,19- 테트라아자도코세인 -1,3,7- 트라이카복실산 ((3S)-22- isocyano -5,13,20- trioxo -4,6,12,19-tetrazazadocosane-1,3,7-tricarboxylic acid) 15) 의 제조
GUL-NC 화합물 15는 하기 반응식 1과 2에 의하여 제조하였다.
<반응식 1>
Figure PCTKR2020014501-appb-img-000009
a시약 및 반응조건 (a) Cbz-Lys-Ot-Bu, triphosgene, -78 ℃ RT, 18 h (b)10% Pd/C, methanol, 18 h (c) Fmoc-6-Ahx-OH, HBTU, DIPEA, 0 ℃RT, overnight (d) 20% pepridine/DMF, 1 h (e) TFA : DCM (1:1), 18 h.
<반응식 2>
Figure PCTKR2020014501-appb-img-000010
a시약 및 반응조건 (a) formic acid, acetic anhydride, refluxed, 3 h (b) 2,3,5,6-tetrafluorophenol, DCC, DMF, RT, 24 h (c) triphosgene, DCM, TEA, 0 ℃, 1.5 h (d) 5, DIPEA, rt, 5 h (e) 10, DIPEA, rt, 5 h (f) [Re(CO) 3(H 2O) 3]Br (g) [ 99mTc]Tc(H 2O) 3(CO) 3] +.
단계 1-1: 트라이 - tert - 뷰틸 (13S)-3,11- 다이옥소 -1-페닐-2-옥사-4,10,12-트라이아자펜타데케인 -9,13,15-트라이카복실레이트 (1)의 제조.
L-글루탐산 다이- tert-뷰틸 에스터 하이드로클로라이드 (2.3 g, 7.88 mmol) in 무수 DCM (60 mL) 용액을 78 ℃ 에서 TEA (2.6 mL, 25.7 mmol)에 첨가한 뒤 질소 환경에서 30분 동안 교반하였다. 트라이포스젠 (0.8 g, 2.6 mmol)을 한시간 동안 dropwise 방식으로 첨가하고, 상온에서 한시간 동안 교반한 뒤 TEA (0.4 mL, 4.7 mmol)를 포함하는 N′-Cbz-L-라이신- tert-butyl ester (1.6 g, 4.7 mmol) in DCM (20 mL)를 첨가하였다. 혼합물을 밤새도록(18시간) 반응시켰다. 반응이 완결된 후 유기 층을 포화된 NaHCO 3 (1 × 50 mL), 물 (2 × 50 mL)로 워싱하고 마지막에는 브라인 (1 × 30 mL)으로 워싱하였다. 유기 층을 분리한 뒤 무수 소듐 설페이트로 건조시키고 감압된 상태에서 농축시킨 다음 DCM과 메탄올 (95:5, v/v)을 사용하여 실리카겔 컬럼 크로마토그래피로 정제하여 무색의 오일을 수득하였다(1.9 g, 66%). 1H NMR (500 MHz, CDCl 3) δ 7.37-7.27 (m, 5H), 5.13-5.07 (m, 2H), 4.32 (td, J = 8.4, 4.8 Hz, 2H), 3.23-3.10 (m, 2H), 2.33-2.23 (m, 2H), 1.90-1.70 (m, 2H), 1.66-1.46 (m, 4H), 1.46-1.26 (m, 31H). ESI-MS, ( m/z): [M+H] +, 622.
단계 1-2: 다이 - tert - 뷰틸 ((6-아미노-1-( tert - 뷰톡시 )-1- 옥소헥세인 -2-일)카바모일)-L-글루타메이트 (2)의 제조.
10% Pd/C (100 mg)를 상기 1 용액 (1.5 g, 2.4 mmol) in 메탄올 (20 mL)에 첨가하였다. 서스펜션(suspension)을 수소 환경에서 18시간 동안 교반하였다. 반응이 완결된 후 Celite ®를 통과시켜 Pd/C를 제거하였다. 얻은 여과액을 감압된 상태에서 농축시켜 일정시간 동안 서서히 굳어진 무색의 오일을 수득(양적 수득)하였다. 그 다음 더 이상의 정제 없이 다음 단계를 진행하였다. 1H NMR (500 MHz, CDCl 3) δ 4.31-4.22 (m, 2H), 2.34-2.30 (m, 2H), 1.89-1.77 (m, 2H), 1.77-1.62 (m, 4H), 1.58-1.47 (m, 2H), 1.46-1.28 (m, 29H). ESI-MS, ( m/z): [M+H] +, 488.
단계 1-3: 트라이 - tert - 뷰틸 (20S)-1-(9H- 플루오렌 -9-일)-3,10,18- 트라이옥소 -2-옥사-4,11,17,19-테트라아자도코세인-16,20,22-트라이카복실레이트 ( 3)의 제조.
Fmoc-6-Ahx-OH (505 mg, 1.43 mmol) in DMF (15 mL) 및 DIPEA (1 mL, 3.5 mmol)를 상기 2 용액 (500 mg, 1.0 mmol)에 첨가한 후 0 ℃에서 10분 동안 불활성 환경에서 교반하였다. HBTU (585 mg, 1.5 mmol) in DMF (5 mL)를 dropwise 방식으로 첨가한 뒤 반응 혼합물을 18시간 동안 상온에서 교반하였다. 반응이 완결된 후 에틸 아세테이트 (50 mL)를 첨가하고, 유기 층을 물 (3 × 30 mL)로 워싱한 후, Na 2SO 4 하에서 건조시킨 다음 감압된 상태에서 농축시켰다. 생성물을 DCM/메탄올 (97: 3, v/v)을 사용하여 실리카겔 컬럼 크로마토그래피로 정제하여 흰색 고체의 생성물 3을 얻었다(494 mg, 60 %). 1H NMR (500 MHz, CDCl 3) δ 7.78-7.74 (m, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.42-7.37 (m, 2H), 7.31 (td, J = 7.5, 1.2 Hz, 2H), 4.39 (dt, J = 10.1, 5.2 Hz, 2H), 4.36-4.26 (m, 2H), 4.25-4.18 (m, 1H), 3.38-3.06 (m, 4H), 2.32 (tdd, J = 13.4, 9.3, 6.3 Hz, 2H), 2.19 (dd, J = 13.8, 6.6 Hz, 2H), 2.11-2.03 (m, 2H), 1.88-1.75 (m, 2H), 1.58-1.33 (m, 37H). ESI-MS, ( m/z): [M+H] +, 823.
단계 1-4: 다이 - tert - 뷰틸 ((6-(6- 아미노헥세인아미도 )-1-( tert - 뷰톡시 )-1-옥소헥세인-2-일)카바모일)-L-글루타메이트 (4)의 제조.
상기 3 용액 (500 mg, 0.6 mmol)을 20% 피페리딘/DMF (1 mL)에 용해시키고, 상온에서 한시간 동안 교반하였다. 진공에서 용매를 제거하고, 생성물을 HPLC(방법 1)로 정제하여 흰색 고체의 생성물 4를 얻었다(306 mg, 80%). 1H NMR (500 MHz, CDCl 3) δ 4.18 (p, J = 5.0 Hz, 2H), 2.32 (t, J = 7.5 Hz, 2H), 2.28-2.22 (m, 2H), 2.09-1.85 (m, 2H), 1.69 (ddd, J = 24.0, 18.3, 11.1 Hz, 6H), 1.58-1.23 (m, 37H). ESI-MS, ( m/z): [M+H] +,601.
단계 1-5: ((5-(6- 아미노헥세인아미도 )-1- 카복시펜틸 ) 카바모일 )-L-글루탐산 (5)의 제조
상기 생성물 4 (200 mg, 0.33 mmol)를 TFA and DCM (2 mL, 1: 1 v/v) 혼합물에 용해시킨 다음 상온에서 하룻밤 동안 교반하였다. 반응이 완결된 후 감압하여 용매를 제거하고 잔여물을 HPLC(방법 2)로 정제하여 흰색 고체의 생성물 5을 얻었다(56, 39%). 1H NMR (500 MHz, Methanol- d 4) δ 4.27 (ddd, J = 31.1, 8.6, 5.0 Hz, 2H), 3.17 (t, J = 6.8 Hz, 2H), 2.91 (t, J = 7.6 Hz, 2H), 2.40 (ddd, J = 8.5, 6.8, 4.2 Hz, 2H), 2.20 (t, J = 7.3 Hz, 2H), 1.71-1.60 (m, 10H), 1.45-1.35 (m, 4H). (ESI-MS, ( m/z): [M+H] + , 433.
단계 2-1: 3-포름아미도프로판산 (12)의 제조.
아세트산 무수물 (25 mL)을 dropwise 방식으로 b-알라닌 (5 g, 48.5 mmol) in 포름산 (40 mL) 용액에 첨가하였다. 혼합물을 3시간 동안 가열한 후 진공에서 용매를 제거하여 식힌 다이에틸 에테르 (30 mL)를 첨가하여 굳힌 오일성 잔여물을 얻었다. 정제는 실리카겔 그로마토 그래피 (DCM:methanol, 4:1 , v/v)로 하여 화합물 12를 흰색 고체로 얻었다(3 g, 55%). 1H NMR (300 MHz, DMSO- d 6) δ 7.98 (s, 1H), 3.26 (t, J = 6.8, 2H), 2.39 (t, J = 6.8 Hz, 2H).
단계 2- 2: 2 ,3,5,6- 테트라플루오로페닐 3- 포름아미도프로파노에이트 ( 13)의 제조
상기 12 용액 (500 mg, 4.27 mmol)을 무수 DMF (10 mL)에 용해시킨 TFP (780 mg, 4.7 mmol)와 혼합한 뒤, 0 ℃로 식혔다. DCC in DMF (3 mL)를 dropwise 방식으로 10분 동안 첨가하였다. 반응 혼합물을 얼음 욕조에서 10분 동안 교반한 후, 상온에서 24시간 동안 교반하였다. 생성된 N,N-다이사이클헥실우레아를 여과로 제거하고, 에틸 아세테이트 (50 mL)를 여과액에 첨가하였다. 유기 층을 물 (40 mL × 3)로 워싱하고, Na 2SO 4로 건조시킨 다음 진공 하에서 농축시켰다. 생성물을 실리카겔 크로마토그래피 (에틸 아세테이트:헥세인, 3:2, v/v)로 정제하여 흰색 고체의 생성물 13을 얻었다(680 mg, 60%). 1H NMR (300 MHz, CDCl 3) δ 8.21 (s, 1H), 7.09-6.95 (m, 1H), 3.72 (t, 5.9, 2H), 2.99 (t, J = 5.9 Hz, 2H).
단계 2- 3: 2 ,3,5,6- 테트라플루오로페닐 3- 아이소사이아노프로파노에이트 ( 14)의 제조
상기 13 (2 g, 7.7 mmol)을 ice-cold 무수 DCM (50 mL)에 용해시키고, TEA (2.7 mL, 19.25 mmol)를 첨가한 뒤, 질소 환경에서 10분 동안 교반하였다. 트라이포스젠 (913 mg, 3.1 mmol)을 dropwise 방식으로 30분 동안 첨가하였다. 혼합물을 0 ℃에서 1.5시간 동안 교반하였다. 반응이 완결된 후, DCM (20 mL)을 첨가하고 유기 층을 순서대로 포화된 NaHCO 3 (50 mL × 1), 물 (50 mL × 2), 브라인 (20 mL × 1)으로 워싱하였다. 분리된 유기 층을 Na 2SO 4로 건조시키고, 감압하여 농축시켰다. 헥세인 및 에틸 아세테이트 (4:1, v/v)로 실리카겔 컬럼 크로마토그래피로 정제하여 생성물 14를 밝은 노란색 고체로 얻었다(1.2 g, 60%). 1H NMR (300 MHz, Chloroform-d) δ 6.98 (m, 1H), 3.77 (t, J = 6.8 Hz, 2H), 3.07 (t, J = 6.8 Hz, 2H).
단계 2-4: (3S)-22- 아이소사이아노 -5,13,20- 트라이옥소 -4,6,12,19- 테트라아자도코세인 -1,3,7-트라이카복실산 (15)의 제조
상기 화합물 5 (90 mg, 0.2 mmol) 및 DIPEA (2.5 eq) in 무수 메탄올 (2 mL)의 용액을 상온에서 10분 동안 교반하였다. 상기 화합물 14 (77 mg, 0.3 mmol)를 무수 메탄올 (1 mL)에 용해시킨 후, dropwise 방식으로 첨가하고, 질소 환경에서 5시간 동안 교반하였다. 용매를 감압농축기를 사용하여 제거한 뒤 생성물을 RP-HPLC (방법 5)를 사용하여 정제하고, 감압하에 동결건조하여(lyophilized) 생성물 15를 흰색 고체로 얻었다. (35 mg, 34%). 1H NMR (500 MHz, Methanol-d4) δ 4.23 (ddd, J = 18.8, 8.6, 4.9 Hz, 2H), 3.13 (t, J = 6.7 Hz, 2H), 2.87 (t, J = 7.7 Hz, 2H), 2.40-2.31 (m, 2H), 2.16 (t, J = 7.3 Hz, 2H), 1.90-1.72 (m, 2H), 1.66-1.27 (m, 14H). ESI-MS, ( m/z): [M+H]+, 514 .
< 실시예 2> ( 3S,21R )-21,24- 다이벤질 -35- 아이소사이아노 -5,13,20,23,26,33-헥사옥소-4,6,12,19,22,25,32-헵타아자펜타트라이아콘테인-1,3,7-트라이카복실산 ((3S,21R)-21,24-dibenzyl-35-isocyano-5,13,20,23,26,33-hexaoxo-4,6,12,19,22,25,32-heptaazapentatriacontane-1,3,7-tricarboxylic acid) ( 16)의 제조
GUL-NC 화합물 16은 상기 반응식 2와 하기 반응식 3에 의하여 제조하였다.
<반응식 3>
Figure PCTKR2020014501-appb-img-000011
시약 및 반응조건 (a) Fmoc-Phe-OH, HBTU, DIPEA, 0 ℃-RT overnight (b) 20% pepridine/DMF, 1 h (c) Fmoc-Phe-OH, HBTU, DIPEA, 0 ℃-RT overnight (d) 20% pepridine/DMF, 1 h (e) Boc-6-Ahx-OH, HBTU, DIPEA, 0 ℃-RT overnight (f) TFA:DCM (1:1, v/v).
단계 3-1: 트라이 - tert - 뷰틸 (23S)-5- 벤질 -1-(9H- 플루오렌 -9-일)-3,6,13,21-테트라옥소-2-옥사-4,7,14,20,22-펜타아자펜타코세인-19,23,25-트라이카복실레이트 (6)의 제조
4의 용액 (800 mg, 1.33 mmol), Fmoc-Phe-OH (515 mg, 1.33) 및 DIPEA (0.8 mL, 4.65 mmol) in DMF (6 mL)를 0 ℃로 식히고, 10분 동안 교반하였다. HBTU (1.0 g, 2.7 mmol) in DMF (2 mL)를 dropwise 방식으로 첨가한 뒤 반응 혼합물을 상온에서 18시간 동안 교반하였다. 반응이 완결된 후, 에틸 아세테이트 (20 mL)를 첨가하고, 유기 층을 물 (3 × 40 mL)로 워싱한 다음, Na 2SO 4로 건조시키고 감압하여 농축시켰다. 생성물을 DCM 및 methanol (96 : 4, v/v)를 이용하여 실리카겔 컬럼 크로마토그래피로 정제하여 흰색 고체로 얻었다(839 mg, 65%). 1H NMR (500 MHz, CDCl 3) δ 7.75 (dt, J = 7.6, 0.9 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.30-7.20 (m, 9H), 4.52-4.34 (m, 4H), 4.30 (t, J = 9.1 Hz, 1H), 4.18 (t, J = 7.1 Hz, 1H), 3.17 (d, J = 6.4 Hz, 2H), 3.06 (d, J = 7.2 Hz, 2H), 2.37-2.27 (m, 2H), 2.26-2.01 (m, 4H), 1.89-1.74 (m, 2H), 1.68-1.56 (m, 2H), 1.55-1.22 (m, 37H).ESI-MS, ( m/z): [M+H] + , 971.
단계 3-2: 트라이 - tert - 뷰틸 (3S)-21-아미노-5,13,20- 트라이옥소 -22-페닐-4,6,12,19-테트라아자도코세인 -1,3,7-트라이카복실레이트 (7)의 제조
상기 6의 용액 (300 mg, 0.3 mmol)을 20% 피페리딘/DMF (1 mL)에 용해시키고, 상온에서 한시간 동안 교반하였다. 용매를 진공에서 제거한 뒤 HLPC(방법 3)으로 정제하여 흰색 고체를 얻었다(179 mg, 80%). 1H NMR (500 MHz, CDCl 3) δ 7.28 (d, J = 1.8 Hz, 1H), 7.26-7.20 (m, 4H), 4.33 (t, J = 7.3 Hz, 1H), 4.24 (dt, J = 8.7, 5.3 Hz, 2H), 3.35-3.08 (m, 6H), 2.31 (td, J = 7.4, 6.6, 1.7 Hz, 2H), 2.16 (t, J = 6.9 Hz, 2H), 1.66-1.50 (m, 4H), 1.49-1.28 (m, 37H). ESI-MS, ( m/z): [M+H] +,748.
단계 3-3: 트라이 - tert - 뷰틸 (8R,26S)-5,8-다이벤질-1-(9H-플로오렌-9-일)-3,6,9,16,24-펜타옥소-2-옥사-4,7,10,17,23,25-헥사아자옥타코세인-22,26,28-트라이카복실레이트 (8)의 제조
상기 7의 용액 (526 mg, 0.7 mmol)을 Fmoc-Phe-OH (299 mg, 0.7 mmol) 및 DIPEA (0.43 mL, 4.65 mmol) in DMF (3 mL)이 혼합물에 용해시키고, 0 ℃로 식힌 다음, 10분 동안 교반하였다. HBTU (530 mg, 1.4 mmol) in DMF (2 mL)를 dropwise 방식으로 10분 동안 첨가하였다. 반응 혼합물을 18시간 동안 상온에서 교반한 다음 에틸 아세테이트 (30 mL)를 첨가하였다. 유기 층을 물 (3 × 40 mL)로 워싱하고, Na 2SO 4로 건조시킨 다음 감압시켜 농축시켰다. 생성물을 DCM 및 메탄올 (96: 3, v/v)을 이용하여 실리카겔 컬럼 크로마토그래피로 정제하여 생성물 8을 흰색 고체로 얻었다(531 mg, 68%). 1H NMR (500 MHz, CDCl 3) δ 7.51-7.46 (m, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.30-7.11 (m, 14H), 4.68 (d, J = 7.7 Hz, 1H), 4.51-4.29 (m, 4H), 4.21 (t, J = 8.9 Hz, 1H), 4.14 (t, J = 7.2 Hz, 1H), 3.29-2.80 (m, 8H), 2.37-2.21 (m, 4H), 2.10-2.01 (m, 2H), 1.89-1.74 (m, 2H), 1.62-1.26 (m, 37H). ESI-MS, ( m/z): [M+H] +, 1118.
단계 3-4: 트라이 - tert - 뷰틸 ( 3S,21R )-24-아미노-21- 벤질 -5,13,20,23- 테트라옥소 -25-페닐-4,6,12,19,22-펜타아자펜타코세인-1,3,7-트라이카복실레이트 ( 9)의 제조
상기 8 (300 mg, 0.3 mmol)을 20% 피페리딘/DMF solution (1 mL)에 상온에서 한시간 동안 교반하여 용해시켰다. 용매를 진공하에서 제거하고, 생성물을 HPLC(방법 4)로 정제하여 생성물 9를 흰색 고체로 얻었다(215 mg, 90%). 1H NMR (500 MHz, CDCl 3) δ 7.25-7.09 (m, 10H), 4.58 (q, J = 7.6 Hz, 1H), 4.30 (d, J = 10.3 Hz, 2H), 3.30 (dd, J = 13.5, 6.9 Hz, 1H), 3.21-3.00 (m, 6H), 2.93-2.83 (m, 1H), 2.36-2.22 (m, 2H), 2.10 (dtt, J = 35.8, 14.2, 7.6 Hz, 4H), 1.86-1.67 (m, 2H), 1.49-1.14 (m, 37H). ESI-MS, ( m/z): [M+H] +, 896.
단계 3-5: 트라이 - tert - 뷰틸 (16R,34S)-13,16-다이벤질-2,2-다이메틸-4,11,14,17,24,32-헥사옥소-3-옥사-5,12,15,18,25,31,33-헵타아자헥사트라이아콘테인-30,34,36-트라이카복실레이트 (10)의 제조
상기 9의 용액 (150 mg, 0.2 mmol)을 Boc-6-Ahx-OH (42 mg, 0.2 mmol) 및 DIPEA (0.1 mL, 0.6 mmol)와 혼합하고 DMF (2 mL)에 용해시킨 다음, 0 ℃로 식혔다. HBTU (127 mg, 1.4 mmol) in DMF (1 mL)를 dropwise 방식으로 첨가하였다. 반응 혼합물을 상온에서 18시간 동안 교반한 다음, 에틸 아세테이트 (15 mL)를 첨가하고, 유기 층을 물 (3 × 20 mL)로 워싱하고, Na 2SO 4로 건조시킨 다음 감압하여 농축시켰다. 혼합물을 DCM 및 MeOH (96:3, v/v)를 이용한 실리카겔 컬럼 크로마토그래피로 정제하여 생성물 10을 흰색 고체로 얻었다(155 mg, 70%). 1H NMR (500 MHz, CDCl 3) δ 7.26-7.10 (m, 10H), 4.74-.58 (m, 3H), 4.45 (q, J = 6.5 Hz, 2H), 3.25-2.82 (m, 9H), 2.39-2.15 (m, 5H), 2.09 (dt, J = 13.0, 6.5 Hz, 4H), 1.92-1.71 (m, 2H), 1.68-1.30 (m, 52H). ESI-MS, ( m/z): [M+H] +, 1109.
단계 3-6: ( 3S,21R )-31-아미노-21,24- 다이벤질 -5,13,20,23,26- 펜타옥소 -4,6,12,19,22,25-헥사아자헨트라이아콘테인-1,3,7-트라이카복실산 (11)의 제조
상기 10의 용액 (50 mg, 0.05)을 TFA 및 DCM (2 mL, 1: 1, v/v)의 혼합물에 용해시키고, 상온에서 밤새도록 교반하였다. 반응이 완결된 후, 용매를 감압하여 제거한 뒤 잔여물을 HPLC(방법 4)로 정제하여 생성물 11을 흰색 고체로 얻었다(17 mg, 44%). 1H NMR (500 MHz, Methanol-d4) δ 7.34-7.11 (m, 10H), 4.69-4.47 (m, 2H), 4.30 (ddd, J = 14.8, 8.4, 4.9 Hz, 2H), 3.21-3.13 (m, 2H), 3.08 (ddt, J = 13.4, 6.8, 2.9 Hz, 4H), 2.99-2.74 (m, 4H), 2.41 (ddd, J = 8.2, 6.9, 1.9 Hz, 2H), 2.21-2.08 (m, 4H), 1.96-1.77 (m, 2H), 1.61 (s, 2H), 1.58-1.12 (m, 16H). ESI-MS, ( m/z): [M+H] +, 841.
단계 3-7: ( 3S,21R )-21,24- 다이벤질 -35- 아이소사이아노 -5,13,20,23,26,33-헥사옥소-4,6,12,19,22,25,32-헵타아자펜타트라이아콘테인-1,3,7-트라이카복실산 (16)의 제조
DIPEA (2.5 eq)을 상기 11의 용액 (35 mg, 0.039 mmol) in 무수 메탄올(1 mL)에 첨가한 뒤 상온에서 10분 동안 교반하였다. 상기 14의 용액 (14 mg, 0.05 mmol) in 메탄올 (1 mL)을 첨가한 뒤 5시간 동안 교반하였다. 반응이 완결된 후, 감압농축기로 용매를 제거한 뒤 HPLC(방법 6)으로 정제하여 생성물 16을 흰색 고체로 얻었다(14 mg, 40%). 1H NMR (500 MHz, Methanol-d4) δ 7.22 (dq, J = 14.6, 7.0 Hz, 10H), 4.56 (ddd, J = 14.1, 8.9, 6.0 Hz, 2H), 4.24 (td, J = 7.7, 4.8 Hz, 2H), 3.25-2.88 (m, 12H), 2.54 (s, 2H), 2.38 (ddd, J = 8.7, 6.6, 2.7 Hz, 2H), 2.17-2.06 (m, 4H), 1.59 (ddd, J = 30.6, 14.5, 7.2 Hz, 4H), 1.46-1.14 (m, 16H).ESI-MS, ( m/z): [M+H]+, 921
< 실시예 3> 상기 실시예 1의 15번 화합물의 99m Tc 표지 화합물인 [ 99m Tc ] Tc -15의 제조
[ 99mTc]Tc- 15는 상기 반응식 2에 의하여 다음과 같이 제조하였다.
[ 99mTc][Tc(H 2O) 3(CO) 3] 전구체를 IsoLink 키트를 이용하여 준비하였다. 소듐 테트라보레이트 십수화물 (2.9 mg), 소듐 카보네이트 (7.8 mg), 포타슘 소듐 타르타르산염 테트라하이드레이트 (9.0 mg) 및 다이소듐 보레노카보네이트 (4.5 mg)를 포함하는 키트를 99mTcO 4-(1 mL, 555-740 MBq)에 첨가하였다. 바이알을 히팅 블록에서 100 ℃에서 30분 동안 가열하고, 상온에서 10분 동안 평형을 맞추었다. 1 N HCl (200 μL)을 첨가하여 Ph를 6-6.5로 맞추었다. 방사화학적 순도(radiochemical purity)를 radio-HPLC로 결정하였다. 만들어진 [ 99mTc][Tc(H 2O) 3(CO) 3] + (500 μL, 370 MBq) 용액을 메탄올 및 물 (100 μg, 200 μL, 3:1 v/v)의 혼합물의 15를 포함하는 바이알에 첨가하였다. 이 바이알을 100 ℃에서 30분 동안 가열한 다음 radio-HPLC로 정제하였다. 99mTc-표지된 컨쥬게이트를 포함하는 용리된 분획을 수집하고, 물 (20 mL)로 희석한 다음 에탄올 (12 mL) 및 물 (12 mL)의 Sep-Pak C18 cartridge를 통과시켰다. Sep-Pak C18 cartridge를 물 (5 mL)로 워싱한 다음, 99mTc 표지된 컨쥬케이트를 에탄올 (1 mL)로 용리시킨 다음, 추가의 in vitro 및 영상화 연구를 위해 식염수로 희석하였다.
< 실시예 4> 상기 실시예 2의 16번 화합물의 99m Tc 표지 화합물인 [ 99m Tc ] Tc -16의 제조.
[ 99mTc]Tc- 16은 상기 반응식 2에 의하여 다음과 같이 제조하였다.
[ 99mTc][Tc(H 2O) 3(CO) 3] 전구체를 IsoLink 키트를 이용하여 준비하였다. 소듐 테트라보레이트 십수화물 (2.9 mg), 소듐 카보네이트 (7.8 mg), 포타슘 소듐 타르타르산염 테트라하이드레이트 (9.0 mg) 및 다이소듐 보레노카보네이트 (4.5 mg)를 포함하는 키트를 99mTcO 4-(1 mL, 555-740 MBq)에 첨가하였다. 바이알을 히팅 블록에서 100 ℃에서 30분 동안 가열하고, 상온에서 10분 동안 평형을 맞추었다. 1 N HCl (200 μL)을 첨가하여 Ph를 6-6.5로 맞추었다. 방사화학적 순도(radiochemical purity)를 radio-HPLC로 결정하였다. 만들어진 [ 99mTc][Tc(H 2O) 3(CO) 3] + (500 μL, 370 MBq) 용액을 메탄올 및 물 (100 μg, 200 μL, 3:1 v/v)의 혼합물의 16을 포함하는 바이알에 첨가하였다. 이 바이알을 100 ℃에서 30분 동안 가열한 다음 radio-HPLC로 정제하였다. 99mTc-표지된 컨쥬게이트를 포함하는 용리된 분획을 수집하고, 물 (20 mL)로 희석한 다음 에탄올 (12 mL) 및 물 (12 mL)의 Sep-Pak C18 cartridge를 통과시켰다. Sep-Pak C18 cartridge를 물 (5 mL)로 워싱한 다음, 99mTc 표지된 컨쥬케이트를 에탄올 (1 mL)로 용리시킨 다음, 추가의 in vitro 및 영상화 연구를 위해 식염수로 희석하였다.
<실시예 5> 상기 실시예 1의 15번 화합물의 레늄 착화합물인 Re-15의 제조.
Re- 15는 반응식 3에 의하여 제조하였다.
레늄 전구체 Re(CO) 3(H2O) 3]Br를 보고된 방법으로 제조하였는데. 브로모펜타카보닐레늄(I) (100 mg, 0.25 mmol)을 탈이온수 (5 mL)에서 24시간 동안 가열하여 [Re(CO) 3(H 2O) 3]Br를 2 mg/mL의 농도로 얻었다. Re- 15의 제조를 위해서는 [Re(CO) 3(H 2O) 3]Br (400 μL, 1 μmol)를 전구체 15 (11 mg, 0.02 mmol) in 메탄올 (2 mL)에 첨가한 뒤 100 ℃에서 4시간 동안 가열하였다. 반응 혼합물을 100 ℃에서 3시간 동안 가열하였다. 생성된 혼합물을 감압 농축기로 농축시키고 HPLC로 정제하였다.
<실시예 6> 상기 실시예 2의 16번 화합물의 레늄 착화합물인 Re-16의 제조
Re- 16은 반응식 3에 의하여 제조하였다.
레늄 전구체 [Re(CO) 3(H2O) 3]B는 보고된 방법으로 제조하였는데, 브로모펜타카보닐레늄(I) (100 mg, 0.25 mmol) 탈이온수 (5 mL)에서 24시간 동안 가열하여 [Re(CO) 3(H 2O) 3]Br를 2 mg/mL 농도로 얻었다. Re- 16의 제조를 위해서는 [Re(CO) 3(H 2O) 3]Br (400 μL, 1 μmol)를 methanol (2 mL) 및 물 (3 mL, 1:1 v/v)의 혼합물의 16 (10 mg, 0.01 mmol)에 첨가하였다. 반응 혼합물을 100 ℃에서 2시간 동안 가열하였다. 생성된 혼합물을 감압 농축기로 농축시키고 HPLC로 정제하였다.
<실험예 1> 인혈청 내에서의 안정성 시험
인혈청 내에서의 안정성은 인체 투여 후 인혈청과 접촉하였을 때의 안정성을 시험하는 것으로 체내 안정성을 시험관 내에서 일부 시험하는 것이다.
1. 본 발명에 따른 [ 99mTc]Tc- 15
본 발명에 따른 [ 99mTc]Tc- 15의 인혈청 내에서의 안정성을 알아보기 위하여, 상기 실시예 3에서 제조한 [ 99mTc]Tc- 15 3.7 MBq (100 μL)를 인혈청 1 mL에 가하여 잘 섞은 다음 36.5 ℃에서 교반하면서 배양하였다. 2 시간 후 반응 혼합물을 ITLC로 분석하였다.
그 결과, 대부분 [ 99mTc]Tc- 15로 존재하고 99mTc으로 거의 떨어져 나가지 않는 것을 확인할 수 있었다(도 2a).
2. 본 발명에 따른 [ 99mTc]Tc- 16
본 발명에 따른 [ 99mTc]Tc- 16의 인혈청 내에서의 안정성을 알아보기 위하여, 상기 실시예 4에서 제조한 [ 99mTc]Tc- 16 3.7 MBq (100 μL)를 인혈청 1 mL에 가하여 잘 섞은 다음 36.5 ℃에서 교반하면서 배양하였다. 2시간 후 반응 혼합물을 ITLC로 분석하였다.
그 결과, 대부분 [ 99mTc]Tc- 16으로 존재하고 99mTc으로 거의 떨어져 나가지 않는 것을 확인할 수 있었다 (도 2b).
따라서, 본 발명에 따른 [ 99mTc]Tc- 15 또는 [ 99mTc]Tc- 16은 소프트 산인 테크네튬과 소프트 염기인 이소니트릴이 매우 강하게 결합하여 인혈청 내에서 안정성이 우수하므로 영상을 얻기에 충분히 안정하다.
<실험예 2> 시험관 내 세포 결합 시험
본 발명에 따른 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16의 시험관 내 세포 결합
시험을 하기 위하여, 다음과 같이 실험하였다.
PSMA 양성인 전립선암 세포주 22Rv1을 24-웰 플레이트에 각 웰에 1 x 10 5개씩 넣어서 24 시간 동안 37 ℃ 5% CO 2 배양기에서 배양하였다. 상기 실시예 3과 실시예 4에서 제조한 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16 각각을 0.5% 소혈청 알부민을 포함한 세포배양액으로 순차적으로 2배씩 희석하였다. 이것을 0.5 mL씩 취하여 배양된 세포에 넣고1 시간 동안 37 ℃ CO 2 배양기에서 배양하였다. 배양액을 뽑아서 버린 다음 세포는 신선한 배양액으로 2 회 세척하여 주고 인산 완충 생리식염수에 녹인 0.5% 소듐 도데실 설페이트 (SDS)를 1 mL씩 가하여 살살 흔들어 녹여 5 mL 1회용 플라스틱 시험관에 옮겼다. 이것을 감마 카운터로 방사능 측정하였다. 비특이적 결합을 측정하기 위하여 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16 을 넣을 때 2-(포스포노메틸)-펜탄도이닉 애시드 (PMPA)를 250 μM 되게 넣어 같이 실험하였다. 전체 결합에서 비특이적 결합을 빼서 특이적 결합을 구하고 포화곡선을 그렸다. 도 3의 a와 b가 각각 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16에 대한 포화곡선이다. 이 포화곡선들로부터 해리상수인 Kd 값을 GraphPad Prism 7 프로그램을 이용하여 비선형회귀법으로 계산하였다.그 결과, 본 발명에 따른 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16의 Kd 값은 각각 5.5 nM과 0.2 nM로서 둘 다 영상화와 치료에 충분한 결합력을 보여 주었지만 둘 중에는 [ 99mTc]Tc- 16이 더 결합력이 높았다.
<실험예 3> 암 이식 실험동물 PET 영상 검증
본 발명에 따른 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16을 전립선암 이식된 동물에 투여하고 PET 영상 촬영을 통하여 암조직 타겟팅을 검증하기 위하여 다음과 같이 실험하였다.
구체적으로, 주령 4주인 수컷 BALB/c 누드 마우스의 오른쪽 등에 22Rv1 세포 5 x 10 6 개씩을 포함하는 0.1 mL의 RPMI1640 배양액을 피하주사하였다. 2 내지 3주가 지난 후 종양조직이 적당한 크기가 되었음을 확인하고 실험에 사용하였다. 동물 주사를 위하여 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16을 각각 주사용 생리식염수에 희석하여 10.2 MBq/100 μL로 만들었다. 이를 각각 암세포가 이식된 마우스에 꼬리정맥으로 주사하여 1시간 및 3시간이 지난 후에 10분간 동물용 SPECT로 촬영하였다.
그 결과, 본 발명에 따른 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16은 신장으로 배설이 될뿐만 아니라 전립선암 조직에 섭취됨을 관찰할 수 있었는데 특히 [ 99mTc]Tc- 16이 전립선암에 더 높은 섭취를 보여 주었다(도 4a, 도 5a). 이는 알부민 결합을 하는 [ 99mTc]Tc- 16이 혈중 농도가 더 높게 유지되어 전립선암 섭취가 높아졌다는 것을 보여준다.
또한, [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16을 투여하기 전에 미리 PSMA에 결합하는 MIP-1072를 주사한 경우는 종양섭취가 보이지 않았다(도 4b. 도 5b). 이는 본 발명에 따른 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16의 전립선암 영상이 PSMA에 특이적으로 결합함으로써 일어난다는 것을 증명하여 주는 것이다.
따라서, 본 발명에 따른 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16은 PSMA에 특이적으로 결합하므로 전립선암 영상에 유용하게 사용할 수 있고 이 중 링커에 알부민 결합부위를 가진 [ 99mTc]Tc- 16이 더 뛰어난 영상을 보여준다는 알 수 있다.
<실험예 4> 암 이식 실험동물 생체 내 분포 시험
본 발명에 따른 [ 99mTc]Tc- 15또는 [ 99mTc]Tc- 16을 전립선암을 이식한 동물에 투여하고 생체 내 분포실험을 해서 실제로 암조직에서 관측되는지 검증하였다.
구체적으로, 주령 4주인 수컷 BALB/c 누드 마우스의 왼쪽 옆구리에 22Rv1 세포 5 x 10 6 개씩을 포함하는 0.1 mL의 RPMI1640 배양액을 피하주사하였다. 2 내지 3주가 지난 후 종양조직이 적당한 크기가 되었음을 확인하고 실험에 사용하였다. 동물 주사를 위하여, 상기 실시예 3에서 제조한 [ 99mTc]Tc- 15와 상기 실시예 4에서 제조한 [ 99mTc]Tc- 16을 주사용 생리식염수에 희석하여 0.74 MBq/100 μL로 만들었다. 이를 암세포가 이식된 마우스에 꼬리정맥으로 주사하고 1시간과 4시간이 지나서 암, 혈액, 근육, 심장. 폐, 간, 비장, 위장, 소장, 신장, 뼈 등의 장기를 채취하여 그 무게와 방사능을 측정하였다. 이 데이터로 투여량에 대한 단위 조직별 섭취량 (% ID/g)을 계산하여 표 2와 표 3에 나타내었다.
[표 2]
1시간 및 4시간에서 [ 99mTc]Tc- 15 PSMA-targeted 22Rv1 tumor bearing BALB/c male nude mice의 체내분포 및 흡수 비율
Figure PCTKR2020014501-appb-img-000012
결과는 %ID/g (mean ± SD for n = 3)로 나타내었다. blocking은 co-injection of 2-PMPA (100 μg)에 의해 수행되었다. ***p ≤ 0.001, **p ≤ 0.01.
[표 3]
1시간 및 4시간에서 [ 99mTc]Tc- 16 in PSMA-targeted 22Rv1 tumor bearing BALB/c male nude mice의 체내분포 및 흡수 비율
Figure PCTKR2020014501-appb-img-000013
결과는 %ID/g (mean ± SD for n = 4)로 나타내었다. blocking은 co-injection of 2-PMPA (100 μg)에 의해 수행되었다. ***p ≤ 0.001, **p ≤ 0.01.
상기 표 2와 표 3에 나타난 바와 같이, 본 발명에 따른 [ 99mTc]Tc- 15또는 [ 99mTc]Tc- 16은 통상적인 펩타이드 영상용 방사성의약품과 같이 신장에서 높은 섭취량을 보였고, 그 다음으로 암 조직에서 가장 높은 섭취량을 보여 주는 것을 알 수 있다. 단, [ 99mTc]Tc- 15은 간 섭취가 그리고 [ 99mTc]Tc- 16은 비장 섭취가 암보다 조금 더 높은 듯 나타나지만 모두 통계적인 유의성은 없다. 또한 [ 99mTc]Tc- 15와 [ 99mTc]Tc- 16 모두 PMPA로 PSMA를 차단하였을때 섭취가 줄어드는 것을 보여 주는 것이로 보아 암세포에 섭취되는 것은 PSMA에 특이적인 섭취라는 것을 알 수 있다.
따라서, 본 발명에 따른 [ 99mTc]Tc- 15또는 [ 99mTc]Tc- 16은 전립선암 영상에 효과적이므로 방사성의약품으로 유용하게 사용될 수 있고 이 중 링커에 알부민 결합 부위를 포함한 [ 99mTc]Tc- 16이 더 뛰어나다는 것을 알 수 있다.
이상, 본 발명을 바람직한 제조예, 실시예 및 실험예를 통해 상세히 설명하였으나, 본 발명의 범위는 특성 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
본 발명에 따른 GUL-이소니트릴 유도체와 방사성 금속 복합체는 표지가 간단할 뿐만 아니라 표지 효율이 높고, 체내에 투여될 경우 인혈청 내에서 안정성이 우수하고, 전립선암에서 발현되는 PSMA에 잘 결합할 뿐만 아니라, 수용성이 높아 간담도가 아닌 신장으로 배설이 되므로 내장에 섭취가 매우 적고, 전립선암 조직에 축적되어, 전립선암 종양 부위에서 방사선을 방출함으로써 치료 또는 진단용 약학적 조성물로 유용하게 사용될 수 있다.

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 1]
    Figure PCTKR2020014501-appb-img-000014
    (상기 화학식 1에서 L은 링커(linker)이다).
  2. 제1항에 있어서,
    상기 링커 L은 직쇄 또는 분지쇄의 C 1- 10알킬, C 4- 10아릴, 유레아, 티오유레아, 트리아졸, 펩타이드, C 4- 10사이클로알킬, 페닐, 할로겐화 페닐, 에테르, 티오에테르, 아민, 아미드, 케톤, 에스테르, 티오에스테르, 하이드라진, 하이드라지드, 오탄당 및 육탄당 그룹으로부터 선택되는 적어도 하나의 복합체를 포함하는, 화합물 또는 이의 약학적으로 허용 가능한 염.
  3. 하기 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 2]
    Figure PCTKR2020014501-appb-img-000015
    또는
    Figure PCTKR2020014501-appb-img-000016
    (상기 화학식 2에서,
    M은 금속이고,
    R 1은 제1항의 화합물이고,
    R 2는 R 1 또는 -CO이고, 및
    여기서 상기 R 1와 상기 M의 결합은 R 1의 이소니트릴(isonitrile)기가 M과 결합하는 것이다).
  4. 제3항에 있어서,
    상기 M은 구리(Cu), 테크네튬(Tc) 또는 레늄(Re)인, 화합물 또는 이의 약학적으로 허용 가능한 염.
  5. 제3항에 있어서,
    상기 M은 60Cu, 61Cu, 62Cu, 63Cu, 64Cu, 65Cu, 67Cu, 96Tc, 96mTc, 97mTc, 99mTc, 101Tc, 186Re 또는 188Re인, 화합물 또는 이의 약학적으로 허용 가능한 염.
  6. 제1항 또는 제3항의 화합물, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 전립선암의 치료 또는 진단용 조성물.
  7. 제1항의 화합물 0.01 내지 100 mg/단위투여량, 환원제, 완충제, 항산화제, 기타 보조제를 포함하는 약제학적으로 허용되는 비발열성 멸균 형태의 바이알로 구성되는, 전립선암 영상 또는 치료용 키트.
  8. 제7항에 있어서,
    상기 환원제는 염화제일주석, 시스테인, 소듐 보로하이드라이드, 아스코르빈산 또는 그 염으로 이루어진 그룹 중 하나 또는 둘 이상으로 이루어진 것인, 전립선암 영상 또는 치료용 키트.
  9. 제7항에 있어서,
    상기 완충제는 초산, 글루코네이트, 글루코헵토네이트, 포스포네이트, 글루카레이트, 타타레이트, 석시네이트, 및 구연산으로 이루어진 그룹 중 하나 또는 둘 이상으로 이루어진 것인, 전립선암 영상 또는 치료용 키트.
  10. 제7항에 있어서,
    상기 항산화제는 아스코르빈산 또는 겐티식산으로 이루어진 그룹 중 하나 또는 둘 이상으로 이루어진 것을 특징으로 하는 전립선암 영상 또는 치료용 키트.
  11. 제7항에 있어서,
    상기 기타 보조제는 일산화탄소로 이루어진 것을 특징으로 하는 전립선암 영상 또는 치료용 키트.
PCT/KR2020/014501 2019-10-24 2020-10-22 전립선 암의 영상 또는 치료를 위한 동위원소 표지 화합물 WO2021080352A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/770,315 US20220402951A1 (en) 2019-10-24 2020-10-22 Radioisotope labeled compound for imaging or treatment of prostate cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190132984A KR102269315B1 (ko) 2019-10-24 2019-10-24 전립선 암의 영상 또는 치료를 위한 동위원소 표지 화합물
KR10-2019-0132984 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021080352A1 true WO2021080352A1 (ko) 2021-04-29

Family

ID=75619928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014501 WO2021080352A1 (ko) 2019-10-24 2020-10-22 전립선 암의 영상 또는 치료를 위한 동위원소 표지 화합물

Country Status (3)

Country Link
US (1) US20220402951A1 (ko)
KR (1) KR102269315B1 (ko)
WO (1) WO2021080352A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009002529A2 (en) * 2007-06-26 2008-12-31 The Johns Hopkins University Labeled inhibitors of prostate specific membrane antigen (psma), biological evaluation, and use as imaging agents
WO2016040179A1 (en) * 2014-09-08 2016-03-17 Molecular Insight Pharmaceuticals, Inc. Organ protection in psma-targeted radionuclide therapy of prostate cancer
WO2018215627A1 (en) * 2017-05-24 2018-11-29 ITM Isotopen Technologien München AG Novel psma-binding agents and uses thereof
KR20190114908A (ko) * 2018-03-30 2019-10-10 (주)퓨쳐켐 전립선암 진단 및 치료를 위한 psma-표적 방사성의약품

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639599B1 (ko) 2015-11-09 2016-07-14 서울대학교산학협력단 펩타이드 싸이오우레아 유도체, 이를 포함하는 방사성 동위원소 표지 화합물 및 이를 유효 성분으로 함유하는 전립선암 치료 또는 진단용 약학적 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009002529A2 (en) * 2007-06-26 2008-12-31 The Johns Hopkins University Labeled inhibitors of prostate specific membrane antigen (psma), biological evaluation, and use as imaging agents
WO2016040179A1 (en) * 2014-09-08 2016-03-17 Molecular Insight Pharmaceuticals, Inc. Organ protection in psma-targeted radionuclide therapy of prostate cancer
WO2018215627A1 (en) * 2017-05-24 2018-11-29 ITM Isotopen Technologien München AG Novel psma-binding agents and uses thereof
KR20190114908A (ko) * 2018-03-30 2019-10-10 (주)퓨쳐켐 전립선암 진단 및 치료를 위한 psma-표적 방사성의약품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LODHI N. A.: "Synthesis and In Vivo Biological Evaluation of 99mTc (I) Tri-carbonyl Based Radiopharmaceuticals for SPECT Imaging", PH.D. THESIS, SEOUL NATIONAL UNIVERSITY COLLEGE OF MEDICINE, 1 January 2019 (2019-01-01), XP055804170, Retrieved from the Internet <URL:https://s-space.snu.ac.kr/bitstream/10371/162306/1/000000156693.pdf> *

Also Published As

Publication number Publication date
KR20210048827A (ko) 2021-05-04
US20220402951A1 (en) 2022-12-22
KR102269315B1 (ko) 2021-06-24

Similar Documents

Publication Publication Date Title
US4746505A (en) Technetium radiodiagnostic fatty acids derived from bisamide bisthiol ligands
US4925650A (en) Technetium -99m complex for examining the renal function
EP0759786B1 (en) Somatostatin binding peptide-metal chelate conjugates
JPH09501419A (ja) ソマトスタチン誘導体およびそれらの放射標識物
JP6661010B2 (ja) ペプチドチオ尿素誘導体、これを含有する放射線同位体標識化合物、およびこれを活性成分として含有する前立腺癌を処置または診断するための医薬組成物
CN112020497A (zh) 用于癌症放射治疗的psma靶向的放射性卤化尿素-聚氨基羧酸盐
KR20080022588A (ko) 영상화제로서의 히드라지드 컨쥬게이트
EP3774699A1 (en) Radiolabelled compound
EP0642357B1 (en) Radiolabelled somatostatin
EP0592440B1 (en) TECHNETIUM-99m COMPLEXES FOR USE AS RADIOPHARMACEUTICALS
US5986074A (en) Metal chelates as pharmaceutical imaging agents, processes of making such and uses thereof
HUT73665A (en) Bifunctional-chelating agents braked with calcogene atoms, pharmaceutical compositions containing them , and use of these compositions in radio- diagnosis and radiotherapy
US5104638A (en) Method of making a radiopharmaceutical complex from a kit
US5037631A (en) Technetium-99M complex for examinating the renal function
WO2021080352A1 (ko) 전립선 암의 영상 또는 치료를 위한 동위원소 표지 화합물
JP2022529007A (ja) 診断及び治療のための新規な放射性標識されたcxcr4を標的とする化合物
JP5481673B2 (ja) 放射性標識薬剤
KR101471890B1 (ko) NOTA 표지 글루코사민-함유 시클로 RGDfK 유도체, 그 제조방법 및 그것을 포함하는 핵의학 영상 조영제 및 암 치료제
WO2022170732A1 (zh) 一种截短型伊文思蓝修饰的成纤维细胞活化蛋白抑制剂及其制备方法和应用
CN116217505A (zh) 用于诊断或治疗表达***特异性膜抗原癌症的新型标记靶向剂
KR101471891B1 (ko) DOTA 표지 글루코사민-함유 시클로 RGDfK 유도체, 그 제조방법 및 그것을 포함하는 핵의학 영상 조영제 및 암 치료제
KR101494429B1 (ko) NODAGA 표지 글루코사민-함유 시클로 RGDfK 유도체, 그 제조방법 및 그것을 포함하는 핵의학 영상 조영제 및 암 치료제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879628

Country of ref document: EP

Kind code of ref document: A1