WO2021080021A1 - Method for producing oligonucleotide - Google Patents

Method for producing oligonucleotide Download PDF

Info

Publication number
WO2021080021A1
WO2021080021A1 PCT/JP2020/040096 JP2020040096W WO2021080021A1 WO 2021080021 A1 WO2021080021 A1 WO 2021080021A1 JP 2020040096 W JP2020040096 W JP 2020040096W WO 2021080021 A1 WO2021080021 A1 WO 2021080021A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phenyl
formula
activator
independently
Prior art date
Application number
PCT/JP2020/040096
Other languages
French (fr)
Japanese (ja)
Inventor
正史 岩本
正典 片岡
智▲祥▼ 飯田
Original Assignee
日東電工株式会社
株式会社ナティアス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 株式会社ナティアス filed Critical 日東電工株式会社
Publication of WO2021080021A1 publication Critical patent/WO2021080021A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an oligonucleotide and an activator for producing an oligonucleotide.
  • oligonucleotides with the desired sequence are typically obtained by sequentially adding appropriately protected nucleosides one by one, with each nucleoside being added in at least three steps. That is, it requires a coupling step, an oxidation or sulfurization step, and a deprotection step.
  • Patent Documents 1 and 2 describe a method for obtaining an oligonucleotide by reacting a nucleoside in which a hydroxyl group at the 3'- or 5'-position is protected with a nucleoside phosphoramidite using tetrazole as an activator. Has been done.
  • a nucleoside in which the hydroxyl groups at the 3'- and 5'-positions are unprotected can be used in the method, the deprotection step becomes unnecessary, and the amount of reagents used is reduced, time and labor. It is expected that the cost will be significantly reduced.
  • An object of the present invention is to provide a method for producing an oligonucleotide and an activator for producing the oligonucleotide.
  • the present inventors are working diligently on a method capable of efficiently producing a desired oligonucleotide, and even when using a nucleoside in which both the 3'hydroxyl group and the 5'hydroxyl group are unprotected, the nucleoside is used.
  • a method for producing an oligonucleotide A nucleoside phosphoramidite in which a protecting group is bonded to a hydroxyl group at the 5'position and a nucleoside in which the hydroxyl groups at the 3'and 5'positions are unprotected are expressed in the formula (I) :.
  • R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, cyclobutadiene, adamantan, linear or branched saturated or unsaturated C 1-22.
  • R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, methyl, i-propyl, t-butyl, cyclobutadiene, adamantane, and optionally. Selected from the group consisting of phenyl, naphthyl, and anthracenyl which may be substituted with, or R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached. The method according to [1], which is formed.
  • R 1 is the formula (II): During the ceremony R 4 and R 5 are independently selected from the group consisting of H, F, Cl, Br, CN, NO 2 , methyl, t-butyl, methoxy, i-propyl and adamantane, respectively. The method according to [1] or [2].
  • R 1 is phenyl and R 2 and R 3 are H.
  • B R 1 is t-butyl and R 2 and R 3 are H.
  • C R 1 is phenyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
  • D R 1 is t-butyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
  • E R 1 is phenyl and R 2 and R 3 are CN.
  • F R 1 is t-butyl and R 2 and R 3 are CN.
  • R 1 is Br, and R 2 and R 3 are CN.
  • H R 1 is 1-naphthyl and R 2 and R 3 are H.
  • I R 1 is 9-anthrasenyl and R 2 and R 3 are H.
  • J R 1 is Br, and R 2 and R 3 are H.
  • K R 1 is 2-chlorophenyl and R 2 and R 3 are H.
  • L R 1 is 2,6-dichlorophenyl and R 2 and R 3 are H.
  • M is pentafluorophenyl and R 2 and R 3 are H.
  • N R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl.
  • O R 1 , R 2 and R 3 are Br.
  • R 1 is Br
  • R 2 is NO 2
  • R 3 is H
  • R 1 is 1-adamantyl
  • R 2 and R 3 are H
  • R 1 is Br
  • R 2 and R 3 are together and they are Forming a phenyl ring with two carbon atoms on the imidazole ring to be bonded
  • [5] The method according to any one of [1] to [4], wherein the activator forms a salt with an acid.
  • the acid is trifluoromethanesulfonic acid.
  • the oligonucleotide is of formula (III): Has a structure represented by The nucleoside phosphoramidite in which a protecting group is bonded to the hydroxyl group at the 5'position has the formula (IV): Has a structure represented by The nucleosides in which the hydroxyl groups at the 3'and 5'positions are unprotected have the formula (V) :.
  • R 6 is a protecting group
  • R 9 is an independently substituted or unsubstituted aliphatic group, substituted or unsubstituted aromatic group
  • Each X is independently one of a shared electron pair, O or S
  • Y is each independently one of H, NHR 10 , halogen, CN, CF 3 , or hydroxyl group protected by an acyl protecting group, an ether protecting group or a silyl protecting group
  • Each of R 10 is independently any of -H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aralkyl group, or a protecting group.
  • Z independently forms a ZZ bond with H, alkyl, O-alkyl, N-alkyl, halogen, or said Y; and n is an integer greater than or equal to 0 and less than or equal to 23; The method according to any one of [1] to [6].
  • Nucleoside phosphoramidite has the formula (VI): Has a structure represented by A step of producing an oligonucleotide by the method according to [7]. The method.
  • R 1 and R 3 are each independently, H, F, Cl, Br , CN, NO 2, methoxy, cyclobutadiene, adamantane, -XR A, optionally substituted with a group containing a hetero atom Selected from the group consisting of saturated or unsaturated C 1-22 alkyl groups, which may be linear or branched, and aromatic rings, which may be optionally substituted, where X is a heteroatom.
  • RA is a linear or branched saturated or unsaturated C 1-22 alkyl group, or R 2 and R 3 are phenyl together with two carbon atoms on the imidazole ring to which they are attached. Forming a ring, An activator represented by. [10] R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, methyl, i-propyl, t-butyl, cyclobutadiene, adamantane, and optionally.
  • R 1 is the equation (II): During the ceremony R 4 and R 5 are independently selected from the group consisting of H, F, Cl, Br, CN, methyl, t-butyl, methoxy, i-propyl and adamantane, respectively. The activator according to [9] or [10]. [12] (a) R 1 is phenyl and R 2 and R 3 are H. (B) R 1 is t-butyl and R 2 and R 3 are H. (C) R 1 is phenyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
  • R 1 is t-butyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
  • R 1 is phenyl and R 2 and R 3 are CN.
  • R 1 is t-butyl and R 2 and R 3 are CN.
  • R 1 is Br, and R 2 and R 3 are CN.
  • H R 1 is 1-naphthyl and R 2 and R 3 are H.
  • R 1 is 9-anthrasenyl and R 2 and R 3 are H.
  • R 1 is Br, and R 2 and R 3 are H.
  • R 1 is 2-chlorophenyl and R 2 and R 3 are H.
  • L R 1 is 2,6-dichlorophenyl and R 2 and R 3 are H.
  • M R 1 is pentafluorophenyl and R 2 and R 3 are H.
  • N R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl.
  • O R 1 , R 2 and R 3 are Br.
  • P R 1 is Br, R 2 is NO 2 , and R 3 is H.
  • R 1 is 1-adamantyl
  • R 2 and R 3 are H
  • R 1 is Br
  • R 2 and R 3 are together and they are Forming a phenyl ring with two carbon atoms on the imidazole ring to be bonded
  • the activator according to [9] or [10] which is selected from the group consisting of.
  • the activator according to [13], wherein the acid is trifluoromethanesulfonic acid.
  • the activator of the present invention By using the activator of the present invention, even when a nucleoside in which the hydroxyl groups at the 3'- and 5'positions are unprotected can be used, the 5'hydroxyl group of the nucleoside can be selectively reacted, which is desired. Oligonucleotides can be efficiently produced. Therefore, by using the activator of the present invention, it becomes possible to use a nucleoside in which the hydroxyl groups at the 3'- and 5'positions are unprotected, and the deprotection step becomes unnecessary.
  • the present invention is a method for producing an oligonucleotide, in which a nucleoside phosphoramidite in which a protecting group is bonded to a hydroxyl group at the 5'position and a nucleoside in which the hydroxyl groups at the 3'and 5'positions are unprotected.
  • the present invention relates to the above method, which comprises a step of reacting with and in the presence of an activator.
  • an oligonucleotide is a so-called phosphorotide in which nucleotides are added by a condensation reaction between a nucleoside phosphoramidite and a nucleoside in solution or on a solid support in the presence of a suitable activator. It is performed using the amidite method.
  • the oligonucleotide refers to a compound having a structure in which a nucleoside base, a sugar, and a phosphoric acid are linked by a phosphodiester bond, and a naturally occurring oligonucleotide, for example, 2'-deoxyribonucleic acid (hereinafter, "DNA”).
  • DNA 2'-deoxyribonucleic acid
  • RNA ribonucleic acid
  • RNA nucleic acid containing a modified sugar moiety, a modified phosphate moiety, or a modified nucleobase. Modifications to the sugar moiety include replacing the ribose ring with a hexose, cyclopentyl, or cyclohexyl ring.
  • the D-ribose ring of a naturally occurring nucleic acid may be replaced with an L-ribose ring, or the ⁇ -anomer of a naturally occurring nucleic acid may be replaced with an ⁇ -anomer.
  • Oligonucleotides may also contain one or more non-basic moieties. Modified phosphate moieties include phosphorothioate, phosphorodithioate, methylphosphonate, and methyl phosphate. Such nucleic acid analogs are known to those of skill in the art.
  • Oligonucleotides comprising the above two or more mixtures include, for example, mixtures of deoxyribo and ribonucleosides, particularly 2'-O such as deoxyribonucleoside and 2'-O-methyl or 2'-O-methoxyethylribonucleoside.
  • Examples of oligonucleotides comprising a mixture of nucleosides include ribozymes.
  • the oligonucleotides are of formula (III) :. It has a structure represented by.
  • the nucleoside phosphoramidite refers to a nucleoside derivatized with amidite.
  • the 3'hydroxyl group of the nucleoside is phosphoramidite-ized, and a protecting group is bonded to the 5'hydroxyl group.
  • Amiditeization is carried out, for example, by reacting a properly protected nucleoside with 2-cyanoethyl-N, N, N', N'-tetraisopropylphosphorodiamidite using 1H-tetrazole as an activator. be able to.
  • the nucleoside phosphoramidite may be a monomer or an oligomer such as 2 mer to 24 mer.
  • the nucleoside phosphoramidite is of formula (IV): It has a structure represented by.
  • the nucleotide refers to a compound in which a nucleoside base, a sugar, and phosphoric acid are bound, and such as adenosine triphosphate, thymidin triphosphate, guanosine triphosphate, citidine triphosphate, and uridine triphosphate. It may be a naturally occurring nucleotide or a modified nucleotide.
  • the nucleoside base portion of the nucleotide may be a naturally occurring base such as adenine, guanine, cytosine, thymine, and uracil, or a modified nucleoside base.
  • the sugar moiety of the nucleoside may be naturally occurring deoxyribose or ribose, and may be in the D or L configuration.
  • the phosphoric acid moiety may be, for example, phosphorothioate, phosphorodithioate, methylphosphonate, and methyl phosphate.
  • the nucleoside refers to a compound in which a nucleoside base and a sugar are bound, and may be a naturally occurring nucleoside such as adenosine, thymidine, guanosine, cytidine, or uridine, or a modified nucleoside.
  • the nucleoside base may be a naturally occurring base such as adenine, guanine, cytosine, thymine, and uracil, or a modified nucleoside base.
  • the sugar moiety of the nucleoside may be naturally occurring deoxyribose or ribose, and may be in the D or L configuration.
  • the nucleoside in which the hydroxyl groups at the 3'-position and the 5'-position are unprotected refers to a nucleoside in which the hydroxyl groups at the 3'-position and the 5'-position are not protected by any protecting group.
  • the nucleosides in which the hydroxyl groups at the 3'and 5'positions are unprotected are of formula (V): It has a structure represented by.
  • B is an independently protected or unprotected nucleoside base.
  • Nucleoside bases include, but are not limited to, naturally occurring bases such as, for example, adenine, guanine, cytosine, thymine, and uracil, 7-deazaguanine, 7-deaza-8-azaguanine, 5-propynylcytocin, 5 -Propinyl uracil, 7-deazaadenine, 7-deaza-8-azaadenine, 7-daza-6-oxopurine, 6-oxopurine, 3-deazaadenosin, 2-oxo-5-methylpyrimidine, 2-oxo-4-methylthio -5-Methylpyrimidine, 2-thiocarbonyl-4-oxo-5-methylpyrimidine, 4-oxo-5-methylpyrimidine, 2-aminopurine, 5-fluorouracil, 2,6-diaminopurine, 8-amin
  • the nucleoside base protected by a protecting group is a nucleoside base in which the reactive functional group of the base is protected.
  • the nucleoside base has an amine group that can be protected with an amine protecting group, such as an amide or carbamate.
  • an amine protecting group such as an amide or carbamate.
  • the amine groups of adenin and cytosine are typically protected with a benzoyl protecting group
  • the amine groups of guanine are typically protected with an isobutyryl group, an acetyl group, or a t-butylphenoxyacetyl group. ..
  • other protection schemes may be used.
  • the amine groups of adenine and guanine are protected with phenoxyacetyl groups and the amino groups of cytosine are protected with isobutyryl or acetyl groups.
  • the conditions for removing the protecting group depend on the protecting group used. If an amide protecting group is used, it can be removed by treating the oligonucleotide with a base solution such as concentrated ammonium hydroxide solution, n-methylamine solution, or ammonium hydroxide solution of t-butylamine.
  • R 6 is a protecting group, is preferably an acid labile protecting group or t- butyldimethylsilyl or a trialkylsilyl group such as triisopropylsilyl, .
  • Acid-labile protecting groups are protecting groups that can be removed by contacting the group with a protonic acid or Lewis acid. Acid-labile protecting groups are known to those of skill in the art. Examples of acid-unstable protecting groups include substituted or unsubstituted trityl groups, substituted or unsubstituted tetrahydropyranyl groups, substituted or unsubstituted tetrahydrofuranyl groups, pixyl groups and the like.
  • the trityl group is usually replaced by an electron donating group such as an alkoxy group.
  • R 1 is a substituted or unsubstituted trityl, 9- (phenyl) xanthenyl (hereinafter “Pixyl”) or tetrahydropyranyl (hereinafter “THP”).
  • R 6 is unsubstituted trityl, monoalkoxy trityl, dialkoxy trityl, trialkoxy trityl, a THP or pixyl. Most preferably, R 1 is 4,4'-dimethoxytrityl.
  • R 9 is a substituted or unsubstituted aliphatic group and a substituted or unsubstituted aromatic group, respectively.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, methyl, ethyl, isopropyl, pyrrolidino and morpholino, with preference given to ethyl, isopropyl and morpholino.
  • Substituted or unsubstituted aromatic groups include, but are not limited to, phenyl, benzyl, toluyl, and aniryl, preferably phenyl and benzyl.
  • R 9 is isopropyl.
  • X is independently one of a shared electron pair, O or S, respectively.
  • Y is independently H, NHR 10 , halogen, CN, CF 3 , or acyl-protecting group, ether-protecting group or silyl-protecting group. It is one of the hydroxyl groups protected by a group.
  • Halogen is, for example, F, Cl, Br, and I.
  • Examples of the acyl-based protecting group include acetyl, benzoyl, pivaloyl and the like.
  • Examples of the ether-based protecting group include benzyl, p-methoxybenzyl (PMB), allyl and the like.
  • Examples of the silyl protecting group include t-butyldimethylsilyl (TBS), t-butyldiphenylsilyl (TBDPS), t-triisopropylsilyl (TIPS), triethylsilyl (TES), trimethylsilyl (TMS) and the like. ..
  • Each of R 10 is independently composed of —H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aralkyl group, or an acyl group. It is one of the protective groups to be used.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, methyl, ethyl, allyl, 1-pentenyl, and 2-methoxyethyl, preferably methyl, allyl, and 2-methoxyethyl. is there.
  • Substituted or unsubstituted aromatic groups include, but are not limited to, phenyl, benzyl, naphthyl, 2-pyrenylmethyl, and are preferably phenyl and benzyl.
  • the protecting group is, for example, t-butyldimethylsilyl.
  • Y is H.
  • Z independently forms a ZZ bond with H, alkyl, O-alkyl, N-alkyl, halogen, or Y.
  • Halogen is, for example, F, Cl, Br, and I.
  • n is an integer of 0 or more and 23 or less, for example, 0 or more and 21 or less, 0 or more and 20 or less, 0 or more and 19 or less, 0 or more and 18 or less, 0 or more and 17 or less, 0 or more and 16 or less, 0 or more and 15 or less, 0 or more and 14 or less, 0 or more and 13 or less, 0 or more and 12 or less, 0 or more and 11 or less, 0 or more and 10 or less, 0 or more and 9 or less, 0 or more and 8 or less, 0 or more and 7 or less, 0 or more and 6 or less, 0 or more and 5 or less, 0 or more and 4 or less, 0 or more and 3 or less, 0 or more and 2 or less, 0 or more and 1 or less, or 0.
  • the activator is used for reacting a nucleoside phosphoramidite with a nucleoside, and is also referred to as an activator or a coupling agent.
  • the activator is of formula (I) :.
  • R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, cyclobutadiene, adamantan, -XR. From the group consisting of A, a linear or branched saturated or unsaturated C 1-22 alkyl group optionally substituted with a heteroatom-containing group, and an optionally substituted aromatic ring.
  • X is a heteroatom
  • RA is a linear or branched saturated or unsaturated C 1-22 alkyl group, or R 2 and R 3 are together, they. Form a phenyl ring with two carbon atoms on the imidazole ring to which the is bonded.
  • X is preferably a heteroatom selected from the group consisting of O, N, S, N, Se and Si, preferably S.
  • the group containing a heteroatom is preferably a CN group.
  • Saturated or unsaturated C 1-22 alkyl groups of linear or branched chains include, but are not limited to, methyl, ethyl, i-propyl, and t-butyl, with preference given to methyl.
  • R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, methyl, i-propyl, t. -Selected from the group consisting of butyl, cyclobutadiene, adamantane, and optionally substituted phenyl, naphthyl, and anthracenyl, or R 2 and R 3 together, the imidazole ring to which they are attached. It forms a phenyl ring with the above two carbon atoms.
  • phenyl examples include, but are not limited to, phenyl, benzyl, naphthyl, and 2-pyrenylmethyl, and preferably phenyl and benzyl.
  • R 1 is Br, phenyl, chlorophenyl, or naphthyl
  • R 2 is H, Br, or NO 2
  • R 3 is H or Br, or R 2. and R 3, taken together, along with the two carbon atoms on the imidazole ring to which they are attached form a phenyl ring.
  • R 1 is the formula (II): Is.
  • R 4 and R 5 each independently consist of H, F, Cl, Br, CN, methyl, t-butyl, methoxy, i-propyl and adamantane. Selected from the group.
  • the activator is represented by structure of formula (I), in formula (I), R 1 is phenyl, R 2 and R 3 is H. In one aspect of the present invention, the activator is represented by structure of formula (I), in formula (I), R 1 is a t- butyl, R 2 and R 3 is H. In one aspect of the invention, the activator is represented by the structure of formula (I), where in formula (I) R 1 is phenyl and R 2 and R 3 are combined and they are bound together. Form a phenyl ring with two carbon atoms on the imidazole ring.
  • the activator is represented by the structure of formula (I), R 1 is t-butyl, and R 2 and R 3 are together on the imidazole ring to which they are attached. Form a phenyl ring with the two carbon atoms of.
  • the activator is represented by the structure of formula (I), R 1 is phenyl, R 2 and R 3 is CN.
  • the activator is represented by the structure of formula (I), where R 1 is t-butyl and R 2 and R 3 are CN.
  • the activator is represented by the structure of formula (I), where R 1 is Br and R 2 and R 3 are CN.
  • the activator is represented by the structure of formula (I), R 1 is a 1-naphthyl, R 2 and R 3 is H. In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 9-anthracenyl, R 2 and R 3 is H. In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a Br, R 2 and R 3 is H. In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 2-chlorophenyl, R 2 and R 3 is H.
  • the activator is represented by the structure of formula (I), R 1 is a 2,6-dichlorophenyl, R 2 and R 3 is H. In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a pentafluorophenyl, R 2 and R 3 is H. In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl. In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1, R 2 and R 3 is Br.
  • the activator is represented by the structure of formula (I), where R 1 is Br, R 2 is NO 2 and R 3 is H. In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 1-adamantyl, R 2 and R 3 is H. In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is Br and R 2 and R 3 are together and 2 on the imidazole ring to which they are attached. It forms a phenyl ring with one carbon atom.
  • the activator is 2-phenylimidazole, 2-naphthylimidazole, 2-bromoimidazole, 2- (2-chlorophenyl) -4,5-diphenylimidazole, 2,4,5-tribromo. It is imidazole, 2-bromo-4-nitroimidazole, or 2-bromobenzimidazole.
  • the activator is 2-phenylimidazole, 2-naphthylimidazole, 2,4,5-tribromoimidazole, 2-bromo-4-nitroimidazole, or 2-bromobenzimidazole. ..
  • the activator forms a salt with an acid.
  • the acid may be any proton acid or Lewis acid, and is not limited to, for example, methanesulfonic acid, toluenesulfonic acid, trifluoromethanesulfonic acid, hexafluorophosphate, tetrafluoride. It may be boron acid or boron trifluoride, preferably trifluoromethanesulfonic acid.
  • the activator is represented by structure of formula (I), in formula (I), R 1 is phenyl, R 2 and R 3 are H, trifluoromethanesulfonic acid And forming salt.
  • the activator is represented by structure of formula (I), in formula (I), R 1 is a t- butyl, R 2 and R 3 are H, trifluoromethane It forms a salt with sulfonic acid.
  • the activator is represented by structure of formula (I), in formula (I), R 1 is phenyl, R 2 and R 3 together, they are bound It forms a phenyl ring with two carbon atoms on the imidazole ring, and forms a salt with trifluoromethanesulfonic acid.
  • the activator is represented by the structure of formula (I), where R 1 is t-butyl and R 2 and R 3 are together on the imidazole ring to which they are attached. It forms a phenyl ring with the two carbon atoms of, and forms a salt with trifluoromethanesulfonic acid.
  • the activator is represented by the structure of formula (I), where R 1 is phenyl and R 2 and R 3 are CN, forming a salt with trifluoromethanesulfonic acid.
  • the activator is represented by the structure of formula (I), where R 1 is t-butyl and R 2 and R 3 are CN, forming a salt with trifluoromethanesulfonic acid.
  • the activator is represented by the structure of formula (I), where R 1 is Br and R 2 and R 3 are CN, forming a salt with trifluoromethanesulfonic acid.
  • the activator is represented by the structure of formula (I), R 1 is a 1-naphthyl, R 2 and R 3 is H, forming a trifluoromethanesulfonic acid salt doing.
  • the activator is represented by the structure of formula (I), where R 1 is 9-anthrasenyl and R 2 and R 3 are H, forming a salt with trifluoromethanesulfonic acid. doing.
  • the activator is represented by the structure of formula (I), where R 1 is Br, R 2 and R 3 are H, forming a salt with trifluoromethanesulfonic acid. There is.
  • the activator is represented by the structure of formula (I), R 1 is a 2-chlorophenyl, R 2 and R 3 is H, forming a trifluoromethanesulfonic acid salt doing. In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 2,6-dichlorophenyl, R 2 and R 3 are H, trifluoromethanesulfonic acid and salts Is forming. In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a pentafluorophenyl, R 2 and R 3 is H, forming a trifluoromethanesulfonic acid salt doing.
  • the activator is represented by the structure of formula (I), where R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl, forming a salt with trifluoromethanesulfonic acid. ing.
  • the activator is represented by the structure of formula (I), R 1, R 2 and R 3 are Br, to form a trifluoromethanesulfonic acid salt.
  • the activator is represented by the structure of formula (I), where R 1 is Br, R 2 is NO 2 , R 3 is H, and trifluoromethanesulfonic acid. Forming salt.
  • the activator is represented by the structure of formula (I), R 1 is a 1-adamantyl, R 2 and R 3 is H, forming a trifluoromethanesulfonic acid salt doing.
  • the activator is represented by the structure of formula (I), where R 1 is Br and R 2 and R 3 are together and 2 on the imidazole ring to which they are attached. It forms a phenyl ring with one carbon atom and forms a salt with trifluoromethanesulfonic acid.
  • the activator is 2-phenylimidazolium triflate, 2-naphthylimidazolium triflate, 2-bromoimidazolium triflate, 2- (2-chlorophenyl) -4,5-diphenylimidazolium triflate, 2,4,5-Tribromoimidazolium triflate, 2-bromo-4-nitroimidazolium triflate, or 2-bromobenzoimidazolium triflate.
  • the activator is 2-phenylimidazolium triflate, 2-naphthylimidazolium triflate, 2,4,5-tribromoimidazolium triflate, 2-bromo-4-nitroimidazolium triflate, Or 2-bromobenzoimidazolium triflate.
  • the present invention relates to, in one aspect, a method for producing a nucleoside phosphoramidite, which comprises a step of producing an oligonucleotide.
  • the nucleoside phosphoramidite is of formula (VI): It has a structure represented by.
  • B, R 6 , R 7 , R 8 , R 9 , X, Y, R 10 , Z, n are as defined in formula (III), formula (IV) and formula (V). Is.
  • the present invention in one aspect, relates to an activator for producing oligonucleotides.
  • the activator is of formula (I) :. It has a structure represented by. R 1 , R 2 and R 3 are as defined above.
  • reaction between phosphoramidite and nucleoside is carried out in the presence of a suitable solvent.
  • Example 1 Synthesis example of activator 1.1 Preparation of 2-phenylimidazolium triflate A dichloromethane solution (333 mL) of 2-phenylimidazole (24.0 g, 167 mmol) was ice-cooled, and trifluoromethanesulfonic acid (42.8 mL, 167 mmol) was added dropwise. After stirring at room temperature for 30 minutes, the formed white crystals were separated by suction and washed with MTBE (150 mL). The obtained crystals were dried under reduced pressure for 15 hours to obtain 2-phenylimidazolium triflate as white crystals (48.5 g, yield 98.9%).
  • Example 1.2 Preparation of 2-phenylbenzoimidazolium triflate
  • 2-phenylbenzoimidazolium triflate A dichloromethane solution (40 mL) of 2-phenylbenzimidazole (3.88 g, 20.0 mmol) was ice-cooled, and trifluoromethanesulfonic acid (1.75 mL, 20.0 mmol) was added dropwise. After stirring at room temperature for 30 minutes, the reaction solution is concentrated, MTBE-hexane 1: 1 solution (50 mL) is added to the crude product in oil form with stirring, and the white crystals produced are separated by suction and MTBE. It was washed with a 1: 1 solution of -hexane (50 mL). The obtained crystals were dried under reduced pressure for 15 hours to obtain 2-phenylbenzoimidazolium triflate as white crystals (6.80 g, yield 97.4%).
  • Example 2.1 Synthesis of oligonucleotides using 2-phenylimidazolium triflate as an activator 1.0 M dichloromethane-DMF solution (100 ⁇ L) of 2-phenylimidazolium triflate prepared in Example 1.1, of deoxynucleoside A 2.0 M DMF solution (100 ⁇ L) was mixed, and this solution was added dropwise to a 0.5 M dichloromethane solution (100 ⁇ L) of 2-cyanoethyl 5'-O-deoxynucleoside- (N, N'-diisopropyl) phosphoramidite. The reaction was carried out by stirring at room temperature for 30 minutes.
  • the reaction mixture was diluted 500-fold and subjected to HPLC (equipment: UPLCBio manufactured by Waters, column: BHE C18 50 mm, eluent: acetonitrile solution of 0.1 M TEAA buffer over 5 minutes 50 ⁇ 100% linear gradient). It was.
  • the reaction rate is calculated from the HPLC peak area of (target product + impurities + hydrolyzate) ⁇ (target product + impurities + hydrolyzate + remaining raw material) HPLC peak area, and the selectivity is the HPLC peak of the target product.
  • the target substance refers to a compound in which the 5'-position hydroxyl group of the nucleoside is bonded to phosphoramidite, and the impurity is the 3'-position hydroxyl group of the nucleoside to phosphoramidite. Refers to bound compounds; the same shall apply hereinafter).
  • Example 2.2 Synthesis of oligonucleotides using imidazole derivatives as activators Imidazole derivatives (2-naphthylimidazole, 2-bromoimidazole, 2- (2-chlorophenyl) -4,5-diphenylimidazole, 2,4 A 1.0 M dichloromethane-DMF solution (100 ⁇ L) of 5-tribromoimidazole, 2-bromo-4-nitroimidazole, or 2-bromobenzimidazole, a 0.5 M dichloromethane solution of trifluoromethanesulfonic acid (TfOH) (0, 30 or 90 ⁇ L) and a 2.0 M DMF solution of deoxynucleoside (100 ⁇ L) were mixed to obtain a solution of 2-cyanoethyl 5'-O-deoxynucleoside- (N, N'-diisopropyl) phosphoramidite.
  • TfOH trifluoromethanesulfonic acid
  • the reaction was carried out by dropping into a 0.5 M dichloromethane solution (100 ⁇ L) and stirring at room temperature for 30 minutes.
  • the reaction mixture was diluted 500-fold and subjected to HPLC (equipment: UPLCBio manufactured by Waters, column: BHE C18 50 mm, eluent: acetonitrile solution of 0.1 M TEAA buffer over 5 minutes 50 ⁇ 100% linear gradient). It was.
  • the reaction rate is calculated from the HPLC peak area of (target product + impurities + hydrolyzate) ⁇ (target product + impurities + hydrolyzate + remaining raw material) HPLC peak area, and the selectivity is the HPLC peak of the target product.
  • Area Calculated from the HPLC peak area of impurities.
  • Example 2.3 Synthesis of oligonucleotides using 1H-tetrazole (Comparative Example) as an activator 2.5M dichloromethane-DMF solution (100 ⁇ L) of 1H-tetrazole and 2.0M DMF solution (100 ⁇ L) of deoxynucleoside Is added dropwise to a 0.5 M dichloromethane solution (100 ⁇ L) of 2-cyanoethyl 5'-O-deoxynucleoside- (N, N'-diisopropyl) phosphoramidite, and the mixture is stirred at room temperature for 30 minutes. It was reacted by.
  • the reaction mixture was diluted 500-fold and subjected to HPLC (equipment: UPLCBio manufactured by Waters, column: BHE C18 50 mm, eluent: acetonitrile solution of 0.1 M TEAA buffer over 5 minutes 50 ⁇ 100% linear gradient). It was.
  • the reaction rate is calculated from the HPLC peak area of (target product + impurities + hydrolyzate) ⁇ (target product + impurities + hydrolyzate + remaining raw material) HPLC peak area, and the selectivity is the HPLC peak of the target product.
  • Area Calculated from the HPLC peak area of impurities.
  • Example 2.4 The evaluation results are shown in Table 1.
  • DMTr-A (OCH3) p (OCH2CH2CN) T (OH) (A (OMe) T) No.
  • the activators described in 1 to 8 were used, the reactivity was higher than when 1H-tetrazole was used as the activator.
  • DMTr-A (OH) p (OCH2CH2CN) A (OH) (AA) No.
  • the activators described in 1 to 4 and 6 to 8 were used, the reactivity was higher and the selectivity was also excellent than when 1H-tetrazole was used as the activator. Since these activators have greater steric hindrance than tetrazole, it is considered that they were excellent in selectivity.
  • the reaction solution was added dropwise to pure water (1.2 L), the obtained organic phase was washed with a saturated sodium bicarbonate solution (100 mL x 2 times), the organic phase was transferred to 300 mL Meyer, and then dried over Glauber's salt for 30 minutes.
  • the organic phase was concentrated under reduced pressure to give a crude product (25.7 g).
  • the obtained crude product was dissolved in dichloromethane (260 mL) and then purified by silica gel column chromatography using dichloromethane-methanol as an elution solvent to obtain the desired dimer (Compound 1) (15.9 g, yield). Rate 72.3%).
  • the reaction solution was added dropwise to pure water (1.6 L), the obtained organic phase was washed with a saturated sodium bicarbonate solution (100 mL x 2 times), the organic phase was transferred to 300 mL Meyer, and then dried over Glauber's salt for 30 minutes.
  • the organic phase was concentrated under reduced pressure to give a crude product (25.7 g).
  • the obtained crude product was dissolved in dichloromethane (260 mL) and then purified by silica gel column chromatography using dichloromethane-methanol as an elution solvent to obtain the desired dimer (Compound 1) (12.0 g, yield). Rate 51.8%).
  • Dissolve dAT (Compound 1) (9.90 g, 9.60 mmol) in dichloromethane solution (50 mL) and amidite reagent NCCH 2 CH 2 OP [N (i-C 3 H 7 ) 2 ] 2 (4.00 mL, 12.5 mmol) and 1H-tetrazole (470 mg, 6.70 mmol) were added in two portions and stirred at room temperature for 1 hour.
  • Dichloromethane (50 mL) was added to the reaction solution, and the mixture was purified by silica gel column chromatography using n-hexane-dichloromethane as an elution solvent to obtain the desired phosphoromidite (Compound 2) (9.02 g, yield 76). .4%).
  • the reaction solution was added dropwise to pure water (1.5 L), the obtained organic phase was washed with a saturated sodium bicarbonate solution (100 mL x 2 times), the organic phase was transferred to 300 mL Meyer, and then dried over Glauber's salt for 30 minutes.
  • the organic phase was concentrated under reduced pressure to give a crude product (29.3 g).
  • the obtained crude product was dissolved in dichloromethane (290 mL) and then purified by silica gel column chromatography using dichloromethane-methanol as an elution solvent to obtain the desired dimer (Compound 4) (13.6 g, yield). Rate 53.5%).
  • Table 2 shows the yields of (OCH3) p (OCH2CH2CN) T (OCH2CH2CN) dC (OH) (Compound 3) and DMTr-dG p (OCH2CH2CN) C (OCH2CH2CN) C (OH) (Compound 6).

Abstract

The purpose of the present invention is to provide a method for producing an oligonucleotide and to provide an activating agent for producing the oligonucleotide. The aforementioned problem is solved by a method for producing an oligonucleotide, wherein said method comprises a step in which a nucleoside phosphoramidite having a protective group linked to a hydroxyl group at position 5' and a nucleoside having an unprotected hydroxyl group at the 3' position and the 5' position are reacted in the presence of an activating agent represented by formula (I).

Description

オリゴヌクレオチドを製造する方法How to make oligonucleotides
 本発明は、オリゴヌクレオチドを製造する方法およびオリゴヌクレオチドを製造するための活性化剤に関する。 The present invention relates to a method for producing an oligonucleotide and an activator for producing an oligonucleotide.
 DNAオリゴヌクレオチドやRNAオリゴヌクレオチド等の核酸の化学合成において、ホスホロアミダイト法が広く用いられている。この方法において、所望の配列を有するオリゴヌクレオチドは、典型的には、適切に保護されたヌクレオシドを1つずつ、順次付加していくことにより得られ、各ヌクレオシドの付加は、少なくとも3つの工程、すなわち、カップリング工程、酸化または硫化工程、および脱保護工程を必要とする。例えば、特許文献1および2には、活性化剤としてテトラゾールを用い、3’位または5’位の水酸基が保護されたヌクレオシドとヌクレオシドホスホロアミダイトとを反応させることによりオリゴヌクレオチドを得る方法が記載されている。
 ここで、当該方法において、3’位および5’位の水酸基が無保護であるヌクレオシドを使用することができれば、脱保護の工程は不要となり、それに伴って、使用する試薬の減少、時間および労力の削減等、ひいてはコストの大幅な削減が期待される。
 しかしながら、従来の方法において、5’位と3’位の水酸基がともに無保護であるヌクレオシドを用いた場合には、5’位と3’位の水酸基が非選択的にホスホロアミダイトと反応する結果、不純物の割合が大幅に増加することとなり、所望のオリゴヌクレオチドを効率的に得ることはできなかった。
Figure JPOXMLDOC01-appb-C000009
 
The phosphoramidite method is widely used in the chemical synthesis of nucleic acids such as DNA oligonucleotides and RNA oligonucleotides. In this method, oligonucleotides with the desired sequence are typically obtained by sequentially adding appropriately protected nucleosides one by one, with each nucleoside being added in at least three steps. That is, it requires a coupling step, an oxidation or sulfurization step, and a deprotection step. For example, Patent Documents 1 and 2 describe a method for obtaining an oligonucleotide by reacting a nucleoside in which a hydroxyl group at the 3'- or 5'-position is protected with a nucleoside phosphoramidite using tetrazole as an activator. Has been done.
Here, if a nucleoside in which the hydroxyl groups at the 3'- and 5'-positions are unprotected can be used in the method, the deprotection step becomes unnecessary, and the amount of reagents used is reduced, time and labor. It is expected that the cost will be significantly reduced.
However, in the conventional method, when a nucleoside in which both the 5'- and 3'-hydroxyl groups are unprotected is used, the 5'- and 3'-hydroxyl groups react non-selectively with phosphoramidite. As a result, the proportion of impurities was significantly increased, and the desired oligonucleotide could not be obtained efficiently.
Figure JPOXMLDOC01-appb-C000009
米国特許出願第2003/0229218号U.S. Patent Application No. 2003/02229218 米国特許第948698号U.S. Pat. No. 948698
 本発明は、オリゴヌクレオチドを製造する方法およびオリゴヌクレオチドを製造するための活性化剤の提供を目的とする。 An object of the present invention is to provide a method for producing an oligonucleotide and an activator for producing the oligonucleotide.
 本発明者らは、所望のオリゴヌクレオチドを効率的に製造することができる方法について鋭意研究に取り組む中で、3’水酸基と5’水酸基がともに無保護であるヌクレオシドを使用した場合においても、ヌクレオシドの5’水酸基を選択的にホスホロアミダイトと反応させることができる活性化剤を見出した。そしてかかる知見に基づいてさらに研究を続けた結果、本発明を完成させた。 The present inventors are working diligently on a method capable of efficiently producing a desired oligonucleotide, and even when using a nucleoside in which both the 3'hydroxyl group and the 5'hydroxyl group are unprotected, the nucleoside is used. We have found an activator capable of selectively reacting the 5'hydroxyl group of nucleoside with phosphoramidite. Then, as a result of further research based on such findings, the present invention was completed.
 すなわち、本発明は以下に関する。
[1]オリゴヌクレオチドを製造する方法であって、
5’位の水酸基に保護基が結合したヌクレオシドホスホロアミダイトと、3’位および5’位の水酸基が無保護であるヌクレオシドとを、式(I):
Figure JPOXMLDOC01-appb-C000010

式中、
、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、シクロブタジエン、アダマンタン、直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基、および任意に置換されていてもよい芳香族環からなる群から選択される、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成している、
で表される活性化剤の存在下で反応させる工程を含む、前記方法。
That is, the present invention relates to the following.
[1] A method for producing an oligonucleotide.
A nucleoside phosphoramidite in which a protecting group is bonded to a hydroxyl group at the 5'position and a nucleoside in which the hydroxyl groups at the 3'and 5'positions are unprotected are expressed in the formula (I) :.
Figure JPOXMLDOC01-appb-C000010

During the ceremony
R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, cyclobutadiene, adamantan, linear or branched saturated or unsaturated C 1-22. Selected from the group consisting of alkyl groups and optionally substituted aromatic rings, or R 2 and R 3 together, phenyl with two carbon atoms on the imidazole ring to which they are attached. Forming a ring,
The method comprising reacting in the presence of an activator represented by.
[2]R、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、メチル、i-プロピル、t-ブチル、シクロブタジエン、アダマンタン、ならびに任意に置換されていてもよいフェニル、ナフチル、およびアントラセニルからなる群から選択される、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成している、[1]に記載の方法。
[3]Rが、式(II):
Figure JPOXMLDOC01-appb-C000011
式中、
およびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メチル、t-ブチル、メトキシ、i-プロピルおよびアダマンタンからなる群から選択される、
である、[1]または[2]に記載の方法。
[2] R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, methyl, i-propyl, t-butyl, cyclobutadiene, adamantane, and optionally. Selected from the group consisting of phenyl, naphthyl, and anthracenyl which may be substituted with, or R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached. The method according to [1], which is formed.
[3] R 1 is the formula (II):
Figure JPOXMLDOC01-appb-C000011
During the ceremony
R 4 and R 5 are independently selected from the group consisting of H, F, Cl, Br, CN, NO 2 , methyl, t-butyl, methoxy, i-propyl and adamantane, respectively.
The method according to [1] or [2].
[4](a)Rが、フェニルであり、RおよびRが、Hである、
(b)Rが、t-ブチルであり、RおよびRが、Hである、
(c)Rが、フェニルであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
(d)Rが、t-ブチルであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
(e)Rが、フェニルであり、RおよびRが、CNである、
(f)Rが、t-ブチルであり、RおよびRが、CNである、
(g)Rが、Brであり、RおよびRが、CNである、
(h)Rが、1-ナフチルであり、RおよびRが、Hである、
(i)Rが、9-アントラセニルであり、RおよびRが、Hである、
(j)Rが、Brであり、RおよびRが、Hである、
(k)Rが、2-クロロフェニルであり、RおよびRが、Hである、
(l)Rが、2,6-ジクロロフェニルであり、RおよびRが、Hである、
(m)Rが、ペンタフルオロフェニルであり、RおよびRが、Hである、
(n)Rが、2-クロロフェニルであり、RおよびRがフェニルである、
(o)R、RおよびRが、Brである、
(p)Rが、Brであり、RがNOであり、Rが、Hである、
(q)Rが、1-アダマンチルであり、RおよびRが、Hである、および
(r)Rが、Brであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
からなる群から選択される、[1]または[2]に記載の方法。
[5]前記活性化剤は、酸と塩を形成している、[1]~[4]のいずれか1つに記載の方法
[6]酸が、トリフルオロメタンスルホン酸である、[5]に記載の方法。
[4] (a) R 1 is phenyl and R 2 and R 3 are H.
(B) R 1 is t-butyl and R 2 and R 3 are H.
(C) R 1 is phenyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
(D) R 1 is t-butyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
(E) R 1 is phenyl and R 2 and R 3 are CN.
(F) R 1 is t-butyl and R 2 and R 3 are CN.
(G) R 1 is Br, and R 2 and R 3 are CN.
(H) R 1 is 1-naphthyl and R 2 and R 3 are H.
(I) R 1 is 9-anthrasenyl and R 2 and R 3 are H.
(J) R 1 is Br, and R 2 and R 3 are H.
(K) R 1 is 2-chlorophenyl and R 2 and R 3 are H.
(L) R 1 is 2,6-dichlorophenyl and R 2 and R 3 are H.
(M) R 1 is pentafluorophenyl and R 2 and R 3 are H.
(N) R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl.
(O) R 1 , R 2 and R 3 are Br.
(P) R 1 is Br, R 2 is NO 2 , and R 3 is H.
(Q) R 1 is 1-adamantyl, R 2 and R 3 are H, and (r) R 1 is Br, and R 2 and R 3 are together and they are Forming a phenyl ring with two carbon atoms on the imidazole ring to be bonded,
The method according to [1] or [2], which is selected from the group consisting of.
[5] The method according to any one of [1] to [4], wherein the activator forms a salt with an acid.
[6] The method according to [5], wherein the acid is trifluoromethanesulfonic acid.
[7]オリゴヌクレオチドが、式(III):
Figure JPOXMLDOC01-appb-C000012
で表される構造を有し、
5’位の水酸基に保護基が結合したヌクレオシドホスホロアミダイトが、式(IV):
Figure JPOXMLDOC01-appb-C000013
で表される構造を有し、
3’位および5’位の水酸基が無保護であるヌクレオシドが、式(V):
Figure JPOXMLDOC01-appb-C000014
で表される構造を有する、
式中、
Bは、各々独立して、保護基で保護された、または無保護のヌクレオシド塩基であり;
は、保護基であり;
およびRは、各々独立して、OCHCHCN、SCHCHCN、OCHCH=CH、またはOCHのいずれか一つであり;
は、各々独立して、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;
Xは、各々独立して、共有電子対、OまたはSのいずれか一つであり;
Yは、各々独立して、H、NHR10、ハロゲン、CN、CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基のいずれか一つであり;
10は、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアラルキル基、または保護基のいずれか一つであり;
Zは、各々独立して、H、アルキル、O-アルキル、N-アルキル、ハロゲン、または前記Yとの間でZ-Y結合を形成し;および
nは、0以上23以下の整数である;
[1]~[6]のいずれか1つに記載の方法。
[7] The oligonucleotide is of formula (III):
Figure JPOXMLDOC01-appb-C000012
Has a structure represented by
The nucleoside phosphoramidite in which a protecting group is bonded to the hydroxyl group at the 5'position has the formula (IV):
Figure JPOXMLDOC01-appb-C000013
Has a structure represented by
The nucleosides in which the hydroxyl groups at the 3'and 5'positions are unprotected have the formula (V) :.
Figure JPOXMLDOC01-appb-C000014
Has a structure represented by
During the ceremony
B is each independently protected or unprotected nucleoside base;
R 6 is a protecting group;
R 7 and R 8 are independently one of OCH 2 CH 2 CN, SCH 2 CH 2 CN, OCH 2 CH = CH 2 , or OCH 3 ;
R 9 is an independently substituted or unsubstituted aliphatic group, substituted or unsubstituted aromatic group;
Each X is independently one of a shared electron pair, O or S;
Y is each independently one of H, NHR 10 , halogen, CN, CF 3 , or hydroxyl group protected by an acyl protecting group, an ether protecting group or a silyl protecting group;
Each of R 10 is independently any of -H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aralkyl group, or a protecting group. One;
Z independently forms a ZZ bond with H, alkyl, O-alkyl, N-alkyl, halogen, or said Y; and n is an integer greater than or equal to 0 and less than or equal to 23;
The method according to any one of [1] to [6].
[8]ヌクレオシドホスホロアミダイトを製造する方法であって、
ヌクレオシドホスホロアミダイトが、式(VI):
Figure JPOXMLDOC01-appb-C000015
で表される構造を有し、
[7]に記載の方法によりオリゴヌクレオチドを製造する工程を含む、
前記方法。
[8] A method for producing nucleoside phosphoramidite.
Nucleoside phosphoramidite has the formula (VI):
Figure JPOXMLDOC01-appb-C000015
Has a structure represented by
A step of producing an oligonucleotide by the method according to [7].
The method.
[9]オリゴヌクレオチドを製造するための、式(I):
Figure JPOXMLDOC01-appb-C000016
式中、
、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、シクロブタジエン、アダマンタン、-XR、ヘテロ原子を含む基で任意に置換されていてもよい直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基、および任意に置換されていてもよい芳香族環からなる群から選択され、ここで、Xはヘテロ原子であり、Rは直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基である、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成している、
で表される、活性化剤。
[10]R、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、メチル、i-プロピル、t-ブチル、シクロブタジエン、アダマンタン、ならびに任意に置換されていてもよいフェニル、ナフチル、およびアントラセニルからなる群から選択される、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成している、[9]に記載の活性化剤。
[9] Formula (I) for producing oligonucleotides:
Figure JPOXMLDOC01-appb-C000016
During the ceremony
R 1, R 2 and R 3 are each independently, H, F, Cl, Br , CN, NO 2, methoxy, cyclobutadiene, adamantane, -XR A, optionally substituted with a group containing a hetero atom Selected from the group consisting of saturated or unsaturated C 1-22 alkyl groups, which may be linear or branched, and aromatic rings, which may be optionally substituted, where X is a heteroatom. RA is a linear or branched saturated or unsaturated C 1-22 alkyl group, or R 2 and R 3 are phenyl together with two carbon atoms on the imidazole ring to which they are attached. Forming a ring,
An activator represented by.
[10] R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, methyl, i-propyl, t-butyl, cyclobutadiene, adamantane, and optionally. Selected from the group consisting of phenyl, naphthyl, and anthracenyl which may be substituted with, or R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached. The activator according to [9], which is formed.
[11]Rが、式(II):
Figure JPOXMLDOC01-appb-C000017
式中、
およびRは、それぞれ独立して、H、F、Cl、Br、CN、メチル、t-ブチル、メトキシ、i-プロピルおよびアダマンタンからなる群から選択される、
である、[9]または[10]に記載の活性化剤。
[12](a)Rが、フェニルであり、RおよびRが、Hである、
(b)Rが、t-ブチルであり、RおよびRが、Hである、
(c)Rが、フェニルであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
(d)Rが、t-ブチルであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
(e)Rが、フェニルであり、RおよびRが、CNである、
(f)Rが、t-ブチルであり、RおよびRが、CNである、
(g)Rが、Brであり、RおよびRが、CNである、
(h)Rが、1-ナフチルであり、RおよびRが、Hである、
(i)Rが、9-アントラセニルであり、RおよびRが、Hである、
(j)Rが、Brであり、RおよびRが、Hである、
(k)Rが、2-クロロフェニルであり、RおよびRが、Hである、
(l)Rが、2,6-ジクロロフェニルであり、RおよびRが、Hである、
(m)Rが、ペンタフルオロフェニルであり、RおよびRが、Hである、
(n)Rが、2-クロロフェニルであり、RおよびRがフェニルである、
(o)R、RおよびRが、Brである、
(p)Rが、Brであり、RがNOであり、Rが、Hである、
(q)Rが、1-アダマンチルであり、RおよびRが、Hである、および
(r)Rが、Brであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
からなる群から選択される、[9]または[10]に記載の活性化剤。
[13]酸と塩を形成している、[9]~[12]のいずれか1つに記載の活性化剤
[14]酸が、トリフルオロメタンスルホン酸である、[13]に記載の活性化剤。
[11] R 1 is the equation (II):
Figure JPOXMLDOC01-appb-C000017
During the ceremony
R 4 and R 5 are independently selected from the group consisting of H, F, Cl, Br, CN, methyl, t-butyl, methoxy, i-propyl and adamantane, respectively.
The activator according to [9] or [10].
[12] (a) R 1 is phenyl and R 2 and R 3 are H.
(B) R 1 is t-butyl and R 2 and R 3 are H.
(C) R 1 is phenyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
(D) R 1 is t-butyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
(E) R 1 is phenyl and R 2 and R 3 are CN.
(F) R 1 is t-butyl and R 2 and R 3 are CN.
(G) R 1 is Br, and R 2 and R 3 are CN.
(H) R 1 is 1-naphthyl and R 2 and R 3 are H.
(I) R 1 is 9-anthrasenyl and R 2 and R 3 are H.
(J) R 1 is Br, and R 2 and R 3 are H.
(K) R 1 is 2-chlorophenyl and R 2 and R 3 are H.
(L) R 1 is 2,6-dichlorophenyl and R 2 and R 3 are H.
(M) R 1 is pentafluorophenyl and R 2 and R 3 are H.
(N) R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl.
(O) R 1 , R 2 and R 3 are Br.
(P) R 1 is Br, R 2 is NO 2 , and R 3 is H.
(Q) R 1 is 1-adamantyl, R 2 and R 3 are H, and (r) R 1 is Br, and R 2 and R 3 are together and they are Forming a phenyl ring with two carbon atoms on the imidazole ring to be bonded,
The activator according to [9] or [10], which is selected from the group consisting of.
[13] The activator according to any one of [9] to [12], which forms a salt with an acid.
[14] The activator according to [13], wherein the acid is trifluoromethanesulfonic acid.
 本発明の活性化剤を用いることにより、3’位および5’位の水酸基が無保護であるヌクレオシドを使用した場合においても、ヌクレオシドの5’水酸基を選択的に反応させることができるため、所望のオリゴヌクレオチドを効率的に製造することができる。したがって、本発明の活性化剤を用いることにより、3’位および5’位の水酸基が無保護であるヌクレオシドを反応に用いることが可能となり、脱保護の工程が不要となる。
 特定の理論に拘束されることは望まないが、活性化剤の反応点であるイミダゾールの窒素周辺を嵩高くすることにより、活性化剤は第2級アルコールである3’水酸基には近づきにくくなり、結果として、第1級アルコールである5’水酸基と選択的に反応することになり、5’水酸基に対する反応選択性が実現されているものと考えられる。
By using the activator of the present invention, even when a nucleoside in which the hydroxyl groups at the 3'- and 5'positions are unprotected can be used, the 5'hydroxyl group of the nucleoside can be selectively reacted, which is desired. Oligonucleotides can be efficiently produced. Therefore, by using the activator of the present invention, it becomes possible to use a nucleoside in which the hydroxyl groups at the 3'- and 5'positions are unprotected, and the deprotection step becomes unnecessary.
Although it is not desirable to be bound by a specific theory, by making the area around nitrogen of imidazole, which is the reaction point of the activator, bulky, the activator becomes less accessible to the 3'hydroxyl group, which is a secondary alcohol. As a result, it is considered that the reaction selectively with the 5'hydroxyl group, which is a primary alcohol, is realized, and the reaction selectivity with respect to the 5'hydroxyl group is realized.
 以下、本発明を詳細に説明する。
 本明細書において別様に定義されない限り、本明細書で用いる全ての技術用語および科学用語は、当業者が通常理解しているものと同じ意味を有する。本明細書中で参照する全ての特許、出願および他の出版物や情報は、その全体を参照により本明細書に援用する。また本明細書において参照された出版物と本明細書の記載に矛盾が生じた場合は、本明細書の記載が優先されるものとする。
Hereinafter, the present invention will be described in detail.
Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as those commonly understood by one of ordinary skill in the art. All patents, applications and other publications and information referenced herein are hereby incorporated by reference in their entirety. In the event of a conflict between the publications referred to herein and the description herein, the description herein shall prevail.
 本発明は、一側面において、オリゴヌクレオチドを製造する方法であって、5’位の水酸基に保護基が結合したヌクレオシドホスホロアミダイトと、3’位および5’位の水酸基が無保護であるヌクレオシドとを、活性化剤の存在下で反応させる工程を含む、前記方法に関する。 In one aspect, the present invention is a method for producing an oligonucleotide, in which a nucleoside phosphoramidite in which a protecting group is bonded to a hydroxyl group at the 5'position and a nucleoside in which the hydroxyl groups at the 3'and 5'positions are unprotected. The present invention relates to the above method, which comprises a step of reacting with and in the presence of an activator.
 本発明において、オリゴヌクレオチドの製造は、溶液中または固体支持体上で、好適な活性化剤の存在下で、ヌクレオシドホスホロアミダイトとヌクレオシドとの縮合反応によってヌクレオチドの付加が行われる、いわゆるホスホロアミダイト法を用いて行われる。 In the present invention, the production of an oligonucleotide is a so-called phosphorotide in which nucleotides are added by a condensation reaction between a nucleoside phosphoramidite and a nucleoside in solution or on a solid support in the presence of a suitable activator. It is performed using the amidite method.
 本発明において、オリゴヌクレオチドとは、ヌクレオシド塩基、糖、リン酸がホスホジエステル結合で連なった構造を有する化合物を指し、天然に存在するオリゴヌクレオチド、例えば2’-デオキシリボ核酸(以下、「DNA」)およびリボ核酸(以下、「RNA」)と、修飾糖部分、修飾リン酸部分、または修飾ヌクレオ塩基を含有する核酸とが含まれる。糖部分への修飾には、リボース環をヘキソース、シクロペンチル、またはシクロヘキシル環に置き換えることが含まれる。あるいは、天然に存在する核酸のD-リボース環をL-リボース環に置き換えてよく、または、天然に存在する核酸のβ-アノマーをα-アノマーに置き換えてもよい。オリゴヌクレオチドはまた、1以上の非塩基性部分を含んでいてもよい。修飾リン酸部分には、ホスホロチオエート、ホスホロジチオエート、メチルホスホネート、およびリン酸メチルが含まれる。こうした核酸類似体は当業者に知られている。上記の2以上の混合物を含んでなるオリゴヌクレオチドは、例えば、デオキシリボおよびリボヌクレオシドの混合物、特にデオキシリボヌクレオシドと2’-O-メチルまたは2’-O-メトキシエチルリボヌクレオシドのような2’-O-置換リボヌクレオシドの混合物を含んでなるオリゴヌクレオチドから製造可能である。ヌクレオシドの混合物を含んでなるオリゴヌクレオチドの例には、リボザイムが含まれる。 In the present invention, the oligonucleotide refers to a compound having a structure in which a nucleoside base, a sugar, and a phosphoric acid are linked by a phosphodiester bond, and a naturally occurring oligonucleotide, for example, 2'-deoxyribonucleic acid (hereinafter, "DNA"). And ribonucleic acid (hereinafter, "RNA") and a nucleic acid containing a modified sugar moiety, a modified phosphate moiety, or a modified nucleobase. Modifications to the sugar moiety include replacing the ribose ring with a hexose, cyclopentyl, or cyclohexyl ring. Alternatively, the D-ribose ring of a naturally occurring nucleic acid may be replaced with an L-ribose ring, or the β-anomer of a naturally occurring nucleic acid may be replaced with an α-anomer. Oligonucleotides may also contain one or more non-basic moieties. Modified phosphate moieties include phosphorothioate, phosphorodithioate, methylphosphonate, and methyl phosphate. Such nucleic acid analogs are known to those of skill in the art. Oligonucleotides comprising the above two or more mixtures include, for example, mixtures of deoxyribo and ribonucleosides, particularly 2'-O such as deoxyribonucleoside and 2'-O-methyl or 2'-O-methoxyethylribonucleoside. -Can be prepared from oligonucleotides comprising a mixture of substituted ribonucleosides. Examples of oligonucleotides comprising a mixture of nucleosides include ribozymes.
 本発明の一態様において、オリゴヌクレオチドは、式(III):
Figure JPOXMLDOC01-appb-C000018
で表される構造を有する。
In one aspect of the invention, the oligonucleotides are of formula (III) :.
Figure JPOXMLDOC01-appb-C000018
It has a structure represented by.
 本発明において、ヌクレオシドホスホロアミダイトとは、アミダイトで誘導体化されたヌクレオシドを指す。本発明においては、ヌクレオシドの3’水酸基がホスホロアミダイト化されており、5’水酸基には保護基が結合している。
 アミダイト化は、例えば、1H-テトラゾールを活性化剤に用い、適切に保護されたヌクレオシドに対し、2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホロジアミダイトを反応させることによって行うことができる。
 ヌクレオシドホスホロアミダイトは、モノマーであっても、2mer~24merのようなオリゴマーであってもよい。
In the present invention, the nucleoside phosphoramidite refers to a nucleoside derivatized with amidite. In the present invention, the 3'hydroxyl group of the nucleoside is phosphoramidite-ized, and a protecting group is bonded to the 5'hydroxyl group.
Amiditeization is carried out, for example, by reacting a properly protected nucleoside with 2-cyanoethyl-N, N, N', N'-tetraisopropylphosphorodiamidite using 1H-tetrazole as an activator. be able to.
The nucleoside phosphoramidite may be a monomer or an oligomer such as 2 mer to 24 mer.
 本発明の一態様において、ヌクレオシドホスホロアミダイトは、式(IV):
Figure JPOXMLDOC01-appb-C000019
で表される構造を有する。
In one aspect of the invention, the nucleoside phosphoramidite is of formula (IV):
Figure JPOXMLDOC01-appb-C000019
It has a structure represented by.
 本発明において、ヌクレオチドとは、ヌクレオシド塩基と糖とリン酸とが結合した化合物を指し、アデノシン三リン酸、チミジン三リン酸、グアノシン三リン酸、シチジン三リン酸、ウリジン三リン酸のような天然に存在するヌクレオチド、または修飾ヌクレオチドであってもよい。ヌクレオチドのヌクレオシド塩基部分は、アデニン、グアニン、シトシン、チミン、およびウラシルのような天然に存在する塩基、または修飾ヌクレオシド塩基であってもよい。ヌクレオシドの糖部分は、天然に存在するデオキシリボースやリボースであってもよく、D配置もしくはL配置をとってもよい。リン酸部分は、例えば、ホスホロチオエート、ホスホロジチオエート、メチルホスホネート、およびリン酸メチルであってもよい。 In the present invention, the nucleotide refers to a compound in which a nucleoside base, a sugar, and phosphoric acid are bound, and such as adenosine triphosphate, thymidin triphosphate, guanosine triphosphate, citidine triphosphate, and uridine triphosphate. It may be a naturally occurring nucleotide or a modified nucleotide. The nucleoside base portion of the nucleotide may be a naturally occurring base such as adenine, guanine, cytosine, thymine, and uracil, or a modified nucleoside base. The sugar moiety of the nucleoside may be naturally occurring deoxyribose or ribose, and may be in the D or L configuration. The phosphoric acid moiety may be, for example, phosphorothioate, phosphorodithioate, methylphosphonate, and methyl phosphate.
 本発明において、ヌクレオシドとは、ヌクレオシド塩基と糖が結合した化合物を指し、アデノシン、チミジン、グアノシン、シチジン、ウリジンのような天然に存在するヌクレオシド、または修飾ヌクレオシドであってもよい。ヌクレオシド塩基は、アデニン、グアニン、シトシン、チミン、およびウラシルのような天然に存在する塩基、または修飾ヌクレオシド塩基であってもよい。ヌクレオシドの糖部分は、天然に存在するデオキシリボースやリボースであってもよく、D配置もしくはL配置をとってもよい。
 本発明において、3’位および5’位の水酸基が無保護であるヌクレオシドとは、3’位および5’位の水酸基が、いずれの保護基によっても保護されていないヌクレオシドを指す。
In the present invention, the nucleoside refers to a compound in which a nucleoside base and a sugar are bound, and may be a naturally occurring nucleoside such as adenosine, thymidine, guanosine, cytidine, or uridine, or a modified nucleoside. The nucleoside base may be a naturally occurring base such as adenine, guanine, cytosine, thymine, and uracil, or a modified nucleoside base. The sugar moiety of the nucleoside may be naturally occurring deoxyribose or ribose, and may be in the D or L configuration.
In the present invention, the nucleoside in which the hydroxyl groups at the 3'-position and the 5'-position are unprotected refers to a nucleoside in which the hydroxyl groups at the 3'-position and the 5'-position are not protected by any protecting group.
 本発明の一態様において、3’位および5’位の水酸基が無保護であるヌクレオシドヌクレオシドは、式(V):
Figure JPOXMLDOC01-appb-C000020
で表される構造を有する。
In one aspect of the invention, the nucleosides in which the hydroxyl groups at the 3'and 5'positions are unprotected are of formula (V):
Figure JPOXMLDOC01-appb-C000020
It has a structure represented by.
 式(III)、式(IV)および式(V)において、Bは、各々独立して、保護基で保護された、または無保護のヌクレオシド塩基である。
 ヌクレオシド塩基は、これらに限定されないが、例えば、アデニン、グアニン、シトシン、チミン、およびウラシルのような天然に存在する塩基や、7-デアザグアニン、7-デアザ-8-アザグアニン、5-プロピニルシトシン、5-プロピニルウラシル、7-デアザアデニン、7-デアザ-8-アザアデニン、7-デアザ-6-オキソプリン、6-オキソプリン、3-デアザアデノシン、2-オキソ-5-メチルピリミジン、2-オキソ-4-メチルチオ-5-メチルピリミジン、2-チオカルボニル-4-オキソ-5-メチルピリミジン、4-オキソ-5-メチルピリミジン、2-アミノプリン、5-フルオロウラシル、2,6-ジアミノプリン、8-アミノプリン、4-トリアゾロ-5-メチルチミン、および4-トリアゾロ-5-メチルウラシルのような修飾塩基が挙げられる。
In formulas (III), (IV) and formula (V), B is an independently protected or unprotected nucleoside base.
Nucleoside bases include, but are not limited to, naturally occurring bases such as, for example, adenine, guanine, cytosine, thymine, and uracil, 7-deazaguanine, 7-deaza-8-azaguanine, 5-propynylcytocin, 5 -Propinyl uracil, 7-deazaadenine, 7-deaza-8-azaadenine, 7-daza-6-oxopurine, 6-oxopurine, 3-deazaadenosin, 2-oxo-5-methylpyrimidine, 2-oxo-4-methylthio -5-Methylpyrimidine, 2-thiocarbonyl-4-oxo-5-methylpyrimidine, 4-oxo-5-methylpyrimidine, 2-aminopurine, 5-fluorouracil, 2,6-diaminopurine, 8-aminopurine, Modified bases such as 4-triazolo-5-methylthymine and 4-triazolo-5-methyluracil can be mentioned.
 保護基で保護されたヌクレオシド塩基は、該塩基の反応性官能基が保護されているヌクレオシド塩基である。典型的には、ヌクレオシド塩基は、アミドまたはカルバメートのように、アミン保護基で保護し得るアミン基を有する。例えば、アデニンおよびシトシンのアミン基は、典型的には、ベンゾイル保護基で保護され、グアニンのアミン基は、典型的には、イソブチリル基、アセチル基、またはt-ブチルフェノキシアセチル基で保護される。しかしながら、他の保護スキームを使用してもよい。例えば、迅速な脱保護のためには、アデニンおよびグアニンのアミン基をフェノキシアセチル基で保護し、シトシンのアミノ基をイソブチリル基またはアセチル基で保護する。保護基の除去の条件は、使用する保護基に依存する。アミド保護基を使用する場合、それは、濃水酸化アンモニウム溶液、n-メチルアミン溶液、またはt-ブチルアミンの水酸化アンモニウム溶液のような塩基溶液でオリゴヌクレオチドを処理することによって除去することができる。 The nucleoside base protected by a protecting group is a nucleoside base in which the reactive functional group of the base is protected. Typically, the nucleoside base has an amine group that can be protected with an amine protecting group, such as an amide or carbamate. For example, the amine groups of adenin and cytosine are typically protected with a benzoyl protecting group, and the amine groups of guanine are typically protected with an isobutyryl group, an acetyl group, or a t-butylphenoxyacetyl group. .. However, other protection schemes may be used. For example, for rapid deprotection, the amine groups of adenine and guanine are protected with phenoxyacetyl groups and the amino groups of cytosine are protected with isobutyryl or acetyl groups. The conditions for removing the protecting group depend on the protecting group used. If an amide protecting group is used, it can be removed by treating the oligonucleotide with a base solution such as concentrated ammonium hydroxide solution, n-methylamine solution, or ammonium hydroxide solution of t-butylamine.
 式(III)および式(IV)において、Rは、保護基であり、好ましくは、酸に不安定な保護基、またはt-ブチルジメチルシリルまたはトリイソプロピルシリルのようなトリアルキルシリル基である。酸に不安定な保護基とは、プロトン酸またはルイス酸と該基を接触させることによって除去可能である保護基である。酸に不安定な保護基は、当業者に知られている。酸に不安定保護基の例としては、置換または非置換トリチル基、置換または非置換テトラヒドロピラニル基、置換または非置換テトラヒドロフラニル基、またはピキシル基などが挙げられる。トリチル基は、通常、アルコキシ基のような電子供与基により置換される。より好ましい態様において、Rは、置換されたもしくは未置換のトリチル、9-(フェニル)キサンテニル(以下、「ピキシル」)またはテトラヒドロピラニル(以下、「THP」)である。なお一層好ましい態様において、Rは、未置換のトリチル、モノアルコキシトリチル、ジアルコキシトリチル、トリアルコキシトリチル、THPまたはピキシルである。最も好ましくは、Rは4,4’-ジメトキシトリチルである。
 式(III)および式(IV)において、RおよびRは、各々独立して、OCHCHCN、SCHCHCN、OCHCH=CH、またはOCHのいずれか一つである。
 式(IV)において、Rは、各々独立して、置換または未置換の脂肪族基、置換または未置換の芳香族基である。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、メチル、エチル、イソプロピル、ピロリジノ、モルホリノが挙げられ、好ましくはエチル、イソプロピル、モルホリノである。置換されたもしくは未置換の芳香族基としては、これらに限定されないが、例えば、フェニル、ベンジル、トルイル、アニリルが挙げられ、好ましくはフェニル、ベンジルである。好ましい態様において、Rは、イソプロピルである。
 式(III)および式(IV)において、Xは、各々独立して、共有電子対、OまたはSのいずれか一つである。
 式(III)、式(IV)および式(V)において、Yは、各々独立して、H、NHR10、ハロゲン、CN、CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基のいずれか一つである。ハロゲンは、例えば、F、Cl、Br、およびIである。アシル系保護基としては、例えば、アセチル、ベンゾイル、ピバロイルなどが挙げられる。エーテル系保護基としては、例えば、ベンジル、p-メトキシベンジル(PMB)、アリルなどが挙げられる。シリル系保護基としては、例えば、t-ブチルジメチルシリル(TBS)、t-ブチルジフェニルシリル(TBDPS)、t-トリイソプロピルシリル(TIPS)、トリエチルシリル(TES)、トリメチルシリル(TMS)などが挙げられる。R10は、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアラルキル基、またはアシル基をはじめとする保護基のいずれか一つである。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、メチル、エチル、アリル、1-ペンテニル、2-メトキシエチルが挙げられ、好ましくはメチル、アリル、2-メトキシエチルである。置換されたもしくは未置換の芳香族基としては、これらに限定されないが、例えば、フェニル、ベンジル、ナフチル、2-ピレニルメチルが挙げられ、好ましくはフェニル、ベンジルである。保護基は、例えば、t-ブチルジメチルシリルである。好ましい態様において、Yは、Hである。
 式(III)、式(IV)および式(V)において、Zは、各々独立して、H、アルキル、O-アルキル、N-アルキル、ハロゲン、または前記Yとの間でZ-Y結合を形成する。ハロゲンは、例えば、F、Cl、Br、およびIである。
 式(III)および式(IV)において、nは、0以上23以下の整数であり、例えば、0以上21以下、0以上20以下、0以上19以下、0以上18以下、0以上17以下、0以上16以下、0以上15以下、0以上14以下、0以上13以下、0以上12以下、0以上11以下、0以上10以下、0以上9以下、0以上8以下、0以上7以下、0以上6以下、0以上5以下、0以上4以下、0以上3以下、0以上2以下、0以上1以下、または0である。
In formulas (III) and (IV), R 6 is a protecting group, is preferably an acid labile protecting group or t- butyldimethylsilyl or a trialkylsilyl group such as triisopropylsilyl, .. Acid-labile protecting groups are protecting groups that can be removed by contacting the group with a protonic acid or Lewis acid. Acid-labile protecting groups are known to those of skill in the art. Examples of acid-unstable protecting groups include substituted or unsubstituted trityl groups, substituted or unsubstituted tetrahydropyranyl groups, substituted or unsubstituted tetrahydrofuranyl groups, pixyl groups and the like. The trityl group is usually replaced by an electron donating group such as an alkoxy group. In a more preferred embodiment, R 1 is a substituted or unsubstituted trityl, 9- (phenyl) xanthenyl (hereinafter “Pixyl”) or tetrahydropyranyl (hereinafter “THP”). In still more preferred embodiment, R 6 is unsubstituted trityl, monoalkoxy trityl, dialkoxy trityl, trialkoxy trityl, a THP or pixyl. Most preferably, R 1 is 4,4'-dimethoxytrityl.
In formulas (III) and (IV), R 7 and R 8 are independently one of OCH 2 CH 2 CN, SCH 2 CH 2 CN, OCH 2 CH = CH 2 , or OCH 3. Is.
In formula (IV), R 9 is a substituted or unsubstituted aliphatic group and a substituted or unsubstituted aromatic group, respectively. Substituted or unsubstituted aliphatic groups include, but are not limited to, methyl, ethyl, isopropyl, pyrrolidino and morpholino, with preference given to ethyl, isopropyl and morpholino. Substituted or unsubstituted aromatic groups include, but are not limited to, phenyl, benzyl, toluyl, and aniryl, preferably phenyl and benzyl. In a preferred embodiment, R 9 is isopropyl.
In formulas (III) and (IV), X is independently one of a shared electron pair, O or S, respectively.
In formulas (III), (IV) and (V), Y is independently H, NHR 10 , halogen, CN, CF 3 , or acyl-protecting group, ether-protecting group or silyl-protecting group. It is one of the hydroxyl groups protected by a group. Halogen is, for example, F, Cl, Br, and I. Examples of the acyl-based protecting group include acetyl, benzoyl, pivaloyl and the like. Examples of the ether-based protecting group include benzyl, p-methoxybenzyl (PMB), allyl and the like. Examples of the silyl protecting group include t-butyldimethylsilyl (TBS), t-butyldiphenylsilyl (TBDPS), t-triisopropylsilyl (TIPS), triethylsilyl (TES), trimethylsilyl (TMS) and the like. .. Each of R 10 is independently composed of —H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aralkyl group, or an acyl group. It is one of the protective groups to be used. Substituted or unsubstituted aliphatic groups include, but are not limited to, methyl, ethyl, allyl, 1-pentenyl, and 2-methoxyethyl, preferably methyl, allyl, and 2-methoxyethyl. is there. Substituted or unsubstituted aromatic groups include, but are not limited to, phenyl, benzyl, naphthyl, 2-pyrenylmethyl, and are preferably phenyl and benzyl. The protecting group is, for example, t-butyldimethylsilyl. In a preferred embodiment, Y is H.
In formulas (III), (IV) and (V), Z independently forms a ZZ bond with H, alkyl, O-alkyl, N-alkyl, halogen, or Y. Form. Halogen is, for example, F, Cl, Br, and I.
In formulas (III) and (IV), n is an integer of 0 or more and 23 or less, for example, 0 or more and 21 or less, 0 or more and 20 or less, 0 or more and 19 or less, 0 or more and 18 or less, 0 or more and 17 or less, 0 or more and 16 or less, 0 or more and 15 or less, 0 or more and 14 or less, 0 or more and 13 or less, 0 or more and 12 or less, 0 or more and 11 or less, 0 or more and 10 or less, 0 or more and 9 or less, 0 or more and 8 or less, 0 or more and 7 or less, 0 or more and 6 or less, 0 or more and 5 or less, 0 or more and 4 or less, 0 or more and 3 or less, 0 or more and 2 or less, 0 or more and 1 or less, or 0.
 本発明において、活性化剤は、ヌクレオシドホスホロアミダイトとヌクレオシドとを反応させるために用いられ、アクチベーターまたはカップリング剤とも称される。
 本発明において、活性化剤は、式(I):
Figure JPOXMLDOC01-appb-C000021
の構造を有する。
 本発明の一態様において、式(I)において、R、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、シクロブタジエン、アダマンタン、-XR、ヘテロ原子を含む基で任意に置換されていてもよい直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基、および任意に置換されていてもよい芳香族環からなる群から選択され、ここで、Xはヘテロ原子であり、Rは直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基である、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する。Xは、好ましくは、O、N、S、N、SeおよびSiからなる群から選択されるヘテロ原子であり、好ましくはSである。ヘテロ原子を含む基は、好ましくはCN基である。直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基としては、これらに限定されることなく、例えば、メチル、エチル、i-プロピル、およびt-ブチルが挙げられ、好ましくは、メチル、i-プロピル、t-ブチルである。
 本発明の一態様において、式(I)において、R、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、メチル、i-プロピル、t-ブチル、シクロブタジエン、アダマンタン、ならびに任意に置換されていてもよいフェニル、ナフチル、およびアントラセニルからなる群から選択される、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する。任意に置換されていてもよいフェニルとしては、これらに限定されることなく、例えば、フェニル、ベンジル、ナフチル、2-ピレニルメチルが挙げられ、好ましくはフェニル、ベンジルある。
 本発明の好ましい態様において、Rは、Br、フェニル、クロロフェニル、またはナフチルであり、Rは、H、Br、またはNOであり、Rは、HまたはBrであるか、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する。
 本発明の一態様において、式(I)において、Rは、式(II):
Figure JPOXMLDOC01-appb-C000022
である。
 本発明の一態様において、式(II)において、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、メチル、t-ブチル、メトキシ、i-プロピルおよびアダマンタンからなる群から選択される。
In the present invention, the activator is used for reacting a nucleoside phosphoramidite with a nucleoside, and is also referred to as an activator or a coupling agent.
In the present invention, the activator is of formula (I) :.
Figure JPOXMLDOC01-appb-C000021
Has the structure of.
In one aspect of the invention, in formula (I), R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, cyclobutadiene, adamantan, -XR. From the group consisting of A, a linear or branched saturated or unsaturated C 1-22 alkyl group optionally substituted with a heteroatom-containing group, and an optionally substituted aromatic ring. Selected, where X is a heteroatom, RA is a linear or branched saturated or unsaturated C 1-22 alkyl group, or R 2 and R 3 are together, they. Form a phenyl ring with two carbon atoms on the imidazole ring to which the is bonded. X is preferably a heteroatom selected from the group consisting of O, N, S, N, Se and Si, preferably S. The group containing a heteroatom is preferably a CN group. Saturated or unsaturated C 1-22 alkyl groups of linear or branched chains include, but are not limited to, methyl, ethyl, i-propyl, and t-butyl, with preference given to methyl. , I-propyl, t-butyl.
In one embodiment of the present invention, in formula (I), R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, methyl, i-propyl, t. -Selected from the group consisting of butyl, cyclobutadiene, adamantane, and optionally substituted phenyl, naphthyl, and anthracenyl, or R 2 and R 3 together, the imidazole ring to which they are attached. It forms a phenyl ring with the above two carbon atoms. Examples of the phenyl that may be optionally substituted include, but are not limited to, phenyl, benzyl, naphthyl, and 2-pyrenylmethyl, and preferably phenyl and benzyl.
In a preferred embodiment of the invention, R 1 is Br, phenyl, chlorophenyl, or naphthyl, R 2 is H, Br, or NO 2 , and R 3 is H or Br, or R 2. and R 3, taken together, along with the two carbon atoms on the imidazole ring to which they are attached form a phenyl ring.
In one aspect of the present invention, in formula (I), R 1 is the formula (II):
Figure JPOXMLDOC01-appb-C000022
Is.
In one aspect of the invention, in formula (II), R 4 and R 5 each independently consist of H, F, Cl, Br, CN, methyl, t-butyl, methoxy, i-propyl and adamantane. Selected from the group.
 本発明の一態様において、活性化剤は式(I)の構造で表され、式(I)において、Rは、フェニルであり、RおよびRは、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、式(I)において、Rは、t-ブチルであり、RおよびRは、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、式(I)において、Rは、フェニルであり、RおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともに、フェニル環を形成する。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rは、t-ブチルであり、RおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともに、フェニル環を形成する。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rは、フェニルであり、RおよびRは、CNである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rは、t-ブチルであり、RおよびRは、CNである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rは、Brであり、RおよびRは、CNである。
In one aspect of the present invention, the activator is represented by structure of formula (I), in formula (I), R 1 is phenyl, R 2 and R 3 is H.
In one aspect of the present invention, the activator is represented by structure of formula (I), in formula (I), R 1 is a t- butyl, R 2 and R 3 is H.
In one aspect of the invention, the activator is represented by the structure of formula (I), where in formula (I) R 1 is phenyl and R 2 and R 3 are combined and they are bound together. Form a phenyl ring with two carbon atoms on the imidazole ring.
In one aspect of the invention, the activator is represented by the structure of formula (I), R 1 is t-butyl, and R 2 and R 3 are together on the imidazole ring to which they are attached. Form a phenyl ring with the two carbon atoms of.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is phenyl, R 2 and R 3 is CN.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is t-butyl and R 2 and R 3 are CN.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is Br and R 2 and R 3 are CN.
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、1-ナフチルであり、RおよびRが、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、9-アントラセニルであり、RおよびRが、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、Brであり、RおよびRが、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、2-クロロフェニルであり、RおよびRが、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、2,6-ジクロロフェニルであり、RおよびRが、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、ペンタフルオロフェニルであり、RおよびRが、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、2-クロロフェニルであり、RおよびRがフェニルである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、R、RおよびRが、Brである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、Brであり、RがNOであり、Rが、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、1-アダマンチルであり、RおよびRが、Hである。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、Brであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する。
 本発明の好ましい態様において、活性化剤は、2-フェニルイミダゾール、2-ナフチルイミダゾール、2-ブロモイミダゾール、2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール、2,4,5-トリブロモイミダゾール、2-ブロモ-4-ニトロイミダゾール、または2-ブロモベンゾイミダゾールである。
 本発明の最も好ましい態様において、活性化剤は、2-フェニルイミダゾール、2-ナフチルイミダゾール、2,4,5-トリブロモイミダゾール、2-ブロモ-4-ニトロイミダゾール、または2-ブロモベンゾイミダゾールである。
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 1-naphthyl, R 2 and R 3 is H.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 9-anthracenyl, R 2 and R 3 is H.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a Br, R 2 and R 3 is H.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 2-chlorophenyl, R 2 and R 3 is H.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 2,6-dichlorophenyl, R 2 and R 3 is H.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a pentafluorophenyl, R 2 and R 3 is H.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1, R 2 and R 3 is Br.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is Br, R 2 is NO 2 and R 3 is H.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 1-adamantyl, R 2 and R 3 is H.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is Br and R 2 and R 3 are together and 2 on the imidazole ring to which they are attached. It forms a phenyl ring with one carbon atom.
In a preferred embodiment of the invention, the activator is 2-phenylimidazole, 2-naphthylimidazole, 2-bromoimidazole, 2- (2-chlorophenyl) -4,5-diphenylimidazole, 2,4,5-tribromo. It is imidazole, 2-bromo-4-nitroimidazole, or 2-bromobenzimidazole.
In the most preferred embodiment of the invention, the activator is 2-phenylimidazole, 2-naphthylimidazole, 2,4,5-tribromoimidazole, 2-bromo-4-nitroimidazole, or 2-bromobenzimidazole. ..
 本発明の一態様において、前記活性化剤は、酸と塩を形成している。酸と塩を形成させることにより、活性化剤の酸性度をあげることができる。
 本発明の一態様において、酸は、各種プロトン酸またはルイス酸であればよく、これらに限定されないが、例えば、メタンスルホン酸、トルエンスルホン酸、トリフルオロメタンスルホン酸、六フッ化リン酸、四フッ化ホウ素酸、三フッ化ホウ素、であってもよく、好ましくは、トリフルオロメタンスルホン酸である。
 本発明の一態様において、活性化剤は式(I)の構造で表され、式(I)において、Rは、フェニルであり、RおよびRは、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、式(I)において、Rは、t-ブチルであり、RおよびRは、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、式(I)において、Rは、フェニルであり、RおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成しており、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rは、t-ブチルであり、RおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成しており、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rは、フェニルであり、RおよびRは、CNであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rは、t-ブチルであり、RおよびRは、CNであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rは、Brであり、RおよびRは、CNであり、トリフルオロメタンスルホン酸と塩を形成している。
In one aspect of the invention, the activator forms a salt with an acid. By forming a salt with an acid, the acidity of the activator can be increased.
In one embodiment of the present invention, the acid may be any proton acid or Lewis acid, and is not limited to, for example, methanesulfonic acid, toluenesulfonic acid, trifluoromethanesulfonic acid, hexafluorophosphate, tetrafluoride. It may be boron acid or boron trifluoride, preferably trifluoromethanesulfonic acid.
In one aspect of the present invention, the activator is represented by structure of formula (I), in formula (I), R 1 is phenyl, R 2 and R 3 are H, trifluoromethanesulfonic acid And forming salt.
In one aspect of the present invention, the activator is represented by structure of formula (I), in formula (I), R 1 is a t- butyl, R 2 and R 3 are H, trifluoromethane It forms a salt with sulfonic acid.
In one aspect of the present invention, the activator is represented by structure of formula (I), in formula (I), R 1 is phenyl, R 2 and R 3 together, they are bound It forms a phenyl ring with two carbon atoms on the imidazole ring, and forms a salt with trifluoromethanesulfonic acid.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is t-butyl and R 2 and R 3 are together on the imidazole ring to which they are attached. It forms a phenyl ring with the two carbon atoms of, and forms a salt with trifluoromethanesulfonic acid.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is phenyl and R 2 and R 3 are CN, forming a salt with trifluoromethanesulfonic acid. There is.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is t-butyl and R 2 and R 3 are CN, forming a salt with trifluoromethanesulfonic acid. doing.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is Br and R 2 and R 3 are CN, forming a salt with trifluoromethanesulfonic acid. There is.
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、1-ナフチルであり、RおよびRが、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、9-アントラセニルであり、RおよびRが、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、Brであり、RおよびRが、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、2-クロロフェニルであり、RおよびRが、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、2,6-ジクロロフェニルであり、RおよびRが、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、ペンタフルオロフェニルであり、RおよびRが、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、2-クロロフェニルであり、RおよびRがフェニルであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、R、RおよびRが、Brであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、Brであり、RがNOであり、Rが、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、1-アダマンチルであり、RおよびRが、Hであり、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の一態様において、活性化剤は式(I)の構造で表され、Rが、Brであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成しており、トリフルオロメタンスルホン酸と塩を形成している。
 本発明の好ましい態様において、活性化剤は、2-フェニルイミダゾリウムトリフラート、2-ナフチルイミダゾリウムトリフラート、2-ブロモイミダゾリウムトリフラート、2-(2-クロロフェニル)-4,5-ジフェニルイミダゾリウムトリフラート、2,4,5-トリブロモイミダゾリウムトリフラート、2-ブロモ-4-ニトロイミダゾリウムトリフラート、または2-ブロモベンゾイミダゾリウムトリフラートである。
 本発明の最も好ましい態様において、活性化剤は、2-フェニルイミダゾリウムトリフラート、2-ナフチルイミダゾリウムトリフラート、2,4,5-トリブロモイミダゾリウムトリフラート、2-ブロモ-4-ニトロイミダゾリウムトリフラート、または2-ブロモベンゾイミダゾリウムトリフラートである。
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 1-naphthyl, R 2 and R 3 is H, forming a trifluoromethanesulfonic acid salt doing.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is 9-anthrasenyl and R 2 and R 3 are H, forming a salt with trifluoromethanesulfonic acid. doing.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is Br, R 2 and R 3 are H, forming a salt with trifluoromethanesulfonic acid. There is.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 2-chlorophenyl, R 2 and R 3 is H, forming a trifluoromethanesulfonic acid salt doing.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 2,6-dichlorophenyl, R 2 and R 3 are H, trifluoromethanesulfonic acid and salts Is forming.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a pentafluorophenyl, R 2 and R 3 is H, forming a trifluoromethanesulfonic acid salt doing.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl, forming a salt with trifluoromethanesulfonic acid. ing.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1, R 2 and R 3 are Br, to form a trifluoromethanesulfonic acid salt.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is Br, R 2 is NO 2 , R 3 is H, and trifluoromethanesulfonic acid. Forming salt.
In one aspect of the present invention, the activator is represented by the structure of formula (I), R 1 is a 1-adamantyl, R 2 and R 3 is H, forming a trifluoromethanesulfonic acid salt doing.
In one aspect of the invention, the activator is represented by the structure of formula (I), where R 1 is Br and R 2 and R 3 are together and 2 on the imidazole ring to which they are attached. It forms a phenyl ring with one carbon atom and forms a salt with trifluoromethanesulfonic acid.
In a preferred embodiment of the invention, the activator is 2-phenylimidazolium triflate, 2-naphthylimidazolium triflate, 2-bromoimidazolium triflate, 2- (2-chlorophenyl) -4,5-diphenylimidazolium triflate, 2,4,5-Tribromoimidazolium triflate, 2-bromo-4-nitroimidazolium triflate, or 2-bromobenzoimidazolium triflate.
In the most preferred embodiment of the invention, the activator is 2-phenylimidazolium triflate, 2-naphthylimidazolium triflate, 2,4,5-tribromoimidazolium triflate, 2-bromo-4-nitroimidazolium triflate, Or 2-bromobenzoimidazolium triflate.
 本発明は、一側面において、ヌクレオシドホスホロアミダイトを製造する方法であって、オリゴヌクレオチドを製造する工程を含む、前記方法に関する。
 本発明の一態様において、ヌクレオシドホスホロアミダイトは、式(VI):
Figure JPOXMLDOC01-appb-C000023
で表される構造を有する。
 式(VI)において、B、R、R、R、R、X、Y、R10、Z、nは、式(III)、式(IV)および式(V)において定義したとおりである。
The present invention relates to, in one aspect, a method for producing a nucleoside phosphoramidite, which comprises a step of producing an oligonucleotide.
In one aspect of the invention, the nucleoside phosphoramidite is of formula (VI):
Figure JPOXMLDOC01-appb-C000023
It has a structure represented by.
In formula (VI), B, R 6 , R 7 , R 8 , R 9 , X, Y, R 10 , Z, n are as defined in formula (III), formula (IV) and formula (V). Is.
 本発明は、一側面において、本発明は、オリゴヌクレオチドを製造するための、活性化剤に関する。
 本発明の一態様において、活性化剤は、式(I):
Figure JPOXMLDOC01-appb-C000024
で表される構造を有する。
 R、RおよびRは、上記で定義したとおりである。
The present invention, in one aspect, relates to an activator for producing oligonucleotides.
In one aspect of the invention, the activator is of formula (I) :.
Figure JPOXMLDOC01-appb-C000024
It has a structure represented by.
R 1 , R 2 and R 3 are as defined above.
 本発明において、ホスホロアミダイトとヌクレオシドの反応は、適切な溶媒の存在下で行われる。 In the present invention, the reaction between phosphoramidite and nucleoside is carried out in the presence of a suitable solvent.
例1.活性化剤の合成
例1.1 2-フェニルイミダゾリウムトリフラートの調製
Figure JPOXMLDOC01-appb-C000025
 2-フェニルイミダゾール(24.0g、167mmol)のジクロロメタン溶液(333mL)を氷冷し、トリフルオロメタンスルホン酸(42.8mL、167mmol)を滴下した。室温で30分撹拌した後、生成した白色結晶を吸引下ろ別し、MTBE(150mL)で洗浄した。得られた結晶を減圧下15時間乾燥し、2-フェニルイミダゾリウムトリフラートを白色結晶として得た(48.5g、収率98.9%)。
Example 1. Synthesis example of activator 1.1 Preparation of 2-phenylimidazolium triflate
Figure JPOXMLDOC01-appb-C000025
A dichloromethane solution (333 mL) of 2-phenylimidazole (24.0 g, 167 mmol) was ice-cooled, and trifluoromethanesulfonic acid (42.8 mL, 167 mmol) was added dropwise. After stirring at room temperature for 30 minutes, the formed white crystals were separated by suction and washed with MTBE (150 mL). The obtained crystals were dried under reduced pressure for 15 hours to obtain 2-phenylimidazolium triflate as white crystals (48.5 g, yield 98.9%).
例1.2 2-フェニルベンゾイミダゾリウムトリフラートの調製
Figure JPOXMLDOC01-appb-C000026
 2-フェニルベンゾイミダゾール(3.88g、20.0mmol)のジクロロメタン溶液(40mL)を氷冷し、トリフルオロメタンスルホン酸(1.75mL、20.0mmol)を滴下した。室温で30分撹拌した後、反応溶液を濃縮し、オイル状となった粗生成物にMTBE-ヘキサン1:1溶液(50mL)を撹拌しながら加え、生成した白色結晶を吸引下ろ別し、MTBE-ヘキサン1:1溶液(50mL)で洗浄した。得られた結晶を減圧下15時間乾燥し、2-フェニルベンゾイミダゾリウムトリフラートを白色結晶として得た(6.80g、収率97.4%)。
Example 1.2 Preparation of 2-phenylbenzoimidazolium triflate
Figure JPOXMLDOC01-appb-C000026
A dichloromethane solution (40 mL) of 2-phenylbenzimidazole (3.88 g, 20.0 mmol) was ice-cooled, and trifluoromethanesulfonic acid (1.75 mL, 20.0 mmol) was added dropwise. After stirring at room temperature for 30 minutes, the reaction solution is concentrated, MTBE-hexane 1: 1 solution (50 mL) is added to the crude product in oil form with stirring, and the white crystals produced are separated by suction and MTBE. It was washed with a 1: 1 solution of -hexane (50 mL). The obtained crystals were dried under reduced pressure for 15 hours to obtain 2-phenylbenzoimidazolium triflate as white crystals (6.80 g, yield 97.4%).
例2.活性化剤の検討
 活性化剤として、イミダゾール誘導体および1H-テトラゾールを用いて、DMTr-A(OCH3)p(OCH2CH2CN)(OH)(A(OMe)T)(スキーム1)およびDMTr-A(OH)p(OCH2CH2CN)(OH)(AA)((スキーム2)を合成し、反応率および選択性を算出した。
 
スキーム1:
Figure JPOXMLDOC01-appb-C000027
スキーム2:
Figure JPOXMLDOC01-appb-C000028
 
Example 2. Examination of activator DMTr-A (OCH3) p (OCH2CH2CN) T (OH) (A (OMe) T) (Scheme 1) and DMTr-A ( scheme 1) using an imidazole derivative and 1H-tetrazole as activators. OH) p (OCH2CH2CN) A (OH) (AA) ((Scheme 2) was synthesized and the reaction rate and selectivity were calculated.

Scheme 1:
Figure JPOXMLDOC01-appb-C000027
Scheme 2:
Figure JPOXMLDOC01-appb-C000028
 
例2.1 活性化剤として2-フェニルイミダゾリウムトリフラートを用いた、オリゴヌクレオチドの合成
 例1.1で調製した2-フェニルイミダゾリウムトリフラートの1.0Mジクロロメタン-DMF溶液(100μL)、デオキシヌクレオシドの2.0M DMF溶液(100μL)を混合し、本溶液を2-シアノエチル5’-O-デオキシヌクレオシド-(N,N’-ジイソプロピル)ホスホロアミダイトの0.5Mジクロロメタン溶液(100μL)に滴下し、室温で30分撹拌することにより反応させた。反応液を500倍に希釈し、HPLC(装置:Waters社製UPLCBio、カラム:BHE C18 50mm、溶離液:0.1M TEAA緩衝液のアセトニトリル溶液を5分かけて50→100%リニアグラジエント)を行った。反応率は、(目的物+不純物+加水分解体)のHPLCピーク面積÷(目的物+不純物+加水分解体+残存した原料)のHPLCピーク面積から算出し、選択性は、目的物のHPLCピーク面積:不純物のHPLCピーク面積から算出した(目的物とは、ヌクレオシドの5’位の水酸基がホスホロアミダイトに結合した化合物を指し、不純物とは、ヌクレオシドの3’位の水酸基がホスホロアミダイトに結合した化合物を指す。以下同じ。)。
Example 2.1 Synthesis of oligonucleotides using 2-phenylimidazolium triflate as an activator 1.0 M dichloromethane-DMF solution (100 μL) of 2-phenylimidazolium triflate prepared in Example 1.1, of deoxynucleoside A 2.0 M DMF solution (100 μL) was mixed, and this solution was added dropwise to a 0.5 M dichloromethane solution (100 μL) of 2-cyanoethyl 5'-O-deoxynucleoside- (N, N'-diisopropyl) phosphoramidite. The reaction was carried out by stirring at room temperature for 30 minutes. The reaction mixture was diluted 500-fold and subjected to HPLC (equipment: UPLCBio manufactured by Waters, column: BHE C18 50 mm, eluent: acetonitrile solution of 0.1 M TEAA buffer over 5 minutes 50 → 100% linear gradient). It was. The reaction rate is calculated from the HPLC peak area of (target product + impurities + hydrolyzate) ÷ (target product + impurities + hydrolyzate + remaining raw material) HPLC peak area, and the selectivity is the HPLC peak of the target product. Area: Calculated from the HPLC peak area of the impurity (the target substance refers to a compound in which the 5'-position hydroxyl group of the nucleoside is bonded to phosphoramidite, and the impurity is the 3'-position hydroxyl group of the nucleoside to phosphoramidite. Refers to bound compounds; the same shall apply hereinafter).
例2.2 活性化剤としてイミダゾール誘導体を用いた、オリゴヌクレオチドの合成
 イミダゾール誘導体(2-ナフチルイミダゾール、2-ブロモイミダゾール、2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール、2,4,5-トリブロモイミダゾール、2-ブロモ-4-ニトロイミダゾール、または2-ブロモベンゾイミダゾール)の1.0Mジクロロメタン-DMF溶液(100μL)、トリフルオロメタンスルホン酸(TfOH)の0.5Mジクロロメタン溶液(0、30、あるいは90μL)、およびデオキシヌクレオシドの2.0M DMF溶液(100μL)を混合して得られた溶液を2-シアノエチル5’-O-デオキシヌクレオシド-(N,N’-ジイソプロピル)ホスホロアミダイトの0.5Mジクロロメタン溶液(100μL)に滴下し、室温で30分撹拌することにより反応させた。反応液を500倍に希釈し、HPLC(装置:Waters社製UPLCBio、カラム:BHE C18 50mm、溶離液:0.1M TEAA緩衝液のアセトニトリル溶液を5分かけて50→100%リニアグラジエント)を行った。反応率は、(目的物+不純物+加水分解体)のHPLCピーク面積÷(目的物+不純物+加水分解体+残存した原料)のHPLCピーク面積から算出し、選択性は、目的物のHPLCピーク面積:不純物のHPLCピーク面積から算出した。
Example 2.2 Synthesis of oligonucleotides using imidazole derivatives as activators Imidazole derivatives (2-naphthylimidazole, 2-bromoimidazole, 2- (2-chlorophenyl) -4,5-diphenylimidazole, 2,4 A 1.0 M dichloromethane-DMF solution (100 μL) of 5-tribromoimidazole, 2-bromo-4-nitroimidazole, or 2-bromobenzimidazole, a 0.5 M dichloromethane solution of trifluoromethanesulfonic acid (TfOH) (0, 30 or 90 μL) and a 2.0 M DMF solution of deoxynucleoside (100 μL) were mixed to obtain a solution of 2-cyanoethyl 5'-O-deoxynucleoside- (N, N'-diisopropyl) phosphoramidite. The reaction was carried out by dropping into a 0.5 M dichloromethane solution (100 μL) and stirring at room temperature for 30 minutes. The reaction mixture was diluted 500-fold and subjected to HPLC (equipment: UPLCBio manufactured by Waters, column: BHE C18 50 mm, eluent: acetonitrile solution of 0.1 M TEAA buffer over 5 minutes 50 → 100% linear gradient). It was. The reaction rate is calculated from the HPLC peak area of (target product + impurities + hydrolyzate) ÷ (target product + impurities + hydrolyzate + remaining raw material) HPLC peak area, and the selectivity is the HPLC peak of the target product. Area: Calculated from the HPLC peak area of impurities.
例2.3 活性化剤として1H-テトラゾール(比較例)を用いた、オリゴヌクレオチドの合成
 1H-テトラゾールの2.5Mジクロロメタン-DMF溶液(100μL)と、デオキシヌクレオシドの2.0M DMF溶液(100μL)とを混合してられた溶液を2-シアノエチル5’-O-デオキシヌクレオシド-(N,N’-ジイソプロピル)ホスホロアミダイトの0.5Mジクロロメタン溶液(100μL)に滴下し、室温で30分撹拌することにより反応させた。反応液を500倍に希釈し、HPLC(装置:Waters社製UPLCBio、カラム:BHE C18 50mm、溶離液:0.1M TEAA緩衝液のアセトニトリル溶液を5分かけて50→100%リニアグラジエント)を行った。反応率は、(目的物+不純物+加水分解体)のHPLCピーク面積÷(目的物+不純物+加水分解体+残存した原料)のHPLCピーク面積から算出し、選択性は、目的物のHPLCピーク面積:不純物のHPLCピーク面積から算出した。
Example 2.3 Synthesis of oligonucleotides using 1H-tetrazole (Comparative Example) as an activator 2.5M dichloromethane-DMF solution (100 μL) of 1H-tetrazole and 2.0M DMF solution (100 μL) of deoxynucleoside Is added dropwise to a 0.5 M dichloromethane solution (100 μL) of 2-cyanoethyl 5'-O-deoxynucleoside- (N, N'-diisopropyl) phosphoramidite, and the mixture is stirred at room temperature for 30 minutes. It was reacted by. The reaction mixture was diluted 500-fold and subjected to HPLC (equipment: UPLCBio manufactured by Waters, column: BHE C18 50 mm, eluent: acetonitrile solution of 0.1 M TEAA buffer over 5 minutes 50 → 100% linear gradient). It was. The reaction rate is calculated from the HPLC peak area of (target product + impurities + hydrolyzate) ÷ (target product + impurities + hydrolyzate + remaining raw material) HPLC peak area, and the selectivity is the HPLC peak of the target product. Area: Calculated from the HPLC peak area of impurities.
例2.4 評価
 結果を表1に示す。DMTr-A(OCH3)p(OCH2CH2CN)(OH)(A(OMe)T)の合成において、No.1~8に記載の活性化剤を用いた場合、1H-テトラゾールを活性化剤として用いた場合よりも反応性が高かった。また、DMTr-A(OH)p(OCH2CH2CN)(OH)(AA)の合成において、No.1~4および6~8に記載の活性化剤を用いた場合、1H-テトラゾールを活性化剤として用いた場合よりも、反応性が高く、選択性にも優れていた。これらの活性化剤は、テトラゾールよりも立体障害が大きいため、選択性に優れていたと考えられる。
Figure JPOXMLDOC01-appb-T000029
 
 
Example 2.4 The evaluation results are shown in Table 1. In the synthesis of DMTr-A (OCH3) p (OCH2CH2CN) T (OH) (A (OMe) T), No. When the activators described in 1 to 8 were used, the reactivity was higher than when 1H-tetrazole was used as the activator. Further, in the synthesis of DMTr-A (OH) p (OCH2CH2CN) A (OH) (AA), No. When the activators described in 1 to 4 and 6 to 8 were used, the reactivity was higher and the selectivity was also excellent than when 1H-tetrazole was used as the activator. Since these activators have greater steric hindrance than tetrazole, it is considered that they were excellent in selectivity.
Figure JPOXMLDOC01-appb-T000029

例3 オリゴヌクレオチドおよびホスホロアミダイトの合成ならびに精製
例3.1 DMTr-A(OCH3)p(OCH2CH2CN)(OH)(化合物1)の合成および精製
Figure JPOXMLDOC01-appb-C000030
Example 3 Synthesis and purification of oligonucleotide and phosphoramidite Example 3.1 Synthesis and purification of DMTr-A (OCH3) p (OCH2CH2CN) T (OH) (Compound 1)
Figure JPOXMLDOC01-appb-C000030
(1)
 2-シアノエチル5’-O-dDMTr-N6-ベンゾイル-2’-O-メトキシアデノシン3’-(N,N’-ジイソプロピル)ホスホロアミダイト(19.0g、21.4mmol)のジクロロメタン溶液(110mL)をチミジン(7.8g、32.1mmol)と2-フェニルイミダゾリウムトリフラート(12.6g、42.8mmol)のDMF溶液(110mL)を加え、室温で1時間撹拌した。反応溶液を純水(1.2L)に滴下し、得られた有機相を飽和重曹溶液(100mLx2回)で洗浄し、有機相を300mLマイヤーに移した後、芒硝で30分乾燥した。有機相を減圧下濃縮し、粗生成物を得た(25.7g)。得られた粗生成物をジクロロメタン(260mL)に溶解した後、ジクロロメタン-メタノールを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的の2量体(化合物1)を得た(15.9g、収率72.3%)。
(1)
2-Cyanoethyl 5'-ODDMTr-N6-benzoyl-2'-O-methoxyadenosine 3'-(N, N'-diisopropyl) phosphoramidite (19.0 g, 21.4 mmol) in dichloromethane (110 mL) Was added to a DMF solution (110 mL) of thymidine (7.8 g, 32.1 mmol) and 2-phenylimidazolium trifurate (12.6 g, 42.8 mmol), and the mixture was stirred at room temperature for 1 hour. The reaction solution was added dropwise to pure water (1.2 L), the obtained organic phase was washed with a saturated sodium bicarbonate solution (100 mL x 2 times), the organic phase was transferred to 300 mL Meyer, and then dried over Glauber's salt for 30 minutes. The organic phase was concentrated under reduced pressure to give a crude product (25.7 g). The obtained crude product was dissolved in dichloromethane (260 mL) and then purified by silica gel column chromatography using dichloromethane-methanol as an elution solvent to obtain the desired dimer (Compound 1) (15.9 g, yield). Rate 72.3%).
(2)
 2-シアノエチル5’-O-dDMTr-N6-ベンゾイル-2’-O-メトキシアデノシン3’-(N,N’-ジイソプロピル)ホスホロアミダイト(20.0g、22.5mmol)のジクロロメタン溶液(113mL)をチミジン(8.2g、33.8mmol)と1H-テトラゾール(6.30g、90.1mmol)のDMF溶液(113mL)を加え、室温で1時間撹拌した。反応溶液を純水(1.6L)に滴下し、得られた有機相を飽和重曹溶液(100mLx2回)で洗浄し、有機相を300mLマイヤーに移した後、芒硝で30分乾燥した。有機相を減圧下濃縮し、粗生成物を得た(25.7g)。得られた粗生成物をジクロロメタン(260mL)に溶解した後、ジクロロメタン-メタノールを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的の2量体(化合物1)を得た(12.0g、収率51.8%)。
(2)
2-Cyanoethyl 5'-ODDMTr-N6-benzoyl-2'-O-methoxyadenosine 3'-(N, N'-diisopropyl) phosphoramidite (20.0 g, 22.5 mmol) in dichloromethane (113 mL) Was added to a DMF solution (113 mL) of thymidine (8.2 g, 33.8 mmol) and 1H-tetrazole (6.30 g, 90.1 mmol), and the mixture was stirred at room temperature for 1 hour. The reaction solution was added dropwise to pure water (1.6 L), the obtained organic phase was washed with a saturated sodium bicarbonate solution (100 mL x 2 times), the organic phase was transferred to 300 mL Meyer, and then dried over Glauber's salt for 30 minutes. The organic phase was concentrated under reduced pressure to give a crude product (25.7 g). The obtained crude product was dissolved in dichloromethane (260 mL) and then purified by silica gel column chromatography using dichloromethane-methanol as an elution solvent to obtain the desired dimer (Compound 1) (12.0 g, yield). Rate 51.8%).
例3.2 DMTr-A(OCH3)p(OCH2CH2CN)(OCH2CH2CN)(N(i-C3H7)2)(化合物2)の合成および精製
Figure JPOXMLDOC01-appb-C000031
Example 3.2 Synthesis and purification of DMTr-A (OCH3) p (OCH2CH2CN) T (OCH2CH2CN) (N (i-C3H7) 2) (Compound 2)
Figure JPOXMLDOC01-appb-C000031
 dAT(化合物1)(9.90g、9.60mmol)のジクロロメタン溶液(50mL)に溶解し、アミダイト化試薬NCCHCHOP[N(i-C(4.00mL、12.5mmol)、1H-テトラゾール(470mg、6.70mmol)を2回に分けて加え、室温で1時間撹拌した。反応溶液にジクロロメタン(50mL)を加えた後、n-ヘキサン-ジクロロメタンを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的のホスホロアミダイト(化合物2)を得た(9.02g、収率76.4%)。 Dissolve dAT (Compound 1) (9.90 g, 9.60 mmol) in dichloromethane solution (50 mL) and amidite reagent NCCH 2 CH 2 OP [N (i-C 3 H 7 ) 2 ] 2 (4.00 mL, 12.5 mmol) and 1H-tetrazole (470 mg, 6.70 mmol) were added in two portions and stirred at room temperature for 1 hour. Dichloromethane (50 mL) was added to the reaction solution, and the mixture was purified by silica gel column chromatography using n-hexane-dichloromethane as an elution solvent to obtain the desired phosphoromidite (Compound 2) (9.02 g, yield 76). .4%).
例3.3 DMTr-A(OCH3)p(OCH2CH2CN)(OCH2CH2CN)dC(OH)(化合物3)の合成および精製
Figure JPOXMLDOC01-appb-C000032
Example 3.3 Synthesis and purification of DMTr-A (OCH3) p (OCH2CH2CN) T (OCH2CH2CN) dC (OH) (Compound 3)
Figure JPOXMLDOC01-appb-C000032
(1)
 ホスホロアミダイト(化合物2)(7.40g、6.00mmol)のジクロロメタン溶液(30mL)をN4-ベンゾイル-2’-デオキシシチジン(3.20g、9.00mmol)と2-フェニルイミダゾリウムトリフラート(3.50g、12.0mmol)のDMF溶液(30mL)を加え、室温で2時間撹拌した。反応溶液を純水(500mL)に滴下し、得られた有機相を飽和重曹溶液(100mLx2回)で洗浄し、有機相を300mLマイヤーに移した後、芒硝で30分乾燥した。有機相を減圧下濃縮し、粗生成物を得た(9.80g)。得られた粗生成物をジクロロメタン(260mL)に溶解した後、ジクロロメタン-IPAを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的の3量体(化合物3)を得た(5.10g、収率57.1%)。
(1)
Dichloromethane solution (30 mL) of phosphoramidite (Compound 2) (7.40 g, 6.00 mmol) with N4-benzoyl-2'-deoxycytidine (3.20 g, 9.00 mmol) and 2-phenylimidazolium trifurate (3) .50 g, 12.0 mmol) of DMF solution (30 mL) was added and stirred at room temperature for 2 hours. The reaction solution was added dropwise to pure water (500 mL), the obtained organic phase was washed with a saturated sodium bicarbonate solution (100 mL x 2 times), the organic phase was transferred to 300 mL Meyer, and then dried over Glauber's salt for 30 minutes. The organic phase was concentrated under reduced pressure to give a crude product (9.80 g). The obtained crude product was dissolved in dichloromethane (260 mL) and then purified by silica gel column chromatography using dichloromethane-IPA as an elution solvent to obtain the desired trimer (Compound 3) (5.10 g, yield). Rate 57.1%).
(2)
 ホスホロアミダイト(化合物2)(12.7g、10.3mmol)のジクロロメタン溶液(52mL)をN4-ベンゾイル-2’-デオキシシチジン(5.60g、15.5mmol)と1H-テトラゾール(2.9g、41.3mmol)のDMF溶液(52mL)を加え、室温で1.5時間撹拌した。反応溶液を純水(700mL)に滴下し、得られた有機相を飽和重曹溶液(100mLx2回)で洗浄し、有機相を300mLマイヤーに移した後、芒硝で30分乾燥した。有機相を減圧下濃縮し、粗生成物を得た(16.7g)。得られた粗生成物をジクロロメタン(260mL)に溶解した後、反応溶液にジクロロメタン(160mL)を加え、ジクロロメタン-IPAを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的の3量体(化合物3)を得た(6.20g、収率40.3%)。
(2)
A dichloromethane solution (52 mL) of phosphoramidite (Compound 2) (12.7 g, 10.3 mmol) was mixed with N4-benzoyl-2'-deoxycytidine (5.60 g, 15.5 mmol) and 1H-tetrazole (2.9 g, 41.3 mmol) of DMF solution (52 mL) was added, and the mixture was stirred at room temperature for 1.5 hours. The reaction solution was added dropwise to pure water (700 mL), the obtained organic phase was washed with a saturated sodium bicarbonate solution (100 mL x 2 times), the organic phase was transferred to 300 mL Meyer, and then dried over Glauber's salt for 30 minutes. The organic phase was concentrated under reduced pressure to give a crude product (16.7 g). The obtained crude product is dissolved in dichloromethane (260 mL), dichloromethane (160 mL) is added to the reaction solution, and the product is purified by silica gel column chromatography using dichloromethane-IPA as an elution solvent to obtain the desired trimer (Compound 3). ) Was obtained (6.20 g, yield 40.3%).
例3.4 DMTr-dGp(OCH2CH2CN)(OH)(化合物4)の合成および精製
Figure JPOXMLDOC01-appb-C000033
Example 3.4 Synthesis and purification of DMTr-dG p (OCH2CH2CN) C (OH) (Compound 4)
Figure JPOXMLDOC01-appb-C000033
 2-シアノエチル5’-O-DMTr-N2-イソブチリル-2’-デオキシグアノシン3’-(N,N’-ジイソプロピル)ホスホロアミダイト(20.0g、23.8mmol)のジクロロメタン溶液(120mL)をN4-ベンゾイル-2’-デオキシシチジン(11.8g、35.7mmol)と1H-テトラゾール(6.60g、95.3mmol)のDMF溶液(120mL)を加え、室温で30分撹拌した。反応溶液を純水(1.5L)に滴下し、得られた有機相を飽和重曹溶液(100mLx2回)で洗浄し、有機相を300mLマイヤーに移した後、芒硝で30分乾燥した。有機相を減圧下濃縮し、粗生成物を得た(29.3g)。得られた粗生成物をジクロロメタン(290mL)に溶解した後、ジクロロメタン-メタノールを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的の2量体(化合物4)を得た(13.6g、収率53.5%)。 2-Cyanoethyl 5'-O-DMTr-N2-isobutyryl-2'-deoxyguanosine 3'-(N, N'-diisopropyl) phosphoramidite (20.0 g, 23.8 mmol) in dichloromethane (120 mL) N4 A DMF solution (120 mL) of -benzoyl-2'-deoxycytidine (11.8 g, 35.7 mmol) and 1H-tetrazole (6.60 g, 95.3 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. The reaction solution was added dropwise to pure water (1.5 L), the obtained organic phase was washed with a saturated sodium bicarbonate solution (100 mL x 2 times), the organic phase was transferred to 300 mL Meyer, and then dried over Glauber's salt for 30 minutes. The organic phase was concentrated under reduced pressure to give a crude product (29.3 g). The obtained crude product was dissolved in dichloromethane (290 mL) and then purified by silica gel column chromatography using dichloromethane-methanol as an elution solvent to obtain the desired dimer (Compound 4) (13.6 g, yield). Rate 53.5%).
例3.5 DMTr-dGp(OCH2CH2CN)(OCH2CH2CN)(N(i-C3H7)2)(化合物5)の合成および精製
Figure JPOXMLDOC01-appb-C000034
Example 3.5 Synthesis and purification of DMTr-dGP (OCH2CH2CN) C (OCH2CH2CN) (N (i-C3H7) 2) (Compound 5)
Figure JPOXMLDOC01-appb-C000034
 dGC(化合物4)(13.8g、12.9mmol)のジクロロメタン溶液(65mL)に溶解し、アミダイト化試薬NCCHCHOP[N(i-C(6.10mL、19.3mmol)、1H-テトラゾール(633mg、9.00mmol)を2回に分けて加え、室温で1時間撹拌した。反応溶液にジクロロメタン(65mL)を加えた後、n-ヘキサン-ジクロロメタンを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的のdGCホスホロアミダイト(化合物5)を得た(14.4g、収率87.8%)。 Dissolve dGC (Compound 4) (13.8 g, 12.9 mmol) in dichloromethane solution (65 mL) and amidite reagent NCCH 2 CH 2 OP [N (i-C 3 H 7 ) 2 ] 2 (6.10 mL, 19.3 mmol) and 1H-tetrazole (633 mg, 9.00 mmol) were added in two portions, and the mixture was stirred at room temperature for 1 hour. Dichloromethane (65 mL) was added to the reaction solution, and the mixture was purified by silica gel column chromatography using n-hexane-dichloromethane as an elution solvent to obtain the desired dGC phosphoramidite (Compound 5) (14.4 g, yield). 87.8%).
例3.6 DMTr-dGp(OCH2CH2CN)(OCH2CH2CN)(OH)(化合物6)の合成および精製
Figure JPOXMLDOC01-appb-C000035
Example 3.6 Synthesis and purification of DMTr-dG p (OCH2CH2CN) C (OCH2CH2CN) C (OH) (Compound 6)
Figure JPOXMLDOC01-appb-C000035
(1)
 dGCホスホロアミダイト(化合物5)(2.80g、2.20mmol)のジクロロメタン溶液(11mL)をN4-ベンゾイル-2’-デオキシシチジン(1.10g、3.30mmol)と2-フェニルイミダゾリウムトリフラート(0.980g、3.30mmol)のDMF溶液(11mL)を加え、室温で14時間撹拌した。反応溶液にジクロロメタン(20mL)を加え、ジクロロメタン-メタノールを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的の3量体(化合物6)を得た(1.47g、収率44.5%)。
(1)
Dichloromethane solution (11 mL) of dGC phosphoramidite (Compound 5) (2.80 g, 2.20 mmol) was mixed with N4-benzoyl-2'-deoxycytidine (1.10 g, 3.30 mmol) and 2-phenylimidazolium trifurate (2.phenylimidazolium trifurate). 0.980 g (3.30 mmol) of DMF solution (11 mL) was added, and the mixture was stirred at room temperature for 14 hours. Dichloromethane (20 mL) was added to the reaction solution, and purification was performed by silica gel column chromatography using dichloromethane-methanol as an elution solvent to obtain the desired trimer (Compound 6) (1.47 g, yield 44.5%). ..
(2)
 dGCホスホロアミダイト(化合物5)(2.70g、2.10mmol)のジクロロメタン溶液(10mL)をN4-ベンゾイル-2’-デオキシシチジン(1.00g、3.10mmol)と1H-テトラゾール(0.590g、8.30mmol)のDMF溶液(10mL)を加え、室温で16時間撹拌した。反応溶液にジクロロメタン(20mL)を加え、ジクロロメタン-メタノールを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、目的の3量体(化合物6)を得た(0.62g、収率19.7%)。
(2)
Dichloromethane solution (10 mL) of dGC phosphoramidite (Compound 5) (2.70 g, 2.10 mmol) was mixed with N4-benzoyl-2'-deoxycytidine (1.00 g, 3.10 mmol) and 1H-tetrazole (0.590 g). , 8.30 mmol) of DMF solution (10 mL) was added, and the mixture was stirred at room temperature for 16 hours. Dichloromethane (20 mL) was added to the reaction solution, and purification was performed by silica gel column chromatography using dichloromethane-methanol as an elution solvent to obtain the desired trimer (Compound 6) (0.62 g, yield 19.7%). ..
例3.7 収率の比較
 活性化剤として2-フェニルイミダゾリウムトリフラートおよび1H-テトラゾールを用いた場合における、DMTr-A(OCH3)p(OCH2CH2CN)(OH)(化合物1)、DMTr-A(OCH3)p(OCH2CH2CN)(OCH2CH2CN)dC(OH)(化合物3)およびDMTr-dGp(OCH2CH2CN)(OCH2CH2CN)(OH)(化合物6)の収率を表2に示す。
Figure JPOXMLDOC01-appb-T000036
 
  例2.4の評価にて効果の認められた活性化剤のうち、2-フェニルイミダゾリウムトリフラートを用いて合成を行ったところ、1H-テトラゾールを用いた場合と比較して、非常に高い収率で目的の化合物が得られた。
Example 3.7 Comparison of Yield DMTr-A (OCH3) p (OCH2CH2CN) T (OH) (Compound 1), DMTr-A when 2-phenylimidazolium triflate and 1H-tetrazole are used as activators. Table 2 shows the yields of (OCH3) p (OCH2CH2CN) T (OCH2CH2CN) dC (OH) (Compound 3) and DMTr-dG p (OCH2CH2CN) C (OCH2CH2CN) C (OH) (Compound 6).
Figure JPOXMLDOC01-appb-T000036

Among the activators whose effects were confirmed in the evaluation of Example 2.4, when synthesis was performed using 2-phenylimidazolium triflate, the yield was very high as compared with the case of using 1H-tetrazole. The desired compound was obtained at a rate.

Claims (14)

  1.  オリゴヌクレオチドを製造する方法であって、
    5’位の水酸基に保護基が結合したヌクレオシドホスホロアミダイトと、3’位および5’位の水酸基が無保護であるヌクレオシドとを、式(I):
    Figure JPOXMLDOC01-appb-C000001

    式中、
    、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、シクロブタジエン、アダマンタン、直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基、および任意に置換されていてもよい芳香族環からなる群から選択される、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成している、
    で表される活性化剤の存在下で反応させる工程を含む、前記方法。
    A method of producing oligonucleotides
    A nucleoside phosphoramidite in which a protecting group is bonded to a hydroxyl group at the 5'position and a nucleoside in which the hydroxyl groups at the 3'and 5'positions are unprotected are expressed in the formula (I) :.
    Figure JPOXMLDOC01-appb-C000001

    During the ceremony
    R 1 , R 2 and R 3 are independently H, F, Cl, Br, CN, NO 2 , methoxy, cyclobutadiene, adamantan, linear or branched saturated or unsaturated C 1-22. Selected from the group consisting of alkyl groups and optionally substituted aromatic rings, or R 2 and R 3 together, phenyl with two carbon atoms on the imidazole ring to which they are attached. Forming a ring,
    The method comprising reacting in the presence of an activator represented by.
  2.  R、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、メチル、i-プロピル、t-ブチル、シクロブタジエン、アダマンタン、ならびに任意に置換されていてもよいフェニル、ナフチル、およびアントラセニルからなる群から選択される、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成している、請求項1に記載の方法。 R 1 , R 2 and R 3 are independently substituted with H, F, Cl, Br, CN, NO 2 , methoxy, methyl, i-propyl, t-butyl, cyclobutadiene, adamantane, and optionally. Selected from the group consisting of phenyl, naphthyl, and anthracenyl, which may be, or R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached. The method according to claim 1.
  3.  Rが、式(II):
    Figure JPOXMLDOC01-appb-C000002
    式中、
    およびRは、それぞれ独立して、H、F、Cl、Br、CN、メチル、t-ブチル、メトキシ、i-プロピルおよびアダマンタンからなる群から選択される、
    である、請求項1または2に記載の方法。
    R 1 is the formula (II):
    Figure JPOXMLDOC01-appb-C000002
    During the ceremony
    R 4 and R 5 are independently selected from the group consisting of H, F, Cl, Br, CN, methyl, t-butyl, methoxy, i-propyl and adamantane, respectively.
    The method according to claim 1 or 2.
  4. (a)Rが、フェニルであり、RおよびRが、Hである、
    (b)Rが、t-ブチルであり、RおよびRが、Hである、
    (c)Rが、フェニルであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
    (d)Rが、t-ブチルであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
    (e)Rが、フェニルであり、RおよびRが、CNである、
    (f)Rが、t-ブチルであり、RおよびRが、CNである、
    (g)Rが、Brであり、RおよびRが、CNである、
    (h)Rが、1-ナフチルであり、RおよびRが、Hである、
    (i)Rが、9-アントラセニルであり、RおよびRが、Hである、
    (j)Rが、Brであり、RおよびRが、Hである、
    (k)Rが、2-クロロフェニルであり、RおよびRが、Hである、
    (l)Rが、2,6-ジクロロフェニルであり、RおよびRが、Hである、
    (m)Rが、ペンタフルオロフェニルであり、RおよびRが、Hである、
    (n)Rが、2-クロロフェニルであり、RおよびRがフェニルである、
    (o)R、RおよびRが、Brである、
    (p)Rが、Brであり、RがNOであり、Rが、Hである、
    (q)Rが、1-アダマンチルであり、RおよびRが、Hである、および
    (r)Rが、Brであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
    からなる群から選択される、請求項1または2に記載の方法。
    (A) R 1 is phenyl and R 2 and R 3 are H.
    (B) R 1 is t-butyl and R 2 and R 3 are H.
    (C) R 1 is phenyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
    (D) R 1 is t-butyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
    (E) R 1 is phenyl and R 2 and R 3 are CN.
    (F) R 1 is t-butyl and R 2 and R 3 are CN.
    (G) R 1 is Br, and R 2 and R 3 are CN.
    (H) R 1 is 1-naphthyl and R 2 and R 3 are H.
    (I) R 1 is 9-anthrasenyl and R 2 and R 3 are H.
    (J) R 1 is Br, and R 2 and R 3 are H.
    (K) R 1 is 2-chlorophenyl and R 2 and R 3 are H.
    (L) R 1 is 2,6-dichlorophenyl and R 2 and R 3 are H.
    (M) R 1 is pentafluorophenyl and R 2 and R 3 are H.
    (N) R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl.
    (O) R 1 , R 2 and R 3 are Br.
    (P) R 1 is Br, R 2 is NO 2 , and R 3 is H.
    (Q) R 1 is 1-adamantyl, R 2 and R 3 are H, and (r) R 1 is Br, and R 2 and R 3 are together and they are Forming a phenyl ring with two carbon atoms on the imidazole ring to be bonded,
    The method according to claim 1 or 2, which is selected from the group consisting of.
  5.  前記活性化剤は、酸と塩を形成している、請求項1~4のいずれか一項に記載の方法 The method according to any one of claims 1 to 4, wherein the activator forms a salt with an acid.
  6.  酸が、トリフルオロメタンスルホン酸である、請求項5に記載の方法。 The method according to claim 5, wherein the acid is trifluoromethanesulfonic acid.
  7.  オリゴヌクレオチドが、式(III):
    Figure JPOXMLDOC01-appb-C000003
    で表される構造を有し、
    5’位の水酸基に保護基が結合したヌクレオシドホスホロアミダイトが、式(IV):
    Figure JPOXMLDOC01-appb-C000004
    で表される構造を有し、
    3’位および5’位の水酸基が無保護であるヌクレオシドが、式(V):
    Figure JPOXMLDOC01-appb-C000005
    で表される構造を有する、
    式中、
    Bは、各々独立して、保護基で保護された、または無保護のヌクレオシド塩基であり;
    は、保護基であり;
    およびRは、各々独立して、OCHCHCN、SCHCHCN、OCHCH=CH、またはOCHのいずれか一つであり;
    は、各々独立して、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;
    Xは、各々独立して、共有電子対、OまたはSのいずれか一つであり;
    Yは、各々独立して、H、NHR10、ハロゲン、CN、CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基のいずれか一つであり;
    10は、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアラルキル基、または保護基のいずれか一つであり;
    Zは、各々独立して、H、アルキル、O-アルキル、N-アルキル、ハロゲン、または前記Yとの間でZ-Y結合を形成し;および
    nは、0以上23以下の整数である;
    請求項1~6のいずれか一項に記載の方法。
    The oligonucleotide is of formula (III):
    Figure JPOXMLDOC01-appb-C000003
    Has a structure represented by
    The nucleoside phosphoramidite in which a protecting group is bonded to the hydroxyl group at the 5'position has the formula (IV):
    Figure JPOXMLDOC01-appb-C000004
    Has a structure represented by
    The nucleosides in which the hydroxyl groups at the 3'and 5'positions are unprotected have the formula (V) :.
    Figure JPOXMLDOC01-appb-C000005
    Has a structure represented by
    During the ceremony
    B is each independently protected or unprotected nucleoside base;
    R 6 is a protecting group;
    R 7 and R 8 are independently one of OCH 2 CH 2 CN, SCH 2 CH 2 CN, OCH 2 CH = CH 2 , or OCH 3 ;
    R 9 is an independently substituted or unsubstituted aliphatic group, substituted or unsubstituted aromatic group;
    Each X is independently one of a shared electron pair, O or S;
    Y is each independently one of H, NHR 10 , halogen, CN, CF 3 , or hydroxyl group protected by an acyl protecting group, an ether protecting group or a silyl protecting group;
    Each of R 10 is independently any of -H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aralkyl group, or a protecting group. One;
    Z independently forms a ZZ bond with H, alkyl, O-alkyl, N-alkyl, halogen, or said Y; and n is an integer greater than or equal to 0 and less than or equal to 23;
    The method according to any one of claims 1 to 6.
  8.  ヌクレオシドホスホロアミダイトを製造する方法であって、
    ヌクレオシドホスホロアミダイトが、式(VI):
    Figure JPOXMLDOC01-appb-C000006
    で表される構造を有し、
    請求項7に記載の方法によりオリゴヌクレオチドを製造する工程を含む、
    前記方法。
    A method for producing nucleoside phosphoramidite,
    Nucleoside phosphoramidite has the formula (VI):
    Figure JPOXMLDOC01-appb-C000006
    Has a structure represented by
    7. The step of producing an oligonucleotide by the method according to claim 7.
    The method.
  9.  オリゴヌクレオチドを製造するための、式(I):
    Figure JPOXMLDOC01-appb-C000007
    式中、
    、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、シクロブタジエン、アダマンタン、-XR、ヘテロ原子を含む基で任意に置換されていてもよい直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基、および任意に置換されていてもよい芳香族環からなる群から選択され、ここで、Xはヘテロ原子であり、Rは直鎖または分岐鎖の飽和または不飽和のC1~22アルキル基である、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成している、
    で表される、活性化剤。
    Formula (I) for producing oligonucleotides:
    Figure JPOXMLDOC01-appb-C000007
    During the ceremony
    R 1, R 2 and R 3 are each independently, H, F, Cl, Br , CN, NO 2, methoxy, cyclobutadiene, adamantane, -XR A, optionally substituted with a group containing a hetero atom Selected from the group consisting of saturated or unsaturated C 1-22 alkyl groups, which may be linear or branched, and aromatic rings, which may be optionally substituted, where X is a heteroatom. RA is a linear or branched saturated or unsaturated C 1-22 alkyl group, or R 2 and R 3 are phenyl together with two carbon atoms on the imidazole ring to which they are attached. Forming a ring,
    An activator represented by.
  10.  R、RおよびRは、それぞれ独立して、H、F、Cl、Br、CN、NO、メトキシ、メチル、i-プロピル、t-ブチル、シクロブタジエン、アダマンタン、ならびに任意に置換されていてもよいフェニル、ナフチル、およびアントラセニルからなる群から選択される、またはRおよびRは、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成している、請求項9に記載の活性化剤。 R 1 , R 2 and R 3 are independently substituted with H, F, Cl, Br, CN, NO 2 , methoxy, methyl, i-propyl, t-butyl, cyclobutadiene, adamantane, and optionally. Selected from the group consisting of phenyl, naphthyl, and anthracenyl, which may be, or R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached. The activator according to claim 9.
  11.  Rが、式(II):
    Figure JPOXMLDOC01-appb-C000008
    式中、
    およびRは、それぞれ独立して、H、F、Cl、Br、CN、メチル、t-ブチル、メトキシ、i-プロピルおよびアダマンタンからなる群から選択される、
    である、請求項9または10に記載の活性化剤。
    R 1 is the formula (II):
    Figure JPOXMLDOC01-appb-C000008
    During the ceremony
    R 4 and R 5 are independently selected from the group consisting of H, F, Cl, Br, CN, methyl, t-butyl, methoxy, i-propyl and adamantane, respectively.
    The activator according to claim 9 or 10.
  12. (a)Rが、フェニルであり、RおよびRが、Hである、
    (b)Rが、t-ブチルであり、RおよびRが、Hである、
    (c)Rが、フェニルであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
    (d)Rが、t-ブチルであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
    (e)Rが、フェニルであり、RおよびRが、CNである、
    (f)Rが、t-ブチルであり、RおよびRが、CNである、
    (g)Rが、Brであり、RおよびRが、CNである、
    (h)Rが、1-ナフチルであり、RおよびRが、Hである、
    (i)Rが、9-アントラセニルであり、RおよびRが、Hである、
    (j)Rが、Brであり、RおよびRが、Hである、
    (k)Rが、2-クロロフェニルであり、RおよびRが、Hである、
    (l)Rが、2,6-ジクロロフェニルであり、RおよびRが、Hである、
    (m)Rが、ペンタフルオロフェニルであり、RおよびRが、Hである、
    (n)Rが、2-クロロフェニルであり、RおよびRがフェニルである、
    (o)R、RおよびRが、Brである、
    (p)Rが、Brであり、RがNOであり、Rが、Hである、
    (q)Rが、1-アダマンチルであり、RおよびRが、Hである、および
    (r)Rが、Brであり、RおよびRが、一緒になって、それらが結合するイミダゾール環上の2つの炭素原子とともにフェニル環を形成する、
    からなる群から選択される請求項9または10に記載の活性化剤。
    (A) R 1 is phenyl and R 2 and R 3 are H.
    (B) R 1 is t-butyl and R 2 and R 3 are H.
    (C) R 1 is phenyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
    (D) R 1 is t-butyl, and R 2 and R 3 together form a phenyl ring with two carbon atoms on the imidazole ring to which they are attached.
    (E) R 1 is phenyl and R 2 and R 3 are CN.
    (F) R 1 is t-butyl and R 2 and R 3 are CN.
    (G) R 1 is Br, and R 2 and R 3 are CN.
    (H) R 1 is 1-naphthyl and R 2 and R 3 are H.
    (I) R 1 is 9-anthrasenyl and R 2 and R 3 are H.
    (J) R 1 is Br, and R 2 and R 3 are H.
    (K) R 1 is 2-chlorophenyl and R 2 and R 3 are H.
    (L) R 1 is 2,6-dichlorophenyl and R 2 and R 3 are H.
    (M) R 1 is pentafluorophenyl and R 2 and R 3 are H.
    (N) R 1 is 2-chlorophenyl and R 2 and R 3 are phenyl.
    (O) R 1 , R 2 and R 3 are Br.
    (P) R 1 is Br, R 2 is NO 2 , and R 3 is H.
    (Q) R 1 is 1-adamantyl, R 2 and R 3 are H, and (r) R 1 is Br, and R 2 and R 3 are together and they are Forming a phenyl ring with two carbon atoms on the imidazole ring to be bonded,
    The activator according to claim 9 or 10, which is selected from the group consisting of.
  13.  酸と塩を形成している、請求項9~12のいずれか一項に記載の活性化剤 The activator according to any one of claims 9 to 12, which forms a salt with an acid.
  14.  酸が、トリフルオロメタンスルホン酸である、請求項13に記載の活性化剤。 The activator according to claim 13, wherein the acid is trifluoromethanesulfonic acid.
PCT/JP2020/040096 2019-10-24 2020-10-26 Method for producing oligonucleotide WO2021080021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-193331 2019-10-24
JP2019193331A JP2022177332A (en) 2019-10-24 2019-10-24 Method for producing oligonucleotide

Publications (1)

Publication Number Publication Date
WO2021080021A1 true WO2021080021A1 (en) 2021-04-29

Family

ID=75620735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040096 WO2021080021A1 (en) 2019-10-24 2020-10-26 Method for producing oligonucleotide

Country Status (2)

Country Link
JP (1) JP2022177332A (en)
WO (1) WO2021080021A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180185A (en) * 1997-09-05 1999-03-26 Res Dev Corp Of Japan Chemical synthesis of oligonucleotide
JP2000344792A (en) * 1999-06-07 2000-12-12 Toagosei Co Ltd Production of nucleotide block, nucleotide and nucleotide block
JP2001192395A (en) * 1995-10-20 2001-07-17 Univ Mcgill Method for preparing phosphorothioate oligomer
JP2001247596A (en) * 2000-03-07 2001-09-11 Univ Nagoya Oligonucleotide sugar conjugate, method of producing oligonucleotide sugar conjugate
JP2003012690A (en) * 2001-07-03 2003-01-15 Mitsui Chemicals Inc Method of producing nucleotide using substituted imidazole derivative or substituted benzimidazole derivative
WO2005082923A1 (en) * 2004-03-01 2005-09-09 Japan Science And Technology Agency Novel method of synthesizing nucleic acid without protecting nucleotide bases
JP2007531794A (en) * 2004-04-05 2007-11-08 アルニラム ファーマスーティカルズ インコーポレイテッド Methods and reagents used for oligonucleotide synthesis and purification
JP2008530092A (en) * 2005-02-08 2008-08-07 ハネウェル・インターナショナル・インコーポレーテッド Phosphoramidite activators for oligonucleotide synthesis
WO2012024776A1 (en) * 2010-08-23 2012-03-01 The Royal Institution For The Advancement Of Learning/Mcgill University Block synthesis of oligoribonucleotides
WO2018152453A1 (en) * 2017-02-17 2018-08-23 Eisai R&D Management Co., Ltd. Cyclic di-nucleotides derivative for the treatment of cancer
WO2019212061A1 (en) * 2018-05-02 2019-11-07 株式会社四国核酸化学 Segment for oligonucleotide synthesis, production method for same, and oligonucleotide synthesis method using same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192395A (en) * 1995-10-20 2001-07-17 Univ Mcgill Method for preparing phosphorothioate oligomer
JPH1180185A (en) * 1997-09-05 1999-03-26 Res Dev Corp Of Japan Chemical synthesis of oligonucleotide
JP2000344792A (en) * 1999-06-07 2000-12-12 Toagosei Co Ltd Production of nucleotide block, nucleotide and nucleotide block
JP2001247596A (en) * 2000-03-07 2001-09-11 Univ Nagoya Oligonucleotide sugar conjugate, method of producing oligonucleotide sugar conjugate
JP2003012690A (en) * 2001-07-03 2003-01-15 Mitsui Chemicals Inc Method of producing nucleotide using substituted imidazole derivative or substituted benzimidazole derivative
WO2005082923A1 (en) * 2004-03-01 2005-09-09 Japan Science And Technology Agency Novel method of synthesizing nucleic acid without protecting nucleotide bases
JP2007531794A (en) * 2004-04-05 2007-11-08 アルニラム ファーマスーティカルズ インコーポレイテッド Methods and reagents used for oligonucleotide synthesis and purification
JP2008530092A (en) * 2005-02-08 2008-08-07 ハネウェル・インターナショナル・インコーポレーテッド Phosphoramidite activators for oligonucleotide synthesis
WO2012024776A1 (en) * 2010-08-23 2012-03-01 The Royal Institution For The Advancement Of Learning/Mcgill University Block synthesis of oligoribonucleotides
WO2018152453A1 (en) * 2017-02-17 2018-08-23 Eisai R&D Management Co., Ltd. Cyclic di-nucleotides derivative for the treatment of cancer
WO2019212061A1 (en) * 2018-05-02 2019-11-07 株式会社四国核酸化学 Segment for oligonucleotide synthesis, production method for same, and oligonucleotide synthesis method using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAYAKAWA, Y. ET AL.: "Acid/Azole Complexes as Highly Effective Promoters in the Synthesis of DNA and RNA Oligomers via the Phosphoramidite Method", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 123, no. 34, 2001, pages 8165 - 8176, XP001188947, DOI: 10.1021/ja010078b *
QIBIN ZHANG AND YINSHENG WANG: "Independent Generation of the 5-Hydroxy-5, 6-dihydrothymidin-6-yl Radical and Its Reactivity in Dinucleoside Monophosphates", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 41, 2004, pages 13287 - 13297, XP055820544 *
SCHELL P; ENGELS J W: "Rp-Diastereoselective Synthesis of Dinucleoside Methylphosphonates by the Phosphoramidite Approach", TETRAHEDRON LETTERS, vol. 39, no. 47, 1998, pages 8629 - 8632, XP004140599, DOI: 10.1016/S0040-4039(98)01972-8 *

Also Published As

Publication number Publication date
JP2022177332A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
EP2479182B1 (en) Novel protecting group for synthesizing rna and derivative thereof
EP1409497B1 (en) Method for preparation of lna phosphoramidites
US5506351A (en) Process for the preparation of 2'-O-alkyl guanosine and related compounds
US6403566B1 (en) Nucleosides having bicyclic sugar moiety
CA2192950A1 (en) Novel method of preparation of known and novel 2'-modified nucleosides by intramolecular nucleophilic displacement
EP2217612A1 (en) Preparation of nucleotide oligomer
US5623068A (en) Synthesis of DNA using substituted phenylacetyl-protected nucleotides
KR19990022711A (en) Improved method for oligonucleotide synthesis
EP3825300A1 (en) Alkoxyphenyl derivative, nucleoside protector, nucleotide protector, method for producing oligonucleotide, and method for removing substituent
WO2018019799A2 (en) Oligonucleotide synthesis
US5674856A (en) Modified oligodeoxyribonucleoditides
JP2794461B2 (en) Phosphoramidite compounds and solid-phase synthesis of oligoribonucleotides using the same
WO2019053476A1 (en) Floxuridine synthesis
US20040033967A1 (en) Alkylated hexitol nucleoside analogues and oligomers thereof
EP1317466A2 (en) Synthons for oligonucleotide synthesis
EP2017282A1 (en) Method of capping oligonucleic acid
WO2021080021A1 (en) Method for producing oligonucleotide
CA2659703C (en) Method for introducing a nucleic-acid-protecting group
CA2554618A1 (en) Ribonucleic acid compound and method of liquid-phase synthesis of oligonucleic acid compound
EP3925964A1 (en) Production method for oligonucleotides
WO2006095739A1 (en) Process for deblocking the 2'-hydroxyl groups of ribonucleosides
US10927140B2 (en) Compositions and methods for reverse automated nucleic acid synthesis
JP7484951B2 (en) Methods for Producing Oligonucleotides
WO2023054350A1 (en) Production method for purified dichloroacetic acid
CA2577339C (en) Artificial rna modified at its 2' hydroxyl group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP