WO2021080011A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2021080011A1
WO2021080011A1 PCT/JP2020/039988 JP2020039988W WO2021080011A1 WO 2021080011 A1 WO2021080011 A1 WO 2021080011A1 JP 2020039988 W JP2020039988 W JP 2020039988W WO 2021080011 A1 WO2021080011 A1 WO 2021080011A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
braking torque
wheel
control unit
drive wheel
Prior art date
Application number
PCT/JP2020/039988
Other languages
English (en)
French (fr)
Inventor
拓人 鈴木
佐藤 卓
正勝 執行
好隆 藤田
山下 智弘
正雄 矢野
壮太 鵜飼
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社, 株式会社アドヴィックス filed Critical 株式会社デンソー
Priority to EP20878090.8A priority Critical patent/EP4049885A4/en
Priority to JP2021553580A priority patent/JP7169461B2/ja
Publication of WO2021080011A1 publication Critical patent/WO2021080011A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position

Definitions

  • This disclosure relates to a control device.
  • a technique in which a friction braking device that brakes by friction on wheels and a regenerative braking device that brakes by using an electric motor that generates driving force of wheels as a generator are used in combination.
  • ABS anti-lock braking system
  • a friction braking device that can control the braking force for each wheel is used as the main power source.
  • the regenerative braking device is not used, or as described in Patent Document 1 below, the regenerative braking force is limited to the extent that a relatively small braking force equivalent to the engine brake is obtained.
  • the traction control device described in Patent Document 2 below includes means for detecting or estimating the acceleration of the vehicle, driving wheel speed detecting means for detecting the rotational speed of the driving wheels, and after detecting the occurrence of slippage of the driving wheels. It is provided with an electric motor control means that variably controls the electric motor according to the value of an index parameter representing the road surface condition while generating a regenerative torque.
  • the electric motor control means obtains the required torque of the electric motor required to generate the detected or estimated acceleration in the period of generating the regenerative torque in the electric motor as the required torque for traction control according to the acceleration.
  • the obtained required torque for traction control is used as an index parameter.
  • the present disclosure is a control device, in which a driving force or a braking force is applied to the right driving wheel and the left driving wheel from an electric motor connected to the right driving wheel and the left driving wheel provided in the vehicle via a differential device.
  • a friction control unit including a motor control unit that generates a drive braking torque for the purpose, a right friction braking device that frictionally brakes the right drive wheels, and a friction control unit that controls a left friction braking device that frictionally brakes the left drive wheels.
  • the motor control unit generates the drive braking torque when the engine executes anti-lock brake control on the right drive wheel and the left drive wheel.
  • the drive braking torque generated by the motor control unit is transmitted to the right drive wheel and the left drive wheel via the differential device, so that the rotation speed of the right drive wheel and the left
  • the average value with the number of rotations of the drive wheels will be controlled. Since the right drive wheel and the left drive wheel affect each other so as to satisfy the average value, even if the right friction braking device and the left friction braking device independently perform friction braking, the right drive wheel and the left drive wheel
  • the fluctuation range of each wheel speed is reduced, the fluctuation of the slip ratio is suppressed, and the target slip ratio can be quickly converged.
  • the braking force obtained from the regenerative braking device during the operation of the ABS remains at a level equivalent to the engine brake or further reducing the braking force equivalent to the engine brake according to the road surface ⁇ . ing.
  • the function of the ABS by the friction braking device may be hindered and it may take time to recover from the slip state.
  • An object of the present disclosure is to provide a control device capable of using both a friction braking force and a regenerative braking force in combination without interfering with anti-lock braking control by the friction braking device and making the best use of the regenerative braking force. ..
  • the present disclosure is a control device that applies a driving force or a braking force to the right driving wheel and the left driving wheel from an electric motor connected to the right driving wheel and the left driving wheel provided in the vehicle via a differential device.
  • a friction control unit including a motor control unit that generates a drive braking torque for the purpose, a right friction braking device that frictionally brakes the right drive wheel, and a friction control unit that controls a left friction braking device that frictionally brakes the left drive wheel.
  • the motor control unit When the engine executes anti-lock brake control on the right drive wheel and the left drive wheel, the motor control unit generates a drive braking torque, and the motor control unit generates the rotation speed of the right drive wheel and the rotation speed of the left drive wheel.
  • the drive braking torque is calculated by subtracting the right braking torque in which the right friction braking device frictionally brakes the right drive wheel and the left braking torque in which the left friction braking device frictionally brakes the left drive wheel from the required torque corresponding to the average value of. ..
  • the right friction braking device frictionally brakes the right drive wheel from the required torque corresponding to the average value of the rotation speed of the right drive wheel and the rotation speed of the left drive wheel.
  • Anti-lock brake control by the right friction braking device and the left friction braking device is performed by calculating the drive braking torque generated by the electric motor by subtracting the torque and the left braking torque that the left friction braking device frictionally brakes the left drive wheel.
  • the friction braking force and the regenerative braking force can be used in combination without being hindered and by utilizing the regenerative braking force as much as possible. Since the regenerative braking force can be utilized even during the execution of the antilock brake control, the amount of power generation can be increased.
  • the weight of the vehicle is required because the driving force is calculated from the acceleration. Since the actual weight of the vehicle varies depending on the weight of the load, it is not possible to respond to the actual weight change of the vehicle due to the change in the load capacity.
  • the purpose of this disclosure is to suppress the slippage of the drive wheels even if the load capacity of the vehicle changes.
  • the present disclosure is a traction control device, which is a motor control unit for generating a drive braking torque for applying a drive force or a braking force to the drive wheels from an electric motor connected to the drive wheels provided in the vehicle, and the drive wheels. It is provided with a slip detection unit for detecting the slip state of the vehicle.
  • the motor control unit feedback-controls the drive braking torque corresponding to the rotation speed of the drive wheels, and drives braking to start the feedback control based on the relationship between the drive braking torque and the sliding state of the drive wheels. Determine the torque and perform feedback control.
  • the drive braking torque corresponding to the rotation speed of the drive wheels for starting the feedback control is determined based on the relationship between the drive braking torque and the sliding state of the drive wheels, so that the load capacity of the vehicle and the road surface condition are determined. It is possible to determine the drive braking torque for starting feedback control based on the behavior of the vehicle without grasping the above, and it is possible to quickly converge the sliding state of the drive wheels to the target range.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle according to the first embodiment.
  • FIG. 2 is a diagram for explaining the transfer of signals in FIG.
  • FIG. 3 is a flowchart for explaining the control flow in FIG.
  • FIG. 4 is a diagram for explaining the relationship between the slip ratio and the frictional force in the traveling direction.
  • FIG. 5 is a diagram showing an image of the width of speed fluctuation of the drive wheels.
  • FIG. 6 shows a state of fluctuation of the flood pressure applied to the wheel cylinder of the friction brake.
  • FIG. 7 is a diagram showing a schematic configuration of a vehicle according to the second embodiment.
  • FIG. 8 is a diagram for explaining the transfer of signals in FIG. 7.
  • FIG. 9 is a flowchart for explaining the control flow in FIG. 7.
  • FIG. 10 is a diagram for explaining the relationship between the slip ratio and the frictional force in the traveling direction.
  • the vehicle 2 is provided with a right front wheel 215R and a left front wheel 215L, and a right rear wheel 216R and a left rear wheel 216L.
  • the right front wheel 215R and the left front wheel 215L function as right drive wheels and left drive wheels for driving the vehicle 2, respectively.
  • the right rear wheel 216R and the left rear wheel 216L function as a right driven wheel and a left driven wheel that rotate with the drive of the right front wheel 215R and the left front wheel 215L, respectively.
  • the right front wheel 215R, the left front wheel 215L, the right rear wheel 216R, and the left rear wheel 216L are provided with a right front friction brake 231R, a left front friction brake 231L, a right rear friction brake 232R, and a left rear friction brake 232L, respectively. ..
  • the right front friction brake 231R, the left front friction brake 231L, the right rear friction brake 232R, and the left rear friction brake 232L each apply frictional force to the corresponding wheels to frictionally brake the wheels.
  • the right front friction brake 231R is a specific example of the right friction braking device
  • the left front friction brake 231L is a specific example of the left friction braking device.
  • the vehicle 2 is provided with an inverter 211, a motor generator 212, a battery 213, and a differential gear 214.
  • the inverter 211 is provided between the motor generator 212 and the battery 213.
  • the inverter 211 converts the direct current output from the battery 213 into a three-phase alternating current and supplies it to the motor generator 212.
  • the motor generator 212 is used as a generator and regenerative braking is performed, the inverter 211 converts the three-phase alternating current output from the motor generator 212 into a direct current and supplies it to the battery 213.
  • the motor generator 212 is an electric generator that doubles as an electric generator and a generator.
  • the motor generator 212 is connected to the right front wheel 215R and the left front wheel 215L, which are driving wheels, via a differential gear 214 which is a differential device.
  • the motor generator 212 rotates according to the supplied three-phase alternating current and drives the right front wheel 215R and the left front wheel 215L via the differential gear 214.
  • the rotations of the right front wheel 215R and the left front wheel 215L are transmitted to the motor generator 212 via the differential gear 214.
  • the battery 213 can store electricity, power is generated by the shaft rotation of the motor generator 212, and the generated three-phase AC current is converted into a direct current by the inverter 211 and supplied to the battery 213.
  • the vehicle 2 includes an ESC-ECU (Electronic Control-Electronic Control Unit) 10, an EV-ECU (Electronic Vehicle-Electronic Control Unit) 12, and an MG-ECU (Motor-Electric Control Unit) 12 and an MG-ECU (Motor-Electric Control Unit) 12 and an MG-ECU (Motor-Electric Control Unit) 12 are provided. Has been done.
  • the ESC-ECU 10 is a device for stabilizing the behavior of the vehicle 2.
  • the ESC-ECU 10 includes a G sensor 221, a yaw rate sensor 222, a right front wheel speed sensor 223R, a left front wheel speed sensor 223L, a right rear wheel speed sensor 224R, a left rear wheel speed sensor 224L, and a hydraulic pressure sensor 225. And, the detection signal is output from.
  • the G sensor 221 is a sensor for measuring the acceleration and deceleration of the vehicle 2.
  • the G sensor 221 outputs a signal indicating acceleration in the front-rear direction and acceleration during deceleration of the vehicle 2 to the ESC-ECU 10.
  • the yaw rate sensor 222 is a sensor for measuring the angular velocity around the vertical axis of the vehicle 2.
  • the yaw rate sensor 222 outputs a signal indicating the angular velocity around the vertical axis of the vehicle 2 to the ESC-ECU 10.
  • the right front wheel speed sensor 223R is a sensor for measuring the wheel speed of the right front wheel 215R.
  • the right front wheel speed sensor 223R outputs a signal indicating the wheel speed of the right front wheel 215R to the ESC-ECU 10.
  • the left front wheel speed sensor 223L is a sensor for measuring the wheel speed of the left front wheel 215L.
  • the left front wheel speed sensor 223L outputs a signal indicating the wheel speed of the left front wheel 215L to the ESC-ECU 10.
  • the EV-ECU 12 has information on the vehicle body speed output from the ESC-ECU 10, the number of revolutions of the motor generator 212 output from the MG-ECU 14, driver operations such as accelerator opening, and signals output from various sensors (not shown).
  • the motor generator 212 outputs the torque corresponding to the rotation speed to be generated to the MG-ECU 14 based on the information indicated by.
  • the slip detection unit 101 is a portion that detects the slip state of the right front wheel 215R and the left front wheel 215L, which are the driving wheels.
  • the slip state is also grasped as the slip ratio of the vehicle 2.
  • the slip ratio is calculated by the following equation (f1).
  • Slip rate (Vehicle speed-Wheel speed of drive wheels) / Vehicle speed x 100 (f1)
  • the wheel speed of the drive wheel can be obtained from the average value of the wheel speed of the right front wheel 215R and the wheel speed of the left front wheel 215L.
  • the wheel speed of the right front wheel 215R can be acquired by the output signal of the right front wheel speed sensor 223R.
  • the wheel speed of the left front wheel 215L can be acquired by the output signal of the left front wheel speed sensor 223L.
  • the wheel speed of the drive wheels can also be obtained from the rotation speed and reduction ratio of the motor generator 212.
  • the wheel speed of the drive wheel can also be obtained from the output value of the rotation sensor provided on the drive wheel axle or the rotation sensor provided on the speed reducer.
  • the acceleration of the vehicle 2 can be acquired by the output signal of the G sensor 221.
  • the GPS information of the vehicle 2 can be acquired by a GPS information acquisition device (not shown).
  • the depression amount detection unit 102 is a portion that detects the depression amount of the brake pedal based on the signal indicating the hydraulic pressure of the brake output from the hydraulic pressure sensor 225.
  • a state in which the depression amount exceeds a predetermined threshold value and antilock brake control can be executed is also referred to as a brake on state, and a state in which the depression amount is equal to or less than the predetermined threshold value is a brake off state. Also called.
  • the friction control unit 103 executes anti-lock braking control.
  • the friction control unit 103 locks each wheel by independently controlling the strength of the frictional force applied to the wheels by each friction brake regardless of the amount of depression of the brake pedal. Suppress that.
  • the friction control unit 103 normally executes the brake control when it is determined that the drive wheels are not in the slipped state and the brake is determined to be in the off state.
  • the friction control unit 103 controls each friction brake to apply a frictional force corresponding to the amount of depression of the brake pedal to the wheels.
  • the motor control unit 121 has a driving force or a driving force from the motor generator 212, which is an electric motor connected to the right front wheel 215R and the left front wheel 215L, which are the driving wheels provided in the vehicle 2, to the right front wheel 215R and the left front wheel 215L, which are the driving wheels. This is the part that generates the drive braking torque to apply the braking force.
  • the motor control unit 121 aggregates the information output from the sensor that detects the driver operation such as the accelerator opening and other various sensors, the information output from the ESC-ECU 10, and the information output from the MG-ECU 14, and the motor
  • the instruction torque to the generator 212 is determined and output to the MG-ECU 14.
  • step S101 it is determined whether or not the slip detection unit 101 is in the slip state.
  • a value appropriate for controlling the vehicle 2 can be appropriately used regardless of whether the slip determination rotation speed is used, the slip determination value is used, or other indexes are used. An example in the case of using the slip determination value will be described with reference to FIG.
  • FIG. 4 is a graph in which the horizontal axis represents the slip ratio and the vertical axis represents the frictional force in the traveling direction. The relationship between the slip ratio and the frictional force in the direction of travel changes depending on the road surface conditions and tire conditions.
  • the frictional force line L D in a dry asphalt road surface shows a frictional force line L S in snowy road.
  • the slip a slip determination value S R It can be a value corresponding to a rate of about 10%.
  • step S101 If it is determined that the slip detection unit 101 is in the slip state (YES in step S101), the process proceeds to step S102. If it is determined that the slip detection unit 101 is not in the slip state (NO in step S101), the process proceeds to step S110.
  • step S102 the motor control unit 121 determines the initial value of feedback control for controlling the motor generator 212 to the target rotation speed.
  • this feedback control is also referred to as a first feedback control.
  • the initial value the torque output by the motor generator 212 so as to reach the target rotation speed is used.
  • T T T R ⁇ S T / S R (f2)
  • T Ta T Ra x S T / S R (f3)
  • the motor control unit 121 can determine the output torque of the motor generator 212 corresponding to the target slip ratio from the relationship between the output torque of the motor generator 212 and the slip ratio until the slip determination.
  • step S103 the motor control unit 121 executes the first feedback control.
  • the motor control unit 121 determines the torque to be output by the first feedback control so as to reach the target rotation speed from the initial value determined in step S102.
  • step S104 it is determined whether or not the slip detection unit 101 has returned from the slip state.
  • the slip state can be determined in the same manner as in step S101.
  • step S104 If it is determined that the slip detection unit 101 has returned from the slip state (YES in step S104), the slip detection unit 101 returns. If it is determined that the slip detection unit 101 has not recovered from the slip state (NO in step S104), the process proceeds to step S105.
  • step S105 the depression amount detection unit 102 determines whether or not the brake pedal is in the ON state.
  • the process proceeds to step S106.
  • the depression amount detection unit 102 determines that the brake pedal is in the off state (NO in step S105)
  • the process returns to the process of step S103.
  • step S106 the friction control unit 103 stops the normal brake control and executes the antilock brake control.
  • step S107 following step S106 the motor control unit 121 determines the initial value of feedback control for controlling the motor generator 212 to the target rotation speed.
  • this feedback control is also referred to as a second feedback control.
  • the initial value the torque output by the motor generator 212 so as to reach the target rotation speed is used.
  • the output torque of the motor generator 212 corresponding to the target slip ratio can be set from the relationship between the output torque of the motor generator 212 and the slip ratio.
  • the target slip ratio may be, for example, a slip ratio included in the control target area A.
  • a slip ratio of 20% to the traveling direction frictional force becomes maximum when the target slip ratio S U, as a torque corresponding to the target slip ratio S U, can be defined required torque T U as an initial value.
  • the calculation formula for example, the above formula (f2) or formula (f3) may be used.
  • the required torque required for the entire vehicle is the output torque of the motor generator 212, the braking torque by the right front friction brake 231R, and the left front friction brake 231L. It corresponds to the total torque of the braking torque. Therefore, torque output torque T MG required for the motor generator 212 is obtained by subtracting from the required torque T U of the entire vehicle, and the braking torque T FR by right front friction brake 231R, the braking torque T FL by left friction brake 231L, the It becomes.
  • the following formula (f4) is used as the calculation formula.
  • T MG T U- T FR- T FL (f4)
  • the friction braking force and the regenerative braking force can be used together by utilizing the regenerative braking force as much as possible.
  • step S108 the motor control unit 121 executes the second feedback control.
  • the motor control unit 121 determines the torque to be output by the second feedback control so that the motor generator 212 reaches the target rotation speed from the initial value determined in step S107.
  • This target rotation speed is also grasped as an average value of the target rotation speed of the right front wheel 215R and the target rotation speed of the left front wheel 215L. The effect of executing the second feedback control will be described with reference to FIGS. 4 and 5.
  • the motor control unit 121 controls the rotation speed of the motor generator 212 during the execution of the anti-lock brake control, so that the rotation speed of the differential gear 214 is controlled. Since the rotation speed of the differential gear 214 is the average value of the rotation speed of the right front wheel 215R and the rotation speed of the left front wheel 215L, the right front wheel 215R and the left front wheel 215L influence each other so as to satisfy the average value. .. As a result, even if the right front friction brake 231R and the left front friction brake 231L independently perform friction braking, the fluctuation range of the wheel speeds of the right front wheel 215R and the left front wheel 215L becomes small as shown by the solid line in FIG. When the width of the speed fluctuation of the right front wheel 215R and the left front wheel 215L is small, the fluctuation width C of the slip ratio is also small as shown in FIG. 4, and the slip ratio quickly converges to the target slip ratio.
  • step S109 it is determined whether or not the slip detection unit 101 has returned from the slip state.
  • the slip state can be determined in the same manner as in step S101.
  • step S109 If it is determined that the slip detection unit 101 has returned from the slip state (YES in step S109), the slip detection unit 101 returns. When it is determined that the slip detection unit 101 has not recovered from the slip state (NO in step S109), the process returns to the process of step S108.
  • step S110 the depression amount detection unit 102 determines whether or not the brake pedal is in the ON state.
  • the process proceeds to step S111.
  • the depression amount detection unit 102 determines that the brake pedal is in the off state (NO in step S110)
  • the brake pedal returns.
  • step S111 If it is determined that the slip detection unit 101 is in the slip state (YES in step S111), the process proceeds to step S106. If it is determined that the slip detection unit 101 is not in the slip state (NO in step S111), the slip detection unit 101 returns.
  • the drive braking torque generated by the motor control unit 121 is transmitted to the right drive wheel and the left drive wheel via the differential device, so that the rotation speed of the right drive wheel And the average value of the rotation speed of the left drive wheel will be controlled. Since the right drive wheel and the left drive wheel affect each other so as to satisfy the average value, even if the right friction braking device and the left friction braking device independently perform friction braking, the right drive wheel and the left drive wheel The fluctuation range of each wheel speed is reduced, the fluctuation of the slip ratio is suppressed, and the target slip ratio can be quickly converged. By reducing the fluctuation range of the wheel speeds of the right drive wheel and the left drive wheel, it is possible to suppress the vibration of the vehicle. Since the regenerative braking force of the electric motor can be utilized even during the execution of the antilock brake control, the amount of power generation can be increased.
  • the average value of the rotation number of the right drive wheel and the rotation number of the left drive wheel for starting the feedback control is set. Since the corresponding drive braking torque is determined, the drive braking torque for starting feedback control can be determined based on the behavior of the vehicle 2 without grasping the load capacity and the road surface condition of the vehicle 2, and the driving wheels slip. The state can be quickly converged to the target range.
  • the change in the drive braking torque does not turn to decrease as the slip state of the right drive wheel and the left drive wheel increases.
  • the slip state changes stably with the change of the drive braking torque.
  • the motor control unit 121 can linearly interpolate the change in the sliding state of the right drive wheel and the left drive wheel and the change in the drive braking torque to determine the drive braking torque for starting the feedback control. ..
  • the motor control unit 121 can learn the relationship between the drive braking torque and the sliding states of the right drive wheel and the left drive wheel while the vehicle 2 is running.
  • the drive braking torque corresponding to the average value of the rotation speed of the right drive wheel and the rotation speed of the left drive wheel is used.
  • the drive braking torque corresponding to the average value of the rotation speeds obtained by weighting the rotation speeds of the right drive wheels and the rotation speeds of the left drive wheels may be used.
  • the coefficient in weighting may be calculated based on, for example, the difference in the degree of deterioration of the tires mounted on the right drive wheel and the left drive wheel, the difference in the road surface condition on which each drive wheel travels, and the like.
  • the slip detection unit 101, the stepping amount detection unit 102, and the friction control unit 103 are provided in the ESC-ECU 10, and the motor control unit 121 is provided in the EV-ECU 12, but these functional units are realized.
  • the physical components to be used are not limited to this. For example, all or part of these functional parts may be realized by different components, and these components may be communicably connected via a network.
  • the motor control unit 121 when the friction control unit 103 executes anti-lock braking control on the right drive wheel and the left drive wheel, the motor control unit 121 generates a drive braking torque.
  • the motor control unit 121 has a right braking torque and a left friction braking device in which the right friction braking device frictionally brakes the right drive wheel from the required torque corresponding to the average value of the rotation speed of the right drive wheel and the rotation speed of the left drive wheel.
  • the drive braking torque can also be calculated by subtracting the left braking torque that frictionally brakes the left drive wheel.
  • the right friction braking device friction-brakes the right drive wheel from the required torque corresponding to the average value of the rotation speed of the right drive wheel and the rotation speed of the left drive wheel.
  • Anti-lock brake control by the right friction braking device and the left friction braking device by calculating the driving braking torque generated by the electric motor by subtracting the braking torque and the left braking torque that the left friction braking device frictionally brakes the left drive wheel. It is possible to use both the friction braking force and the regenerative braking force in combination without hindering the braking force and making the best use of the regenerative braking force. Since the regenerative braking force can be utilized even during the execution of the antilock brake control, the amount of power generation can be increased.
  • the drive braking torque corresponding to the average value of the rotation speed of the right drive wheel and the rotation speed of the left drive wheel is used.
  • the drive braking torque corresponding to the average value of the rotation speeds obtained by weighting the rotation speeds of the right drive wheels and the rotation speeds of the left drive wheels may be used.
  • the coefficient in weighting may be calculated based on, for example, the difference in the degree of deterioration of the tires mounted on the right drive wheel and the left drive wheel, the difference in the road surface condition on which each drive wheel travels, and the like.
  • FIG. 6 shows a state of fluctuation of the oil pressure applied to the wheel cylinder of the right front friction brake 231R during the execution of the antilock brake control.
  • the left front friction brake 231L can be inferred from the right front friction brake 231R, so the illustration is omitted.
  • the flood pressure applied to the wheel cylinder in the friction brake is controlled to fluctuate repeatedly. Since the friction brake has a configuration in which the wheel cylinder is moved by the flood control and the brake pad is pressed against the disc rotor, the wheel decelerates when the hydraulic pressure rises, and the wheel accelerates when the hydraulic pressure drops.
  • the friction braking force and the regenerative braking force are used together during the execution of the anti-lock brake control, if the output torque by the motor generator 212 is excessively large, the braking torque required for the right front friction brake 231R and the left front friction brake 231L may be increased.
  • the right minimum torque T FR_min and the left minimum torque T FL_min are lower than each, and the responsiveness of the friction brake may deteriorate. In the behavior of the broken line 610 shown in FIG. 6, the oil pressure may drop to the region D where the responsiveness of the friction brake deteriorates.
  • the motor control unit 121 by the following equation (f8) to calculate the output torque T MG of the motor generator 212.
  • T FR ⁇ T FR_min , T FL ⁇ T FL_min : T MG T U- T FR- T FL- T FR_min- T FL_min (f8)
  • the motor control unit 121 adjusts the drive braking torque so that the responsiveness of at least one of the right friction braking device and the left friction braking device does not fall below a predetermined responsiveness.
  • the friction braking force and the regenerative braking force can be used together while suppressing the deterioration of the responsiveness of the right friction braking device and the left friction braking device.
  • the motor control unit uses the following equation 1) T FR ⁇ T FR_min.
  • the drive braking torque can be adjusted to satisfy the above conditions.
  • the motor control unit 121 may set the drive braking torque to the lower limit guard value.
  • the motor control unit 121 may stop the control of the drive braking torque.
  • the motor control unit 121 stops controlling the drive braking torque, so that the force applied by the electric motor to the right drive wheel and the left drive wheel is changed from the braking force to the driving force. Switching can be avoided, and the generation of impact due to back crash can be suppressed.
  • the vehicle 2A is provided with a right front wheel 215R and a left front wheel 215L, and a right rear wheel 216R and a left rear wheel 216L.
  • the right front wheel 215R and the left front wheel 215L function as driving wheels for driving the vehicle 2.
  • the right rear wheel 216R and the left rear wheel 216L function as driven wheels that rotate with the driving of the right front wheel 215R and the left front wheel 215L.
  • the vehicle 2A is provided with an inverter 211, a motor generator 212, a battery 213, and a differential gear 214.
  • the inverter 211 is provided between the motor generator 212 and the battery 213.
  • the inverter 211 converts the direct current output from the battery 213 into a three-phase alternating current and supplies it to the motor generator 212.
  • the motor generator 212 is used as a generator and regenerative braking is performed, the inverter 211 converts the three-phase alternating current output from the motor generator 212 into a direct current and supplies it to the battery 213.
  • the motor generator 212 is an electric generator that doubles as an electric generator and a generator.
  • the motor generator 212 is connected to the right front wheel 215R and the left front wheel 215L, which are driving wheels, via a differential gear 214.
  • the motor generator 212 rotates according to the supplied three-phase alternating current and drives the right front wheel 215R and the left front wheel 215L via the differential gear 214.
  • the rotations of the right front wheel 215R and the left front wheel 215L are transmitted to the motor generator 212 via the differential gear 214.
  • the battery 213 can store electricity, power is generated by the shaft rotation of the motor generator 212, and the generated three-phase AC current is converted into a direct current by the inverter 211 and supplied to the battery 213.
  • Vehicle 2A includes an ESC-ECU (Electronic Control-Electronic Control Unit) 10A, an EV-ECU (Electronic Control-Electronic Control Unit) 12, an MG-ECU (Electronic Control Unit) 12, and an MG-ECU (Motor-Electric Control Unit) 12 and an MG-ECU (Motor-Electric Control Unit) 12.
  • ESC-ECU Electrical Control-Electronic Control Unit
  • EV-ECU Electric Control-Electronic Control Unit
  • MG-ECU Electric Control Unit
  • MG-ECU Electric Control Unit
  • MG-ECU Mobility-Electric Control Unit
  • the G sensor 221 is a sensor for measuring the acceleration and deceleration of the vehicle 2A.
  • the G sensor 221 outputs a signal indicating acceleration during acceleration and deceleration of the vehicle 2A in the front-rear direction to the ESC-ECU 10A.
  • the yaw rate sensor 222 is a sensor for measuring the angular velocity around the vertical axis of the vehicle 2A.
  • the yaw rate sensor 222 outputs a signal indicating the angular velocity around the vertical axis of the vehicle 2A to the ESC-ECU 10.
  • the right front wheel speed sensor 223R is a sensor for measuring the wheel speed of the right front wheel 215R.
  • the right front wheel speed sensor 223R outputs a signal indicating the wheel speed of the right front wheel 215R to the ESC-ECU 10A.
  • the left front wheel speed sensor 223L is a sensor for measuring the wheel speed of the left front wheel 215L.
  • the left front wheel speed sensor 223L outputs a signal indicating the wheel speed of the left front wheel 215L to the ESC-ECU 10A.
  • the right rear wheel speed sensor 224R is a sensor for measuring the wheel speed of the right rear wheel 216R.
  • the right rear wheel speed sensor 224R outputs a signal indicating the wheel speed of the right rear wheel 216R to the ESC-ECU 10A.
  • the left rear wheel speed sensor 224L is a sensor for measuring the wheel speed of the left rear wheel 216L.
  • the left rear wheel speed sensor 224L outputs a signal indicating the wheel speed of the left rear wheel 216L to the ESC-ECU 10A.
  • the ESC-ECU 10A is based on the signals output from the G sensor 221 and the yaw rate sensor 222, the right front wheel speed sensor 223R, the left front wheel speed sensor 223L, the right rear wheel speed sensor 224R, and the left rear wheel speed sensor 224L. Performs operations to stabilize the behavior of.
  • the ESC-ECU 10A outputs a signal for adjusting the vehicle body speed of the vehicle 2 to the EV-ECU 12 based on the calculation result.
  • the ESC-ECU 10A outputs a signal for performing friction braking to the right front friction brake 231R, the left front friction brake 231L, the right rear friction brake 232R, and the left rear friction brake 232L based on the calculation result.
  • the EV-ECU 12 has information on the vehicle body speed output from the ESC-ECU 10A, the number of revolutions of the motor generator 212 output from the MG-ECU 14, driver operations such as accelerator opening, and signals output from various sensors (not shown).
  • the motor generator 212 outputs the torque corresponding to the rotation speed to be generated to the MG-ECU 14 based on the information indicated by.
  • the MG-ECU 14 outputs a control signal to the inverter 211 so that the motor generator 212 generates a predetermined torque.
  • the MG-ECU 14 measures the rotation speed of the motor generator 212.
  • the MG-ECU 14 outputs information indicating the rotation speed of the motor generator 212 to the EV-ECU 12.
  • the ESC-ECU 10A includes a slip detection unit 101 as a functional component.
  • the slip detection unit 101 is a portion that detects the slip state of the right front wheel 215R and the left front wheel 215L, which are the driving wheels.
  • the slip state is also grasped as the slip ratio of the vehicle 2.
  • the slip ratio is calculated by the following equation (f1A).
  • Slip rate (Vehicle speed-Wheel speed of drive wheels) / Vehicle speed x 100 (f1A)
  • the wheel speed of the drive wheel can be obtained from the average value of the wheel speed of the right front wheel 215R and the wheel speed of the left front wheel 215L.
  • the wheel speed of the right front wheel 215R can be acquired by the output signal of the right front wheel speed sensor 223R.
  • the wheel speed of the left front wheel 215L can be acquired by the output signal of the left front wheel speed sensor 223L.
  • the wheel speed of the drive wheels can also be obtained from the rotation speed and reduction ratio of the motor generator 212.
  • the wheel speed of the drive wheel can also be obtained from the output value of the rotation sensor provided on the drive wheel axle or the rotation sensor provided on the speed reducer.
  • the acceleration of the vehicle 2A can be acquired by the output signal of the G sensor 221.
  • the GPS information of the vehicle 2A can be acquired by a GPS information acquisition device (not shown).
  • the slip state detected by the slip detection unit 101 is output to the EV-ECU 12.
  • the EV-ECU 12 includes a motor control unit 121 as a functional component.
  • step S201 it is determined whether or not the slip detection unit 101 is in the slip state.
  • a value appropriate for controlling the vehicle 2A can be appropriately used regardless of whether the slip determination rotation speed is used, the slip determination value is used, or other indexes are used.
  • An example in the case of using the slip determination value will be described with reference to FIG.
  • FIG. 10 is a graph in which the horizontal axis represents the slip ratio and the vertical axis represents the frictional force in the traveling direction. The relationship between the slip ratio and the frictional force in the direction of travel changes depending on the road surface conditions and tire conditions.
  • the frictional force line L D in a dry asphalt road surface illustrates a frictional force line L S in snowy road.
  • the frictional force in the traveling direction becomes maximum when the slip ratio is 15% to 20%, so that it is set as the control target area A.
  • Slip determination value it is possible to use appropriately the appropriate value for controlling the vehicle 2 as described above, it is not always necessary that the value contained in the control target region A, for example, the slip a slip determination value S R It can be a value corresponding to a rate of about 10%.
  • T T T R ⁇ S T / S R (f2A)
  • T Ta T Ra ⁇ S T / S R (f3A)
  • the motor control unit 121 can determine the output torque of the motor generator 212 corresponding to the target slip ratio from the relationship between the output torque of the motor generator 212 and the slip ratio until the slip determination.
  • step S203 the motor control unit 121 executes feedback control.
  • the motor control unit 121 determines the torque to be output by feedback control so as to reach the target rotation speed from the initial value determined in step S202.
  • step S204 it is determined whether or not the slip detection unit 101 has returned from the slip state.
  • the slip state can be determined in the same manner as in step S201.
  • step S204 If it is determined that the slip detection unit 101 has returned from the slip state (YES in step S204), the slip detection unit 101 returns. When it is determined that the slip detection unit 101 has not recovered from the slip state (NO in step S204), the process returns to the process of step S203.
  • the traction control device which is one aspect of the control device is configured including the ESC-ECU 10A, the EV-ECU 12, and the MG-ECU 14.
  • the traction control device includes a motor control unit 121 that generates a drive braking torque for applying a drive force or a braking force to the drive wheels from a motor generator 212 that is an electric motor connected to the drive wheels provided in the vehicle 2A, and a drive.
  • a slip detection unit 101 for detecting a slip state of the wheel is provided.
  • the motor control unit 121 feedback-controls the drive braking torque corresponding to the rotation speed of the drive wheels, and drives to start the feedback control based on the relationship between the drive braking torque and the sliding state of the drive wheels.
  • the braking torque is determined and feedback control is executed.
  • the drive braking torque corresponding to the rotation speed of the drive wheels for starting the feedback control is determined based on the relationship between the drive braking torque and the sliding state of the drive wheels.
  • the drive braking torque for starting the feedback control can be determined based on the behavior of the vehicle 2A without grasping the road surface condition, and the slip state of the drive wheels can be quickly converged within the target range.
  • the motor control unit 121 determines the drive braking torque for starting the feedback control within a range in which the change in the drive braking torque does not turn to decrease with respect to the increase in the sliding state of the drive wheels.
  • the drive braking torque In the range where the change in the drive braking torque does not turn to decrease with the increase in the slip state of the drive wheels, such as the range where the slip ratio is lower than the control target region A described with reference to FIG. 10, the drive braking torque The slip state changes stably in response to changes.
  • the feedback control of the drive braking torque can be executed without disturbing the behavior of the vehicle 2A.
  • the motor control unit 121 linearly interpolates the change in the sliding state of the drive wheels and the change in the drive braking torque, and determines the drive braking torque for starting the feedback control.
  • the motor control unit 121 can learn the relationship between the drive braking torque and the sliding state of the drive wheels while the vehicle 2A is traveling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

制御装置は、車両に設けられた右駆動輪及び左駆動輪に差動装置を介して接続される電動モータから右駆動輪及び左駆動輪に駆動力又は制動力を与えるための駆動制動トルクを発生させるモータ制御部(121)と、右駆動輪を摩擦制動する右摩擦制動装置及び左駆動輪を摩擦制動する左摩擦制動装置を制御する摩擦制御部(103)と、を備え、摩擦制御部が右駆動輪及び左駆動輪に対してアンチロックブレーキ制御を実行する際に、モータ制御部が前記駆動制動トルクを発生させる。

Description

制御装置 関連出願の相互参照
 本出願は、2019年10月25日に出願された日本国特許出願2019-194096号と、2019年10月25日に出願された日本国特許出願2019-194097号と、2019年10月25日に出願された日本国特許出願2019-194098号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、制御装置に関する。
 車両の制動制御において、車輪への摩擦により制動を行う摩擦制動装置と、車輪の駆動力を発生させる電動機を発電機として用いることにより制動を行う回生制動装置と、を併用する技術が知られている。このような車両において、スリップ状態を回避するために車輪のロックを防止するアンチロックブレーキシステム(ABS)を作動させる場合は、車輪ごとに制動力を制御可能な摩擦制動装置を主な動力源として用いることが多い。このとき、回生制動装置については、用いないか、あるいは下記特許文献1に記載のように、エンジンブレーキ相当の比較的小さい制動力を得る程度に留められる。
 車両に設けられた駆動輪の滑りを抑制することが可能なトラクション制御装置として、下記特許文献2に記載のものが知られている。下記特許文献2に記載のトラクション制御装置は、車両の加速度を検出または推定する手段と、駆動輪の回転速度を検出する駆動輪速度検出手段と、駆動輪の滑りの発生が検知された後、電動モータに回生トルクを発生させつつ、路面状態を表す指標パラメータの値に応じて可変的に制御する電動モータ制御手段と、を備えている。電動モータ制御手段は、電動モータに回生トルクを発生させる期間において、検出または推定された加速度を発生させるために要求される電動モータの要求トルクをトラクション制御用要求トルクとして加速度に応じて求め、その求めたトラクション制御用要求トルクを指標パラメータとしている。
特開2002-152904号公報 特開2007-6681号公報
 ABSの作動中は、車輪と地面との間の摩擦係数が高くなるようなスリップ率を狙うように、摩擦制動装置が車輪ごとに加える摩擦力の強弱を制御する。このとき、上記特許文献1に記載の構成によると、各車輪の回転数がそれぞれ独立に変動するので、狙いのスリップ率に収束するまでに時間を要し、スリップ状態から回復するまでの走行距離が延びる。
 本開示は、スリップ状態から迅速に回復することが可能な制御装置を提供することを目的とする。
 本開示は、制御装置であって、車両に設けられた右駆動輪及び左駆動輪に差動装置を介して接続される電動モータから右駆動輪及び左駆動輪に駆動力又は制動力を与えるための駆動制動トルクを発生させるモータ制御部と、右駆動輪を摩擦制動する右摩擦制動装置及び左駆動輪を摩擦制動する左摩擦制動装置を制御する摩擦制御部と、を備え、摩擦制御部が右駆動輪及び左駆動輪に対してアンチロックブレーキ制御を実行する際に、モータ制御部が前記駆動制動トルクを発生させる。
 本開示では、アンチロックブレーキ制御を実行するにあたって、モータ制御部が発生する駆動制動トルクが差動装置を介して右駆動輪及び左駆動輪に伝達されるので、右駆動輪の回転数と左駆動輪の回転数との平均値が制御されることになる。右駆動輪及び左駆動輪は、互いに当該平均値を満たすように影響を与え合うので、右摩擦制動装置及び左摩擦制動装置が独立して摩擦制動を行っても、右駆動輪及び左駆動輪それぞれの車輪速度の変動幅が小さくなり、スリップ率の変動が抑制され、目標とするスリップ率に迅速に収束させることができる。右駆動輪及び左駆動輪の車輪速度の変動幅が小さくなることで、車両の振動を抑制することができる。アンチロックブレーキ制御の実行中も電動モータの回生制動力を活用することができるので、発電量を増加させることができる。
 特許文献1に記載の制動装置において、ABSの作動中に回生制動装置から得られる制動力は、エンジンブレーキ相当か、又は路面μに応じてエンジンブレーキ相当の制動力をさらに低減させたレベルに留まっている。他方、回生制動装置から比較的大きな制動力を得ようとすると、摩擦制動装置によるABSの機能を阻害し、スリップ状態からの復帰に時間を要するおそれがある。
 本開示は、摩擦制動装置によるアンチロックブレーキ制御を阻害せずに、且つ回生制動力をなるべく活かして摩擦制動力と回生制動力とを併用することができる制御装置を提供することを目的とする。
 本開示は、制御装置であって、車両に設けられた右駆動輪及び左駆動輪に差動装置を介して接続される電動モータから右駆動輪及び左駆動輪に駆動力又は制動力を与えるための駆動制動トルクを発生させるモータ制御部と、右駆動輪を摩擦制動する右摩擦制動装置及び左駆動輪を摩擦制動する左摩擦制動装置を制御する摩擦制御部と、を備え、摩擦制御部が右駆動輪及び左駆動輪に対してアンチロックブレーキ制御を実行する際に、モータ制御部が駆動制動トルクを発生させ、モータ制御部は、右駆動輪の回転数及び左駆動輪の回転数の平均値に対応する要求トルクから、右摩擦制動装置が右駆動輪を摩擦制動する右制動トルク及び左摩擦制動装置が左駆動輪を摩擦制動する左制動トルクを差し引いて駆動制動トルクを算出する。
 本開示では、アンチロックブレーキ制御を実行するにあたって、右駆動輪の回転数及び左駆動輪の回転数の平均値に対応する要求トルクから、右摩擦制動装置が右駆動輪を摩擦制動する右制動トルク及び左摩擦制動装置が左駆動輪を摩擦制動する左制動トルクを差し引いて電動モータが発生する駆動制動トルクが算出されることにより、右摩擦制動装置及び左摩擦制動装置によるアンチロックブレーキ制御を阻害せずに、且つ回生制動力をなるべく活かして、摩擦制動力と回生制動力とを併用することができる。アンチロックブレーキ制御の実行中も回生制動力を活用することができるので、発電量を増加させることができる。
 特許文献2では、加速度から駆動力を算出するため、車両の重量が必要となる。現実の車両の重量は積載物の重量により変動するので、積載量の変化による車両の実際の重量変化に対応できていない。
 本開示は、車両の積載量に変化があっても駆動輪の滑りを抑制することを目的とする。
 本開示は、トラクション制御装置であって、車両に設けられた駆動輪に接続される電動モータから駆動輪に駆動力又は制動力を与えるための駆動制動トルクを発生させるモータ制御部と、駆動輪の滑り状態を検出する滑り検出部と、を備えている。モータ制御部は、駆動輪の回転数に対応する駆動制動トルクをフィードバック制御するものであって、駆動制動トルクと駆動輪の滑り状態との関係に基づいて、フィードバック制御を開始するための駆動制動トルクを決定し、フィードバック制御を実行する。
 本開示では、駆動制動トルクと駆動輪の滑り状態との関係に基づいて、フィードバック制御を開始するための駆動輪の回転数に対応する駆動制動トルクを決定するので、車両の積載量や路面状況を把握せずに、車両の挙動に基づいてフィードバック制御を開始する駆動制動トルクを決定することができ、駆動輪の滑り状態を狙いの範囲に迅速に収束させることができる。
図1は、第1実施形態における車両の概略構成を示す図である。 図2は、図1における信号の授受を説明するための図である。 図3は、図1における制御フローを説明するためのフローチャートである。 図4は、スリップ率と進行方向摩擦力との関係を説明するための図である。 図5は、駆動輪の速度変動の幅のイメージを示す図である。 図6は、摩擦ブレーキのホイルシリンダに加わる油圧の変動の様子を示している。 図7は、第2実施形態における車両の概略構成を示す図である。 図8は、図7における信号の授受を説明するための図である。 図9は、図7における制御フローを説明するためのフローチャートである。 図10は、スリップ率と進行方向摩擦力との関係を説明するための図である。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 [第1実施形態]
 図1に示されるように、車両2には、右前輪215R及び左前輪215Lと、右後輪216R及び左後輪216Lと、が設けられている。右前輪215R及び左前輪215Lは、それぞれ、車両2を駆動するための右駆動輪及び左駆動輪として機能している。右後輪216R及び左後輪216Lは、それぞれ、右前輪215R及び左前輪215Lの駆動に伴って回転する右従動輪及び左従動輪として機能している。
 右前輪215R、左前輪215L、右後輪216R、及び左後輪216Lには、それぞれ、右前摩擦ブレーキ231R、左前摩擦ブレーキ231L、右後摩擦ブレーキ232R、及び左後摩擦ブレーキ232Lが設けられている。右前摩擦ブレーキ231R、左前摩擦ブレーキ231L、右後摩擦ブレーキ232R、及び左後摩擦ブレーキ232Lは、それぞれ、対応する車輪に摩擦力を加えることで車輪を摩擦制動する。右前摩擦ブレーキ231Rは、右摩擦制動装置の一具体例であり、左前摩擦ブレーキ231Lは、左摩擦制動装置の一具体例である。
 車両2には、インバータ211と、モータジェネレータ212と、電池213と、デファレンシャルギア214と、が設けられている。インバータ211は、モータジェネレータ212と電池213との間に設けられている。電池213に蓄えられた電力を用いてモータジェネレータ212を駆動する場合、インバータ211は電池213から出力される直流電流を三相交流電流に変換し、モータジェネレータ212に供給する。モータジェネレータ212を発電機として利用し、回生制動する場合には、インバータ211はモータジェネレータ212から出力される三相交流電流を直流電流に変換し、電池213に供給する。
 モータジェネレータ212は、電動機と発電機とを兼用する電動発電機である。モータジェネレータ212は、差動装置であるデファレンシャルギア214を介して駆動輪である右前輪215R及び左前輪215Lと繋がっている。インバータ211から三相交流電流が供給されると、モータジェネレータ212は供給される三相交流電流に応じて回動し、デファレンシャルギア214を介して右前輪215R及び左前輪215Lを駆動する。回生制動される場合、右前輪215R及び左前輪215Lの回転がデファレンシャルギア214を介してモータジェネレータ212に伝達される。電池213に蓄電可能である場合には、モータジェネレータ212の軸回転により発電され、発生する三相交流電流がインバータ211によって直流電流に変換され電池213に供給される。
 車両2には、ESC-ECU(Electronic Stability Control-Electronic Control Unit)10と、EV-ECU(Electric Vehicle-Electronic Control Unit)12と、MG-ECU(Motor Generator-Electronic Control Unit)14と、が設けられている。
 ESC-ECU10は、車両2の挙動を安定させるための装置である。ESC-ECU10には、Gセンサ221と、ヨーレートセンサ222と、右前車輪速センサ223Rと、左前車輪速センサ223Lと、右後車輪速センサ224Rと、左後車輪速センサ224Lと、液圧センサ225と、から検出信号が出力される。
 Gセンサ221は、車両2の加速及び減速時の加速度を計測するためのセンサである。Gセンサ221は、車両2の前後方向における加速及び減速時の加速度を示す信号をESC-ECU10に出力する。ヨーレートセンサ222は、車両2の垂直軸周りの角速度を計測するためのセンサである。ヨーレートセンサ222は、車両2の垂直軸周りの角速度を示す信号をESC-ECU10に出力する。
 右前車輪速センサ223Rは、右前輪215Rの車輪速度を計測するためのセンサである。右前車輪速センサ223Rは、右前輪215Rの車輪速度を示す信号をESC-ECU10に出力する。
 左前車輪速センサ223Lは、左前輪215Lの車輪速度を計測するためのセンサである。左前車輪速センサ223Lは、左前輪215Lの車輪速度を示す信号をESC-ECU10に出力する。
 右後車輪速センサ224Rは、右後輪216Rの車輪速度を計測するためのセンサである。右後車輪速センサ224Rは、右後輪216Rの車輪速度を示す信号をESC-ECU10に出力する。
 左後車輪速センサ224Lは、左後輪216Lの車輪速度を計測するためのセンサである。左後車輪速センサ224Lは、左後輪216Lの車輪速度を示す信号をESC-ECU10に出力する。
 液圧センサ225は、図示しないブレーキペダルの踏込量に対応するブレーキの液圧を計測するためのセンサである。液圧センサ225は、ブレーキの液圧を示す信号をESC-ECU10に出力する。ブレーキの液圧は、ドライバーによる制動操作量を示すパラメータの一例であり、制動操作量を示すパラメータはこれに限定されない。
 ESC-ECU10は、Gセンサ221、ヨーレートセンサ222、右前車輪速センサ223R、左前車輪速センサ223L、右後車輪速センサ224R、左後車輪速センサ224L、及び液圧センサ225から出力される信号に基づいて、車両2の挙動を安定させるための演算を実行する。ESC-ECU10は、演算結果に基づいて、EV-ECU12に車両2の車体速度を調整するための信号を出力する。ESC-ECU10は、演算結果に基づいて、右前摩擦ブレーキ231R、左前摩擦ブレーキ231L、右後摩擦ブレーキ232R、及び左後摩擦ブレーキ232Lに、摩擦制動を行うための信号を出力する。
 EV-ECU12は、ESC-ECU10から出力される車体速度の情報、MG-ECU14から出力されるモータジェネレータ212の回転数、及び、アクセル開度等のドライバー操作や図示しない各種センサから出力される信号が示す情報に基づいて、モータジェネレータ212が発生すべき回転数に対応するトルクをMG-ECU14に出力する。
 MG-ECU14は、モータジェネレータ212が所定のトルクを発生するように、インバータ211に制御信号を出力する。MG-ECU14は、モータジェネレータ212の回転数を計測する。MG-ECU14は、モータジェネレータ212の回転数を示す情報をEV-ECU12に出力する。
 続いて、図2を参照しながら、ESC-ECU10、EV-ECU12、及びMG-ECU14の機能的な動作について説明する。図2に示されるように、ESC-ECU10は、機能的な構成要素として、滑り検出部101と、踏込量検出部102と、摩擦制御部103と、を備えている。
 滑り検出部101は、駆動輪である右前輪215R及び左前輪215Lの滑り状態を検出する部分である。滑り状態は、車両2のスリップ率としても把握されるものである。スリップ率は、次式(f1)によって求められる。
スリップ率=(車体速度-駆動輪の車輪速度)/車体速度×100  (f1)
 車体速度は、従動輪である右後輪216R及び左後輪216Lの車輪速度、車両2の加速度、及びGPS情報のいずれか又は組み合わせによって求めることができる。従動輪の車輪速度は、右後輪216Rの車輪速度と左後輪216Lの車輪速度との平均値より求めることができる。右後輪216Rの車輪速度は、右後車輪速センサ224Rの出力信号によって取得することができる。左後輪216Lの車輪速度は、左後車輪速センサ224Lの出力信号によって取得することができる。
 駆動輪の車輪速度は、右前輪215Rの車輪速度と左前輪215Lの車輪速度との平均値より求めることができる。右前輪215Rの車輪速度は、右前車輪速センサ223Rの出力信号によって取得することができる。左前輪215Lの車輪速度は、左前車輪速センサ223Lの出力信号によって取得することができる。駆動輪の車輪速度は、モータジェネレータ212の回転数及び減速比から求めることも可能である。駆動輪の車輪速度は、駆動輪軸に設けられた回転センサや減速機に設けられた回転センサの出力値から求めることも可能である。
 車両2の加速度は、Gセンサ221の出力信号によって取得することができる。車両2のGPS情報は、図示しないGPS情報取得装置によって取得することができる。
 踏込量検出部102は、液圧センサ225から出力されるブレーキの液圧を示す信号に基づいて、ブレーキペダルの踏込量を検出する部分である。本明細書では説明の便宜上、踏込量が所定の閾値を超えて、アンチロックブレーキ制御が実行され得る状態をブレーキのオン状態ともいい、踏込量が当該所定の閾値以下の状態をブレーキのオフ状態ともいう。
 摩擦制御部103は、滑り検出部101が検出した駆動輪の滑り状態と、踏込量検出部102が検出したブレーキペダルの踏込量と、に基づいて、右前摩擦ブレーキ231R、左前摩擦ブレーキ231L、右後摩擦ブレーキ232R、及び左後摩擦ブレーキ232Lの動作を制御する部分である。
 駆動輪が滑り状態であると判定され、且つブレーキがオン状態であると判定された場合に、摩擦制御部103はアンチロックブレーキ制御を実行する。アンチロックブレーキ制御の実行中、摩擦制御部103は、ブレーキペダルの踏込量にかかわらず各摩擦ブレーキが車輪に加える摩擦力の強弱を車輪ごとに独立して制御することで、各車輪がロックされることを抑制する。駆動輪が滑り状態ではないと判定されること、及びブレーキがオフ状態であると判定されることの少なくとも一方の場合に、摩擦制御部103は通常ブレーキ制御を実行する。通常ブレーキ制御の実行中、摩擦制御部103は、各摩擦ブレーキがブレーキペダルの踏込量に対応した摩擦力を車輪に加えるように制御する。
 滑り検出部101が検出した滑り状態は、EV-ECU12に出力される。EV-ECU12は、機能的な構成要素としてモータ制御部121を備えている。
 モータ制御部121は、車両2に設けられた駆動輪である右前輪215R及び左前輪215Lに接続される電動モータであるモータジェネレータ212から駆動輪である右前輪215R及び左前輪215Lに駆動力又は制動力を与えるための駆動制動トルクを発生させる部分である。モータ制御部121は、アクセル開度等のドライバー操作を検出するセンサや他の各種センサから出力される情報、ESC-ECU10から出力される情報、MG-ECU14から出力される情報を集約し、モータジェネレータ212への指示トルクを決定し、MG-ECU14へ出力する。
 続いて、図3を参照しながら、滑り検出部101、踏込量検出部102、摩擦制御部103、及びモータ制御部121の具体的な制御内容について説明する。
 ステップS101では、滑り検出部101がスリップ状態になっているか否かを判定する。スリップ状態の判定は、様々な手法で行うことができる。一例として、モータジェネレータ212の回転数が、現在の車両2の車体速度に対応して定められるスリップ判定回転数を超えた場合にスリップ状態になっていると判定する。別の一例として、次式(f1)によって求められるスリップ率を算出し、予め定められるスリップ判定値を超えた場合にスリップ状態であると判定してもよい。
スリップ率=(車体速度-駆動輪の車輪速度)/車体速度×100  (f1)
 スリップ判定回転数を用いる場合も、スリップ判定値を用いる場合も、その他の指標を用いる場合を含め、車両2を制御するのに適切な値を適宜用いることができる。図4を参照しながら、スリップ判定値を用いる場合の一例について説明する。
 図4は、横軸にスリップ率、縦軸に進行方向摩擦力をとったグラフである。路面の状況やタイヤの状況によって、スリップ率と進行方向摩擦力との関係は変化する。図4では、乾燥したアスファルト路面における摩擦力線Lと、雪道における摩擦力線Lと、を示している。
 摩擦力線Lの場合も、摩擦力線Lの場合も、進行方向摩擦力はスリップ率が20%の近傍において最大となるので、20%を含む領域を制御目標領域Aとしている。スリップ判定値は、前述のように車両2を制御するのに適切な値を適宜用いることができるので、必ずしも制御目標領域Aに含まれる値とする必要はなく、例えばスリップ判定値Sをスリップ率10%程度に相当する値とすることができる。
 図4においては、スリップ判定値Sに対して、摩擦力線Lの場合は対応するトルクがスリップ判定時トルクTとなり、摩擦力線Lの場合は対応するトルクがスリップ判定時トルクTRaとなる。
 図3を再び参照しながら説明を続ける。滑り検出部101がスリップ状態になっていると判定すると(ステップS101においてYES)、ステップS102の処理に進む。滑り検出部101がスリップ状態になっていないと判定すると(ステップS101においてNO)、ステップS110の処理に進む。
 ステップS102では、モータ制御部121が、モータジェネレータ212を目標回転数に制御するためのフィードバック制御の初期値を決定する。以下では、本フィードバック制御を第1フィードバック制御ともいう。初期値としては、モータジェネレータ212が目標回転数となるように出力するトルクが用いられる。
 図4を再び参照しながら、初期値の決定手法について説明する。スリップ判定値Sを定めると、そのスリップ判定値Sに至るまでのスリップ率と進行方向摩擦力との関係を取得することができる。この関係は路面の状況やタイヤの状況によって変化し、図4に例示されるような、摩擦力線Lや摩擦力線Lの関係を取得することができる。
 摩擦力線Lや摩擦力線Lにおいて、スリップ率と進行方向摩擦力との関係が線形関係である場合、目標スリップ率Sを定めると、対応する初期値としてのトルクとして、初期トルクTや初期トルクTTaを定めることができる。算出式としては、次式(f2)や式(f3)が用いられる。
=T×S/S    (f2)
Ta=TRa×S/S   (f3)
 このように、モータ制御部121は、スリップ判定までのモータジェネレータ212の出力トルクとスリップ率との関係から、目標のスリップ率に対応するモータジェネレータ212の出力トルクを決定することができる。
 図3を再び参照しながら説明を続ける。ステップS102に続くステップS103では、モータ制御部121が第1フィードバック制御を実行する。モータ制御部121は、ステップS102で決定した初期値から目標回転数になるように、第1フィードバック制御によって出力するトルクを決定する。
 ステップS103に続くステップS104では、滑り検出部101がスリップ状態から復帰しているか否かを判定する。スリップ状態の判定は、ステップS101と同様に行うことができる。
 滑り検出部101がスリップ状態から復帰していると判定すると(ステップS104においてYES)、リターンする。滑り検出部101がスリップ状態から復帰していないと判定すると(ステップS104においてNO)、ステップS105の処理に進む。
 ステップS105では、踏込量検出部102が、ブレーキペダルがオン状態であるか否かを判定する。踏込量検出部102が、ブレーキペダルがオン状態であると判定すると(ステップS105においてYES)、ステップS106の処理に進む。踏込量検出部102が、ブレーキペダルがオフ状態であると判定すると(ステップS105においてNO)、ステップS103の処理に戻る。
 ステップS106では、摩擦制御部103が通常ブレーキ制御を停止し、アンチロックブレーキ制御を実行する。
 ステップS106に続くステップS107では、モータ制御部121が、モータジェネレータ212を目標回転数に制御するためのフィードバック制御の初期値を決定する。以下では、本フィードバック制御を第2フィードバック制御ともいう。初期値としては、モータジェネレータ212が目標回転数となるように出力するトルクが用いられる。
 初期値としては、例えば上述のステップS102と同様に、モータジェネレータ212の出力トルクとスリップ率との関係から、目標のスリップ率に対応するモータジェネレータ212の出力トルクとすることができる。目標のスリップ率は、例えば制御目標領域Aに含まれるスリップ率であってよい。一例として、進行方向摩擦力が最大となるスリップ率20%を目標スリップ率Sとすると、目標スリップ率Sに対応するトルクとして、初期値としての要求トルクTを定めることができる。算出式としては、例えば上記式(f2)や式(f3)を用いてもよい。
 第2フィードバック制御においては、アンチロックブレーキ制御の実行中であるので、車両全体として要求される要求トルクは、モータジェネレータ212の出力トルクと、右前摩擦ブレーキ231Rによる制動トルクと、左前摩擦ブレーキ231Lによる制動トルクと、を合計したトルクに相当する。従って、モータジェネレータ212に要求される出力トルクTMGは、車両全体の要求トルクTから、右前摩擦ブレーキ231Rによる制動トルクTFRと、左前摩擦ブレーキ231Lによる制動トルクTFLと、を差し引いたトルクとなる。算出式としては、次式(f4)が用いられる。
MG=T-TFR-TFL   (f4)
 このように、車両全体の要求トルクTから右前摩擦ブレーキ231R及び左前摩擦ブレーキ231Lによる制動トルクを差し引くことにより、右前摩擦ブレーキ231R及び左前摩擦ブレーキ231Lによるアンチロックブレーキ制御の機能を阻害せず、且つ回生制動力をなるべく活かして、摩擦制動力と回生制動力を併用することができる。
 ステップS107に続くステップS108では、モータ制御部121が第2フィードバック制御を実行する。モータ制御部121は、ステップS107で決定した初期値からモータジェネレータ212が目標回転数になるように、第2フィードバック制御によって出力するトルクを決定する。この目標回転数は、右前輪215Rの目標回転数と左前輪215Lの目標回転数の平均値としても把握されるものである。図4及び図5を参照しながら、第2フィードバック制御を実行することの効果について説明する。
 図5は、アンチロックブレーキ制御の実行中における、駆動輪である右前輪215R及び左前輪215Lの速度変動の幅のイメージを示している。仮に、アンチロックブレーキ制御の実行中に、モータ制御部121がモータジェネレータ212の回転数を制御しない場合、デファレンシャルギア214の回転数が制御されないので、デファレンシャルギア214に接続された右前輪215R及び左前輪215Lの回転数に制約が無くなる。この場合、右前輪215R及び左前輪215Lに対して、右前摩擦ブレーキ231R及び左前摩擦ブレーキ231Lがそれぞれ独立して摩擦制動を行うので、図5破線に示されるように右前輪215R及び左前輪215Lの速度変動の幅が大きくなる。右前輪215R及び左前輪215Lの速度変動の幅が大きいと、図4に示されるように、スリップ率の変動幅Bもまた大きくなり、目標のスリップ率に収束するまでに時間を要する。
 本実施形態では、アンチロックブレーキ制御の実行中に、モータ制御部121がモータジェネレータ212の回転数を制御するので、デファレンシャルギア214の回転数が制御されることとなる。デファレンシャルギア214の回転数は、右前輪215Rの回転数と左前輪215Lの回転数との平均値となるので、右前輪215R及び左前輪215Lは、互いに当該平均値を満たすように影響を与え合う。これにより、右前摩擦ブレーキ231R及び左前摩擦ブレーキ231Lが独立して摩擦制動を行っても、図5実線に示されるように、右前輪215R及び左前輪215Lの車輪速度の変動幅が小さくなる。右前輪215R及び左前輪215Lの速度変動の幅が小さいと、図4に示されるように、スリップ率の変動幅Cもまた小さくなり、目標のスリップ率に迅速に収束する。
 図3を再び参照しながら説明を続ける。ステップS108に続くステップS109では、滑り検出部101がスリップ状態から復帰しているか否かを判定する。スリップ状態の判定は、ステップS101と同様に行うことができる。
 滑り検出部101がスリップ状態から復帰していると判定すると(ステップS109においてYES)、リターンする。滑り検出部101がスリップ状態から復帰していないと判定すると(ステップS109においてNO)、ステップS108の処理に戻る。
 ステップS110では、踏込量検出部102が、ブレーキペダルがオン状態であるか否かを判定する。踏込量検出部102が、ブレーキペダルがオン状態であると判定すると(ステップS110においてYES)、ステップS111の処理に進む。踏込量検出部102が、ブレーキペダルがオフ状態であると判定すると(ステップS110においてNO)、リターンする。
 ステップS110に続くステップS111では、滑り検出部101がスリップ状態になっているか否かを判定する。スリップ状態の判定は、ステップS101と同様に行うことができる。
 滑り検出部101がスリップ状態になっていると判定すると(ステップS111においてYES)、ステップS106の処理に進む。滑り検出部101がスリップ状態になっていないと判定すると(ステップS111においてNO)、リターンする。
 本実施形態では、ESC-ECU10、EV-ECU12、及びMG-ECU14を含めて制御装置の一態様である制動制御装置を構成している。制動制御装置は、車両2に設けられた右駆動輪及び左駆動輪に差動装置を介して接続される電動モータから右駆動輪及び左駆動輪に駆動力又は制動力を与えるための駆動制動トルクを発生させるモータ制御部121と、右駆動輪を摩擦制動する右摩擦制動装置及び左駆動輪を摩擦制動する左摩擦制動装置を制御する摩擦制御部103と、を備えている。摩擦制御部103が右駆動輪及び左駆動輪に対してアンチロックブレーキ制御を実行する際に、モータ制御部121は駆動制動トルクを発生させる。
 本実施形態では、アンチロックブレーキ制御を実行するにあたって、モータ制御部121が発生する駆動制動トルクが差動装置を介して右駆動輪及び左駆動輪に伝達されるので、右駆動輪の回転数と左駆動輪の回転数との平均値が制御されることになる。右駆動輪及び左駆動輪は、互いに当該平均値を満たすように影響を与え合うので、右摩擦制動装置及び左摩擦制動装置が独立して摩擦制動を行っても、右駆動輪及び左駆動輪それぞれの車輪速度の変動幅が小さくなり、スリップ率の変動が抑制され、目標とするスリップ率に迅速に収束させることができる。右駆動輪及び左駆動輪の車輪速度の変動幅が小さくなることで、車両の振動を抑制することができる。アンチロックブレーキ制御の実行中も電動モータの回生制動力を活用することができるので、発電量を増加させることができる。
 本実施形態において制動制御装置は、右駆動輪及び左駆動輪の滑り状態を検出する滑り検出部101を備えている。モータ制御部121は、右駆動輪の回転数及び左駆動輪の回転数の平均値に対応する駆動制動トルクをフィードバック制御するものであって、駆動制動トルクと右駆動輪及び左駆動輪の滑り状態との関係に基づいて、フィードバック制御を開始するための駆動制動トルクを決定し、フィードバック制御を実行する。
 本実施形態では、駆動制動トルクと右駆動輪及び左駆動輪の滑り状態との関係に基づいて、フィードバック制御を開始するための右駆動輪の回転数及び左駆動輪の回転数の平均値に対応する駆動制動トルクを決定するので、車両2の積載量や路面状況を把握せずに、車両2の挙動に基づいてフィードバック制御を開始する駆動制動トルクを決定することができ、駆動輪の滑り状態を狙いの範囲に迅速に収束させることができる。
 本実施形態においてモータ制御部121は、右駆動輪及び左駆動輪の滑り状態の増加に対して駆動制動トルクの変化が減少に転じない範囲において、フィードバック制御を開始するための駆動制動トルクを決定することができる。
 図4を参照しながら説明した制御目標領域Aよりもスリップ率が低い範囲のように、右駆動輪及び左駆動輪の滑り状態の増加に対して駆動制動トルクの変化が減少に転じない範囲では、駆動制動トルクの変化に対して滑り状態が安定的に変化する。この範囲でフィードバック制御を開始するための駆動制動トルクを決定することで、車両2の挙動を乱さずに駆動制動トルクのフィードバック制御を実行することができる。
 本実施形態においてモータ制御部121は、右駆動輪及び左駆動輪の滑り状態の変化と駆動制動トルクの変化とを線形補間し、フィードバック制御を開始するための駆動制動トルクを決定することができる。
 線形補間することで滑り状態の変化と駆動制動トルクとの相関関係を、図4に示されるように線形的に把握することができ、モータ制御部121における演算負荷を低減することができ、簡易にフィードバック制御を実行することができる。
 本実施形態においてモータ制御部121は、駆動制動トルクと右駆動輪及び左駆動輪の滑り状態との関係を車両2の走行中に学習することができる。
 車両2が走行すると、右駆動輪及び左駆動輪に装着されたタイヤといった滑り状態に寄与する部品が交換される場合がある。駆動制動トルクと滑り状態との関係を走行中に学習することで、走行要素の更新があった場合にも的確に対応することができる。
 本実施形態では、アンチロックブレーキ制御の実行中におけるモータジェネレータ212の出力トルクとして、右駆動輪の回転数及び左駆動輪の回転数の平均値に対応する駆動制動トルクが用いられているが、これに代えて、右駆動輪の回転数及び左駆動輪の回転数のそれぞれに重みを付けた回転数の平均値に対応する駆動制動トルクを用いてもよい。重み付けにおける係数は、例えば右駆動輪及び左駆動輪に装着されたタイヤの劣化度合いの相違や、各駆動輪が走行する路面の状況の相違等に基づいて算出されてもよい。重み付けを行うことにより、右駆動輪と左駆動輪の進行方向摩擦力に相違があっても、各駆動輪を目標のスリップ率に迅速に収束させることができる。
 本実施形態では、滑り検出部101、踏込量検出部102、及び摩擦制御部103がESC-ECU10に備えられ、モータ制御部121がEV-ECU12に備えられているが、これらの機能部を実現する物理的な構成要素はこれに限定されない。例えばこれらの機能部の全部又は一部が異なる構成要素によって実現され、ネットワークを経由してこれらの構成要素が通信可能に接続されていてもよい。
 本実施形態の一態様では、摩擦制御部103が右駆動輪及び左駆動輪に対してアンチロックブレーキ制御を実行する際に、モータ制御部121は駆動制動トルクを発生させる。モータ制御部121は、右駆動輪の回転数及び左駆動輪の回転数の平均値に対応する要求トルクから、右摩擦制動装置が右駆動輪を摩擦制動する右制動トルク及び左摩擦制動装置が左駆動輪を摩擦制動する左制動トルクを差し引いて駆動制動トルクを算出することもできる。
 本実施形態では、アンチロックブレーキ制御を実行するにあたって、右駆動輪の回転数及び左駆動輪の回転数の平均値に対応する要求トルクから、右摩擦制動装置が右駆動輪を摩擦制動する右制動トルク及び左摩擦制動装置が左駆動輪を摩擦制動する左制動トルクを差し引いて電動モータが発生する駆動制動トルクが算出されることにより、右摩擦制動装置及び左摩擦制動装置によるアンチロックブレーキ制御を阻害せずに、且つ回生制動力をなるべく活かして、摩擦制動力と回生制動力とを併用することができる。アンチロックブレーキ制御の実行中も回生制動力を活用することができるので、発電量を増加させることができる。
 本実施形態では、アンチロックブレーキ制御の実行中におけるモータジェネレータ212の出力トルクとして、右駆動輪の回転数及び左駆動輪の回転数の平均値に対応する駆動制動トルクが用いられているが、これに代えて、右駆動輪の回転数及び左駆動輪の回転数のそれぞれに重みを付けた回転数の平均値に対応する駆動制動トルクを用いてもよい。重み付けにおける係数は、例えば右駆動輪及び左駆動輪に装着されたタイヤの劣化度合いの相違や、各駆動輪が走行する路面の状況の相違等に基づいて算出されてもよい。重み付けを行うことにより、右駆動輪と左駆動輪の進行方向摩擦力に相違があっても、各駆動輪を目標のスリップ率に迅速に収束させることができる。
 本実施形態では、滑り検出部101、踏込量検出部102、及び摩擦制御部103がESC-ECU10に備えられ、モータ制御部121がEV-ECU12に備えられているが、これらの機能部を実現する物理的な構成要素はこれに限定されない。例えばこれらの機能部の全部又は一部が異なる構成要素によって実現され、ネットワークを経由してこれらの構成要素が通信可能に接続されていてもよい。
 次に、図6を参照して本実施形態の変形例について説明する。図6は、アンチロックブレーキ制御の実行中において、右前摩擦ブレーキ231Rのホイルシリンダに加わる油圧の変動の様子を示している。なお、左前摩擦ブレーキ231Lについては、右前摩擦ブレーキ231Rから類推できるため図示を省略する。
 アンチロックブレーキ制御の実行中、摩擦ブレーキにおけるホイルシリンダに加わる油圧は、繰り返し変動するように制御される。摩擦ブレーキは、油圧によりホイルシリンダを移動させてブレーキパッドをディスクローターに押し付ける構成であるので、油圧が上がると車輪は減速し、油圧が下がると車輪が加速する。
 一般的に、ホイルシリンダに加わる油圧が下がるとともに摩擦ブレーキの応答性が悪化することが知られている。図6に示される領域Dは、右前摩擦ブレーキ231Rの応答性が悪化する領域を示している。例えば、右前摩擦ブレーキ231Rの応答性が所定の第1閾値となるときの油圧に対応する制動トルクを右最小トルクTFR_minとする。同様に、左前摩擦ブレーキ231Lの応答性が所定の第2閾値となるときの油圧に対応する制動トルクを左最小トルクTFL_minとする。
 アンチロックブレーキ制御の実行中に摩擦制動力と回生制動力とを併用する場合、モータジェネレータ212による出力トルクが過度に大きいと、右前摩擦ブレーキ231R及び左前摩擦ブレーキ231Lに要求される制動トルクが、それぞれ右最小トルクTFR_min及び左最小トルクTFL_minを下回り、摩擦ブレーキの応答性が悪化するおそれがある。図6に示される破線610の挙動では、摩擦ブレーキの応答性が悪化する領域Dまで油圧が下がることがある。
 この点、本変形例では、モータ制御部121が、モータジェネレータ212の出力トルクTMGを以下のごとく調整することで、右前摩擦ブレーキ231R及び左前摩擦ブレーキ231Lの少なくとも一方の応答性が所定の応答性を下回らないようにする。すなわち、右前摩擦ブレーキ231Rに要求される制動トルクTFRが右最小トルクTFR_min以上であり、且つ、左前摩擦ブレーキ231Lに要求される制動トルクTFLが左最小トルクTFL_min以上である場合、モータ制御部121は下記式(f5)によりモータジェネレータ212の出力トルクTMGを算出する。
FR≧TFR_min,TFL≧TFL_min:TMG=T-TFR-TFL(f5)
 右前摩擦ブレーキ231Rに要求される制動トルクTFRが右最小トルクTFR_minを下回り、且つ、左前摩擦ブレーキ231Lに要求される制動トルクTFLが左最小トルクTFL_min以上である場合、モータ制御部121は下記式(f6)によりモータジェネレータ212の出力トルクTMGを算出する。
FR<TFR_min,TFL≧TFL_min:TMG=T-TFR-TFL-TFR_min(f6)
 右前摩擦ブレーキ231Rに要求される制動トルクTFRが右最小トルクTFR_min以上であり、且つ、左前摩擦ブレーキ231Lに要求される制動トルクTFLが左最小トルクTFL_minを下回る場合、モータ制御部121は下記式(f7)によりモータジェネレータ212の出力トルクTMGを算出する。
FR≧TFR_min,TFL<TFL_min:TMG=T-TFR-TFL-TFL_min(f7)
 右前摩擦ブレーキ231Rに要求される制動トルクTFRが右最小トルクTFR_minを下回り、且つ、左前摩擦ブレーキ231Lに要求される制動トルクTFLが左最小トルクTFL_minを下回る場合、モータ制御部121は下記式(f8)によりモータジェネレータ212の出力トルクTMGを算出する。
FR<TFR_min,TFL<TFL_min:TMG=T-TFR-TFL-TFR_min-TFL_min(f8)
 このように、右前摩擦ブレーキ231R及び左前摩擦ブレーキ231Lの右最小トルクTFR_min及び左最小トルクTFL_minを要求トルクTからさらに差し引くことにより、図6に示される実線600の挙動のように、ホイルシリンダに加わる油圧が領域Dまで下がることが抑制される。これにより、応答性が良好な領域で右前摩擦ブレーキ231R及び左前摩擦ブレーキ231Lを駆動することができる。
 上記式(f4)から式(f8)の算出の結果、モータジェネレータ212の出力トルクTMGが所定の下限値を下回る場合、モータジェネレータ212の回転が反転し、デファレンシャルギアのバックラッシュ領域において歯車同士の衝撃が生じるおそれがある。従って、モータ制御部121は、予め出力トルクTMGの下限ガード値を設け、出力トルクTMGが下限ガード値を下回る場合に出力トルクTMGを当該下限ガード値に設定してもよい。下限ガード値は、例えば0(N・m)であってもよい。
 モータ制御部121は、モータジェネレータ212の出力トルクTMGの符号が正から負に変わる場合に、出力トルクTMGを例えば0(N・m)に設定し、第2フィードバック制御を停止してもよい。
 本変形例において、モータ制御部121は、右摩擦制動装置及び左摩擦制動装置の少なくとも一方の応答性が所定の応答性を下回らないように、駆動制動トルクを調整する。
 本変形例では、右摩擦制動装置及び左摩擦制動装置の応答性の悪化を抑制しつつ、摩擦制動力と回生制動力とを併用することができる。
 本変形例において、要求トルクをTとし、駆動制動トルクをTMGとし、右制動トルクをTFRとし、左制動トルクをTFLとし、右摩擦制動装置の応答性が所定の第1閾値となるときの制動トルクをTFR_minとし、左摩擦制動装置の応答性が所定の第2閾値となるときの制動トルクをTFL_minとした場合、モータ制御部は、下記式
1)TFR<TFR_min,TFL≧TFL_min:TMG=T-TFR-TFL-TFR_min
2)TFR≧TFR_min,TFL<TFL_min:TMG=T-TFR-TFL-TFL_min
3)TFR<TFR_min,TFL<TFL_min:TMG=T-TFR-TFL-TFR_min-TFL_min
を満たすように前記駆動制動トルクを調整することができる。
 本変形例では、車両に要求される要求トルクから、右摩擦制動装置の応答性が所定の第1閾値となる右最小トルク又は左摩擦制動装置の応答性が所定の第2閾値となる左最小トルクがさらに差し引かれることにより、応答性の良好な領域で右摩擦制動装置及び左摩擦制動装置を駆動することができる。
 上記実施形態及び本変形例において、駆動制動トルクが所定の下限ガード値を下回る場合に、モータ制御部121は、駆動制動トルクを下限ガード値に設定してもよい。
 電動モータの駆動制動トルクが所定の下限ガード値を下回らないように制御されることにより、電動モータが右駆動輪及び左駆動輪に与える力が制動力から駆動力に切り替わることが回避され、バックラッシュに起因する衝撃の発生を抑制することができる。
 上記実施形態及び本変形例において、駆動制動トルクの符号が正から負に変わる場合に、モータ制御部121は、駆動制動トルクの制御を停止してもよい。
 駆動制動トルクの符号が正から負に変わる場合に、モータ制御部121が駆動制動トルクの制御を停止することにより、電動モータが右駆動輪及び左駆動輪に与える力が制動力から駆動力に切り替わることが回避され、バックラッシュに起因する衝撃の発生を抑制することができる。
 なお、本変形例では、モータジェネレータ212の出力トルクTMGの算出において、上記式(f5)から式(f8)に示すように条件に応じた場合分けがなされているが、出力トルクTMGの算出方法はこれに限定されず、例えばいずれの条件であっても上記式(f8)によって算出してもよい。
 [第2実施形態]
 図7に示されるように、車両2Aには、右前輪215R及び左前輪215Lと、右後輪216R及び左後輪216Lと、が設けられている。右前輪215R及び左前輪215Lは、車両2を駆動するための駆動輪として機能している。右後輪216R及び左後輪216Lは、右前輪215R及び左前輪215Lの駆動に伴って回転する従動輪として機能している。
 車両2Aには、インバータ211と、モータジェネレータ212と、電池213と、デファレンシャルギア214と、が設けられている。インバータ211は、モータジェネレータ212と電池213との間に設けられている。電池213に蓄えられた電力を用いてモータジェネレータ212を駆動する場合、インバータ211は電池213から出力される直流電流を三相交流電流に変換し、モータジェネレータ212に供給する。モータジェネレータ212を発電機として利用し、回生制動する場合には、インバータ211はモータジェネレータ212から出力される三相交流電流を直流電流に変換し、電池213に供給する。
 モータジェネレータ212は、電動機と発電機とを兼用する電動発電機である。モータジェネレータ212は、デファレンシャルギア214を介して駆動輪である右前輪215R及び左前輪215Lと繋がっている。インバータ211から三相交流電流が供給されると、モータジェネレータ212は供給される三相交流電流に応じて回動し、デファレンシャルギア214を介して右前輪215R及び左前輪215Lを駆動する。回生制動される場合、右前輪215R及び左前輪215Lの回転がデファレンシャルギア214を介してモータジェネレータ212に伝達される。電池213に蓄電可能である場合には、モータジェネレータ212の軸回転により発電され、発生する三相交流電流がインバータ211によって直流電流に変換され電池213に供給される。
 車両2Aには、ESC-ECU(Electronic Stability Control-Electronic Control Unit)10Aと、EV-ECU(Electric Vehicle-Electronic Control Unit)12と、MG-ECU(Motor Generator-Electronic Control Unit)14と、が設けられている。
 ESC-ECU10Aは、車両2Aの挙動を安定させるための装置である。ESC-ECU10Aには、Gセンサ221と、ヨーレートセンサ222と、右前車輪速センサ223Rと、左前車輪速センサ223Lと、右後車輪速センサ224Rと、左後車輪速センサ224Lと、から検出信号が出力される。
 Gセンサ221は、車両2Aの加速及び減速時の加速度を計測するためのセンサである。Gセンサ221は、車両2Aの前後方向における加速及び減速時の加速度を示す信号をESC-ECU10Aに出力する。ヨーレートセンサ222は、車両2Aの垂直軸周りの角速度を計測するためのセンサである。ヨーレートセンサ222は、車両2Aの垂直軸周りの角速度を示す信号をESC-ECU10に出力する。
 右前車輪速センサ223Rは、右前輪215Rの車輪速度を計測するためのセンサである。右前車輪速センサ223Rは、右前輪215Rの車輪速度を示す信号をESC-ECU10Aに出力する。
 左前車輪速センサ223Lは、左前輪215Lの車輪速度を計測するためのセンサである。左前車輪速センサ223Lは、左前輪215Lの車輪速度を示す信号をESC-ECU10Aに出力する。
 右後車輪速センサ224Rは、右後輪216Rの車輪速度を計測するためのセンサである。右後車輪速センサ224Rは、右後輪216Rの車輪速度を示す信号をESC-ECU10Aに出力する。
 左後車輪速センサ224Lは、左後輪216Lの車輪速度を計測するためのセンサである。左後車輪速センサ224Lは、左後輪216Lの車輪速度を示す信号をESC-ECU10Aに出力する。
 ESC-ECU10Aは、Gセンサ221、ヨーレートセンサ222、右前車輪速センサ223R、左前車輪速センサ223L、右後車輪速センサ224R、及び左後車輪速センサ224Lから出力される信号に基づいて、車両2Aの挙動を安定させるための演算を実行する。ESC-ECU10Aは、演算結果に基づいて、EV-ECU12に車両2の車体速度を調整するための信号を出力する。ESC-ECU10Aは、演算結果に基づいて、右前摩擦ブレーキ231R、左前摩擦ブレーキ231L、右後摩擦ブレーキ232R、及び左後摩擦ブレーキ232Lに、摩擦制動を行うための信号を出力する。 
 EV-ECU12は、ESC-ECU10Aから出力される車体速度の情報、MG-ECU14から出力されるモータジェネレータ212の回転数、及び、アクセル開度等のドライバー操作や図示しない各種センサから出力される信号が示す情報に基づいて、モータジェネレータ212が発生すべき回転数に対応するトルクをMG-ECU14に出力する。
 MG-ECU14は、モータジェネレータ212が所定のトルクを発生するように、インバータ211に制御信号を出力する。MG-ECU14は、モータジェネレータ212の回転数を計測する。MG-ECU14は、モータジェネレータ212の回転数を示す情報をEV-ECU12に出力する。
 続いて、図8を参照しながら、ESC-ECU10A、EV-ECU12、及びMG-ECU14の機能的な動作について説明する。図8に示されるように、ESC-ECU10Aは、機能的な構成要素として滑り検出部101を備えている。
 滑り検出部101は、駆動輪である右前輪215R及び左前輪215Lの滑り状態を検出する部分である。滑り状態は、車両2のスリップ率としても把握されるものである。スリップ率は、次式(f1A)によって求められる。
スリップ率=(車体速度-駆動輪の車輪速度)/車体速度×100  (f1A)
 車体速度は、従動輪である右後輪216R及び左後輪216Lの車輪速度、車両2の加速度、及びGPS情報のいずれか又は組み合わせによって求めることができる。従動輪の車輪速度は、右後輪216Rの車輪速度と左後輪216Lの車輪速度との平均値より求めることができる。右後輪216Rの車輪速度は、右後車輪速センサ224Rの出力信号によって取得することができる。左後輪216Lの車輪速度は、左後車輪速センサ224Lの出力信号によって取得することができる。
 駆動輪の車輪速度は、右前輪215Rの車輪速度と左前輪215Lの車輪速度との平均値より求めることができる。右前輪215Rの車輪速度は、右前車輪速センサ223Rの出力信号によって取得することができる。左前輪215Lの車輪速度は、左前車輪速センサ223Lの出力信号によって取得することができる。駆動輪の車輪速度は、モータジェネレータ212の回転数及び減速比から求めることも可能である。駆動輪の車輪速度は、駆動輪軸に設けられた回転センサや減速機に設けられた回転センサの出力値から求めることも可能である。
 車両2Aの加速度は、Gセンサ221の出力信号によって取得することができる。車両2AのGPS情報は、図示しないGPS情報取得装置によって取得することができる。
 滑り検出部101が検出した滑り状態は、EV-ECU12に出力される。EV-ECU12は、機能的な構成要素としてモータ制御部121を備えている。
 モータ制御部121は、車両2Aに設けられた駆動輪である右前輪215R及び左前輪215Lに接続される電動モータであるモータジェネレータ212から駆動輪である右前輪215R及び左前輪215Lに駆動力又は制動力を与えるための駆動制動トルクを発生させる部分である。モータ制御部121は、アクセル開度等のドライバー操作を検出するセンサや他の各種センサから出力される情報、ESC-ECU10から出力される情報、MG-ECU14から出力される情報を集約し、モータジェネレータ212への指示トルクを決定し、MG-ECU14へ出力する。
 続いて、図9を参照しながら、滑り検出部101及びモータ制御部121の具体的な制御内容について説明する。
 ステップS201では、滑り検出部101がスリップ状態になっているか否かを判定する。スリップ状態の判定は、様々な手法で行うことができる。一例として、モータジェネレータ212の回転数が、現在の車両2Aの車体速度に対応して定められるスリップ判定回転数を超えた場合にスリップ状態になっていると判断する。別の一例として、次式(f1A)によって求められるスリップ率を算出し、予め定められるスリップ判定値を超えた場合にスリップ状態と判断してもよい。
スリップ率=(車体速度-駆動輪の車輪速度)/車体速度×100  (f1A)
 スリップ判定回転数を用いる場合も、スリップ判定値を用いる場合も、その他の指標を用いる場合を含め、車両2Aを制御するのに適切な値を適宜用いることができる。図10を参照しながら、スリップ判定値を用いる場合の一例について説明する。
 図10は、横軸にスリップ率、縦軸に進行方向摩擦力をとったグラフである。路面の状況やタイヤの状況によって、スリップ率と進行方向摩擦力との関係は変化する。図10では、乾燥したアスファルト路面における摩擦力線Lと、雪道における摩擦力線Lと、を例示している。
 摩擦力線Lの場合も、摩擦力線Lの場合も、進行方向摩擦力はスリップ率が15%から20%の場合に最大となるので、制御目標領域Aとしている。スリップ判定値は、前述のように車両2を制御するのに適切な値を適宜用いることができるので、必ずしも制御目標領域Aに含まれる値とする必要はなく、例えばスリップ判定値Sをスリップ率10%程度に相当する値とすることができる。
 図10においては、スリップ判定値Sに対して、摩擦力線Lの場合は対応するトルクがスリップ判定時トルクTとなり、摩擦力線Lの場合は対応するトルクがスリップ判定時トルクTRaとなる。
 図9を再び参照しながら説明を続ける。滑り検出部101がスリップ状態になっていると判定すると(ステップS201においてYES)、ステップS202の処理に進む。滑り検出部101がスリップ状態になっていないと判定すると(ステップS201においてNO)、リターンする。
 ステップS202では、モータ制御部121が、モータジェネレータ212を目標回転数に制御するためのフィードバック制御の初期値を決定する。初期値としては、目標回転数となるように出力するトルクが用いられる。
 再び図10を参照しながら、初期値の決定手法について説明する。スリップ判定値Sを定めると、そのスリップ判定値Sに至るまでのスリップ率と進行方向摩擦力との関係を取得することができる。この関係は路面の状況やタイヤの状況によって変化し、図10に例示されるような、摩擦力線Lや摩擦力線Lの関係を取得することができる。
 摩擦力線Lや摩擦力線Lにおいて、スリップ率と進行方向摩擦力との関係が線形関係である場合、目標スリップ率STを定めると、対応する初期値としてのトルクとして、初期トルクTTや初期トルクTTaを定めることができる。算出式としては、次式(f2A)や式(f3A)が用いられる。
T=T×ST/S    (f2A)
Ta=TRa×ST/S   (f3A)
 このように、モータ制御部121は、スリップ判定までのモータジェネレータ212の出力トルクとスリップ率との関係から、目標のスリップ率に対応するモータジェネレータ212の出力トルクを決定することができる。
 図9を再び参照しながら説明を続ける。ステップS202に続くステップS203では、モータ制御部121がフィードバック制御を実行する。モータ制御部121は、ステップS202で決定した初期値から目標回転数になるように、フィードバック制御によって出力するトルクを決定する。
 ステップS203に続くステップS204では、滑り検出部101がスリップ状態から復帰しているか否かを判定する。スリップ状態の判定は、ステップS201と同様に行うことができる。
 滑り検出部101がスリップ状態から復帰していると判定すると(ステップS204においてYES)、リターンする。滑り検出部101がスリップ状態から復帰していないと判定すると(ステップS204においてNO)、ステップS203の処理に戻る。
 本実施形態では、ESC-ECU10A、EV-ECU12、及びMG-ECU14を含めて制御装置の一態様であるトラクション制御装置を構成している。トラクション制御装置は、車両2Aに設けられた駆動輪に接続される電動モータであるモータジェネレータ212から駆動輪に駆動力又は制動力を与えるための駆動制動トルクを発生させるモータ制御部121と、駆動輪の滑り状態を検出する滑り検出部101と、を備えている。モータ制御部121は、駆動輪の回転数に対応する駆動制動トルクをフィードバック制御するものであって、駆動制動トルクと駆動輪の滑り状態との関係に基づいて、フィードバック制御を開始するための駆動制動トルクを決定し、フィードバック制御を実行する。
 本実施形態では、駆動制動トルクと駆動輪の滑り状態との関係に基づいて、フィードバック制御を開始するための駆動輪の回転数に対応する駆動制動トルクを決定するので、車両2Aの積載量や路面状況を把握せずに、車両2Aの挙動に基づいてフィードバック制御を開始する駆動制動トルクを決定することができ、駆動輪の滑り状態を狙いの範囲に迅速に収束させることができる。
 本実施形態においてモータ制御部121は、駆動輪の滑り状態の増加に対して駆動制動トルクの変化が減少に転じない範囲において、フィードバック制御を開始するための駆動制動トルクを決定する。
 図10を参照しながら説明した制御目標領域Aよりもスリップ率が低い範囲のように、駆動輪の滑り状態の増加に対して駆動制動トルクの変化が減少に転じない範囲では、駆動制動トルクの変化に対して滑り状態が安定的に変化する。この範囲でフィードバック制御を開始するための駆動制動トルクを決定することで、車両2Aの挙動を乱さずに駆動制動トルクのフィードバック制御を実行することができる。
 本実施形態においてモータ制御部121は、駆動輪の滑り状態の変化と駆動制動トルクの変化とを線形補間し、フィードバック制御を開始するための駆動制動トルクを決定する。
 線形補間することで滑り状態の変化と駆動制動トルクとの相関関係を、図10に示されるように線形的に把握することができ、モータ制御部121における演算負荷を低減することができ、簡易にフィードバック制御を実行することができる。
 本実施形態においてモータ制御部121は、駆動制動トルクと駆動輪の滑り状態との関係を車両2Aの走行中に学習することができる。
 車両2Aが走行すると、駆動輪に装着されたタイヤといった滑り状態に寄与する部品が交換される場合がある。駆動制動トルクと滑り状態との関係を走行中に学習することで、走行要素の更新があった場合にも的確に対応することができる。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (14)

  1.  制御装置であって、
     車両に設けられた右駆動輪及び左駆動輪に差動装置を介して接続される電動モータから前記右駆動輪及び前記左駆動輪に駆動力又は制動力を与えるための駆動制動トルクを発生させるモータ制御部(121)と、
     前記右駆動輪を摩擦制動する右摩擦制動装置及び前記左駆動輪を摩擦制動する左摩擦制動装置を制御する摩擦制御部(103)と、を備え、
     前記摩擦制御部が前記右駆動輪及び前記左駆動輪に対してアンチロックブレーキ制御を実行する際に、前記モータ制御部が前記駆動制動トルクを発生させる、制御装置。
  2.  請求項1に記載の制御装置であって、
     前記右駆動輪及び左駆動輪の滑り状態を検出する滑り検出部(101)をさらに備え、
     前記モータ制御部は、前記右駆動輪の回転数及び前記左駆動輪の回転数の平均値に対応する前記駆動制動トルクをフィードバック制御するものであって、
     前記駆動制動トルクと前記右駆動輪及び左駆動輪の滑り状態との関係に基づいて、フィードバック制御を開始するための前記駆動制動トルクを決定し、フィードバック制御を実行する。
  3.  請求項2に記載の制御装置であって、
     前記モータ制御部は、前記右駆動輪及び左駆動輪の滑り状態の増加に対して前記駆動制動トルクの変化が減少に転じない範囲において、フィードバック制御を開始するための前記駆動制動トルクを決定する。
  4.  請求項2又は3に記載の制御装置であって、
     前記モータ制御部は、前記右駆動輪及び左駆動輪の滑り状態の変化と前記駆動制動トルクの変化とを線形補間し、フィードバック制御を開始するための前記駆動制動トルクを決定する。
  5.  請求項2から4のいずれか1項に記載の制御装置であって、
     前記モータ制御部は、前記駆動制動トルクと前記右駆動輪及び左駆動輪の滑り状態との関係を前記車両の走行中に学習する。
  6.  請求項1に記載の制御装置であって、
     前記モータ制御部は、前記右駆動輪の回転数及び前記左駆動輪の回転数の平均値に対応する要求トルクから、前記右摩擦制動装置が前記右駆動輪を摩擦制動する右制動トルク及び前記左摩擦制動装置が前記左駆動輪を摩擦制動する左制動トルクを差し引いて前記駆動制動トルクを算出する。
  7.  請求項6に記載の制御装置であって、
     前記モータ制御部は、前記右摩擦制動装置及び前記左摩擦制動装置の少なくとも一方の応答性が所定の応答性を下回らないように前記駆動制動トルクを調整する。
  8.  請求項7に記載の制御装置であって、
     前記要求トルクをTとし、前記駆動制動トルクをTMGとし、前記右制動トルクをTFRとし、前記左制動トルクをTFLとし、前記右摩擦制動装置の応答性が所定の第1閾値となるときの制動トルクをTFR_minとし、前記左摩擦制動装置の応答性が所定の第2閾値となるときの制動トルクをTFL_minとした場合、
     前記モータ制御部は、下記式
    1)TFR<TFR_min,TFL≧TFL_min:TMG=T-TFR-TFL-TFR_min
    2)TFR≧TFR_min,TFL<TFL_min:TMG=T-TFR-TFL-TFL_min
    3)TFR<TFR_min,TFL<TFL_min:TMG=T-TFR-TFL-TFR_min-TFL_min
     を満たすように前記駆動制動トルクを調整する。
  9.  請求項6から8のいずれか1項に記載の制御装置であって、
     前記駆動制動トルクが所定の下限ガード値を下回る場合に、前記モータ制御部は前記駆動制動トルクを前記下限ガード値に設定する。
  10.  請求項6から9のいずれか1項に記載の制御装置であって、
     前記駆動制動トルクの符号が正から負に変わる場合に、前記モータ制御部は前記駆動制動トルクの制御を停止する。
  11.  制御装置であって、
     車両に設けられた駆動輪に接続される電動モータから前記駆動輪に駆動力又は制動力を与えるための駆動制動トルクを発生させるモータ制御部(121)と、
     前記駆動輪の滑り状態を検出する滑り検出部(101)と、を備え、
     前記モータ制御部は、前記駆動輪の回転数に対応する前記駆動制動トルクをフィードバック制御するものであって、
     前記駆動制動トルクと前記駆動輪の滑り状態との関係に基づいて、フィードバック制御を開始するための前記駆動制動トルクを決定し、フィードバック制御を実行する、制御装置。
  12.  請求項11に記載の制御装置であって、
     前記モータ制御部は、前記駆動輪の滑り状態の増加に対して前記駆動制動トルクの変化が減少に転じない範囲において、フィードバック制御を開始するための前記駆動制動トルクを決定する。
  13.  請求項12に記載の制御装置であって、
     前記モータ制御部は、前記駆動輪の滑り状態の変化と前記駆動制動トルクの変化とを線形補間し、フィードバック制御を開始するための前記駆動制動トルクを決定する。
  14.  請求項11から13のいずれか1項に記載の制御装置であって、
     前記モータ制御部は、前記駆動制動トルクと前記駆動輪の滑り状態との関係を前記車両の走行中に学習する。
PCT/JP2020/039988 2019-10-25 2020-10-23 制御装置 WO2021080011A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20878090.8A EP4049885A4 (en) 2019-10-25 2020-10-23 CONTROL DEVICE
JP2021553580A JP7169461B2 (ja) 2019-10-25 2020-10-23 制御装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-194098 2019-10-25
JP2019-194097 2019-10-25
JP2019194096 2019-10-25
JP2019194098 2019-10-25
JP2019194097 2019-10-25
JP2019-194096 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021080011A1 true WO2021080011A1 (ja) 2021-04-29

Family

ID=75620157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039988 WO2021080011A1 (ja) 2019-10-25 2020-10-23 制御装置

Country Status (3)

Country Link
EP (1) EP4049885A4 (ja)
JP (1) JP7169461B2 (ja)
WO (1) WO2021080011A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148331A (zh) * 2021-12-09 2022-03-08 奇瑞汽车股份有限公司 车辆防滑控制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055790A (ja) * 1998-06-03 2000-02-25 Toyota Central Res & Dev Lab Inc 路面μ推定装置
JP2015030280A (ja) * 2013-07-31 2015-02-16 三菱電機株式会社 車両用制動装置
JP2016210215A (ja) * 2015-04-30 2016-12-15 いすゞ自動車株式会社 ハイブリッド車両及びハイブリッド車両の制御方法
WO2019088024A1 (ja) * 2017-10-30 2019-05-09 株式会社デンソー 路面状態判別装置およびそれを備えたタイヤシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4188348B2 (ja) * 2005-08-10 2008-11-26 株式会社日立製作所 電動車両の走行制御装置および電動走行制御システム
EP2172359B1 (en) * 2005-09-20 2012-12-19 Atlet AB Improved control system for an industrial truck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055790A (ja) * 1998-06-03 2000-02-25 Toyota Central Res & Dev Lab Inc 路面μ推定装置
JP2015030280A (ja) * 2013-07-31 2015-02-16 三菱電機株式会社 車両用制動装置
JP2016210215A (ja) * 2015-04-30 2016-12-15 いすゞ自動車株式会社 ハイブリッド車両及びハイブリッド車両の制御方法
WO2019088024A1 (ja) * 2017-10-30 2019-05-09 株式会社デンソー 路面状態判別装置およびそれを備えたタイヤシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4049885A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148331A (zh) * 2021-12-09 2022-03-08 奇瑞汽车股份有限公司 车辆防滑控制方法和装置

Also Published As

Publication number Publication date
JPWO2021080011A1 (ja) 2021-04-29
EP4049885A1 (en) 2022-08-31
EP4049885A4 (en) 2023-04-26
JP7169461B2 (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
US11021068B2 (en) Vehicle control device and control method
JP4534641B2 (ja) 車輪のスリップ率演算装置及び車輪の制駆動力制御装置
US8886375B2 (en) Control apparatus for electric vehicle
JP5800092B2 (ja) 制駆動力制御装置
KR20170024856A (ko) 모터를 구비한 차량의 제어 장치 및 방법
WO2011108082A1 (ja) 車両制御装置
US11648933B2 (en) Method for controlling wheel slip of vehicle
GB2390651A (en) Traction control with individual lowering of the slip threshold of the driving wheel on the outside of a bend
WO2018230341A1 (ja) 車両制御装置
JP5506632B2 (ja) 車両用ブレーキ装置
WO2021219597A1 (en) Torque redistribution and adjustment method, and corresponding control unit and electric vehicle
WO2021080011A1 (ja) 制御装置
JPH068816A (ja) 目標スリップ率設定装置
US20160039312A1 (en) Traction control device and traction control method
JP2006200526A (ja) 車両の出力特性制御装置
EP2982538A1 (en) Traction control device and traction control method
KR20210014822A (ko) 차량의 휠 슬립 제어 장치 및 제어 방법
JP2002095106A (ja) 車輌の制動力制御装置
CN117677528A (zh) 车辆控制装置
JP4135700B2 (ja) 車両のモータトラクション制御装置
JP3781101B2 (ja) 車輌の制動力制御装置
JP4325539B2 (ja) 車両のモータトラクション制御装置
KR20230037177A (ko) 차량의 휠 슬립 제어 방법
JP2006136174A (ja) 車両のモータトラクション制御装置
JPH1178818A (ja) 車両のブレーキ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020878090

Country of ref document: EP

Effective date: 20220525