WO2021078240A1 - 测量处理方法和终端 - Google Patents

测量处理方法和终端 Download PDF

Info

Publication number
WO2021078240A1
WO2021078240A1 PCT/CN2020/123129 CN2020123129W WO2021078240A1 WO 2021078240 A1 WO2021078240 A1 WO 2021078240A1 CN 2020123129 W CN2020123129 W CN 2020123129W WO 2021078240 A1 WO2021078240 A1 WO 2021078240A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
state
measurement state
time
reference signal
Prior art date
Application number
PCT/CN2020/123129
Other languages
English (en)
French (fr)
Inventor
陈力
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227017237A priority Critical patent/KR20220088464A/ko
Priority to EP20878854.7A priority patent/EP4050928A4/en
Priority to BR112022007656A priority patent/BR112022007656A2/pt
Priority to JP2022521416A priority patent/JP7328449B2/ja
Publication of WO2021078240A1 publication Critical patent/WO2021078240A1/zh
Priority to US17/657,890 priority patent/US20220225147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a measurement processing method and terminal.
  • the terminal In order to ensure the reliability of the terminal’s communication, the terminal often needs to perform some measurements, for example, through radio link monitoring (Radio Link Monitor, RLM) measurement to ensure the reliability of the wireless link, such as through beam failure detection (Beam Failure Detection). , BFD) measurement to ensure the reliability of the beam.
  • RLM Radio Link Monitor
  • BFD Beam Failure Detection
  • the terminal In the current technology, the terminal often maintains a measurement state, that is, the measurement state of the terminal cannot be adjusted, which makes the measurement capability of the terminal relatively poor.
  • the embodiments of the present disclosure provide a measurement processing method and a terminal to solve the problem that the measurement state of the terminal cannot be adjusted and the measurement capability of the terminal is relatively poor.
  • embodiments of the present disclosure provide a measurement processing method applied to a terminal, including:
  • a terminal including:
  • the processing module is used to adjust the measurement state of the measurement and process at least one of the counter and timer related to the measurement, wherein the measurement includes at least one of the radio link monitoring RLM and the beam failure detection BFD Measurement, the processing includes: reset, continue to run or stop.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, and when the program is executed by the processor, the present invention is implemented.
  • the steps in the measurement processing method provided by the embodiments are disclosed.
  • an embodiment of the present disclosure provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the measurement processing method provided by the embodiment of the present disclosure is implemented A step of.
  • the measurement state of the measurement is adjusted, and at least one of the counter and timer related to the measurement is processed, wherein the measurement includes the measurement of at least one of RLM and BFD, and the processing includes : Reset, continue running or stop.
  • This can support the terminal to adjust the measurement state, thereby improving the measurement capability of the terminal.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a measurement processing method provided by an embodiment of the present disclosure
  • FIG. 3 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 4 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • Fig. 5 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more optional or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the embodiments of the present disclosure are described below with reference to the accompanying drawings.
  • the measurement processing method and terminal provided by the embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system can be a New Radio (NR) system, or other systems, such as: Evolved Long Term Evolution (eLTE) system or Long Term Evolution (LTE) system, or subsequent evolution Communication system, etc.
  • NR New Radio
  • eLTE Evolved Long Term Evolution
  • LTE Long Term Evolution
  • subsequent evolution Communication system etc.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network device 12.
  • the terminal 11 may be a user terminal (User Equipment, UE). ) Or other terminal side devices, such as: mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (personal digital assistant, PDA), mobile Internet devices (Mobile Internet Device, MID),
  • UE User Equipment
  • PDA personal digital assistant
  • mobile Internet devices Mobile Internet Device, MID
  • the aforementioned network device 12 may be a 4G base station, or a 5G base station, or a base station of a later version, or a base station in other communication systems, or it is called Node B, Evolved Node B, or Transmission Reception Point (TRP), Or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a measurement processing method provided by an embodiment of the present disclosure. The method is applied to a terminal. As shown in FIG. 2, it includes the following steps:
  • Step 201 Adjust the measurement state of the measurement, and process at least one of the counter and timer related to the measurement, wherein the measurement includes the measurement of at least one of RLM and BFD, and the processing includes: resetting , Continue to run or stop.
  • the above-mentioned measurement may be RLM measurement or BFD measurement, or may be RLM measurement and BFD measurement.
  • the foregoing measurement may be a measurement in a discontinuous reception (Discontinuous reception, DRX) period.
  • RLM measurement may also be referred to as RLM monitoring
  • BFD measurement may also be referred to as BFD monitoring.
  • the measurement state of the aforementioned adjustment measurement may be adjusted from one measurement state to another measurement state, wherein different measurement states have different energy consumption.
  • the counters and timers related to the measurement may be at least one of the counters and timers that affect the measurement, for example: counters and timers that affect the judgment of wireless link failure, and counters and timers that affect the judgment of beam failure. Device.
  • the above processing can be full reset, partial reset, continued operation, full stop or partial stop, of course, this is not limited, for example, it can also be adjusting the threshold of at least one of the counter and timer.
  • the above adjustment of the measurement state of the above measurement can be adjusted from one measurement state with high energy consumption to another measurement state with low energy consumption, thereby achieving the effect of saving terminal power consumption, that is, saving power.
  • the purpose of electricity is not limited to, electricity.
  • adjusting the measurement state of the measurement and processing at least one of the counter and timer related to the measurement may be executed in parallel, or may be adjusted first and then processed, or processed first and then adjusted.
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the energy consumption of performing the measurement in the first measurement state may be lower than the energy consumption of performing the measurement in the second measurement state, and the energy consumption of performing the measurement in the second measurement state may be It is lower than the energy consumption of performing the measurement in the third measurement state.
  • the above-mentioned measured energy consumption may be the power consumption of the terminal during the above-mentioned measurement.
  • the above-mentioned first measurement state refers to measurement relaxation, which may mean, the first measurement state refers to a state in which measurement relaxation is performed on the basis of the second measurement state, and the above third measurement state refers to measurement enhancement, which may mean, The third measurement state refers to a state in which measurement enhancement is performed on the basis of the second measurement state.
  • the above-mentioned first measurement state refers to measurement relaxation
  • the above-mentioned second measurement state refers to normal measurement
  • the above-mentioned second measurement state can be referred to as a normal measurement state ( Referred to as normal measurement).
  • the normal measurement may refer to the default measurement state or the pre-configured state
  • the third measurement state refers to the measurement enhancement
  • the third measurement state may be referred to as the measurement enhancement state (referred to as the measurement enhancement state).
  • Enhanced
  • RLM measurement or BFD measurement when the above adjustment can be switched between any two states of measurement relaxation, normal measurement, and measurement enhancement, it may specifically include at least one of the following:
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper layer indication for not performing the measurement within the third time, or the number of upper layer indications measured during the third time is less than the upper layer indication for the measurement in the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes a difference in at least one of a period of the reference signal and a subcarrier space (SCS).
  • SCS subcarrier space
  • the measurement period may be the measurement period of at least one of layer one (L1), layer 2 (L2) and layer 3 (L3), and the number of measurement samples may be the number of measurement samples.
  • the foregoing measurement is longer than the measurement period of the second measurement state, and the number of measurement samples being smaller than the measurement sampling number of the second measurement state, the foregoing measurement (for example: RLM/BFD measurement) can be relaxed in the time domain. That is, the L1 measurement period of the above-mentioned measurement is extended or the number of measurement samples is reduced to save power.
  • the measurement indication interval may be the measurement indication interval in layer 2 or layer 3.
  • the measurement indication interval in the second measurement state may be longer than the measurement indication interval in the second measurement state to realize the measurement in the time domain (for example: RLM/BFD measurement) Relax, that is, the above-mentioned measurement L2/L3 indicates that the interval is extended to save power.
  • the aforementioned first time, second time, and third time may be the same or different time periods, or the same or different time periods.
  • the above measurement is not performed within a period of time (for example: RLM /BFD measurement) or reduce the above measurement to save power.
  • the number of the above-mentioned measured reference signals is less than the number of the measured parameter signals in the second measurement state, and the number of the above-mentioned measurement (for example: RLM/BFD measurement) reference signals is reduced to save power.
  • the period of the foregoing reference signal is different, and the period of the reference signal measured in the first measurement state may be greater than the period of the reference signal measured in the second measurement state.
  • the foregoing SCS difference may be that the SCS of the reference signal measured in the first measurement state is greater than The SCS of the reference signal measured in the second measurement state, which can save power.
  • multiple ways are provided to make the energy consumption of performing the measurement in the first measurement state lower than the energy consumption of performing the measurement in the second measurement state.
  • the foregoing manner is not limited, and it may also be a manner in which the energy consumption of performing the measurement in the first measurement state is lower than the energy consumption of performing the measurement in the second measurement state.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the above-mentioned measurement-related counters and timers include at least one of the following:
  • the above-mentioned counters and timers for judging RLF may be counters and timers used in judging RLF defined in the protocol.
  • the terminal monitors the wireless link by measuring the signal to interference plus noise ratio (SINR) of part of the cell reference signal (Reference Signal, CRS) of the physical downlink control channel (PDCCH) .
  • SINR signal to interference plus noise ratio
  • CRS Cell Reference Signal
  • PDCCH physical downlink control channel
  • OOS out-of-sync
  • the physical layer notifies a higher layer (for example, the RRC layer) of an OOS indication, and if the RRC layer has N consecutive OOS indications, the terminal starts a timer T1;
  • the radio link is considered to be in-sync (IS), and the physical layer informs the higher layer (for example: the RRC layer) of an IS indication. If the RRC layer has consecutive M ISs Instruct the terminal to stop the operation of the timer T1;
  • Radio link failure Radio link failure
  • the above counter and timer may include the above N, M and timer T1.
  • the above counter and timer are not limited to include the above N, M and timer T1.
  • the aforementioned counter and timer for determining beam failure may be the counter and timer used in determining beam failure defined in the protocol.
  • the physical layer After determining that certain conditions (for example, all beam received signals are below a certain threshold) are satisfied, the physical layer indicates a beam failure instance to the MAC layer.
  • the MAC layer judges whether the beam fails by counting the number of beam failure instances periodically indicated by the physical layer (PHY layer).
  • the specific counting method can be:
  • the counter is incremented by 1. Once the beam failure instance is received, the timer is started or restarted. If the beam failure instance is not received when a timer expires, the counter is reset. When the counter reaches the preset number of times, it is determined that the beam has failed.
  • the above counter and timer may include the above N and the timer here.
  • this is only an example for illustration, and the above counter and timer are not limited to include the above N and the timer here.
  • the measurement capability of the terminal can be improved, and the purpose of power saving can also be achieved.
  • the above reset includes:
  • the above-mentioned all reset may be to reset all of at least one of the above-mentioned measurement-related counters and timers
  • the above-mentioned partial reset may be to partially reset at least one of the above-mentioned measurement-related counters and timers, and the other part Keep running.
  • all the above resets may include: when the terminal is performing BFD, if the above adjustment event occurs during this process, the count corresponding to the BFD is reset, and the counter N is reset to 0, that is, counting from 0.
  • the reset here refers to resetting the counting counter N and the corresponding timer T1 timing reset, where reset refers to resetting the running timer T1.
  • the partial reset may include: during the BFD process, if one of the above adjustment events occurs, the corresponding parameter is partially reset, such as including at least one of the following: resetting the counter N, or resetting the timer T1.
  • the continued operation may include: during the BFD process, if one of the above-mentioned events occurs, the corresponding parameter is not reset and the operation continues, that is, the counting is continued or the timing is continued.
  • the counter N and the timer T1 here may be the counters and timers used in the beam failure judgment described above.
  • all resetting can include: When the terminal is performing RLM, if the above adjustment event occurs during this process, the OOS and IS counts corresponding to the RLM are reset, that is, the counters N and M are reset to 0, that is, from 0 starts to count again.
  • the reset here refers to resetting the counting counters N and M) and the corresponding timer T1 timing reset.
  • the reset here refers to resetting the running timer T1.
  • the partial reset may include: during the RLM process, if one of the above adjustment events occurs, the corresponding parameter is partially reset, including at least one of the following: resetting the counter N, resetting the counter M, and resetting the timer T1.
  • the continued operation may include: during the RLM process, if one of the above-mentioned adjustment events occurs, the corresponding parameter is not reset and the operation is continued, that is, the counting or the timing is continued.
  • the counter N, the counter M, and the timer T1 here may be the counters and timers used in the beam failure judgment described above.
  • the above stopping includes: a full stop or a partial stop.
  • the above-mentioned all stop may be to completely stop at least one of the above-mentioned measurement-related counters and timers
  • the above-mentioned partial stop may be to partially stop at least one of the above-mentioned measurement-related counters and timers, and the other part continues to run.
  • the method further includes:
  • one part uses the parameters of the network configuration before the measurement adjustment, and the other part uses the parameters after the measurement adjustment to perform the measurement.
  • the parameters after the measurement adjustment and the parameters before the measurement adjustment may be configured by the network before the adjustment. And these parameters may include: measurement period length, measurement duration, number of measurement samples, the threshold value of the counter, the threshold value of the timer, and other parameters related to the above-mentioned measurement.
  • performing the measurement using the measurement-adjusted parameters of the network configuration may be performed by using the measurement-adjusted parameters of the network configuration in the case that at least one of the counters and timers related to the measurement is reset.
  • the measurement of the parameters is performed, of course, this is not limited, and the measurement may be performed using the measurement adjusted parameters of the network configuration when at least one of the counters and timers related to the measurement is partially reset. .
  • the foregoing measurement using the parameters of the network configuration before the measurement adjustment may be performed by using the parameters of the network configuration before the measurement adjustment while continuing to run at least one of the measurement-related counters and timers.
  • the measurement is not limited to this, and the measurement may be performed by using the parameters of the network configuration before the measurement adjustment when at least one of the counter and the timer related to the measurement is partially reset.
  • the foregoing part uses the parameters of the network configuration before the measurement adjustment, and the other part uses the parameters after the measurement adjustment to perform the measurement.
  • One part uses the parameters of the network configuration before the measurement and adjustment, and the other part uses the parameters after the measurement and adjustment for the measurement.
  • the reset part uses the adjusted parameters
  • the non-reset part uses the pre-adjusted parameters. .
  • one part of the foregoing uses the parameters of the network configuration before the measurement adjustment, and the other part uses the parameters after the measurement adjustment to perform the measurement, which may be when at least one of the counters and timers related to the measurement is partially stopped.
  • One part uses the parameters of the network configuration before the measurement and adjustment, and the other part uses the parameters after the measurement and adjustment to perform the measurement.
  • the stopped part uses the adjusted parameters
  • the non-stop part uses the pre-adjusted parameters.
  • the measurement state of the measurement is adjusted, and at least one of the counter and timer related to the measurement is processed, wherein the measurement includes the measurement of at least one of RLM and BFD, and the processing includes : Reset, continue running or stop.
  • This can support the terminal to adjust the measurement state, thereby improving the measurement capability of the terminal.
  • FIG. 3 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 3, the terminal 300 includes:
  • the processing module 301 is configured to adjust the measurement state of the measurement and process at least one of the counter and timer related to the measurement, wherein the measurement includes the measurement of at least one of RLM and BFD, and the processing includes : Reset, continue running or stop.
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper-layer indication of not performing the measurement within the third time, or the number of upper-layer indications of the measurement during the third time is less than the upper-layer indication of the measurement in the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the reset includes:
  • the stopping includes:
  • the measurement-related counters and timers include at least one of the following:
  • the terminal 300 further includes a measurement module 302, and the measurement module 302 is configured to:
  • one part uses the parameters of the network configuration before the measurement adjustment, and the other part uses the parameters after the measurement adjustment to perform the measurement.
  • the terminal provided by the embodiment of the present disclosure can implement each process implemented by the terminal in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again, and the measurement capability of the terminal can be improved.
  • FIG. 5 is a schematic diagram of the hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 500 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, a processor 510, and a power supply 511 and other components.
  • a radio frequency unit 501 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, a processor 510, and a power supply 511 and other components.
  • terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, robots, wearable devices,
  • the processor 510 is configured to adjust the measurement state of the measurement, and process at least one of the counter and timer related to the measurement, wherein the measurement includes the measurement of at least one of RLM and BFD, and the processing includes : Reset, continue running or stop.
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper-layer indication for not performing the measurement within the third time, or the number of upper-layer indications measured during the third time is less than the upper-layer indication for the measurement in the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the number of measured parameter signals in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the number of measured parameter signals in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the reset includes:
  • the stopping includes:
  • the measurement-related counters and timers include at least one of the following:
  • the radio frequency unit 501 or the processor 510 is configured to:
  • one part uses the parameters of the network configuration before the measurement adjustment, and the other part uses the parameters after the measurement adjustment to perform the measurement.
  • the above-mentioned terminal can improve the measurement capability of the terminal.
  • the radio frequency unit 501 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 510; Uplink data is sent to the base station.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 501 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 502, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 503 may convert the audio data received by the radio frequency unit 501 or the network module 502 or stored in the memory 509 into an audio signal and output it as sound. Moreover, the audio output unit 503 may also provide audio output related to a specific function performed by the terminal 500 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 503 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 504 is used to receive audio or video signals.
  • the input unit 504 may include a graphics processing unit (GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame may be displayed on the display unit 506.
  • the image frame processed by the graphics processor 5041 may be stored in the memory 509 (or other storage medium) or sent via the radio frequency unit 501 or the network module 502.
  • the microphone 5042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 501 for output in the case of a telephone call mode.
  • the terminal 500 also includes at least one sensor 505, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 5061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 5061 and/or when the terminal 500 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 505 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 506 is used to display information input by the user or information provided to the user.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 507 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072.
  • the touch panel 5071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 5071 or near the touch panel 5071. operating).
  • the touch panel 5071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 510, the command sent by the processor 510 is received and executed.
  • the touch panel 5071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 507 may also include other input devices 5072.
  • other input devices 5072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 5071 can be overlaid on the display panel 5061.
  • the touch panel 5071 detects a touch operation on or near it, it is transmitted to the processor 510 to determine the type of the touch event, and then the processor 510 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 5061.
  • the touch panel 5071 and the display panel 5061 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 5071 and the display panel 5061 can be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 508 is an interface for connecting an external device with the terminal 500.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 508 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 500 or may be used to communicate between the terminal 500 and the external device. Transfer data between.
  • the memory 509 can be used to store software programs and various data.
  • the memory 509 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 509 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 510 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 509, and calling data stored in the memory 509. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 510.
  • the terminal 500 may also include a power source 511 (such as a battery) for supplying power to various components.
  • a power source 511 such as a battery
  • the power source 511 may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 500 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 510, a memory 509, and a computer program stored on the memory 509 and running on the processor 510.
  • a terminal including a processor 510, a memory 509, and a computer program stored on the memory 509 and running on the processor 510.
  • the computer program is executed by the processor 510,
  • Each process of the foregoing measurement processing method embodiment is realized, and the same technical effect can be achieved. In order to avoid repetition, details are not repeated here.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the measurement processing method provided by the embodiment of the present disclosure is implemented, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Debugging And Monitoring (AREA)

Abstract

本公开实施例提供一种测量处理方法和终端,该方法包括:调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括RLM和BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。

Description

测量处理方法和终端
相关申请的交叉引用
本申请主张在2019年10月23日在中国提交的中国专利申请号No.201911013793.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种测量处理方法和终端。
背景技术
为了保证终端的通信的可靠性,终端往往需要进行一些测量,例如:通过无线链路监测(Radio Link Monitor,RLM)的测量来保证无线链路的可靠性,如通过波束失败检测(Beam Failure Detection,BFD)的测量来保证波束的可靠性。目前技术中终端往往是维持一种测量状态,即终端的测量状态不可调整,使得终端的测量能力比较差。
发明内容
本公开实施例提供一种测量处理方法和终端,以解决终端的测量状态不可调整导致的终端的测量能力比较差的问题。
第一方面,本公开实施例提供一种测量处理方法,应用于终端,包括:
调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括RLM和BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。
第二方面,本公开实施例提供一种终端,包括:
处理模块,用于调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。
第三方面,本公开实施例提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行 时实现本公开实施例提供的测量处理方法中的步骤。
第四方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本公开实施例提供的测量处理方法中的步骤。
本公开实施例中,调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括RLM和BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。这样可以支持终端调整测量状态,从而提高终端的测量能力。
附图说明
图1是本公开实施例可应用的一种网络***的结构图;
图2是本公开实施例提供的一种测量处理方法的流程图;
图3是本公开实施例提供的一种终端的结构图;
图4是本公开实施例提供的另一种终端的结构图;
图5是本公开实施例提供的另一种终端的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计 方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的测量处理方法和终端可以应用于无线通信***中。该无线通信***可以为新空口(New Radio,NR)***,或者其他***,例如:演进型长期演进(Evolved Long Term Evolution,eLTE)***或者长期演进(Long Term Evolution,LTE)***,或者后续演进通信***等。
请参见图1,图1是本公开实施例可应用的一种网络***的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或者机器人等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。上述网络设备12可以是4G基站,或者5G基站,或者以后版本的基站,或者其他通信***中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本公开实施例提供的一种测量处理方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201、调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括RLM和BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。
上述测量可以是RLM测量或者BFD测量,或者可以是RLM测量和BFD测量。另外,上述测量可以是非连续接收(Discontinuous reception,DRX)周期内测量。
需要说明的是,本公开实施例中,RLM测量也可以称作RLM监测,BFD测量也可以称作BFD监测。
上述调整测量的测量状态可以是,从一种测量状态调整到另一个测量状态,其中,不同的测量状态的能耗不同。
而上述测量相关的计数器和计时器可以是,对上述测量存在影响的计数器和计时器中的至少一项,例如:影响无线链路失败判断的计数器和计时器,影响波束失败判断的计数器和计时器。
而上述处理可以是全部重置、部分重置、继续运行、全部停止或者部分停止,当然,对此不作限定,例如:还可以是调整上述计数器和计时器中至少一项的门限值等。
本公开实施例中,通过上述步骤可以实现支持终端调整测量状态,从而提高终端的测量能力,进一步可以在测量放松时节省终端的功耗,在测量增强时提高终端的测量能力。
还需要说明的是,上述调整上述测量的测量状态可以从一个测量的能耗高的测量状态调整至另一个测量的能耗较低的测量状态,从而达到节约终端功耗的效果,即达到省电的目的。
需要说明的是,调整测量的测量状态和对所述测量相关的计数器和计时器中至少一项进行处理可以是并行执行的,也可以是先调整再处理,或者先处理再调整。
作为一种可选的实施方式,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
其中,在所述第一测量状态执行所述测量的能耗可以是低于在所述第二测量状态执行所述测量的能耗,在所述第二测量状态执行所述测量的能耗可以是低于在所述第三测量状态执行所述测量的能耗。其中,上述测量的能耗可以是终端在进行上述测量时的耗电。
例如:确定从第一测量状态调整至第二测量状态,或者确定从第二测量 状态调整至第一测量状态,或者确定从第三测量状态调整至第二测量状态,或者确定从第三测量状态调整至第一测量状态,或者确定从第一测量状态调整至第三测量状态等。
上述第一测量状态指测量放松可以是指,所述第一测量状态是指在所述第二测量状态的基础上进行测量放松的状态,上述第三测量状态指测量增强可以是指,所述第三测量状态是指在所述第二测量状态的基础上的进行测量增强的状态。
由于上述第一测量状态指测量放松,从而上述第一测量状态可以称作测量放松状态(简称测量放松);上述第二测量状态指正常测量,从而上述第二测量状态可以称作正常测量状态(简称正常测量)。需要说明的是,本发明实施例中,正常测量可以是指默认测量状态或者预配置的状态;由于上述第三测量状态指测量增强,从而上述第三测量状态可以称作测量增强状态(简称测量增强)。
以RLM测量或者BFD测量为例,上述调整可以从测量放松、正常测量和测量增强中任意两个状态之间转换时,具体可以包括如下至少一项:
从测量放松到正常测量;
从测量放松到测量增强;
从正常测量到测量放松;
从正常测量到测量增强;
从测量增强到测量放松;
从测量增强到正常测量。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示(Upper layer indication),或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测 量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔(Subcarrier space,SCS)中至少一项不同。
其中,上述测量周期可以是上述测量在层一(L1)、层2(L2)和层3(L3)中至少一项的测量周期,而上述测量抽样数可以是测量抽样样本(sample)数。通过上述测量周期长于所述第二测量状态的测量周期,以及测量抽样数小于所述第二测量状态的测量抽样数,可以实现在时域上实现上述测量(例如:RLM/BFD测量)放松,即上述测量的L1测量周期的扩长或者测量抽样样本(sample)数减少,以省电。
而上述测量指示间隔可以是上述测量在层2或者层3指示间隔,通过上述测量指示间隔长于所述第二测量状态的测量指示间隔可以实现在时域实现上述测量(例如:RLM/BFD测量)放松,即上述测量L2/L3指示间隔扩长,以省电。
上述第一时间、第二时间和第三时间可以是相同或者不同的时段,或者相同或者不同时长的时间段。通过上述在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数可以在一段时间内减少测量抽样数,以省电。
通过上述在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数可以实现,在一段时间内,不进行上述测量(例如:RLM/BFD测量)或者减少上述测量,以省电。
通过上述在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示可以实现,在一段时间内,不进行上层指示(例如:RLM/BFD上层指示),或者减少上层指示(例如:RLM/BFD上层指示),以省电。
通过上述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量可以实现,减少上述测量(例如:RLM/BFD测量)的参考信号的数量,以省电。
上述参考信号的周期不同,可以是第一测量状态下测量的参考信号的周期大于第二测量状态下测量的参考信号的周期,上述SCS不同可以是第一测量状态下测量的参考信号的SCS大于第二测量状态下测量的参考信号的SCS,这样可以省电。
该实施方式中,提供了多种方式使得在所述第一测量状态执行所述测量的能耗低于在所述第二测量状态执行所述测量的能耗,当然,本公开实施例中,并不限定上述方式,还可以是使得在所述第一测量状态执行所述测量的能耗低于在所述第二测量状态执行所述测量的能耗的方式。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
其中,第三测量状态的相关描述可以参见上述第二测量状态的相关描述,此处不作赘述。
作为一种可选的实施方式,上述测量相关的计数器和计时器包括如下至少一项:
用于判断无线链路失败(Radio link failure,RLF)的计数器和计时器;
用于判断波束失败的计数器和计时器。
其中,上述判断RLF的计数器和计时器可以是协议中定义的判断RLF中使用到的计数器和计时器。
下面以协议中定义的其中一种判断RLF进行举例说明:
终端通过测量物理下行控制信道(Physical downlink control channel,PDCCH)部分小区参考信号(Reference Signal,CRS)的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)来实现对无线链路的监听。当测量的PDCCH部分CRS参考信号低于一定门限则认定该无线链路失步(out-of-sync,OOS)。则物理层通知高层(例如:RRC层)一个OOS指示,如果RRC层连续N个OOS指示则终端开启一个定时器T1;
如果当测量的PDCCH部分CRS参考信号高于一定门限则认定该无线链路同步(in-sync,IS),则物理层通知高层(例如:RRC层)一个IS指示,如果RRC层连续M个IS指示则终端停止定时器T1的运行;
如果定时器T1运行超时了,则终端判断无线链路失败(Radio link failure,RLF)。
则上述计数器和定时器可以包括上述N、M和定时器T1,当然,这里仅是举例说明,并不限定上述计数器和定时器包括上述N、M和定时器T1。
用于判断波束失败的计数器和计时器。
其中,上述判断波束失败的计数器和计时器可以是协议中定义的判断波束失败中使用到的计数器和计时器。
下面以协议中定义的其中一种判断波束失败进行举例说明:
物理层通过判断一定的条件(比如所有的波束接收信号低于某一门限)满足后,向MAC层指示一个波束失败实例(beam failure instance)。MAC层通过计数物理层(PHY层)周期性指示的beam failure instance个数来判断是否波束失败,具体的计数方式可以是:
连接或非连续的N个beam failure instance后,即判断波束失败;
在一个时间内如果收到一个beam failure instance,则计数器加1。一旦收到beam failure instance,则定时器启动或者重启。如果在一个定时器过期时还未收到beam failure instance,则计数器重置。当计数器达到预设次数时,则判断波束失败。
则上述计数器和定时器可以包括上述N和这里的定时器,当然,这里仅是举例说明,并不限定上述计数器和定时器包括上述N和这里的定时器。
该实施方式中,通过对用于判断RLF和波束失败的计数器和计时器进行 上述处理,从而可以提高终端的测量能力,以及还可以达到省电的目的。
作为一种可选的实施方式,上述重置包括:
全部重置或者部分重置。
其中,上述全部重置可以是将上述测量相关的计数器和计时器中至少一项全部重置,上述部分重置可以是将上述测量相关的计数器和计时器中至少一项部分重置,另一部分继续运行。
以BFD测量为例,上述全部重置可以包括:当终端正在进行BFD,在此过程中如果发生上述调整事件,BFD对应的计数重置,计数器N重置为0,即从0开始重新数,这里的重置是指重置正在计数的计数器N,以及对应的定时器T1计时重置,这里重置是指重置正在运行定时器T1。而部分重置可以包括:当BFD过程中,如果发生上述调整事件之一,对应参数部分重置,如包括以下至少一项:重置计数器N,或重置定时器T1。而继续运行可以包括:当BFD过程中,如果发生上述事件之一,对应参数不重置,继续运行,即继续计数或者继续计时。需要说明的是,这里的计数器N和定时器T1可以是上述介绍的波束失败判断中使用的计数器和定时器。
以RLM测量为例,全部重置可以包括:当终端正在进行RLM,在此过程中如果发生上述调整事件,RLM对应的OOS和IS计数重置,即计数器N和M重置为0,即从0开始重新数,这里的重置是指重置正在计数的计数器N和M),以及对应的定时器T1计时重置,这里的重置是指重置正在运行定时器T1。而部分重置可以包括:当RLM过程中,如果发生上述调整事件之一,对应参数部分重置,包括以下至少一项:重置计数器N,重置计数器M,重置定时器T1。而继续运行可以包括:当RLM过程中,如果发生上述调整事件之一,对应参数不重置,继续运行,即继续计数或者继续计时。需要说明的是,这里的计数器N、计数器M和定时器T1可以是上述介绍的波束失败判断中使用的计数器和定时器。
作为一种可选的实施方式,上述停止包括:全部停止或者部分停止。
其中,上述全部停止可以是将上述测量相关的计数器和计时器中至少一项全部停止,上述部分停止可以是将上述测量相关的计数器和计时器中至少一项部分停止,另一部分继续运行。
由于将上述测量相关的计数器和计时器中至少一项全部停止或者部分停止,减少上述测量的次数,以省电。
作为一种可选的实施方式,上述调整所述测量的测量状态之后,所述方法还包括:
在所述调整后的测量状态下,使用网络配置的所述测量调整后的参数进行所述测量;或者
在所述调整后的测量状态下,使用网络配置的所述测量调整前的参数进行所述测量;或者
在所述调整后的测量状态下,一部分使用网络配置的所述测量调整前的参数,另一部分使用所述测量调整后的参数进行所述测量。
其中,上述测量调整后的参数和测量调整前的参数可以是网络在上述调整之前配置的。且这些参数可以包括:测量周期长度、测量持续时间、测量样本数、计数器的门限值、定时器的门限值等与上述测量相关的参数。
另外,上述使用网络配置的所述测量调整后的参数进行所述测量可以是,在全部重置测量相关的计数器和计时器中至少一项的情况下,使用网络配置的所述测量调整后的参数进行所述测量,当然,对此不作限定,也可以是在部分重置测量相关的计数器和计时器中至少一项的情况下,使用网络配置的所述测量调整后的参数进行所述测量。
上述使用网络配置的所述测量调整前的参数进行所述测量可以是,在继续运行测量相关的计数器和计时器中至少一项的情况下,使用网络配置的所述测量调整前的参数进行所述测量,当然,对此不作限定,也可以是在部分重置测量相关的计数器和计时器中至少一项的情况下,使用网络配置的所述测量调整前的参数进行所述测量。
上述一部分使用网络配置的所述测量调整前的参数,另一部分使用所述测量调整后的参数进行所述测量可以是,在部分重置测量相关的计数器和计时器中至少一项的情况下,一部分使用网络配置的所述测量调整前的参数,另一部分使用所述测量调整后的参数进行所述测量,例如:重置的部分使用调整后的参数,不重置的部分使用调整前的参数。
或者,上述一部分使用网络配置的所述测量调整前的参数,另一部分使 用所述测量调整后的参数进行所述测量可以是,在部分停止测量相关的计数器和计时器中至少一项的情况下,一部分使用网络配置的所述测量调整前的参数,另一部分使用所述测量调整后的参数进行所述测量,例如:停止的部分使用调整后的参数,不停止的部分使用调整前的参数。
当然,对此不作限定,也可以是在全部重置测量相关的计数器和计时器中至少一项的情况下,使用网络配置的所述测量调整前的参数和所述测量调整后的参数进行所述测量,即一部分使用调整前的参数,另一部分使用调整后的参数。
本公开实施例中,调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括RLM和BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。这样可以支持终端调整测量状态,从而提高终端的测量能力。
请参见图3,图3是本公开实施例提供的一种终端的结构图,如图3所示,终端300包括:
处理模块301,用于调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括RLM和BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。
可选的,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述 测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述重置包括:
全部重置或者部分重置。
可选的,所述停止包括:
全部停止或者部分停止。
可选的,所述测量相关的计数器和计时器包括如下至少一项:
用于判断RLF的计数器和计时器;
用于判断波束失败的计数器和计时器。
可选的,如图4所示,终端300还包括测量模块302,测量模块302用于:
在所述调整后的测量状态下,使用网络配置的所述测量调整后的参数进行所述测量;或者
在所述调整后的测量状态下,使用网络配置的所述测量调整前的参数进 行所述测量;或者
在所述调整后的测量状态下,一部分使用网络配置的所述测量调整前的参数,另一部分使用所述测量调整后的参数进行所述测量。
本公开实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,且可以提高终端的测量能力。
图5为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、处理器510、以及电源511等部件。本领域技术人员可以理解,图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、机器人、可穿戴设备、以及计步器等。
处理器510,用于调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括RLM和BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。
可选的,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号的数量,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号的数量,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述重置包括:
全部重置或者部分重置。
可选的,所述停止包括:
全部停止或者部分停止。
可选的,所述测量相关的计数器和计时器包括如下至少一项:
用于判断无线链路失败RLF的计数器和计时器;
用于判断波束失败的计数器和计时器。
可选的,所述调整所述测量的测量状态之后,射频单元501或者处理器510用于:
在所述调整后的测量状态下,使用网络配置的所述测量调整后的参数进行所述测量;或者
在所述调整后的测量状态下,使用网络配置的所述测量调整前的参数进行所述测量;或者
在所述调整后的测量状态下,一部分使用网络配置的所述测量调整前的参数,另一部分使用所述测量调整后的参数进行所述测量。
上述终端可以提高终端的测量能力。
应理解的是,本公开实施例中,射频单元501可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器510处理;另外,将上行的数据发送给基站。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元501还可以通过无线通信***与网络和其他设备通信。
终端通过网络模块502为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元503可以将射频单元501或网络模块502接收的或者在存储器509中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元503还可以提供与终端500执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元503包括扬声器、蜂鸣器以及受话器等。
输入单元504用于接收音频或视频信号。输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元506上。经图形处理器5041处理后的图像帧可以存储在存储器509(或其它存储介质)中或者经由射频单元501或网络模块502进行发送。麦克风5042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元501发送到移动通信基站的格式输出。
终端500还包括至少一种传感器505,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板5061的亮度,接近传感器可在 终端500移动到耳边时,关闭显示面板5061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器505还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元506用于显示由用户输入的信息或提供给用户的信息。显示单元506可包括显示面板5061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板5061。
用户输入单元507可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板5071上或在触控面板5071附近的操作)。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器510,接收处理器510发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板5071。除了触控面板5071,用户输入单元507还可以包括其他输入设备5072。具体地,其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板5071可覆盖在显示面板5061上,当触控面板5071检测到在其上或附近的触摸操作后,传送给处理器510以确定触摸事件的类型,随后处理器510根据触摸事件的类型在显示面板5061上提供相应的视觉输出。虽然在图5中,触控面板5071与显示面板5061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板5071与显示面板5061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元508为外部装置与终端500连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元508可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端500内的一个或多个元件或者可以用于在终端500和外部装置之间传输数据。
存储器509可用于存储软件程序以及各种数据。存储器509可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器510是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器509内的软件程序和/或模块,以及调用存储在存储器509内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
终端500还可以包括给各个部件供电的电源511(比如电池),可选的,电源511可以通过电源管理***与处理器510逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
另外,终端500包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器510,存储器509,存储在存储器509上并可在所述处理器510上运行的计算机程序,该计算机程序被处理器510执行时实现上述测量处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上 存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的测量处理方法,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (18)

  1. 一种测量处理方法,应用于终端,包括:
    调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。
  2. 如权利要求1所述的方法,其中,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
    第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
  3. 如权利要求2所述的方法,其中,所述第一测量状态满足如下至少一项:
    测量周期长于所述第二测量状态的测量周期;
    在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
    测量指示间隔长于所述第二测量状态的测量指示间隔;
    在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
    在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
    所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
    所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
  4. 如权利要求2所述的方法,其中,所述第三测量状态满足如下至少一项:
    测量周期短于所述第二测量状态的测量周期;
    在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
    测量指示间隔短于所述第二测量状态的测量指示间隔;
    在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
    在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
    所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
    所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
  5. 如权利要求1所述的方法,其中,所述重置包括:
    全部重置或者部分重置。
  6. 如权利要求1所述的方法,其中,所述停止包括:全部停止或者部分停止。
  7. 如权利要求1所述的方法,其中,所述测量相关的计数器和计时器包括如下至少一项:
    用于判断无线链路失败RLF的计数器和计时器;
    用于判断波束失败的计数器和计时器。
  8. 如权利要求1所述的方法,其中,所述调整所述测量的测量状态之后,所述方法还包括:
    在所述调整后的测量状态下,使用网络配置的所述测量调整后的参数进行所述测量;或者
    在所述调整后的测量状态下,使用网络配置的所述测量调整前的参数进行所述测量;或者
    在所述调整后的测量状态下,一部分使用网络配置的所述测量调整前的参数,另一部分使用所述测量调整后的参数进行所述测量。
  9. 一种终端,包括:
    处理模块,用于调整测量的测量状态,并对所述测量相关的计数器和计时器中至少一项进行处理,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量,所述处理包括:重置、继续运行或者停止。
  10. 根据权利要求9所述的终端,其中,所述调整所述测量的测量状态 包括在如下任意两种测量状态之间进行调整:
    第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
  11. 根据权利要求10所述的终端,其中,所述第一测量状态满足如下至少一项:
    测量周期长于所述第二测量状态的测量周期;
    在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
    测量指示间隔长于所述第二测量状态的测量指示间隔;
    在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
    在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
    所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
    所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
  12. 根据权利要求10所述的终端,其中,所述第三测量状态满足如下至少一项:
    测量周期短于所述第二测量状态的测量周期;
    在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
    测量指示间隔短于所述第二测量状态的测量指示间隔;
    在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
    在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
    所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
    所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号, 其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
  13. 根据权利要求9所述的终端,其中,所述重置包括:
    全部重置或者部分重置。
  14. 根据权利要求9所述的终端,其中,所述停止包括:
    全部停止或者部分停止。
  15. 根据权利要求9所述的终端,其中,所述测量相关的计数器和计时器包括如下至少一项:
    用于判断RLF的计数器和计时器;
    用于判断波束失败的计数器和计时器。
  16. 根据权利要求9所述的终端,所述终端还包括测量模块,所述测量模块用于:
    在所述调整后的测量状态下,使用网络配置的所述测量调整后的参数进行所述测量;或者
    在所述调整后的测量状态下,使用网络配置的所述测量调整前的参数进行所述测量;或者
    在所述调整后的测量状态下,一部分使用网络配置的所述测量调整前的参数,另一部分使用所述测量调整后的参数进行所述测量。
  17. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至8中任一项所述的测量处理方法中的步骤。
  18. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的测量处理方法中的步骤。
PCT/CN2020/123129 2019-10-23 2020-10-23 测量处理方法和终端 WO2021078240A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227017237A KR20220088464A (ko) 2019-10-23 2020-10-23 측정 처리 방법 및 단말
EP20878854.7A EP4050928A4 (en) 2019-10-23 2020-10-23 MEASUREMENT PROCESSING METHOD AND TERMINAL
BR112022007656A BR112022007656A2 (pt) 2019-10-23 2020-10-23 Método de processamento de medição aplicado a um terminal, terminal e meio de armazenamento legível por computador
JP2022521416A JP7328449B2 (ja) 2019-10-23 2020-10-23 測定処理方法及び端末
US17/657,890 US20220225147A1 (en) 2019-10-23 2022-04-04 Measurement processing method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911013793.X 2019-10-23
CN201911013793.XA CN112702755A (zh) 2019-10-23 2019-10-23 一种测量处理方法和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/657,890 Continuation US20220225147A1 (en) 2019-10-23 2022-04-04 Measurement processing method and terminal

Publications (1)

Publication Number Publication Date
WO2021078240A1 true WO2021078240A1 (zh) 2021-04-29

Family

ID=75505301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123129 WO2021078240A1 (zh) 2019-10-23 2020-10-23 测量处理方法和终端

Country Status (7)

Country Link
US (1) US20220225147A1 (zh)
EP (1) EP4050928A4 (zh)
JP (1) JP7328449B2 (zh)
KR (1) KR20220088464A (zh)
CN (1) CN112702755A (zh)
BR (1) BR112022007656A2 (zh)
WO (1) WO2021078240A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283844A1 (en) * 2021-07-14 2023-01-19 Nec Corporation Methods, devices and computer storage media for communication
WO2023122670A1 (en) * 2021-12-21 2023-06-29 Interdigital Patent Holdings, Inc. Measurement relaxation for radio link monitoring and reporting of measurement relaxation state in wireless systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449556B (zh) * 2020-10-30 2024-06-28 维沃移动通信有限公司 测量调整方法和终端
CN115623526A (zh) * 2021-07-16 2023-01-17 夏普株式会社 执行无线链路监测的方法及用户设备
US20230118940A1 (en) * 2021-10-19 2023-04-20 Qualcomm Incorporated Beam failure detection per beam for multi-beam communications
CN117941403A (zh) * 2021-12-06 2024-04-26 Oppo广东移动通信有限公司 测量放松方法、装置、终端设备及存储介质
CN116963162A (zh) * 2022-04-14 2023-10-27 夏普株式会社 确定是否报告测量放松状态的方法及用户设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040277A1 (zh) * 2012-09-14 2014-03-20 华为技术有限公司 移动性管理方法、基站和用户设备
CN109587707A (zh) * 2017-09-28 2019-04-05 维沃移动通信有限公司 一种测量控制方法、用户终端及基站
US20190124531A1 (en) * 2008-11-05 2019-04-25 Samsung Electronics Co., Ltd. Radio link failure detection method and apparatus for wireless communication system
CN109802735A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 无线链路的测量方法及装置、终端、基站、存储介质
CN110036593A (zh) * 2017-08-11 2019-07-19 联发科技股份有限公司 无线资源管理和无线链路监测配置和进程的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943272B2 (ja) * 2007-08-13 2012-05-30 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるユーザ装置及び方法
CN103874174A (zh) * 2012-12-18 2014-06-18 展讯通信(上海)有限公司 一种通过检测传感器来控制移动终端的方法
CN105338566B (zh) * 2014-08-07 2019-06-04 上海诺基亚贝尔股份有限公司 通信***中用于测量增强的方法和装置
US20170026861A1 (en) * 2015-07-20 2017-01-26 Mediatek Inc. Measurement Enhancements for LTE Systems
CN109041098A (zh) * 2017-06-12 2018-12-18 维沃移动通信有限公司 一种终端测量配置方法、终端及基站
CN110035447B (zh) * 2018-01-11 2021-09-24 维沃移动通信有限公司 一种测量配置方法及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190124531A1 (en) * 2008-11-05 2019-04-25 Samsung Electronics Co., Ltd. Radio link failure detection method and apparatus for wireless communication system
WO2014040277A1 (zh) * 2012-09-14 2014-03-20 华为技术有限公司 移动性管理方法、基站和用户设备
CN110036593A (zh) * 2017-08-11 2019-07-19 联发科技股份有限公司 无线资源管理和无线链路监测配置和进程的方法
CN109587707A (zh) * 2017-09-28 2019-04-05 维沃移动通信有限公司 一种测量控制方法、用户终端及基站
CN109802735A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 无线链路的测量方法及装置、终端、基站、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Remaining issues on radio link monitoring for mobility management (R1-1800656)", 3GPP TSG RAN WG1 MEETING AH 1801, 26 January 2018 (2018-01-26), XP051384978 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283844A1 (en) * 2021-07-14 2023-01-19 Nec Corporation Methods, devices and computer storage media for communication
WO2023122670A1 (en) * 2021-12-21 2023-06-29 Interdigital Patent Holdings, Inc. Measurement relaxation for radio link monitoring and reporting of measurement relaxation state in wireless systems

Also Published As

Publication number Publication date
US20220225147A1 (en) 2022-07-14
BR112022007656A2 (pt) 2022-08-09
EP4050928A4 (en) 2022-12-21
JP7328449B2 (ja) 2023-08-16
KR20220088464A (ko) 2022-06-27
JP2022551647A (ja) 2022-12-12
EP4050928A1 (en) 2022-08-31
CN112702755A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2021078240A1 (zh) 测量处理方法和终端
US20210168690A1 (en) Information processing method for a radio link failure, terminal, and network device
US20220053350A1 (en) Measurement method, configuration method, terminal, and network-side device
RU2769399C1 (ru) Способ реконфигурации и абонентское оборудование
US20210136725A1 (en) Paging indication method, apparatus, and system
WO2020253612A1 (zh) Pdcch监听方法和终端
US20220248244A1 (en) Measurement processing method, indication information sending method, terminal, and network device
WO2020156436A1 (zh) 测量方法、终端、测量指示方法及网络侧设备
WO2020029823A1 (zh) 小区波束失败处理方法、移动通信终端和网络侧设备
US20230247468A1 (en) Measurement control method, terminal, and network-side device
WO2019237931A1 (zh) 波束状态检测方法及终端
WO2019237936A1 (zh) 无线链路监测方法及终端
WO2019085718A1 (zh) 随机接入方法和用户终端
WO2020015530A1 (zh) 网络通信的状态检测方法、配置方法、终端及网络设备
WO2019223684A1 (zh) 测量上报方法、测量配置方法、终端和网络侧设备
US20210105651A1 (en) Measurement gap processing method, terminal, and network node
US20220303814A1 (en) Measurement method and terminal
WO2019238027A1 (zh) 链路质量监测方法及终端
WO2021036943A1 (zh) 发生波束失败的处理方法和终端
WO2020216331A1 (zh) 随机接入方法及终端
WO2019242477A1 (zh) 随机接入资源的选择方法及终端设备
WO2021197192A1 (zh) 参考信号的确定方法及相关设备
US20210211918A1 (en) Reporting method, receiving method, terminal, and network-side device
WO2021057778A1 (zh) Pdcch监听控制方法及相关设备
WO2021036649A1 (zh) 模式切换方法、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007656

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227017237

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020878854

Country of ref document: EP

Effective date: 20220523

ENP Entry into the national phase

Ref document number: 112022007656

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220420