WO2021078167A1 - 一种飞行器返航控制方法、装置、飞行器和存储介质 - Google Patents

一种飞行器返航控制方法、装置、飞行器和存储介质 Download PDF

Info

Publication number
WO2021078167A1
WO2021078167A1 PCT/CN2020/122544 CN2020122544W WO2021078167A1 WO 2021078167 A1 WO2021078167 A1 WO 2021078167A1 CN 2020122544 W CN2020122544 W CN 2020122544W WO 2021078167 A1 WO2021078167 A1 WO 2021078167A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
return
return target
target area
relative speed
Prior art date
Application number
PCT/CN2020/122544
Other languages
English (en)
French (fr)
Inventor
张添保
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021078167A1 publication Critical patent/WO2021078167A1/zh
Priority to US17/659,690 priority Critical patent/US20220317705A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • G05D1/0684Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing on a moving platform, e.g. aircraft carrier
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/759Region-based matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0065Navigation or guidance aids for a single aircraft for taking-off
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the embodiments of the present invention relate to aircraft technology, and in particular to an aircraft return control method, device, aircraft, and storage medium.
  • UAVs are used in express transportation, street scene shooting, surveillance inspections and other fields.
  • the destination position of the drone's return home is fixed.
  • the position of mobile vehicles such as yachts and ships is not fixed when sailing at sea. Therefore, how to ensure that the drone can safely land on the yacht, It is a problem that needs to be solved urgently to avoid falling into the water on mobile vehicles such as ships.
  • the invention provides a method, a device, an aircraft and a storage medium for controlling the return of an aircraft to ensure that the aircraft can accurately and safely land to the return target on the return target in a moving state.
  • an embodiment of the present invention provides an aircraft return control method, including:
  • the flight parameters are adjusted to land at the return target area.
  • an aircraft return control device including:
  • the first determination module is used to determine the location of the return target area according to the time and phase of the return signal
  • the first control module is used to adjust the flight parameters according to the matching result between the image of the current area and the pre-collected image of the return target area when flying to the return target area, so as to land at the return target area .
  • an embodiment of the present invention also provides an aircraft, the aircraft including:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • Image capture unit used to capture images
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the aircraft return control method as described in the first aspect.
  • an embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the aircraft returns to home control method as described in the first aspect is implemented.
  • the present invention roughly calculates the position of the return target area according to the time and phase of the return signal to ensure that the aircraft can return to the sky above the return target area.
  • the aircraft flies to the return target area, it will be based on the image of the current area and pre-collected According to the matching result between the images of the return target area, adjust the flight parameters to land to the return target.
  • the invention solves the technical problem in the prior art that the return target cannot be accurately landed to the return target due to the movement of the return target, and realizes the technical effect of controlling the aircraft to accurately and safely land on the return target area on the return target area.
  • FIG. 1 is a schematic diagram of an application scenario of an aircraft return control method provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram showing a yacht mode switch provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of displaying a warning dialog box for yacht mode according to an embodiment of the present invention
  • Figure 4 is a schematic diagram of a post-takeoff action selection provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a display for setting a home point according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for controlling the return of an aircraft according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a display for controlling an aircraft to accurately land to a return target according to an embodiment of the present invention
  • FIG. 8 is a flowchart of another aircraft return control method provided by an embodiment of the present invention.
  • FIG. 9 is a flowchart of yet another method for controlling the return of an aircraft according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of returning home control during landing of an aircraft according to an embodiment of the present invention.
  • FIG. 11 is another flow chart of returning home control during landing of an aircraft according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for controlling the return of the aircraft when the GPS signal of the aircraft and the remote control terminal is good according to an embodiment of the present invention
  • FIG. 13 is a flowchart of a method for controlling the aircraft's return to home when the GPS signal of the aircraft and the remote control terminal is not good according to an embodiment of the present invention
  • FIG. 14 is a structural block diagram of an aircraft return control device provided by an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of the hardware structure of an aircraft provided by an embodiment of the present invention.
  • Fig. 1 is a schematic diagram of an application scenario of an aircraft return control method provided by an embodiment of the present invention.
  • the remote control terminal 110 can send wireless control instructions (such as return instructions, hover instructions, Take-off instruction, etc.), after the aircraft 120 receives the wireless control instruction, it executes the corresponding flight operation according to the wireless control instruction. For example, after the aircraft 120 receives the return instruction, the aircraft responds to the return instruction and flies to the preset return target area 130 in the return target at 131.
  • wireless control instructions such as return instructions, hover instructions, Take-off instruction, etc.
  • the remote control terminal 110 may be a remote control configured with a display device, or may be a mobile terminal installed with an aircraft control application (Application, APP).
  • the mobile terminal can be a smart phone, a tablet computer, an iPad, a notebook computer, etc.
  • the remote control terminal 110 is a smart phone installed with an aircraft control APP
  • the return destination area is a yacht as an example, to illustrate the return control method of the aircraft.
  • a yacht mode switch can be set in the APP, of course, other modes can also be set, which is not limited, as long as the return target is in a moving state, so that the position of the return target area is changed.
  • Fig. 2 is a schematic diagram of a yacht mode switch provided by an embodiment of the present invention. As shown in Figure 2, there is a trigger button on the right side of the yacht mode switch, and the user can enter or exit the yacht mode by clicking the trigger button.
  • Fig. 3 is a schematic diagram of a warning dialog box for yacht mode according to an embodiment of the present invention.
  • the yacht mode warning dialog box displays "Yacht mode takeoff is more dangerous, please confirm the environment to ensure safe takeoff!, and there are two buttons under the dialog box, namely "Cancel” and " Confirm to enter”. If the user clicks the "Cancel” button, the default interface and normal takeoff mode will be restored, and the takeoff cannot be unlocked on non-stationary planes such as yachts; if the user clicks the "Confirm to enter” button, a dialog box for actions after takeoff will pop up.
  • Fig. 3 is a schematic diagram of a warning dialog box for yacht mode according to an embodiment of the present invention.
  • the yacht mode warning dialog box displays "Yacht mode takeoff is more dangerous, please confirm the environment to ensure safe takeoff!, and there are two buttons under the dialog box, namely "Cancel” and " Confirm to enter”. If the user clicks the "Cancel” button, the default
  • FIG. 4 is a schematic diagram of a post-takeoff action selection provided by an embodiment of the present invention. As shown in Figure 4, two selection buttons of "Hovering in the original position” and "Keeping a relative distance from you" are displayed on the dialog box of the action after takeoff. After the user selects any method, the "Home Point Setting" dialog box pops up on the display interface of the mobile terminal.
  • Fig. 5 is a schematic diagram of a display for setting a home point according to an embodiment of the present invention. It should be noted that each aircraft is equipped with a satellite navigation module, that is, the Global Positioning System (GPS). It can be understood that the aircraft can be positioned through GPS.
  • GPS Global Positioning System
  • the aircraft will fly to the yacht/ The tanker was over the sky and landed precisely on the deck during takeoff with the downward view turned on.
  • the downward view refers to the image capturing unit on the aircraft that can capture images of the position below the aircraft.
  • the user when the user sets the home point as the "take-off GPS positioning point".
  • the aircraft When the aircraft receives a take-off command, it will record the GPS latitude and longitude of its position when it takes off. When returning home, the aircraft will fly over the take-off point for landing, but at this time it is very likely that the mobile vehicle will drive away and the aircraft will easily fall into it. Therefore, this function needs to be added with the prompt “Use this function with caution, and ensure that the take-off origin is suitable for landing, otherwise it is very likely to fall into the water!.
  • the aircraft will control itself to fly to the original takeoff point, descend to a height of 10m, and turn on the vision to find the characteristic area that matches the image at takeoff. If there is a feature area that can be matched, the aircraft will open for precise landing, slowly descend and adjust its position until it lands on the deck at take-off; if it does not find a feature area that can be matched, the aircraft is in a hovering state. And send a warning instruction to the remote control terminal, requesting to reset the home point.
  • the display interface of the mobile terminal can be switched to the map interface, and the user can select a point on the map as the home point.
  • the aircraft recognizes the points selected by the user according to the satellite map.
  • the points selected by the user are rivers, oceans, forests, etc.
  • the user is prompted "This is not suitable for landing, please select again", if the user chooses something else, For example, buildings, squares, etc., the aircraft prompts "Please ensure the safety of the landing point, are you sure to choose the home point?", and the user can select "Yes” or “No”.
  • the aircraft will use the selected point on the map as the return target, and the aircraft will land to the selected point regardless of whether it is the user's key to return to home or low-power return.
  • the embodiment of the present invention explains the return control method of the aircraft when the return point is set as the "origin of the take-off carrier" to ensure that the aircraft can accurately land to the return target on the moving return target area.
  • FIG. 6 is a flow chart of a method for controlling the return of an aircraft according to an embodiment of the present invention. This embodiment can be applied to a situation in which the aircraft is accurately landed to the return target of a moving return target.
  • the method can be implemented by an aircraft
  • the return-to-home control device is implemented, where the method can be implemented by hardware and/or software, and is generally integrated in the aircraft.
  • the method specifically includes the following steps:
  • S210 Determine the location of the return target area according to the time and phase of the return signal.
  • the return-to-home signal refers to the wireless signal corresponding to the user sending a return-to-home instruction to the aircraft through the remote control terminal.
  • the user can send a return instruction to the aircraft through the remote control terminal, and the aircraft determines the location of the return target area according to the time and phase of the return signal corresponding to the received return instruction.
  • the position of the return target area refers to a certain area position where the aircraft will land on the return target.
  • the position of the return target area may be the position on the return target where the remote control terminal is located, or the position on the return target where the user is located. In the actual operation process, the position on the return target of the remote control terminal is the position on the return target of the user.
  • the return target area is a certain area located on the return target. Considering that there are two situations in which the returning target is in a moving state and a stationary state. Now we will separately explain whether the returning target is in a moving state or a stationary state.
  • the aircraft when the returning target area is in a stationary state, the aircraft returns to the home according to the position of the returning target area determined by the time and phase of receiving the returning signal, and the reached position is that the remote control terminal is on the returning target. At this time, the aircraft can directly return home according to the location of the return target area. When the aircraft flies to the return target area, the aircraft has already flown above the location of the remote control terminal (ie, the user's location).
  • the aircraft when the returning target area is in a moving state, the aircraft returns to the home according to the location of the returning target area determined by the time and phase of the received return signal. Since the returning target is also moving during the return process of the aircraft, The position of the aircraft returning to the determined return target area is not the position of the remote control terminal on the return target. At this time, when the aircraft flies to the return destination area, it will prompt "have reached the return destination area location, please confirm whether to land" on the display screen of the mobile terminal, and displays "Yes" and "No” on the display interface Button.
  • the user can click "No", and the aircraft will re-determine the current distance between the aircraft and the remote control terminal according to the wireless signal corresponding to the control command sent by the remote control terminal, and fly to the sky above the return target where the remote control terminal is located.
  • the distance between the aircraft and the return target in the return target area needs to be roughly calculated. If the distance between the aircraft and the return target is less than the preset distance threshold, the ground camera on the aircraft will be activated to capture the current aircraft Image of the lower position of the area where it is located, and match it with the pre-acquired image of the return target area to fine-tune the flight parameters of the aircraft according to the matching result, so that the aircraft can accurately land to the return target in the return target area Place.
  • FIG. 7 is a schematic diagram of a display for controlling an aircraft to accurately land to a return target according to an embodiment of the present invention.
  • the return target is the yacht 130
  • the current location of the aircraft 120 is area A
  • the return target area is the B area
  • the return target is point C.
  • the ground camera of the aircraft is activated to capture the image of the area where the aircraft is currently located, and the image of the area where the aircraft is currently located is taken in advance.
  • the return target is also in a moving state. It can be understood that there is a certain distance between the current position of the aircraft and the return target.
  • the image matching algorithm is used to obtain the aircraft’s The relative speed and attitude angle, so that the aircraft will accurately land to the return target, that is, point C.
  • the technical solution of this embodiment roughly calculates the position of the return target area based on the time and phase of the return signal to ensure that the aircraft can return to the sky above the return target area.
  • the aircraft flies to the return target area, it is based on the current location.
  • the matching result between the image and the pre-collected image of the return target area adjust the flight parameters to land to the return target.
  • the invention solves the technical problem in the prior art that the return target cannot be accurately landed to the return target due to the movement of the return target, and realizes the technical effect of controlling the aircraft to accurately and safely land on the return target area on the return target area.
  • Fig. 8 is a flow chart of another aircraft return control method provided by an embodiment of the present invention. It should be noted here that during the flight of the aircraft, when the GPS signal of the aircraft or the remote control terminal has poor positioning, or the positioning error of one end is large (usually the GPS loss of the remote control terminal), the time and phase of the return signal can be passed , Roughly calculate the distance between the aircraft and the remote control terminal to roughly determine the location of the return target area.
  • the method specifically includes the following steps:
  • each set of antennas must be installed on the fuselage or landing gear of the aircraft. It can be understood that when the aircraft receives the signal from the remote control terminal, the time and phase of the signal received by each group of antennas will be different. In the embodiment, taking the signal sent by the remote control terminal as the return signal as an example, the description will be made to determine the location of the return target area according to the time and phase of the signal.
  • a radio frequency unit is provided on the aircraft, and the radio frequency unit is used to receive and send radio wave signals to realize mutual conversion between radio waves and electric signals, thereby realizing wireless communication between the aircraft and the remote control terminal.
  • the radio frequency unit can receive and transmit radio wave signals through an antenna on the aircraft's fuselage or landing gear.
  • S320 Determine the receiving time difference and phase difference of each antenna according to the time and phase when the return signal is received by the at least two groups of antennas.
  • the reception time difference refers to the time difference between at least two antennas on the same aircraft receiving the return signal
  • the phase difference refers to the phase difference between at least two antennas on the same aircraft receiving the return signal.
  • the time at which the antennas of the pairwise combination receive the return signal is made difference to obtain the reception time difference
  • the phase of the antennas of the pair combination received the return signal is made the difference to obtain the phase between the two difference.
  • S330 Determine the relative distance and orientation between the aircraft and the remote control terminal according to the receiving time difference and the phase difference.
  • the position of each group of antennas on the aircraft is different, and accordingly, the time and phase of receiving the return signal will be different.
  • the time difference and phase difference of each group of antennas to receive the return signal are based on the difference between each group of antennas.
  • the distance difference between the remote control terminal and the corresponding radio wave frequency of the return signal transmitted by the remote control terminal determines the relative distance and orientation between the aircraft and the remote control terminal.
  • S340 Determine the position of the return target area according to the relative distance and bearing.
  • the aircraft when the GPS positioning system of the aircraft is not malfunctioning, the aircraft can measure its own longitude and latitude through its own GPS positioning system, and then use the longitude and latitude of the aircraft itself, and the determined relative relationship between the aircraft and the remote control terminal.
  • the distance and azimuth can get the latitude and longitude of the remote control terminal, that is, the latitude and longitude corresponding to the location of the return target area.
  • the technical solution of this embodiment obtains the time and phase of the return signal received by at least two antennas on the aircraft, and determines the receiving time difference and phase difference of each antenna according to the time and phase of the return signal received by the at least two antennas to determine the aircraft
  • the relative distance and azimuth to the remote control terminal can then determine the position of the return target area, which realizes the technical effect that the position of the return target area can be roughly calculated when the GPS positioning system of the remote control terminal fails.
  • Fig. 9 is a flowchart of yet another method for controlling the return of an aircraft according to an embodiment of the present invention. Referring to Figure 9, the method specifically includes the following steps:
  • S410 Determine the position of the return target area according to the time and phase of the return signal.
  • the horizontal error position refers to the distance difference between the position of the aircraft in the X direction corresponding to the current area and the position in the X direction of the return target area. It should be noted here that when the image capture unit in the aircraft is started to collect graphics from the position below the current area, it indicates that the aircraft has reached the preset range of the return target. At this time, it can directly pass through the current area. The matching result of the image and the pre-collected image of the return target area can obtain the horizontal position error between the current location and the return target in the return target area.
  • the first relative speed adjustment instruction refers to the flight speed of the aircraft relative to the mobile vehicle determined according to the horizontal position error between the current area of the aircraft and the return target area, and the moving speed of the mobile vehicle.
  • the horizontal position error is input into the pre-established position controller, and the relative movement of the aircraft is calculated by the position controller.
  • a first relative speed adjustment command is generated according to the flying speed.
  • S440 Determine a first desired relative speed of the aircraft based on the first relative speed adjustment instruction and the user's first control speed instruction.
  • the first operation speed command refers to the user's command to control the flight speed of the user through the lever mapping module in the remote controller corresponding to the aircraft.
  • the aircraft can adjust the speed of the aircraft through the first relative speed adjustment instruction generated by the position controller, or through the first operation speed instruction generated by the lever mapping module in the remote controller connected to the aircraft itself. Perform speed adjustment to obtain the first desired relative speed of the aircraft.
  • the first desired relative speed can be understood as the sum of the first relative speed corresponding to the first relative speed adjustment command and the first operating speed corresponding to the first operating speed command.
  • the first relative speed corresponding to the first relative speed adjustment command is 1 meter/second (m/s), and the direction is true north; the first operating speed corresponding to the first operating speed command is 0.5m/s, And, if the direction is true north, the first desired relative speed is 1.5 m/s, and the direction is true north.
  • the direction of the first relative speed corresponding to the first relative speed adjustment command is opposite to the direction of the first operating speed corresponding to the first operating speed command, the absolute value of the speed between the first relative speed and the first operating speed is compared. The larger direction shall prevail.
  • S450 Generate a first desired attitude angle command according to the first desired relative speed and the speed fusion value obtained in advance.
  • a satellite navigation module is used to measure the position and speed of the aircraft; the accelerometer is used to measure the acceleration of the aircraft; the gyroscope is used to measure the angular velocity of the aircraft; and the magnetometer is used to measure the heading angle of the aircraft.
  • the speed fusion value refers to the flight speed of the aircraft measured by the satellite navigation module and the accelerometer. It can be understood that the speed fusion value is the flight speed obtained theoretically; and the first desired relative speed is the flight speed obtained by manual adjustment by the user according to the actual situation.
  • the attitude angle is also called the Euler angle, which is determined by the relationship between the airframe coordinate system and the geographic coordinate system, and is represented by three Euler angles: heading angle, pitch angle and roll angle.
  • the process of obtaining the attitude angle according to the speed can be referred to the prior art, which will not be repeated here.
  • S460 Generate a motor control instruction of the aircraft according to the first desired attitude angle instruction and the pre-acquired attitude angle fusion value.
  • the motor control command is a command that carries the first desired relative speed and the desired attitude angle.
  • the attitude angle fusion value is a theoretical attitude angle determined by a gyroscope and a magnetometer.
  • the desired attitude angle and the fusion value of the attitude angle corresponding to the desired attitude angle command are input into the attitude control system to generate a motor control command for the aircraft.
  • the motor control command is the motor PWM command.
  • the flight of the aircraft is controlled by the motor control instructions, so that the aircraft can accurately land to the return target.
  • the velocity fusion value and the attitude angle fusion value are both inputting the measured aircraft position, velocity, acceleration, angular velocity and heading angle into the data fusion system, and the obtained fusion speed and attitude angle fusion value are provided to the data fusion system.
  • the corresponding controller of the aircraft for example, the position controller, the speed controller, the attitude control system, etc., so that the controller generates corresponding control commands.
  • control method for landing to the return destination is described in detail. There are two ways to adjust the position to make the aircraft land accurately to the return target.
  • control method for landing to the return target includes:
  • the image capturing unit on the aircraft collects the image of the area where the aircraft is currently located, and matches the image of the current area with the image of the return target area to obtain the position deviation between the aircraft and the center of the landing point in the return target area.
  • the second relative speed adjustment command refers to an adjustment command for the speed of the aircraft relative to the returning target during the descent process. It should be understood that if the GPS of the remote control terminal is lost during the descent of the aircraft, in order to ensure that the aircraft can accurately land to the return target, it is necessary to activate the ground camera on the aircraft and keep it between the aircraft and the center of the landing point in the return target area. The locked state between. At the same time, the position deviation between the aircraft and the center of the landing point in the return target area is input to the position controller to generate a second relative speed adjustment command.
  • the second operation speed command is a speed adjustment command generated by the user through the remote control lever during the descent of the aircraft.
  • the process of determining the second desired relative speed according to the second relative speed corresponding to the second relative speed adjustment command and the second operating speed corresponding to the second operating speed command can refer to the process of determining the first desired relative speed in the above-mentioned embodiment. , I won’t repeat it here.
  • Fig. 10 is a flow chart of return home control during landing of an aircraft according to an embodiment of the present invention.
  • the ground camera on the aircraft needs to keep the target locked state, and the image matching algorithm is used to obtain the position deviation of the aircraft relative to the center of the landing point in real time. And input this position deviation into the position controller to generate a second relative speed adjustment command.
  • the Visual-Inertial Odometry (VIO) can calculate the relative speed of the aircraft through the following image captured by the ground camera, and then fuse the relative speed with other sensors to obtain the relative speed fusion value.
  • the second operation speed corresponding to the second manipulation speed command of the user's stick is added to the second relative speed corresponding to the second relative speed adjustment command to obtain the second desired relative speed, and the second desired relative speed and the relative speed are merged.
  • control method for landing to the return target includes:
  • steps S1-S4 is the same as steps S10-S40 in the foregoing embodiment, and will not be repeated here.
  • the image capturing unit on the aircraft needs to use the image matching method to locate the return target on the return target to ensure that the aircraft accurately landed on the return target.
  • Fig. 11 is another flow chart of return home control during landing of another aircraft provided by an embodiment of the present invention.
  • the GPS of the aircraft is lost, or both GPSs are lost.
  • the ground camera on the aircraft needs to keep the target locked state, and the image matching algorithm is used to obtain the relative landing of the aircraft in real time. Point the position deviation of the center, and input this position deviation into the position controller to generate the third relative speed adjustment command, and finally get the motor's PWM command.
  • the process of generating the PWM command through the third relative speed adjustment command is described in the description of FIG. 10 in the above embodiment, and will not be repeated here.
  • the relative speed measured by the visual VIO becomes particularly important. It can be understood that when the visual VIO fails, the aircraft immediately stops descending; when the visual VIO is not malfunctioning, the aircraft can be accurately landed to the return target through the scheme of Figure 11.
  • the aircraft return control method further includes: obtaining the current flying height of the aircraft in real time during the landing process of the aircraft; The altitude and the preset altitude threshold are used to adjust the descent speed of the aircraft.
  • the current flying height refers to the current height of the aircraft from the ground.
  • the current flying height of the aircraft is directly calculated with the ground as a reference object.
  • a certain area on different mobile vehicles can also be used as a reference to calculate the current flying height of the aircraft.
  • the current flying altitude of the aircraft is obtained in real time, and the descent speed of the aircraft is adjusted according to the comparison result of the flying altitude and the altitude threshold.
  • multiple altitude thresholds can be set for the aircraft, and different descent speeds can be set in different altitude ranges.
  • the maximum descent speed is limited to 5m/s; when the height of the aircraft is not greater than 10m but greater than 3m, the maximum descent speed is limited to 2m/s; when the altitude of the aircraft is not greater than 3m but greater than 0.5
  • the maximum descent speed is limited to 0.5m/s; when the height of the aircraft is not greater than 0.5m, the maximum descent speed is limited to 0.2m/s.
  • the height threshold of the aircraft and the corresponding descent speed in different height ranges can be set according to the actual situation of the mobile vehicle.
  • the return altitude of the aircraft can be set. Specifically, before flying to the return-to-home target area, it also includes: acquiring the current flight altitude when the return-to-home signal is received. Determine whether the current flight altitude has reached the preset safe altitude for returning home. If the safe altitude for returning home is not reached, the current flying altitude of the aircraft is adjusted to the safe returning home altitude so that the aircraft can fly at the safe returning home altitude.
  • the return home safety height can be set according to the actual situation. For example, if the aircraft is landing on an open space, the return safety height can be set relatively low; if the aircraft is flying and landing on a sea with many people, in order to ensure the safety of personnel, the return safety height can be set relatively low. high. Of course, generally speaking, the safe height for returning home is at least 10 meters (m).
  • the safety height protection strategy of the aircraft is described. It can be understood that the safe return altitude of the aircraft during the return home process must be greater than 30m. If the aircraft's current flying altitude is lower than 30m when the aircraft receives the return signal, it needs to climb to 30m before performing the above return logic; if the aircraft is already If it is higher than 30m, you can return to the current altitude.
  • Fig. 12 is a flowchart of a method for controlling the return of the aircraft when the GPS signal of the aircraft and the remote control terminal is good according to an embodiment of the present invention.
  • the images of the deck during takeoff are recorded according to different altitudes.
  • the aircraft returns home obtain the GPS location (user location) of the remote control terminal in real time, use it as the target point that the aircraft needs to track, and make a difference with the aircraft's position fusion value to obtain a rough position error; judge the rough error, if the distance If the distance is greater than 2m, the judgment module outputs 0, and the image matching function is turned off.
  • the aircraft starts to return to the user's position and flies to the user's position (ie the remote control terminal); if the distance is less than or equal to 2m, the judgment module outputs 1 and the visual image matching is turned on , In order to make a precise landing.
  • the image matching module performs image matching according to the height, and outputs the horizontal position error.
  • the horizontal position error is sent to the position controller to generate the first relative speed adjustment instruction; at the same time, the lever amount mapping module in the remote controller wirelessly connected to the aircraft obtains the lever stroke information of the remote controller, and generates it according to the corresponding rules established in advance. The corresponding first control speed command.
  • the first relative speed corresponding to the first relative speed adjustment command and the first operating speed corresponding to the first manipulation speed command are summed to obtain the first desired relative speed, and the first desired relative speed and the speed fusion value are sent
  • the input speed controller generates a first desired attitude angle command; the first desired attitude angle command and the fusion value of the attitude angle are sent to the attitude control system to generate a PWM command of the motor to control the flight of the aircraft.
  • the satellite navigation module obtains the position and speed of the aircraft, the accelerometer measures the acceleration of the aircraft, the gyroscope measures the angular velocity of the aircraft, and the magnetometer measures the heading angle of the aircraft according to the local magnetic field. Then the measured position, velocity, acceleration, angular velocity and heading angle are sent to the data fusion system, and the velocity fusion value, position fusion value, and attitude fusion value are output, and provided to the control system of the aircraft.
  • Fig. 13 is a flowchart of a method for controlling the return home of the aircraft when the GPS signal of the aircraft and the remote control terminal is not good according to an embodiment of the present invention.
  • the time and phase of the radio wave signal sent from the remote control terminal are different in the time and phase of the radio wave signal received by different antennas.
  • the relative distance and orientation of the aircraft and the remote control terminal can be calculated.
  • this solution can be used to ensure that the aircraft can return to the sky over a moving target such as a yacht. If the aircraft returns to the sky above the return target, the vision function of the aircraft can be activated to match the image of the current area of the aircraft with the image of the return target area for accurate landing.
  • Fig. 14 is a structural block diagram of an aircraft return control device provided by an embodiment of the present invention.
  • the device includes: a first determination module 510 and a first control module 520.
  • the first determining module 510 is configured to determine the position of the return target area according to the time and phase of the return signal
  • the first control module 520 is configured to, when flying to the return target area, adjust the flight parameters according to the matching result between the image of the current area and the pre-collected image of the return target area to land at the return target area.
  • the technical solution of this embodiment roughly calculates the position of the return target area based on the time and phase of the return signal to ensure that the aircraft can return to the sky above the return target area.
  • the aircraft flies to the return target area, it is based on the current location of the target area.
  • the result of the matching between the image and the pre-collected image of the return target area adjust the flight parameters to land at the return target.
  • the invention solves the technical problem in the prior art that the return target cannot be accurately landed to the return target due to the movement of the return target, and realizes the technical effect of controlling the aircraft to accurately and safely land on the return target area on the return target area.
  • the first determining module includes:
  • the acquisition unit is used to acquire the time and phase of the return signal received by at least two antennas on the aircraft;
  • the first determining unit is configured to determine the receiving time difference and phase difference of each antenna according to the time and phase of the return signal received by at least two groups of antennas;
  • the second determining unit is used to determine the relative distance and orientation between the aircraft and the remote control terminal according to the receiving time difference and the phase difference;
  • the third determining unit is used to determine the position of the return target area according to the relative distance and azimuth.
  • the flight parameters are adjusted according to the matching result between the image of the current area and the image of the return target area collected in advance, specifically for:
  • a motor control instruction of the aircraft is generated, and the motor control instruction is an instruction carrying the first desired relative speed and the first desired attitude angle.
  • the control method for landing to the return target includes: obtaining the position deviation between the aircraft and the center of the landing point in the return target area in real time during the landing process of the aircraft; generating the second relative speed of the aircraft according to the position deviation Adjustment instruction; Determine the second expected relative speed of the aircraft according to the second relative speed adjustment instruction and the second control speed instruction of the user; Control the aircraft to land to the return target according to the second expected relative speed.
  • the control method for landing to the return target includes: obtaining the position deviation between the aircraft and the center of the landing point in the return target area in real time during the landing process of the aircraft; generating the third relative speed of the aircraft according to the position deviation Adjustment instruction; Determine the third expected relative speed of the aircraft according to the third relative speed adjustment instruction; Control the aircraft to land to the return target according to the third expected relative speed.
  • the aircraft return control device further includes:
  • the first acquisition module is used to acquire the current flying height of the aircraft in real time during the landing process of the aircraft;
  • the first adjustment module is used to adjust the descent speed of the aircraft according to the current flying altitude and the preset altitude threshold.
  • the aircraft return control device further includes:
  • the second acquisition module is used to acquire the current flight altitude when the return signal is received before flying to the return target area;
  • the second determination module is used to determine whether the current flight altitude has reached the preset safe altitude for returning home;
  • the second adjustment module is used to adjust the current flying altitude of the aircraft to the return-home safe height if the return-home safe altitude is not reached, so that the aircraft can fly at the return-home safe altitude.
  • the above-mentioned aircraft return-to-home control device can execute the aircraft return-to-home control method provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 15 is a schematic diagram of the hardware structure of an aircraft provided by an embodiment of the present invention.
  • the aircraft provided by the embodiment of the present invention includes: a processor 610, a memory 620, an input device 630, an output device 640, and an image capturing unit 650.
  • processors 610 there may be one or more processors 610 in the aircraft.
  • one processor 610 is taken as an example.
  • the processor 610, the memory 620, the input device 630, the output device 640, and the image capturing unit 650 in the aircraft may be connected through a bus. Or other ways to connect, Figure 15 takes the bus connection as an example.
  • the memory 620 in the aircraft serves as a computer-readable storage medium that can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, such as those corresponding to the aircraft return control method provided in the embodiments of the present invention.
  • Program instructions/modules (for example, the modules in the aircraft return control device shown in FIG. 14 include: a first determination module 510 and a first control module 520).
  • the processor 610 executes various functional applications and data processing of the aircraft by running software programs, instructions, and modules stored in the memory 620, that is, implements the aircraft return control method in the foregoing method embodiment.
  • the memory 620 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 620 may further include a memory remotely provided with respect to the processor 610, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 630 may be used to receive numeric or character information input by the user to generate key signal input related to user settings and function control of the terminal device.
  • the output device 640 may include a display device such as a display screen.
  • the image capturing unit 650 is used to capture an image of the area where the aircraft is currently located, and send the captured image to the memory 620 for storage.
  • the image capturing unit 650 may be the main camera of the aircraft or an independent ground camera.
  • the programs when one or more programs included in the above-mentioned aircraft are executed by one or more processors 610, the programs perform the following operations: determine the position of the return target area according to the time and phase of the return signal; when flying to the return target area, According to the matching result between the image of the current area and the image of the return target area collected in advance, the flight parameters are adjusted to land to the return target.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method for controlling the return of the aircraft provided by the embodiment of the present invention is implemented.
  • the method includes: according to the time of the return signal Sum phase to determine the location of the return target area; when flying to the return target area, adjust the flight parameters according to the matching result between the current image of the area and the pre-collected image of the return target area to land to the return target.
  • the computer storage medium of the embodiment of the present invention may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above.
  • computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory Erasable programmable read-only memory
  • CD-ROM compact disk read-only memory
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, optical cable, RF, etc., or any suitable combination of the above.
  • the computer program code used to perform the operations of the present invention can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider for example, using an Internet service provider to pass Internet connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computing Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种飞行器(120)返航控制方法、装置、飞行器(120)和存储介质,控制方法包括:根据返航信号的时间和相位,确定返航目标区域(130,B)位置(S210);当飞行至返航目标区域(130,B)时,根据当前所在区域(A)的图像和预先采集的返航目标区域(130,B)的图像之间的匹配结果,调整飞行参数,以降落至返航目标处(131,C)(S220)。有效解决了现有技术中因返航目标的移动而无法准确地降落至返航目标处(131,C)的技术问题,实现了控制飞行器(120)能够精准并安全地降落至返航目标区域(130,B)上的返航目标处(131,C)的技术效果。

Description

一种飞行器返航控制方法、装置、飞行器和存储介质
本申请要求于2019年10月21日提交中国专利局、申请号为201911001438.0、申请名称为“一种飞行器返航控制方法、装置、飞行器和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及飞行器技术,尤其涉及一种飞行器返航控制方法、装置、飞行器和存储介质。
背景技术
随着科技的不断发展,飞行器(比如,无人机)的应用领域越来越广泛。比如,无人机应用于快递运输、街景拍摄、监控巡察等领域。
一般来说,无人机返航的目的地位置都是固定的。但若需无人机停落在游艇、轮船等非静止平面上,由于游艇、轮船等移动载具在海上航行,其位置是不固定的,因此,如何保证无人机安全地降落至游艇、轮船等移动载具上,以避免掉进水里,是一个亟待解决的问题。
发明内容
本发明提供一种飞行器返航控制方法、装置、飞行器和存储介质,以保证飞行器能够精准并安全地降落至处于移动状态的返航目标上的返航目标处。
第一方面,本发明实施例提供了一种飞行器返航控制方法,包括:
根据返航信号的时间和相位,确定返航目标区域位置;
当飞行至所述返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。
第二方面,本发明实施例还提供了一种飞行器返航控制装置,包括:
第一确定模块,用于根据返航信号的时间和相位,确定返航目标区域位置;
第一控制模块,用于当飞行至所述返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至所述返航目标处。
第三方面,本发明实施例还提供了一种飞行器,所述飞行器包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
图像拍摄单元,用于拍摄图像;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面所述的飞行器返航控制方法。
第四方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面所述的飞行器返航控制方法。
本发明通过根据返航信号的时间和相位,粗略地计算出返航目标区域位置,以保证飞行器能够返航至返航目标区域的上空,当飞行器飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。本发明解决了现有技术中因返航目标的移动而无法准确地降落至返航目标处的技术问题,实现了控制飞行器能够精准并安全地降落至返航目标区域上的返航目标处的技术效果。
附图说明
图1是本发明实施例提供的一种飞行器返航控制方法的应用场景示意图;
图2是本发明实施例提供的一种游艇模式开关的显示示意图;
图3是本发明实施例提供的一种游艇模式警示对话框的显示示意图;
图4是本发明实施例提供的一种起飞后动作的选择示意图;
图5是本发明实施例提供的一种设置返航点的显示示意图;
图6为本发明实施例提供的一种飞行器返航控制方法的流程图;
图7是本发明实施例提供的一种控制飞行器精准降落至返航目标处的显示示意图;
图8是本发明实施例提供的另一种飞行器返航控制方法的流程图;
图9是本发明实施例提供的又一种飞行器返航控制方法的流程图;
图10是本发明实施例提供的一种飞行器降落过程中的返航控制流程图;
图11是本发明实施例提供的另一种飞行器降落过程中的返航控制流程图;
图12是本发明实施例提供的一种飞行器和遥控端GPS信号较好时飞行器返航控制方法的流程图;
图13是本发明实施例提供的一种飞行器和遥控端GPS信号不好时飞行器返航控制方法的流程图;
图14是本发明实施例提供的一种飞行器返航控制装置的结构框图;
图15是本发明实施例提供的一种飞行器的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在此需要说明的是,本发明实施例提供的飞行器返航控制方法可应用于返航目标区域为移动目标区域的场景下。其中,移动目标区域可以为游艇、邮轮、汽车等移动目标。图1是本发明实施例提供的一种飞行器返航控制方法的应用场景示意图,如图1所示,遥控端110可以通过无线网络向飞行器120发送无线控制指令(比如,返航指令、悬停指令、起飞指令等),在飞行器120接收到无线控制指令之后,根据无线控制指令执行对应的飞行操作,比如,飞行器120接收到返航指令后,飞行器响应返航指令,并飞行至预先设定的返航目标区域130中的返航目标处131。
其中,遥控端110可以为配置有显示装置的遥控器,也可以为安装有飞行器控制应用程序(Application,APP)的移动终端。移动终端可以为智能手机、平板电脑、iPad、笔记本电脑等。在实施例中,以遥控端110为安装有飞行器控制APP的智能手机,返航目标区域为游艇为例,对飞行器的返航控制方法进行说明。示例性地,可以在APP中设置有游艇模式的开关,当然,也可以设置其它模式,对此并不进行限定,只要返航目标处于移动状态,以使得返航目标区域位置处于变化即可。图2是本发明实施例提供的一种游艇模式开关的显示示意图。如图2所示,在游艇模式开关的右侧有一个触发按钮,用户可通过点击该触发按钮进入游艇模式或退出游艇模式。
当用户打开游艇模式开关,会在移动终端的显示界面上弹出游艇模式警示对话框。图3是本发明实施例提供的一种游艇模式警示对话框的显示示意图。如图3所示,在该游艇模式警示对话框上显示“游艇模式起飞比较危险,请确认环境,保证安全起飞!”,并且,在对话框下有两个按钮,分别为“取消”和“确认进入”。若用户点击“取消”按钮,则还原为默认界面及正常起飞模式,无法在游艇等非静止平面解锁起飞;若用户点击“确认进入”按钮,弹出起飞后动作的对话框。图4是本发明实施例提供的一种起飞后动作的选择示意图。如图4所示,在起飞后动作的对话框上显示“悬停于原位置”和“与您保持相对距离”两个选择按钮。在用户选择完任意一种方式后,在移动终端的显示界面上弹出“返航点设置”的对话框。图5是本发明实施例提供的一种设置返航点的显示示意图。需要说明的是,每个飞行器自身配置有卫星导航模块,即全球定位***(Global Positioning System,GPS)。可以理解为,飞行器可通过GPS进行定位。如图5所示,在返航点设置的对话框上设置有“起飞GPS定 位点”、“地图上选点”和“起飞载体”三个选项,用户可根据自身需求选择其中任意一种方式,然后点击“开始”按钮,此时飞行器可以在游艇等非静止平面上解锁起飞。当然,此时用户也可以点击“退出”按钮,以退出游艇模式的设置;以及用户也可以点击“返回”按钮,以返回上一项的设置页面。
如图4所示,若用户选择“悬停于原位置”,飞行器起飞后悬停于惯性坐标系下,用户通过飞行器的遥控器进行打杆,改变的是惯性系下的飞行速度;若用户选择“与您保持相对静止”飞行器起飞后与用户保持相对平移关系,即用户与飞行器的距离保持不变,用户通过遥控器打杆,改变的是飞行器相对于运动坐标系(用户)的速度。但是这种动作在飞行器高度大于10m时,退出保持相对静止的飞行方式,切换在惯性系下进行飞行。
在图5中,若用户选择返航点为“起飞GPS定位点”,飞行器返航落在起飞时的GPS定位点,由于这种方式比较危险,需要提示用户“可能落在水中,请确定”的对话框;若用户选择返航点为“地图上选点”,则将移动终端的显示界面切换到地图界面,让用户在地图上取点,并弹出“确认选点是否适合降落”的对话框;若用户选择返航点为“起飞载体”,则弹出“飞机会落在甲板上原起飞点,需将视觉打开,保证精准降落”的对话框,当用户选择确认后,飞行器返航时,会飞至游艇/油轮上空,并打开下视精准降落在起飞时的甲板上。其中,下视指的是飞行器上可对飞行器下方位置进行图像拍摄的图像拍摄单元。
当然,为了保证飞行器的飞行安全,在每次飞行器断电开机后,默认为正常起飞模式,即游艇模式处于关闭状态。现对三种返航点的设置方式,进行具体说明。
一个实施例中,当用户将返航点设置为“起飞GPS定位点”。飞行器在接收到起飞指令时,会记录自身起飞时所处位置的GPS经纬度,在返航时,飞行器飞至起飞点上空进行降落,但此时很有可能移动载具开走了,飞行器容易掉进水里,因此该功能需加入提示语“慎用该功能,需保证起飞原点适合降落,否则很可能掉入水里!”。
为了保证安全,该功能若被触发,飞行器控制自身先飞到原先起飞点上空,下降至10m高度,打开视觉寻找与起飞时图像匹配的特征区域。若发现有能够匹配上的特征区域,飞行器打开精准降落,缓慢下降并调整自己的位置,直至降落在起飞时的甲板上;若没有发现有能够匹配上的特征区域,则飞行器处于悬停状态,并向遥控端发送警告指令,要求重新设置返航点。
一个实施例中,当用户将返航点设置为“地图上选点”。用户在点击如图5中所示的“地图上选点”按钮,移动终端的显示界面即可切换到地图界面,用户可在地图上选点作为返航点。飞行器通过用户选取的点,根据卫星地图来进行识别,当用户选取的点为河流、海洋、 森林等时,提示用户“此处不适合降落,请重新选择”,若用户选择得是其它的,如建筑、广场等,飞行器提示“请确保降落点的安全,确定选取为返航点?”,并且用户可选择“是”或者“否”。当用户选择“是”,飞行器将以地图上选取点作为返航目标处,无论是用户按键返航还是低电返航,飞行器将降落至选取点。
一个实施例中,当用户将返航点设置为“起飞载体原点”。示例性地,假设用户在游艇上操作飞行器,此时游艇开走了,飞行器还能返回游艇上的返航目标区域,并精准降落至起飞时的甲板(即返航目标处)上,不至于掉进水里或者飞丢。本发明实施例针对返航点设置为“起飞载体原点”时,对飞行器返航控制方法进行说明,以保证飞行器能精准地降落至处于移动的返航目标区域上的返航目标处。
图6为本发明实施例提供的一种飞行器返航控制方法的流程图,本实施例可适用于将飞行器精准降落至处于移动状态的返航目标的返航目标处的情况,该方法可以由一种飞行器返航控制装置来执行,其中,该方法可由硬件和/或软件的方式实现,并一般集成在飞行器中。
参考图6,该方法具体包括如下步骤:
S210、根据返航信号的时间和相位,确定返航目标区域位置。
其中,返航信号指的是用户通过遥控端向飞行器发送返航指令所对应的无线信号。在实施例中,用户可通过遥控端向飞行器发送返航指令,飞行器根据接收返航指令所对应返航信号的时间和相位,确定返航目标区域位置。其中,返航目标区域位置指的是飞行器所要降落至返航目标上的某一区域位置。当然,在实施例中,返航目标区域位置可以为遥控端所在返航目标上的位置,也可以为用户所在返航目标上的位置。在实际操作过程中,遥控端所在返航目标上的位置即为用户所在返航目标上的位置。
S220、当飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。
在此需要说明的是,返航目标区域为位于返航目标上的某个区域。考虑到返航目标存在处于移动状态和静止状态的两种情况。现分别对返航目标处于移动状态或静止状态进行说明。
一个实施例中,当返航目标区域所在的返航目标处于静止状态时,飞行器按照接收到返航信号的时间和相位确定的返航目标区域位置进行返航,其所达到的位置即为遥控端在返航目标上的位置,此时,飞行器可以直接按照返航目标区域位置进行返航。当飞行器飞行至返航目标区域时,飞行器已经飞至遥控端所在位置(即用户位置)上空。此时,可以启动飞行器上的图像拍摄单元(可以为飞行器上单独的对地摄像头),对飞行器当前所在区域的下视位置进行图像采集,并将下视位置的图像和预先采集的返航目标区域的图像进行图像匹配, 以根据匹配结果对飞行器的飞行参数进行微调,以精准地降落至返航目标区域中的返航目标处。
一个实施例中,当返航目标区域所在的返航目标处于移动状态时,飞行器按照接收到返航信号的时间和相位确定的返航目标区域位置进行返航,由于在飞行器返航过程中,返航目标也在移动,则飞行器返回至已经确定的返航目标区域位置并非遥控端在返航目标上的位置。此时,飞行器在飞行至返航目标区域位置时,在移动终端的显示屏上提示“已到达返航目标区域位置,请确认是否降落”,并在显示界面上显示有“是”和“否”的按钮。此时,用户可点击“否”,飞行器按照遥控端发送控制指令所对应的无线信号再次确定飞行器当前与遥控端之间的距离,并飞行至遥控端所在返航目标的上空。
需要说明的是,为了保证飞行器当前所在区域的图像与预先采集的返航目标区域的图像之间匹配的准确率,在对飞行器当前所在区域的图像与预先采集的返航目标区域的图像进行图像匹配之前,需先对飞行器与返航目标区域中返航目标处之间的距离进行粗略计算,若飞行器与返航目标处之间的距离小于预设距离阈值,则启动飞行器上的对地摄像头,以拍摄飞行器当前所在区域的下方位置的图像,并将其与预先采集的返航目标区域的图像进行匹配,以根据匹配结果对飞行器的飞行参数进行微调,以使飞行器能够精准地降落至返航目标区域中的返航目标处。
图7是本发明实施例提供的一种控制飞行器精准降落至返航目标处的显示示意图。如图7所示,假设返航目标为游艇130,飞行器120当前所处位置为A区域,返航目标区域为B区域,返航目标处为C点。具体的,通过遥控端110发送的返航信号,控制飞行器从A区域飞行至B区域的上方时,启动飞行器的对地摄像头以拍摄飞行器当前所在区域的图像,并将当前所在区域的图像和预先拍摄的返航目标区域的图像进行匹配,由于飞行器在对图像匹配过程中,返航目标也处于移动状态,可以理解为,飞行器当前所处位置与返航目标处有一定的距离,通过图像匹配算法得到飞行器的相对速度和姿态角,以使飞行器精准降落至返航目标处,即C点。
本实施例的技术方案,通过根据返航信号的时间和相位,粗略地计算出返航目标区域位置,以保证飞行器能够返航至返航目标区域的上空,当飞行器飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。本发明解决了现有技术中因返航目标的移动而无法准确地降落至返航目标处的技术问题,实现了控制飞行器能够精准并安全地降落至返航目标区域上的返航目标处的技术效果。
在上述实施例的基础上,对步骤S210作进一步的具体说明。图8是本发明实施例提供的另一种飞行器返航控制方法的流程图。在此需要说明的是,在飞行器飞行过程中,当飞行器或遥控端的GPS信号出现定位不良,或者某一端定位误差很大(一般是遥控端出现GPS丢失)时,可通过返航信号的时间和相位,粗略地计算出飞行器与遥控端之间的距离,以粗略地确定返航目标区域位置。
具体的,参考图8,该方法具体包括如下步骤:
S310、获取飞行器上至少两组天线接收到返航信号的时间和相位。
在此需要说明的是,每个飞行器上可以设置有n组天线,其中,n=2,3或4。并且,每组天线均需安装在飞行器的机身或起落架上。可以理解为,在飞行器接收从遥控端发来的信号时,每组天线接收信号的时间和相位会有所差异。在实施例中,以遥控端发来的信号为返航信号为例,对根据信号的时间和相位确定返航目标区域位置进行说明。当然,在飞行器上设置有射频单元,该射频单元用于接收和发送无线电波信号,实现无线电波与电信号之间的相互转换,从而实现飞行器与遥控端之间的无线通信。其中,射频单元可通过飞行器的机身或起落架上的天线来接收和发送无线电波信号。
S320、根据至少两组天线接收到返航信号的时间和相位确定各天线的接收时间差和相位差。
其中,接收时间差指的是同一个飞行器上至少两组天线接收返航信号的时间差值;相位差指的是同一个飞行器上至少两组天线接收返航信号的相位差值。在实施例中,将两两组合的天线接收到返航信号的时间作差,以得到接收时间差;以及,将两两组合的天线接收到返航信号的相位作差,以得到两者之间的相位差。
S330、根据接收时间差和相位差确定飞行器与遥控端之间的相对距离和方位。
在实施例中,每组天线在飞行器上的位置不同,相应的,接收到返航信号的时间和相位会有所差异,利用每组天线接收返航信号的时间差和相位差,并基于每组天线之间的距离差值,以及遥控端发射返航信号所对应无线电波的频率,确定飞行器与遥控端之间的相对距离和方位。
S340、根据相对距离和方位确定返航目标区域位置。
在实施例中,当飞行器的GPS定位***未出现故障时,飞行器可通过自身的GPS定位***对自身的经纬度进行测量,然后通过飞行器自身的经纬度,以及已确定的飞行器与遥控端之间的相对距离和方位,即可得到遥控端所在的经纬度,即返航目标区域位置所对应的经纬度。
S350、当飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。
本实施例的技术方案,通过获取飞行器上至少两组天线接收返航信号的时间和相位,并根据至少两组天线接收到返航信号的时间和相位确定各天线的接收时间差和相位差,以确定飞行器与遥控端之间的相对距离和方位,进而确定返航目标区域位置,实现了在遥控端自身的GPS定位***出现故障时,也可以粗略地计算出返航目标区域位置的技术效果。
在上述实施例的基础上,对根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,作进一步的具体说明。图9是本发明实施例提供的又一种飞行器返航控制方法的流程图。参考图9,该方法具体包括如下步骤:
S410、根据返航信号的时间和相位,确定返航目标区域位置。
S420、当飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,得到当前所在区域和返航目标区域之间的水平位置误差。
其中,水平误差位置指的是飞行器在当前所在区域所对应X方向的位置和在返航目标区域X方向的位置之间的距离差。在此需要说明的是,在启动飞行器中的图像拍摄单元对当前所在区域的下方位置进行图形采集时,表明飞行器已经到达返航目标处的预设范围内,此时,可直接通过当前所在区域的图像和预先采集的返航目标区域的图像的匹配结果,即可得到当前所在区域和返航目标区域中返航目标处之间的水平位置误差。
S430、根据水平位置误差生成第一相对速度调节指令。
其中,第一相对速度调节指令指的是按照飞行器当前所在区域和返航目标区域之间的水平位置误差,以及移动载具的移动速度而确定的飞行器相对于移动载具的飞行速度。在实施例中,在得到飞行器当前所在区域和返航目标区域中返航目标处之间的水平位置误差之后,将水平位置误差输入预先建立的位置控制器中,通过位置控制器计算出飞行器相对于移动载具的飞行速度,根据该飞行速度生成第一相对速度调节指令。
S440、基于第一相对速度调节指令和用户的第一操纵速度指令,确定飞行器的第一期望相对速度。
其中,第一操作速度指令指的是用户通过飞行器所对应遥控器中的杠杆映射模块控制自身飞行速度的指令。在实施例中,飞行器既可以通过位置控制器生成的第一相对速度调节指令对飞行器进行速度调节,也可以通过飞行器自身所连接的遥控器中的杠杆映射模块生成的第一操作速度指令对飞行器进行速度调节,以得到飞行器的第一期望相对速度。其中,第一期望相对速度可以理解为,第一相对速度调节指令对应的第一相对速度和第一操作速度指令 对应的第一操作速度的相加值。比如,第一相对速度调节指令对应的第一相对速度为1米/秒(m/s),并且,方向为正北方向;第一操作速度指令对应的第一操作速度为0.5m/s,并且,方向为正北方向,则第一期望相对速度为1.5m/s,方向为正北方向。相应的,若第一相对速度调节指令对应的第一相对速度的方向与第一操作速度指令对应的第一操作速度的方向相反,则以第一相对速度和第一操作速度中速度绝对值较大的方向为准。
S450、根据第一期望相对速度和预先获取的速度融合值生成第一期望姿态角指令。
在此需要说明的是,为了便于获取飞行器的自身参数,在飞行器上配置有卫星导航模块、加速度计、陀螺仪和磁力计。其中,卫星导航模块用于对飞行器的位置和速度进行测量;加速度计用于对飞行器的加速度进行测量;陀螺仪用于对飞行器的角速度进行测量;磁力计用于对飞行器的航向角进行测量。在实施例中,速度融合值指的是按照卫星导航模块和加速度计测量得到的飞行器的飞行速度。可以理解为,速度融合值是理论上得到的飞行速度;而第一期望相对速度是用户根据实际情况进行人工调整得到的飞行速度。然后将第一期望相对速度和速度融合值输入至速度控制器中,以生成期望姿态角指令。其中,姿态角也称为欧拉角,是由机体坐标系与地理坐标系之间的关系确定的,用航向角、俯仰角和横滚角三个欧拉角表示。其中,根据速度得到姿态角的过程,可参见现有技术,在此不再赘述。
S460、根据第一期望姿态角指令和预先获取的姿态角融合值生成飞行器的电机控制指令。
其中,电机控制指令为携带第一期望相对速度和期望姿态角的指令。在实施例中,姿态角融合值是通过陀螺仪和磁力计确定的理论上的姿态角。将期望姿态角指令对应的期望姿态角和姿态角融合值输入姿态控制***中,以生成飞行器的电机控制指令。其中,电机控制指令为电机PWM指令。
S470、通过电机控制指令控制自身降落至返航目标处。
在实施例中,通过电机控制指令控制飞行器飞行,以使飞行器精准降落至返航目标处。
在此需要说明的是,速度融合值和姿态角融合值,均是将测量的飞行器位置、速度、加速度、角速度和航向角输入数据融合***,得到的融合速度和姿态角融合值,并提供给飞行器对应的控制器(比如,位置控制器、速度控制器和姿态控制***等),以使控制器生成对应的控制指令。
在上述实施例的基础上,对降落至返航目标处的控制方式作具体说明。可通过两种方式进行位置调整,以使飞行器精准地降落至返航目标处。
一个实施例中,降落至返航目标处的控制方式,包括:
S10、在飞行器降落过程中,实时获取飞行器与返航目标区域中降落点中心的位置偏差。
其中,通过飞行器上的图像拍摄单元采集飞行器当前所在区域的图像,并将当前所在区域的图像和返航目标区域的图像进行匹配,以获得飞行器与返航目标区域中降落点中心的位置偏差。
S20、根据位置偏差生成飞行器的第二相对速度调节指令。
其中,第二相对速度调节指令指的是在下降过程中飞行器相对于返航目标的速度的调节指令。需要理解的是,在飞行器下降过程中,若遥控端的GPS丢失,为了保证飞行器能够精准地降落至返航目标处,需启动飞行器上的对地摄像头,并保持飞行器与返航目标区域中降落点中心之间的锁定状态。同时,将飞行器与返航目标区域中降落点中心的位置偏差输入位置控制器,以生成第二相对速度调节指令。
S30、根据第二相对速度调节指令和用户的第二操纵速度指令,确定飞行器的第二期望相对速度。
其中,第二操作速度指令为飞行器在下降过程中,用户通过遥控器打杆而生成的速度调节指令。其中,根据第二相对速度调节指令对应的第二相对速度和第二操作速度指令对应的第二操作速度确定第二期望相对速度的过程,可参照上述实施例中第一期望相对速度的确定过程,在此不再赘述。
S40、按照第二期望相对速度控制飞行器降落至返航目标处。
图10是本发明实施例提供的一种飞行器降落过程中的返航控制流程图。如图10所示,在飞行器降落过程中,若遥控端的GPS丢失,此时飞行器上的对地摄像头需要保持目标锁定状态,并通过图像匹配算法来实时获得飞行器相对于降落点中心的位置偏差,并且将这一位置偏差输入位置控制器,生成第二相对速度调节指令。另外,视觉惯性里程计(Visual-Inertial Odometry,VIO)通过对地摄像头拍摄到的下式图像可计算飞行器的相对速度,然后将相对速度与其他传感器进行融合,可以得到相对速度融合值。用户打杆的第二操纵速度指令对应的第二操作速度与第二相对速度调节指令对应的第二相对速度进行相加,得到第二期望相对速度,将第二期望相对速度和相对速度融合值输入速度控制器,生成第二期望姿态角,然后将第二期望姿态角和姿态角融合值输入姿态控制***,以生成电机的PWM指令,以控制飞行器飞行。
一个实施例中,降落至返航目标处的控制方式,包括:
S1、在飞行器降落过程中,实时获取飞行器与返航目标区域中降落点中心的位置偏差。
S2、根据位置偏差生成飞行器的第三相对速度调节指令。
S3、根据第三相对速度调节指令和用户的第二操纵速度指令,确定飞行器的第三期望相 对速度。
S4、按照第三期望相对速度控制飞行器降落至返航目标处。
在此需要说明的是,步骤S1-S4的具体实现过程同上述实施例中步骤S10-S40,在此不再赘述。唯一不同的是,飞行器在下降过程中,飞行器的GPS定位***和遥控端的GPS定位***同时出现故障,或者飞行器的GPS定位***出现故障。此时,需飞行器上的图像拍摄单元利用图像匹配方法,对返航目标上的返航目标处进行定位,以保证飞行器精准地降落至返航目标处。
图11是本发明实施例提供的另一种飞行器降落过程中的返航控制流程图。如图11所示,在下降过程中,飞行器的GPS丢失,或者两者的GPS均丢失,此时飞行器上的对地摄像头需要保持目标锁定状态,并通过图像匹配算法来实时获得飞行器相对于降落点中心的位置偏差,并且将这一位置偏差输入位置控制器,生成第三相对速度调节指令,最后得到电机的PWM指令。其中,通过第三相对速度调节指令生成的PWM指令的过程,见上述实施例中对图10的描述,在此不再赘述。不同的是,由于飞行器无GPS测速,则通过视觉VIO测量的相对速度变得尤为重要。可以理解为,当视觉VIO出现故障时,飞行器立即停止下降;视觉VIO无故障时,可通过图11的方案实现飞行器精确降落至返航目标处。
在此需要说明的是,在下降过程中由于飞行器自身的惯性,为了避免飞行器在下降过程中出现故障。可根据飞行器的当前飞行高度来限制自身的下降速度,具体的,在上述实施例的基础上,飞行器返航控制方法,还包括:在飞行器降落过程中,实时获取飞行器的当前飞行高度;按照当前飞行高度与预先设置的高度阈值,调整飞行器的下降速度。
其中,当前飞行高度指的是飞行器当前距离地面的高度。为了便于度飞行器的飞行高度进行统计,直接以地面为参照物,计算飞行器的当前飞行高度。当然,也可以将不同移动载具上的某区域作为参照物,对飞行器的当前飞行高度进行统计。为了保证飞行器在下降过程中,避免飞行器对人员和飞行器自身硬件造成伤害,实时获取飞行器的当前飞行高度,以根据飞行高度和高度阈值的比对结果,调整飞行器的下降速度。当然,可以对飞行器设置多个高度阈值,在不同的高度范围内,设置不同的下降速度。示例性地,当飞行器高度大于10m,下降速度最大限制在5m/s;当飞行器高度不大于10m,但大于3m时,下降速度最大限制在2m/s;当飞行器高度不大于3m,但大于0.5m时,下降速度最大限制在0.5m/s;当飞行器高度不大于0.5m,下降速度最大限制在0.2m/s。
当然,在实际操作过程中,可根据移动载具的实际情况,设置飞行器的高度阈值,以及不同的高度范围内对应的下降速度。
在此需要说明的是,飞行器在飞行过程中,会出现风力加大,为了保证飞行器下方人员的安全,可对飞行器的返航高度进行设置。具体的,在当飞行至返航目标区域之前,还包括:在接收到返航信号时,获取当前飞行高度。确定当前飞行高度是否达到预先设置的返航安全高度。若未达到返航安全高度,则将飞行器的当前飞行高度调整至返航安全高度,以使飞行器按照返航安全高度飞行。
在实际操作过程中,返航安全高度可根据实际情况进行设定。比如,飞行器在空旷的空地上进行降落,则可将返航安全高度设置的相对较低;若飞行器在人较多的海面上进行飞行降落,为了保证人员安全,可将返航安全高度设置的相对较高。当然,一般来说,返航安全高度至少大于10米(m)。
在实施例中,以返航安全高度为30m为例,对飞行器的安全高度保护策略进行说明。可以理解为,飞行器在返航过程中,返航安全高度需大于30m,若飞行器接收到返航信号的时刻,飞行器的当前飞行高度低于30m,需要先爬高到30m再进行上述返航逻辑;若飞行器已经高于30m,则可以当前高度进行返航。
图12是本发明实施例提供的一种飞行器和遥控端GPS信号较好时飞行器返航控制方法的流程图。如图12所示,飞行器起飞时,根据不同高度,记录了起飞时甲板的图像。飞行器返航时,实时获取遥控端的GPS定位位置(用户位置),将其作为飞行器需要跟踪的目标点,与飞行器的位置融合值进行作差,得到粗略的位置误差;对粗略误差进行判断,若距离大于2m,判断模块输出0,图像匹配功能关闭,此时飞行器根据用户位置启动返航,飞行至用户位置(即遥控端)上空;若距离小于等于2m,判断模块输出1,此时视觉图像匹配打开,以进行精准降落。此时,图像匹配模块根据高度进行图像匹配,输出水平位置误差。将水平位置误差送入位置控制器生成第一相对速度调节指令;同时,通过飞行器所无线连接的遥控器中的杆量映射模块获取遥控器的打杆信息,并根据预先建立的对应规则,生成相应的第一操纵速度指令。然后,对第一相对速度调节指令对应的第一相对速度与第一操纵速度指令对应的第一操作速度进行求和,以得到第一期望相对速度,将第一期望相对速度与速度融合值送入速度控制器生成第一期望姿态角指令;将第一期望姿态角指令与姿态角融合值送入姿态控制***生成电机的PWM指令,控制飞行器飞行。其中,卫星导航模块获取飞行器的位置及速度、加速度计测量飞行器的加速度、陀螺仪测量飞行器的角速度、磁力计根据当地的磁场来测量飞行器的航向角。然后将测量的位置、速度、加速度、角速度及航向角送入数据融合***,输出速度融合值、位置融合值、姿态融合值,并提供给飞行器的控制***。
图13是本发明实施例提供的一种飞行器和遥控端GPS信号不好时飞行器返航控制方法 的流程图。需要说明的是,在飞行器返航(水平飞行)过程中,当飞行器、遥控器/App两端的GPS信号有一端出现定位不良,或者某一端定位误差很大时(一般是遥控端的GPS经常丢失),返航实现方法如下图:如图13所示,飞行器上有n组天线,一般n=2,3,4。其中,这几组天线安装在飞行器的机身或者起落架上,并且其安装位置会有一定的不同。可以理解为,从遥控端发来的无线电波信号,不同天线接收到无线电波信号的时间和相位有所差异,利用天线的时间差和相位差,能够计算出飞行器和遥控端的相对距离及方位。在遥控端的GPS定位不准确的情况下,可采用该方案,保证飞行器能够返航在游艇等处于移动状态的返航目标上空。若飞行器返航到返航目标上空,可启动飞行器的视觉功能,以对飞行器当前所在区域的图像和返航目标区域的图像进行图像匹配,以进行精准降落。
图14是本发明实施例提供的一种飞行器返航控制装置的结构框图。参考图14,该装置包括:第一确定模块510和第一控制模块520。
其中,第一确定模块510,用于根据返航信号的时间和相位,确定返航目标区域位置;
第一控制模块520,用于当飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。
本实施例的技术方案,根据返航信号的时间和相位,粗略地计算出返航目标区域位置,以保证飞行器能够返航至返航目标区域的上空,当飞行器飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。本发明解决了现有技术中因返航目标的移动而无法准确地降落至返航目标处的技术问题,实现了控制飞行器能够精准并安全地降落至返航目标区域上的返航目标处的技术效果。
在上述实施例的基础上,第一确定模块,包括:
获取单元,用于获取飞行器上至少两组天线接收到返航信号的时间和相位;
第一确定单元,用于根据至少两组天线接收到返航信号的时间和相位确定各天线的接收时间差和相位差;
第二确定单元,用于根据接收时间差和相位差确定飞行器与遥控端之间的相对距离和方位;
第三确定单元,用于根据相对距离和方位确定返航目标区域位置。
在上述实施例的基础上,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,具体用于:
根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,得到当前 所在区域和返航目标区域之间的水平位置误差;
根据水平位置误差生成第一相对速度调节指令;
基于第一相对速度调节指令和用户的第一操纵速度指令,确定飞行器的第一期望相对速度;
根据第一期望相对速度和预先获取的速度融合值生成第一期望姿态角指令;
根据第一期望姿态角指令和预先获取的姿态角融合值生成飞行器的电机控制指令,电机控制指令为携带第一期望相对速度和第一期望姿态角的指令。
在上述实施例的基础上,降落至返航目标处的控制方式,包括:在飞行器降落过程中,实时获取飞行器与返航目标区域中降落点中心的位置偏差;根据位置偏差生成飞行器的第二相对速度调节指令;根据第二相对速度调节指令和用户的第二操纵速度指令,确定飞行器的第二期望相对速度;按照第二期望相对速度控制飞行器降落至返航目标处。
在上述实施例的基础上,降落至返航目标处的控制方式,包括:在飞行器降落过程中,实时获取飞行器与返航目标区域中降落点中心的位置偏差;根据位置偏差生成飞行器的第三相对速度调节指令;根据第三相对速度调节指令,确定飞行器的第三期望相对速度;按照第三期望相对速度控制飞行器降落至返航目标处。
在上述实施例的基础上,飞行器返航控制装置,还包括:
第一获取模块,用于在飞行器降落过程中,实时获取飞行器的当前飞行高度;
第一调整模块,用于按照当前飞行高度与预先设置的高度阈值,调整飞行器的下降速度。
在上述实施例的基础上,飞行器返航控制装置,还包括:
第二获取模块,用于在当飞行至返航目标区域之前,在接收到返航信号时,获取当前飞行高度;
第二确定模块,用于确定当前飞行高度是否达到预先设置的返航安全高度;
第二调整模块,用于若未达到返航安全高度,则将飞行器的当前飞行高度调整至返航安全高度,以使飞行器按照返航安全高度飞行。
上述飞行器返航控制装置可执行本发明任意实施例所提供的飞行器返航控制方法,具备执行方法相应的功能模块和有益效果。
图15是本发明实施例提供的一种飞行器的硬件结构示意图。参考图15,本发明实施例提供的飞行器,包括:处理器610、存储器620、输入装置630、输出装置640和图像拍摄单元650。该飞行器中的处理器610可以是一个或多个,图15中以一个处理器610为例,飞行器中的处理器610、存储器620、输入装置630、输出装置640和图像拍摄单元650可以通过 总线或其他方式连接,图15中以通过总线连接为例。
该飞行器中的存储器620作为一种计算机可读存储介质,可用于存储一个或多个程序,程序可以是软件程序、计算机可执行程序以及模块,如本发明实施例所提供飞行器返航控制方法对应的程序指令/模块(例如,图14所示的飞行器返航控制装置中的模块,包括:第一确定模块510和第一控制模块520)。处理器610通过运行存储在存储器620中的软件程序、指令以及模块,从而执行飞行器的各种功能应用以及数据处理,即实现上述方法实施例中飞行器返航控制方法。
存储器620可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器620可进一步包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置630可用于接收用户输入的数字或字符信息,以产生与终端设备的用户设置以及功能控制有关的键信号输入。输出装置640可包括显示屏等显示设备。图像拍摄单元650用于拍摄飞行器当前所在区域的图像,并将拍摄图像发送至存储器620进行存储。其中,图像拍摄单元650可以为飞行器的主摄像头,也可以为独立的对地摄像头。
并且,当上述飞行器所包括一个或者多个程序被一个或者多个处理器610执行时,程序进行如下操作:根据返航信号的时间和相位,确定返航目标区域位置;当飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明实施例提供的飞行器返航控制方法,该方法包括:根据返航信号的时间和相位,确定返航目标区域位置;当飞行至返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是--但不限于--电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、 可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种飞行器返航控制方法,其特征在于,包括:
    根据返航信号的时间和相位,确定返航目标区域位置;
    当飞行至所述返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至返航目标处。
  2. 根据权利要求1所述的方法,其特征在于,所述根据返航信号的时间和相位,确定返航目标区域位置,包括:
    获取所述飞行器上至少两组天线接收到返航信号的时间和相位;
    根据所述至少两组天线接收到返航信号的时间和相位确定各天线的接收时间差和相位差;
    根据所述接收时间差和相位差确定所述飞行器与遥控端之间的相对距离和方位;
    根据所述相对距离和方位确定返航目标区域位置。
  3. 根据权利要求1所述的方法,其特征在于,所述根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,包括:
    根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,得到当前所在区域和所述返航目标区域之间的水平位置误差;
    根据所述水平位置误差生成第一相对速度调节指令;
    基于所述第一相对速度调节指令和用户的第一操纵速度指令,确定所述飞行器的第一期望相对速度;
    根据所述第一期望相对速度和预先获取的速度融合值生成第一期望姿态角指令;
    根据所述第一期望姿态角指令和预先获取的姿态角融合值生成所述飞行器的电机控制指令,所述电机控制指令为携带所述第一期望相对速度和所述第一期望姿态角的指令。
  4. 根据权利要求1所述的方法,其特征在于,所述降落至返航目标处的控制方式,包括:
    在所述飞行器降落过程中,实时获取所述飞行器与所述返航目标区域中降落点中心的位置偏差;
    根据所述位置偏差生成所述飞行器的第二相对速度调节指令;
    根据所述第二相对速度调节指令和用户的第二操纵速度指令,确定所述飞行器的第二期望相对速度;
    按照所述第二期望相对速度控制所述飞行器降落至所述返航目标处。
  5. 根据权利要求1所述的方法,其特征在于,所述降落至返航目标处的控制方式,包 括:
    在所述飞行器降落过程中,实时获取所述飞行器与所述返航目标区域中降落点中心的位置偏差;
    根据所述位置偏差生成所述飞行器的第三相对速度调节指令;
    根据所述第三相对速度调节指令和用户的第二操纵速度指令,确定所述飞行器的第三期望相对速度;
    按照所述第三期望相对速度控制所述飞行器降落至所述返航目标处。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述方法,还包括:
    在所述飞行器降落过程中,实时获取所述飞行器的当前飞行高度;
    按照所述当前飞行高度与预先设置的高度阈值,调整所述飞行器的下降速度。
  7. 根据权利要求1-5任一所述的方法,其特征在于,在所述当飞行至所述返航目标区域之前,还包括:
    在接收到返航信号时,获取当前飞行高度;
    确定所述当前飞行高度是否达到预先设置的返航安全高度;
    若未达到所述返航安全高度,则将所述飞行器的当前飞行高度调整至返航安全高度,以使所述飞行器按照所述返航安全高度飞行。
  8. 一种飞行器返航控制装置,其特征在于,包括:
    第一确定模块,用于根据返航信号的时间和相位,确定返航目标区域位置;
    第一控制模块,用于当飞行至所述返航目标区域时,根据当前所在区域的图像和预先采集的返航目标区域的图像之间的匹配结果,调整飞行参数,以降落至所述返航目标处。
  9. 一种飞行器,其特征在于,所述飞行器包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    图像拍摄单元,用于拍摄图像;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一所述的飞行器返航控制方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-7中任一所述的飞行器返航控制方法。
PCT/CN2020/122544 2019-10-21 2020-10-21 一种飞行器返航控制方法、装置、飞行器和存储介质 WO2021078167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/659,690 US20220317705A1 (en) 2019-10-21 2022-04-19 Aircraft return control method and device, aircraft and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911001438.0 2019-10-21
CN201911001438.0A CN110597297A (zh) 2019-10-21 2019-10-21 一种飞行器返航控制方法、装置、飞行器和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/659,690 Continuation US20220317705A1 (en) 2019-10-21 2022-04-19 Aircraft return control method and device, aircraft and storage medium

Publications (1)

Publication Number Publication Date
WO2021078167A1 true WO2021078167A1 (zh) 2021-04-29

Family

ID=68849909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122544 WO2021078167A1 (zh) 2019-10-21 2020-10-21 一种飞行器返航控制方法、装置、飞行器和存储介质

Country Status (3)

Country Link
US (1) US20220317705A1 (zh)
CN (1) CN110597297A (zh)
WO (1) WO2021078167A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110597297A (zh) * 2019-10-21 2019-12-20 深圳市道通智能航空技术有限公司 一种飞行器返航控制方法、装置、飞行器和存储介质
CN111776248B (zh) * 2020-08-03 2022-02-18 广州极飞科技股份有限公司 震动测试方法、装置和飞行器
CN112129288B (zh) * 2020-11-24 2021-02-02 中国人民解放军国防科技大学 一种基于偏振光/地磁航向约束的位姿估计方法及***
CN112947563A (zh) * 2021-02-19 2021-06-11 广州橙行智动汽车科技有限公司 一种飞行器返航控制的方法和装置
CN113145538B (zh) * 2021-03-25 2024-05-14 中国科学技术大学 一种绝缘子清洗控制方法及***
CN112987772A (zh) * 2021-05-11 2021-06-18 北京三快在线科技有限公司 无人机近地面飞行控制方法、装置、介质、设备和无人机
WO2022261960A1 (zh) * 2021-06-18 2022-12-22 深圳市大疆创新科技有限公司 体感遥控器和遥控***
CN113296544B (zh) * 2021-07-27 2022-01-04 北京远度互联科技有限公司 无人机返航路径规划方法、无人机、电子设备及计算机可读存储介质
CN117716313A (zh) * 2021-09-15 2024-03-15 深圳市大疆创新科技有限公司 无人飞行器及其控制方法、***和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017202A (zh) * 2006-12-18 2007-08-15 电子科技大学 一种雷达高度表及采用该表对飞行器位置的测量方法
CN106927059A (zh) * 2017-04-01 2017-07-07 成都通甲优博科技有限责任公司 一种基于单目视觉的无人机降落方法及装置
US20170233071A1 (en) * 2016-02-15 2017-08-17 Skyyfish, LLC System and Method for Return-Home Command in Manual Flight Control
CN107065925A (zh) * 2017-04-01 2017-08-18 成都通甲优博科技有限责任公司 一种无人机返航方法及装置
CN108700892A (zh) * 2017-09-27 2018-10-23 深圳市大疆创新科技有限公司 一种路径调整方法及无人机
CN109298723A (zh) * 2018-11-30 2019-02-01 山东大学 一种车载无人机精准降落方法和***
CN109782791A (zh) * 2017-11-14 2019-05-21 长城汽车股份有限公司 一种无人机的降落方法和装置
CN110597297A (zh) * 2019-10-21 2019-12-20 深圳市道通智能航空技术有限公司 一种飞行器返航控制方法、装置、飞行器和存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321601A (en) * 1971-04-23 1982-03-23 United Technologies Corporation Three dimensional, azimuth-correcting mapping radar
US6469654B1 (en) * 2000-05-09 2002-10-22 Advanced Navigation & Positioning Corp. Transponder landing system
JP4253239B2 (ja) * 2003-10-07 2009-04-08 富士重工業株式会社 画像認識を用いた航法装置
CN102854887A (zh) * 2012-09-06 2013-01-02 北京工业大学 一种无人机航迹规划和远程同步操控方法
EP3196125B1 (en) * 2014-07-16 2020-03-11 SZ DJI Technology Co., Ltd. Electric unmanned aerial vehicle and intelligent electric quantity protection method therefor
CN114675671A (zh) * 2014-09-05 2022-06-28 深圳市大疆创新科技有限公司 多传感器环境地图构建
US9778660B2 (en) * 2015-09-16 2017-10-03 Qualcomm Incorporated Unmanned aerial vehicle low-power operation
US9977434B2 (en) * 2016-06-23 2018-05-22 Qualcomm Incorporated Automatic tracking mode for controlling an unmanned aerial vehicle
US11430332B2 (en) * 2016-09-02 2022-08-30 FLIR Belgium BVBA Unmanned aerial system assisted navigational systems and methods
US10152059B2 (en) * 2016-10-10 2018-12-11 Qualcomm Incorporated Systems and methods for landing a drone on a moving base
CN108121350B (zh) * 2016-11-29 2021-08-24 腾讯科技(深圳)有限公司 一种控制飞行器降落的方法以及相关装置
CN106527481A (zh) * 2016-12-06 2017-03-22 重庆零度智控智能科技有限公司 无人机飞行控制方法、装置及无人机
US10597054B2 (en) * 2016-12-15 2020-03-24 Progress Rail Locomotive Inc. Real-time drone infrared inspection of moving train
US20180259342A1 (en) * 2017-03-10 2018-09-13 Qualcomm Incorporated System and method for dead reckoning for a drone
CN108196568B (zh) * 2017-12-08 2021-12-03 中航(成都)无人机***股份有限公司 一种无人机遥控中断后航迹自主重规划方法
CN108873930B (zh) * 2018-05-31 2021-09-10 苏州市启献智能科技有限公司 基于移动平台的无人机起降方法及***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017202A (zh) * 2006-12-18 2007-08-15 电子科技大学 一种雷达高度表及采用该表对飞行器位置的测量方法
US20170233071A1 (en) * 2016-02-15 2017-08-17 Skyyfish, LLC System and Method for Return-Home Command in Manual Flight Control
CN106927059A (zh) * 2017-04-01 2017-07-07 成都通甲优博科技有限责任公司 一种基于单目视觉的无人机降落方法及装置
CN107065925A (zh) * 2017-04-01 2017-08-18 成都通甲优博科技有限责任公司 一种无人机返航方法及装置
CN108700892A (zh) * 2017-09-27 2018-10-23 深圳市大疆创新科技有限公司 一种路径调整方法及无人机
CN109782791A (zh) * 2017-11-14 2019-05-21 长城汽车股份有限公司 一种无人机的降落方法和装置
CN109298723A (zh) * 2018-11-30 2019-02-01 山东大学 一种车载无人机精准降落方法和***
CN110597297A (zh) * 2019-10-21 2019-12-20 深圳市道通智能航空技术有限公司 一种飞行器返航控制方法、装置、飞行器和存储介质

Also Published As

Publication number Publication date
CN110597297A (zh) 2019-12-20
US20220317705A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2021078167A1 (zh) 一种飞行器返航控制方法、装置、飞行器和存储介质
US11474516B2 (en) Flight aiding method and system for unmanned aerial vehicle, unmanned aerial vehicle, and mobile terminal
US20210358315A1 (en) Unmanned aerial vehicle visual point cloud navigation
US11854413B2 (en) Unmanned aerial vehicle visual line of sight control
US10969781B1 (en) User interface to facilitate control of unmanned aerial vehicles (UAVs)
US20220026929A1 (en) Systems and methods for taking, processing, retrieving, and displaying images from unmanned aerial vehicles
US11604479B2 (en) Methods and system for vision-based landing
JP6239619B2 (ja) 位置決め及び相互動作用紐集合体を備えたフライングカメラ
EP3586212B1 (en) Control systems for unmanned aerial vehicles
WO2016192249A1 (zh) 一种飞行器的操控方法和装置
US20180046177A1 (en) Motion Sensing Flight Control System Based on Smart Terminal and Terminal Equipment
WO2021078165A1 (zh) 一种无人机的飞行控制方法、装置、无人机和存储介质
CN112335190B (zh) 无线电链路覆盖图和减损***及方法
JP2018005914A (ja) 自律移動制御システム、走行装置、無人航空機及び自律移動制御方法
WO2017147142A1 (en) Unmanned aerial vehicle visual line of sight control
JP2017206224A (ja) 飛行制御方法及び無人飛行体
Ambroziak et al. Experimental tests of hybrid VTOL unmanned aerial vehicle designed for surveillance missions and operations in maritime conditions from ship‐based helipads
US10802685B2 (en) Vehicle marking in vehicle management systems
WO2020062255A1 (zh) 拍摄控制方法和无人机
Huang et al. UAV low altitude marine monitoring system
JP7031997B2 (ja) 飛行体システム、飛行体、位置測定方法、プログラム
CN113138603A (zh) 系绳管理***和方法
KR102289743B1 (ko) 복수의 무인항공기를 이용한 목표를 탐색하기 위한 장치 및 이를 위한 방법
KR102266467B1 (ko) 검출 확률을 기초로 무인항공기를 이용한 목표를 탐색하기 위한 장치 및 이를 위한 방법
US20230030222A1 (en) Operating modes and video processing for mobile platforms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879532

Country of ref document: EP

Kind code of ref document: A1