WO2021078102A1 - 一种激光投影光源和激光投影设备 - Google Patents

一种激光投影光源和激光投影设备 Download PDF

Info

Publication number
WO2021078102A1
WO2021078102A1 PCT/CN2020/121935 CN2020121935W WO2021078102A1 WO 2021078102 A1 WO2021078102 A1 WO 2021078102A1 CN 2020121935 W CN2020121935 W CN 2020121935W WO 2021078102 A1 WO2021078102 A1 WO 2021078102A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
color
area
laser projection
Prior art date
Application number
PCT/CN2020/121935
Other languages
English (en)
French (fr)
Inventor
周伯禹
田新团
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2021078102A1 publication Critical patent/WO2021078102A1/zh
Priority to US17/481,800 priority Critical patent/US20220004090A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • This application relates to the technical field of laser projection equipment, and in particular to a laser projection light source and laser projection equipment.
  • Laser projection light sources are an important part of laser projection equipment such as laser TVs and laser projectors, and are used to provide illumination beams.
  • multiple lasers can be arranged in the laser projection light source, and the brightness of the light beam emitted by the laser projection light source can be doubled by combining the light beams emitted by multiple lasers into one beam.
  • the laser is usually a monochromatic laser (such as a blue laser, a red laser or a green laser), and the light beam emitted by the laser projection light source is a white light beam, it is necessary to install multiple fluorescent wheels in the laser projection light source.
  • Each laser has a one-to-one correspondence, and each fluorescent wheel generates another two colors of laser light under the excitation of the monochromatic laser emitted by the laser corresponding to the fluorescent wheel.
  • the other two colors of laser light can be mixed with the monochromatic laser emitted by the laser.
  • the laser projection light source needs to be equipped with multiple sets of lenses to correspond to multiple fluorescent wheels one-to-one. Each set of lenses is used to change the transmission path of the other two colors of laser light to make the The other two colors of laser light are mixed with the monochromatic laser light emitted by the laser.
  • After mixing to form a white light multiple white lights are combined into one beam to increase the brightness of the light beam emitted by the laser projection light source. In this way, more parts are included in the laser projection light source, thereby increasing the structural complexity and volume of the laser projection light source.
  • the present application provides a laser projection light source and a laser projection device, which are used to solve the problem of how to reduce the volume and structural complexity of the laser projection light source while increasing the brightness of the light beam emitted by the laser projection light source.
  • an embodiment of the present application provides a laser projection light source, including: a housing, two lasers, and an optical path assembly, the housing includes a first side wall and a second side wall, the first side wall and the second side wall Vertical, two accommodating openings are provided on the first side wall, and light exit openings are provided on the second side wall; two lasers are respectively installed at the two accommodating openings, and each laser emits light toward the inside of the housing.
  • the light-emitting surface of each includes multiple light-emitting areas, and the multiple light-emitting areas are used to emit light of multiple colors;
  • the light path assembly is arranged in the housing, and the light path assembly includes two light combining lens groups and two reflecting parts, two combining light
  • the lens groups are respectively used to combine the light of multiple colors emitted by the two lasers, and the light output directions of the two combining lens groups are opposite, and the two reflectors are respectively used to change the output beams of the two combining lens groups. Transmission path, so that the light beams of the two light combining lens groups are emitted toward the light exit.
  • an embodiment of the present application provides a laser projection device, including a laser projection light source, an optical machine, and a projection lens that are sequentially connected, wherein the laser projection light source is the laser projection light source according to any one of the above technical solutions, the optical machine It is used to modulate the illumination beam emitted by the laser projection light source to generate an image beam and project the image beam to the projection lens, which is used to image the image beam.
  • FIG. 1 is a perspective view of a laser projection light source provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the internal structure of a laser projection light source provided by an embodiment of the application;
  • FIG. 3 is one of the optical path diagrams of the optical path component in a laser projection light source provided by an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a laser in a laser projection light source provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a laser, a light combining lens group, and a first wave plate in a laser projection light source provided by an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a laser, a light combining lens group, a second wave plate, and a third wave plate in a laser projection light source provided by an embodiment of the application;
  • FIG. 8 is a schematic structural diagram of a laser projection device provided by an embodiment of the application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the laser projection light source is an important part of the laser projection equipment, and the laser projection light source is used to provide an illuminating beam.
  • an embodiment of the present application provides a laser projection light source 1.
  • the laser projection light source 1 includes: a housing 11, two lasers 12, and an optical path assembly 13, wherein, as shown in Figs.
  • the housing 11 includes a first side wall 200 and a second side wall 300.
  • the first side wall 200 is perpendicular to the second side wall 300.
  • the first side wall 200 is provided with two accommodating openings 111.
  • the side wall 300 is provided with a light outlet (not shown in the figure); two lasers 12 are respectively installed at the two accommodating openings 111, and each laser 12 emits light toward the inside of the housing 11, as shown in FIG.
  • each The light-emitting surface of each laser 12 includes multiple light-emitting areas, and the multiple light-emitting areas are used to emit light of multiple colors; as shown in FIG. 2, the light path assembly 13 is arranged in the housing 11, and the light path assembly 13 includes two combined light sources.
  • the optical lens group 131 and the two reflectors 132, the two combining lens groups 131 are used to combine the light of multiple colors emitted by the two lasers 12, and the light emitting direction of the two combining lens groups 131 (also That is, the direction X and the direction Y in FIG. 3 are opposite, and the two reflectors 132 are respectively used to change the transmission path of the outgoing light beams of the two light-combining lens groups 131 so that the outgoing light beams of the two light-combining lens groups 131 face The light exits.
  • the light emitting directions of the two light combining lens groups 131 are opposite, which means that both light combining lens groups 131 emit light to the area between the two light combining lens groups 131, and the two light combining lens groups 131 The direction of light emission is opposite.
  • the two light combining lens groups 131 can emit light to the same position in the area between the two light combining lens groups 131, or they can emit light to different positions in the area between the two light combining lens groups 131. Make specific restrictions. In some embodiments, as shown in FIG. 3, the two light combining lens groups 131 can emit light to different positions in the area between the two light combining lens groups 131.
  • the laser projection light source provided by the present application combines the light of multiple colors emitted by the two lasers 12 through two light combining lens groups 131, and the two reflectors 132 change the two light beams.
  • the transmission path of the outgoing light beam of the light combining lens group 131 is such that the combined two light beams are emitted toward the light exit port to realize the superposition of the two light beams, so that the laser projection light source can have a higher brightness.
  • the multiple light-emitting areas are used to emit light of multiple colors.
  • the laser projection provided in this application There is no need to provide a large number of lenses in the light source 1, so the volume and structural complexity of the laser projection light source 1 can be reduced.
  • the circuit boards 15 of the two lasers 12 (as shown in FIG. 1) can be set to be coplanar, so a heat sink 16 can be used to cool the two lasers 12 (as shown in FIG. 1) at the same time, thereby reducing the need for heat sinks. 16 and the cost and volume of the laser projection light source 1 of the circuit board 15.
  • a spherical lens 14 is installed in the light exit port, and the spherical lens 14 can converge the light beam entering the light exit port.
  • the size of the optical element in the subsequent optical machine of the laser projection light source 1 (such as the light pipe 100 in FIG. 3) can be designed to be smaller, which is beneficial to reducing the size of the laser projection device.
  • the light-emitting surface of the laser 12 may include two light-emitting areas, three light-emitting areas, or four light-emitting areas, etc., which are not specifically limited herein.
  • the number of light exit areas included in the light exit surface of the laser 12 is equal to the number of colors emitted by the light exit surface of the laser 12, and each light exit area is used to emit light of one color.
  • the light-emitting surface of each laser 12 includes a first light-emitting area 121, a second light-emitting area 122, and a third light-emitting area 123; the first light-emitting area 121 is used to emit the first color Light beam; the second light exit area 122 is used to emit the second color light beam; the third light exit area 123 is used to emit the third color light beam; the first color light beam, the second color light beam and the third color light beam are combined to form a white light beam.
  • This structure is simple, and there is no need to provide a fluorescent wheel in the laser projection light source 1, so the volume of the laser projection light source 1 can be further reduced.
  • the colors of the first color light beam, the second color light beam, and the third color light beam are not specifically limited, as long as the first color light beam, the second color light beam, and the third color light beam can be mixed to form white light.
  • the first color light beam emitted by the first light exit area 121 is a blue light beam
  • the second color light beam emitted by the second light exit area 122 is a green light beam
  • the third color light beam emitted by the third light exit area 123 The beam is a red beam.
  • the first color light beam emitted from the first light exit area 121 is a cyan light beam
  • the second color light beam emitted from the second light exit area 122 is a yellow light beam
  • the third color light beam emitted from the third light exit area 123 is magenta. Light beam.
  • the first light-emitting area 121, the second light-emitting area 122, and the third light-emitting area 123 can correspond to one lamp bead in the laser 12, can also correspond to a row of lamp beads in the laser 12, or can correspond to multiple rows of lamp beads in the laser 12 , There is no specific limitation here.
  • the third light exit area 123 corresponds to two rows of lamp beads in the laser 12
  • the first light exit area 121 and the second light exit area 122 both correspond to a row of lamp beads in the laser 12.
  • Each row of lamp beads includes 6 lamp beads.
  • the reflector 132 may be a lens or a prism, which is not specifically limited here. In some embodiments, as shown in FIGS. 3 and 4, the reflecting member 132 is a lens.
  • combination lens group 131 There are many structural forms of the combination lens group 131, which are not specifically limited here.
  • the first light-emitting area 121, the second light-emitting area 122, and the third light-emitting area 123 of each laser 12 are all arranged in sequence, and the first light-emitting areas 121, 121 and 123 of the two lasers 12 are arranged in sequence.
  • the second light exit area 122 and the third light exit area 123 are arranged in opposite directions; as shown in FIGS. 3 and 4, each combination lens group 131 includes a first reflection lens 1311, a second reflection lens 1312, and a third reflection lens 1313.
  • the first reflecting lens 1311 is located at the light exit side of the first light exit area 121 of the laser 12 corresponding to the combining lens group 131, the first reflecting lens 1311 reflects the first color light beam emitted from the first light exit area 121, and the second reflecting lens 1312 is located at the second light exit area 122 of the laser 12 corresponding to the light combining lens group 131 and the light exit side of the first reflector 1311.
  • the second reflector 1312 reflects the second color light beam from the second light exit area 122 and transmits it through the first
  • the first color light beam reflected by the reflecting lens 1311, the third reflecting lens 1313 is located in the third light exit area 123 of the laser 12 corresponding to the combining lens group 131, the light exit side of the first reflecting lens 1311 and the second reflecting lens 1312.
  • the three-mirror 1313 reflects the third color light beam emitted from the third light exit area 123 and transmits the first color light beam reflected by the first reflection lens 1311 and the second color light beam reflected by the second reflection lens 1312;
  • the optical axis of the first color beam reflected by the lens 1311, the optical axis of the second color beam reflected by the second mirror 1312, and the optical axis of the third color beam reflected by the third mirror 1313 are collinear. In this way, the three-color light beams emitted by the laser 12 can be combined through the first reflecting mirror 1311, the second reflecting mirror 1312, and the third reflecting mirror 1313.
  • This structure is simple and easy to implement.
  • the optical axis of the first color light beam reflected by the first mirror 1311, the optical axis of the second color light beam reflected by the second mirror 1312, and the optical axis of the second color beam reflected by the second mirror 1312 are ensured.
  • the optical axis of the third color light beam reflected by the lens 1313 is absolutely collinear, which is difficult to achieve in the actual processing and installation process of the laser projection light source 1. Therefore, for the first reflective lens 1311 described in the embodiment of the present application, the optical axis is absolutely collinear.
  • optical axis of the light beam of the first color, the optical axis of the light beam of the second color after being reflected by the second mirror 1312, and the optical axis of the light beam of the third color after being reflected by the third mirror 1313 are not only collinear. Understand as absolute collinear, should be understood as “collinear or nearly collinear”.
  • the optical axis of the light beam of the first color after being reflected by the first mirror 1311, the optical axis of the light beam of the second color after being reflected by the second mirror 1312, and the optical axis of the light beam of the second color after being reflected by the third mirror 1313 described in the embodiment of the present application
  • the collinear optical axis of the third color light beam refers to the optical axis of the first color light beam reflected by the first reflector 1311, the optical axis of the second color light beam reflected by the second reflector 1312 and the In the optical axis of the third color light beam reflected by the third reflecting lens 1313, the distance between any two optical axes is less than the first specific value, the angle between any two optical axes is less than the second specific value, and the first
  • the specific value can be 1mm, 2mm, 3mm, etc., which are not specifically limited here, and the second specific value can be 1°, 2°, or 3°, etc., which are not specifically limited here.
  • the first reflection lens 1311 may be a total reflection mirror, a dichroic lens, or other structures, which is not specifically limited here. As an example, as shown in FIGS. 3 and 4, the first reflecting mirror 1311 is a total reflection mirror.
  • the second reflective lens 1312 and the third reflective lens 1313 may be dichroic lenses or other structures, which are not specifically limited here. In some embodiments, as shown in FIGS. 3 and 4, the second reflective glass 1312 and the third reflective glass 1313 are dichroic plates.
  • the distance between the first reflective glass 1311 and the first light exit area 121 on the central axis l1 of the first light exit area 121 is a first distance h1
  • the second reflective glass 1312 is The distance between the second light-emitting areas 122 on the central axis l2 of the second light-emitting area 122 is the second distance h2
  • the distance between the third mirror 1313 and the third light-emitting area 123 is on the central axis l3 of the third light-emitting area 123
  • the distance h3 is the third distance h3, and the first distance h1, the second distance h2, and the third distance h3 are all 1 to 6 mm.
  • the distance between the light combining lens group 131 and the laser 12 is moderate, which can reduce the size of the laser projection light source 1 in the direction perpendicular to the light-emitting surface of the laser 12, and avoid the gap between the light combining lens group 131 and the laser 12
  • the distance between, and the light combining lens group 131 and the laser 12 are collided and damaged during installation.
  • the central axis 11 of the first light-emitting area 121 is an axis perpendicular to the light-emitting surface of the laser 12 and passing through the center of the first light-emitting area 121;
  • the central axis 12 of 122 is the axis perpendicular to the light exit surface of the laser 12 and passes through the center of the second light exit area 122;
  • the central axis 13 of the third light exit area 123 is perpendicular to the light exit surface of the laser 12 and passes through the third light exit area 123.
  • the axis of the center is an axis perpendicular to the light-emitting surface of the laser 12 and passing through the center of the first light-emitting area 121;
  • the central axis 12 of 122 is the axis perpendicular to the light exit surface of the laser 12 and passes through the center of the second light exit area 122;
  • the central axis 13 of the third light exit area 123 is perpendicular to the light exit
  • the light emitted from the light-emitting surface of the laser 12 is emitted by a light-emitting device (that is, a lamp bead) inside the laser 12.
  • a light-emitting device that is, a lamp bead
  • the light-emitting devices that emit red light have a larger divergence angle.
  • the light spot is large, in some embodiments, as shown in FIG.
  • the first The light beam of the first color emitted from a light exit area 121 is one of the blue light beam and the green light beam
  • the light beam of the second color emitted from the second light exit area 122 is the other of the blue light beam and the green light beam.
  • the third light exit area The third color light beam emitted by 123 is a red light beam.
  • the third color light beam (that is, the red light beam) emitted from the third light exit area 123 is in the laser
  • the transmission path between the light exit surface of 12 and the light exit is short, and the light spot formed at the exit is small, which can prevent the light beam emitted by the laser 12 from being reflected by the light combining lens group 131 and the reflector 132 and transmitted to the light exit
  • the spot is too large, it is helpful to reduce the diameter of the spherical lens installed in the light exit.
  • the polarization direction of the first color light beam emitted from the first light exit area 121 is the same as the polarization direction of the second color light beam emitted from the second light output area 122.
  • the polarization direction of the second color light beam is perpendicular to the polarization direction of the third color light beam emitted from the third light exit area 123.
  • a first wave plate 135 is provided between the third light-emitting area 123 and the third reflecting mirror 1313, and the first wave plate 135 is used to emit the light from the third light-emitting area 123.
  • the polarization direction of the third color light beam is rotated by 90° ⁇ 10°. In this way, the polarization direction of the light beam emitted from the third light exit area 123 is changed by the first wave plate 135, so that the polarization direction of the light beam emitted from the third light output area 123 is the same as that of the light beam emitted from the first light output area 121 or the second light output area 122.
  • the polarization direction remains the same, which can increase the uniformity of the light output of the laser projection light source 1.
  • a second wave plate is provided between the first light exit area 121 and the first reflective lens 1311, and a second wave plate is provided between the second light exit area 122 and the second reflective lens 1312.
  • the second wave plate is used to rotate the polarization direction of the second color beam emitted from the first light-emitting area 121 by 90° ⁇ 10°
  • the third wave plate is used to rotate the third color light beam from the second light-emitting area 122
  • the polarization direction is rotated by 90° ⁇ 10°.
  • the polarization directions of the light beams emitted from the first light exit area 121 and the second light output area 122 are changed through the second wave plate and the third wave plate, respectively, so that the polarization of the light beams emitted from the first light output area 121 and the second light output area 122 is changed.
  • the direction is consistent with the polarization direction of the light beam emitted from the third light-emitting area 123, which can increase the light-emitting uniformity of the laser projection light source 1.
  • the second wave plate and the third wave plate are integrally formed to form the structure 136.
  • the number of parts included in the laser projection light source 1 is relatively small, and the structure complexity and assembly difficulty are relatively low.
  • a light homogenizing member 133 is provided on the light entrance side of the light outlet.
  • the homogenizing member 133 can improve the uniformity of the emitted light beams of the two light combining lens groups 131 when synthesizing one light beam.
  • the light homogenizing member 133 is a diffuser or a fisheye lens.
  • some embodiments of the present application provide a laser projection device, as shown in FIG. 8, comprising a laser projection light source 1, an optical engine 2, and a projection lens 3 connected in sequence.
  • the laser projection light source 1 is the one in the above first aspect.
  • the laser projection light source 1 and the optical machine 2 described in any embodiment are used to modulate the illumination beam emitted by the laser projection light source 1 to generate an image beam, and project the image beam to the projection lens 3, which is used to The image beam is used for imaging.
  • the laser projection device provided in the present application includes the laser projection light source 1 according to any one of the embodiments in the first aspect, so the laser projection device provided in the present application is the same as the laser projection device described in the foregoing embodiment.
  • the light source 1 can solve the same technical problem and achieve the same expected effect.
  • the laser projection device further includes a projection screen, the projection screen is arranged on the light exit path of the projection lens 3, and the projection light beams imaged by the projection lens 3 form a projection image on the projection screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种激光投影光源(1)和激光投影设备,激光投影光源(1)包括:壳体(11)、两个激光器(12)和光路组件(13),壳体(11)包括第一侧壁(200)和第二侧壁(300),第一侧壁(200)上设有两个容置开口(111),第二侧壁(300)上设有出光口;两个激光器(12)分别安装于两个容置开口(111)处,每个激光器(12)的出光面均包括多个出光区,多个出光区用于出射多种颜色的光;光路组件(13)设置于壳体(11)内,光路组件(13)包括两个合光镜片组(131)和两个反射件(132),两个合光镜片组(131)的出光方向相对。能够在提高激光投影光源(1)发出光束的亮度的同时,减小激光投影光源(1)的体积和结构复杂度。

Description

一种激光投影光源和激光投影设备
本申请要求在2019年10月25日提交中国专利局、申请号为201911024312.5、发明名称为“一种激光投影光源和激光投影设备”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光投影设备技术领域,尤其涉及一种激光投影光源和激光投影设备。
背景技术
激光投影光源为激光电视、激光投影仪等激光投影设备的重要组成部分,用于提供照明光束。为了提高激光投影光源发出光束的亮度,激光投影光源内可以设置多个激光器,通过将多个激光器发出的光束合成一束可以成倍地提高激光投影光源发出光束的亮度。但是,由于激光器通常为单色激光器(比如为蓝光激光器、红光激光器或者绿光激光器),而激光投影光源发出的光束为白光光束,因此激光投影光源内,需设置多个荧光轮来与多个激光器一一对应,每个荧光轮在该荧光轮对应的激光器发出的单色激光的激发作用下产生另外两种颜色的激光,该另外两种颜色的激光与激光器发出的单色激光混合能够形成白光,为了达到混光的目的,激光投影光源内还需设置多组镜片来与多个荧光轮一一对应,每组镜片用于改变该另外两种颜色的激光的传输路径,以使该另外两种颜色的激光与激光器发出的单色激光进行混合,在混合形成白光后,再将多束白光合成一束,以提高激光投影光源发出光束的亮度。这样,就使得激光投影光源内包括有较多的零部件,从而增大了激光投影光源的结构复杂度和体积。
发明内容
本申请提供一种激光投影光源和激光投影设备,用于解决如何在提高激光投影光源发出光束的亮度的同时,减小激光投影光源的体积和结构复杂度的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供了一种激光投影光源,包括:壳体、两个激光器和光路组件,壳体包括第一侧壁和第二侧壁,第一侧壁与第二侧壁垂直,第一侧壁上设有两个容置开口,第二侧壁上设有出光口;两个激光器分别安装于两个容置开口处,每个激光器均朝向壳体内出光,每个激光器的出光面均包括多个出光区,该多个出光区用于出射多种颜色的光;光路组件设置于壳体内,光路组件包括两个合光镜片组和两个反射件,两个合光镜片组分别用于将两个激光器出射的多种颜色的光进行合束,且两个合光镜片组的出光方向相对,两个反射件分别用于改变两个合光镜片组的出射光束的传输路径,以使两个合光镜片组的出射光束朝向出光***出。
第二方面,本申请实施例提供了一种激光投影设备,包括依次连接的激光投影光源、光机和投影镜头,其中,激光投影光源为上述任一技术方案所述的激光投影光源,光机用 于对激光投影光源发出的照明光束进行调制,以生成影像光束,并将影像光束投射至投影镜头,投影镜头用于对影像光束进行成像。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种激光投影光源的立体图;
图2为本申请实施例提供的一种激光投影光源的内部结构示意图;
图3为本申请实施例提供的一种激光投影光源中光路组件的光路图之一;
图4为本申请实施例提供的一种激光投影光源中光路组件的光路图之二;
图5为本申请实施例提供的一种激光投影光源中激光器的结构示意图;
图6为本申请实施例提供的一种激光投影光源中激光器、合光镜片组和第一波片的结构示意图;
图7为本申请实施例提供的一种激光投影光源中激光器、合光镜片组、第二波片和第三波片的结构示意图;
图8为本申请实施例提供的激光投影设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
激光投影光源为激光投影设备的重要组成部分,激光投影光源用于提供照明光束。
第一方面,本申请实施例提供了一种激光投影光源1,如图1和图2所示,该激光器投影光源1包括:壳体11、两个激光器12和光路组件13,其中,如图2所示,壳体11包括第一侧壁200和第二侧壁300,第一侧壁200与第二侧壁300垂直,第一侧壁200上设有两个容置开口111,第二侧壁300上设有出光口(图中未示出);两个激光器12分别安装于两个容置开口111处,每个激光器12均朝向壳体11内出光,如图5所示,每个激光器12的出光面均包括多个出光区,该多个出光区用于出射多种颜色的光;如图2所示,光路组件13设置于壳体11内,光路组件13包括两个合光镜片组131和两个反射件132, 两个合光镜片组131分别用于将两个激光器12出射的多种颜色的光进行合束,且两个合光镜片组131的出光方向(也即是图3中的方向X和方向Y)相对,两个反射件132分别用于改变两个合光镜片组131的出射光束的传输路径,以使两个合光镜片组131的出射光束朝向出光***出。
需要说明的是,两个合光镜片组131的出光方向相对,是指,两个合光镜片组131均向两个合光镜片组131之间的区域出光,且两个合光镜片组131的出光方向相反。该两个合光镜片组131可以向两个合光镜片组131之间的区域中的同一位置出光,也可以向两个合光镜片组131之间的区域中的不同位置出光,在此不做具体限定。在一些实施例中,如图3所示,该两个合光镜片组131可以向两个合光镜片组131之间的区域中的不同位置出光。
本申请提供的一种激光投影光源,如图2所示,通过两个合光镜片组131将两个激光器12出射的多种颜色的光分别进行合束,并通过两个反射件132改变两个合光镜片组131的出射光束的传输路径,以使合束后的两束光朝向出光***出,以实现两束光的叠加,从而能够使激光投影光源具有较高的亮度。同时,如图5所示,由于激光投影光源1内的激光器均的出光面均包括多个出光区,该多个出光区用于出射多种颜色的光,因此,在本申请提供的激光投影光源1中无需设置较多数量的镜片,因此能够减小激光投影光源1的体积和结构复杂度。而且,由于在本申请提供的激光投影光源1中,如图2所示,第一侧壁200上设有两个容置开口111,两个激光器12分别安装于两个容置开口111处,因此两个激光器12的电路板15(如图1所示)可以设置为共面,因此可以采用一个散热器16同时冷却该两个激光器12(如图1所示),从而能够降低包括散热器16和电路板15的激光投影光源1的成本和体积。
在一些实施例中,如图2所示,出光口内安装有球面透镜14,该球面透镜14能够汇聚射入出光口内的光束。这样,激光投影光源1的后续光机中的光学元件(比如图3中的光导管100)的尺寸可以设计得较小,有利于减小激光投影设备的尺寸。
激光器12的出光面可以包括两个出光区、三个出光区或者四个出光区等等,在此不做具体限定。具体的,激光器12的出光面所包括的出光区的数量与激光器12的出光面出射的颜色的数量相等,每个出光区用于出射一种颜色的光。
在一些实施例中,如图5所示,每个激光器12的出光面均包括第一出光区121、第二出光区122和第三出光区123;第一出光区121用于出射第一颜色光束;第二出光区122用于出射第二颜色光束;第三出光区123用于出射第三颜色光束;第一颜色光束、第二颜色光束和第三颜色光束合束形成白光光束。此结构简单,激光投影光源1内无需设置荧光轮,因此能够进一步减小激光投影光源1的体积。
在上述实施例中,对第一颜色光束、第二颜色光束和第三颜色光束的颜色不做具体限定,只要第一颜色光束、第二颜色光束和第三颜色光束能够混合形成白光即可。示例的,如图5所示,第一出光区121出射的第一颜色光束为蓝光光束,第二出光区122出射的第二颜色光束为绿光光束,第三出光区123出射的第三颜色光束为红光光束。又示例的,第一出光区121出射的第一颜色光束为青光光束,第二出光区122出射的第二颜色光束为黄 光光束,第三出光区123出射的第三颜色光束为品红光光束。
第一出光区121、第二出光区122和第三出光区123可以对应激光器12内的一个灯珠,也可以对应激光器12内的一排灯珠,还可以对应激光器12内的多排灯珠,在此不做具体限定。在一些实施例中,如图5所示,第三出光区123对应激光器12内的两排灯珠,第一出光区121和第二出光区122均对应激光器12内的一排灯珠。每排灯珠包括6个灯珠。
反射件132可以为镜片,也可以为棱镜,在此不做具体限定。在一些实施例中,如图3和图4所示,反射件132为镜片。
合光镜片组131的结构形式有多种,在此不做具体限定。
在一些实施例中,如图5所示,每个激光器12的第一出光区121、第二出光区122、第三出光区123均依次排列,且两个激光器12的第一出光区121、第二出光区122、第三出光区123的排列方向相反;如图3和图4所示,每个合光镜片组131均包括第一反射镜片1311、第二反射镜片1312和第三反射镜片1313,第一反射镜片1311位于该合光镜片组131对应的激光器12的第一出光区121的出光侧,第一反射镜片1311反射第一出光区121出射的第一颜色光束,第二反射镜片1312位于该合光镜片组131对应的激光器12的第二出光区122和第一反射镜片1311的出光侧,第二反射镜片1312反射第二出光区122出射的第二颜色光束且透射经第一反射镜片1311反射后的第一颜色光束,第三反射镜片1313位于该合光镜片组131对应的激光器12的第三出光区123、第一反射镜片1311以及第二反射镜片1312的出光侧,第三反射镜片1313反射第三出光区123出射的第三颜色光束且透射经第一反射镜片1311反射后的第一颜色光束和经第二反射镜片1312反射后的第二颜色光束;经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴共线。这样,通过第一反射镜片1311、第二反射镜片1312和第三反射镜片1313能够对激光器12出射的三种颜色光束进行合光,此结构简单,容易实现。
在上述实施例中,应当知道的是,保证经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴绝对共线,在激光投影光源1的实际加工和安装过程中是很难实现的,因此,对于本申请实施例描述的经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴“共线”并非只能理解成绝对共线,应当理解为“共线或近似共线”。示例的,本申请实施例描述的经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴共线,是指,经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴中,任意两个光轴之间的间距小于第一特定值,任意两个光轴之间的夹角小于第二特定值,第一特定值可以为1mm、2mm或3mm等等,在此不做具体限定,第二特定值可以为1°、2°或3°等等,在此不做具体限定。
第一反射镜片1311可以为全反射镜,也可以为二向色片,还可以为其他结构,在此不做具体限定。示例的,如图3和图4所示,第一反射镜片1311为全反射镜。
第二反射镜片1312和第三反射镜片1313可以为二向色片,也可以为其他结构,在此不做具体限定。在一些实施例中,如图3和图4所示,第二反射镜片1312和第三反射镜片1313为二向色片。
在一些实施例中,如图6所示,第一反射镜片1311与第一出光区121之间在第一出光区121的中轴线l1上的距离为第一距离h1,第二反射镜片1312与第二出光区122之间在第二出光区122的中轴线l2上的距离为第二距离h2,第三反射镜片1313与第三出光区123之间在第三出光区123的中轴线l3上的距离为第三距离h3,第一距离h1、第二距离h2和第三距离h3均为1~6mm。这样,合光镜片组131与激光器12之间的距离适中,能够减小激光投影光源1在垂直于激光器12的出光面的方向上的尺寸,同时避免因合光镜片组131与激光器12之间的距离较近而使得合光镜片组131和激光器12在安装时产生碰撞损坏。
在上述实施例中,需要说明的是,如图6所示,第一出光区121的中轴线l1为垂直于激光器12的出光面且过第一出光区121的中心的轴线;第二出光区122的中轴线l2为垂直于激光器12的出光面且过第二出光区122的中心的轴线;第三出光区123的中轴线l3为垂直于激光器12的出光面且过第三出光区123的中心的轴线。
激光器12的出光面出射的光由激光器12内部的发光器件(也即是灯珠)发出,相比于发射其他颜色激光的发光器件,发射红光的发光器件发射的光束的发散角较大,在此基础上,为了避免激光器12发出的光束在经合光镜片组131和反射件132反射后并传输至出光口处时的光斑较大,在一些实施例中,如图5所示,第一出光区121出射的第一颜色光束为蓝光光束和绿光光束中的一种,第二出光区122出射的第二颜色光束为蓝光光束和绿光光束中的另一种,第三出光区123出射的第三颜色光束为红光光束。这样,相比于第一出光区121出射的第一颜色光束和第二出光区122出射的第二颜色光束,第三出光区123出射的第三颜色光束(也即是红光光束)在激光器12的出光面与出光口之间的传输路径较短,在出光口处形成的光斑较小,能够避免激光器12发出的光束在经合光镜片组131和反射件132反射后并传输至出光口处时的光斑过大,有利于减小出光口内安装的球面透镜的直径。
在一些实施例中,如图5所示,第一出光区121出射的第一颜色光束的偏振方向与第二出光区122出射的第二颜色光束的偏振方向相同,第二出光区122出射的第二颜色光束的偏振方向与第三出光区123出射的第三颜色光束的偏振方向垂直。
在上述实施例中,为了增大激光投影光源1的出光均匀性,可以采用以下两种可选实现方式实现:
第一种可选实现方式,如图6所示,第三出光区123与第三反射镜片1313之间设有第一波片135,第一波片135用于将第三出光区123出射的第三颜色光束的偏振方向旋转90°±10°。这样,通过该第一波片135改变第三出光区123出射的光束的偏振方向,使得第三出光区123出射的光束的偏振方向与第一出光区121或第二出光区122出射的光束 的偏振方向保持一致,能够增大激光投影光源1的出光均匀性。
第二种可选实现方式,如图7所示,第一出光区121与第一反射镜片1311之间设置有第二波片,第二出光区122与第二反射镜片1312之间设有第三波片,第二波片用于将第一出光区121出射的第二颜色光束的偏振方向旋转90°±10°,第三波片用于将第二出光区122出射的第三颜色光束的偏振方向旋转90°±10°。这样,通过该第二波片和第三波片分别改变第一出光区121和第二出光区122出射的光束的偏振方向,使得第一出光区121和第二出光区122出射的光束的偏振方向与第三出光区123出射的光束的偏振方向保持一致,能够增大激光投影光源1的出光均匀性。
在上述实施例中,可选的,如图7所示,第二波片与第三波片一体成型,形成结构136。这样,激光投影光源1包括的零部件的数量较少,结构复杂度和装配难度较低。
为了提高两个合光镜片组131的出射光束在合成一束光时的均匀性,在一些实施例中,如图3和图4所示,出光口的入光侧设有匀光件133。通过匀光件133能够提高两个合光镜片组131的出射光束在合成一束光时的均匀性。
在一些实施例中,匀光件133为扩散片或者鱼眼透镜。
第二方面,本申请一些实施例提供了一种激光投影设备,如图8所示,包括依次连接的激光投影光源1、光机2和投影镜头3,激光投影光源1为上述第一方面中任一实施例所述的激光投影光源1,光机2用于对激光投影光源1发出的照明光束进行调制,以生成影像光束,并将影像光束投射至投影镜头3,投影镜头3用于对影像光束进行成像。
本申请提供的一种激光投影设备,由于该激光投影设备包括上述第一方面中任一实施例所述的激光投影光源1,因此本申请提供的激光投影设备与上述实施例所述的激光投影光源1能够解决相同的技术问题,并达到相同的预期效果。
在一些实施例中,激光投影设备还包括投影屏幕,投影屏幕设置于投影镜头3的出光路径上,经投影镜头3成像后的投影光束在投影屏幕上形成投影画面。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种激光投影光源,其特征在于,包括:
    壳体,所述壳体包括第一侧壁和第二侧壁,所述第一侧壁与所述第二侧壁垂直,所述第一侧壁上设有两个容置开口,所述第二侧壁上设有出光口;
    两个激光器,所述两个激光器分别安装于所述两个容置开口处,每个所述激光器均朝向所述壳体内出光,每个所述激光器的出光面均包括多个出光区,所述多个出光区用于出射多种颜色的光;
    光路组件,所述光路组件设置于所述壳体内,所述光路组件包括两个合光镜片组和两个反射件,所述两个合光镜片组分别用于将所述两个激光器出射的多种颜色的光进行合束,且所述两个合光镜片组的出光方向相对,所述两个反射件分别用于改变所述两个合光镜片组的出射光束的传输路径,以使所述两个合光镜片组的出射光束朝向所述出光***出。
  2. 根据权利要求1所述的激光投影光源,其特征在于,每个所述激光器的出光面均包括第一出光区、第二出光区和第三出光区;
    所述第一出光区用于出射第一颜色光束;
    所述第二出光区用于出射第二颜色光束;
    所述第三出光区用于出射第三颜色光束;
    所述第一颜色光束、所述第二颜色光束和所述第三颜色光束合束形成白光光束。
  3. 根据权利要求2所述的激光投影光源,其特征在于,每个所述激光器的所述第一出光区、所述第二出光区、所述第三出光区均依次排列,且两个所述激光器的所述第一出光区、所述第二出光区、所述第三出光区的排列方向相反;
    每个所述合光镜片组均包括第一反射镜片、第二反射镜片和第三反射镜片,所述第一反射镜片位于所述合光镜片组对应的激光器的第一出光区的出光侧,所述第一反射镜片反射所述第一出光区出射的第一颜色光束,所述第二反射镜片位于所述合光镜片组对应的激光器的第二出光区和所述第一反射镜片的出光侧,所述第二反射镜片反射所述第二出光区出射的第二颜色光束且透射经所述第一反射镜片反射后的第一颜色光束,所述第三反射镜片位于所述合光镜片组对应的激光器的第三出光区、所述第一反射镜片以及所述第二反射镜片的出光侧,所述第三反射镜片反射所述第三出光区出射的第三颜色光束且透射经所述第一反射镜片反射后的第一颜色光束和经所述第二反射镜片反射后的第二颜色光束;
    经所述第一反射镜片反射后的第一颜色光束的光轴、经所述第二反射镜片反射后的第二颜色光束的光轴和经所述第三反射镜片反射后的第三颜色光束的光轴共线。
  4. 根据权利要求3所述的激光投影光源,其特征在于,所述第一反射镜片与所述第一出光区之间在所述第一出光区的中轴线上的距离为第一距离;
    所述第二反射镜片与所述第二出光区之间在所述第二出光区的中轴线上的距离为第 二距离;
    所述第三反射镜片与所述第三出光区之间在所述第三出光区的中轴线上的距离为第三距离;
    所述第一距离、所述第二距离和所述第三距离均为1~6mm。
  5. 根据权利要求3或4所述的激光投影光源,其特征在于,所述第一出光区出射的第一颜色光束为蓝光光束和绿光光束中的一种,所述第二出光区出射的第二颜色光束为所述蓝光光束和所述绿光光束中的另一种,所述第三出光区出射的第三颜色光束为红光光束。
  6. 根据权利要求3或4所述的激光投影光源,其特征在于,所述第一出光区出射的第一颜色光束的偏振方向与所述第二出光区出射的第二颜色光束的偏振方向相同,所述第二出光区出射的第二颜色光束的偏振方向与所述第三出光区出射的第三颜色光束的偏振方向垂直;
    所述第三出光区与所述第三反射镜片之间设有第一波片,所述第一波片用于将所述第三出光区出射的第三颜色光束的偏振方向旋转90°±10°。
  7. 根据权利要求3或4所述的激光投影光源,其特征在于,所述第一出光区出射的第一颜色光束的偏振方向与所述第二出光区出射的第二颜色光束的偏振方向相同,所述第二出光区出射的第二颜色光束的偏振方向与所述第三出光区出射的第三颜色光束的偏振方向垂直;
    所述第一出光区与所述第一反射镜片之间设置有第二波片,所述第二出光区与所述第二反射镜片之间设有第三波片,所述第二波片用于将所述第一出光区出射的第一颜色光束的偏振方向旋转90°±10°,所述第三波片用于将所述第二出光区出射的第二颜色光束的偏振方向旋转90°±10°。
  8. 根据权利要求7所述的激光投影光源,其特征在于,所述第二波片与所述第三波片一体成型。
  9. 根据权利要求1~4中任一项所述的激光投影光源,其特征在于,所述出光口的入光侧设有匀光件。
  10. 一种激光投影设备,其特征在于,包括依次连接的激光投影光源、光机和投影镜头,所述激光投影光源为权利要求1~9中任一项所述的激光投影光源,所述光机配置为对所述激光投影光源发出的照明光束进行调制,以生成影像光束,并将所述影像光束投射至所述投影镜头,所述投影镜头配置为对所述影像光束进行成像。
PCT/CN2020/121935 2019-10-25 2020-10-19 一种激光投影光源和激光投影设备 WO2021078102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/481,800 US20220004090A1 (en) 2019-10-25 2021-09-22 Laser source and laser projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911024312.5A CN112711164A (zh) 2019-10-25 2019-10-25 一种激光投影光源和激光投影设备
CN201911024312.5 2019-10-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121936 Continuation-In-Part WO2021078103A1 (zh) 2019-10-25 2020-10-19 一种激光投影光源和激光投影设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121934 Continuation-In-Part WO2021078101A1 (zh) 2019-10-25 2020-10-19 一种激光投影光源和激光投影设备

Publications (1)

Publication Number Publication Date
WO2021078102A1 true WO2021078102A1 (zh) 2021-04-29

Family

ID=75540758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121935 WO2021078102A1 (zh) 2019-10-25 2020-10-19 一种激光投影光源和激光投影设备

Country Status (2)

Country Link
CN (1) CN112711164A (zh)
WO (1) WO2021078102A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566235A (zh) * 2012-02-06 2012-07-11 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
CN106249528A (zh) * 2015-06-11 2016-12-21 精工爱普生株式会社 光源装置以及投影仪
CN106873298A (zh) * 2017-04-11 2017-06-20 中视迪威激光显示技术有限公司 用于激光显示的激光光源***及应用该***的投影设备
US20180101017A1 (en) * 2013-03-22 2018-04-12 Sony Corporation Light source device and display device
CN207689821U (zh) * 2017-11-11 2018-08-03 深圳市中科创激光技术有限公司 一种激光显示光源
CN210954575U (zh) * 2019-10-25 2020-07-07 青岛海信激光显示股份有限公司 一种激光投影光源和激光投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566235A (zh) * 2012-02-06 2012-07-11 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
US20180101017A1 (en) * 2013-03-22 2018-04-12 Sony Corporation Light source device and display device
CN106249528A (zh) * 2015-06-11 2016-12-21 精工爱普生株式会社 光源装置以及投影仪
CN106873298A (zh) * 2017-04-11 2017-06-20 中视迪威激光显示技术有限公司 用于激光显示的激光光源***及应用该***的投影设备
CN207689821U (zh) * 2017-11-11 2018-08-03 深圳市中科创激光技术有限公司 一种激光显示光源
CN210954575U (zh) * 2019-10-25 2020-07-07 青岛海信激光显示股份有限公司 一种激光投影光源和激光投影设备

Also Published As

Publication number Publication date
CN112711164A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
US11243460B2 (en) Light source device and projection system
CN111562713B (zh) 激光投影设备
CN210954574U (zh) 一种激光投影光源和激光投影设备
CN111258165B (zh) 激光投影设备
EP3457687A1 (en) Illumination system and projection apparatus
JP2010520498A (ja) 固体光源用色合成器
US20220155606A1 (en) Laser projector
WO2021078103A1 (zh) 一种激光投影光源和激光投影设备
WO2021258673A1 (zh) 一种混合光源***以及投影显示设备
US20200174355A1 (en) Illumination system and projection apparatus
JP2017111287A (ja) 投射装置
CN210954575U (zh) 一种激光投影光源和激光投影设备
WO2021259276A1 (zh) 光源组件和投影设备
US20210247677A1 (en) Illumination system and projection apparatus
WO2021078101A1 (zh) 一种激光投影光源和激光投影设备
CN113960866A (zh) 激光光源及激光投影设备
WO2021078102A1 (zh) 一种激光投影光源和激光投影设备
US10466577B2 (en) Projector
WO2023030016A1 (zh) 激光投影设备
CN210954576U (zh) 一种激光投影光源和激光投影设备
US20220004090A1 (en) Laser source and laser projection apparatus
CN113885285A (zh) 光源组件与投影设备
CN216772180U (zh) 光源装置及激光投影设备
US20170146896A1 (en) Solid-state light source device
CN218630503U (zh) 激光光源及激光显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878965

Country of ref document: EP

Kind code of ref document: A1