WO2021075146A1 - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
WO2021075146A1
WO2021075146A1 PCT/JP2020/031397 JP2020031397W WO2021075146A1 WO 2021075146 A1 WO2021075146 A1 WO 2021075146A1 JP 2020031397 W JP2020031397 W JP 2020031397W WO 2021075146 A1 WO2021075146 A1 WO 2021075146A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
optical fiber
transmission system
power
Prior art date
Application number
PCT/JP2020/031397
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 玉手
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP20876875.4A priority Critical patent/EP3926863B1/en
Priority to US17/442,121 priority patent/US11381320B2/en
Priority to CN202080018874.3A priority patent/CN113557679B/en
Publication of WO2021075146A1 publication Critical patent/WO2021075146A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/05Spatial multiplexing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • This disclosure relates to optical transmission.
  • Patent Document 1 describes an optical transmitter that transmits signal light modulated by an electric signal and feed light for supplying power, a core that transmits the signal light, and a core formed around the core.
  • An optical fiber having a first clad having a small refractive index and transmitting the feeding light and a second clad formed around the first clad and having a smaller refractive index than the first clad, and a first clad of the optical fiber are used for transmission.
  • an optical communication device including an optical receiver that operates with the converted power of the fed light and converts the signal light transmitted by the core of the optical fiber into the electric signal.
  • Optical transmission systems are required to further improve communication speed.
  • the optical transmission system of one aspect of the present disclosure is An optical transmission system including a plurality of light supply devices for outputting signal light, a plurality of light receiving devices for receiving signal light, and an optical fiber cable for transmitting signal light.
  • a plurality of signal lights having different signals output from the plurality of light supply devices are received by the plurality of light receiving devices through a single core or cladding of the optical fiber cable, and MIMO communication is performed.
  • the optical fiber transmission system 1A of the present embodiment includes a power supply device (PSE: Power Sourcing Equipment) 110, an optical fiber cable 200A, and a power receiving device (PD: Powered Device) 310.
  • the power feeding device in the present disclosure is a device that converts electric power into light energy and supplies it, and a power receiving device is a device that receives the supply of light energy and converts the light energy into electric power.
  • the power feeding device 110 includes a power feeding semiconductor laser 111.
  • the optical fiber cable 200A includes an optical fiber 250A that forms a transmission line for feeding light.
  • the power receiving device 310 includes a photoelectric conversion element 311.
  • the power feeding device 110 is connected to a power source, and a power feeding semiconductor laser 111 or the like is electrically driven.
  • the power feeding semiconductor laser 111 oscillates with the electric power from the power source and outputs the power feeding light 112.
  • one end 201A can be connected to the power feeding device 110, and the other end 202A can be connected to the power receiving device 310 to transmit the feeding light 112.
  • the power feeding light 112 from the power feeding device 110 is input to one end 201A of the optical fiber cable 200A, the feeding light 112 propagates in the optical fiber 250A, and is output from the other end 202A to the power receiving device 310.
  • the photoelectric conversion element 311 converts the power feeding light 112 transmitted through the optical fiber cable 200A into electric power.
  • the electric power converted by the photoelectric conversion element 311 is used as the driving power required in the power receiving device 310. Further, the power receiving device 310 can output the electric power converted by the photoelectric conversion element 311 for an external device.
  • the semiconductor material constituting the semiconductor region that exerts the light-electric conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311 is a semiconductor having a short wavelength laser wavelength of 500 nm or less. Since a semiconductor having a short wavelength laser wavelength has a large band gap and high photoelectric conversion efficiency, the photoelectric conversion efficiency on the power generation side and the power receiving side of optical power supply is improved, and the optical power supply efficiency is improved.
  • the semiconductor material for example, a semiconductor material of a laser medium having a laser wavelength (fundamental wave) of 200 to 500 nm, such as diamond, gallium oxide, aluminum nitride, and GaN, may be used.
  • a semiconductor having a band gap of 2.4 eV or more is applied as the semiconductor material.
  • a semiconductor material of a laser medium having a bandgap of 2.4 to 6.2 eV such as diamond, gallium oxide, aluminum nitride, and GaN, may be used.
  • a semiconductor material of a laser medium having a laser wavelength (fundamental wave) smaller than 200 nm may be used.
  • These semiconductor materials may be applied to either one of the power feeding semiconductor laser 111 and the photoelectric conversion element 311. The photoelectric conversion efficiency on the power feeding side or the power receiving side is improved, and the optical power feeding efficiency is improved.
  • the optical fiber transmission system 1 of the present embodiment includes a power supply system via an optical fiber and an optical communication system, and is a first data communication including a power supply device (PSE: Power Sourcing Equipment) 110. It includes a device 100, an optical fiber cable 200, and a second data communication device 300 including a power receiving device (PD) 310.
  • the power feeding device 110 includes a power feeding semiconductor laser 111.
  • the first data communication device 100 includes a power supply device 110, a transmission unit 120 that performs data communication, and a reception unit 130.
  • the first data communication device 100 corresponds to a data terminal equipment (DTE (Data Terminal Equipment)), a repeater (Repeater), and the like.
  • the transmitter 120 includes a signal semiconductor laser 121 and a modulator 122.
  • the receiving unit 130 includes a signal photodiode 131.
  • the optical fiber cable 200 includes a core 210 forming a signal light transmission path, a clad 220 arranged on the outer periphery of the core 210 and forming a feeding light transmission path, and an optical fiber 250 having the core 210.
  • the power receiving device 310 includes a photoelectric conversion element 311.
  • the second data communication device 300 includes a power receiving device 310, a transmitting unit 320, a receiving unit 330, and a data processing unit 340.
  • the second data communication device 300 is a power end station. Etc.
  • the transmitter 320 includes a signal semiconductor laser 321 and a modulator 322.
  • the receiving unit 330 includes a signal photodiode 331.
  • the data processing unit 340 is a unit that processes a received signal.
  • the second data communication device 300 is a node in the power supply network. Alternatively, the second data communication device 300 may be a node that communicates with another node.
  • the first data communication device 100 is connected to a power source, and a power feeding semiconductor laser 111, a signal semiconductor laser 121, a modulator 122, a signal photodiode 131, and the like are electrically driven.
  • the first data communication device 100 is a node in the power supply network.
  • the first data communication device 100 may be a node that communicates with another node.
  • the power feeding semiconductor laser 111 oscillates with the electric power from the power source and outputs the power feeding light 112.
  • the photoelectric conversion element 311 converts the power feeding light 112 transmitted through the optical fiber cable 200 into electric power.
  • the electric power converted by the photoelectric conversion element 311 is the driving power of the transmitting unit 320, the receiving unit 330, and the data processing unit 340, and other driving power required in the second data communication device 300.
  • the second data communication device 300 may be capable of outputting the electric power converted by the photoelectric conversion element 311 for an external device.
  • the modulator 122 of the transmitting unit 120 modulates the laser light 123 from the signal semiconductor laser 121 based on the transmission data 124 and outputs it as the signal light 125.
  • the signal photodiode 331 of the receiving unit 330 demodulates the signal light 125 transmitted through the optical fiber cable 200 into an electric signal and outputs it to the data processing unit 340.
  • the data processing unit 340 transmits the data obtained by the electric signal to the node, while receiving the data from the node and outputting the data as the transmission data 324 to the modulator 322.
  • the modulator 322 of the transmitting unit 320 modulates the laser light 323 from the signal semiconductor laser 321 based on the transmission data 324 and outputs it as the signal light 325.
  • the signal photodiode 131 of the receiving unit 130 demodulates the signal light 325 transmitted through the optical fiber cable 200 into an electric signal and outputs it.
  • the data by the electric signal is transmitted to the node, while the data from the node is referred to as transmission data 124.
  • the feed light 112 and the signal light 125 from the first data communication device 100 are input to one end 201 of the optical fiber cable 200, the feed light 112 propagates through the clad 220, the signal light 125 propagates through the core 210, and the other end. It is output from 202 to the second data communication device 300.
  • the signal light 325 from the second data communication device 300 is input to the other end 202 of the optical fiber cable 200, propagates through the core 210, and is output from one end 201 to the first data communication device 100.
  • the first data communication device 100 is provided with an optical input / output unit 140 and an optical connector 141 attached to the optical input / output unit 140.
  • the second data communication device 300 is provided with an optical input / output unit 350 and an optical connector 351 attached to the optical input / output unit 350.
  • An optical connector 230 provided at one end 201 of the optical fiber cable 200 connects to the optical connector 141.
  • An optical connector 240 provided at the other end 202 of the optical fiber cable 200 connects to the optical connector 351.
  • the optical input / output unit 140 guides the feeding light 112 to the clad 220, guides the signal light 125 to the core 210, and guides the signal light 325 to the receiving unit 130.
  • the optical input / output unit 350 guides the feeding light 112 to the power receiving device 310, guides the signal light 125 to the receiving unit 330, and guides the signal light 325 to the core 210.
  • the optical fiber cable 200 has one end 201 connectable to the first data communication device 100 and the other end 202 connectable to the second data communication device 300 to transmit the feeding light 112. Further, in the present embodiment, the optical fiber cable 200 transmits the signal lights 125 and 325 in both directions.
  • the semiconductor material constituting the semiconductor region that exerts the light-electricity conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311 As the semiconductor material constituting the semiconductor region that exerts the light-electricity conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311, the same materials as those in the first embodiment are applied, and high light power feeding efficiency is realized. ..
  • an optical fiber 260 for transmitting signal light and an optical fiber 270 for transmitting feed light may be provided separately.
  • the optical fiber cable 200B may also be composed of a plurality of cables.
  • FIG. 5 is a configuration diagram of the optical fiber transmission system 1C of the third embodiment
  • FIG. 6 is a schematic diagram for explaining an optical fiber cable 200C included in the optical fiber transmission system 1C.
  • the same components as those described above are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the optical fiber transmission system 1C of the third embodiment includes a first data communication device 100C, an optical fiber cable 200C, and a second data communication device 300C.
  • the first data communication device 100C includes three light supply devices 150 and a light supply control unit 160.
  • Each of the three light feeders 150 includes a signal semiconductor laser 121C.
  • the light supply control unit 160 controls three light supply devices 150, modulates the laser light from each signal semiconductor laser 121C, and outputs three signal lights 125C having different signals.
  • the three signal lights 125C are not particularly limited as long as they have signals different from each other, and the signals may be, for example, those generated from a single transmission data. Further, even if each light supply device 150 modulates the laser light from the signal semiconductor laser 121C with a modulator based on the transmission data and outputs the signal light 125C as in the transmission unit 120 in the second embodiment. Good.
  • the three signal lights 125C output from the three light supply devices 150 are output to the optical fiber cable 200C.
  • the optical fiber cable 200C includes an optical fiber 250C.
  • the optical fiber 250C includes a core 210C forming a transmission line for three signal lights 125C and a clad 220 surrounding the core 210C.
  • the core 210C is preferably mixed with a powder material P that diffuses light.
  • the diffusion of the signal light 125C transmitted in the core 210C is promoted, and each signal light 125C is suitably dispersed and received by the three light receiving devices 360 (signal photodiode 331C) of the second data communication device 300C.
  • Both end faces of the optical fiber 250C have a space between the three light supply devices 150 or the three light receiving devices 360, and as shown in FIG.
  • the optical fiber 250C may be capable of transmitting three signal lights 125C by a single core 210C or a clad 220. That is, the transmission lines of the three signal lights 125 may be clad 220.
  • the second data communication device 300C includes three light receiving devices 360 and a data processing unit 340C.
  • Each of the three light receiving devices 360 receives a signal light 325C in which three signal lights 125C from the three light supply devices 150 are distributed through transmission on the optical fiber cable 200C. That is, signal light 325C including three signal lights 125C having different signals is transmitted to each light receiving device 360.
  • the signal photodiode 331C of each light receiving device 360 demodulates the transmitted signal light 325C into an electric signal and outputs it to the data processing unit 340C.
  • the data processing unit 340C Based on the signals input from the three light receiving devices 360, the data processing unit 340C performs signal separation processing by, for example, matrix calculation, and obtains a signal possessed by each signal light 125C output from the three light supply devices 150. If these signals were generated from a single piece of data, the original data is decoded. That is, between the first data communication device 100C and the second data communication device 300C, MIMO (multiple-input and multiple-output) communication is performed using the three light supply devices 150 and the three light receiving devices 360. Will be done. As a result, the communication speed can be improved as compared with the conventional case in which a single light supply device and a light receiving device are used respectively.
  • MIMO multiple-input and multiple-output
  • FIG. 7 is a configuration diagram of the optical fiber transmission system of the fourth embodiment.
  • the same components as those described above are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the optical fiber transmission system 1D of the fourth embodiment is different from the optical fiber transmission system 1C of the third embodiment in that the light to be transmitted is the feeding light and a signal is superimposed on the feeding light.
  • the optical fiber transmission system 1D includes a first data communication device 100D and a second data communication device 300D in addition to the optical fiber cable 200C.
  • the first data communication device 100D includes three light supply devices 150D and a light supply control unit 160D.
  • Each of the three light feeders 150D includes a power feeding semiconductor laser 111D.
  • the light supply control unit 160D controls three light supply devices 150D, modulates the laser light from each of the power feeding semiconductor lasers 111D, and outputs three feeding lights 112D having different signals.
  • the three feeding lights 112D are not particularly limited as long as signals different from each other are superimposed, and the signals may be, for example, those generated from a single transmission data.
  • the three feeding lights 112D output from the three light supply devices 150D are output to the core 210C of the optical fiber cable 200C.
  • the second data communication device 300D includes three light receiving devices 360D, a power synthesis unit 370D, and a data processing unit 340D.
  • Each of the three light receiving devices 360D is input with the feeding light 312D in which the three feeding lights 112D from the three light feeding devices 150D are distributed through the transmission by the optical fiber cable 200C. That is, the feeding light 312D including the three feeding lights 112D on which different signals are superimposed is transmitted to each light receiving device 360D.
  • the photoelectric conversion element 311D of each light receiving device 360D converts the transmitted feed light 312D into electric power.
  • the power synthesis unit 370D synthesizes the power converted from the feed light 312D by the three light receiving devices 360D (photoelectric conversion element 311D) and supplies the power to the load.
  • the load may be each device in the second data communication device 300D, or may be an external device.
  • the data processing unit 340D demodulates the three feeding lights 312D and acquires the three superimposed signals (information). Then, the data processing unit 340D performs signal separation processing by, for example, matrix calculation based on the acquired signal, and obtains a signal superimposed on each feeding light 112D output from the three light supply devices 150D. That is, between the first data communication device 100D and the second data communication device 300D, MIMO communication is performed while supplying power using three light supply devices 150D and three light receiving devices 360D. As a result, data communication can be performed without using a communication system while increasing the amount of power supply as compared with the case where a single light supply device and light receiving device are used.
  • this embodiment is shown as an example, and can be implemented in various other embodiments, and components are omitted as long as the gist of the invention is not deviated. , Can be replaced or changed.
  • three light supply devices and three light receiving devices are provided, but the number of the light supply device and the light receiving device is not particularly limited. However, it is preferable that these quantities correspond to each other.
  • the optical transmission system according to the present invention is useful for improving the communication speed as compared with the conventional one.
  • Optical fiber transmission system 1A Optical fiber transmission system (optical transmission system) 1 Optical fiber transmission system (optical transmission system) 1B Optical fiber transmission system (optical transmission system) 1C optical fiber transmission system (optical transmission system) 1D optical fiber transmission system (optical transmission system) 100 First data communication device 100C First data communication device 100D First data communication device 111 Power supply semiconductor laser 111D Power supply semiconductor laser 112 Power supply light 112D Power supply light 121 Signal semiconductor laser 121C Signal semiconductor laser 125 Signal light 125C signal light 150 light supply device 150D light supply device 160 light supply control unit 160D light supply control unit 200 optical fiber cable 200A optical fiber cable 200B optical fiber cable 200C optical fiber cable 210 core 210C core 250 optical fiber 250A optical fiber 250C optical fiber 300 second data communication device 300C Second data communication device 300D Second data communication device 311 Photoelectric conversion element 311D Photoelectric conversion element 312D Feed light 325 Signal light 325C Signal light 331 Signal photodiode 331C Signal photodiode 340 Data

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical fiber transmission system 1C comprises: a plurality of light supply devices 150 that output signal lights; a plurality of light reception devices 360 that receive the signal lights; and an optical fiber cable 200C that transmits the signal lights. The plurality of signal lights that are outputted from the plurality of light supply devices 150 and have different signals from one another pass through a simplex core or cladding of the optical fiber cable 200C and are received by the plurality of light reception devices 360, and MIMO communication is thus performed.

Description

光伝送システムOptical transmission system
 本開示は、光伝送に関する。 This disclosure relates to optical transmission.
 近時、電力を光(給電光と呼ばれる)に変換して伝送し、当該給電光を電気エネルギーに変換して電力として利用する光伝送システムが研究されている。
 特許文献1には、電気信号で変調された信号光、及び電力を供給するための給電光を発信する光発信機と、上記信号光を伝送するコア、上記コアの周囲に形成され上記コアより屈折率が小さく上記給電光を伝送する第1クラッド、及び上記第1クラッドの周囲に形成され上記第1クラッドより屈折率が小さい第2クラッド、を有する光ファイバーと、上記光ファイバーの第1クラッドで伝送された上記給電光を変換した電力で動作し、上記光ファイバーのコアで伝送された上記信号光を上記電気信号に変換する光受信機と、を備えた光通信装置が記載されている。
Recently, an optical transmission system in which electric power is converted into light (called feed light) and transmitted, and the feed light is converted into electric energy and used as electric power has been studied.
Patent Document 1 describes an optical transmitter that transmits signal light modulated by an electric signal and feed light for supplying power, a core that transmits the signal light, and a core formed around the core. An optical fiber having a first clad having a small refractive index and transmitting the feeding light and a second clad formed around the first clad and having a smaller refractive index than the first clad, and a first clad of the optical fiber are used for transmission. Described is an optical communication device including an optical receiver that operates with the converted power of the fed light and converts the signal light transmitted by the core of the optical fiber into the electric signal.
特開2010-135989号公報Japanese Unexamined Patent Publication No. 2010-135998
 光伝送システムでは、より一層の通信速度の向上が求められている。 Optical transmission systems are required to further improve communication speed.
 本開示の1つの態様の光伝送システムは、
 信号光を出力する複数の給光装置と、信号光を受ける複数の受光装置と、信号光を伝送する光ファイバーケーブルと、を備える光伝送システムであって、
 前記複数の給光装置から出力させた互いに異なる信号を有する複数の信号光を、前記光ファイバーケーブルの単一のコア又はクラッドを通じて前記複数の受光装置で受けて、MIMO通信を行う。
The optical transmission system of one aspect of the present disclosure is
An optical transmission system including a plurality of light supply devices for outputting signal light, a plurality of light receiving devices for receiving signal light, and an optical fiber cable for transmitting signal light.
A plurality of signal lights having different signals output from the plurality of light supply devices are received by the plurality of light receiving devices through a single core or cladding of the optical fiber cable, and MIMO communication is performed.
本開示の第1実施形態に係る光ファイバー伝送システムの構成図である。It is a block diagram of the optical fiber transmission system which concerns on 1st Embodiment of this disclosure. 本開示の第2実施形態に係る光ファイバー伝送システムの構成図である。It is a block diagram of the optical fiber transmission system which concerns on 2nd Embodiment of this disclosure. 本開示の第2実施形態に係る光ファイバー伝送システムの構成図であって、光コネクタ等を図示したものである。It is a block diagram of the optical fiber transmission system which concerns on 2nd Embodiment of this disclosure, and is the figure which showed the optical connector and the like. 本開示の他の一実施形態に係る光ファイバー伝送システムの構成図である。It is a block diagram of the optical fiber transmission system which concerns on another Embodiment of this disclosure. 本開示の第3実施形態に係る光ファイバー伝送システムの構成図である。It is a block diagram of the optical fiber transmission system which concerns on 3rd Embodiment of this disclosure. 本開示の第3実施形態に係る光ファイバー伝送システムが備える光ファイバーケーブルを説明するための模式図である。It is a schematic diagram for demonstrating the optical fiber cable provided in the optical fiber transmission system which concerns on 3rd Embodiment of this disclosure. 本開示の第4実施形態に係る光ファイバー伝送システムの構成図である。It is a block diagram of the optical fiber transmission system which concerns on 4th Embodiment of this disclosure.
 以下に本開示の一実施形態につき図面を参照して説明する。 An embodiment of the present disclosure will be described below with reference to the drawings.
〔第1実施形態〕
 図1に示すように、本実施形態の光ファイバー伝送システム1Aは、給電装置(PSE:Power Sourcing Equipment)110と、光ファイバーケーブル200Aと、受電装置(PD:Powered Device)310を備える。
 なお、本開示における給電装置は電力を光エネルギーに変換して供給する装置であり、受電装置は光エネルギーの供給を受け当該光エネルギーを電力に変換する装置である。
 給電装置110は、給電用半導体レーザー111を含む。
 光ファイバーケーブル200Aは、給電光の伝送路を形成する光ファイバー250Aを含む。
 受電装置310は、光電変換素子311を含む。
[First Embodiment]
As shown in FIG. 1, the optical fiber transmission system 1A of the present embodiment includes a power supply device (PSE: Power Sourcing Equipment) 110, an optical fiber cable 200A, and a power receiving device (PD: Powered Device) 310.
The power feeding device in the present disclosure is a device that converts electric power into light energy and supplies it, and a power receiving device is a device that receives the supply of light energy and converts the light energy into electric power.
The power feeding device 110 includes a power feeding semiconductor laser 111.
The optical fiber cable 200A includes an optical fiber 250A that forms a transmission line for feeding light.
The power receiving device 310 includes a photoelectric conversion element 311.
 給電装置110は電源に接続され、給電用半導体レーザー111等が電気駆動される。
 給電用半導体レーザー111は、上記電源からの電力によりレーザー発振して給電光112を出力する。
The power feeding device 110 is connected to a power source, and a power feeding semiconductor laser 111 or the like is electrically driven.
The power feeding semiconductor laser 111 oscillates with the electric power from the power source and outputs the power feeding light 112.
 光ファイバーケーブル200Aは、一端201Aが給電装置110に接続可能とされ、他端202Aが受電装置310に接続可能とされ、給電光112を伝送する。
 給電装置110からの給電光112が、光ファイバーケーブル200Aの一端201Aに入力され、給電光112は光ファイバー250A中を伝搬し、他端202Aから受電装置310に出力される。
In the optical fiber cable 200A, one end 201A can be connected to the power feeding device 110, and the other end 202A can be connected to the power receiving device 310 to transmit the feeding light 112.
The power feeding light 112 from the power feeding device 110 is input to one end 201A of the optical fiber cable 200A, the feeding light 112 propagates in the optical fiber 250A, and is output from the other end 202A to the power receiving device 310.
 光電変換素子311は、光ファイバーケーブル200Aを通して伝送されてきた給電光112を電力に変換する。光電変換素子311により変換された電力が、受電装置310内で必要な駆動電力とされる。さらに受電装置310は光電変換素子311により変換された電力を外部機器用に出力可能とされる。 The photoelectric conversion element 311 converts the power feeding light 112 transmitted through the optical fiber cable 200A into electric power. The electric power converted by the photoelectric conversion element 311 is used as the driving power required in the power receiving device 310. Further, the power receiving device 310 can output the electric power converted by the photoelectric conversion element 311 for an external device.
 給電用半導体レーザー111及び光電変換素子311の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が500nm以下の短波長のレーザー波長をもった半導体とされる。
 短波長のレーザー波長をもった半導体は、バンドギャップが大きく光電変換効率が高いので、光給電の発電側及び受電側における光電変換効率が向上され、光給電効率が向上する。
 そのためには、同半導体材料として、例えば、ダイヤモンド、酸化ガリウム、窒化アルミニウム、GaN等、レーザー波長(基本波)が200~500nmのレーザー媒体の半導体材料を用いてもよい。
 また、同半導体材料として、2.4eV以上のバンドギャップを有した半導体が適用される。
 例えば、ダイヤモンド、酸化ガリウム、窒化アルミニウム、GaN等、バンドギャップ2.4~6.2eVのレーザー媒体の半導体材料を用いてもよい。
 なお、レーザー光は長波長ほど伝送効率が良く、短波長ほど光電変換効率が良い傾向にある。したがって、長距離伝送の場合には、レーザー波長(基本波)が500nmより大きいレーザー媒体の半導体材料を用いてもよい。また、光電変換効率を優先する場合には、レーザー波長(基本波)が200nmより小さいレーザー媒体の半導体材料を用いてもよい。
 これらの半導体材料は、給電用半導体レーザー111及び光電変換素子311のいずれか一方に適用してもよい。給電側又は受電側における光電変換効率が向上され、光給電効率が向上する。
The semiconductor material constituting the semiconductor region that exerts the light-electric conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311 is a semiconductor having a short wavelength laser wavelength of 500 nm or less.
Since a semiconductor having a short wavelength laser wavelength has a large band gap and high photoelectric conversion efficiency, the photoelectric conversion efficiency on the power generation side and the power receiving side of optical power supply is improved, and the optical power supply efficiency is improved.
For that purpose, as the semiconductor material, for example, a semiconductor material of a laser medium having a laser wavelength (fundamental wave) of 200 to 500 nm, such as diamond, gallium oxide, aluminum nitride, and GaN, may be used.
Further, as the semiconductor material, a semiconductor having a band gap of 2.4 eV or more is applied.
For example, a semiconductor material of a laser medium having a bandgap of 2.4 to 6.2 eV, such as diamond, gallium oxide, aluminum nitride, and GaN, may be used.
The longer the wavelength of the laser light, the better the transmission efficiency, and the shorter the wavelength, the better the photoelectric conversion efficiency. Therefore, in the case of long-distance transmission, a semiconductor material of a laser medium having a laser wavelength (primary wave) larger than 500 nm may be used. When the photoelectric conversion efficiency is prioritized, a semiconductor material of a laser medium having a laser wavelength (fundamental wave) smaller than 200 nm may be used.
These semiconductor materials may be applied to either one of the power feeding semiconductor laser 111 and the photoelectric conversion element 311. The photoelectric conversion efficiency on the power feeding side or the power receiving side is improved, and the optical power feeding efficiency is improved.
〔第2実施形態〕
 図2に示すように本実施形態の光ファイバー伝送システム1は、光ファイバーを介した給電システムと光通信システムとを含むものであり、給電装置(PSE:Power Sourcing Equipment)110を含む第1のデータ通信装置100と、光ファイバーケーブル200と、受電装置(PD:Powered Device)310を含む第2のデータ通信装置300とを備える。
 給電装置110は、給電用半導体レーザー111を含む。第1のデータ通信装置100は、給電装置110のほか、データ通信を行う発信部120と、受信部130とを含む。第1のデータ通信装置100は、データ端末装置(DTE(Data Terminal Equipment))、中継器(Repeater)等に相当する。発信部120は、信号用半導体レーザー121と、モジュレーター122とを含む。受信部130は、信号用フォトダイオード131を含む。
[Second Embodiment]
As shown in FIG. 2, the optical fiber transmission system 1 of the present embodiment includes a power supply system via an optical fiber and an optical communication system, and is a first data communication including a power supply device (PSE: Power Sourcing Equipment) 110. It includes a device 100, an optical fiber cable 200, and a second data communication device 300 including a power receiving device (PD) 310.
The power feeding device 110 includes a power feeding semiconductor laser 111. The first data communication device 100 includes a power supply device 110, a transmission unit 120 that performs data communication, and a reception unit 130. The first data communication device 100 corresponds to a data terminal equipment (DTE (Data Terminal Equipment)), a repeater (Repeater), and the like. The transmitter 120 includes a signal semiconductor laser 121 and a modulator 122. The receiving unit 130 includes a signal photodiode 131.
 光ファイバーケーブル200は、信号光の伝送路を形成するコア210と、コア210の外周に配置され、給電光の伝送路を形成するクラッド220と有する光ファイバー250を含む。 The optical fiber cable 200 includes a core 210 forming a signal light transmission path, a clad 220 arranged on the outer periphery of the core 210 and forming a feeding light transmission path, and an optical fiber 250 having the core 210.
 受電装置310は、光電変換素子311を含む。第2のデータ通信装置300は、受電装置310のほか、発信部320と、受信部330と、データ処理ユニット340とを含む。第2のデータ通信装置300は、パワーエンドステーション(Power End Station)
等に相当する。発信部320は、信号用半導体レーザー321と、モジュレーター322とを含む。受信部330は、信号用フォトダイオード331を含む。データ処理ユニット340は、受信した信号を処理するユニットである。また、第2のデータ通信装置300は、給電ネットワークにおけるノードである。または第2のデータ通信装置300は、他のノードと通信するノードでもよい。
The power receiving device 310 includes a photoelectric conversion element 311. The second data communication device 300 includes a power receiving device 310, a transmitting unit 320, a receiving unit 330, and a data processing unit 340. The second data communication device 300 is a power end station.
Etc. The transmitter 320 includes a signal semiconductor laser 321 and a modulator 322. The receiving unit 330 includes a signal photodiode 331. The data processing unit 340 is a unit that processes a received signal. The second data communication device 300 is a node in the power supply network. Alternatively, the second data communication device 300 may be a node that communicates with another node.
 第1のデータ通信装置100は電源に接続され、給電用半導体レーザー111、信号用半導体レーザー121と、モジュレーター122、信号用フォトダイオード131等が電気駆動される。また、第1のデータ通信装置100は、給電ネットワークにおけるノードである。または第1のデータ通信装置100は、他のノードと通信するノードでもよい。
 給電用半導体レーザー111は、上記電源からの電力によりレーザー発振して給電光112を出力する。
The first data communication device 100 is connected to a power source, and a power feeding semiconductor laser 111, a signal semiconductor laser 121, a modulator 122, a signal photodiode 131, and the like are electrically driven. The first data communication device 100 is a node in the power supply network. Alternatively, the first data communication device 100 may be a node that communicates with another node.
The power feeding semiconductor laser 111 oscillates with the electric power from the power source and outputs the power feeding light 112.
 光電変換素子311は、光ファイバーケーブル200を通して伝送されてきた給電光112を電力に変換する。光電変換素子311により変換された電力は、発信部320、受信部330及びデータ処理ユニット340の駆動電力、その他の第2のデータ通信装置300内で必要となる駆動電力とされる。さらに第2のデータ通信装置300は、光電変換素子311により変換された電力を外部機器用に出力可能とされていてもよい。 The photoelectric conversion element 311 converts the power feeding light 112 transmitted through the optical fiber cable 200 into electric power. The electric power converted by the photoelectric conversion element 311 is the driving power of the transmitting unit 320, the receiving unit 330, and the data processing unit 340, and other driving power required in the second data communication device 300. Further, the second data communication device 300 may be capable of outputting the electric power converted by the photoelectric conversion element 311 for an external device.
 一方、発信部120のモジュレーター122は、信号用半導体レーザー121からのレーザー光123を送信データ124に基づき変調して信号光125として出力する。
 受信部330の信号用フォトダイオード331は、光ファイバーケーブル200を通して伝送されてきた信号光125を電気信号に復調し、データ処理ユニット340に出力する。データ処理ユニット340は、当該電気信号によるデータをノードに送信し、その一方で当該ノードからデータを受信し、送信データ324としてモジュレーター322に出力する。
 発信部320のモジュレーター322は、信号用半導体レーザー321からのレーザー光323を送信データ324に基づき変調して信号光325として出力する。
 受信部130の信号用フォトダイオード131は、光ファイバーケーブル200を通して伝送されてきた信号光325を電気信号に復調し出力する。当該電気信号によるデータがノードに送信され、その一方で当該ノードからデータが送信データ124とされる。
On the other hand, the modulator 122 of the transmitting unit 120 modulates the laser light 123 from the signal semiconductor laser 121 based on the transmission data 124 and outputs it as the signal light 125.
The signal photodiode 331 of the receiving unit 330 demodulates the signal light 125 transmitted through the optical fiber cable 200 into an electric signal and outputs it to the data processing unit 340. The data processing unit 340 transmits the data obtained by the electric signal to the node, while receiving the data from the node and outputting the data as the transmission data 324 to the modulator 322.
The modulator 322 of the transmitting unit 320 modulates the laser light 323 from the signal semiconductor laser 321 based on the transmission data 324 and outputs it as the signal light 325.
The signal photodiode 131 of the receiving unit 130 demodulates the signal light 325 transmitted through the optical fiber cable 200 into an electric signal and outputs it. The data by the electric signal is transmitted to the node, while the data from the node is referred to as transmission data 124.
 第1のデータ通信装置100からの給電光112及び信号光125が、光ファイバーケーブル200の一端201に入力され、給電光112はクラッド220を伝搬し、信号光125はコア210を伝搬し、他端202から第2のデータ通信装置300に出力される。
 第2のデータ通信装置300からの信号光325が、光ファイバーケーブル200の他端202に入力され、コア210を伝搬し、一端201から第1のデータ通信装置100に出力される。
The feed light 112 and the signal light 125 from the first data communication device 100 are input to one end 201 of the optical fiber cable 200, the feed light 112 propagates through the clad 220, the signal light 125 propagates through the core 210, and the other end. It is output from 202 to the second data communication device 300.
The signal light 325 from the second data communication device 300 is input to the other end 202 of the optical fiber cable 200, propagates through the core 210, and is output from one end 201 to the first data communication device 100.
 なお、図3に示すように第1のデータ通信装置100に光入出力部140とこれに付設された光コネクタ141が設けられる。また、第2のデータ通信装置300に光入出力部350とこれに付設された光コネクタ351が設けられる。光ファイバーケーブル200の一端201に設けられた光コネクタ230が光コネクタ141に接続する。光ファイバーケーブル200の他端202に設けられた光コネクタ240が光コネクタ351に接続する。光入出力部140は、給電光112をクラッド220に導光し、信号光125をコア210に導光し、信号光325を受信部130に導光する。光入出力部350は、給電光112を受電装置310に導光し、信号光125を受信部330に導光し、信号光325をコア210に導光する。
 以上のように、光ファイバーケーブル200は、一端201が第1のデータ通信装置100に接続可能とされ、他端202が第2のデータ通信装置300に接続可能とされ、給電光112を伝送する。さらに本実施形態では、光ファイバーケーブル200は、信号光125,325を双方向伝送する。
As shown in FIG. 3, the first data communication device 100 is provided with an optical input / output unit 140 and an optical connector 141 attached to the optical input / output unit 140. Further, the second data communication device 300 is provided with an optical input / output unit 350 and an optical connector 351 attached to the optical input / output unit 350. An optical connector 230 provided at one end 201 of the optical fiber cable 200 connects to the optical connector 141. An optical connector 240 provided at the other end 202 of the optical fiber cable 200 connects to the optical connector 351. The optical input / output unit 140 guides the feeding light 112 to the clad 220, guides the signal light 125 to the core 210, and guides the signal light 325 to the receiving unit 130. The optical input / output unit 350 guides the feeding light 112 to the power receiving device 310, guides the signal light 125 to the receiving unit 330, and guides the signal light 325 to the core 210.
As described above, the optical fiber cable 200 has one end 201 connectable to the first data communication device 100 and the other end 202 connectable to the second data communication device 300 to transmit the feeding light 112. Further, in the present embodiment, the optical fiber cable 200 transmits the signal lights 125 and 325 in both directions.
 給電用半導体レーザー111及び光電変換素子311の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料としては上記第1実施形態と同様のものが適用され、高い光給電効率が実現される。 As the semiconductor material constituting the semiconductor region that exerts the light-electricity conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311, the same materials as those in the first embodiment are applied, and high light power feeding efficiency is realized. ..
 なお、図4に示す光ファイバー伝送システム1Bの光ファイバーケーブル200Bのように、信号光を伝送する光ファイバー260と、給電光を伝送する光ファイバー270とを別々に設けてもよい。光ファイバーケーブル200Bも複数本で構成してもよい。 Note that, as in the optical fiber cable 200B of the optical fiber transmission system 1B shown in FIG. 4, an optical fiber 260 for transmitting signal light and an optical fiber 270 for transmitting feed light may be provided separately. The optical fiber cable 200B may also be composed of a plurality of cables.
〔第3実施形態〕
 図5は、第3実施形態の光ファイバー伝送システム1Cの構成図であり、図6は、光ファイバー伝送システム1Cが備える光ファイバーケーブル200Cを説明するための模式図である。図5中、上述したものと同一の構成要素については同一符号を付して詳細な説明を省略する。
[Third Embodiment]
FIG. 5 is a configuration diagram of the optical fiber transmission system 1C of the third embodiment, and FIG. 6 is a schematic diagram for explaining an optical fiber cable 200C included in the optical fiber transmission system 1C. In FIG. 5, the same components as those described above are designated by the same reference numerals, and detailed description thereof will be omitted.
 図5に示すように、第3実施形態の光ファイバー伝送システム1Cは、第1のデータ通信装置100Cと、光ファイバーケーブル200Cと、第2のデータ通信装置300Cとを備える。 As shown in FIG. 5, the optical fiber transmission system 1C of the third embodiment includes a first data communication device 100C, an optical fiber cable 200C, and a second data communication device 300C.
 第1のデータ通信装置100Cは、3つの給光装置150と、給光制御部160とを含む。
 3つの給光装置150の各々は、信号用半導体レーザー121Cを含む。
 給光制御部160は、3つの給光装置150を制御し、それぞれの信号用半導体レーザー121Cからのレーザー光を変調して、互いに異なる信号を有する3つの信号光125Cを出力させる。3つの信号光125Cは、互いに異なる信号を有するものであれば特に限定されず、その信号は例えば単一の送信データから生成されたものなどであってもよい。また、各給光装置150は、上記第2実施形態における発信部120のように、信号用半導体レーザー121Cからのレーザー光を送信データに基づいてモジュレーターで変調して信号光125Cとして出力してもよい。
 3つの給光装置150から出力された3つの信号光125Cは、光ファイバーケーブル200Cに出力される。
The first data communication device 100C includes three light supply devices 150 and a light supply control unit 160.
Each of the three light feeders 150 includes a signal semiconductor laser 121C.
The light supply control unit 160 controls three light supply devices 150, modulates the laser light from each signal semiconductor laser 121C, and outputs three signal lights 125C having different signals. The three signal lights 125C are not particularly limited as long as they have signals different from each other, and the signals may be, for example, those generated from a single transmission data. Further, even if each light supply device 150 modulates the laser light from the signal semiconductor laser 121C with a modulator based on the transmission data and outputs the signal light 125C as in the transmission unit 120 in the second embodiment. Good.
The three signal lights 125C output from the three light supply devices 150 are output to the optical fiber cable 200C.
 光ファイバーケーブル200Cは、光ファイバー250Cを含む。光ファイバー250Cは、3つの信号光125Cの伝送路を形成するコア210Cと、コア210Cの周囲のクラッド220とを含む。
 コア210Cは、図6に示すように、光を拡散させる粉体材料Pが混合されているのが好ましい。これにより、コア210C内を伝送する信号光125Cの拡散を促進させ、各信号光125Cを第2のデータ通信装置300Cの3つの受光装置360(信号用フォトダイオード331C)に好適に分散させて受光させることができる。光ファイバー250Cの両端面は、3つの給光装置150又は3つの受光装置360との間に空間を有するが、図3に示したように、ここに光入出力部及び光コネクタを設けてもよい。
 なお、光ファイバー250Cは、3つの信号光125Cを単一のコア210C又はクラッド220で伝送可能であればよい。つまり3つの信号光125の伝送路はクラッド220であってもよい。
The optical fiber cable 200C includes an optical fiber 250C. The optical fiber 250C includes a core 210C forming a transmission line for three signal lights 125C and a clad 220 surrounding the core 210C.
As shown in FIG. 6, the core 210C is preferably mixed with a powder material P that diffuses light. As a result, the diffusion of the signal light 125C transmitted in the core 210C is promoted, and each signal light 125C is suitably dispersed and received by the three light receiving devices 360 (signal photodiode 331C) of the second data communication device 300C. Can be made to. Both end faces of the optical fiber 250C have a space between the three light supply devices 150 or the three light receiving devices 360, and as shown in FIG. 3, an optical input / output unit and an optical connector may be provided here. ..
The optical fiber 250C may be capable of transmitting three signal lights 125C by a single core 210C or a clad 220. That is, the transmission lines of the three signal lights 125 may be clad 220.
 第2のデータ通信装置300Cは、図5に示すように、3つの受光装置360と、データ処理ユニット340Cとを含む。
 3つの受光装置360の各々には、3つの給光装置150からの3つの信号光125Cが光ファイバーケーブル200Cでの伝送を通じて分散された信号光325Cが入力される。つまり、各受光装置360には、互いに異なる信号を有する3つの信号光125Cを含んだ信号光325Cが伝送される。各受光装置360の信号用フォトダイオード331Cは、伝送されてきた信号光325Cを電気信号に復調し、データ処理ユニット340Cに出力する。
As shown in FIG. 5, the second data communication device 300C includes three light receiving devices 360 and a data processing unit 340C.
Each of the three light receiving devices 360 receives a signal light 325C in which three signal lights 125C from the three light supply devices 150 are distributed through transmission on the optical fiber cable 200C. That is, signal light 325C including three signal lights 125C having different signals is transmitted to each light receiving device 360. The signal photodiode 331C of each light receiving device 360 demodulates the transmitted signal light 325C into an electric signal and outputs it to the data processing unit 340C.
 データ処理ユニット340Cは、3つの受光装置360から入力された信号に基づいて、例えば行列演算による信号分離処理を行い、3つの給光装置150から出力された各信号光125Cが有する信号を求める。これらの信号が単一のデータから生成されたものであった場合には、この元のデータを復号する。
 すなわち、第1のデータ通信装置100Cと第2のデータ通信装置300Cとの間では、3つの給光装置150と3つの受光装置360とを用いてMIMO(multiple-input and multiple-output)通信が行われる。
 これにより、各々単一の給光装置及び受光装置を用いた従来に比べ、通信速度を向上させることができる。
Based on the signals input from the three light receiving devices 360, the data processing unit 340C performs signal separation processing by, for example, matrix calculation, and obtains a signal possessed by each signal light 125C output from the three light supply devices 150. If these signals were generated from a single piece of data, the original data is decoded.
That is, between the first data communication device 100C and the second data communication device 300C, MIMO (multiple-input and multiple-output) communication is performed using the three light supply devices 150 and the three light receiving devices 360. Will be done.
As a result, the communication speed can be improved as compared with the conventional case in which a single light supply device and a light receiving device are used respectively.
〔第4実施形態〕
 図7は、第4実施形態の光ファイバー伝送システムの構成図である。図7中、上述したものと同一の構成要素については同一符号を付して詳細な説明を省略する。
[Fourth Embodiment]
FIG. 7 is a configuration diagram of the optical fiber transmission system of the fourth embodiment. In FIG. 7, the same components as those described above are designated by the same reference numerals, and detailed description thereof will be omitted.
 図7に示すように、第4実施形態の光ファイバー伝送システム1Dは、伝送する光が給電光であり、これに信号を重畳させている点で、第3実施形態の光ファイバー伝送システム1Cと異なる。 As shown in FIG. 7, the optical fiber transmission system 1D of the fourth embodiment is different from the optical fiber transmission system 1C of the third embodiment in that the light to be transmitted is the feeding light and a signal is superimposed on the feeding light.
 光ファイバー伝送システム1Dは、光ファイバーケーブル200Cのほか、第1のデータ通信装置100Dと、第2のデータ通信装置300Dとを備える。 The optical fiber transmission system 1D includes a first data communication device 100D and a second data communication device 300D in addition to the optical fiber cable 200C.
 第1のデータ通信装置100Dは、3つの給光装置150Dと、給光制御部160Dとを含む。
 3つの給光装置150Dの各々は、給電用半導体レーザー111Dを含む。
 給光制御部160Dは、3つの給光装置150Dを制御し、それぞれの給電用半導体レーザー111Dからのレーザー光を変調して、互いに異なる信号を有する3つの給電光112Dを出力させる。3つの給電光112Dは、互いに異なる信号が重畳されたものであれば特に限定されず、その信号は例えば単一の送信データから生成されたものなどであってもよい。
 3つの給光装置150Dから出力された3つの給電光112Dは、光ファイバーケーブル200Cのコア210Cに出力される。
The first data communication device 100D includes three light supply devices 150D and a light supply control unit 160D.
Each of the three light feeders 150D includes a power feeding semiconductor laser 111D.
The light supply control unit 160D controls three light supply devices 150D, modulates the laser light from each of the power feeding semiconductor lasers 111D, and outputs three feeding lights 112D having different signals. The three feeding lights 112D are not particularly limited as long as signals different from each other are superimposed, and the signals may be, for example, those generated from a single transmission data.
The three feeding lights 112D output from the three light supply devices 150D are output to the core 210C of the optical fiber cable 200C.
 第2のデータ通信装置300Dは、3つの受光装置360Dと、電力合成部370Dと、データ処理ユニット340Dとを含む。
 3つの受光装置360Dの各々には、3つの給光装置150Dからの3つの給電光112Dが光ファイバーケーブル200Cでの伝送を通じて分散された給電光312Dが入力される。つまり、各受光装置360Dには、互いに異なる信号が重畳された3つの給電光112Dを含んだ給電光312Dが伝送される。各受光装置360Dの光電変換素子311Dは、伝送されてきた給電光312Dを電力に変換する。
The second data communication device 300D includes three light receiving devices 360D, a power synthesis unit 370D, and a data processing unit 340D.
Each of the three light receiving devices 360D is input with the feeding light 312D in which the three feeding lights 112D from the three light feeding devices 150D are distributed through the transmission by the optical fiber cable 200C. That is, the feeding light 312D including the three feeding lights 112D on which different signals are superimposed is transmitted to each light receiving device 360D. The photoelectric conversion element 311D of each light receiving device 360D converts the transmitted feed light 312D into electric power.
 電力合成部370Dは、3つの受光装置360D(光電変換素子311D)により給電光312Dから変換された電力を合成し、負荷へ供給する。負荷は、第2のデータ通信装置300D内の各機器であってもよいし、外部機器であってもよい。 The power synthesis unit 370D synthesizes the power converted from the feed light 312D by the three light receiving devices 360D (photoelectric conversion element 311D) and supplies the power to the load. The load may be each device in the second data communication device 300D, or may be an external device.
 データ処理ユニット340Dは、3つの給電光312Dを復調し、重畳されていた3つの信号(情報)を取得する。そして、データ処理ユニット340Dは、取得した信号に基づいて、例えば行列演算による信号分離処理を行い、3つの給光装置150Dから出力された各給電光112Dに重畳した信号を求める。
 すなわち、第1のデータ通信装置100Dと第2のデータ通信装置300Dとの間では、3つの給光装置150Dと3つの受光装置360Dとを用い、給電を行いつつMIMO通信が行われる。
 これにより、各々単一の給光装置及び受光装置を用いる場合に比べて給電量を増加させつつ、通信系統を用いることなくデータ通信を行うことができる。
The data processing unit 340D demodulates the three feeding lights 312D and acquires the three superimposed signals (information). Then, the data processing unit 340D performs signal separation processing by, for example, matrix calculation based on the acquired signal, and obtains a signal superimposed on each feeding light 112D output from the three light supply devices 150D.
That is, between the first data communication device 100D and the second data communication device 300D, MIMO communication is performed while supplying power using three light supply devices 150D and three light receiving devices 360D.
As a result, data communication can be performed without using a communication system while increasing the amount of power supply as compared with the case where a single light supply device and light receiving device are used.
 以上本開示の実施形態を説明したが、この実施形態は、例として示したものであり、この他の様々な形態で実施が可能であり、発明の要旨を逸脱しない範囲で、構成要素の省略、置き換え、変更を行うことができる。
 例えば、上記第3、第4実施形態では、給光装置及び受光装置が各々3つ設けられることとしたが、給光装置及び受光装置の数量は特に限定されない。ただし、これらの数量が互いに対応していることが好ましい。
Although the embodiments of the present disclosure have been described above, this embodiment is shown as an example, and can be implemented in various other embodiments, and components are omitted as long as the gist of the invention is not deviated. , Can be replaced or changed.
For example, in the third and fourth embodiments, three light supply devices and three light receiving devices are provided, but the number of the light supply device and the light receiving device is not particularly limited. However, it is preferable that these quantities correspond to each other.
 以上のように、本発明に係る光伝送システムは、従来に比べて通信速度を向上させるのに有用である。 As described above, the optical transmission system according to the present invention is useful for improving the communication speed as compared with the conventional one.
1A  光ファイバー伝送システム(光伝送システム)
1   光ファイバー伝送システム(光伝送システム)
1B  光ファイバー伝送システム(光伝送システム)
1C  光ファイバー伝送システム(光伝送システム)
1D  光ファイバー伝送システム(光伝送システム)
100 第1のデータ通信装置
100C 第1のデータ通信装置
100D 第1のデータ通信装置
111  給電用半導体レーザー
111D 給電用半導体レーザー
112  給電光
112D 給電光
121  信号用半導体レーザー
121C 信号用半導体レーザー
125  信号光
125C 信号光
150  給光装置
150D 給光装置
160  給光制御部
160D 給光制御部
200  光ファイバーケーブル
200A 光ファイバーケーブル
200B 光ファイバーケーブル
200C 光ファイバーケーブル
210  コア
210C コア
250  光ファイバー
250A 光ファイバー
250C 光ファイバー
300  第2のデータ通信装置
300C 第2のデータ通信装置
300D 第2のデータ通信装置
311  光電変換素子
311D 光電変換素子
312D 給電光
325  信号光
325C 信号光
331  信号用フォトダイオード
331C 信号用フォトダイオード
340  データ処理ユニット
340C データ処理ユニット
340D データ処理ユニット
360  受光装置
360D 受光装置
370D 電力合成部
P    粉体材料
1A Optical fiber transmission system (optical transmission system)
1 Optical fiber transmission system (optical transmission system)
1B Optical fiber transmission system (optical transmission system)
1C optical fiber transmission system (optical transmission system)
1D optical fiber transmission system (optical transmission system)
100 First data communication device 100C First data communication device 100D First data communication device 111 Power supply semiconductor laser 111D Power supply semiconductor laser 112 Power supply light 112D Power supply light 121 Signal semiconductor laser 121C Signal semiconductor laser 125 Signal light 125C signal light 150 light supply device 150D light supply device 160 light supply control unit 160D light supply control unit 200 optical fiber cable 200A optical fiber cable 200B optical fiber cable 200C optical fiber cable 210 core 210C core 250 optical fiber 250A optical fiber 250C optical fiber 300 second data communication device 300C Second data communication device 300D Second data communication device 311 Photoelectric conversion element 311D Photoelectric conversion element 312D Feed light 325 Signal light 325C Signal light 331 Signal photodiode 331C Signal photodiode 340 Data processing unit 340C Data processing unit 340D Data processing unit 360 Light receiving device 360D Light receiving device 370D Power synthesis unit P Powder material

Claims (4)

  1.  信号光を出力する複数の給光装置と、信号光を受ける複数の受光装置と、信号光を伝送する光ファイバーケーブルと、を備える光伝送システムであって、
     前記複数の給光装置から出力させた互いに異なる信号を有する複数の信号光を、前記光ファイバーケーブルの単一のコア又はクラッドを通じて前記複数の受光装置で受けて、MIMO通信を行う、
     光伝送システム。
    An optical transmission system including a plurality of light supply devices for outputting signal light, a plurality of light receiving devices for receiving signal light, and an optical fiber cable for transmitting signal light.
    A plurality of signal lights having different signals output from the plurality of light supply devices are received by the plurality of light receiving devices through a single core or cladding of the optical fiber cable, and MIMO communication is performed.
    Optical transmission system.
  2.  前記光ファイバーケーブルは、信号光を伝送するコア又はクラッドに、光を拡散させる粉体材料が混合されている、
     請求項1に記載の光伝送システム。
    In the optical fiber cable, a powder material that diffuses light is mixed in a core or a cladding that transmits signal light.
    The optical transmission system according to claim 1.
  3.  前記複数の受光装置は、伝送された信号光を電気信号に復調し、
     前記複数の受光装置により復調された信号に基づいて信号分離処理を行い、前記複数の給光装置から出力された信号光が有する信号を求めるデータ処理部を備える、
     請求項1又は請求項2に記載の光伝送システム。
    The plurality of light receiving devices demodulate the transmitted signal light into an electric signal.
    A data processing unit that performs signal separation processing based on signals demodulated by the plurality of light receiving devices and obtains a signal possessed by signal light output from the plurality of light supply devices is provided.
    The optical transmission system according to claim 1 or 2.
  4.  前記信号光は給電光であり、
     前記複数の給光装置は、変調により互いに異なる信号が重畳された複数の給電光を出力し、
     前記複数の受光装置は、伝送された複数の給電光を電力に変換し、
     前記複数の受光装置により変換された電力を合成する電力合成部と、
     前記複数の受光装置が受けた複数の給電光に重畳された複数の信号を取得し、当該複数の信号に基づいて、前記複数の給光装置により給電光に重畳された信号を求めるデータ処理部と、を備える、
     請求項1又は請求項2に記載の光伝送システム。
    The signal light is a feeding light and is
    The plurality of light feeding devices output a plurality of feeding lights on which signals different from each other are superimposed by modulation.
    The plurality of light receiving devices convert the plurality of transmitted light feeds into electric power.
    A power synthesizer that synthesizes the power converted by the plurality of light receiving devices, and
    A data processing unit that acquires a plurality of signals superimposed on a plurality of feed lights received by the plurality of light receiving devices and obtains a signal superimposed on the feed light by the plurality of light supply devices based on the plurality of signals. And with
    The optical transmission system according to claim 1 or 2.
PCT/JP2020/031397 2019-10-18 2020-08-20 Optical transmission system WO2021075146A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20876875.4A EP3926863B1 (en) 2019-10-18 2020-08-20 Optical transmission system
US17/442,121 US11381320B2 (en) 2019-10-18 2020-08-20 Optical transmission system
CN202080018874.3A CN113557679B (en) 2019-10-18 2020-08-20 Optical transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019190638A JP6898411B2 (en) 2019-10-18 2019-10-18 Optical transmission system
JP2019-190638 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075146A1 true WO2021075146A1 (en) 2021-04-22

Family

ID=75537816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031397 WO2021075146A1 (en) 2019-10-18 2020-08-20 Optical transmission system

Country Status (5)

Country Link
US (1) US11381320B2 (en)
EP (1) EP3926863B1 (en)
JP (1) JP6898411B2 (en)
CN (1) CN113557679B (en)
WO (1) WO2021075146A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300110A (en) * 2001-04-03 2002-10-11 Yosuke Tanaka Light-power/signal supply device, and optical signal/ power multiplex transmission system utilizing the device
JP2005198396A (en) * 2004-01-06 2005-07-21 Kansai Electric Power Co Inc:The Optical power supply system
JP2010135989A (en) 2008-12-03 2010-06-17 Mitsubishi Electric Corp Optic fiber, optical communication device, and optical communication method
JP2012160782A (en) * 2011-01-28 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Multimode light transmission system and method
JP2019140595A (en) * 2018-02-14 2019-08-22 国立大学法人電気通信大学 Optical fiber power supply and signal transmission system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770767B2 (en) * 2000-02-17 2006-04-26 株式会社日立製作所 Transponder, wavelength division multiplexing transmission apparatus, wavelength division multiplexing transmission system, and information communication apparatus
JP2006100909A (en) * 2004-09-28 2006-04-13 Nec Corp Waveform division multiplex optical transmission system, optical transmitter, relay node and waveform division multiplex optical transmission method
US8842995B2 (en) * 2010-05-11 2014-09-23 The Invention Science Fund I, Llc Optical power transmission systems and methods
US20140291895A1 (en) * 2013-04-01 2014-10-02 I2Ic Corporation Method of Manufacturing a Body with Oriented Aspherical Particles
WO2015114800A1 (en) * 2014-01-31 2015-08-06 三菱電機株式会社 Light transfer apparatus and light transfer method
CN104702381B (en) * 2015-03-20 2016-09-21 清华大学 Based on frequency comb source and the mimo transmission system of wavelength-division multiplex
JP6435059B2 (en) * 2016-01-12 2018-12-05 日本電信電話株式会社 Optical transmission system and optical transmitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300110A (en) * 2001-04-03 2002-10-11 Yosuke Tanaka Light-power/signal supply device, and optical signal/ power multiplex transmission system utilizing the device
JP2005198396A (en) * 2004-01-06 2005-07-21 Kansai Electric Power Co Inc:The Optical power supply system
JP2010135989A (en) 2008-12-03 2010-06-17 Mitsubishi Electric Corp Optic fiber, optical communication device, and optical communication method
JP2012160782A (en) * 2011-01-28 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Multimode light transmission system and method
JP2019140595A (en) * 2018-02-14 2019-08-22 国立大学法人電気通信大学 Optical fiber power supply and signal transmission system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926863A4
SLEIFFER V A J M, JUNG Y, INAN B, CHEN H, VAN UDEN R G H, KUSCHNEROV M, JANSEN S L, VELJANOVSKI V, KOONEN A M J, RICHARDSON D J, A: "Mode-division-multiplexed 3x112-Gb/s DP-QPSK transmission over 80-km few-mode fiber with inline MM-EDFA and Blind DSP", 2012 38TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATIONS, 2012, pages 1 - 3, XP032543856 *

Also Published As

Publication number Publication date
EP3926863A4 (en) 2022-04-20
CN113557679A (en) 2021-10-26
EP3926863B1 (en) 2023-05-17
JP6898411B2 (en) 2021-07-07
CN113557679B (en) 2022-09-27
EP3926863A1 (en) 2021-12-22
JP2021068936A (en) 2021-04-30
US20220094444A1 (en) 2022-03-24
US11381320B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2021075164A1 (en) Optical power feeding system
JP2023153145A (en) Data communication device and optical feeding system
JP6890636B2 (en) Optical power supply system
WO2021075146A1 (en) Optical transmission system
WO2021014841A1 (en) Light power supply system
WO2021186828A1 (en) Power receiving device for optical power feed system, and optical power feed system
JP6890635B2 (en) Optical power supply system
JP7436160B2 (en) Optical power supply system
WO2021014882A1 (en) Optical power supply system
WO2021075088A1 (en) Optical fiber power supply system
WO2021024689A1 (en) Optical fiber power supply system and optical fiber cable
WO2021019997A1 (en) Optical fiber power feeding system
WO2021019995A1 (en) Optical fiber power feeding system
JP7308682B2 (en) Optical power supply system
WO2020246298A1 (en) Optical fiber power supply system and power supply light visualization lid member
WO2021024574A1 (en) Optical fiber power feeding system
WO2021186831A1 (en) Power supply device of fiber optic power supply system, and fiber optic power supply system
JP2020202424A (en) Photoelectric adapter and optical transmission cable allowing electrical input and output

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020876875

Country of ref document: EP

Effective date: 20210916

NENP Non-entry into the national phase

Ref country code: DE