WO2021074475A1 - Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada - Google Patents

Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada Download PDF

Info

Publication number
WO2021074475A1
WO2021074475A1 PCT/ES2020/070633 ES2020070633W WO2021074475A1 WO 2021074475 A1 WO2021074475 A1 WO 2021074475A1 ES 2020070633 W ES2020070633 W ES 2020070633W WO 2021074475 A1 WO2021074475 A1 WO 2021074475A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
hole
cavity
rotation
orientation
Prior art date
Application number
PCT/ES2020/070633
Other languages
English (en)
French (fr)
Inventor
Josep Soler Cegarra
Original Assignee
Luengo Soler, Luis
MANERO MARTÍ, Ana Mª
RICO IRIBARNE, José-Jaime
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201930929A external-priority patent/ES2779503R1/es
Application filed by Luengo Soler, Luis, MANERO MARTÍ, Ana Mª, RICO IRIBARNE, José-Jaime filed Critical Luengo Soler, Luis
Publication of WO2021074475A1 publication Critical patent/WO2021074475A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/34Making or working of models, e.g. preliminary castings, trial dentures; Dowel pins [4]

Definitions

  • the present invention refers to a system for the self-localization of a module in position, orientation and rotation from a computerized tomography, presenting technical characteristics that improve systems and modules of similar use existing on the market and everything that is part of the corresponding state of the art.
  • the field of the art of this invention corresponds to the treatment and / or generation of image data, in particular the analysis of said images by means of different comparative techniques.
  • the detection of objects inserted in natural or artificial physical bodies is one of the usual needs in various disciplines of knowledge and technical activities, in particular to establish the position, orientation and rotation coordinates of such objects.
  • the dental sector needs to position and securely fix the position of dental implants, made of biocompatible materials and seated by thread on the base of the bone.
  • Patent US20140377714 refers to a "scanning body to determine the position and orientation of a dental implant ", which includes” a base portion that comprises an interface, that includes a three-dimensional scan region that comprises at least four different scan areas, that includes a transition region axially between the scan of the region and the interface , in addition to including a fixation screw to fix the exploration body in the implant. "
  • Document W02007074201 develops a “Mini autonomous gamma camera that includes a localization system for intra-surgical use” that is based on “scintillation crystals and comprises an independent module, that is, all the necessary systems have been integrated together with the sensor head and no other system is required.
  • the camera can be hot-plugged to any computer using different types of interface, such as to meet medical grade specifications.
  • the camera can be self-powered, can save energy, and allows software and firmware to be updated from the Internet and images to be formed in real time.
  • Any continuous scintillation crystal-based gamma ray detector can be provided with a system to focus the scintillation light emitted by the gamma ray to improve spatial resolution.
  • Document WO2016102721 refers to a "method and system for spatial localization of a target in a three-dimensional environment that comprises at least one luminous marker comprising: - a stereo camera to capture a first image frame at a current moment and a second frame of image in a previous instant; - an angle measurement module to obtain an angle of rotation of the target and a signal processor with access to a memory for storing radii "using triangulation techniques, stereo geometry and image coordinates of the marker at the current moment and at the previous.
  • European patent EP1501051A2 refers to a "position and orientation detection method and apparatus", in which "a signal is produced indicating a change in the position of an image sensor apparatus to predict the current position and orientation of the Image sensor apparatus using previously obtained position and orientation, identifying corresponding pairs of indicators detected from an image in real space detected by the image detection apparatus and indicators contained in an image when detected from a position and orientation predicted and using a correction method determined by the number of identified indicator pairs to correct all or some of the degrees of freedom from the predicted Camera position and orientation or to use the predicted camera position and orientation directly as it is.
  • the patent AU 2008296518 develops a “system and a method for 3D measurement of the shape of material objects by means of a non-contact structured light triangulation.
  • the system includes a light projector to project a structured light pattern onto the surface of any object and a camera to capture an image of the structured light pattern acting on the surface of the object.
  • the system also includes a computer module for determining the 3D measurement of the surface shape of the illuminated object through a triangulation algorithm used based on a calculated correspondence between the projected structured light and the captured image.
  • Structured light includes encoded elements that are within planes that pass through the vertices of the central projection areas of the projector and camera, as well as that pass through the space of the object being measured.
  • Patent US9829564 which refers to a "detector for optically detecting at least one longitudinal coordinate of an object by determining a number of illuminated pixels”.
  • the aforementioned background describes various advances in techniques for locating hidden parts, using location systems either by means of light points or by calculating different three-dimensional parameters.
  • the techniques used may, in certain cases, not guarantee the accuracy of the position of the hidden part since it is nothing more than an object that itself lacks parameters that allow its location unequivocally.
  • Applicants are not aware that there is a module that is self-locating in position, orientation and rotation or of a system that allows such location from a computed tomography.
  • the object of this invention is a system for the self-localization of a module in position, orientation and rotation from a computerized tomography of any type (CT, CBCT, etc ).
  • This system comprises a physical part and a mathematical software support that works with known geometric coordinates of the physical part.
  • the physical part is specified in a module as a piece of undefined configuration characterized by being internally perforated forming a hole or cavity open at both ends, regular or irregular, said hole or cavity presenting a predetermined and known inclination and / or shape, and that allow to indicate the position, orientation and determined rotation of the part where said hole or cavity is located.
  • This hole or open cavity can be empty, forming a cavity or contain a filling material according to the needs of the module or part.
  • said hole or open cavity has a constant diameter throughout its length and is angled with respect to the vertical of the module to be located, such angulation being certain degrees depending on the needs of each module.
  • Both the angulation of the hole or cavity and the distance from the point of intersection of the vertical of the module with the center of the hole or cavity, are known vectors, as is the shape of the aforementioned hole or cavity.
  • Said angulation is oriented indicating where the flat reference face of the module is located, which indicates the rotation.
  • this self-locating module Since one of the preferred applications of this self-locating module is in the medical field and more particularly in dental practice, it works with the DICOM protocol (Digital Imaging and Communication On Medicine), suitable for the visualization, storage, printing and transmission of images and data.
  • DICOM protocol Digital Imaging and Communication On Medicine
  • the computer system is made up of two elements. The first accesses the DICOM file, filters the images by their density, showing only the module to be searched, for example a dental implant, including the entire module and with it the cavity or hole, and then proceeds to convert the image into a mesh (STL or other format).
  • the first accesses the DICOM file, filters the images by their density, showing only the module to be searched, for example a dental implant, including the entire module and with it the cavity or hole, and then proceeds to convert the image into a mesh (STL or other format).
  • the second performs a "best fit" of said mesh with a 3D model.
  • the 3D model would consist of the cavity or hole, the central axis of the implant of known distance and a scan post on the top of the implant.
  • the scanning post When performing the "best fit” the scanning post would be positioned on the implant in position, oriented along the axis and rotation due to the angulation of the cavity or hole or by determining a larger or smaller diameter as appropriate for a cavity or hole with evolutionary diameter.
  • a comparative "best fit" of the cavity or hole (21) (22) is carried out and its axis aligns with the axis (5) of the flat face to be located (3) or another known distance , with the exact known distance to the adjustment zone of the module (1), computing the exact axis of said module (1), so that, as indicated, this "best fit” is placed in position by the cavity or hole, in orientation along the axis and in rotation through the angle of said cavity or hole (21) (22).
  • the hole or cavity cannot be angled due to the characteristics and / or restrictions of the module.
  • the hole or cavity must have a shape such that it determines different diameters at different points of its structure, for example, a conical hole or cavity.
  • the hole or cavity therefore has an evolving diameter, thereby creating a sequence of different diameters between the ends and / or inside the hole or cavity, which also determines the rotation.
  • the "Best Fit” works with the same guidelines that occur when the hole or cavity is angled, that is, the objective is to distinguish the flat face of the module, which is achieved by determining which is the diameter of greater or lesser dimension as appropriate of those that may exist in the conformation of the hole or cavity. Based on all of the above, and by extension, the position of the module to be located is also achieved precisely thanks to the presence of the hole or open cavity.
  • the self-locating module can be inserted into a second hidden, artificial or natural physical body, that is, not visible, such as a surgical implant, or the second physical body can be partially or totally exposed to view, screwed into a non-buried base.
  • a dental implant that protrudes from the gum or screwed to an object that can be subjected to an industrial CT scan.
  • the hole or open cavity of the module can be filled with a material in a solid, semi-solid, pasty, liquid or gaseous state.
  • Figure 1 Schematic view of the self-locating module in position, orientation and rotation claimed in detail of the hole or interior cavity open in oblique position.
  • Figure 2. Schematic perspective view of the self-locating module with detail of the hole or interior open cavity in oblique position.
  • Figure 3 Schematic view of the self-locating module with detail of the hole or interior open cavity in a vertical and centered position.
  • Figure 4 Schematic example of the hole or open cavity angled with respect to the vertical of the module.
  • Figure.5 Schematic example of the hole or open cavity not angled and with an evolutionary sequence of diameter.
  • the object of this invention is a system for the self-localization of a module in position, orientation and rotation from a computerized tomography.
  • this module is shaped, by way of example, as a post (1) applied to dental implants.
  • the self-locating module is made of a piece (1) with an upper body (11) extended by an anchor post (12), the upper body (11) being internally perforated with a hole or cavity open at both ends. , (21) (22) with a previously known inclination and / or shape.
  • the open hole or cavity (21) is arranged in an oblique position with respect to the mentioned upper body of the part (1) while in Figure 3, the open hole or cavity (22) is located in the longitudinal with respect to the body (11) of the part (1).
  • Figures 4 and 5 show in detail the hole or cavity angled or with an evolving diameter.
  • Figure 4 shows the hole or open cavity positioned at an angle (61) with respect to the vertical of the module (1B) to be located, with a constant diameter determined throughout its length while in figure 5 the hole or cavity does not it is angled (62) with respect to the module (1B) to be located and it has an evolutionary and sequential diameter throughout its length, with notable differences in its extension.
  • Both figures show the plane to be located (3) as well as the reference module face (4) of the module for rotation and the axis (5) of the plane face to be located (3) or another known distance.
  • the inclination and / or shape of the hole are previously known and are the only geometrically recognizable part of the part, for what these data constitute the only information that will allow that, by means of a computerized tomography of any type (CT, CBCT, etc 7), compiling the geometric data that identify the orifice or open cavity described and using such data for the reconstruction tomography of the same based on a mathematical algorithm of computer-processed software, the position, orientation and rotation of the aforementioned piece are determined.
  • CT computerized tomography of any type
  • the module or part that is, the predetermined and known inclination and / or shape of its inner hole, which make said module a self-locating body by means of the system. described.
  • locating the module or part inserted in an artificial or natural physical body is much more complex and does not guarantee satisfactory results.
  • the angled position or not of the hole or open cavity with respect to the vertical of the module allow a better location of the same through the mesh pattern generated by the computerized repositioning system or "best fit", with greater speed and consequent cost reduction in the process, achieving a highly decisive image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Optics & Photonics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

El objeto de esta invención es un sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada que comprende una parte física y un soporte de software matemático que trabaja con coordenadas geométricas conocidas de la parte física, siendo la parte física un módulo o pieza (1) de configuración no definida e interiormente perforada conformando un orificio o cavidad abierto regular o irregular (21) (22), presentando dicho orificio o cavidad (21) (22) una forma geométrica y/o una inclinación predeterminadas y conocidas, participando en la autolocalización de la pieza (1) un software matemático concretado en un sistema informático de reposicionamiento o "best fit" de un patrón de puntos correspondiente a la inclinación y/o forma al orificio o cavidad abierta (21) (22), lo que permite que dicho orificio o cavidad (21) (22) sea visible, localizando y posicionando dicho módulo o pieza (1), así como su orientación y rotación.

Description

SISTEMA PARA LA AUTOLOCALIZACIÓN DE UN MÓDULO EN POSICIÓN, ORIENTACIÓN Y ROTACIÓN A PARTIR DE UNA TOMOGRAFÍA COMPUTERIZADA
Descripción
Objeto de la invención
La presente invención se refiere a un sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada, presentando unas características técnicas que mejoran sistemas y módulos de similar uso existentes en el mercado y todo aquello que forma parte del estado de la técnica correspondiente.
Sector de la técnica
El sector de la técnica de esta invención corresponde al tratamiento y/o generación de datos de imagen, en particular el análisis de dichas imágenes mediante distintas técnicas comparativas.
Estado de la técnica
La detección de objetos insertados en cuerpos físicos naturales o artificiales es una de las necesidades habituales en diversas disciplinas del conocimiento y actividades técnicas, en particular para establecer las coordenadas de posición, orientación y rotación de tales objetos. A título de ejemplo, el sector odontológico necesita situar y fijar de forma segura la posición de implantes dentales, fabricados con materiales biocompatibles y asentados mediante rosca sobre la base del hueso. La misma necesidad concurre en otras disciplinas médicas para valorar afectaciones en diferentes órganos, revisar implantes o verificar dispositivos insertados en el cuerpo humano destinados a controlar el correcto funcionamiento de ciertos órganos y es extensiva a otras áreas del conocimiento como pueden ser la biología, la arqueología o la oceanografía en las que es preciso explorar cuerpos artificiales o físicos para localizar piezas que puedan estar parcial o totalmente ocultas.
Existen en la actualidad diferentes técnicas para conseguir tales objetivos, algunas desarrolladas en diferentes documentos legales. La patente US20140377714 se refiere a un “cuerpo de escaneo para determinar la posición y orientación de un implante dental”, el cual incluye “una parte de base que comprende una interfaz, que incluye una región de exploración tridimensional que comprende al menos cuatro áreas de exploración diferentes, que incluye una región de transición axialmente entre la exploración de la región y la interfaz, además de incluir un tornillo de fijación para fijar el cuerpo de exploración en el implante."
El documento W02007074201 desarrolla una “Mini cámara gamma autónoma que incluye un sistema de localización para uso intraquirúrgico” que se base en “cristales de centelleo y comprende un módulo independiente, es decir, todos los sistemas necesarios se han integrado junto al cabezal del sensor y no se requiere ningún otro sistema. La cámara se puede conectar en caliente a cualquier computadora utilizando diferentes tipos de interfaz, como para cumplir con las especificaciones de grado médico. La cámara puede ser autoalimentada, puede ahorrar energía y permite que el software y el firmware se actualicen desde Internet y que las imágenes se formen en tiempo real. A cualquier detector de rayos gamma basado en cristales de centelleo continuo se le puede proporcionar un sistema para enfocar la luz de centelleo emitida por el rayo gamma para mejorar la resolución espacial. La invención también se refiere a nuevos métodos para localizar objetos emisores de radiación y para medir variables físicas, basados en punteros de emisión radioactiva y láser.” El documento WO2016102721 se refiere a un “método y sistema de localización espacial de un objetivo en un entorno tridimensional que comprende al menos un marcador luminoso comprendiendo: - una cámara estéreo para capturar una primera trama de imagen en un instante actual y una segunda trama de imagen en un instante anterior; - un módulo de medida de ángulos para obtener un ángulo de giro del objetivo y un procesador de señales con acceso a una memoria de almacenaje de radios” utilizando técnicas triangulación, de geometría estéreo y coordenadas de imagen del marcador en el instante actual y en el anterior. La patente europea EP1501051A2 se refiere a un “método y aparatos de detección de posición y orientación”, en el cual se produce “una señal que indica un cambio en la posición de un aparato sensor de imagen para predecir la posición actual y la orientación del aparato sensor de imagen utilizando la posición y orientación previamente obtenidas, identificando los pares correspondientes de indicadores detectados a partir de una imagen en el espacio real detectado por el aparato de detección de imagen e indicadores contenidos en una imagen cuando se detecta desde una posición y orientación predichas y utilizando un método de corrección determinado por el número de pares de indicadores identificados para corregir todos o algunos de los grados de libertad del predicho Posición y orientación de la cámara o para utilizar la posición y orientación de la cámara predicha directamente como está.” La patente AU 2008296518 desarrolla un “sistema y un método para la medición 3D de la forma de los objetos materiales mediante una triangulación de luz estructurada sin contacto. El sistema incluye un proyector de luz para proyectar un patrón de luz estructurado sobre la superficie de cualquier objeto y una cámara para capturar una imagen del patrón de luz estructurado que actúa sobre la superficie del objeto. El sistema incluye además un módulo informático para determinar la medición 3D de la forma de la superficie del objeto iluminado a través de un algoritmo de triangulación empleado en base a una correspondencia calculada entre la luz estructurada proyectada y la imagen capturada. La luz estructurada incluye elementos codificados que se encuentran dentro de los planos que pasan a través de los vértices de las áreas de proyección central del proyector y la cámara, también que pasan a través del espacio del objeto que se está midiendo.” La patente US9829564, que se refiere un “detector para detectar ópticamente al menos una coordenada longitudinal de un objeto mediante la determinación de un número de píxeles iluminados”.
En los antecedentes citados se describen diversos avances en técnicas de localización de piezas ocultas, utilizando sistemas de localización bien mediante puntos de luz, bien mediante el cálculo de diferentes parámetros tridimensionales. Sin embargo, las técnicas utilizadas pueden, en ciertos casos, no garantizar la exactitud de la posición de la pieza oculta puesto que la misma no es sino un objeto que carece en sí mismo de parámetros que permitan su localización de forma inequívoca.
Los solicitantes no tienen conocimiento de que exista un módulo que sea autolocalizable en posición, orientación y rotación ni de un sistema que permita tal localización a partir de una tomografía computerizada.
Objeto de la invención
Así pues, el objeto de esta invención es un sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada de cualquier tipo (CT, CBCT, etc....).
Este sistema comprende una parte física y un soporte de software matemático que trabaja con coordenadas geométricas conocidas de la parte física. La parte física se concreta en un módulo a modo de pieza de configuración no definida caracterizada por estar interiormente perforada formando un orificio o cavidad abierta por ambos extremos, regular o irregular, presentando dicho orificio o cavidad una inclinación y/o forma predeterminadas y conocidas, y que permiten indicar la posición, orientación y rotación determinada de la pieza en donde se encuentra dicho orificio o cavidad.
Este orificio o cavidad abierta puede estar vacía, conformando una oquedad o bien contener un material de relleno según necesidades del módulo o pieza.
En el software matemático que interviene en la autolocalización del módulo concurre un sistema informático de reposicionamiento o “best fit” de un patrón de puntos correspondiente a la inclinación y/o forma al orificio o cavidad abierta, lo que permite localizar y posicionar dicho módulo, así como su orientación y rotación mediante una tomog rafia.
Se trata, en definitiva, de aplicar un software matemático predeterminado que permite una reconstrucción tomográfica del módulo, lo que a su vez implica la autolocalización de dicho módulo a partir del orificio o abierto descrito, cuya inclinación y/o forma son previamente conocidas, siendo de hecho la única parte del módulo geométricamente reconocible a pesar de que la pieza, en sí misma, tenga una configuración desconocida, regular o irregular, y sea de cualquier material.
En su realización preferente, dicho orificio o cavidad abierta, presenta un diámetro constante en toda su longitud y está angulada respecto a la vertical del módulo a localizar, siendo tal angulación de unos grados determinados en función de las necesidades en cada módulo.
Tanto la angulación del orificio o cavidad como la distancia del punto de intersección de la vertical del módulo con el centro del orificio o cavidad, son vectores conocidos, al igual que a forma del susodicho orificio o cavidad.
Dicha angulación está orientada indicando donde se encuentra la cara plana de referencia del módulo, la cual indica la rotación.
Puesto que una de las aplicaciones preferentes de este módulo autolocalizable es en el campo médico y más en particular en la práctica odontológica, se trabaja con el protocolo DICOM (Digital Imaging and Communication On Medicine), apto para la visualización, almacenamiento, impresión y transmisión de las imágenes y datos.
El sistema informático se compone de dos elementos. El primero accede al fichero DICOM, filtra las imágenes por su densidad mostrando únicamente el módulo a buscar, por ejemplo un implante dental, incluyendo todo el módulo completo y con él la cavidad u orificio y posteriormente procede a convertir la imagen en una malla (STL u otro formato).
El segundo realiza un "best fit" de dicha malla con un modelo 3D. Siguiendo el ejemplo del implante, el modelo 3D se compondría de la cavidad u orificio, el eje central del implante de distancia conocida y en la parte superior del implante un poste de escaneo. Al realizar el "best fit" quedaría el poste de escaneo posicionado sobre el implante en posición, orientación por el eje y rotación por la angulación de la cavidad u orificio o por la determinación de un diámetro mayor o menor según convenga de una cavidad u orificio con diámetro evolutivos.
Es decir, para localizar el módulo, se realiza un “best fit” comparativo de la cavidad u orificio (21) (22) y alinea su eje con el eje (5) de la cara plana a localizar (3) u otra distancia conocida, con la distancia exacta conocida hasta la zona de ajuste del módulo (1), determinando informáticamente el eje exacto de dicho módulo (1), de modo que, como se ha indicado, este “best fit” se sitúa en posición por la cavidad u orificio, en orientación por el eje y en rotación por el ángulo de dicha cavidad u orificio (21) (22).
En una segunda realización, el orificio o cavidad no puede ser angulada por las características y/o restricciones del módulo. En el ejemplo de un implante dental, si el mismo es de tamaño pequeño, es posible que el orificio o cavidad deba tener una forma tal que determine diferentes diámetros en diferentes puntos de su estructura, por ejemplo, un orificio o cavidad cónica. En este caso, el orificio o cavidad tiene, pues, un diámetro evolutivo, con lo cual se crea una secuencia de diámetros diferentes entre los extremos y/o en el interior del orificio o cavidad, que igualmente determina la rotación.
El “Best Fit” trabaja con las mismas pautas que concurren cuando el orificio o cavidad está angulada, es decir, el objetivo es distinguir la cara plana del módulo, lo que se consigue al determinar cuál es el diámetro de mayor o menor dimensión según convenga de los que puedan existir en la conformación del orificio o cavidad. En base a todo lo anterior, y por extensión, la posición del módulo a localizar se consigue igualmente justamente gracias a la presencia del orificio o cavidad abierta.
El módulo autolocalizable puede estar insertado en un segundo cuerpo físico artificial o natural oculto, es decir, no visible, como puede ser un implante quirúrgico, o bien estar dicho segundo cuerpo físico expuesto a la vista parcial o totalmente, atornillado en una base no enterrada como puede ser un implante dental que sobresale de la encía o bien atornillado a un objeto que se puede someter a un TAC industrial.
El orificio o cavidad abierto del módulo puede estar relleno de un material en estado sólido, semisólido, pastoso, líquido o gaseoso.
Descripción de los dibujos
Al objeto de facilitar la comprensión de la innovación que aquí se reivindica, se adjuntan una lámina con unos dibujos, los cuales deben ser analizados y considerados únicamente a modo de ejemplo y sin ningún carácter limitativo ni restrictivo.
Figura 1.- Vista esquemática del módulo autolocalizable en posición, orientación y rotación que se reivindica con detalle del orificio o cavidad interior abierta en posición oblicua.
Figura 2.- Vista esquemática en perspectiva del módulo autolocalizable con detalle del orificio o cavidad abierto interior en posición oblicua.
Figura 3.- Vista esquemática del módulo autolocalizable con detalle del orificio o cavidad abierto interior en posición vertical y centrada.
Figura 4 Ejemplo esquemático del orificio o cavidad abierta en angulación respecto a la vertical del módulo.
Figura.5- Ejemplo esquemático del orificio o cavidad abierta no angulada y con secuencia evolutiva de diámetro.
Realización preferente de la invención
De acuerdo con estos dibujos, el objeto de esta invención es un sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada. En las figuras 1 , 2 y 3, este módulo se conforma, a modo de ejemplo, como un poste (1) aplicado a implantes dentales. En las figuras 3 y 5 presenta una segunda conformación (1B). En estas figuras, el módulo autolocalizable se concreta en una pieza (1) con un cuerpo superior (11) prolongado en una tija de anclaje (12), estando el cuerpo superior (11) interiormente perforado con un orificio o cavidad abierto por ambos extremos, (21) (22) con una inclinación y/o forma previamente conocidas. En las figuras 1 y 2, el orificio o cavidad abierto (21) está dispuesto en posición oblicua respecto del mencionado cuerpo superior de la pieza (1) mientras que en la figura 3, el orificio o cavidad abierto (22) se sitúa en posición longitudinal respecto del cuerpo (11) de la pieza (1).
En las figuras 4 y 5 se muestra en detalle el orificio o cavidad angulada o con diámetro evolutivo. En la figura 4 se muestra el orificio o cavidad abierta posicionada de forma angulada (61) respecto a la vertical del módulo (1B) a localizar, con un diámetro determinado constante en toda su longitud mientras que en la figura 5 el orificio o cavidad no está angulada (62) respecto del módulo (1 B) a localizar y se presenta con un diámetro evolutivo y secuencial en toda su longitud, con notables diferencias en su extensión. En ambas figuras se muestra el plano a localizar (3) así como cara módulo de referencia (4) del módulo para la rotación y el eje (5) de la cara plana a localizar (3) u otra distancia conocida.
En cualquiera de estos ejemplos y en cualquier otra configuración del módulo, es decir de la pieza, regular o irregular, conocida o desconocida, la inclinación y/o forma del orificio son previamente conocidas y son la única parte de la pieza geométricamente reconocible, por lo que estos datos constituyen la única información que permitirá que, mediante una tomografía computerizada de cualquier tipo (CT, CBCT, etc....), compilando los datos geométricos que identifican el orificio o cavidad abierto descrito y utilizando tales datos para la reconstrucción tomográfica del mismo en base a un algoritmo matemático de software procesado por ordenador, se determine la posición, orientación y rotación de la susodicha pieza.
En base a lo anterior, es obvio que son las especiales características técnicas del módulo o pieza, es decir, la inclinación y/o la forma de su orificio interior predeterminadas y conocidas, las que convierten a dicho módulo en un cuerpo autolocalizable mediante el sistema descrito. Sin dicho orificio y sin conocimiento de su forma y/o inclinación, localizar el módulo o pieza insertado en un cuerpo físico artificial o natural es mucho más complejo y no garantiza resultados satisfactorios. La posición angulada o no del orificio o cavidad abierta respecto de la vertical del módulo, permiten una mejor localización del mismo mediante el patrón de malla generado por el sistema informático de reposicionamiento o “best fit”, con una mayor rapidez y la consiguiente reducción de costes en el proceso, consiguiendo una imagen altamente resolutiva.
Obviamente, el sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada que se reivindica es funcional en aplicaciones diversas en campos como la medicina, biología, arqueología, entre otras.
No se considera necesario hacer más extensa esta descripción para que cualquier experto en la materia comprenda el alcance de la invención y las ventajas que de la misma se derivan. Los materiales, forma, tamaño y disposición de los elementos serán susceptibles de variación siempre y cuando ello no suponga una alteración en la esencialidad del invento. Los términos en que se ha redactado esta memoria deberán ser tomados siempre en sentido amplio y no limitativo.

Claims

Reivindicaciones
1a Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada esencialmente porque comprende una parte física y un soporte de software matemático que trabaja con coordenadas geométricas conocidas de la parte física, concretándose la parte física en un módulo o pieza (1) de configuración no definida e interiormente perforada conformando un orificio o cavidad abierta (21) (22) por ambos extremos, regular o irregular, presentando dicho orificio o cavidad abierta (21) (22), una forma geométrica y/o una inclinación predeterminadas y conocidas, participando en la autolocalización del módulo o pieza (1) el software matemático en que concurre un sistema informático de reposicionamiento o “best fit” de un patrón de puntos correspondiente a la inclinación y/o forma al orificio o cavidad abierto (21) (22), permitiendo que dicho orificio o cavidad abierto (21) (22) sea visible, localizando y posicionando el módulo o pieza (1) de la cual forma parte, así como la orientación y rotación de la misma.
2a Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada, según la 1a reivindicación, caracterizado porque en función de las características técnicas del módulo y en base a un fichero DICOM previo que filtra las imágenes por su densidad mostrando únicamente el módulo a buscar completo, incluyendo la cavidad u orificio, convertida posteriormente dicha imagen en una malla (STL u otro formato), se realiza el "best fit" de dicha malla con un modelo 3D que comprende la cavidad u orificio, el eje central del módulo de distancia conocida y el módulo, de modo que para determinar informáticamente el eje exacto de dicho módulo, el “best fit” compara el orificio o cavidad (21) (22) y alinea su eje con el eje (5) de la cara plana a localizar (3) u otra distancia conocida, con la distancia exacta conocida hasta la zona de ajuste del módulo (1), situándose este “best fit” en posición por la cavidad u orificio, en orientación por el eje y en rotación por el ángulo de dicha cavidad u orificio (21) (22).
3a Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada, según la 2a reivindicación, caracterizado porque el orificio o cavidad abierta se posiciona de forma angulada (61) y presenta un diámetro determinado constante en toda su longitud, estando angulada respecto a la vertical del módulo, siendo vectores conocidos dicha angulación y la distancia del punto de intersección de la vertical del módulo con el centro del orificio o cavidad (21) (22). 4a Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada, según la 3a reivindicación, caracterizado porque la angulación está orientada hacia la cara plana (3) de referencia del módulo, indicando la rotación.
5a Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada, según la 2a reivindicación, caracterizado porque el orificio o cavidad abierta no está angulada respecto del módulo, presenta un diámetro evolutivo (62), es decir, una secuencia de diámetros diferentes entre los extremos y/o en el interior del orificio o cavidad, de modo que el “best fit” localiza la cara plana (3) del módulo al determinar cuál es el diámetro de mayor o menor dimensión según convenga de los que puedan existir en la conformación del orificio o cavidad (21) (22), determinando igualmente la rotación, posición y orientación. 6a Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada, según la 1a reivindicación, caracterizado esencialmente porque el módulo o pieza (1) autolocalizable esta insertado en un segundo cuerpo físico artificial o natural, el cual queda expuesto a la vista parcial o totalmente.
PCT/ES2020/070633 2019-10-19 2020-10-19 Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada WO2021074475A1 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP201930929 2019-10-19
ES201930929A ES2779503R1 (es) 2019-10-19 2019-10-19 Sistema para la autolocalizacion de un modulo en posicion, orientacion y rotacion a partir de una tomografia computerizada
ES202032251 2020-10-19
ESU202032251 2020-10-19

Publications (1)

Publication Number Publication Date
WO2021074475A1 true WO2021074475A1 (es) 2021-04-22

Family

ID=75538613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070633 WO2021074475A1 (es) 2019-10-19 2020-10-19 Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada

Country Status (1)

Country Link
WO (1) WO2021074475A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084576A1 (en) * 2004-02-25 2005-09-15 De Clerck Rene Method and marker element to determine the position of a dental implant
US20150230895A1 (en) * 2014-02-18 2015-08-20 Josep Soler Cegarra Post for modelling dental implants by means of a radiologic test
US20160015488A1 (en) * 2013-02-20 2016-01-21 Gc Europe Precalibrated dental implant aid
US20160128796A1 (en) * 2013-05-31 2016-05-12 Josep Soler Cegarra Dental implant
US20170112598A1 (en) * 2015-10-21 2017-04-27 Biomet 31, Llc Attachment members with internally located radiopaque information markers for ct scan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084576A1 (en) * 2004-02-25 2005-09-15 De Clerck Rene Method and marker element to determine the position of a dental implant
US20160015488A1 (en) * 2013-02-20 2016-01-21 Gc Europe Precalibrated dental implant aid
US20160128796A1 (en) * 2013-05-31 2016-05-12 Josep Soler Cegarra Dental implant
US20150230895A1 (en) * 2014-02-18 2015-08-20 Josep Soler Cegarra Post for modelling dental implants by means of a radiologic test
US20170112598A1 (en) * 2015-10-21 2017-04-27 Biomet 31, Llc Attachment members with internally located radiopaque information markers for ct scan

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Dental implants", WIKIPEDIA, 13 March 2018 (2018-03-13), Retrieved from the Internet <URL:https://web.archive.org/web/20180313235820/https://en.wikipedia.org/wiki/Dentalimplant> [retrieved on 20210123] *
ANONYMOUS: "Computer representation of surfaces", WIKIPEDIA, 21 July 2017 (2017-07-21), pages 1 - 5, XP055816020, Retrieved from the Internet <URL:https://web.archive.org/web/20170721165143/https://en.wikipedia.org/wiki/Computer_representation_of_surfaces> [retrieved on 20210121] *
ANONYMOUS: "Create accurate 3D models using medical imagining processing software", MATERIALISE MIMICS, 13 August 2019 (2019-08-13), pages 1 - 12, XP055816018, Retrieved from the Internet <URL:https;//web.archive.org/web/20190813214815/https://www.materialise.com/en/medical/software/mimics> [retrieved on 20210123] *
ANONYMOUS: "Finite element method", WIKIPEDIA, 20 August 2018 (2018-08-20), XP055816025, Retrieved from the Internet <URL:https://web.archive.org/web/20180820073217/https://en.wikipedia.org/wiki/Finite_element_method> [retrieved on 20210123] *
SURAPANENI HEMCHAND, YALAMANCHILI PALLAVISAMATHA, YALAVARTHY RAVISHANKAR, RESHMARANI ARUNIMAPADMAKUMAR: "Role of computed tomography imaging in dental implantology: An overview", JOURNAL OF ORAL AND MAXILLOFACIAL RADIOLOGY, vol. 1, no. 2, 31 May 2013 (2013-05-31), pages 43 - 47, XP055816009 *

Similar Documents

Publication Publication Date Title
JP4662514B2 (ja) 3dボリュウムデータレコード内のマークの座標を求める方法
US7372935B2 (en) Method for minimizing image artifacts and medical imaging system
US6206566B1 (en) X-ray apparatus for producing a 3D image from a set of 2D projections
ES2872345T3 (es) Sistema para determinar la posición de objetos en una sala de irradiación para radioterapia
Krybus et al. Navigation support for surgery by means of optical position detection
US9443302B2 (en) Method and system for roentgenography-based modeling
US10959804B2 (en) Blood vessel sizing device
CN106999247A (zh) 用于执行导航外科手术过程的跟踪标记支承结构以及采用其的表面配准方法
US10258306B2 (en) Method and system for controlling computer tomography imaging
KR20220159359A (ko) 증강 현실 디스플레이들에서의 의료 이미지들의 정렬
US20180296179A1 (en) Quality control phantom
JP2004508086A (ja) 視覚化可能なビーム角度調節付きx線イメージング・システム
US9375167B2 (en) Blood vessel sizing device
US20190231284A1 (en) Portable bite part for determining an imaging area of a patient in panoramic, computed tomography, or cephalometric x-ray imaging
US5946370A (en) System and method for accessing the three-dimensional geometry of large objects using X-ray based method subject to limitations on radiation doses
WO2021074475A1 (es) Sistema para la autolocalización de un módulo en posición, orientación y rotación a partir de una tomografía computerizada
JP4429709B2 (ja) X線断層撮影装置
JP5100907B1 (ja) X線撮影装置、x線撮影を行う際の頭部傾き測定方法、x線撮影装置用スタンド、x線撮影装置用椅子および頭部傾き設定装置
JP5259873B1 (ja) 顔面写真撮影装置、顔面写真撮影を行う際の頭部傾き測定方法ならびに顔面写真撮影およびx線撮影装置
KR20180119361A (ko) 엑스선 장치의 캘리브레이션 방법 및 장치
US6810280B2 (en) Method and apparatus for detecting the three-dimensional position of an examination instrument inserted into a body region
US20190231285A1 (en) Portable bite part for correcting a motion of an object in panoramic, computed tomography, or cephalometric x-ray imaging
Coward et al. Identifying the position of an ear from a laser scan: The significance for planning rehabilitation
ES2779503A2 (es) Sistema para la autolocalizacion de un modulo en posicion, orientacion y rotacion a partir de una tomografia computerizada
ES2709184T3 (es) Procedimiento para medir el volumen interior de un objeto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876550

Country of ref document: EP

Kind code of ref document: A1