WO2021073361A1 - 业务信号处理方法及设备 - Google Patents

业务信号处理方法及设备 Download PDF

Info

Publication number
WO2021073361A1
WO2021073361A1 PCT/CN2020/116450 CN2020116450W WO2021073361A1 WO 2021073361 A1 WO2021073361 A1 WO 2021073361A1 CN 2020116450 W CN2020116450 W CN 2020116450W WO 2021073361 A1 WO2021073361 A1 WO 2021073361A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
service unit
optical network
passive optical
flexible
Prior art date
Application number
PCT/CN2020/116450
Other languages
English (en)
French (fr)
Inventor
苏伟
向俊凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112022007326A priority Critical patent/BR112022007326A2/pt
Priority to KR1020227016064A priority patent/KR102650393B1/ko
Priority to CA3154183A priority patent/CA3154183A1/en
Priority to EP20875894.6A priority patent/EP4030774A4/en
Publication of WO2021073361A1 publication Critical patent/WO2021073361A1/zh
Priority to US17/720,485 priority patent/US20220239374A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/0039Topology
    • H04J2203/0041Star, e.g. cross-connect, concentrator, subscriber group equipment, remote electronics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet

Definitions

  • This application relates to the technical field of passive optical networks, and in particular to a service signal processing method and equipment.
  • a passive optical network is an optical access technology that uses a point-to-multipoint topology.
  • Figure 1 is a schematic diagram of the PON system.
  • the PON system 100 includes an optical line terminal (Optical Line Termination, OLT) 104, an optical distribution network (Optical Distribution Network, ODN) 102, and an optical network unit (ONU) or an optical network terminal (Optical Network Unit, ONU).
  • ONT Network Terminal
  • the ODN is a passive optical splitting device, and the ODN is divided into three parts: a passive optical splitter (Splitter) 102-2, a backbone optical fiber 106, and a branch optical fiber 107.
  • ODN 102 divides one optical fiber into multiple channels, and ONUs share bandwidth.
  • the transmission from the OLT 104 to the ONU 101 is called downstream, and the transmission from the ONU 101 to the OLT 104 is called upstream.
  • the uplink service adopts time division multiple access mode to realize access, and each ONU 101 can only send its own uplink data in the time slot allocated by the OLT 104.
  • Downlink services are sent to each ONU101 with information and data in a time-division multiplexed broadcast manner.
  • the ODN 102 transmits the downstream data of the OLT 104 to each ONU 101, and at the same time collectively transmits the upstream data of multiple ONUs 101 to the OLT 104.
  • the structure of ONU101 is similar to that of ONT.
  • the optical network unit and the optical network terminal can be interchanged.
  • OTN Optical Transport Network
  • OAM Operaation Administration Maintenance
  • TCM Tandem Connection Monitoring
  • the serial connection monitoring capability and the out-of-band FEC Forward Error Correction
  • OTN is expanding from backbone, metro core, metro convergence to metro access network, and the sinking of OTN to CO (Central Office) has become an industry consensus.
  • the existing transmission network and the access network are independent of each other, and the transmission network and the access network adopt different network technologies, and the services cannot be directly interconnected.
  • the CO node (such as OLT equipment) needs to analyze the data services interacting between the transmission and the access network. To complete business routing or switching connections through routers or switches, there are extremely high costs and transmission delays.
  • This application provides a service signal processing method and device, which can realize low-latency transmission.
  • this application provides a service signal processing method.
  • the method includes: the optical network unit ONU receives the service signal. ONU maps service signals to flexible optical service unit frames.
  • the ONU sends the first passive optical network transmission aggregation frame to the optical line terminal OLT.
  • the first passive optical network transmission aggregation frame is encapsulated with a flexible optical service unit frame.
  • the flexible optical service unit frame is used in the passive optical network PON and optical transmission network Service signals are carried in OTN.
  • the flexible optical service unit frame can be transmitted in either PON or OTN network, without the need for ONU and OLT to analyze the service signal, so the delay can be reduced.
  • the flexible optical service unit frames transmitted in the PON system can be transmitted in the OTN network, which simplifies the interconnection and intercommunication between the PON system and the OTN system.
  • the flexible optical service unit frame is encapsulated in the payload of the first passive optical network transmission aggregation frame.
  • the flexible optical service unit frame is encapsulated in the payload of the first passive optical network encapsulation frame included in the first passive optical network transmission and aggregation frame, and the header field of the first passive optical network encapsulation frame carries Flexible optical service unit type indication.
  • the first passive optical network transmission aggregation frame further includes a second passive optical network encapsulation frame
  • the second passive optical network encapsulation frame includes a passive optical network encapsulation frame payload
  • the flexible optical service unit frame is encapsulated in an OTN-like optical transmission network frame, and the OTN-like frame includes the header field of the OTN frame.
  • the ONU before the ONU sends the first passive optical network transmission aggregation frame to the OLT, the ONU sends the second passive optical network transmission aggregation frame to the OLT, and the second passive optical network transmission aggregation frame carries flexible optical services
  • the unit frame type indication, the flexible optical service unit frame type indication is used to indicate the transmission container instance of the type that the ONU supports the flexible optical service unit frame.
  • the ONU receives the third passive optical network transmission aggregation frame sent by the OLT.
  • the third passive optical network transmission aggregation frame contains the T-CONT instance identifier of the transmission container supporting the frame type of the flexible optical service unit, T-
  • the transmission container corresponding to the CONT instance identifier is used to carry the flexible optical service unit frame.
  • the OSUflex frame includes an overhead area and a payload area.
  • the overhead area includes at least one of the following: service frame header indication, trail trace indicator TTI (Trail Trace Identifier), X-bit interleaved parity BIP-X ( X Bit-Interleaved Parity), backward error indication BEI (LO Backward Error Indication), backward defect indication BDI (Backward Defect Indication), status indication STAT (Status), time stamp, sequence identification, or mapping overhead or tributary port number TPN;
  • the payload area is used to carry service signals.
  • the tributary port number TPN of the flexible optical service unit frame is the same as the Port-ID of the first passive optical network encapsulation frame.
  • the flexible optical service unit frame is the service bearer container of the future optical transport network (Optical transport OTN). Its rate is arbitrary, and the rate depends on the service rate of the bearer. It can carry CBR (Constant Bit Rate, fixed bit rate). Rate) and PKT (Packet, packet) business.
  • the structure of the flexible optical service unit frame includes an overhead area and a payload area.
  • the overhead area includes at least one of the following: service frame header indication, trail trace indicator TTI (Trail Trace Identifier), X-bit interleaved parity BIP-X (X Bit-Interleaved Parity), backward error indication BEI (LO Backward Error Indication), backward defect indication BDI (Backward Defect Indication), status indication STAT (Status), time stamp, sequence identification, or mapping overhead or tributary port number TPN ;
  • the payload area is used to carry service signals. By giving the structure of the OSUflex frame, this application can be executed correctly.
  • the naming method is not limited in this application, and may be other names, such as OSDUflex.
  • an embodiment of the present application provides a service signal processing method, which is characterized in that the method includes:
  • the optical line terminal OLT receives the first passive optical network transmission aggregation frame sent by the optical network unit ONU.
  • the first passive optical network transmission aggregation frame includes the first flexible optical service unit frame.
  • the source optical network PON and the optical transmission network OTN carry the first service signal.
  • the OLT sends the first optical transmission unit OTU frame to the equipment in the optical transmission network OTN, and the first OTU frame carries the first flexible optical service unit frame.
  • the flexible optical service unit frame can be transmitted in either the PON or the OTN network, without the ONU and OLT analyzing the service signal, so the delay can be reduced.
  • the flexible optical service unit frames transmitted in the PON system can be transmitted in the OTN network, which simplifies the interconnection and intercommunication between the PON system and the OTN system.
  • the OLT maps the first flexible optical service unit frame to the first optical path data unit ODU frame, and the first OTU frame includes the first ODU frame.
  • the OLT obtains the first flexible optical service unit frame from the first passive optical network encapsulated frame.
  • the first passive optical network transmission aggregation frame includes a first passive optical network encapsulation frame that carries a first flexible optical service unit frame and a passive optical network that does not carry the first flexible optical service unit frame
  • the header field of the first passive optical network encapsulated frame includes an indication of the frame type of the active optical service unit.
  • the OLT obtains the first flexible optical service unit frame from the optical transmission network OTN frame in the first passive optical network transmission aggregation frame, and the header field of the ONT-like frame includes the flexible optical service unit frame type Instructions.
  • the OLT obtains the first flexible optical service unit frame from the payload of the aggregation frame transmitted by the first passive optical network.
  • the OLT before the OLT receives the first passive optical network transmission aggregation frame sent by the ONU, the OLT receives the second passive optical network transmission aggregation frame sent by the ONU, and the second passive optical network transmission aggregation frame carries Flexible optical service unit frame type indication.
  • the OLT obtains the identifier of the transmission container instance that supports the flexible optical service unit frame type.
  • the OLT sends a third passive optical network transmission aggregation frame to the ONU, and the third passive optical network transmission aggregation frame includes the identifier of the transmission container instance supporting the frame type of the flexible optical service unit.
  • the OLT receives the second OTU frame sent by the device in the OTN, and the second OTU frame includes the second flexible optical service unit frame.
  • the OLT encapsulates the second flexible optical service unit frame into the fourth passive optical network transmission convergence frame.
  • the OLT sends the fourth passive optical network transmission convergence frame to the ONU.
  • an embodiment of the present application provides a service signal processing method.
  • the method includes: the optical network unit ONU receives the passive optical network transmission aggregation frame sent by the optical line terminal OLT, and the passive optical network transmission aggregation frame includes the flexible optical service unit frame.
  • the flexible optical service unit frame is used to carry service signals in the passive optical network PON and the optical transmission network OTN.
  • the ONU obtains the service signal from the flexible optical service unit frame.
  • the ONU sends service signals.
  • the ONU can receive the OSUflex frame sent by the OLT and map it into a service signal, without analyzing the service signal carried by the OSUflex frame, and reduce the delay in the transmission process.
  • the ONU obtains the flexible optical service unit frame from the passive optical network encapsulation frame in the passive optical network transmission aggregation frame; or, the ONU obtains the flexible optical service unit frame from the payload in the passive optical network transmission aggregation frame Optical business unit frame.
  • the passive optical network transmission aggregation frame includes a first passive optical network encapsulation frame that carries a flexible optical service unit frame and a second passive optical network encapsulation frame that does not carry a flexible optical service unit frame.
  • a passive optical network encapsulation frame includes an indication of the frame type of the flexible optical service unit.
  • the ONU obtains the flexible optical service unit frame from the optical transmission network OTN frame in the passive optical network transmission convergence frame.
  • this application provides a method for processing service signals.
  • the method includes that the OLT receives an OTU frame sent by a device in the OTN, and the OTU frame includes a flexible optical service unit frame.
  • the OLT encapsulates the flexible optical service unit frame into the passive optical network transmission and aggregation frame.
  • the OLT sends the passive optical network transmission convergence frame to the ONU.
  • the flexible optical service unit frame is used to carry service signals in the passive optical network PON and the optical transmission network OTN.
  • the OLT allocates a transmission container T-CONT instance supporting the frame type of the flexible optical service unit to the ONU according to the flexible optical service unit frame contained in the OTU frame, and will support the transmission container of the flexible optical service unit frame type.
  • the identifier of the T-CONT instance is sent to the ONU.
  • the transport container T-CONT supporting the frame type of the flexible optical service unit is used to carry the frame of the flexible optical service unit.
  • the identifier of the T-CONT instance of the transmission container supporting the frame type of the flexible optical service unit is encapsulated in the header field of the transmission convergence frame of the passive optical network.
  • the present application provides an optical network unit ONU, which has the function of an ONU that implements the methods of the first and third aspects.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides an optical line terminal OLT, which has the function of an OLT that implements the above-mentioned second and fourth aspects.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a passive optical network PON system, including an optical line terminal OLT used to perform the second or fourth aspects in any optional manner, and the optical network unit is used to perform the third or first Any ONU with all options.
  • this application provides a service signal processing device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is configured to call the program instructions in the memory to execute the service signal processing method in any possible design of the first aspect and the first aspect or the service signal processing method in any possible design of the second aspect and the second aspect, Or the service signal processing method in any possible design of the third aspect and the third aspect, or the service signal processing method in any possible design of the fourth aspect and the fourth aspect.
  • the present application provides a readable storage medium in which an execution instruction is stored.
  • the service signal processing device executes the first aspect and the first aspect.
  • the service signal processing method in any possible design on the one hand, or the service signal processing method in any possible design of the second aspect and the second aspect, or any possible design in the third aspect and the third aspect.
  • the present application provides a program product.
  • the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the service signal processing device can read the execution instruction from a readable storage medium, and at least one processor executes the execution instruction to enable the service signal processing device to implement the first aspect and any one of the possible designs of the first aspect
  • the fourth aspect is a service signal processing method in any possible design.
  • Figure 1 is a schematic diagram of the structure of a PON system
  • FIG. 2 is a schematic structural diagram of a PON system provided by this application.
  • Figure 3a is a schematic structural diagram of a PON system provided by this application.
  • Figure 3b is a schematic structural diagram of a PON system provided by this application.
  • 4A is a schematic diagram of an embodiment of OSUflex transmission from ONU to OTN or from OTN to ONU provided by this application;
  • 4B is a schematic diagram of another embodiment of OSUflex transmission from ONU to OTN or from OTN to ONU provided by this application;
  • 4C is a schematic diagram of another embodiment of OSUflex transmission from ONU to OTN or from OTN to ONU provided by this application;
  • FIG. 5A is a schematic diagram of a data structure in which an OSUflex frame is mapped to a payload area of an XGTC frame in the downlink direction according to an embodiment of this application;
  • FIG. 5B is a schematic diagram of another data structure in which the OSUflex frame is mapped to the payload area of the XGTC frame in the downlink direction according to an embodiment of the application;
  • FIG. 5C is a schematic diagram of another data structure in which the OSUflex frame is mapped to the payload area of the XGTC frame in the downlink direction according to an embodiment of the application;
  • FIG. 5D is a schematic diagram of the structure of an OTN-like frame provided by an embodiment of the application.
  • 5E is a schematic structural diagram of one row in the payload of an OTN-like frame provided by an embodiment of this application;
  • FIG. 6A is a schematic structural diagram of a hybrid mapping of OSUflex frames and XGEM frames into XGTC frames in the uplink direction according to an embodiment of the application;
  • FIG. 6B is another schematic diagram of a structure in which an OSUflex frame and an XGEM frame are mixed and mapped into an XGTC frame in the uplink direction according to an embodiment of the application;
  • 6C is a schematic structural diagram of OSUflex mapped to OTN-like frames and encapsulated in XGTC frames in the uplink direction according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of the data structure of an OSUflex frame provided by an embodiment of the application.
  • FIG. 8 is a flowchart of an embodiment of a service signal processing method provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a service signal processing device provided by this application.
  • FIG. 10 is a schematic structural diagram of a PON system 600 provided by this application.
  • the present application provides a service signal processing method and equipment, which reduces or eliminates the delay caused by the network processor or the traffic management module for message forwarding processing and service quality control in a PON system, and realizes low-latency transmission.
  • the first flexible optical service unit frame framing/second service signal acquisition layer is added to the ONU of the optical network unit.
  • the first flexible optical service unit frame framing layer slices uplink service signals and maps them to flexible optical service unit frames.
  • the flexible optical service unit frames have different lengths according to different services, which are not limited in this embodiment of the application.
  • the OLT obtains the flexible optical service unit frame, encapsulates the flexible optical service unit frame into an OTU frame, and sends it to the OTN network. There is no need for the OLT to parse the service signal, so it can reduce the delay and reach the OLT. Interworking with OTN. The technical solution of the present application will be described in detail below with reference to the drawings.
  • FIG. 2 is a schematic diagram of the system structure provided by an embodiment of the application.
  • the OLT 104-1 communicates with an OTN device 105-1 in an optical transport network (optical transport network, OTN).
  • the OLT 104-1 sends the packets of the ONU (101-1, 101-2, or 101-3) to the OTN device 105-1, and then sends the packet to the opposite ONU (101-4, 101-5 or 101-5) via the OTN device 105-2. 101-6).
  • the OLT 104-1 also receives the message sent by the OTN device 105-1, and sends the received message sent by the OTN device 105-1 to the ONU (101-1, 101-2, or 101-3) through the ODN network 102.
  • OTN can be used as a PON bearer network to increase the transmission distance of PON services or provide better service protection.
  • the technical solution of the present application is applied to the PON system, and can be especially used for the representative Gigabit Passive Optical Network (GPON) and Ethernet Passive Optical Network (EPON), XG(S)-PON (10G (symmetric) Passive Optical Network), 10G EPON (10G Ethernet Passive Optical Network), 25G EPON, 40G EPON, 50G EPON, 100G EPON.
  • XG(S)-PON, 10G EPON, 25G EPON, 40G EPON, 50G EPON, 100G EPON can be collectively referred to as 10G PON, or XGPON.
  • the PON system includes ONU101, ODN102 and OLT104.
  • FIG. 3a is a schematic structural diagram of an embodiment of a PON system provided by this application. As shown in Figure 3a, the PON system includes: OLT 104, ODN 102 and ONU 101.
  • the ONU 101 includes an upstream interface module 14, a processing module 15 and a downstream interface module 16. among them,
  • the downlink interface module 16 is configured to receive the first service signal sent by the user equipment.
  • the processing module 15 is configured to map the first service signal to the first flexible optical service unit.
  • the flexible optical service unit frame Flexible Optical Service Unit, OSUflex frame
  • Flexible optical service unit (the rate depends on the service rate carried, and can carry CBR (Constant Bit Rate) and PKT (Packet, packet) services. It is worth noting that flexible optical service units can also be other The name, such as OSDUflex, any frame that can carry data signals in either PON or OTN can be called a flexible optical service unit frame.
  • the uplink interface module 14 is configured to send the first passive optical network transmission convergence frame to the optical line terminal OLT 104, and the first passive optical network transmission convergence encapsulates the first flexible optical service unit frame.
  • Passive optical network transmission aggregation frames include gigabit passive optical network transmission aggregation frames GTC used in GPON, XTGC used in XG PON, and any transmission aggregation frames used in PON network terminals such as 25G and 50G.
  • GTC gigabit passive optical network transmission aggregation frames
  • XTGC used in XG PON
  • any transmission aggregation frames used in PON network terminals such as 25G and 50G.
  • the embodiments of the present application will subsequently take XGTC frames and OSUflex frames as examples for description.
  • the uplink interface module 14 is further configured to receive a fourth passive optical network transmission aggregation frame sent by the OLT 104, and the fourth passive optical network transmission aggregation frame carries a second flexible optical service unit frame;
  • the processing module 15 obtains the second service signal from the second flexible optical service unit frame.
  • the OLT 104 includes an uplink module 11 and an interface processing module 13.
  • the interface processing module 13 is configured to receive the first passive optical network transmission aggregation frame sent by the optical network unit ONU101, and the first passive optical network transmission aggregation frame encapsulates the first flexible optical service unit frame.
  • the uplink module 11 is configured to send a first optical data unit (ODU) frame to a device in the OTN network, and the ODU frame carries the first flexible optical service unit frame.
  • ODU optical data unit
  • FIG. 3b is a schematic structural diagram of an embodiment of a PON system provided by this application. As shown in Figure 3b, the PON system includes: OLT 104, ODN 102 and ONU 101.
  • the OLT 104 includes an uplink module 11, a switching and forwarding module 12, and an interface processing module 13.
  • the uplink module 11 includes: a first OTU frame sending/second OTU frame receiving layer a, and a first OTU framing/second flexible optical service unit frame acquisition layer b.
  • the interface processing module 13 includes a first flexible optical service unit frame acquisition/passive optical network transmission convergence into a frame layer c and a second PON MAC layer d.
  • the second PON MAC layer d is used to receive the upstream signal sent by the ONU, for example, the first passive optical network transmission aggregation frame.
  • the first flexible optical service unit frame acquisition layer c is used to obtain the first flexible optical service unit frame carried in the first passive optical network transmission convergence frame, and send the first flexible optical service unit frame to the switching and forwarding module 12
  • the first OTU framing layer b maps the received first flexible optical service unit frame to the first OTU frame, and the first OTU frame sending layer a sends it to the equipment in the optical transmission network (OTN) network .
  • OTN optical transmission network
  • the second OTU frame receiving layer a of the uplink module 11 is used to receive the second OTU frame sent by the device in the OTN
  • the second flexible optical service unit frame obtaining layer b is used to obtain the second flexible encapsulated in the second OTU frame.
  • the optical service unit frame, and the second flexible optical service unit frame is sent to the passive optical network transmission convergence frame framing layer c via the switching and forwarding module 12.
  • the passive optical network transmission convergence frame framing layer c is used to encapsulate the second flexible optical service unit frame into the fourth passive optical network transmission convergence frame, and send it to the ONU 101 via the PON MAC module.
  • first flexible optical service unit frame acquisition/passive optical network transmission convergence frame framing layer c may also be located in the second PON MAC.
  • the switching and forwarding module 11 in the OLT 104 is an optional module, and the OLT 104 may not include the switching and forwarding module.
  • the ONU 101 includes an upstream interface module 14, a processing module 15 and a downstream interface module 16.
  • the uplink interface module 14 includes the uplink interface 3 and the first PON MAC layer e
  • the processing module 15 includes the first flexible optical service unit frame framing/the second service signal acquisition layer f
  • the downlink interface module 15 includes the first service signal receiving layer. /Second service signal transmission layer g, and downlink interface 4.
  • the upstream interface module 14 is used to interact with the OLT 104 through the upstream interface 3, and send the first passive optical network transmission aggregation frame generated through the first PON MAC layer h to the OLT 104.
  • the first passive optical network transmission aggregation frame carries the first Flexible optical service unit frame.
  • the uplink interface module 14 is also used to receive the fourth passive optical network transmission aggregation frame sent by the OLT 104 through the uplink interface 3, and the first PON MAC layer h analyzes the received fourth passive optical network transmission aggregation frame to obtain The fourth passive optical network transmits the second flexible optical service unit frame carried in the aggregation frame, and obtains the second service signal carried by the second flexible optical service unit frame.
  • the XGTC frame is transmitted between the OLT and the ONU in the XGPON network; however, this method can also be applied to other PON networks, such as GPON, 10GPON, 25GPON, 50GPON, 40GPON, and 100GPON networks.
  • PON GPON
  • 10GPON 10GPON
  • 25GPON 25GPON
  • 50GPON 40GPON
  • 100GPON networks 100GPON networks.
  • the downlink interface module 16 is configured to interact with user equipment (not shown in the figure) through the downlink interface 4, and receive the first service signal sent by the user equipment.
  • the downlink interface module 16 is further configured to send the second service signal recovered by the second service signal layer f to the user equipment through the downlink interface 4. It is worth noting that the layer mentioned in this embodiment is a functional layer corresponding to the internal processing flow.
  • the flexible optical service unit frame framing layer d included in the processing module 15 is used to map the service signal to the OSUflex frame.
  • the service signal layer i included in the processing module is used to restore the second flexible optical service unit frame to the second service signal.
  • "/" is used to distinguish between uplink and downlink.
  • the first OTU framing/second flexible optical service unit frame acquisition layer b, and the first OTU framing layer b is used for uplink when the first OSUflex Frame OTU framing to generate the first OTU frame.
  • the second flexible optical service unit frame acquisition layer is used to acquire the second OSUflex frame from the second downlink OTU frame.
  • the first flexible optical service unit frame framing/second service signal acquisition layer f is used to map the first service signal to the OSUflex frame in the uplink.
  • the second service signal layer is used to obtain the second service signal from the received second OSUflex frame in the downlink.
  • FIG. 4A is a schematic diagram of an embodiment of OSUflex transmission from ONU to OTN or from OTN to ONT provided by this application.
  • the service of each ONU corresponding to the user is mapped to a type of OSUflex, and the OSUflex carries OAM overhead.
  • OSUflex is mapped to ODUk or ODUflex, or ODUcn, and sent to OLT104.
  • the OLT 104 receives the message carrying the OSUflex sent by the OTN, the OSUflex carried in the ODU is mapped to the XGTC and sent to the ONU 101 through the XGTC message.
  • the service corresponding to the user may be a live TV service: the OTN device 105 constructs OSUflex#1, OSUflex#2,...,OSUflex#m, respectively corresponding to m real-time channels to the OLT 104. According to customer needs, choose to switch and send the corresponding OSUflex#i to the user endpoint ONU101. The OLT 104 chooses to switch and send the corresponding OSUflex#i to the user endpoint ONU according to customer requirements.
  • the user’s corresponding services can also be video-on-demand services (such as HD, 4k, 8k), game services (such as Augmented Reality (AR)), virtual reality (Virtual Reality, VR), and other services, such as web pages. , Voice, mail, etc.
  • video-on-demand services such as HD, 4k, 8k
  • game services such as Augmented Reality (AR)
  • virtual reality Virtual Reality, VR
  • other services such as web pages. , Voice, mail, etc.
  • the service signals of this application may be Ethernet service signals, E1 service signals, Synchronous Digital Hierarchy (SDH) service signals, and video service signals.
  • SDH Synchronous Digital Hierarchy
  • FIG. 4A is a schematic diagram of another embodiment of OSUflex transmission from ONU to OTN or from OTN to ONU provided by this application.
  • OTN-L0 represents the 0 layer of the optical network, which is used to complete the multiplexing and scheduling transmission of the optical carrier.
  • HO ODU stands for the high-order ODU layer, which completes the multiplexing of multiple low-order ODU signals.
  • Multiplexing refers to the aggregation of multiple low-speed services (such as ODU frames used to map bearer service data or OSUflex signals) into a high-speed service for transmission.
  • LO ODU stands for low-order ODU layer, and is used to map bearer service data or OSUflex signals.
  • SNI is Service Network Interface.
  • PON access network POH-PHY stands for passive optical network physical layer, used to complete optical carrier distribution and transmission.
  • GTC stands for GPON transmission convergence layer, which is used to complete the multiplexing of multiple GEM signals
  • GEM stands for GPON encapsulation mode layer, which is used to map bearer service data
  • UNI is the user network interface User Network Interface.
  • the OSUflex of OTN, OLT and ONU represents the transport and access service bearer layer, which is used to complete the unified mapping bearer of service data.
  • the GEM frame may also be any passive optical network encapsulation frame, such as XGEM, or others, which is not limited in the embodiment of the present application.
  • FIG. 4B is a schematic diagram of another embodiment of OSUflex transmission from ONU to OTN or from OTN to ONU provided by this application.
  • the difference from the embodiment corresponding to FIG. 4A is that in the transmission of the PON system, the OSUflex is mapped to the GEM and sent to the ONU101, or sent by the ONU101 to the OLT104.
  • FIG. 4C is a schematic diagram of another embodiment of OSUflex transmission from ONU to OTN or from OTN to ONU provided by this application.
  • the payload area is defined as an OTN-like frame structure according to its actual rate, and the byte size that satisfies an integer multiple of 4 is selected. Construct an OTN-like frame, and reserve the remaining bytes for future use.
  • the selected load area with a byte length that is an integer multiple of 4 has the first 16 columns consistent with the overhead of the first 16 columns of the OTN, and the remaining space is divided into time slots in an OTN consistent manner.
  • OLT104 or ONU101 maps OSUflex to OTN-like frames (also called improved GTC frames), or multiplexes OSUflex mapping into ODUk/ODUflex and then maps them to OTN-like frames (Improved xGTC frame or GTC frame), pass through OSUflex or ODUk/ODUflex to access the XGPON network, without affecting the original GPON or XGPON technology.
  • OTN-like frames also called improved GTC frames
  • FIG. 5A is a schematic diagram of the data structure in the payload area of the OSUflex frame mapped to the XGTC frame (or a GTC frame or other passive optical network transmission convergence frame) in the downlink direction provided by an embodiment of the application. It can be applied to the scenario of Figure 4A.
  • OSUflex is carried in the payload of the XGTC frame.
  • the XGTC frame is partially replaced, the XGTC frame header field is reserved, and the payload part is replaced with the OSUflex complete frame.
  • the header field of XGTC is consistent with the existing XGTC header field, which is not described in detail in the embodiment of the present application.
  • the TPN Tributary Port Number
  • the ONU uses the length of the OSUflex frame The OSUflex frame boundary can be correctly identified.
  • the XGTC frame in FIG. 5A includes an XGTC frame header field and an XGTC frame payload.
  • the XGTC frame header field includes 4 bytes of HLend, N times 8 bytes of broadband map (BWmap), and N times 48 bytes of physical layer operation management and maintenance (physical layer transmission administration and maintenance).
  • BWmap broadband map
  • HLend Indicate other header fields, such as BWmap, PLOAM count, and HEC that protects the HLend field from byte errors.
  • the bandwidth map BWmap indicates the description assigned to the ONU.
  • the BWmap includes one or more allocation instructions allocated to the ONU.
  • Each allocation instruction includes: Alloc-ID is used to identify the T-CONT allocated to the ONU, and Start time and End time indicate the time when the ONU starts to send data and ends to send data.
  • the T-CONT identified by Alloc-ID is used to carry the service data of the ONU.
  • FIG. 5B is a schematic diagram of the data structure of OSUflex mapped to an XGTC frame (or a GTC frame) in the downlink direction provided by an embodiment of the application, which is applicable to the scenario of FIG. 4B.
  • the difference from the data structure shown in Figure 5A is that in the XGTC frame in Figure 5B, OSUflex is carried in the payload part of the XGEM (or GEM) frame, and the XGEM header and OSUflex are carried in the payload of the XGTC frame. .
  • XGEM or GEM
  • the XGEM frame is partially replaced, the XGEM frame header is retained, and the payload part is replaced with the OSUflex complete frame. That is, an OSUflex frame is mapped to the payload area of an XGEM frame, and the XGEM Port-ID is the same as the tributary port number (TPN) of the OSUflex frame.
  • the header field of the XGEM frame includes the OSUflex type indication OSU_TI, which is used to indicate that the XGEM frame carries the OSUflex frame.
  • the header field of XGTC is consistent with the existing XGTC header field, which is not described in detail in the embodiment of the present application.
  • FIG. 5C is a schematic diagram of the data structure of the OSUflex mapped to the OTN-like frame in the downlink direction provided by an embodiment of the application, which is applicable to the scenario of FIG. 4C.
  • the OTN-like frame is carried in the payload part of the XGTC frame.
  • the ONT-like frame includes the overhead Oh and the payload, and the OSUflex frame is carried in the payload in the OTN-like frame.
  • the payload of the XTGC frame may carry one or more OTN-like frames, and the embodiment of the present application does not limit the number of OTN-like frames carried in the XTGC frame.
  • FIG. 5D is a schematic diagram of the structure of an OTN-like frame provided by an embodiment of the application.
  • the OTN-like frame includes the same header fields as the OTN frame, such as including an OTU frame header field, an ODUk header field, and an OPUk header field.
  • the OSUflex frame is mapped to the payload area of the OPUk frame.
  • the 1-14 bytes in the first row and the first column carry the header field of the OTUk frame structure, such as the content of FA OH and OTUk Oh.
  • the content of the header field of the OTUk frame structure, the ODUk header field, and the OPUk header field can refer to the description of the standard G.709, which is not described in detail in this embodiment of the application.
  • the payload of the OTU-like frame includes a structure of 4 rows and the same column of bytes.
  • an OTN-like frame structure is constructed with 138188 bytes of the payload area of the XGTC frame.
  • the OTN-like frame includes a structure of 4 rows and 33797 columns. In each row and 33797 column, 16 columns are the overhead of the OTN-like frame.
  • FIG. 5E a structural diagram of one row in the payload of the OTN-like frame is shown.
  • FIG. 6A is a schematic structural diagram of a mixed mapping of an OSUflex frame and an XGEM frame into an XGTC frame in the uplink direction according to an embodiment of the application, which is applicable to the scenario of FIG. 4A.
  • Burt i to Birts k indicate that there are ik ONUs, and ik ONUs share 125 us.
  • the XGTC frame includes XGTC header (ie XGTC header), XGTC trailer, BDRu, and GTC payload ( GTC playolad).
  • OSUflex frames are encapsulated in the XGTC payload.
  • FIG. 1 the XGTC frame shown in FIG.
  • At least one of the at least two XGTC frame payloads carries an OSUflex frame.
  • the XGTC frame payload may also only carry OSUflex frames.
  • the number and length of the OSUflex frames carried are not limited in this embodiment of the present application.
  • XGTC frame includes XGTC header (XGTC header), uplink dynamic bandwidth report (DBRu), XGTC frame payload (XGTC Payload), and uplink XGTC frame check (XGTC Trailer).
  • the XGTC frame payload includes one or more OSUflex frames. Refer to Figure 7 for the structure of the OSUflex frame.
  • the XGTC frame payload is transmitted through a transmission container (TCONT).
  • TCONT transmission container
  • the bandwidth occupied by different TCONTs of the same ONU can be connected together to form a burst or different bursts.
  • the bandwidth occupied by TCONTs of different ONUs must be different bursts.
  • FIG. 6B is a schematic structural diagram of a mixed mapping of OSUflex frames and XGEM frames into XGTC frames in the uplink direction according to an embodiment of the application, which is applicable to the scenario of FIG. 4B.
  • the difference from the structure shown in FIG. 6A is that the OSUfelx is encapsulated in an XGEM frame, and the XGEM frame is encapsulated in an XGTC frame payload.
  • Burt i to Birts k indicate that there are ik ONUs, and ik ONUs share 125 us.
  • the XGTC frame includes XGTC header (ie XGTC header), XGTC trailer, at least two BDRus, and at least Two GTC payloads (GTC playolad). There is a one-to-one correspondence between GCT payload and BDRu.
  • XGTC header ie XGTC header
  • XGTC trailer ie XGTC trailer
  • BDRus ie XGTC trailer
  • GTC playolad There is a one-to-one correspondence between GCT payload and BDRu.
  • GTC playolad There is a one-to-one correspondence between GCT payload and BDRu.
  • the XGTC frame shown in FIG. 6B at least one of the at least two GTC payloads carries an XGME frame encapsulated with an OSUflex frame.
  • the XGEM header field carries the OSU-TI, including the OSUflex type indicator OSU_TI, which is used to indicate that the XGEM frame carries the OSUflex frame.
  • OSU_TI the OSUflex type indicator
  • At least one of the at least two GTC payloads may also carry an XGEM frame encapsulated with the XGEM payload.
  • FIG. 6C is a schematic structural diagram of the OSUflex mapped to an OTN-like frame and encapsulated in an XGTC frame in the upstream direction according to an embodiment of the application.
  • Each upstream ONU is equally divided into 125us, and the upstream bandwidth is equally divided into N parts according to the number of ONUs N; each ONU burst frame reserves the necessary burst physical layer overhead, and the load area is structured as an OTN-like frame structure. Since each ONU equally divides the upstream bandwidth, there is no need for dynamic bandwidth allocation (DBA) bandwidth reporting, which saves the overhead of DBA reporting.
  • the XGTC frame in FIG. 6C may include one or more XGTC payloads, and may carry one or more OTN-like frames.
  • the payload in the OTN-like frame carries the OSUflex frame.
  • One XGTC payload can carry one OTN-like frame or multiple OTN-like frames.
  • the embodiment of the present application does not limit the number and length of the OTN-like frames carried in the XGTC frame or the GTC frame.
  • FIGS. 6A to 6C cancel the DBA bandwidth report and the issuance of the bandwidth map in the downstream direction, which can realize static bandwidth allocation.
  • the DBA function can also be retained, but the DBA function can be simplified as that the DBA only controls the overall bandwidth allocation between ONUs, and the DBA related overhead is retained at this time.
  • FIG. 7 is a schematic diagram of the data structure of an OSUflex frame provided by an embodiment of the application.
  • the OSUflex frame is composed of integer multiples of bytes or bits.
  • the OSUflex frame includes an overhead area and a payload area.
  • the overhead includes, but is not limited to, service frame header indication, trail trace indicator TTI (Trail Trace Identifier), X-bit interleaved parity BIP-X (X Bit-Interleaved Parity), backward error indication BEI (Backward Error Indication), and Defect indication BDI (Backward Defect Indication), status indication STAT (Status), time stamp, sequence identification, mapping overhead, or tributary port number TPN, etc.
  • the payload area is used to carry service data.
  • the mapping method of the specific service data to the payload area of the OSUflex frame is not limited, and may be synchronous mapping or asynchronous mapping.
  • the generic mapping procedure GMP Generic Mapping Procedure
  • the size of the OSUflex frame structure may be 8 bytes, 16 bytes, 32 bytes, 64 bytes, 128 bytes, 192 bytes, 256 bytes, 512 bytes, etc., which are not limited in the embodiment of the present application.
  • TTI Path tracking indicator.
  • the TTI includes the source access point identifier and the destination node identifier.
  • the TTI can also include operator-defined content.
  • STAT Maintenance signal insertion, used to detect OSUflex_LCK/OSUflex_OCI/OSUflex_AIS.
  • AIS is an alarm indication signal (alarm indication signal, AIS)
  • OCI is an open connection indication (open connection indication, OCI)
  • LCK is a locked signal function Locked.
  • TPN Used to identify pipelines and distinguish pipelines of different services. TPN can support flexible time slot allocation.
  • FIG 7 shows an example of the structure when the flexible optical service unit frame is an OSUflex frame.
  • the flexible optical service unit (OSUflex) is the service bearer container for the future optical transport network (OTN).
  • OTN optical transport network
  • the rate of the flexible optical service unit depends on the service rate carried, and can carry CBR (Constant Bit Rate) and PKT (Packet, packet) services. It is worth noting that the flexible optical service unit can also have other names, such as flexible optical service data unit (OSDUflex). Any frame that can carry data signals in either PON or OTN can be called flexible optical service. Unit frame.
  • An optical payload unit may include an integer multiple of OSUflex frames.
  • the payload area of one or more OPU optical payload unit frames is divided into an integer number of payload blocks.
  • an OPU optical payload unit can be divided into 952 payload blocks, and each payload block corresponds to an OSUflex frame.
  • multiple optical payload units OPU can be combined as a multi-frame for payload block division according to needs.
  • the OSUflex frame size is 192 bytes
  • 3 OPU optical payload units form a multi-frame for payload block division. It can be divided into 238 payload blocks, and each payload block corresponds to an OSUflex frame.
  • the OSUflex frame is mapped to the corresponding payload block position in the OPU optical payload unit in a one-to-one correspondence.
  • FIG. 8 is a flowchart of an embodiment of a service signal processing method provided by this application.
  • the ONU 101-1 maps the first service signal to the first OSUFlex frame, and the OLT encapsulates the first OSUFlex frame to the device sent to the OTN or the peer ONU 104-4.
  • the first OTU frame In addition, the OLT also receives the second OTU frame sent by the device in the OTN, obtains the second OSUflex frame carried in the second OTU frame, and sends it to the ONU through the fourth XGTC frame.
  • the ONU converts the second OSUflex frame in the fourth XGTC frame into a second service signal and provides it to the user equipment.
  • the first OSUflex framing/second service signal acquisition layer f is set in the ONU 101-1, and the first OSUflex frame is transmitted upstream from the ONU 101-1 to the OLT 104-1.
  • the embodiment of the present application takes the OSUflex frame encapsulated in the XGTC frame as an example for description, but the OUSflex frame may also be encapsulated in the GTC frame.
  • the GTC frame is not described in detail in this embodiment of the application. As shown in FIG. 8, the method of this embodiment may include:
  • the ONU 101-1 receives a service signal sent by a user equipment (not shown in the figure).
  • the ONU 101-1 receives the service signal sent by the user equipment through the interface 4 of the downlink interface module 16. And the downlink interface module 16 processes the received service signals.
  • the ONU 101-1 maps the service signal into an OSUflex frame.
  • the processing module 15 or the OSUflex framing layer in the processing module 15 maps the service signal into an OSUflex frame, and the data structure of the OSUflex frame can be referred to FIG. 7 and related descriptions.
  • the ONU can determine that the service is a variable bit rate (VBR) service, and the ONU will asynchronously map the message to the OSUflex frame through IDLE adaptation.
  • the ONU can determine that the service is a constant bit rate (CBR) service, and the ONU is asynchronously mapped to the OSUflex frame through a generic mapping procedure (Generic Mapping Procedure, GMP).
  • GMP Generic Mapping Procedure
  • the ONU 101-1 encapsulates the OSUflex frame in the first XGTC frame.
  • the uplink interface module 14 or the first PON MAC layer of the uplink interface module 14 encapsulates the OSUflex frame in the first XGTC frame.
  • the first XGTC frame carries a service type identifier, which is used to indicate that the first XGTC frame carries an OSUflex frame.
  • the first XGTC frame may also be in the format of GTC, which is not limited in the embodiments of the present application.
  • the OSUflex frame is encapsulated in the payload of the first XGTC frame, and the first XGTC frame may also include the XGEM payload. That is, the first XGTC frame includes an OSUflex frame and an XGEM frame, and both the OSUflex frame and the XGEM frame have an XGEM header field.
  • the XGEM header field corresponding to the OSUflex frame carries the OSUflex type indication OSU_TI, which is used to indicate that the XGEM frame carries the OSUflex frame.
  • the OSUflex frame is encapsulated in an XGEM frame
  • the XGEM frame encapsulated with the OSUflex frame is encapsulated in the payload of the first XGTC frame.
  • the XGEM header field carries the OSUflex type indication OSU_TI, which is used to indicate that the XGEM frame carries the OSUflex frame.
  • the OSUflex frame corresponds to an OTN overhead (overhead, OH) header field.
  • the OTN frame including the OSUflex frame and the OTN OH header is encapsulated in the XGTC frame.
  • the OSUflex frame type indication is carried in the header field of the OTN-like frame.
  • the ONU 101-1 sends a second XGTC frame to the OLT, and the second XGTC frame carries an OSUflex frame type indication.
  • the OSUflex frame type indication is used to indicate that the ONU supports the OSUflex type transmission container (T-CON) instance.
  • the OLT sends the OSUflex type transmission container instance identifier to the ONU according to the OSUflex type indication.
  • the OSUflex frame type indication can Carried in the ONU Management and Control Channel (OMCC), the OLT obtains the OSUflex frame type indication from the ONU Management and Control Interface (OMCI).
  • the OLT will support the OSUflex type of transport container instance identifier It is sent to the ONU through the third XGTC frame.
  • the transport container instance identifier that supports the OSUflex type is the Allocation Identifier in the third XGTC frame.
  • the transport instance indicated by the transport container instance identifier that supports the OSUflex type is allocated to the ONU by the OLT Examples of OSUflex frames for transmission.
  • the ONU 101-1 sends the first XGTC frame to the OLT 104-1.
  • the upstream interface module 14 or the upstream interface 3 of the upstream interface module 14 sends the first XGTC frame to the OLT 104.
  • the first XGEM frame is sent from the upstream interface 3 of the ONU 101-1 to the downstream interface 2 of the OLT 104-1.
  • the interface processing module 13 of the OLT 104-1 obtains the OSUflex frame in the first XGTC frame.
  • the interface processing module 13 of the OLT 104-1 obtains the first OSUflex frame according to the first XGTC frame.
  • the interface processing module 13 may obtain the OSUflex frame according to the OSUflex type indication in the first XGTC frame.
  • the OSUflex type indication may carry the header field in the XGEM frame that can be carried in the first XGTC frame, or the header field in the OTN-like frame.
  • the second PON MAC layer d may also determine that the first XGTC frame obtained from the transmission container instance supporting the OSUflex type is transmitted in the XGTC frame carrying the OSUflex frame, and obtain the first OSUflex frame carried in the first XGTC frame.
  • the OLT 104-1 may obtain the OSUflex frame from the XGEM frame in the first XGTC frame, and may also obtain the OSUflex frame from the first XGTC frame.
  • OSUflex frames can also be obtained from OTN-like frames in XGTC frames.
  • the interface processing module 13 of the OLT 104-1 sends the acquired first OSUflex frame to the first OTU framing/second OSUflex framing layer b of the uplink module through the switching and forwarding module 12.
  • the second PON MAC layer b in the interface processing module 13 determines that the first OSUflex frame does not enter the first network processor or the traffic management layer for processing according to the acquired first OSUflex frame, and sends the first OSUflex frame to the switching and forwarding module 12. And the switching and forwarding module 12 sends the first OSUflex frame to the uplink module 11.
  • the first OTU framing/second OSUflex framing layer b of the upstream module 11 of the OLT 104-1 performs OTU framing on the OSUflex frame.
  • the first OTU framing layer of the first OTU framing/second OSUflex framing layer b performs OTU framing on the first OSUflex frame to generate the first OTU frame.
  • the OSUflex frame is encapsulated in the LO ODU frame of the OTU frame, such as an ODUk frame, ODUflex frame or ODUcn frame.
  • the first OTU frame sending/second OTU frame receiving layer a of the OLT 104-1 passes through the equipment in the OTN network, or the OLT 104-2.
  • the OLT 104-2 receives the second OTU frame sent by the device in the OTN, and obtains the second OSUflex frame carried in the second OTU frame.
  • the uplink module 11 of the OLT 104-2 receives the second OTU frame through the uplink interface 1, and the uplink module 11 or the second OSUflex frame layer of the uplink module 11 obtains the first OSUflex frame from the received first OTU frame.
  • the first OTU frame includes an OSUflex frame.
  • the ODU framing layer of the first OTU framing/second OSUflex frame b transmits the first OSUflex frame to the switching and forwarding module 12.
  • the switching and forwarding module 12 switches the received first OSUflex frame to the second PON MAC layer b of the interface processing module 13.
  • the second PON MAC layer b of the interface processing module 13 After the second PON MAC layer b of the interface processing module 13 obtains the OSUflex frame, it encapsulates the OSUflex frame into the fourth XGTC frame.
  • the structure of the fourth XGTC frame is the same as that of the first XGTC frame, which will not be described in detail in the embodiments of the present application.
  • the OLT 104-2 sends the fourth XGTC frame to the ONU 101-4.
  • the second PON MAC layer g of the interface processing module 13 of the OLT 104-2 allocates the target PON channel according to the bandwidth required by the OSUflex, and deletes the bandwidth occupied by the target PON channel in the downstream DBA scheduling of the PON.
  • the second PON MAC layer g of the interface processing module 13 sends the fourth XGTC frame from the downstream interface 2 of the interface processing module to the ONU 101-4 from the upstream interface 3 of the ONU via the ODN through the target PON channel.
  • the ONU 101-4 converts the second OSUflex frame into a service signal according to the second OSUflex frame in the fourth XGTC frame.
  • the upstream interface module 14 in the ONU 101-4 After the upstream interface module 14 in the ONU 101-4 receives the fourth XGTC frame through the upstream interface 3, the first PON MAC layer of the upstream interface module 14 converts the OSUflex frame according to the fourth XGTC frame.
  • the second service signal layer of the first OSUflex frame/second service signal layer d converts the second OSUflex frame into the second service signal.
  • the ONU 101-4 sends the second service signal to the user equipment via the downlink interface 4 of the downlink interface module 16.
  • the ONU 101-1 maps the received first service signal to the first OSUflex frame, and encapsulates the first OSUflex frame in the first XGTC frame and sends it to the OLT 104-1.
  • the OLT 104-1 obtains the first OSUflex frame and performs the first OTU framing. Therefore, the first OSUflex frame can be directly mapped to the first OTU frame transmitted in the OTN network and the first XGTC frame in the PON network, so that the content transmitted by the PON can be sent to the device in the OTN without protocol conversion. Therefore, the time delay caused by protocol conversion can be reduced on the transmission path of the message, and low-delay transmission can be realized. At the same time, it reduces the operation of OLT for protocol conversion, reduces the complexity of OLT, and strengthens the interconnection and intercommunication of PON and OTN.
  • the OLT 104-1 also receives the second OTU frame carrying the second OSUflex frame, carries the second OSUflex frame in the fourth XGTC frame, and sends it to the ONU 101-2.
  • the ONU 101-2 On receiving the fourth XGTC frame, the ONU 101-2 obtains the second OSUflex frame, converts the second OSUflex frame into a second service signal, and sends it to the user equipment. Therefore, the content transmitted in the OTN can be directly sent to the ONU without protocol conversion, and the delay caused by the protocol conversion can be reduced on the message transmission path, and low-latency transmission can be realized.
  • it reduces the operation of the OLT for protocol conversion, reduces the complexity of the OLT, and strengthens the interconnection between PON and OTN.
  • Fig. 4A to Fig. 8 all take the XGTC frame as an example for description.
  • the flexible optical service unit frame can also be carried in the GTC frame, as well as any passive optical network transmission convergence frame.
  • the flexible optical service unit frame is carried in the GTC frame, and the data structure in the transmission aggregation frame of other passive optical networks, and the processing flow of the OLT and ONU can be referred to the detailed descriptions of FIGS. 4A to 8.
  • the embodiments of this application are here. Do not elaborate.
  • each module of the ONU in this embodiment, reference may be made to the related description of the method embodiment. The implementation principles and technical effects are similar, and will not be repeated here.
  • the modules here can also be replaced with modules or circuits.
  • FIG. 9 is a schematic structural diagram of a service signal processing device provided by this application.
  • the service signal processing device can be a device in an OLT, ONU, or OTN.
  • the service signal processing device may be used to implement the corresponding part of the method described in the foregoing method embodiment. For details, refer to the description in the foregoing method embodiment.
  • the service signal processing device may include one or more processors 901, and the processor 901 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 901 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, DU, or CU, etc.), execute software programs, and process data in software programs. .
  • the processor 901 may also store an instruction 904, and the instruction 904 may be executed by the processor, so that the service signal processing device executes the method corresponding to the terminal or the network device described in the foregoing method embodiment.
  • the service signal processing device may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the service signal processing device may include one or more memories 902, and the memory 902 stores instructions 902 or intermediate data.
  • the instructions 905 may be executed on the processor 901, so that the service signal processing device executes the foregoing method embodiments. Described method.
  • other related data may also be stored in the memory 902.
  • instructions and/or data may also be stored in the processor 901.
  • the processor 901 and the memory 902 can be provided separately or integrated together.
  • the service signal processing device may further include a transceiver 903.
  • the processor 903 may be referred to as a processing unit.
  • the transceiver 903 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the communication device.
  • the present application also provides a readable storage medium.
  • the readable storage medium stores an execution instruction.
  • the service signal processing device executes the service signal in the foregoing method embodiment. Approach.
  • the application also provides a program product, which includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the service signal processing device can read the execution instruction from a readable storage medium, and at least one processor executes the execution instruction to cause the service signal processing device to implement the service signal processing method in the foregoing method embodiment.
  • FIG. 10 is a schematic structural diagram of a system 1000 provided by this application.
  • the system includes the OLT 104 in the above-mentioned embodiment and the ONU 101 in the above-mentioned entity example.
  • the OLT 104 can perform the above-mentioned embodiments and any steps performed by the OLT 104 in FIG. 8.
  • the ONU 101 can perform the above-mentioned embodiments and any steps performed by the ONU 101 in FIG. 8. The embodiments of the application are not described in detail here.
  • a person of ordinary skill in the art can understand that: in the foregoing embodiments, it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供业务信号处理的方法。该方法中,光网络单元ONU接收业务信号,将业务信号映射到灵活光业务单元帧。ONU向光线路终端OLT发送第一无源光网络传输汇聚帧,第一无源光网络传输汇聚帧封装有灵活光业务单元帧,灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载业务信号。通过本申请可以使得灵活光业务单元帧既可以在PON中传输,也可以在OTN网络传输,无需ONU和OLT解析业务信号,因此可以降低时延。

Description

业务信号处理方法及设备
本申请要求于2019年10月15日提交中国国家知识产权局、申请号为201910980184.5、发明名称为“业务信号处理方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无源光网络技术领域,尤其涉及一种业务信号处理方法及设备。
背景技术
无源光网络(passive opticaloptical network,PON)是一种采用点到多点拓扑结构的光接入技术,图1为PON***的结构示意图。如图1所示,PON***100包括光线路终端(Optical Line Termination,OLT)104、光分配网络(Optical Distribution Network,ODN)102、和光网络单元(Optical Network unit,ONU)或光网络终端(Optical Network Terminal,ONT)101。其中,ODN为无源分光器件,ODN分为三部分:无源光分路器(Splitter)102-2、主干光纤106和分支光纤107。在PON***中,ODN 102把一路光纤分成多路,ONU共享带宽。从OLT104到ONU101方向的传输称为下行,从ONU101到OLT104方向的传输称为上行。上行业务采用时分多址方式实现接入,每个ONU101只能在OLT104分配的时隙发送自身的上行数据。下行业务采用时分复用广播的方式发送给各ONU101信息数据。ODN102将OLT104下行的数据传输到各个ONU101,同时将多个ONU101的上行数据汇总传输到OLT104。ONU101的结构与ONT相近。在本申请文件提供的方案中,光网络单元和光网络终端之间可以互换。
OTN(Optical transport network,光传送网络)作为下一代传送网的核心技术,包括电层和光层的技术规范,具备丰富的OAM(Operation Administration Maintenance,操作管理维护)、强大的TCM(Tandem Connection Monitoring,串联连接监视)能力和带外FEC(Forward Error Correction,前向错误纠正)能力,能够实现大容量业务的灵活调度和管理,日益成为骨干传送网的主流技术。当前OTN正从骨干、城域核心、城域汇聚向城域接入网络扩展,OTN下沉到CO(Central Office,中心机房)已成为行业共识。
现有的传送网络和接入网络相互独立,且传送网络和接入网络采用不同的网络技术,业务无法直接互联,在CO节点(比如OLT设备)需要解析传送和接入网络交互的数据业务,通过路由器或交换机完成业务路由或交换连接,存在极高的成本和传送延时。
发明内容
本申请提供一种业务信号处理方法及设备,可实现低时延传输。
第一方面,本申请提供一种业务信号处理方法。该方法包括:光网络单元ONU接收业务信号。ONU将业务信号映射到灵活光业务单元帧。ONU向光线路终端OLT发送第一无源光网络传输汇聚帧,第一无源光网络传输汇聚帧封装有灵活光业务单元帧,灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载业务信号。通过本申请可以使得灵活光业务单元帧既可以在PON中传输,也可以在OTN网络传输,无需ONU和OLT解析业务信号,因此可以 降低时延。此外,PON***中传输的灵活光业务单元帧可以在OTN网络传输,简化了PON***和OTN***的互联互通。
一种可能的设计中,灵活光业务单元帧封装在第一无源光网络传输汇聚帧的净荷中。
一种可能的设计中,灵活光业务单元帧封装在第一无源光网络传输汇聚帧包含的第一无源光网络封装帧的净荷中,第一无源光网络封装帧的头域携带灵活光业务单元类型指示。
一种可能的设计中,第一无源光网络传输汇聚帧还包括第二无源光网络封装帧,第二无源光网络封装帧包括无源光网络封装帧净荷。
一种可能的设计中,灵活光业务单元帧封装在类光传输网络OTN帧中,类OTN帧包括OTN帧的头域。
一种可能的设计中,ONU向OLT发送第一无源光网络传输汇聚帧之前,ONU向OLT发送第二无源光网络传输汇聚帧,第二无源光网络传输汇聚帧中携带灵活光业务单元帧类型指示,灵活光业务单元帧类型指示用于指示ONU支持灵活光业务单元帧的类型的传输容器实例。通过指示支持OSUflex类型的传输容器实例,确保ONU向OLT发送的OSUflex帧能够得到准确的处理。
一种可能的设计中,ONU接收OLT发送的第三无源光网络传输汇聚帧,第三无源光网络传输汇聚帧包含支持灵活光业务单元帧类型的传输容器T-CONT实例标识,T-CONT实例标识对应的传输容器用于承载灵活光业务单元帧。通过指示给ONU的支持OSUflex类型的传输容器实例标识,确保ONU向OLT发送的OSUflex帧能够得到准确的处理。
一种可能的设计中,OSUflex帧包括开销区和净荷区,开销区包括以下至少一个:业务帧头指示,路径踪迹指示TTI(Trail Trace Identifier)、X比特间插奇偶校验BIP-X(X Bit-Interleaved Parity)、后向错误指示BEI(LOBackward Error Indication)、后向缺陷指示BDI(Backward Defect Indication)、状态指示STAT(Status)、时戳、顺序标识,或映射开销或支路端口号TPN;净荷区用于承载业务信号。通过给出OSUflex帧的结构,使得本申请得以正确的执行。
一个可能的设计中,灵活光业务单元帧的支路端口号TPN与第一无源光网络封装帧的Port-ID相同。
一种可能的设计中,灵活光业务单元帧为未来光传送网络(Optical transport OTN)的业务承载容器,其速率任意,速率大小取决于承载的业务速率,可以承载CBR(Constant Bit Rate,固定比特速率)和PKT(Packet,分组)业务。灵活光业务单元帧的结构帧包括开销区和净荷区,开销区包括以下至少一个:业务帧头指示,路径踪迹指示TTI(Trail Trace Identifier)、X比特间插奇偶校验BIP-X(X Bit-Interleaved Parity)、后向错误指示BEI(LOBackward Error Indication)、后向缺陷指示BDI(Backward Defect Indication)、状态指示STAT(Status)、时戳、顺序标识,或映射开销或支路端口号TPN;净荷区用于承载业务信号。通过给出OSUflex帧的结构,使得本申请得以正确的执行。其命名方式本申请不做限定,也可以是其他名称,例如灵活光业务数据单元(OSDUflex)等。
第二方面,本申请实施例提供一种业务信号处理方法,其特征在于,方法包括:
光线路终端OLT接收光网络单元ONU发送的第一无源光网络传输汇聚帧,第一无源光网络传输汇聚帧包含第一灵活光业务单元帧,第一灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载第一业务信号。OLT向光传输网络OTN中的设备发送第一光传输单元OTU帧,第一OTU帧携带第一灵活光业务单元帧。通过本申请可以使得灵活光业务单元帧既可以在PON中传输,也可以在OTN网络传输,无需ONU和OLT解析业务信号,因此可以降低时延。此外,PON***中传输的灵活光业务单元帧可以在OTN网络传输,简化了PON***和OTN***的互联互通。
一种可能的设计中,OLT将第一灵活光业务单元帧映射到第一光通路数据单元ODU帧中,第一OTU帧包含第一ODU帧。
一种可能的设计中,OLT从第一无源光网络封装帧中获取第一灵活光业务单元帧。
一种可能的设计中,第一无源光网络传输汇聚帧包含有携带第一灵活光业务单元帧的第一无源光网络封装帧和没携带第一灵活光业务单元帧的无源光网络封装帧,第一无源光网络封装帧的头域包含有活光业务单元帧类型指示。
一种可能的设计中,OLT从第一无源光网络传输汇聚帧中的类光传输网络OTN帧中获取第一灵活光业务单元帧,类ONT帧的头域包含有灵活光业务单元帧类型指示。
一种可能的设计中,OLT从第一无源光网络传输汇聚帧的净荷中获取第一灵活光业务单元帧。
一种可能的设计中,在OLT接收ONU发送的第一无源光网络传输汇聚帧之前,OLT接收ONU发送的第二无源光网络传输汇聚帧,第二无源光网络传输汇聚帧中携带灵活光业务单元帧类型指示。根据灵活光业务单元帧类型指示,OLT获取支持灵活光业务单元帧类型的传输容器实例的标识。OLT向ONU发送第三无源光网络传输汇聚帧,第三无源光网络传输汇聚帧包含支持灵活光业务单元帧类型的传输容器实例的标识。
一种可能的设计中,OLT接收OTN中的设备发送的第二OTU帧,第二OTU帧中包含第二灵活光业务单元帧。OLT将第二灵活光业务单元帧封装到第四无源光网络传输汇聚帧中。OLT将第四无源光网络传输汇聚帧发送给ONU。
第三方面,本申请实施例提供一种业务信号处理方法。该方法包括:光网络单元ONU接收光线路终端OLT发送的无源光网络传输汇聚帧,无源光网络传输汇聚帧包含灵活光业务单元帧。灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载业务信号。ONU从灵活光业务单元帧中获取业务信号。ONU发送业务信号。通过本申请ONU可以接收OLT发送的OSUflex帧并映射为业务信号,无需解析OSUflex帧承载的业务信号,降低传输过程中的时延。
一种可能的设计中,ONU从无源光网络传输汇聚帧中的无源光网络封装帧中获取灵活光业务单元帧;或,ONU从无源光网络传输汇聚帧中的净荷中获取灵活光业务单元帧。
一种可能的设计中,无源光网络传输汇聚帧包含有携带灵活光业务单元帧的第一无源光网络封装帧和没携带灵活光业务单元帧的第二无源光网络封装帧,第一无源光网络封装帧包含有灵活光业务单元帧类型指示。
一种可能的设计中,ONU从无源光网络传输汇聚帧中的类光传输网络OTN帧中获取灵活光业务单元帧。
第六方面,本申请提供了一种业务信号处理的方法。该方法包括OLT接收OTN中的设备发送的OTU帧,OTU帧中包含灵活光业务单元帧。OLT将灵活光业务单元帧封装到无源光网络传输汇聚帧中。OLT将无源光网络传输汇聚帧发送给ONU。灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载业务信号。
一种可能的设计中,OLT根据OTU帧中包含的灵活光业务单元帧,为ONU分配支持灵活光业务单元帧类型的传输容器T-CONT实例,并将支持灵活光业务单元帧类型的传输容器T-CONT实例的标识发送给ONU。支持灵活光业务单元帧类型的传输容器T-CONT用于承载灵活光业务单元帧。
一种可能的设计中,支持灵活光业务单元帧类型的传输容器T-CONT实例的标识封装在无源光网络传输汇聚帧中的头域。
第五方面,本申请提供了一种光网络单元ONU,该ONU具有实现上述第一方面,第三方面的方法的ONU的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,本申请提供了一种光线路终端OLT,该OLT具有实现上述第二方面和第四方面方法的OLT的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请提供一种无源光网络PON***,包括用于执行第二或第四方面以所有可选方式任一的光线路终端OLT,光网络单元用于执行第三或第一方面所有可选方式任一的ONU。
上述第五到第七的各可能的设计中所提供的业务信号处理设备或***,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第八方面,本申请提供一种业务信号处理设备,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第一方面及第一方面任一种可能的设计中的业务信号处理方法或者第二方面及第二方面任一种可能的设计中的业务信号处理方法,或第三方面及第三方面任一种可能的设计中的业务信号处理方法,或第四方面及第四方面任一种可能的设计中的业务信号处理方法。
第九方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当业务信号处理设备的至少一个处理器执行该执行指令时,业务信号处理设备执行第一方面及第一方面任一种可能的设计中的业务信号处理方法或者第二方面及第二方面任一种可能的设计中的业务信号处理方法,或第三方面及第三方面任一种可能的设计中的业务信号处理方法,或第四方面及第四方面任一种可能的设计中的业务信号处理方法。
第十方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。业务信号处理设备的至少一个处理器可以从可读存储介质读取该执行指令, 至少一个处理器执行该执行指令使得业务信号处理设备实施第一方面及第一方面任一种可能的设计中的业务信号处理方法或者第二方面及第二方面任一种可能的设计中的业务信号处理方法,或第三方面及第三方面任一种可能的设计中的业务信号处理方法,或第四方面及第四方面任一种可能的设计中的业务信号处理方法。
附图说明
图1为PON***的结构示意图;
图2为本申请提供的一种PON***的结构示意图;
图3a为本申请提供的一种PON***的结构示意图;
图3b为本申请提供的一种PON***的结构示意图;
图4A为本申请提供的OSUflex从ONU到OTN或从OTN到ONU传输的实施例的示意图;
图4B为本申请提供的OSUflex从ONU到OTN或从OTN到ONU传输的另一实施例的示意图;
图4C为本申请提供的OSUflex从ONU到OTN或从OTN到ONU传输的另一实施例的示意图;
图5A为本申请实施例提供的在下行方向上,OSUflex帧映射到XGTC帧的净荷区中的数据结构示意图;
图5B为本申请实施例提供的在下行方向上,OSUflex帧映射到XGTC帧的净荷区中的另一数据结构示意图;
图5C为本申请实施例提供的在下行方向上,OSUflex帧映射到XGTC帧的净荷区中的另一数据结构示意图;
图5D为本申请实施例提供的类OTN帧的结构示意图;
图5E为本申请实施例提供的类OTN帧的净荷中一行的结构示意图;
图6A为本申请实施例提供的在上行方向上,OSUflex帧和XGEM帧混合映射入XGTC帧的结构示意图;
图6B为本申请实施例提供的在上行方向上,OSUflex帧和XGEM帧混合映射入XGTC帧的另一结构示意图;
图6C为本申请实施例提供的在上行方向上,OSUflex映射到类OTN帧并封装在XGTC帧的结构示意图;
图7为本申请实施例提供的OSUflex帧的数据结构示意图;
图8为本申请实施例提供的一种业务信号处理方法实施例的流程图;
图9为本申请提供的一种业务信号处理设备的结构示意图;
图10为本申请提供的一种PON***600的结构示意图。
具体实施方式
面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。本申请的“A和/或B”可解释为A或B中的任一个,或包括A和B。
在现有的PON***100的传输路径中,每一级的网络处理器或流量管理模块对以太报文的转发处理与服务质量控制均要耗费数微秒至数十微秒的时延。本申请提供一种业务信号处理方法及设备,在PON***中减少或消除网络处理器或流量管理模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输。本申请在光网络单元ONU增加第一灵活光业务单元帧成帧/第二业务信号获取层。第一灵活光业务单元帧成帧层对上行的业务信号进行切片并映射到灵活光业务单元帧,灵活光业务单元帧根据不同的业务有不同的长度,本申请实施例在此不做限定。灵活光业务单元帧在OLT的传输中,OLT获取灵活光业务单元帧,将灵活光业务单元帧封装到OTU帧后发送至OTN网络,无需OLT解析业务信号,因此可以降低时延,并达到OLT与OTN的互通。下面结合附图详细说明本申请的技术方案。
图2为本申请实施例提供的***结构示意图。如图2所示,OLT104-1与光传输网(optical transport network,OTN)中OTN设备105-1进行通信。OLT104-1将ONU(101-1、101-2或101-3)的报文发送给OTN设备105-1,并经过OTN设备105-2发送到对端的ONU(101-4、101-5或101-6)。OLT104-1还接收OTN设备105-1发送的报文,并将接收到的OTN设备105-1发送的报文通过ODN网络102发送给ONU(101-1、101-2或101-3)。OTN可以作为PON的承载网络,用于提升PON业务的传输距离或者提供更好的业务保护。
本申请的技术方案应用于PON***中,尤其可以用于具有代表性的吉比特无源光网络(Gigabit Passive Optical Network简称GPON)和以太网无源光网络(Ethernet Passive Optical Network,简称EPON),XG(S)-PON(10G(symmetric)Passive Optical Network),10G EPON(10G Ethernet Passive Optical Network),25G EPON,40G EPON,50G EPON,100G EPON。XG(S)-PON、10G EPON、25G EPON,40G EPON,50G EPON,100G EPON可以统称为10G PON,也可称为XGPON.
PON***包括ONU101,ODN102和OLT104。图3a为本申请提供的一种PON***实施例的结构示意图。如图3a所示,PON***包括:OLT 104,ODN 102和ONU 101。
ONU101包括上行接口模块14,处理模块15和下行接口模块16。其中,
下行接口模块16用于接收用户设备发送的第一业务信号。
处理模块15用于将第一业务信号映射为第一灵活光业务单元。灵活光业务单元帧(Flexible Optical Service Unit,OSUflex帧)为未来光传送网络(Optical transport OTN)的业务承载容器。灵活光业务单元(的速率大小取决于承载的业务速率,可以承载CBR(Constant Bit Rate,固定比特速率)和PKT(Packet,分组)业务。值得说明的是,灵活光业务单元还可以为其它的名称,比如灵活光业务数据单元(OSDUflex),任何既可以在PON中也可以在OTN中承载数据信号的帧都可以被称为灵活光业务单元帧。
上行接口模块14用于向光线路终端OLT104发送第一无源光网络传输汇聚帧,第一无源光网络传输汇聚封装有第一灵活光业务单元帧。无源光网络传输汇聚帧包括用于GPON中的吉比特无源光网络传输汇聚帧GTC,用于XG PON中的XTGC,以及用于25G、50G等PON网终中的任何传输汇聚帧。为了表述方便,本申请实施例后续以XGTC帧,OSUflex帧为例进行说明。
可选的,上行接口模块14进一步用于接收OLT104发送的第四无源光网络传输汇聚帧,第四无源光网络传输汇聚帧携带第二灵活光业务单元帧;
处理模块15从第二灵活光业务单元帧获取第二业务信号。
OLT104包括上行模块11和接口处理模块13。接口处理模块13用于接收光网络单元ONU101发送的第一无源光网络传输汇聚帧,第一无源光网络传输汇聚帧封装有第一灵活光业 务单元帧。上行模块11用于向OTN网络中的设备发送第一光数据单元(Optical Data Unit,ODU)帧,ODU帧携带第一灵活光业务单元帧。
图3b为本申请提供的一种PON***实施例的结构示意图。如图3b所示,PON***包括:OLT 104,ODN 102和ONU 101。
其中,OLT104包括上行模块11,交换与转发模块12和接口处理模块13。上行模块11中包括:第一OTU帧发送/第二OTU帧接收层a,第一OTU成帧/第二灵活光业务单元帧获取层b。接口处理模块13包括第一灵活光业务单元帧获取/无源光网络传输汇聚成帧层c和第二PON MAC层d。第二PON MAC层d用于接收ONU发送的上行信号,比如第一无源光网络传输汇聚帧。第一灵活光业务单元帧获取层c用于获取第一无源光网络传输汇聚帧中携带的第一灵活光业务单元帧,并将第一灵活光业务单元帧经交换与转发模块12发送给上行模块11的第一OTU成帧层b。第一OTU成帧层b将接收到的第一灵活光业务单元帧映射为第一OTU帧,并由第一OTU帧发送层a发送给光传输网络(optical transmission network,OTN)网络中的设备。此外,上行模块11的第二OTU帧接收层a用于接收OTN中的设备发送的第二OTU帧,第二灵活光业务单元帧获取层b用于获取第二OTU帧中封装的第二灵活光业务单元帧,并经交换与转发模块12将第二灵活光业务单元帧发送给无源光网络传输汇聚帧成帧层c。无源光网络传输汇聚帧成帧层c用于将第二灵活光业务单元帧封装到第四无源光网络传输汇聚帧中,并经PON MAC模块发送给ONU101。
值得说明的是,第一灵活光业务单元帧获取/无源光网络传输汇聚帧成帧层c还可以位于第二PON MAC中。OLT104中的交换与转发模块11为可选模块,OLT104可以不包含交换与转发模块。
ONU101包括上行接口模块14,处理模块15和下行接口模块16。其中,上行接口模块14包括上行接口3和第一PON MAC层e、处理模块15包括第一灵活光业务单元帧成帧/第二业务信号获取层f、下行接口模块15包括第一业务信号接收/第二业务信号发送层g,以及下行接口4。上行接口模块14用于通过上行接口3与OLT104交互,将经过第一PON MAC层h生成的第一无源光网络传输汇聚帧发送给OLT104,第一无源光网络传输汇聚帧中携带第一灵活光业务单元帧。上行接口模块14还用于通过上行接口3接收OLT104发送的第四无源光网络传输汇聚帧,并由第一PON MAC层h对接收到的第四无源光网络传输汇聚帧进行解析,获取第四无源光网络传输汇聚帧中携带的第二灵活光业务单元帧,并获取第二灵活光业务单元帧承载的第二业务信号。
需要说明,本申请实施例中,XGPON网络中的OLT和ONU之间是传输的XGTC帧;但本方式也可以应用到其他PON网络,比如,GPON,10GPON、25GPON、50GPON,40GPON和100GPON等网络,只需将上述描述的XGTC帧替换成对应的无源光网络传输汇聚帧即可,比如GTC帧。
下行接口模块16用于通过下行接口4与用户设备(图中未示出)交互,接收用户设备发送的第一业务信号。下行接口模块16还用于将由第二业务信号层f恢复的第二业务信号通过下行接口4发送给用户设备。值得说明的是,本实施例所说的层为与内部的处理流程对应的功能层。
处理模块15包括的灵活光业务单元帧成帧层d用于将业务信号映射到OSUflex帧。处理模块包括的业务信号层i用于将第二灵活光业务单元帧恢复为第二业务信号。
在本申请实施例中,“/”用于区分上行和下行,比如第一OTU成帧/第二灵活光业务单元帧获取层b,第一OTU成帧层b用于上行时对第一OSUflex帧进行OTU成帧以生成第一OTU 帧。第二灵活光业务单元帧获取层用于从下行的第二OTU帧中获取第二OSUflex帧。第一灵活光业务单元帧成帧/第二业务信号获取层f,第一OSUflex成帧层f用于在上行时,将第一业务信号映射到OSUflex帧。第二业务信号层用于在下行时,从接收到的第二OSUflex帧获取第二业务信号。
图4A为本申请提供的OSUflex从ONU到OTN或从OTN到ONT传输的实施例的示意图。在图4A所示的实施例中,在OTN网络侧的OTN设备105,每个ONU对应用户的业务映射到一种OSUflex,OSUflex携带OAM开销。OSUflex映射到ODUk或ODUflex,或ODUcn中,并发送到OLT104。OLT104接收到OTN发送的携带OSUflex的消息后,ODU中携带的OSUflex的映射到XGTC中,并通过XGTC消息发送给ONU101。
用户对应的业务可以为电视直播业务:OTN设备105构建OSUflex#1,OSUflex#2,…,OSUflex#m,分别对应m个实时频道到OLT104。根据客户需求,选择切换发送对应OSUflex#i到用户端点ONU101。OLT104根据客户需求,选择切换发送对应OSUflex#i到用户端点ONU。
用户对应的业务还可以为视频点播业务(比如高清、4k、8k)、游戏业务(比如增强现实业务(Augmented Reality,AR))、虚拟现实业务(Virtual Reality,VR),以及其它业务,比如网页、语音、邮件等。
本申请的业务信号可以是以太业务信号,E1业务信号,数据同步体系(Synchronous Digital Hierarchy,SDH)业务信号,以及视频业务信号。
图4A为本申请提供的OSUflex从ONU到OTN或从OTN到ONU传输的另一实施例的示意图。在图4A对应的实施例中,OTN-L0代表光网络0层,用于完成光载波的复用、调度传送。HO ODU代表高阶ODU层,完成多路低阶ODU信号的复接,复接指将多路低速业务(比如用于映射承载业务数据或OSUflex信号的ODU帧)汇聚到一路高速业务后进行传送。LO ODU代表低阶ODU层,用于映射承载业务数据或者OSUflex信号。SNI为业务网络接口Service Network Interface。PON接入网络,POH-PHY代表无源光网络物理层,用于完成光载波分发传送。GTC代表GPON传输汇聚层,用于完成多路GEM信号的复用,GEM代表GPON封装模式层,用于映射承载业务数据,UNI为用户网络接口User Network Interface。OTN,OLT和ONU的OSUflex代表传送接入业务承载层,用于完成业务数据的统一映射承载。此外,由于使用其它的无源光网络,GEM帧还可以为任何的无源光网络封装帧,比如XGEM,或其它,本申请实施例在此不做限定。
图4B为本申请提供的OSUflex从ONU到OTN或从OTN到ONU传输的另一实施例的示意图。与图4A对应的实施例不同的是,在PON***的传输中,OSUflex映射到GEM中发送给ONU101,或由ONU101发送给OLT104。
图4C为本申请提供的OSUflex从ONU到OTN或从OTN到ONU传输的另一实施例的示意图。与图4A对应的实施例不同的是,在PON***的传输中,OSUflex虽然映射到GTC中,但载荷区按照其实际速率定义为类OTN帧结构,选取满足4的整数倍的字节数大小构造类OTN帧,剩余字节留作以后使用。选取的4的整数倍的字节数长的载荷区其前16列与OTN前16列开销一致,剩余空间采用OTN一致方式划分时隙。
也就是说,在PON***中,OLT104或ONU101将OSUflex映射到类OTN帧中(也称为改进的GTC帧中),或将OSUflex映射复用到ODUk/ODUflex中后再映射到类OTN帧中(改进的xGTC帧或GTC帧),通过OSUflex或ODUk/ODUflex穿通接入XGPON网络,对原有GPON或XGPON技 术不带来影响。
图5A为本申请实施例提供的在下行方向上,OSUflex帧映射到XGTC帧(也可以是GTC帧,或其它的无源光网络传输汇聚帧)的净荷区中的数据结构示意图。可适用于图4A的场景。OSUflex携带在XGTC帧的净荷中。
也就是说,XGTC帧被部分替换,保留XGTC帧头域,其净荷部分替换为OSUflex完整帧。XGTC的头域与现有的XGTC头域一致,本申请实施例在此不再详述。在图5A所示结构中,OSUflex帧的TPN(Tributary Port Number,支路端口号)与现有的XGEM帧的Port-ID的作用相同,由于OSUflex帧为定长帧,ONU利用OSUflex帧的长度可正确识别OSUflex帧边界。
图5A的XGTC帧包括XGTC帧头域和XGTC帧净荷。XGTC帧头域包括4字节的HLend,N乘以8字节的宽带地图(BWmap),以及N乘以48字节的物理层操作管理和维护(physical layer transmission administration and maintenance).其中,HLend指示其它头域,如BWmap,PLOAM count,以及保护HLend字段字节错误的HEC。带宽地图BWmap指示分配给ONU的说明。BWmap包括一个或多个分配给ONU的结构(allocation struction)。每一个分配说明(allocation struction)包括:Alloc-ID用于标识分配给ONU的T-CONT,Start time和End time表示ONU从开始发送数据和结束发送数据的时间。Alloc-ID标识的T-CONT用于承载ONU的业务数据。
图5B为本申请实施例提供的在下行方向上,OSUflex映射到XGTC帧(也可以是GTC帧)中的数据结构示意图,可适用于图4B的场景。与图5A所示的数据结构不一样的是,图5B中的XGTC帧中,OSUflex携带在XGEM(也可以是GEM)帧中净荷部分,XGEM头域和OSUflex携带在XGTC帧的净荷中。值得说明提,上行方向的OSUflex帧和下行方向的OSUflex帧没有结构上的区别。
也就是说,XGEM帧被部分替换,保留XGEM帧头,其净荷部分替换为OSUflex完整帧。即一个OSUflex帧映射到一个XGEM帧的净荷区,XGEM Port-ID和OSUflex帧的支路端口号(Tributary port number,TPN)相同。在XGEM帧的头域包括OSUflex类型指示OSU_TI,用于指示XGEM帧中携带的是OSUflex帧。XGTC的头域与现有的XGTC头域一致,本申请实施例在此不再详述。
图5C为本申请实施例提供的在下行方向上,OSUflex映射到类OTN帧中的数据结构示意图,可适用于图4C的场景。类OTN帧携带在XGTC帧的净荷部分。类ONT帧包括开销Oh和净荷payload,OSUflex帧携带在类OTN帧中净荷中。XTGC帧的净荷可以携带一个或多个类OTN帧,本申请实施例对于XTGC帧中携带的类OTN帧的数量没有限定。
图5D为本申请实施例提供的类OTN帧的结构示意图。参考图5D所示,类OTN帧包含与OTN帧相同的头域,如包含OTU帧头域,ODUk头域和OPUk头域。OSUflex帧映射到OPUk帧的净荷区中。其中,第一行第一列中的1-14个字节携带OTUk帧结构的头域,比如FA OH和OTUk Oh的内容。OTUk帧结构的头域、ODUk头域和OPUk头域的内容可参考标准G.709的描述,本申请实施例在此不做详述。类OTU帧的净荷包括4行相同列字节的结构。
以图5C的下行帧135432字节为例,HLEN 4字节,BWmap N*8字节,PLOAMd p*48字节,假定某上行帧减去开销字节后,净荷区大小为135188字节。本申请实施例以XGTC帧的净荷区138188字节构造类OTN帧的结构。类OTN帧包括4行33797列的结构,在每行33797列中有16列为类OTN帧的头域(overhead)。如图5E所示的类OTN帧的净荷中一行的结构示意图。
图6A为本申请实施例提供的在上行方向上,OSUflex帧和XGEM帧混合映射入XGTC帧的 结构示意图,适用于图4A的场景。在该XGTC帧中,Burt i至Birts k表明有i-k个ONU,i-k个ONU共享125us.以Burst i为便,XGTC帧包含XGTC头域(即XGTC header),XGTC trailer,BDRu以及GTC净荷(GTC playolad)。XGTC净荷中封装OSUflex帧。在图6A所示的XGTC帧中,至少两个XGTC帧净荷中的至少一个XGTC净荷携带OSUflex帧。作为一种可选,XGTC帧净荷中还可以只携带OSUflex帧,对于携带OSUflex帧的数量及长度,本申请实施例在此不作限定。
XGTC帧包含XGTC帧头(XGTC header),上行动态带宽报告(DBRu),XGTC帧净荷(XGTC Payload),上行XGTC帧校验(XGTC Trailer)。XGTC帧净荷包括一个或多个OSUflex帧。OSUflex帧的结构参考图7所示。XGTC帧净荷通过传输容器(transmission container,TCONT)传输。同一个ONU的不同TCONT占有的带宽可以连接在一块形成一个Burst,也可以是不同的Burst,不同的ONU的TCONT占有的带宽必须是不同的Burst.
图6B为本申请实施例提供的在上行方向上,OSUflex帧和XGEM帧混合映射入XGTC帧的结构示意图,适用于图4B的场景。与图6A所示结构不同的是,OSUfelx封装在XGEM帧中,XGEM帧封装在XGTC帧荷中。在该XGTC帧中,Burt i至Birts k表明有i-k个ONU,i-k个ONU共享125us.以Burst i为便,XGTC帧包含XGTC头域(即XGTC header),XGTC trailer,至少两个BDRu以及至少两个GTC净荷(GTC playolad)。GCT payload与BDRu一一对应。在图6B所示的XGTC帧中,至少两个GTC净荷中的至少一个GTC净荷携带封装有OSUflex帧的XGME帧。封装有OSUflex帧的XGME帧中,XGEM头域携带OSU-TI,包括OSUflex类型指示OSU_TI,用于指示XGEM帧中携带的是OSUflex帧。至少两个GTC净荷中的至少一个GTC净荷还可以携带封装有XGEM净荷的XGEM帧。
图6C为本申请实施例提供的在上行方向上,OSUflex映射到类OTN帧并封装在XGTC帧的结构示意图。上行各ONU均分125us,依据ONU的个数N,将上行带宽均分为N份;各ONU突发帧保留必要的突发物理层开销,载荷区构造为类OTN帧结构。由于各ONU均分上行带宽,因此无需动态带宽分配(dynamic bandwidth allocation,DBA)的带宽上报,节省DBA上报的开销。图6C中的XGTC帧可包含一个或多个XGTC payload,可以携带一个或多个类OTN帧。类OTN帧中的净荷携带OSUflex帧。一个XGTC净荷可以携带一个类OTN帧,也可以携带多个类OTN帧。本申请实施例对于XGTC帧或GTC帧中携带的类OTN帧的数量和长度没有限定。
图6A至图6C的结构取消DBA带宽上报以及对就下行方向的带宽地图下发,可实现静态带宽分配。此外,还可以保留DBA功能,但可以将DBA功能简化为DBA仅控制ONU间的整体带宽分配,此时DBA相关开销保留。
图7为本申请实施例提供的OSUflex帧的数据结构示意图。OSUflex帧由整数倍个字节或者比特组成。如图7所示,OSUflex帧包含开销区和净荷区。开销包括但不限于业务帧头指示,路径踪迹指示TTI(Trail Trace Identifier)、X比特间插奇偶校验BIP-X(X Bit-Interleaved Parity)、后向错误指示BEI(Backward Error Indication)、后向缺陷指示BDI(Backward Defect Indication)、状态指示STAT(Status)、时戳、顺序标识、映射开销,或支路端口号TPN等,净荷区用于承载业务数据。具体业务数据映射到OSUflex帧的净荷区的映射方式不做限制,可以是同步映射或异步映射,例如可以采用通用映射规程GMP(Generic Mapping Procedure)。该OSUflex帧结构大小可以为8字节,16字节,32字节,64字节,128字节,192字节,256字节,512字节等,本申请实施例在此不做限定。
TTI:路径追踪指示。TTI包括源接入点标识,目的节点标识,此外,TTI还可以包括运 营商自定义内容。STAT:维护信号***,用于检测OSUflex_LCK/OSUflex_OCI/OSUflex_AIS。其中,AIS为告警指示信号(alarm indication signal,AIS),OCI为开放式连接指示(open connection indication,OCI),LCK为锁定信号功能Locked。TPN:用于标识管道,区分不同业务的管道。TPN可以支持灵活的时隙分配.
图7给出灵活光业务单元帧为OSUflex帧时的结构的示例。灵活光业务单元(OSUflex)为未来光传送网络(Optical transport OTN)的业务承载容器。灵活光业务单元的速率大小取决于承载的业务速率,可以承载CBR(Constant Bit Rate,固定比特速率)和PKT(Packet,分组)业务。值得说明的是,灵活光业务单元还可以为其它的名称,比如灵活光业务数据单元(OSDUflex),任何既可以在PON中也可以在OTN中承载数据信号的帧都可以被称为灵活光业务单元帧。
光净荷单元(optical payload unit,OPU)可以包含整数倍个OSUflex帧。在一个或多个OPU光净荷单元帧的净荷区划分为整数个净荷块。例如,当OSUflex帧大小为16字节,则一个OPU光净荷单元可以划分为952个净荷块,每个净荷块对应一个OSUflex帧。另外,可以根据需要组合多个光净荷单元OPU作为一个复帧进行净荷块划分,当OSUflex帧大小为192字节,则3个OPU光净荷单元组成一个复帧进行净荷块划分,可以划分为238个净荷块,每个净荷块对应一个OSUflex帧。当多路OSUflex映射复用到OPU光净荷单元时,OSUflex帧一一对应的映射到OPU光净荷单元中相应的净荷块位置。
图8为本申请提供的一种业务信号处理方法实施例的流程图。结合图3a至图7,本实施例以由ONU101-1将第一业务信号映射为第一OSUFlex帧,并由OLT将第一OSUFlex帧封装到发送给OTN中的设备或对端ONU104-4的第一OTU帧。此外,OLT还接收OTN中的设备发送的第二OTU帧,并获取第二OTU帧中携带的第二OSUflex帧后通过第四XGTC帧发送给ONU。ONU将第四XGTC帧中的第二OSUflex帧转换为第二业务信号并提供给用户设备。ONU101-1中设置第一OSUflex成帧/第二业务信号获取层f,第一OSUflex帧从ONU101-1上行传输至OLT104-1。本申请实施例以OSUflex帧封装在XGTC帧为例进行说明,但OUSflex帧也可以封装在GTC帧中。本申请实施例对GTC帧不再详细说明。如图8所示,本实施例的方法可以包括:
S801、ONU101-1接收到用户设备(图中未示出)发送的业务信号。
参考图3a或图3b,ONU101-1通过下行接口模块16的接口4接收用户设备发送的业务信号。并由下行接口模块16对收到的业务信号进行处理。
S802、ONU101-1将业务信号映射为OSUflex帧。
处理模块15或处理模块15中的OSUflex成帧层将业务信号映射为OSUflex帧,OSUflex帧的数据结构可以参见图7以及相关描述。
比如,ONU可以确定业务是可变速率(variable bit rate,VBR)的业务,ONU将以报文通过空闲(IDLE)适配异步映射到OSUflex帧中。或ONU可以确定业务是固定速率(constant bit rate,CBR)的业务,ONU通过通用映射规程(Generic Mapping Procedure,GMP)异步映射到OSUflex帧中。其中,使用IDEL适配进行异步映射,或使用GMP进行异步映射的具体方法为现有技术,本申请实施例在此不再详述。
S803、ONU101-1将OSUflex帧封装于第一XGTC帧中。
处理模块15获取OSUflex帧后,上行接口模块14或上行接口模块14的第一PON MAC层将OSUflex帧封装在第一XGTC帧中。
第一XGTC帧中携带了业务类型标识,用于指示第一XGTC帧中携带了OSUflex帧。第一XGTC帧也可以为GTC的格式,本申请实施例在些不做限定。
参考图4B以及图6B,OSUflex帧封装在第一XGTC帧的净荷中,第一XGTC帧中还可以包含XGEM净荷。即第一XGTC帧包含OSUflex帧和XGEM帧,OSUflex帧和XGEM帧都有XGEM头域。与OSUflex帧对应的XGEM头域携带OSUflex类型指示OSU_TI,用于指示XGEM帧中携带的是OSUflex帧。
参考图4B以及图6B,OSUflex帧封装XGEM帧中,而封装有OSUflex帧的XGEM帧封装在第一XGTC帧的净荷中。XGEM头域携带OSUflex类型指示OSU_TI,用于指示XGEM帧中携带的是OSUflex帧。
参考图4C以及图6C,OSUflex帧封装类OTN帧中,OSUflex帧对应OTN开销(overhead,OH)头域。包含OSUflex帧和OTN OH头域的OTN帧封装在XGTC帧中。类OTN帧的头域中携带OSUflex帧类型指示。
结合上输各数据结构,ONU101-1在向OLT104-1发送业务信号之前,ONU101-1向OLT发送第二XGTC帧,第二XGTC帧中的携带OSUflex帧类型指示。OSUflex帧类型指示用于指示ONU支持OSUflex类型的传输容器(tranmission container(T-CON)实例。OLT根据OSUflex类型指示,将支持OSUflex类型的传输容器实例标识发送给ONU。比如,OSUflex帧类型指示可以携带在ONU管理和控制通道(ONU Management and Control Channel,OMCC)中,OLT从ONU管理和控制接口(ONU Management and Control Interface,OMCI)获取OSUflex帧类型指示。OLT将支持OSUflex类型的传输容器实例标识通过第三XGTC帧发送给ONU。其中,支持OSUflex类型的传输容器实例标识为第三XGTC帧中的分配标识(Allocation Identifier)。支持OSUflex类型的传输容器实例标识指示的传输实例为OLT分配给ONU的传输OSUflex帧的实例。
S804、ONU101-1将第一XGTC帧发送至OLT104-1。
上行接口模块14或上行接口模块14的上行接口3将第一XGTC帧发送到OLT104。比如将第一XGEM帧从ONU101-1的上行接口3送到OLT104-1的下行接口2。
S805、OLT104-1的接口处理模块13获取第一XGTC帧中的OSUflex帧。
OLT104-1的接口处理模块13中根据第一XGTC帧获取第一OSUflex帧。比如,接口处理模块13可以是根据第一XGTC帧中的OSUflex类型指示,获取OSUflex帧。OSUflex类型指示可以携带可以携带在第一XGTC帧中的XGEM帧中的头域,或类OTN帧中的头域。第二PON MAC层d还可以确定从支持OSUflex类型的传输容器实例获取的第一XGTC帧中传输的是携带OSUflex帧XGTC帧,并获取第一XGTC帧中携带的第一OSUflex帧。
与图4A-4C以及6A到6C对应,OLT104-1可以从第一XGTC帧中的XGEM帧中获取OSUflex帧,也可以从第一XGTC帧中获取OSUflex帧。还可以从XGTC帧中的类OTN帧中获取OSUflex帧。
S806、OLT104-1的接口处理模块13将获取的第一OSUflex帧经过交换与转发模块12发送给上行模块的第一OTU成帧/第二OSUflex成帧层b。
接口处理模块13中的第二PON MAC层b根据获取的第一OSUflex帧,确定第一OSUflex帧不进入第一网络处理器或流量管理层处理,并将第一OSUflex帧发送至交换与转发模块12。并由交换与转发模块12将第一OSUflex帧发送至上行模块11.
S807、OLT104-1的上行模块11的第一OTU成帧/第二OSUflex成帧层b对OSUflex帧进 行OTU成帧。
在上行模块11中收到OSUflex帧后,由第一OTU成帧/第二OSUflex成帧层b的第一OTU成帧层对第一OSUflex帧进行OTU成帧,以生成第一OTU帧。
参考图4A-4C,OSUflex帧封装在OTU帧的LO ODU帧中,比如ODUk帧,ODUflex帧或ODUcn帧。
S808、OLT104-1的第一OTU帧发送/第二OTU帧接收层a通过OTN网络中的设备,或OLT104-2。
809、OLT104-2接收OTN中的设备发送的第二OTU帧,并获取第二OTU帧中携带的第二OSUflex帧。
OLT104-2的上行模块11通过上行接口1接收第二OTU帧,并由上行模块11或上行模块11的第二OSUflex帧层从接收到的第一OTU帧获取第一OSUflex帧。第一OTU帧中包括OSUflex帧。第一OTU成帧/第二OSUflex帧b的ODU成帧层将第一OSUflex帧传输至交换与转发模块12。交换与转发模块12将接收到的第一OSUflex帧交换到接口处理模块13的第二PON MAC层b。
接口处理模块13的第二PON MAC层b获取OSUflex帧后,将OSUflex帧封装进第四XGTC帧中。第四XGTC帧与第一XGTC帧的结构相同,本申请实施例在些不再详述。
S810、OLT104-2将第四XGTC帧发送给ONU101-4。
OLT104-2的接口处理模块13的第二PON MAC层g根据OSUflex所需的带宽分配目标PON通道,并在PON的下行DBA调度中删除目标PON通道占用的带宽。接口处理模块13的第二PON MAC层g将第四XGTC帧从接口处理模块的下行接口2通过目标PON通道经ODN从ONU的上行接口3发送给ONU101-4。
S811、ONU101-4根据第四XGTC帧中的第二OSUflex帧,将第二OSUflex帧转换为业务信号。
ONU101-4中的上行接口模块14通过上行接口3接收到第四XGTC帧后,由上行接口模块14的第一PON MAC层根据第四XGTC帧转换出OSUflex帧。
ONU101-4在获取OSUflex帧后,第一OSUflex帧/第二业务信号层d的第二业务信号层将第二OSUflex帧转换为第二业务信号。ONU101-4经下行接口模块16的下行接口4将第二业务信号发送给用户设备。
本实施例提供的业务信号处理方法,在ONU101-1将收到的第一业务信号映射为第一OSUflex帧,并将第一OSUflex帧封装在第一XGTC帧中发送给OLT104-1。OLT104-1在收到第一XGTC帧后,获取第一OSUflex帧并进行第一OTU成帧。因此,第一OSUflex帧可以直接映射到OTN网络中传输的第一OTU帧中和PON网络中的第一XGTC帧中,使得PON传输的内容可以不经协议转换发送给OTN中的设备。因此,在报文的传输路径上可以减少由于协议转换带来的时延,实现低时延传输。同时,减少OLT进行协议转换的操作,降低OLT的复杂性,加强PON和OTN的互连互通。
此外,OLT104-1还接收携带第二OSUflex帧的第二OTU帧,并将第二OSUflex帧携带在第四XGTC帧中发送给ONU101-2。ONU101-2在收到第四XGTC帧中,获取第二OSUflex帧,将第二OSUflex帧转换为第二业务信号发送给用户设备。因此,在OTN传输的内容可以不经协议转换直接发送给ONU,在报文的传输路径上可以减少由于协议转换带来的时延,实现低时延传输。同时,减少OLT进行协议转换的操作,降低OLT的复杂性,加强PON和OTN的互连 互通。
图4A到图8均以XGTC帧为实例进行说明。但灵活光业务单元帧还可以携带在GTC帧中,以及任何的无源光网络传输汇聚帧中。灵活光业务单元帧携带在GTC帧中,以及其它的无源光网络传输汇聚帧中的数据结构,以及OLT和ONU的处理流程可以参考图4A到图8的具体描述,本申请实施例在此不做详述。
本实施例的ONU各个模块的实现的操作可以进一步参考方法实施例的相关描述,其实现原理和技术效果类似,此处不再赘述。此处的模块也可以替换为模块或者电路。
图9为本申请提供的一种业务信号处理设备的结构示意图。业务信号处理设备可以是OLT、ONU或OTN中的设备。业务信号处理设备可用于实现上述方法实施例中描述的对应部分的方法,具体参见上述方法实施例中的说明。
业务信号处理设备可以包括一个或多个处理器901,处理器901也可以称为处理单元,可以实现一定的控制功能。处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU,或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,处理器901也可以存有指令904,指令904可以被处理器运行,使得业务信号处理设备执行上述方法实施例中描述的对应于终端或者网络设备的方法。
在又一种可能的设计中,业务信号处理设备可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,业务信号处理设备中可以包括一个或多个存储器902,存储器902存有指令902或者中间数据,指令905可在处理器901上被运行,使得业务信号处理设备执行上述方法实施例中描述的方法。可选地,存储器902中还可以存储有其他相关数据。可选地,处理器901中也可以存储指令和/或数据。处理器901和存储器902可以单独设置,也可以集成在一起。
可选地,业务信号处理设备还可以包括收发器903。处理器903可以称为处理单元。收发器903可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信装置的收发功能。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当业务信号处理设备的至少一个处理器执行该执行指令时,业务信号处理设备执行上述方法实施例中的业务信号处理方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。业务信号处理设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得业务信号处理设备实施上述方法实施例中的业务信号处理方法。
图10为本申请提供的一种***1000的结构示意图。该***包括上述实施例中的OLT104,以及上述实体例中的ONU101。
其中,OLT104可以执行上述实施例,以及图8中OLT104执行的任何步骤。ONU101可以执行上述实施例,以及图8中ONU101执行的任何步骤。本申请实施例在此不做详述。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (37)

  1. 一种业务信号处理方法,其特征在于,所述方法包括:
    光网络单元ONU接收业务信号;
    所述ONU将所述业务信号映射到灵活光业务单元帧;
    所述ONU向光线路终端OLT发送第一无源光网络传输汇聚帧,所述第一无源光网络传输汇聚帧封装有所述灵活光业务单元帧,所述灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载所述业务信号。
  2. 根据权利要求1所述的方法,其特征在于,所述灵活光业务单元帧封装在所述第一无源光网络传输汇聚帧的净荷中。
  3. 根据权利要求1所述的方法,其特征在于,所述灵活光业务单元帧封装在所述第一无源光网络传输汇聚帧包含的第一无源光网络封装帧的净荷中,所述第一无源光网络封装帧的头域携带灵活光业务单元类型指示。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一无源光网络传输汇聚帧还包括第二无源光网络封装帧,所述第二无源光网络封装帧包括无源光网络封装帧净荷。
  5. 根据权利要求1的方法,其特征在于,所述灵活光业务单元帧封装在类光传输网络OTN帧中,所述类OTN帧包括OTN帧的头域。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述ONU向所述OLT发送第一无源光网络传输汇聚帧之前,该方法进一步包括:
    所述ONU向所述OLT发送第二无源光网络传输汇聚帧,所述第二无源光网络传输汇聚帧中携带灵活光业务单元帧类型指示,所述灵活光业务单元帧类型指示用于指示所述ONU支持灵活光业务单元帧的类型的传输容器实例。
  7. 根据权利要求1-6任一所述的方法,其特征在于,该方法进一步包括:
    所述ONU接收所述OLT发送的第三无源光网络传输汇聚帧,所述第三无源光网络传输汇聚帧包含支持灵活光业务单元帧类型的传输容器T-CONT实例标识,所述T-CONT实例标识对应的传输容器用于承载所述灵活光业务单元帧。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述灵活光业务单元帧包括开销区和净荷区,所述开销区包括以下至少一个:业务帧头指示,路径踪迹指示TTI(Trail Trace Identifier)、X比特间插奇偶校验BIP-X(X Bit-Interleaved Parity)、后向错误指示BEI(LOBackward Error Indication)、后向缺陷指示BDI(Backward Defect Indication)、状态指示STAT(Status)、时戳、顺序标识,或映射开销或支路端口号TPN;
    所述净荷区用于承载所述业务信号。
  9. 根据权利要求8所述的方法,其特征在于,所述灵活光业务单元帧的支路端口号TPN与所述第一无源光网络封装帧的Port-ID相同。
  10. 一种业务信号处理方法,其特征在于,所述方法包括:
    光线路终端OLT接收光网络单元ONU发送的第一无源光网络传输汇聚帧,所述第一无源光网络传输汇聚帧包含第一灵活光业务单元帧,所述第一灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载第一业务信号;
    所述OLT向光传输网络OTN中的设备发送第一光传输单元OTU帧,所述第一OTU帧携带 所述第一灵活光业务单元帧。
  11. 根据权利要求10所述的方法,其特征在于,该方法进一步包括:
    所述OLT将所述第一灵活光业务单元帧映射到第一光通路数据单元ODU帧中,所述第一OTU帧包含所述第一ODU帧。
  12. 根据权利要求10或11所述的方法,其特征在于,该方法进一步包括:
    所述OLT从所述第一无源光网络封装帧中获取所述第一灵活光业务单元帧。
  13. 根据权利要求12所述的方法,其特征在于,所述第一无源光网络传输汇聚帧包含有携带所述第一灵活光业务单元帧的第一无源光网络封装帧和没携带第一灵活光业务单元帧的无源光网络封装帧,所述第一无源光网络封装帧的头域包含有活光业务单元帧类型指示。
  14. 根据权利要求10或11所述的方法,其特征在于,该方法进一步包括:
    所述OLT从所述第一无源光网络传输汇聚帧中的类光传输网络OTN帧中获取所述第一灵活光业务单元帧,所述类ONT帧的头域包含有灵活光业务单元帧类型指示。
  15. 根据权利要求10或11所述的方法,其特征在于,该方法进一步包括:
    所述OLT从所述第一无源光网络传输汇聚帧的净荷中获取所述第一灵活光业务单元帧。
  16. 根据权利要求10-15任一所述的方法,其特征在于,在所述OLT接收所述ONU发送的第一无源光网络传输汇聚帧之前,该方法进一步包括:
    所述OLT接收所述ONU发送的第二无源光网络传输汇聚帧,所述第二无源光网络传输汇聚帧中携带灵活光业务单元帧类型指示;
    根据所述灵活光业务单元帧类型指示,所述OLT获取支持灵活光业务单元帧类型的传输容器实例的标识;
    所述OLT向所述ONU发送第三无源光网络传输汇聚帧,所述第三无源光网络传输汇聚帧包含支持灵活光业务单元帧类型的传输容器实例的标识。
  17. 根据权利要求10-16任一所述的方法,其特征在于该方法进一步包括:
    所述OLT接收所述OTN中的设备发送的第二OTU帧,所述第二OTU帧中包含第二灵活光业务单元帧;
    所述OLT将所述第二灵活光业务单元帧封装到第四无源光网络传输汇聚帧中;
    所述OLT将所述第四无源光网络传输汇聚帧发送给所述ONU。
  18. 一种业务信号处理方法,其特征在于,所述方法包括:
    光网络单元ONU接收光线路终端OLT发送的无源光网络传输汇聚帧,所述无源光网络传输汇聚帧包含灵活光业务单元帧;所述灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载业务信号;
    所述ONU从所述灵活光业务单元帧中获取所述业务信号;
    所述ONU发送所述业务信号。
  19. 根据权利要求18所述的方法,其特征在于,该方法进一步包括:
    所述ONU从所述无源光网络传输汇聚帧中的无源光网络封装帧中获取所述灵活光业务单元帧;或,所述ONU从所述无源光网络传输汇聚帧中的净荷中获取所述灵活光业务单元帧。
  20. 根据权利要求19所述的方法,其特征在于,所述无源光网络传输汇聚帧包含有携带所述灵活光业务单元帧的第一无源光网络封装帧和没携带所述灵活光业务单元帧的第二无源光网络封装帧,所述第一无源光网络封装帧包含有灵活光业务单元帧类型指示。
  21. 根据权利要求18所述的方法,其特征在于,该方法进一步包括:
    所述ONU从所述无源光网络传输汇聚帧中的类光传输网络OTN帧中获取所述灵活光业务单元帧。
  22. 一种光网络单元ONU,其特征在于,包括:下行接口模块、处理模块、以及上行接口模块,
    所述下行接口模块用于接收业务信号;
    所述处理模块,用于将所述业务信号映射到灵活光业务单元帧;
    所述上行接口模块,用于向光线路终端OLT发送第一无源光网络传输汇聚帧,所述第一无源光网络传输汇聚帧封装有所述灵活光业务单元帧,所述灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载所述业务信号。
  23. 根据权利要求22所述的ONU,其特征在于,所述上行接口模块向所述OLT发送第一无源光网络传输汇聚帧之前,
    所述上行接口模块向所述OLT发送第二无源光网络传输汇聚帧,所述第二无源光网络传输汇聚帧中携带灵活光业务单元帧类型指示,所述灵活光业务单元帧类型指示用于指示所述ONU支持灵活光业务单元帧类型的传输容器实例。
  24. 根据权利要求22或23所述的ONU,其特征在于,所述上行接口模块还用于接收所述OLT发送的第三无源光网络传输汇聚帧,所述第三无源光网络传输汇聚帧包含支持灵活光业务单元帧类型的传输容器T-CONT实例标识,所述T-CONT实例标识对应的传输容器用于承载所述灵活光业务单元帧。
  25. 根据权利要求22-24任一所述的ONU,其特征在于,所述灵活光业务单元帧包括开销区和净荷区;
    所述开销区包括以下至少一个:业务帧头指示,路径踪迹指示TTI(Trail Trace Identifier)、X比特间插奇偶校验BIP-X(X Bit-Interleaved Parity)、后向错误指示BEI(LOBackward Error Indication)、后向缺陷指示BDI(Backward Defect Indication)、状态指示STAT(Status)、时戳、顺序标识,或映射开销或支路端口号TPN;
    所述净荷区用于承载所述业务信号。
  26. 一种光线路终端OLT,其特征在于,包括:接口处理模块和上行模块,
    所述接口处理模块用于接收光网络单元ONU发送的第一无源光网络传输汇聚帧,所述第一无源光网络传输汇聚帧包含第一灵活光业务单元帧;所述第一灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载第一业务信号;
    所述上行模块,用于向光传输网络OTN中的设备发送第一光传输单元OTU帧,所述第一OTU帧携带所述第一灵活光业务单元帧。
  27. 根据权利要求26所述的OLT,其特征在于,所述上行模块进一步用于将所述第一灵活光业务单元帧映射到第一光通路数据单元ODU帧中,所述第一OTU帧包含所述第一ODU帧。
  28. 根据权利要求26或27所述的OLT,其特征在于,所述接口处理模块进一步用于从所述第一无源光网络传输汇聚帧中的第一无源光网络封装帧中获取所述第一灵活光业务单元帧。
  29. 根据权利要求28所述的OLT,其特征在于,所述第一无源光网络传输汇聚帧包含有携带所述第一灵活光业务单元帧的所述第一无源光网络封装帧和没携带所述第一灵活光业务单元帧的第二无源光网络封装帧,所述第一无源光网络封装帧的头域包含有灵活光业务单元 帧类型指示。
  30. 根据权利要求26或27所述的OLT,其特征在于,所述接口处理模块进一步用于从所述第一无源光网络传输汇聚帧中的类光传输网络OTN帧中获取所述第一灵活光业务单元帧,所述类ONT帧的头域包含有灵活光业务单元帧类型指示。
  31. 根据权利要求26或27所述的OLT,其特征在于,所述接口处理模块进一步用于从所述第一无源光网络传输汇聚帧的净荷中获取所述第一灵活光业务单元帧。
  32. 根据权利要求26至31任一所述的OLT,其特征在于,所述接口处理模块进一步用于:
    接收所述ONU发送的第二无源光网络传输汇聚帧,所述第二无源光网络传输汇聚帧中携带灵活光业务单元帧类型指示;
    根据所述灵活光业务单元帧类型指示,获取支持灵活光业务单元帧类型的传输容器实例的标识;
    向所述ONU发送第三无源光网络传输汇聚帧,所述第三无源光网络传输汇聚帧包含支持灵活光业务单元帧类型的传输容器实例标识。
  33. 根据权利要求26至32任一所述的OLT,其特征在于,所述接口处理模块进一步用于:
    接收所述OTN中的设备发送的第二OTU帧,所述第二OTU帧中包含第二灵活光业务单元帧,所述第二灵活光业务单元帧中封装有第二业务信号;
    将所述第二灵活光业务单元帧封装到第四无源光网络传输汇聚帧中;
    将所述第四无源光网络传输汇聚帧发送给所述ONU。
  34. 一种光网络单元ONU,其特征在于,包括:下行接口模块、处理模块、以及上行接口模块,
    所述上行接口模块用于接收光线路终端OLT发送的无源光网络传输汇聚帧,所述无源光网络传输汇聚帧包含灵活光业务单元帧;所述灵活光业务单元帧用于在无源光网络PON和光传输网络OTN中承载业务信号;
    所述处理模块,用于从所述灵活光业务单元帧获取所述业务信号;
    所述下行接口模块,用于发送所述业务信号。
  35. 根据权利要求34所述的ONU,其特征在于,
    所述处理模块从所述无源光网络传输汇聚帧中的第一无源光网络封装帧中获取所述灵活光业务单元帧;或,所述处理模块从所述无源光网络传输汇聚帧中的净荷中获取所述灵活光业务单元帧。
  36. 根据权利要求35所述的ONU,其特征在于,所述无源光网络传输汇聚帧包含有携带所述灵活光业务单元帧的所述第一无源光网络封装帧和没携带所述灵活光业务单元帧的第二无源光网络封装帧,所述第一无源光网络封装帧的头域包含有所述灵活光业务单元帧类型指示。
  37. 根据权利要求34所述的ONU,其特征在于,
    所述处理模块从所述无源光网络传输汇聚帧中的类光传输网络OTN帧中获取所述灵活光业务单元帧。
PCT/CN2020/116450 2019-10-15 2020-09-21 业务信号处理方法及设备 WO2021073361A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112022007326A BR112022007326A2 (pt) 2019-10-15 2020-09-21 Método de processamento de sinal de serviço e dispositivo
KR1020227016064A KR102650393B1 (ko) 2019-10-15 2020-09-21 서비스 신호 프로세싱 방법 및 디바이스
CA3154183A CA3154183A1 (en) 2019-10-15 2020-09-21 Service signal processing method and device
EP20875894.6A EP4030774A4 (en) 2019-10-15 2020-09-21 SERVICE SIGNAL PROCESSING METHOD AND DEVICE
US17/720,485 US20220239374A1 (en) 2019-10-15 2022-04-14 Service Signal Processing Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910980184.5 2019-10-15
CN201910980184.5A CN112672236B (zh) 2019-10-15 2019-10-15 业务信号处理方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/720,485 Continuation US20220239374A1 (en) 2019-10-15 2022-04-14 Service Signal Processing Method and Device

Publications (1)

Publication Number Publication Date
WO2021073361A1 true WO2021073361A1 (zh) 2021-04-22

Family

ID=75399958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116450 WO2021073361A1 (zh) 2019-10-15 2020-09-21 业务信号处理方法及设备

Country Status (7)

Country Link
US (1) US20220239374A1 (zh)
EP (1) EP4030774A4 (zh)
KR (1) KR102650393B1 (zh)
CN (2) CN112672236B (zh)
BR (1) BR112022007326A2 (zh)
CA (1) CA3154183A1 (zh)
WO (1) WO2021073361A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740801B (zh) * 2019-03-25 2021-12-10 华为技术有限公司 一种业务数据的处理方法及装置
CN114286205B (zh) * 2020-09-27 2024-04-23 华为技术有限公司 一种数据帧的发送方法和网络设备
CN115914887A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 一种业务数据的传输方法及相关设备
CN114070893B (zh) * 2021-11-17 2023-04-28 中国联合网络通信集团有限公司 数据报文的传输方法、装置和核心网设备
CN114157932B (zh) * 2021-11-23 2023-06-02 中国联合网络通信集团有限公司 接入网络处理方法、装置、电子设备及存储介质
CN116489539A (zh) * 2022-08-16 2023-07-25 中兴通讯股份有限公司 下行帧长的处理方法及装置、存储介质、电子装置
CN117201434A (zh) * 2023-11-07 2023-12-08 杭州初灵信息技术股份有限公司 一种以太网数据交互方法和***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729371A (zh) * 2008-10-31 2010-06-09 华为技术有限公司 一种业务传输的方法、及用于业务传输的装置
CN107196876A (zh) * 2017-06-15 2017-09-22 北京智芯微电子科技有限公司 一种无源光接入网络及其流量调度方法
CN108092709A (zh) * 2016-11-23 2018-05-29 中兴通讯股份有限公司 无源光网络中的保护倒换方法及光线路终端、光网络装置
CN109040863A (zh) * 2018-05-29 2018-12-18 烽火通信科技股份有限公司 一种基于无源光网络***的扩容方法及***
US20190007133A1 (en) * 2003-03-03 2019-01-03 Alexander Soto System and method for performing in-service optical network certification
CN109936781A (zh) * 2017-12-15 2019-06-25 华为技术有限公司 一种数据传送的方法、设备和***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594028B1 (ko) * 2003-04-15 2006-07-03 삼성전자주식회사 Gpon에서의 ont 관리 제어 정보 전송을 위한gtc 프레임 구조와 그 전송 방법
US10128953B2 (en) * 2006-10-13 2018-11-13 Menara Networks, Inc. High-speed pluggable optical transceivers with advanced functionality
JP5094664B2 (ja) * 2008-09-26 2012-12-12 株式会社日立製作所 受動光網システムおよびその運用方法
US9853761B2 (en) * 2010-12-20 2017-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Passive optical network arrangement and method
JP5976253B1 (ja) * 2014-09-24 2016-08-23 三菱電機株式会社 光通信システム
CN106301678B (zh) * 2015-06-08 2020-02-14 华为技术有限公司 一种数据处理的方法、通信设备及通信***
CA3044720C (en) * 2016-11-23 2024-01-02 Huawei Technologies Co., Ltd. Passive optical network system, optical line terminal, and optical network unit
CN109981209B (zh) * 2017-12-28 2022-01-28 中兴通讯股份有限公司 光传送网中业务发送、接收方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190007133A1 (en) * 2003-03-03 2019-01-03 Alexander Soto System and method for performing in-service optical network certification
CN101729371A (zh) * 2008-10-31 2010-06-09 华为技术有限公司 一种业务传输的方法、及用于业务传输的装置
EP2348691A1 (en) * 2008-10-31 2011-07-27 Huawei Technologies Co., Ltd. Service transmission method and device used for service transmission
CN108092709A (zh) * 2016-11-23 2018-05-29 中兴通讯股份有限公司 无源光网络中的保护倒换方法及光线路终端、光网络装置
CN107196876A (zh) * 2017-06-15 2017-09-22 北京智芯微电子科技有限公司 一种无源光接入网络及其流量调度方法
CN109936781A (zh) * 2017-12-15 2019-06-25 华为技术有限公司 一种数据传送的方法、设备和***
CN109040863A (zh) * 2018-05-29 2018-12-18 烽火通信科技股份有限公司 一种基于无源光网络***的扩容方法及***

Also Published As

Publication number Publication date
CN117221770A (zh) 2023-12-12
BR112022007326A2 (pt) 2022-07-05
US20220239374A1 (en) 2022-07-28
EP4030774A4 (en) 2022-12-07
EP4030774A1 (en) 2022-07-20
KR102650393B1 (ko) 2024-03-21
CA3154183A1 (en) 2021-04-22
CN112672236A (zh) 2021-04-16
CN112672236B (zh) 2023-09-29
KR20220083763A (ko) 2022-06-20

Similar Documents

Publication Publication Date Title
WO2021073361A1 (zh) 业务信号处理方法及设备
US8406636B2 (en) Method, system and device for passive optical network data transmission
JP5520348B2 (ja) 次世代アクセスのための、ギガビット受動光ネットワークの伝送コンバージェンスの拡張
ES2427357T3 (es) Un método, sistema y dispositivo para transmisión de datos
CN101159495A (zh) 无源光纤网络中信号传送***及方法
US11902718B2 (en) Service data transmission method, related device, and digital processing chip
JP7412459B2 (ja) パケット処理方法及びデバイス
CN117318812A (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3154183

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007326

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020875894

Country of ref document: EP

Effective date: 20220412

ENP Entry into the national phase

Ref document number: 20227016064

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022007326

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220414