WO2021072822A1 - 透镜及光学*** - Google Patents

透镜及光学*** Download PDF

Info

Publication number
WO2021072822A1
WO2021072822A1 PCT/CN2019/115375 CN2019115375W WO2021072822A1 WO 2021072822 A1 WO2021072822 A1 WO 2021072822A1 CN 2019115375 W CN2019115375 W CN 2019115375W WO 2021072822 A1 WO2021072822 A1 WO 2021072822A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
line
lens
emitting
intersection
Prior art date
Application number
PCT/CN2019/115375
Other languages
English (en)
French (fr)
Inventor
陈冠宏
李宗政
周祥禾
林君翰
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921759224.5U external-priority patent/CN210511509U/zh
Priority claimed from CN201910992649.9A external-priority patent/CN112682761A/zh
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Publication of WO2021072822A1 publication Critical patent/WO2021072822A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • This application belongs to the field of optics, and in particular relates to a lens and an optical system with the lens.
  • optical system is a wide-angle optical system, which can emit light at a large angle.
  • a light homogenizer is needed in a wide-angle optical system to make the light emitted uniformly.
  • the wide-angle homogenizing sheet generally adopts a diffractive optical element DOE (Diffractive Optical Elements) or a refraction optical element ROE (Refractive Optical Elements) as a design solution.
  • DOE diffractive optical element
  • ROE Refractive Optical Elements
  • the DOE scheme is based on the diffraction theory of light waves, designed by computer software, and is etched on the substrate through the semiconductor chip manufacturing process to produce a stepped or continuous relief structure, and the transmitted light beam is phase-modulated through the microstructure surface to control the light intensity distribution modulation.
  • the ROE scheme uses injection molding or nanoimprinting to construct random or periodic microlens arrays on the substrate, following the refraction principle of geometric optics, using aspheric surfaces to adjust the spatial angle of the emitted light, so as to obtain a homogenizing device with the expected illuminance distribution.
  • the energy of its light at large angles is relatively weak, which does not meet the optical performance requirements of the optical system for large field angles.
  • the purpose of the present application is to provide a lens capable of solving the above-mentioned problems and an optical system including the lens.
  • the present application provides a lens including a mounting surface, a light incident surface, a first light emitting surface, a second light emitting surface, and a reflecting surface; the mounting surface is arranged on the side of the lens close to the light source for The lens is installed; the lens is provided with a light source cavity in the center of the mounting surface, and the light source cavity is used to house the light source; the inner surface of the light source cavity is the light incident surface; the first The light-emitting surface and the second light-emitting surface are curved surfaces arranged on the lens away from the light source; in the first direction, one end of the first light-emitting surface is connected to the mounting surface, and the other of the first light-emitting surface One end is connected to the second light-emitting surface, the first light-emitting surface and the second light-emitting surface intersect to form a first line of intersection, the first line of intersection is a straight line, and the first line of intersection extends in a second direction,
  • the light emitted from the light source enters the lens through the light entrance surface, and the light in the lens exits through the first light exit surface or the second light exit surface, or ,
  • the light in the lens is emitted from the first light-emitting surface or the second light-emitting surface after being reflected by the reflective surface.
  • the positions and structures of the mounting surface, the light incident surface, the first light output surface, the second light output surface, and the reflective surface of the lens are reasonably set, and the light emitted by the light source is refracted or reflected to the first light through the light incident surface and the reflective surface.
  • a light-emitting surface and the second light-emitting surface emit.
  • the emitted light In the first direction, the emitted light has a larger angle, and in the second direction, the emitted light is converged and collimated, and the number of rays converges at each position is greater, so that The energy of the light at a large angle is sufficient, which can meet the needs of large-angle industrial applications.
  • the lens further includes two side surfaces in the second direction, one end of the side surface is connected to the mounting surface, and the other end is connected to the first light-emitting surface or the second light-emitting surface.
  • the surface is in contact with the side surface and the mounting surface.
  • the first light-emitting surface includes a first surface, a second surface, and a third surface that are connected in sequence, the first surface is connected to the second light-emitting surface, and the third surface is connected to the mounting surface,
  • the second surface is a curved surface, the distance between any point on the first surface and the mounting surface is a first distance, and the distance between any point on the first intersection line and the mounting surface is a second distance, so The first distance is not less than the second distance, so that the intersection of the first light-emitting surface and the second light-emitting surface is a plane or forms a depression.
  • the first surface is far away from the first line of intersection.
  • the line connecting the end point and the center of the circle is a first straight line
  • the line connecting the point of the first line of intersection and the center of the circle is a second straight line
  • the angle between the first straight line and the second straight line is The first included angle, the first included angle is less than or equal to 5°.
  • the above-mentioned first included angle is set to adjust the range of the plane or recessed area at the position where the first light-emitting surface and the second light-emitting surface intersect, so that the light distribution in the center and the edge is more even, and the large-angle direction is enhanced. Light intensity.
  • the second surface is a cylindrical surface, and a first tangent line at any point on the second surface is perpendicular to a line from the center of the circle to the arbitrary point.
  • the line connecting the end point far away from the first surface on the second surface and the center of the circle is a third straight line
  • the included angle of is the second included angle
  • the range of the second included angle is 40° to 75°.
  • the reflecting surface is a curved surface
  • the reflecting surface includes a first reflecting surface and a second reflecting surface that are symmetrically arranged with respect to a plane passing through the center of the mounting surface and perpendicular to the first line of intersection.
  • the first reflecting surface, the second reflecting surface, the mounting surface and the first line of intersection form a trapezoidal shape, and the first The end points where the reflecting surface and the second reflecting surface meet the side surface coincide with the end points of the two ends of the first line of intersection, and the first reflecting surface and the second reflecting surface are in contact with the mounting surface.
  • the line connecting the two end points is a fourth straight line, and the length of the first intersection line is greater than the length of the fourth straight line.
  • the contour line of the first reflecting surface is a straight line or a curve, and the contour line is scanned along a rotation axis to form the first Reflective surface.
  • the structure of the reflecting surface can be adjusted so that the reflecting surface can accurately reflect the light from the light incident surface to the first light emitting surface or the second light emitting surface, so as to prevent the light from being reflected to the first light emitting surface or the second light emitting surface. Loss of the light-emitting surface improves energy utilization.
  • the light-incident surface includes a first light-incident surface, a second light-incident surface, and a third light-incident surface, the first light-incident surface is opposite to the surface passing through the mounting surface, and the second light-incident surface Opposite to the third light incident surface, and respectively connected between the first light incident surface and the mounting surface, in the cross section of the second direction, the contour of the first light incident surface
  • the line is semicircular, and in the first direction, both ends of the first light incident surface are respectively connected to the mounting surface.
  • the light is refracted to the reflecting surface, the first light-emitting surface and the second light-emitting surface, so that the reflecting surface can converge the light and the first light-emitting surface and The second light-emitting surface expands the angle to emit light.
  • the contour line of the first light incident surface is a curve, and the middle portion of the first light incident surface protrudes toward a side away from the mounting surface.
  • d is the shortest distance from the center of the light source to the first light incident surface
  • K is the aspheric coefficient of the first light incident surface
  • R is the radius of curvature of the first light incident surface
  • R and K satisfy the design of an aspheric lens formula.
  • the present application provides an optical system including a light source and the lens in the first aspect, and the light source is arranged in a light source cavity of the lens.
  • the light energy can be reasonably distributed in the optical system, which meets large-angle industrial applications.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a lens in an embodiment of the present application.
  • Fig. 2 is a working schematic diagram of an optical system according to an embodiment of the present application.
  • Figure 3 is a working schematic diagram of an existing optical system designed with DOE or ROE.
  • Fig. 4 is a top view of a lens in an embodiment of the present application.
  • Fig. 5 is a cross-sectional view along the A-A direction of Fig. 4.
  • Fig. 6 is a bottom view of a lens in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a lens in another view angle in an embodiment of the present application.
  • Fig. 8 is a front view of a lens in an embodiment of the present application.
  • Fig. 9 is a cross-sectional view taken along the C-C direction of Fig. 8.
  • FIG. 10 is a schematic diagram of the lens structure at different second angles according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of a three-dimensional scan of a lens according to an embodiment of this application.
  • FIG. 12 is a schematic diagram of a light path of an optical system according to an embodiment of this application.
  • the embodiments of the present application provide an optical system that can be applied to video and picture acquisition of a terminal.
  • the optical system may be a part of products such as mobile phones, game consoles, computers, projectors, and cameras.
  • the optical system includes a light source and the lens provided in the embodiment of the present application.
  • the lens has a light source cavity, and the light source is arranged in the light source cavity.
  • the light source can be an LED or other light-emitting parts.
  • the lens has the function of making the light emitted by the light source have a larger exit angle, so that the optical system meets the industry's optical performance requirements for a large field of view.
  • the lens includes a mounting surface 6, a first light-emitting surface 1, a second light-emitting surface 2, a reflective surface 3, a side surface 4, and a light-incident surface 5.
  • the lens can be a transparent material, such as made of plastic or glass.
  • the plastic can be PMMA (polymethyl methacrylate), PC (polycarbonate), or silicone.
  • the mounting surface 6 is arranged on the side of the lens 100 close to the light source 200 for mounting the lens 100, and the mounting surface 6 is flat or curved, depending on the object to which the lens is mounted.
  • the object is, for example, a printed circuit board (Printed Circuit Board, PCB).
  • PCB printed Circuit Board
  • the installation surface 6 is concave; if it is installed on a concave surface, the installation surface 6 is convex; if it is installed on a flat surface, the installation surface 6 is a flat surface.
  • This application does not limit the specific shape of the mounting surface 6.
  • a light source cavity 50 is opened in the center of the mounting surface 6, the light source cavity 50 is used for accommodating the light source 200, and the inner surface of the light source cavity 50 is the light incident surface 5.
  • the first direction is the x-axis direction of the coordinate axis in FIG. 1, and the second direction is the y-axis direction of the coordinate axis.
  • the first direction described in this article is to observe along the y-axis, the line of sight is perpendicular to the x-axis, and what you see is a plane parallel to the x-axis.
  • the cross section in the first direction described in this article is viewed along the x-axis, the line of sight is parallel to the x-axis, and what is seen is a plane perpendicular to the x-axis.
  • the second direction described in this article is to observe along the x-axis, the line of sight is perpendicular to the y-axis, and what is seen is a plane parallel to the y-axis.
  • the cross-section in the second direction described herein, that is, viewed along the y-axis, the line of sight is parallel to the y-axis, and what is seen is a plane perpendicular to the y-axis. It can be seen from the above definition that the first direction and the second direction are perpendicular.
  • the first light-emitting surface 1 and the second light-emitting surface 2 are curved surfaces disposed on the lens 100 away from the light source 200.
  • one end of the first light-emitting surface 1 is connected to the mounting surface 6, and the other end of the first light-emitting surface 1 is connected to the second light-emitting surface 2.
  • the end of the second light-emitting surface 2 away from the first light-emitting surface 1 is also connected to Mounting surface 6.
  • the first light-emitting surface 1 and the second light-emitting surface 2 intersect to form a first line of intersection 91, the first line of intersection 91 is a straight line, and the first line of intersection 91 extends along the second direction, and the second light-emitting surface 2 is opposite to the first light-emitting surface 1
  • the plane passing through the first intersection line 91 and perpendicular to the mounting surface 6 is mirror-symmetrical (if the mounting surface 6 is a curved surface, please refer to Figure 9, the first light-emitting surface 1 and the second light-emitting surface 2 are mirror-symmetrical with respect to the Yoz plane of the coordinate system) .
  • the first light-emitting surface 1 and the second light-emitting surface 2 have a convex cross-sectional shape of a convex lens relative to the mounting surface 6. After the light emitted by the light source 200 propagates in the lens 100, it exits from the first light exit surface 1 and the second light exit surface 2, and the light exits at a large angle from the first light exit surface 1 and the second light exit surface 2.
  • the reflective surface 3 is in contact with the side surface 4 and the mounting surface 6.
  • the reflective surface 3 is tapered and recessed relative to the side surface 4, and the reflective surface 3 is used to emit the light source 200 and pass through the light-incident surface 5.
  • the light radiated to the reflective surface 3 is reflected to the first light-emitting surface 1 or the second light-emitting surface 2 to be emitted.
  • the surface of the reflective surface 3 is generally coated with a reflective coating to achieve the function of reflection.
  • the reflective surface 3 includes a first reflective surface 31 and a second reflective surface 32.
  • the first reflecting surface 31 and the second reflecting surface 32 are symmetrical with respect to the first plane.
  • the first reflective surface 31 and the second reflective surface 32 adopt a symmetrical structure, so that the reflective surface 3 reflects the same light energy to the first light-emitting surface 1 and the second light-emitting surface 2 in the first direction, which is beneficial to the first light-emitting surface 1 and the second light-emitting surface 2
  • the second light-emitting surface 2 better distributes light energy.
  • the light emitted by the light source 200 enters the lens 100 through the light incident surface 5, the light in the lens 100 is emitted through the first light output surface 1 or the second light output surface 2, or the light in the lens 100 is reflected by the reflective surface 3 A light-emitting surface 1 or a second light-emitting surface 2 emits light.
  • the lens installation surface 6 Properly set the position and structure of the lens installation surface 6, the light incident surface 5, the first light output surface 1, the second light output surface 2 and the reflective surface 3.
  • the light emitted by the light source 200 is refracted or reflected by the light incident surface 5 and the reflective surface 3
  • the emitted light has a larger angle in the first direction, and in the second direction, the emitted light is converged and collimated, and the number of rays converged in each position is greater , So that the energy of the light at a large angle is sufficient, which can meet the needs of large-angle industrial applications.
  • the lens 100 has two side surfaces 4, one end of the side surface 4 is connected to the mounting surface 6, and the other end is connected to the first light-emitting surface 1 or the second light-emitting surface 2.
  • the end points where the first reflective surface 31 and the second reflective surface 32 meet with the side surface 4 coincide with the first line of intersection 91.
  • FIG. 2 is a working schematic diagram of an optical system composed of a light source 200 and a lens 100 of the present application
  • FIG. 3 is a working schematic diagram of an optical system with a conventional DOE or ROE structure.
  • 500 is an MLA lens or other existing optical lens
  • 100 is a lens of the application. It is not difficult to see that the field of view of the optical system in Fig. 2 is obviously larger than that of the optical system in Fig. 3, and the range of light emission is larger. wide.
  • the first light-emitting surface 1 includes a first surface 11, a second surface 12, and a third surface 13 that are connected in sequence, and the first surface 11 is connected to the second light-emitting surface 2, and the third surface 13 is connected to the mounting surface 6. connection.
  • the second surface 12 is a circular arc surface, the center of the light source 200 in the light source cavity is the first position, the position of the first position projected in the second direction is the circle center O, and the end point B on the second surface 12 far from the first surface 11,
  • the first tangent line 92 is perpendicular to OB.
  • the second included angle 72 between the third straight line OB and the second straight line OM satisfies the condition: 40° ⁇ second included angle 72 ⁇ 75°. 10
  • the second angle 72 can be as low as 40°, and in the case where the viewing angle needs to be slightly larger than the wide-angle 140°, the second angle 72 can be as high as 75 °.
  • the vertical distance between any point H on the first surface 11 and the mounting surface is the first distance HT
  • the vertical distance between any point M on the first line of intersection 91 and the mounting surface is the second distance OM.
  • the distance HT is greater than or equal to the second distance OM.
  • the point A on the boundary between the first surface 11 and the second surface 12, the point M on the first line of intersection 91, the first angle 71 between the first straight line OA and the second straight line OM satisfy the condition: 0° ⁇ first
  • the first light-emitting surface 1 is a flat surface or forms a depression.
  • the intersection of the first light-emitting surface 1 and the second light-emitting surface 2 ie, the first surface 11
  • the light is refracted at the first surface 11 and emitted to a larger angle, so that the large-angle light is sufficient .
  • the same position of the second light-emitting surface 2 is also flat or concave.
  • the above-mentioned symmetrical recessed position enables the light emitted by the light source 200 to exit toward a larger angle; and the symmetrical plane position enables the light emitted by the light source 200 to exit toward the original angle.
  • the degree of depression of the first surface 11 and the range of depression of the first surface 11 may be different according to different application requirements.
  • the first included angle 71 when used in applications that require slightly higher energy requirements for large-angle light, can be 4.5° or even 5°, and the degree of depression can be appropriately increased; on the contrary, when used for applications that require slightly lower energy requirements for large-angle light Yes, the angle of the first included angle 71 can be reduced, the degree of depression can be reduced, or the first surface 11 can be set to be a flat surface. Set the size of the first included angle to adjust the range of the plane or recessed area at the intersection of the first light-incident surface and the second light-incident surface, so that the light at the center and the light at the edges are more evenly distributed, and the large angle is enhanced The intensity of the light in the direction.
  • the reflective surface 3 includes a plane that is relative to the center of the mounting surface and perpendicular to the first line of intersection (please refer to Figure 8, which is the xoz plane of the coordinate system in Figure 8)
  • the first reflection surface 31 and the second reflection surface 32 are symmetrically arranged.
  • the first reflecting surface 31, the second reflecting surface 32, the mounting surface 6 and the first line of intersection 91 form a trapezoid shape
  • the first reflecting surface 31 and the second line of intersection 91 form a trapezoid shape.
  • the end point of the reflecting surface 32 facing the first intersection line 91 and the side surface 4 coincides with the end points of the two ends of the first intersection line 91, and the two end points where the first reflecting surface 31 and the second reflecting surface 32 meet the mounting surface 6
  • the connecting line of is the fourth straight line JK, and the length of the first intersection line 91 is greater than the length of the fourth straight line JK.
  • the contour 95 of the reflecting surface 3 is scanned along the rotation axis 94. Since the reflective surface 3 is formed by rotating and scanning along the rotating shaft 94 on the mounting surface 6, the reflective surface 3 has the same reflection effect on light in the first direction, which is beneficial to the reflection of the first light-emitting surface 1 and the second light-emitting surface 2 The light reflected from the surface 3 is distributed reasonably and meets industrial requirements.
  • the scanning contour can be adjusted according to the specific structure of the lens. In the first direction and passing through the first intersection line 91, the uniformity of light is higher when the contour is straight, and the concentration of light is higher when the contour is curved. . By setting the reflective surface 3 formed by scanning, the range of the reflective surface 3 to converge light is larger, which is beneficial to the full utilization of light and avoids energy loss caused by scattering.
  • the reflective surface 3 includes a plurality of tiny arc surface units, and the arc surface units reflect light passing through the second light incident surface 52 or the third light incident surface 53 to the first light exit surface 1 or the second light exit surface 2.
  • U is a point on the mounting surface 6
  • O is the center of the light source
  • the reflective surface 3 satisfies the condition: the angle ⁇ 2 between the second tangent 93 at a certain point S and the horizontal direction is at the first position on the plane
  • ⁇ 1 is the angle between the first connection SO and the mounting surface 6, and the first connection SO is the connection between point S and the center O of the light source;
  • ⁇ 1 tan-1 (H01/W01), and the S coordinate is (H01, W01).
  • the structure of the reflecting surface 3 is adjusted so that the reflecting surface 3 can accurately reflect the light emitted from the light-incident surface 5 to the first light-emitting surface 1 or the second light-emitting surface 2, so as to prevent the light from being reflected to the first light-emitting surface 1 or the second light-emitting surface 2.
  • the light-emitting surface 1 or the second light-emitting surface 2 is lost, and the energy utilization rate is improved.
  • the light-incident surface 5 of the lens includes a first light-incident surface 51, a second light-incident surface 52, and a third light-incident surface 53, the first light-incident surface 51 and the mounting surface 6
  • the second light-incident surface 52 and the third light-incident surface 53 are opposed to each other, and are respectively connected between the first light-incident surface 51 and the mounting surface 6, and the first light-incident surface 51 is a curved surface.
  • the first light incident surface 51, the second light incident surface 52, and the third light incident surface 53 enclose a light source cavity 50.
  • the projection of the light source cavity 50 perpendicular to the mounting surface 6 is rectangular, and the position of the light source 200 is in the rectangular shape.
  • the geometric center point, and the light source 200 is flush with the installation surface 6.
  • the position of the light source 20 is a first position, and the first position is a focal position of the first light incident surface 51.
  • the first light-incident surface 51, the second light-incident surface 52 and the third light-incident surface 53 the light is refracted to the reflective surface 3, the first light-emitting surface 1 and the second light-emitting surface 2, so that the reflective surface 3 converges
  • the light and the first light-emitting surface 1 and the second light-emitting surface 2 expand the angle and emit the light.
  • the contour line of the first light incident surface 51 is semicircular, and in the first direction, both ends of the first light incident surface 51 are respectively connected to the mounting surface 6.
  • the first light incident surface 51 is divided into two parts that are mirror-symmetrical about the second line of intersection 90.
  • the second light-incident surface 52 and the third light-incident surface 53 are mirror-symmetrical about the second line of intersection 90, and have a semicircular shape in the first direction.
  • the first light-incident surface 51 condenses the light rays with a tendency of divergence to the first light-emitting surface 1 and the second light-emitting surface 2, which are the first light-emitting surface 1 and the second light-emitting surface 2 Provide plenty of light.
  • the first light incident surface 51 satisfies the conditions:
  • d is the shortest distance from the center of the light source to the first light incident surface 51
  • K is the aspheric coefficient of the first light incident surface 51
  • R is the radius of curvature of the first light incident surface 51.
  • R and K satisfy the aspheric lens design formula:
  • the structure of the first light-incident surface 51 is adjusted so that the first light-incident surface 51 can smoothly shoot the light emitted by the light source 100 to the first light-emitting surface 1 or the second light-emitting surface 2, while ensuring that the light can be More evenly distributed on the first light-emitting surface 1 and the second light-emitting surface 2.
  • the contour line of the first light incident surface 51 is a curve, and the middle portion of the first light incident surface 51 protrudes toward the side away from the mounting surface 6.
  • the light emitted by the light source 200 has two paths: 1 through the first light-incident surface 51, exit from the first light-emitting surface 1 or the second light-emitting surface 2; 2 through the second light-incident surface 52 or the third light-incident surface The light surface 53 is then reflected in the reflective surface 3 and finally emitted from the first light-emitting surface 1 or the second light-emitting surface 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种透镜(100),包括安装面(6)、入光面(5)、第一出光面(1)、第二出光面(2)和反射面(3),安装面(6)用于安装透镜(100),安装面(6)中心开设有光源腔(50),光源腔(50)用于容置光源(200),光源腔(50)的内表面为入光面(5),第一出光面(1)的一端连接安装面(6),第一出光面(1)的另一端连接第二出光面(2),反射面(3)用于将从入光面(5)射向反射面(3)的光线反射至第一出光面(1)或第二出光面出射(2)。透镜(100)使得光线能够实现大角度投射,能够满足大视场角的光学性能需求。

Description

透镜及光学***
本申请要求于2019年10月18日提交中国专利局、申请号为2019109926499、申请名称为“透镜及光学***”的中国专利申请的优先权,以及于2019年10月18日提交中国专利局、申请号为2019217592245、申请名称为“透镜及光学***”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请属于光学领域,尤其涉及一种透镜及具有该透镜的光学***。
背景技术
现今工业越来越发达,对于光学***的要求也越来越高。光学***的一类为广角光学***,能够发射大角度的光线。广角光学***中需用到匀光片,用于使得光线均匀出射。
现在广角匀光片一般采用衍射光学组件DOE(Diffractive Optical Elements,衍射光学器件)或者折射光学组件ROE(Refractive Optical Elements,折射光学器件)作为设计方案。DOE方案是基于光波的衍射理论,利用计算机软件设计,并通过半导体芯片制造工艺,在基片上刻蚀产生台阶型或连续浮雕结构,通过微结构表面对透射光束进行相位调制,来控制出光强度分布调制。ROE方案通过注塑或纳米压印在基片上构建随机或周期性的微透镜阵列,遵循几何光学的折射原理,利用非球面调整出射光的空间角度,从而得到预期照度分布的匀光器件。
不管是DOE还是ROE,其光线在大角度的能量均比较薄弱,不满足光学***对于大视场角时的光学性能要求。
发明内容
本申请的目的是提供一种能够解决上述问题的透镜以及包括该透镜的光学***。
本申请提供了如下的技术方案:
第一方面,本申请提供了一种透镜,包括安装面、入光面、第一出光面、第二出光面和反射面;所述安装面设置于所述透镜靠近光源的一侧,用于安装所述透镜;所述透镜在所述安装面的中心开设有光源腔,所述光源腔用于容置所述光源;所述光源腔的内表面为所述入光面;所述第一出光面和所述第二出光面为设置于所述透镜远离所述光源的曲面;在第一方向上,所述第一出光面的一端连接所述安装面,所述第一出光面的另一端连接所述第二出光面,所述第一出光面和所述第二出光面相交形成第一交线,所述第一交线为直线,所述第一交线沿第二方向延伸,所述第二出光面与所述第一出光面相对于经过所述第一交线并垂直于所述安装面的平面镜像对称,所述第一方向和所述第二方向垂直;在所述第二方向上,所述反射面为所述透镜相对的两侧分别向内凹陷形成,所述反射面用于将从所述入光面射向所述反射面的光线反射至所述第一出光面或所述第二出光面出射;光源发出的光线经所述入光面进入到所述透镜内,所述透镜内的光线经所述第一出光面或所述第二出光面射出,或者,所述透镜内的光线经所述反射面反射后由所述第一出光面或所述第二出光面射出。
合理设置透镜的安装面、入光面、第一出光面、第二出光面和反射面的位置和结构,光源发出的光线通过所述入光面以及所述反射面折射或反射至所述第一出光面和所述第二出光面出射,第一方向上,出射的光线具有更大的角度,第二方向上,出射的光线被汇聚准直,光线在各个位置汇聚的数量更多,使得光线在大角度的能量充足,能够满足大角度的工业应用的需求。
其中,所述透镜还包括在所述第二方向上的两个侧面,所述侧面的一端连接所述安装面,另一端连接所述第一出光面或所述第二出光面,所述反射面与所述侧面、所述安装面相接。通过合理设置侧面的位置,所述透镜的第一出光面、第二出光面、反射面和安装面能够更为稳定地协作,同时侧面能够保护反射面,保证反射面能够准确的反射光线。
其中,所述第一出光面包括依次连接的第一面、第二面和第三面,所述第一面与所述第二出光面连接,所述第三面与所述安装面连接,所述第二面为曲面,所述第一面上任意一点相对所述安装面的距离为第一距离,所述第一交线上任意一点与所述安装面的距离为第二距离,所述第一距离不小于所述第二距离,以使所述第一出光面和所述第二出光面相交的位置为平面或形成凹陷。通过设置第一出光面和第二出光面相交位置为平面或者凹陷,使得光线在第一面 处折射而往更大的角度出射,使得大角度的光线充足。
其中,在所述第二方向的任一横截面上,以所述光源腔中的所述光源沿所述第二方向投影的位置为圆心,所述第一面远离所述第一交线的端点与所述圆心的连线为第一直线,所述第一交线的点与所述圆心的连线为第二直线,所述第一直线与所述第二直线的夹角为第一夹角,所述第一夹角小于等于5°。设置上述第一夹角大小,从而调节第一出光面和第二出光面相交的位置处的平面或者凹陷的区域的范围,使得中心的光线与边缘的光线分配更为均匀,增强大角度方向的光线强度。
其中,所述第二面为圆柱面,所述第二面上任意一点的第一切线与所述圆心至所述任意一点的连线垂直。通过设置第二面为圆柱面,使得光线在第二面处折射而能向更大的角度出射,从而使得出射的光线分布更为充足。
其中,在所述第二方向的任一横截面上,所述第二面上远离第一面的端点与所述圆心的连线为第三直线,所述第三直线和所述第二直线的夹角为第二夹角,所述第二夹角的范围为40°至75°。通过合理设置第二夹角的角度,在保证大角度光线充足的前提下,限制了光线在大角度方向的范围,避免大角度的光线过于分散,影响大角度光线的强度
其中,所述反射面为曲面,所述反射面包括相对于过所述安装面的中心且垂直于所述第一交线的平面对称设置的第一反射面和第二反射面,在所述第一方向且经过所述第一交线的横截面上,所述第一反射面、所述第二反射面、所述安装面和所述第一交线形成梯形形状,且所述第一反射面和所述第二反射面与所述侧面相接的端点与所述第一交线两端的端点重合,所述第一反射面和所述第二反射面与所述安装面相接的两个端点的连线为第四直线,所述第一交线的长度大于所述第四直线的长度。通过合理设置第一反射面、第二反射面、安装面和侧面的位置关系,有利于将光线汇聚第一出光面和第二出光面出射,提高了光线的利用效率。
其中,在所述第一方向且经过所述第一交线的横截面上,所述第一反射面的轮廓线为直线或曲线,所述轮廓线通过沿着转轴扫描而形成所述第一反射面。通过设置扫描形成的反射面,使得反射面汇聚光线的范围更大,有利于光线的充分利用,避免散射导致能量损失。
其中,在所述第二方向上,所述反射面满足条件:θ2=(90°+θ1)/2±5°; 其中θ2为在所述反射面某一点S点处的第二切线与所述安装面的夹角;θ1为第一连线与所述安装面的夹角,所述第一连线为所述S点与光源中心的连线;θ1在以所述光源中心为原点、经过所述光源中心且平行于所述第一交线的直线为x轴、垂直于x轴的直线为y轴的二维坐标系上满足条件:θ1=tan-1(H01/W01),其中,所述S点的坐标为S(H01,W01)。通过设置上述条件式,调整反射面的结构,使得反射面能够准确的将由入光面射过来的光线反射至第一出光面或第二出光面,避免光线无法反射至第一出光面或第二出光面而损失,提高能量利用率。
其中,所述入光面包括第一入光面、第二入光面和第三入光面,所述第一入光面与过所述安装面的表面相对,所述第二入光面和所述第三入光面相对设置,且分别连接在所述第一入光面和所述安装面之间,在所述第二方向的横截面上,所述第一入光面的轮廓线为半圆形,且在第一方向上,所述第一入光面的两端分别与所述安装面相接。通过第一入光面、第二入光面和第三入光面的协作,将光线折射至反射面、第一出光面和第二出光面,以便反射面进行汇聚光线以及第一出光面和第二出光面进行扩大角度出射光线。
其中,在所述第一方向的横截面上,所述第一入光面的轮廓线为曲线,且所述第一入光面的中部朝向远离所述安装面的一侧凸出。通过采用上述第一入光面的结构,使得第一入光面在第二方向上汇聚光线,避免光线在第二方向上过度分散。
其中,所述第一入光面满足条件:(d/2)<R<(d/2)*1.1;K=-2.2~-2.5;
其中d为所述光源的中心到第一入光面的最近距离,K为第一入光面的非球面系数,R为第一入光面的曲率半径,R和K满足非球面透镜的设计公式。通过设置上述条件式,调整第一入光面的结构,使得第一入光面能顺利将光源发出的光线射往第一出光面或第二出光面,同时,保证光线能够较为均匀的分布在第一出光面和第二出光面。
第二方面,本申请提供了一种光学***,包括光源和第一方面中的透镜,所述光源设置在所述透镜的光源腔内。通过加入所述的透镜,光学***时能够将光线能量合理分配,满足大角度的工业应用。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一种实施方式中的透镜的立体结构示意图。
图2是本申请一种实施方式的光学***的工作示意图。
图3是现有利用与DOE或者ROE设计的光学***的工作示意图。
图4是本申请一种实施方式中的透镜的俯视图。
图5是沿图4的A-A方向的剖视图。
图6是本申请一种实施方式中的透镜的仰视图。
图7是本申请一种实施方式中的透镜的另一视角的立体结构示意图。
图8是本申请一种实施方式中的透镜的正视图。
图9是沿图8的C-C方向的剖视图。
图10为本申请一种实施方式的不同第二夹角时的透镜结构示意图。
图11为本申请一种实施方式的透镜三维的扫描示意图。
图12为本申请一种实施方式的光学***的光线路径示意图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请实施例提供了一种光学***,该光学***能够应用于终端的视频和图片获取,光学***可以为手机、游戏机、电脑、投影仪和摄像机等产品的一部分。光学***包括光源和本申请实施例提供的透镜,透镜具有光源腔,光源设置在光源腔内。光源可以是LED或者其他发光件。透镜具有使得光源发出的光线具有更大的出射角度的作用,使得光学***满足工业对于大视场角的光学性能需求。
请参阅图1至图7,为本申请实施例提供一种透镜,该透镜包括安装面6、第 一出光面1、第二出光面2、反射面3、侧面4和入光面5。该透镜可为透明材料,如由塑料或玻璃制成。塑料可为PMMA(polymethyl methacrylate,聚甲基丙烯酸甲酯)、PC(polycarbonate,聚碳酸脂)、或是硅树脂(silicone)等。
请参阅图2和图5,安装面6设置于透镜100靠近光源200的一侧,用于安装透镜100,安装面6为平面或者曲面,根据透镜安装的客体而定。该客体例如为印刷电路板(Printed Circuit Board,PCB)。举例而言,若安装在凸面上,则安装面6为凹面;若安装在凹面上,则安装面6为凸面;若安装在平面上,则安装面6为平面。本申请对安装面6的具体形状不做限定。安装面6的中心开设有光源腔50,光源腔50用于容置光源200,光源腔50的内表面为入光面5。通过对上述光源200、安装面6以及入光面5位置的合理排布,使得光源200发出的光线能够更好的通过入光面5进入透镜100内,减少光线的能量损失。
请参阅图1,首先定义第一方向和第二方向,第一方向为图1坐标轴的x轴方向,第二方向为坐标轴的y轴方向。本文中描述的在第一方向上,即为沿着y轴观察,视线与x轴垂直,看到的是平行于x轴的平面。本文中描述的在第一方向的横截面上,即为沿着x轴观察,视线与x轴平行,看到的是垂直于x轴的平面。本文中描述的在第二方向上,即为沿着x轴观察,视线与y轴垂直,看到的是平行于y轴的平面。本文中描述的在第二方向的横截面上,即沿着y轴观察,视线与y轴平行,看到的是垂直于y轴的平面。由上述定义可知,第一方向和第二方向垂直。
请参考图1、图4与图5,第一出光面1和第二出光面2为设置于透镜100远离光源200的曲面。在第一方向上,第一出光面1一端连接安装面6,第一出光面1的另一端连接第二出光面2,此时第二出光面2远离第一出光面1的一端也连接到安装面6。第一出光面1和第二出光面2相交形成第一交线91,第一交线91为直线,第一交线91沿第二方向延伸,第二出光面2与第一出光面1相对于经过第一交线91并垂直于安装面6的平面镜像对称(若安装面6为曲面,请参阅图9,第一出光面1与第二出光面2关于坐标系的yoz面镜像对称)。在第二方向的横截面上,第一出光面1和第二出光面2相对于安装面6呈凸出的凸透镜截面形状。光源200发出的光线在透镜100内传播后,从第一出光面1与第二出光面2出射,光线在第一出光面1与第二出光面2向大角度出射。
参阅图1和图7,反射面3与侧面4、安装面6相接,反射面3呈锥形,并相对 于侧面4凹陷,反射面3用于将光源200发出的并通过入光面5射向反射面3的光线反射至第一出光面1或第二出光面2出射。具体的,反射面3的表面一般涂覆有反射镀层,以实现反射的功能。其中,反射面3包括第一反射面31和第二反射面32。设第一平面为与第二方向垂直、经过第一交线91的中点的平面,第一反射面31和第二反射面32关于上述第一平面对称。第一反射面31与第二反射面32采用对称结构,使得反射面3在第一方向上反射给第一出光面1和第二出光面2的光线能量相同,有利于第一出光面1和第二出光面2更优地分配光线能量。光源200发出的光线经入光面5进入到透镜100内,透镜100内的光线经第一出光面1或第二出光面2射出,或者,透镜100内的光线经反射面3反射后由第一出光面1或第二出光面2射出。
合理设置透镜的安装面6、入光面5、第一出光面1、第二出光面2和反射面3的位置和结构,光源200发出的光线通过入光面5以及反射面3折射或反射至第一出光面1和第二出光面2出射,第一方向上,出射的光线具有更大的角度,第二方向上,出射的光线被汇聚准直,光线在各个位置汇聚的数量更多,使得光线在大角度的能量充足,能够满足大角度的工业应用的需求。
请参阅图1和图7,本透镜100具有两个侧面4,侧面4的一端连接安装面6,另一端连接第一出光面1或第二出光面2。在第一方向的过第一交线91的横截面上,第一反射面31和第二反射面32与侧面4相接的端点与第一交线91重合。通过合理设置侧面4的位置,透镜100的第一出光面1、第二出光面2、反射面3和安装面6能够更为稳定地协作,同时侧面4能够保护反射面3,保证反射面3能够准确的反射光线。
参阅图2和图3,图2为本申请的光源200与透镜100组成的光学***的工作示意图,图3为常规的DOE或者ROE结构的光学***的工作示意图。500为MLA透镜或者是其他现有的光学透镜,100为本申请的透镜,不难看出,图2光学***的视场角明显比图3光学***的视场角更大,光线出射的范围更广。
请参阅图8,第一出光面1包括依次连接的第一面11、第二面12和第三面13,且第一面11与第二出光面2连接,第三面13与安装面6连接。第二面12为圆弧面,光源腔中的光源200中心为第一位置,第一位置沿第二方向投影的位置为圆心O,第二面12上的远离第一面11的端点B,其第一切线92与OB垂直,通过设置第二面12为圆弧面,使得光线在第二面12处折射而能向更大的角度出射,从而使得 出射的光线分布更为充足。第三直线OB与第二直线OM的第二夹角72满足条件:40°≤第二夹角72≤75°。参阅图10,当第二夹角81=43°时,可制成广角100°透镜;当第二夹角82=59°时,可制成广角120°透镜;当第二夹角83=72°时,可制成广角140°透镜。在需要制成视角比广角100°稍小的情况下,第二夹角72可低至40°,在需要制成视角比广角140°稍大的情况下,第二夹角72可高至75°。通过合理设置第二夹角72的角度,在保证大角度光线充足的前提下,限制了光线在大角度方向的范围,避免大角度的光线过于分散,影响大角度光线的强度。
请参阅图8,第一面11上任意一点H相对安装面的垂线距离为第一距离HT,第一交线91上任意一点M与安装面的垂线距离为第二距离OM,第一距离HT大于等于第二距离OM。第一面11与第二面12的分界线上的点A,第一交线91的点M,第一直线OA和第二直线OM的第一夹角71满足条件:0°<第一夹角71≤5°(当第一夹角71=0°时,第一面11不存在),例如:第一夹角71可以为1°、2°、3°、4°、4.5°、5°等。第一出光面1在该范围内(即第一面11的范围),为平面或者形成凹陷。通过设置第一出光面1和第二出光面2相交位置(即第一面11)为平面或者凹陷,使得光线在第一面11处折射而往更大的角度出射,使得大角度的光线充足。
由于第一出光面1与第二出光面2关于第一交线91对称,因此第二出光面2的相同位置也为平面或者凹陷。上述对称的凹陷位置,可使光源200发出的光线朝着更大的角度出射;而对称的平面位置则使得光源200发出的光线朝着原角度出射。第一面11的凹陷程度和第一面11的凹陷范围(即第一夹角71的值)可以随着应用需求不同而不同。例如,当应用于对于对大角度光线能量要求稍高的,第一夹角71可以取4.5°甚至5°,而凹陷程度可以适当增加;反则当应用于对于对大角度光线能量要求稍低的,可以降低第一夹角71的角度、减少凹陷程度或者设置第一面11为平面。设置上述第一夹角大小,从而调节第一入光面和第二入光面相交的位置处的平面或者凹陷的区域的范围,使得中心的光线与边缘的光线分配更为均匀,增强大角度方向的光线强度。
请参阅图1、图9和图11,反射面3包括相对于过安装面的中心且垂直于第一交线的平面(请参阅图8,该平面即为图8中坐标系的xoz平面)对称设置的第一反射面31和第二反射面32。在第一方向的过第一交线91的横截面上,第一反射 面31、第二反射面32、安装面6和第一交线91形成梯形形状,且第一反射面31和第二反射面32朝向第一交线91的方向与侧面4相接的端点与第一交线91两端的端点重合,第一反射面31和第二反射面32与安装面6相接的两个端点的连线为第四直线JK,第一交线91的长度大于第四直线JK的长度。通过合理设置第一反射面31、第二反射面32、安装面6和侧面4的位置关系,有利于将光线汇聚第一出光面1和第二出光面2出射,提高了光线的利用效率。
请参阅图7和图11,以第二方向的过圆心O的直线为转轴94,反射面3轮廓线95沿转轴94扫描而形成的。由于反射面3是沿着安装面6上的转轴94旋转扫描形成的,因此反射面3在第一方向上对光线的反射效果相同,有利于第一出光面1和第二出光面2对于反射面3反射过来的光线进行合理的、满足工业要求的分配。可根据透镜的具体结构调整扫描的轮廓线,在第一方向且经过第一交线91的横截面上,轮廓线为直线时光线均匀度更高,轮廓线为曲线时,光线集中度更高。通过设置扫描形成的反射面3,使得反射面3汇聚光线的范围更大,有利于光线的充分利用,避免散射导致能量损失。
反射面3包括多个微小的弧面单元,弧面单元将通过第二入光面52或者第三入光面53的光线反射至第一出光面1或者是第二出光面2。在第二方向上,U为安装面6上的一点,O为光源中心,反射面3满足条件:在某一点S处的第二切线93与水平方向的夹角θ2在该平面以第一位置为原点O、OU为x轴、OI为y轴的坐标系上满足:
Figure PCTCN2019115375-appb-000001
其中θ1为第一连线SO与安装面6的夹角,第一连线SO为S点与光源中心O的连线;
θ1=tan-1(H01/W01),S坐标为(H01,W01)。
另外,轮廓线95为直线时,θ2为固定值(与反射面3上的s点的位置无关);而当轮廓线95为曲线时,θ2为变值(随着s点的位置变化而变化)。通过设置上述条件式,调整反射面3的结构,使得反射面3能够准确的将由入光面5射过来的光线反射至第一出光面1或第二出光面2,避免光线无法反射至第一出光面1或第二出光面2而损失,提高能量利用率。
参阅图5、图6和图9,该透镜的入光面5包括第一入光面51、第二入光面52 和第三入光面53,第一入光面51与过安装面6的表面相对,第二入光面52和第三入光面53相对设置,且分别连接在第一入光面51和安装面6之间,第一入光面51为曲面。第一入光面51、第二入光面52和第三入光面53围合形成光源腔50,光源腔50在垂直于安装面6上的投影呈矩形,光源200的位置处于该矩形的几何中心点,且光源200与安装面6齐平。光源20的位置为第一位置,该第一位置为第一入光面51的焦点位置。通过第一入光面51、第二入光面52和第三入光面53的协作,将光线折射至反射面3、第一出光面1和第二出光面2,以便反射面3进行汇聚光线以及第一出光面1和第二出光面2进行扩大角度出射光线。
在第二方向的横截面上,第一入光面51的轮廓线为半圆形,且在第一方向上,第一入光面51的两端分别与安装面6相接。在第二方向上,第一入光面51分为关于第二交线90镜像对称的两部分。第二入光面52与第三入光面53关于第二交线90镜像对称,在第一方向上呈半圆形状。通过采用第一入光面51的结构,使得第一入光面51将原本有发散趋势的光线聚拢至第一出光面1和第二出光面2,为第一出光面1和第二出光面2提供充足的光线。
参阅图9,第一入光面51满足条件:
(d/2)<R<(d/2)*1.1;
K=-2.2~-2.5;
其中d为光源中心到第一入光面51的最近距离,K为第一入光面51的非球面系数,R为第一入光面51的曲率半径。
其中R和K满足非球面透镜设计公式:
Figure PCTCN2019115375-appb-000002
其中Y为曲面端点距离曲面凸点法线的距离,z为曲面凸点距离曲面端点处于的底平面的距离。通过设置上述条件式,调整第一入光面51的结构,使得第一入光面51能顺利将光源100发出的光线射往第一出光面1或第二出光面2,同时,保证光线能够较为均匀的分布在第一出光面1和第二出光面2。
在第一方向的横截面上,第一入光面51的轮廓线为曲线,且第一入光面51的中部朝向远离安装面6的一侧凸出。通过采用上述第一入光面的结构,使得第一入光面在第二方向上汇聚光线,避免光线在第二方向上过度分散。
请参阅图12,光源200发出的光线有两条路径:①通过第一入光面51,从第一出光面1或者第二出光面2射出;②通过第二入光面52或者第三入光面53,然后在反射面3中反射,最后从第一出光面1或者第二出光面2射出。
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (13)

  1. 一种透镜,其特征在于,包括安装面、入光面、第一出光面、第二出光面和反射面;
    所述安装面设置于所述透镜靠近光源的一侧,用于安装所述透镜;
    所述透镜在所述安装面的中心开设有光源腔,所述光源腔用于容置所述光源;
    所述光源腔的内表面为所述入光面;
    所述第一出光面和所述第二出光面为设置于所述透镜远离所述光源的曲面;在第一方向上,所述第一出光面的一端连接所述安装面,所述第一出光面的另一端连接所述第二出光面,所述第一出光面和所述第二出光面相交形成第一交线,所述第一交线为直线,所述第一交线沿第二方向延伸,所述第二出光面与所述第一出光面相对于经过所述第一交线并垂直于所述安装面的平面镜像对称,所述第一方向和所述第二方向垂直;
    在所述第二方向上,所述反射面为所述透镜相对的两侧分别向内凹陷形成,所述反射面用于将从所述入光面射向所述反射面的光线反射至所述第一出光面或所述第二出光面出射;
    光源发出的光线经所述入光面进入到所述透镜内,所述透镜内的光线经所述第一出光面或所述第二出光面射出,或者,所述透镜内的光线经所述反射面反射后由所述第一出光面或所述第二出光面射出。
  2. 根据权利要求1所述的透镜,其特征在于,所述透镜还包括在所述第二方向上的两个侧面,所述侧面的一端连接所述安装面,另一端连接所述第一出光面或所述第二出光面,所述反射面与所述侧面、所述安装面相接。
  3. 根据权利要求1所述的透镜,其特征在于,所述第一出光面包括依次连接的第一面、第二面和第三面,所述第一面与所述第二出光面连接,所述第三面与所述安装面连接,所述第二面为曲面,所述第一面上任意一点相对所述安装面的距离为第一距离,所述第一交线上任意一点与所述安装面的距离为第二距离,所述第一距离不小于所述第二距离,以使所述第一出光面和所述第二出光面相交的位置为平面或形成凹陷。
  4. 根据权利要求3所述的透镜,其特征在于,在所述第二方向的任一横截面上,以所述光源腔中的所述光源沿所述第二方向投影的位置为圆心,所述第 一面远离所述第一交线的端点与所述圆心的连线为第一直线,所述第一交线的点与所述圆心的连线为第二直线,所述第一直线与所述第二直线的夹角为第一夹角,所述第一夹角小于等于5°。
  5. 根据权利要求4所述的透镜,其特征在于,所述第二面为圆柱面,所述第二面上任意一点的第一切线与所述圆心至所述任意一点的连线垂直。
  6. 根据权利要求5所述的透镜,其特征在于,在所述第二方向的任一横截面上,所述第二面上远离第一面的端点与所述圆心的连线为第三直线,所述第三直线和所述第二直线的夹角为第二夹角,所述第二夹角的范围为40°至75°。
  7. 根据权利要求2所述的透镜,其特征在于,所述反射面为曲面,所述反射面包括相对于过所述安装面的中心且垂直于所述第一交线的平面对称设置的第一反射面和第二反射面,在所述第一方向且经过所述第一交线的横截面上,所述第一反射面、所述第二反射面、所述安装面和所述第一交线形成梯形形状,且所述第一反射面和所述第二反射面与所述侧面相接的端点与所述第一交线两端的端点重合,所述第一反射面和所述第二反射面与所述安装面相接的两个端点的连线为第四直线,所述第一交线的长度大于所述第四直线的长度。
  8. 根据权利要求7所述的透镜,其特征在于,在所述第一方向且经过所述第一交线的横截面上,所述第一反射面的轮廓线为直线或曲线,所述轮廓线通过扫描而形成所述第一反射面。
  9. 根据权利要求8所述的透镜,其特征在于,在所述第二方向上,所述反射面满足条件:
    θ 2=(90°+θ 1)/2±5°;
    其中θ 2为在所述反射面某一点S点处的第二切线与所述安装面的夹角;
    θ 1为第一连线与所述安装面的夹角,所述第一连线为所述S点与光源中心的连线;
    θ 1在以所述光源中心为原点、经过所述光源中心且平行于所述第一交线的直线为x轴、垂直于x轴的直线为y轴的二维坐标系上满足条件:
    θ 1=tan-1(H01/W01),其中,所述S点的坐标为S(H01,W01)。
  10. 根据权利要求1所述的透镜,其特征在于,所述入光面包括第一入光面、第二入光面和第三入光面,所述第一入光面与过所述安装面的表面相对,所述第二入光面和所述第三入光面相对设置,且分别连接在所述第一入光面和 所述安装面之间,在所述第二方向的横截面上,所述第一入光面的轮廓线为半圆形,且在第一方向上,所述第一入光面的两端分别与所述安装面相接。
  11. 根据权利要求10所述的透镜,其特征在于,在所述第一方向的横截面上,所述第一入光面的轮廓线为曲线,且所述第一入光面的中部朝向远离所述安装面的一侧凸出。
  12. 根据权利要求11所述的透镜,其特征在于,所述第一入光面满足条件:
    (d/2)<R<(d/2)*1.1;K=-2.2~-2.5;
    其中d为所述光源的中心到第一入光面的最近距离,K为第一入光面的非球面系数,R为第一入光面的曲率半径,R和K满足非球面透镜的设计公式。
  13. 一种光学***,其特征在于,包括光源和如权利要求1至12任一项所述的透镜,所述光源设置在所述透镜的光源腔内。
PCT/CN2019/115375 2019-10-18 2019-11-04 透镜及光学*** WO2021072822A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921759224.5U CN210511509U (zh) 2019-10-18 2019-10-18 透镜及光学***
CN201921759224.5 2019-10-18
CN201910992649.9A CN112682761A (zh) 2019-10-18 2019-10-18 透镜及光学***
CN201910992649.9 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021072822A1 true WO2021072822A1 (zh) 2021-04-22

Family

ID=75538286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115375 WO2021072822A1 (zh) 2019-10-18 2019-11-04 透镜及光学***

Country Status (1)

Country Link
WO (1) WO2021072822A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286251A1 (en) * 2004-06-28 2005-12-29 Whelen Engineering Company, Inc. Side-emitting collimator
CN201281290Y (zh) * 2008-10-07 2009-07-29 玉晶光电股份有限公司 双侧照明的光学透镜体
CN103090311A (zh) * 2013-01-21 2013-05-08 深圳市酷开网络科技有限公司 透镜、led背光模组和显示装置
CN203082794U (zh) * 2013-01-24 2013-07-24 广东德洛斯照明工业有限公司 一种密封式截光透镜
CN203797560U (zh) * 2014-01-06 2014-08-27 深圳市星标机电设施工程有限公司 发光二极管透镜及照明装置
CN104100930A (zh) * 2013-04-02 2014-10-15 鸿富锦精密工业(深圳)有限公司 透镜及采用该透镜的发光模组
CN205424832U (zh) * 2015-12-16 2016-08-03 温州恒古科技发展有限公司 蝴蝶形透镜
CN107606585A (zh) * 2017-11-01 2018-01-19 安徽芯瑞达科技股份有限公司 一种新型折射式投射透镜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286251A1 (en) * 2004-06-28 2005-12-29 Whelen Engineering Company, Inc. Side-emitting collimator
CN201281290Y (zh) * 2008-10-07 2009-07-29 玉晶光电股份有限公司 双侧照明的光学透镜体
CN103090311A (zh) * 2013-01-21 2013-05-08 深圳市酷开网络科技有限公司 透镜、led背光模组和显示装置
CN203082794U (zh) * 2013-01-24 2013-07-24 广东德洛斯照明工业有限公司 一种密封式截光透镜
CN104100930A (zh) * 2013-04-02 2014-10-15 鸿富锦精密工业(深圳)有限公司 透镜及采用该透镜的发光模组
CN203797560U (zh) * 2014-01-06 2014-08-27 深圳市星标机电设施工程有限公司 发光二极管透镜及照明装置
CN205424832U (zh) * 2015-12-16 2016-08-03 温州恒古科技发展有限公司 蝴蝶形透镜
CN107606585A (zh) * 2017-11-01 2018-01-19 安徽芯瑞达科技股份有限公司 一种新型折射式投射透镜

Similar Documents

Publication Publication Date Title
US20200065550A1 (en) Under-screen optical fingerprint identification device and electronic apparatus
TWI615659B (zh) 光源模組及其稜鏡片
TW201921055A (zh) 光柵耦合光導件、顯示系統、以及使用光學聚光的方法
US10712489B2 (en) Light-emitting module and display apparatus
TW201629521A (zh) 光學裝置
CN106896633B (zh) 投影机
JP2010205713A (ja) 照明装置及びこれを用いた表示装置
KR101419031B1 (ko) 발광장치 및 이를 구비하는 조명장치
CN213843580U (zh) 导光板、背光模组及显示装置
TW202109090A (zh) 稜鏡與光學成像系統
US10942393B2 (en) Light source assembly, backlight module and display device
US20200271849A1 (en) Light guide plate
TWI421549B (zh) 導光板及背光模組
JP2007123125A (ja) 照明装置及びそれを用いた表示装置
US10697613B2 (en) Light source guiding device with refracting unit and reflecting unit
TW201945776A (zh) 楔形光導
CN212808683U (zh) 一种提升亮度的异形网点
WO2021072822A1 (zh) 透镜及光学***
CN112682761A (zh) 透镜及光学***
CN210511509U (zh) 透镜及光学***
US11215874B2 (en) Light collimation device, backlight module and display panel
US11143382B2 (en) Optical lens structure
WO2013081038A1 (ja) 光源装置、面光源装置、表示装置および照明装置
US20150085525A1 (en) Light guide plate and backlight module
JP6679465B2 (ja) 面光源素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949111

Country of ref document: EP

Kind code of ref document: A1