WO2021072669A1 - 光学***、摄像模组及终端设备 - Google Patents

光学***、摄像模组及终端设备 Download PDF

Info

Publication number
WO2021072669A1
WO2021072669A1 PCT/CN2019/111417 CN2019111417W WO2021072669A1 WO 2021072669 A1 WO2021072669 A1 WO 2021072669A1 CN 2019111417 W CN2019111417 W CN 2019111417W WO 2021072669 A1 WO2021072669 A1 WO 2021072669A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
object side
refractive power
image side
Prior art date
Application number
PCT/CN2019/111417
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
许哲源
黎康熙
谈智伟
Original Assignee
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光电技术有限公司 filed Critical 南昌欧菲光电技术有限公司
Priority to PCT/CN2019/111417 priority Critical patent/WO2021072669A1/zh
Publication of WO2021072669A1 publication Critical patent/WO2021072669A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the field of optical imaging, in particular to an optical system, camera module and terminal equipment.
  • the public has increasingly higher requirements for mobile phone cameras, especially the demand for remote shooting.
  • the effective focal length of the optical system in the camera module is difficult to meet the condition of telephoto, and the imaging performance in telephoto is poor, which cannot meet the user's requirements for long-range shooting.
  • an optical system a camera module, and a terminal device are provided.
  • An optical system from the object side to the image side, includes:
  • a first lens with positive refractive power, the object side and image side of the first lens are both convex;
  • a second lens with negative refractive power, the object side and image side of the second lens are both concave;
  • the third lens with negative refractive power is the third lens with negative refractive power
  • the fourth lens with negative refractive power
  • a fifth lens with negative refractive power is provided.
  • the sixth lens with positive refractive power.
  • a camera module includes a photosensitive element and the optical system described in the above embodiments, and the photosensitive element is arranged on the image side of the sixth lens.
  • a terminal device includes the camera module described in the above embodiment.
  • FIG. 1 is a schematic diagram of the optical system in the first embodiment of the application
  • Fig. 2 is an aberration diagram of the 1.0 field of view of the optical system in the first embodiment of the application;
  • 3 is an aberration diagram of 0.5 field of view of the optical system in the first embodiment of the application.
  • FIG. 5 is a schematic diagram of the optical system in the second embodiment of the application.
  • FIG. 6 is an aberration diagram of the 1.0 field of view of the optical system in the second embodiment of the application.
  • FIG. 7 is an aberration diagram of 0.5 field of view of the optical system in the second embodiment of the application.
  • FIG. 8 is an aberration diagram of the 0 field of view of the optical system in the second embodiment of the application.
  • FIG. 9 is a schematic diagram of the optical system in the third embodiment of the application.
  • FIG. 10 is an aberration diagram of the 1.0 field of view of the optical system in the third embodiment of the application.
  • 11 is an aberration diagram of 0.5 field of view of the optical system in the third embodiment of the application.
  • FIG. 12 is an aberration diagram of the optical system in the third embodiment of the application with a field of view of 0;
  • FIG. 13 is a schematic diagram of a camera module using an optical system in an embodiment of the application.
  • FIG. 14 is a schematic diagram of a terminal device using a camera module in an embodiment of the application.
  • the optical system 100 includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a negative refractive power from the object side to the image side.
  • the first lens L1 includes an object side S1 and an image side S2
  • the second lens L2 includes an object side S3 and an image side S4
  • the third lens L3 includes an object side S5 and an image side S6
  • the fourth lens L4 includes an object side S7 and an image side S8
  • the fifth lens L5 includes the object side surface S9 and the image side surface S10
  • the sixth lens L6 includes the object side surface S11 and the image side surface S12
  • the optical system 100 also includes an imaging surface S15 located on the image side of the sixth lens L6, the imaging surface S15 may be The photosensitive surface of the photosensitive element.
  • Both the object side surface S1 and the image side surface S2 of the first lens L1 are convex surfaces, and the object side surface S3 and the image side surface S4 of the second lens L2 are both concave surfaces.
  • the first lens L1 can provide positive refractive power for the optical system 100 to shorten the total optical length of the optical system 100, and since the object side surface S1 of the first lens L1 is convex, it can strengthen the first lens L1 The positive refractive power of, which further shortens the total optical length of the optical system 100, which is conducive to the realization of a miniaturized design.
  • the second lens L2 provides negative refractive power for the optical system 100 to balance the chromatic aberration and spherical aberration generated by the first lens L1, so that the optical system 100 can correct axial chromatic aberration and spherical aberration.
  • the fourth lens L4 provides negative refractive power for the optical system 100, so that the curvature of field can be corrected well.
  • the sixth lens L6 provides positive refractive power for the optical system 100, and performs final correction on the optical system 100, and at the same time cooperates with the lenses on the object side to form the optical system 100 with a telephoto effect.
  • the object side surface S11 of the sixth lens L6 is convex.
  • the positive refractive power of the sixth lens L6 can be further strengthened, so as to provide multiple lenses with negative refractive power on the object side (the second lens L2 and the second lens L2).
  • the aberrations generated by the third lens L3, the fourth lens L4, and the fifth lens L5) are effectively corrected.
  • the optical system 100 includes an aperture stop.
  • the aperture stop is an element independent of each lens.
  • the aperture stop can be arranged on the object side of the first lens L1, or between the first lens L1 and the sixth lens L6. between.
  • the aperture stop can also be located on the surface of any one of the first lens L1 to the sixth lens L6 (such as the object side or the image side), and form an functional relationship with the lens, for example, by
  • the surface is coated with a light-blocking coating to form an aperture stop on the surface; or the surface of the lens is fixed and clamped by a clamp.
  • the clamp structure on the surface can limit the width of the imaging beam of the object point on the axis, so that the An aperture stop is formed on the surface.
  • the aperture stop is located on the object side S3 of the second lens L2.
  • the object side surface and the image side surface of each lens in the optical system 100 are both aspherical, and the adoption of an aspherical structure can improve the flexibility of lens design, effectively correct spherical aberration, and improve imaging quality.
  • the object side surface and the image side surface of each lens in the optical system 100 may also be spherical surfaces. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application. In some embodiments, the surface of any lens in the optical system 100 may be aspherical or spherical.
  • the image side surface S12 of the sixth lens L6 has at least one inflection point. Specifically, in one embodiment, the image side surface S12 of the sixth lens L6 has a surface shape from the optical axis to the edge. Convex, concave and convex. When the surface of the lens is aspheric, you can refer to the aspheric formula:
  • Z is the longitudinal distance between any point on the aspheric surface and the vertex of the surface
  • r is the distance from any point on the aspheric surface to the optical axis
  • c is the curvature of the vertex (the reciprocal of the radius of curvature)
  • k is the conic constant
  • A, B, C, D , E, F, G... are aspheric coefficients.
  • the materials of each lens in the optical system 100 may be glass or plastic.
  • the plastic lens can reduce the weight and production cost of the optical system 100, while the glass lens enables the optical system 100 to have Excellent optical performance and high temperature resistance characteristics.
  • the material of each lens in the optical system 100 can also be any combination of glass and plastic, and it does not have to be all glass or plastic.
  • the material of the first lens L1 is glass, and the material of the other lenses in the optical system 100 is plastic, so that the optical system 100 can withstand a higher temperature on the object side while maintaining a low production cost. .
  • the optical system 100 further includes an infrared cut filter L7.
  • the infrared cut filter L7 is disposed between the sixth lens L6 and the imaging surface S15.
  • the infrared cut filter L7 includes an object side surface S13 and an image side surface. S14.
  • the infrared cut filter L7 can filter out infrared light, preventing the infrared light from reaching the imaging surface S15 and causing imaging interference to the photosensitive element.
  • the optical system 100 satisfies the relationship: 2.0 ⁇ FNO ⁇ 10.0;
  • FNO is the aperture number of the optical system 100.
  • FNO can be 2.95, 2.96, or 2.97.
  • the optical system 100 satisfies the relationship: 0.75 ⁇ TTL/f ⁇ 1.25;
  • TTL is the total optical length of the optical system 100, that is, the object side surface S1 of the first lens L1 to the imaging surface S15 of the optical system 100 are on the optical axis ,
  • f is the effective focal length of the optical system 100.
  • TTL/f can be 0.81, 0.82, 0.83, or 0.84.
  • the optical system 100 When it exceeds the upper limit, the overall size of the optical system 100 will become larger, and the total length of the optical system 100 and the radius of the lens therein will also be too large. Therefore, when the above relationship is satisfied, a high-resolution image can be obtained, and the optical system 100 can be made more compact.
  • the optical system 100 satisfies the relationship: 0.51 ⁇ TLENS/TTL ⁇ 0.71; TLENS is the distance from the object side S1 of the first lens L1 to the image side S12 of the sixth lens L6 on the optical axis, and TTL is the optical system The total optical length of 100.
  • TLENS/TTL can be 0.597, 0.600, 0.605, 0.610, 0.615, 0.620 or 0.625.
  • the smaller the ratio, the smaller the size of the optical system 100 in the direction of the optical axis, and the length of the lens barrel on which the optical system 100 is loaded will also be shortened, thereby facilitating the molding of the lens barrel; the larger the ratio, the greater The design difficulty of the optical system 100 is reduced.
  • TLENS/TTL>0.71 the optical back focus of the optical system 100 is short, which is not conducive to assembly; when TLENS/TTL ⁇ 0.51, the arrangement of the lenses is too compact, which is not conducive to the design of the optical system 100, and reduces the overall The optical performance of the system.
  • the optical system 100 satisfies the relationship: 0.16 ⁇ f1/f ⁇ 0.59; f1 is the focal length of the first lens L1, and f is the effective focal length of the optical system 100.
  • f1/f can be 0.367, 0.370, 0.372, 0.377, 0.379, 0.381, 0.383, or 0.384.
  • the first lens L1 has an appropriate focal length, which is beneficial to the distribution and optimization of the refractive power of the optical system 100, so that the optical system 100 has ideal optical performance.
  • the camera module when the optical system 100 and the photosensitive element are assembled into a camera module, the camera module satisfies the relationship: 1 ⁇ TTL/IMA ⁇ 3; TTL is the total optical length of the optical system 100, and IMA is the effective pixel area of the photosensitive element The diagonal distance.
  • TTL/IMA can be 2.02, 2.03, 2.05, 2.08, 2.10, 2.11, or 2.12.
  • the size of the optical system 100 can also be simultaneously enlarged to twice the original size, and the number of apertures and the angle of view remain unchanged at this time.
  • the photosensitive element it is also beneficial for the photosensitive element to receive complete optical information, and it is also beneficial for the miniaturized design of the camera module.
  • the optical system 100 in the first embodiment includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a third lens L3 with a negative refractive power, in order from the object side to the image side.
  • FIG. 2, FIG. 3, and FIG. 4 are aberration diagrams of the optical system 100 in the first embodiment.
  • the object side surface S1 of the first lens L1 is convex on the optical axis, and the image side surface S2 is convex on the optical axis.
  • the object side surface S3 of the second lens L2 is concave at the optical axis, and the image side surface S4 is concave at the optical axis.
  • the object side surface S5 of the third lens L3 is concave at the optical axis, and the image side surface S6 is convex at the optical axis.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis, and the image side surface S8 is concave at the optical axis.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis, and the image side surface S10 is concave at the optical axis.
  • the object side surface S11 of the sixth lens L6 is convex on the optical axis, and the image side surface S12 is convex on the optical axis.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieves excellent optical effects, thereby enabling the optical system 100 to have miniaturization characteristics.
  • the image side surface S12 of the sixth lens L6 has a convex surface, a concave surface and a convex surface in order from the optical axis to the edge.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the plastic lens can reduce the weight of the optical system 100 and can also reduce the weight of the optical system 100. reduce manufacturing cost.
  • the image side of the sixth lens L6 is also provided with an infrared cut filter L7 made of glass to filter out infrared light and prevent the infrared light from affecting imaging.
  • the material of the infrared cut filter L7 is glass.
  • the infrared cut filter L7 may belong to a part of the optical system 100 and be assembled with each lens, or may also be installed when the optical system 100 is assembled with the photosensitive element.
  • TTL/f 0.8; TTL is the total optical length of the optical system 100, and f is the effective focal length of the optical system 100.
  • the first lens L1 has an appropriate focal length, which is beneficial to the distribution and optimization of the refractive power of the optical system 100, so that the optical system 100 has ideal optical performance.
  • TTL/IMA 2.00; TTL is the total optical length of the optical system 100, and IMA is the diagonal distance of the effective pixel area of the photosensitive element.
  • the image plane in Table 1 is the imaging surface S15 of the optical system 100, and the elements from the object plane to the imaging surface S15 are sequentially arranged in the order of the elements in Table 1 from top to bottom.
  • the radius of curvature in Table 1 is the radius of curvature at the optical axis of the object side or image side of the corresponding surface number.
  • the surface 1 and the surface 2 are respectively the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the first value in the “thickness” parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the object side of the lens from the image side to the image side of the next lens on the optical axis On the distance.
  • Table 2 shows the aspheric coefficients of each lens in the optical system 100, where k is the conic constant, and A, B, C, D, E, F, G... are the aspheric coefficients.
  • the focal length of each lens is a value at a wavelength of 546 nm, and the refractive index and Abbe number are values at a wavelength of 587.6 nm.
  • the aperture stop is located on the object side S3 of the second lens L2.
  • the optical system 100 in the second embodiment includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a third lens L3 with a negative refractive power, in order from the object side to the image side.
  • FIG. 6, FIG. 7, and FIG. 8 are aberration diagrams of the optical system 100 in the second embodiment.
  • the object side surface S1 of the first lens L1 is convex on the optical axis, and the image side surface S2 is convex on the optical axis.
  • the object side surface S3 of the second lens L2 is concave at the optical axis, and the image side surface S4 is concave at the optical axis.
  • the object side surface S5 of the third lens L3 is convex on the optical axis, and the image side surface S6 is concave on the optical axis.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis, and the image side surface S8 is concave at the optical axis.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis, and the image side surface S10 is concave at the optical axis.
  • the object side surface S11 of the sixth lens L6 is convex on the optical axis, and the image side surface S12 is convex on the optical axis.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieves excellent optical effects, thereby enabling the optical system 100 to have miniaturization characteristics.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the plastic lens can reduce the weight of the optical system 100 and can also reduce the weight of the optical system 100. reduce manufacturing cost.
  • the parameters of the optical system 100 are given in Table 3, Table 4, and Table 5, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • the optical system 100 in the third embodiment includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a third lens L3 with a negative refractive power, in order from the object side to the image side.
  • 10, 11, and 12 are aberration diagrams of the optical system 100 in the third embodiment.
  • the object side surface S1 of the first lens L1 is convex on the optical axis, and the image side surface S2 is convex on the optical axis.
  • the object side surface S3 of the second lens L2 is concave at the optical axis, and the image side surface S4 is concave at the optical axis.
  • the object side surface S5 of the third lens L3 is concave at the optical axis, and the image side surface S6 is convex at the optical axis.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis, and the image side surface S8 is convex at the optical axis.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis, and the image side surface S10 is convex at the optical axis.
  • the object side surface S11 of the sixth lens L6 is convex on the optical axis, and the image side surface S12 is convex on the optical axis.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieves excellent optical effects, thereby enabling the optical system 100 to have miniaturization characteristics.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the plastic lens can reduce the weight of the optical system 100 and can also reduce the weight of the optical system 100. reduce manufacturing cost.
  • the optical system 100 and the photosensitive element 210 are assembled to form the camera module 200, and the photosensitive element 210 is disposed on the image side of the sixth lens L6 in the optical system 100.
  • An infrared cut filter L7 can be arranged between the sixth lens L6 and the photosensitive element to prevent infrared light from interfering with visible light imaging.
  • the photosensitive element 210 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • the distance between the photosensitive element 210 and each lens in the optical system 100 is relatively fixed.
  • the camera module 200 is a fixed focus module.
  • a driving element such as a voice coil motor can be provided to enable the photosensitive element 210 to move relative to each lens in the optical system 100 to achieve a focusing effect.
  • the driving element can drive the lens barrel of each lens of the loaded optical system 100 to move to realize the above-mentioned focusing function.
  • a matching algorithm can also be used to control the movement of at least one lens in the optical system 100 relative to other lenses, so as to achieve an optical zoom effect.
  • the camera module 200 is applied to an electronic device. Further referring to Fig. 14, the camera module 200 can be applied to the terminal device 30, for example, applied to smart phones, smart watches, tablet computers, vehicles (such as smart driving), drones, game consoles, PDAs (Personal Digital Assistants, personal digital assistants). Digital assistants), home appliances, and other terminal equipment with camera functions.
  • the terminal device 30 will have a telephoto capability.
  • the camera module 200 when the camera module 200 is applied to a smart phone, the camera module 200 can be used as a front camera module of the smart phone. At this time, the camera module 200 may be a fixed focus module.
  • the camera module 200 When the camera module 200 is used as the rear camera module of the smart phone 10, the camera module 200 may be a focusable module.
  • a camera module with a telephoto function and a camera module with a wide-angle camera function can also be installed in the terminal device 30 at the same time, so that the user can select different camera functions.
  • the "electronic device” used in the embodiments of the present invention may include, but is not limited to, being set to be connected via a wired line (such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular network, wireless local area network (WLAN), such as handheld digital video broadcasting (digital video) Broadcasting handheld, DVB-H) network digital TV network, satellite network, amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or another communication terminal's wireless interface to receive/transmit communication signals installation.
  • a wired line such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network
  • WLAN wireless local area network
  • WLAN wireless local area network
  • AM-FM amplitude modulation-frequency modulation
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学***(100),光学***(100)由物侧至像侧依次包括:具有正屈折力的第一透镜(L1),第一透镜(L1)的物侧面(S1)和像侧面(S2)均为凸面;具有负屈折力的第二透镜(L2),第二透镜(L2)的物侧面(S3)和像侧面(S4)均为凹面;具有负屈折力的第三透镜(L3);具有负屈折力的第四透镜(L4);具有负屈折力的第五透镜(L5);及具有正屈折力的第六透镜(L6)。

Description

光学***、摄像模组及终端设备 技术领域
本发明涉及光学成像领域,特别是涉及一种光学***、摄像模组及终端设备。
背景技术
随着智能手机的普及,大众对于手机摄像的要求日益提升,特别是在远景拍摄的需求上尤为突出。但对于一般的摄像模组而言,摄像模组中的光学***的有效焦距难以满足远摄的条件,在远摄的成像性能较差,无法满足用户对远景拍摄的要求。
发明内容
根据本申请的各种实施例,提供一种光学***、摄像模组及终端设备。
一种光学***,由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面和像侧面均为凸面;
具有负屈折力的第二透镜,所述第二透镜的物侧面和像侧面均为凹面;
具有负屈折力的第三透镜;
具有负屈折力的第四透镜;
具有负屈折力的第五透镜;及
具有正屈折力的第六透镜。
一种摄像模组,包括感光元件及上述实施例所述的光学***,所述感光元件设置于所述第六透镜的像侧。
一种终端设备,包括上述实施例所述的摄像模组。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中光学***的示意图;
图2为本申请第一实施例中光学***的1.0视场的像差图;
图3为本申请第一实施例中光学***的0.5视场的像差图;
图4为本申请第一实施例中光学***的0视场的像差图;
图5为本申请第二实施例中光学***的示意图;
图6为本申请第二实施例中光学***的1.0视场的像差图;
图7为本申请第二实施例中光学***的0.5视场的像差图;
图8为本申请第二实施例中光学***的0视场的像差图;
图9为本申请第三实施例中光学***的示意图;
图10为本申请第三实施例中光学***的1.0视场的像差图;
图11为本申请第三实施例中光学***的0.5视场的像差图;
图12为本申请第三实施例中光学***的0视场的像差图;
图13为本申请一实施例中应用光学***的摄像模组的示意图;
图14为本申请一实施例中应用摄像模组的终端设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参考图1,本申请一实施例提供一种光学***100,光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。
第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12,光学***100还包括位于第六透镜L6像侧的成像面S15,成像面S15可以为感光元件的感光表面。
第一透镜L1的物侧面S1和像侧面S2均为凸面,第二透镜L2的物侧面S3和像侧面S4均为凹面。
在上述光学***100中,第一透镜L1能够为光学***100提供正屈折力,以缩短光学***100的光学总长,且由于第一透镜L1的物侧面S1为凸面,因此能够加强第一透镜L1的正屈折力,使光学***100的光学总长进一步缩短,有利于实现小型化设计。第二透镜L2为光学***100提供负屈折力,以平衡第一透镜L1所产生的色差及球差,从而使光学***100能够校正轴上色差及球差。同时,由于第二透镜L2的像侧面S4为凹面,从而还能够防止过度校正球差。第四透镜L4为光学***100提供负屈折力,从而能够良好地校正场曲。另外,第六透镜L6为光学***100提供正屈折力,且对光学***100进行最后的校正,同时配合物侧的各透镜,以形成具备远摄效果的光学***100。
在一些实施例中,第六透镜L6的物侧面S11为凸面,此时,可进一步加强第六透镜L6的正屈折力,从而对物侧多片具有负屈折力的透镜(第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5)所产生的像差进行有效矫正。
在一些实施例中,光学***100包括孔径光阑,孔径光阑为独立于各透镜的元件,孔径光阑可以设置于第一透镜L1的物侧,或第一透镜L1与第六透镜L6之间。在另一些实施例中,孔径光阑也可位于第一透镜L1至第六透镜L6中任一透镜的表面上(如物侧面或像侧面),与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。优选的,孔径光阑位于第二透镜L2的物侧面S3上。
在一些实施例中,光学***100中各透镜的物侧面和像侧面均为非球面,非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学***100中各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学***100中任一透镜的表面可以是非球面或球面。
在一些实施例中,第六透镜L6的像侧面S12存在至少一个反曲点,具体的,其中一个实施例中的第六透镜L6的像侧面S12由光轴处至边缘处的面型依次呈凸面、凹面及凸 面。当透镜的表面为非球面时,可参考非球面公式:
Figure PCTCN2019111417-appb-000001
其中,Z为非球面上任一点与表面顶点的纵向距离,r为非球面上任一点到光轴的距离,c为顶点曲率(曲率半径的倒数),k为圆锥常数,A、B、C、D、E、F、G…为非球面系数。
在一些实施例中,光学***100中的各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少光学***100的重量并降低生产成本,而玻璃材质的透镜使光学***100具备优良的光学性能以及较高的耐温的特性。需要注意的是,光学***100中各透镜的材质也可以玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。在一些实施例中,第一透镜L1的材质为玻璃,而光学***100中其他透镜的材质为塑料,从而光学***100能够耐受物侧较高的温度,同时还能保持较低的生产成本。
在一些实施例中,光学***100还包括红外截止滤光片L7,红外截止滤光片L7设置于第六透镜L6与成像面S15之间,红外截止滤光片L7包括物侧面S13及像侧面S14。红外截止滤光片L7能够滤除红外光,防止红外光到达成像面S15而对感光元件造成成像干扰。
在一些实施例中,光学***100满足关系:2.0≤FNO≤10.0;FNO为光学***100的光圈数。FNO可以为2.95、2.96或2.97。
在一些实施例中,光学***100满足关系:0.75≤TTL/f≤1.25;TTL为光学***100的光学总长,即第一透镜L1的物侧面S1至光学***100的成像面S15于光轴上的距离,f为光学***100的有效焦距。TTL/f可以为0.81、0.82、0.83或0.84。在满足上述关系的条件下,当光学***100的光学总长保持不变时,上述关系式的数值越小则光学***100的有效焦距越长,视场角减小,从而光学***100具备远摄特性;在满足上述关系的条件下,当光学***100的光学总长保持不变时,上述关系式的数值越大则光学***100的有效焦距越短,视场角增大,从而光学***100具备广角特性。另外,当低于下限时,会导致像侧透镜***的焦度变小从而容易产生倍率色像差,图像的分辨率降低。高于上限时,则会导致光学***100的整体尺寸变大,光学***100的总长和其中的透镜的半径也会过大。因此,满足上述关系时,能够得到高分辨率的图像,并使光学***100更为紧凑。
在一些实施例中,光学***100满足关系:0.51≤TLENS/TTL≤0.71;TLENS为第一透镜L1的物侧面S1至第六透镜L6的像侧面S12于光轴上的距离,TTL为光学***100的光学总长。TLENS/TTL可以为0.597、0.600、0.605、0.610、0.615、0.620或0.625。满足上述关系时,比值越小,则光学***100于光轴方向的尺寸缩小,且装载光学***100的镜筒的长度也会缩短,从而有利于镜筒的成型;比值越大,则有利于降低光学***100的设计难度。当TLENS/TTL>0.71时,光学***100的光学后焦较短,不利于组装;当TLENS/TTL<0.51时,透镜之间的排布过于紧凑而不利于光学***100的设计,同时降低整个***的光学性能。
在一些实施例中,光学***100满足关系:0.16≤f1/f≤0.59;f1为第一透镜L1的焦距,f为光学***100的有效焦距。f1/f可以为0.367、0.370、0.372、0.377、0.379、0.381、0.383或0.384。满足上述关系式时,第一透镜L1具有合适的焦距,有利于光学***100的屈折力分配及优化,进而使光学***100具有理想的光学性能。
在一些实施例中,当光学***100与感光元件装配成摄像模组,摄像模组满足关系:1≤TTL/IMA≤3;TTL为光学***100的光学总长,IMA为感光元件的有效像素区域的对角距离。TTL/IMA可以为2.02、2.03、2.05、2.08、2.10、2.11或2.12。在满足上述关系的条件下,当光学***100的光学总长确定时,感光元件的有效像素区域的对角距离越大 则光学***100越具备广角特性,感光元件的有效像素区域的对角距离越小则越具备远摄特性。当感光元件的有效像素区域的对角距离变为原来的两倍时,光学***100的尺寸也可同步放大成原来的两倍,此时的光圈数及视场角保持不变。满足上述关系时还有利于感光元件接收完整的光信息,同时还有利于摄像模组的小型化设计。
第一实施例
参考图1,第一实施例中的光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图2、图3和图4为第一实施例中光学***100的像差图。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面。
第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凹面。
第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凹面。
第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学效果,进而使光学***100具备小型化特性。其中第六透镜L6的像侧面S12由光轴处至边缘处的面型依次呈凸面、凹面及凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学***100的重量,同时还能降低生产成本。
第六透镜L6的像侧还设置有玻璃材质的红外截止滤光片L7,以滤除红外光,防止红外光对成像造成影响。红外截止滤光片L7的材质为玻璃。红外截止滤光片L7可以属于光学***100的一部分,与各透镜一同装配,或者也可在光学***100与感光元件装配时一同安装。
第一实施例中的光学***100满足关系:TTL/f=0.8;TTL为光学***100的光学总长,f为光学***100的有效焦距。满足上述关系时,能够得到高分辨率的图像,并使光学***100更为紧凑。
光学***100满足关系:TLENS/TTL=0.625;TLENS为第一透镜L1的物侧面S1至第六透镜L6的像侧面S12于光轴上的距离,TTL为光学***100的光学总长。满足上述关系时,有利于在镜筒成型及设计难易度之间取得平衡。
光学***100满足关系:f1/f=0.364;f1为第一透镜L1的焦距,f为光学***100的有效焦距。满足上述关系式时,第一透镜L1具有合适的焦距,有利于光学***100的屈折力分配及优化,进而使光学***100具有理想的光学性能。
当光学***100与感光元件装配成摄像模组,摄像模组满足关系:TTL/IMA=2.00;TTL为光学***100的光学总长,IMA为感光元件的有效像素区域的对角距离。满足上述关系时还有利于感光元件接收完整的光信息,同时还有利于摄像模组的小型化设计。感光元件的有效像素区域的对角距离IMA=5.0mm。
另外,光学***100的各项参数由表1和表2给出。表1中的像平面为光学***100的成像面S15,由物平面至成像面S15的各元件依次按照表1从上至下的各元件的顺序排列。表1中的曲率半径为相应面序号的物侧面或像侧面的光轴处的曲率半径。表面1和表面2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,表面编号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面于光轴上的距离。表2为光学***100中各透镜的非球面系数,其中的k为圆锥常数,A、 B、C、D、E、F、G…为非球面系数。
各透镜的焦距为546nm波长下的数值,折射率与阿贝数为587.6nm波长下的数值。
在第一实施例中,光学***100的有效焦距f=12.501mm,光圈数为FNO=2.95,光学***100于有效像素区域对角线方向的最大视场角为FOV(deg)=22.1°,第一透镜L1的物侧面S1到成像面S15于光轴上的距离为TTL=10.001mm。
第一透镜L1的焦距为f1=4.556mm,第二透镜L2的焦距为f2=-8.709mm,第三透镜L3的焦距为f3=-49.494mm,第四透镜L4的焦距为f4=-12.192mm,第五透镜L5的焦距为f5=-8.647mm,第六透镜L6的焦距为f6=12.112mm。孔径光阑位于第二透镜L2的物侧面S3上。
表1
Figure PCTCN2019111417-appb-000002
表2
Figure PCTCN2019111417-appb-000003
Figure PCTCN2019111417-appb-000004
第二实施例
参考图5,第二实施例中的光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图6、图7和图8为第二实施例中光学***100的像差图。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面。
第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凹面。
第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凹面。
第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学效果,进而使光学***100具备小型化特性。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学***100的重量,同时还能降低生产成本。
光学***100的各参数由表3、表4和表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure PCTCN2019111417-appb-000005
表4
Figure PCTCN2019111417-appb-000006
Figure PCTCN2019111417-appb-000007
表5
Figure PCTCN2019111417-appb-000008
Figure PCTCN2019111417-appb-000009
根据上述所提供的各参数信息,可推得以下关系:
Figure PCTCN2019111417-appb-000010
第三实施例
参考图9,第三实施例中的光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图10、图11和图12为第三实施例中光学***100的像差图。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面。
第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凹面。
第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面。
第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凸面。
第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学效果,进而使光学***100具备小型化特性。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学***100的重量,同时还能降低生产成本。
光学***100的各参数由表6、表7和表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure PCTCN2019111417-appb-000011
表7
Figure PCTCN2019111417-appb-000012
Figure PCTCN2019111417-appb-000013
表8
Figure PCTCN2019111417-appb-000014
根据上述所提供的各参数信息,可推得以下关系:
Figure PCTCN2019111417-appb-000015
Figure PCTCN2019111417-appb-000016
参考图13,在一些实施例中,光学***100与感光元件210组装以形成摄像模组200,感光元件210设置于光学***100中第六透镜L6的像侧。第六透镜L6与感光元件之间可设置红外截止滤光片L7,以防止红外光对可见光成像的干扰。感光元件210可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。通过采用光学***100,摄像模组200将具备远摄能力。
在一些实施例中,感光元件210与光学***100中的各透镜的距离相对固定,此时,摄像模组200为定焦模组。在另一些实施例中,可通过设置音圈马达等驱动元件以使感光元件210能够相对光学***100中的各透镜相对移动,从而实现对焦效果。具体地,驱动元件可驱动装载光学***100的各透镜的镜筒移动以实现上述对焦功能。在一些实施例中,也可通过搭配算法以控制光学***100中的至少一个透镜相对其他透镜移动,从而实现光学变焦效果。
在一些实施例中,摄像模组200应用于电子装置。进一步可参考图14,摄像模组200可应用于终端设备30,例如应用于智能手机、智能手表、平板电脑、车载(如智能驾驶)、无人机、游戏机、PDA(Personal Digital Assistant,个人数字助理)、家电产品等附有照相功能的终端设备。通过采用上述摄像模组200,终端设备30将具备远摄能力。具体的,当摄像模组200应用于智能手机时,摄像模组200能够作为智能手机的前置摄像模组,此时的摄像模组200可以为定焦模组。当摄像模组200作为智能手机10的后置摄像模组时,摄像模组200可以为可对焦模组。另外,在一些实施例中,终端设备30中也可同时安装具有远摄功能的摄像模组以及具有广角摄像功能的摄像模组,从而用户可选择不同摄像的功能。
本发明实施例中所使用到的“电子装置”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性 或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种光学***,由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面和像侧面均为凸面;
    具有负屈折力的第二透镜,所述第二透镜的物侧面和像侧面均为凹面;
    具有负屈折力的第三透镜;
    具有负屈折力的第四透镜;
    具有负屈折力的第五透镜;及
    具有正屈折力的第六透镜。
  2. 根据权利要求1所述的光学***,其特征在于,包括孔径光阑,所述孔径光阑满足以下任意一种:
    所述孔径光阑设置于所述第一透镜的物侧;
    所述孔径光阑设置于所述第一透镜与所述第六透镜之间;
    所述孔径光阑位于所述第一透镜至所述第六透镜中的任一透镜的表面上。
  3. 根据权利要求1所述的光学***,其特征在于,满足以下关系:
    2.0≤FNO≤10.0;
    FNO为所述光学***的光圈数。
  4. 根据权利要求1所述的光学***,其特征在于,所述第六透镜的物侧面为凸面。
  5. 根据权利要求1所述的光学***,其特征在于,满足以下关系:
    0.75≤TTL/f≤1.25;
    TTL为所述光学***的光学总长,f为所述光学***的有效焦距。
  6. 根据权利要求1所述的光学***,其特征在于,满足以下关系:
    0.51≤TLENS/TTL≤0.71;
    TLENS为所述第一透镜的物侧面至所述第六透镜的像侧面于光轴上的距离,TTL为所述光学***的光学总长。
  7. 根据权利要求1所述的光学***,其特征在于,满足以下关系:
    0.16≤f1/f≤0.59;
    f1为所述第一透镜的焦距,f为所述光学***的有效焦距。
  8. 根据权利要求1所述的光学***,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜的物侧面和像侧面均为非球面。
  9. 根据权利要求1所述的光学***,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜的材质均为塑料。
  10. 根据权利要求1所述的光学***,其特征在于,包括红外截止滤光片,所述红外截止滤光片设置于所述第六透镜的像侧。
  11. 一种摄像模组,其特征在于,包括感光元件及权利要求1-10任一项所述的光学***,所述感光元件设置于所述第六透镜的像侧。
  12. 根据权利要求11所述的摄像模组,其特征在于,满足以下关系:
    1≤TTL/IMA≤3;
    TTL为所述光学***的光学总长,IMA为所述感光元件的有效像素区域的对角距离。
  13. 一种终端设备,其特征在于,包括权利要求11或12所述的摄像模组。
PCT/CN2019/111417 2019-10-16 2019-10-16 光学***、摄像模组及终端设备 WO2021072669A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111417 WO2021072669A1 (zh) 2019-10-16 2019-10-16 光学***、摄像模组及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111417 WO2021072669A1 (zh) 2019-10-16 2019-10-16 光学***、摄像模组及终端设备

Publications (1)

Publication Number Publication Date
WO2021072669A1 true WO2021072669A1 (zh) 2021-04-22

Family

ID=75538164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111417 WO2021072669A1 (zh) 2019-10-16 2019-10-16 光学***、摄像模组及终端设备

Country Status (1)

Country Link
WO (1) WO2021072669A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107765393A (zh) * 2016-08-22 2018-03-06 大立光电股份有限公司 影像镜片组、取像装置及电子装置
CN109375342A (zh) * 2015-10-20 2019-02-22 大立光电股份有限公司 图像撷取透镜***及取像装置
US20190302426A1 (en) * 2014-12-30 2019-10-03 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190302426A1 (en) * 2014-12-30 2019-10-03 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
CN109375342A (zh) * 2015-10-20 2019-02-22 大立光电股份有限公司 图像撷取透镜***及取像装置
CN109491059A (zh) * 2015-10-20 2019-03-19 大立光电股份有限公司 图像撷取透镜***、取像装置及电子装置
US20190101730A1 (en) * 2015-10-20 2019-04-04 Largan Precision Co., Ltd. Image capturing lens system, image capturing apparatus and electronic device
CN107765393A (zh) * 2016-08-22 2018-03-06 大立光电股份有限公司 影像镜片组、取像装置及电子装置

Similar Documents

Publication Publication Date Title
WO2020073978A1 (zh) 光学透镜组、取像模组和电子装置
WO2021179207A1 (zh) 光学***、摄像模组及电子装置
WO2021109127A1 (zh) 光学***、摄像模组及电子装置
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
US11953756B2 (en) Optical system, image capturing module and electronic device
CN114114650B (zh) 光学镜头及成像设备
WO2020220444A1 (zh) 光学镜头、取像模组及移动终端
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
CN210720851U (zh) 光学***、摄像模组及终端设备
WO2021102943A1 (zh) 光学***、摄像模组及电子装置
WO2021164013A1 (zh) 光学***、摄像模组、电子装置及汽车
WO2020258269A1 (zh) 成像镜头、摄像模组及电子装置
CN112596210A (zh) 光学***、摄像模组及电子设备
WO2021072745A1 (zh) 光学成像***、取像装置及电子装置
WO2021138754A1 (zh) 光学***、摄像模组及电子装置
WO2022236663A1 (zh) 光学变焦***、变焦模组及电子设备
CN114326019B (zh) 光学***、取像模组及电子设备
CN113448062B (zh) 广角镜头及成像设备
CN113741008B (zh) 光学***、取像模组及电子设备
WO2021072669A1 (zh) 光学***、摄像模组及终端设备
WO2022160119A1 (zh) 光学***、摄像模组及电子设备
CN215416068U (zh) 光学***、取像模组及电子设备
CN112630944B (zh) 光学镜头及成像设备
WO2022109820A1 (zh) 光学***、摄像模组及电子设备
WO2022120678A1 (zh) 光学***、取像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949338

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19949338

Country of ref document: EP

Kind code of ref document: A1