WO2021072667A1 - 一种高精度科式流量计的检测方法 - Google Patents

一种高精度科式流量计的检测方法 Download PDF

Info

Publication number
WO2021072667A1
WO2021072667A1 PCT/CN2019/111408 CN2019111408W WO2021072667A1 WO 2021072667 A1 WO2021072667 A1 WO 2021072667A1 CN 2019111408 W CN2019111408 W CN 2019111408W WO 2021072667 A1 WO2021072667 A1 WO 2021072667A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
analog
conditioning circuit
digital
vibration detection
Prior art date
Application number
PCT/CN2019/111408
Other languages
English (en)
French (fr)
Inventor
刘学东
马春利
童杰林
常寿兵
王涛
Original Assignee
沃森测控技术(河北)有限公司
沃森有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沃森测控技术(河北)有限公司, 沃森有限公司 filed Critical 沃森测控技术(河北)有限公司
Publication of WO2021072667A1 publication Critical patent/WO2021072667A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Definitions

  • the Coriolis flowmeter makes the measuring tube vibrate at the resonance frequency through the driver. Because the Coriolis force is exactly opposite to the direction of vibration in the inlet and outlet sections, there is a time difference between the vibration signals of the inlet and outlet sections. This time difference signal and the mass flow rate Proportionally, the existing Coriolis flowmeter processes two vibration signals and calculates a time difference, thereby calculating a mass flow. In the production process that requires continuous mass flow data, if the vibration detection element has a measurement error, it needs to be suspended In the production process, the production materials in the event of failure need to be scrapped, which will cause economic losses.
  • the flow calculation data may have deviations, and large errors will occur in high-precision flow measurement.
  • two flowmeters are usually used in series operation for mutual comparison, which can improve the accuracy of flowmeter measurement and field verification.
  • the specific technical scheme adopted by the present invention is: a detection method of high-precision K-type flowmeter, the key is that the method includes the following steps:
  • N vibration detection elements are set on the measuring tube of the flowmeter, N ⁇ 4 and an even number. Every two vibration detection elements are a group, and the two vibration detection elements of the same group are located in the measuring tube. On the inlet side and outlet side of the vibration detection element, each vibration detection element sends the collected vibration signal to the signal collection and conditioning circuit connected to it;
  • the signal acquisition and conditioning circuit processes the received vibration signal to obtain a conditioning signal
  • the conditioning signal is sent to the processing module, the processing module calculates at least two time differences, and the processing module calculates all the time differences to obtain at least two mass flow rates. At this time:
  • the processing module directly sends out an alarm signal to remind the flow meter to be replaced;
  • the processing module will average all the mass flow rates within the threshold value range and then output the flow measurement value and drive signal.
  • the drive signal passes through the digital-to-analog converter D/A. It is sent to the excitation element (Exc).
  • the signal acquisition and conditioning circuit includes and A first signal collection and conditioning circuit connected to the first vibration detection element, a second signal collection and conditioning circuit connected to the second vibration detection element, a third signal collection and conditioning circuit connected to the third vibration detection element, and a fourth vibration detection element The connected fourth signal acquisition and conditioning circuit.
  • the processing module includes a first analog-to-digital converter, a first digital signal processor connected to the output terminal of the first analog-to-digital converter, a second analog-to-digital converter, and an output terminal connected to the second analog-to-digital converter
  • the output ends of the connected second digital signal processor, the first signal acquisition and conditioning circuit and the second signal acquisition and conditioning circuit are all connected to the input of the first analog-to-digital converter, and the first digital signal processor is provided with a flow calculation Information output terminal, drive signal output terminal, alarm signal output terminal; the output terminals of the third signal acquisition and conditioning circuit and the fourth signal acquisition and conditioning circuit are all connected to the input terminal of the second analog-to-digital converter, and the second digital signal processor
  • the data interface is connected with the first digital signal processor, and the second digital signal processor is provided with a flow calculation information data interface.
  • the processing module includes a fifth analog-to-digital converter, and a fifth digital signal processor connected to the output terminal of the fifth analog-to-digital converter, a first signal acquisition and conditioning circuit, a second signal acquisition and conditioning circuit, and a third signal
  • the output ends of the acquisition and conditioning circuit and the fourth signal acquisition and conditioning circuit are connected to the input of the fifth digital signal processor.
  • the fifth digital signal processor is provided with a flow calculation information output terminal, a drive signal output terminal, and an alarm signal output. end.
  • the beneficial effect of the present invention is: by providing at least two pairs of vibration detection elements (such as magnet/coil induction speed) and corresponding signal acquisition and conditioning circuits, the transmitter can realize the acquisition of signals from multiple vibration detection elements of the flowmeter.
  • the vibration information of multiple positions of the flowmeter can be obtained in real time.
  • at least four vibration signals at least two time difference signals can be obtained, and all the time differences can be calculated.
  • the processing module will average all the mass flow rates within the threshold range and then give a more accurate flow measurement value to reduce the measurement uncertainty. As long as there is a mass flow rate that is not within the set threshold, an alarm signal can be issued to remind the flowmeter to be replaced, which can achieve the purpose of flowmeter failure detection and alarm.
  • the present invention can not only reduce the uncertainty of the mass flow rate, but also verify the accuracy of the measurement result online, achieving two birds with one stone.
  • Fig. 1 is a schematic diagram of the installation positions of the vibration detection element and the excitation element in the present invention.
  • Fig. 3 is a schematic block diagram of the second embodiment of the present invention.
  • Fig. 4 is a schematic block diagram of the third embodiment of the present invention.
  • Exc represents the excitation element
  • S11 represents the first vibration detection element
  • S21 represents the second vibration detection element
  • S12 represents the third vibration detection element
  • S22 represents the fourth vibration detection element
  • A1 represents the first signal acquisition and conditioning circuit
  • A2 represents the second signal acquisition and conditioning circuit
  • A3 represents the third signal acquisition and conditioning circuit
  • A4 represents the fourth signal acquisition and conditioning circuit
  • A/D1 represents the first analog-to-digital converter
  • A/D2 represents the second analog-to-digital converter
  • a /D3 represents the third analog-to-digital converter
  • A/D4 represents the fourth analog-to-digital converter
  • A/D5 represents the fifth analog-to-digital converter
  • DSP1 represents the first digital signal processor
  • DSP2 represents the second digital signal processor.
  • DSP3 represents the third digital signal processor
  • DSP4 represents the fourth digital signal processor
  • DSP5 represents the fifth digital signal processor
  • D/A represents the digital-to-analog converter.
  • a detection method of a high-precision K-type flowmeter includes the following steps:
  • the first vibration detection element S11 sends the collected vibration signal to the first signal collection and conditioning circuit A1 connected to it
  • the second vibration detection element S21 sends the collected vibration signal to the first signal collection and conditioning circuit A1 connected to it.
  • the second signal collection and conditioning circuit A2 the third vibration detection element S12 sends the collected vibration signal to the third signal collection and conditioning circuit A3 connected to it
  • the fourth vibration detection element S22 sends the collected vibration signal to the third signal collection and conditioning circuit A3 connected to it.
  • the fourth signal acquisition and conditioning circuit A4 where the vibration detection elements are all vibration sensors
  • the processing module in the present invention has the following three forms:
  • the output ends of the four-signal acquisition and conditioning circuit A4 are all connected to the input end of the second analog-to-digital converter A/D2, the data interface of the second digital signal processor DSP2 is connected to the first digital signal processor DSP1, and the second digital signal processor
  • the DSP2 is provided with a flow calculation information data interface, and the output terminals of the digital-to-analog converter D/A and the excitation element Exc are both connected to the input terminal of the first analog-to
  • the third digital signal processor DSP3 is provided with a drive signal output terminal and an alarm signal output terminal; the third signal acquisition and conditioning circuit A3 and the fourth signal acquisition and conditioning circuit A4 are The output ends are all connected to the input end of the fourth analog-to-digital converter A/D4, the fourth digital signal processor DSP4 is connected to the data interface of the third digital signal processor DSP3, and the fourth digital signal processor DSP4 is provided with a flow solution.
  • the output terminal of the arithmetic information, the output terminal of the digital-to-analog converter D/A and the excitation element Exc are all connected to the input terminal of the third analog-to-digital converter A/D3.
  • the control signal output by the digital signal processor can be fed back to the signal acquisition and conditioning circuit, and the amplitude of the four acquisition signals can be matched and adjusted.
  • the third digital signal processor DSP3 calculates the collected signals of the first vibration detection element S11 and the second vibration detection element S21, and the fourth digital signal processor DSP4 performs calculations on the third vibration detection element S12 and the fourth vibration detection element S22. Collect signals for calculation, and allocate the commitments of the third digital signal processor DSP3 and the fourth digital signal processor DSP4 according to the amount of calculation. For example, the third digital signal processor DSP3 completes the digital phase-locked excitation drive and the first vibration The detection element S11 and the second vibration detection element S21 are used to resolve the collected signals.
  • one flow meter can be used to realize the continuous flow data output that can be realized only by two meters.
  • the present invention can also realize flow meter self-checking, that is, when the solution result of a pair of "vibration detection elements" is abnormal, by comparing the measured mass flow with the set threshold, or by comparing with the initial coil driving voltage and the meter.
  • the comparison of the current value and the phase difference and amplitude value of the initial measuring tube vibration of the instrument can know that there is an abnormality inside the instrument.
  • the instrument will send out an alarm signal.
  • the instrument can still use the normal pair of "vibration detection elements" to complete the mass flow measurement, and it can also meet the flow detection accuracy of the conventional Coriolis flowmeter.
  • the output of mass flow data is completed without stopping the operation of the production line, and there is no need for the host computer to switch after receiving the abnormal flow signal, which ensures the continuity of the flow data in production.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种高精度科式流量计的检测方法,包括采集振动信号、信号调理、信号处理,通过对至少四个振动信号的处理,获得至少两个时间差信号,通过对所有的时间差进行计算,得出至少两个质量流量,处理模块将得出的所有在阈值范围内的质量流量求平均值后给出更精确的流量测量值,以减小测量的不确定度。只要有一个质量流量不在设定的阈值范围内,就可以发出报警信号提醒更换流量计,可以实现流量计故障检测报警的目的。

Description

一种高精度科式流量计的检测方法 技术领域
本发明属于仪器仪表技术领域,涉及到一种流量计,特别是一种高精度科式流量计的检测方法。
背景技术
科氏流量计通过驱动器使测量管在共振频率下振动,由于科氏力在入口段和出口段正好和振动方向反向,入口段和出口段的振动信号存在时间差,这个时间差信号和质量流量成正比,现有的科氏流量计通过处理两个振动信号,解算出一个时间差,从而计算出一个质量流量,在需要连续质量流量数据的生产过程中,如果振动检测元件出现计量错误,则需要暂停生产过程,出现故障时的生产材料需要报废,会造成经济损失。
在实际应用中,由于流体状态的变化和长期运行后传感器振动特性的变化,使得流量计算数据可能产生偏差,在高精度流量计量中会产生较大误差。在这种情况下,通常采用两个流量计串联运行,进行相互对照,可以提高流量计量精度和现场验证。
利用两个流量计串联工作,虽然能够解决问题,但是成本会非常大,而且在很多现场条件下没有空间安装两个流量计,因而需要一个非常紧凑而且高效的解决方案。
发明内容
本发明为了克服现有技术的缺陷,设计了一种高精度科式流量计的检测方法,实现多组振动检测元件之间的互相协查,在出现故障时提供实时的报警信息;在正常情况下,处理模块将得出的所有质量流量求平均值后 给出更精确的流量测量值,以减小测量的不确定度,实现流量计单体的流量自校准和故障检测报警的目的。
本发明所采取的具体技术方案是:一种高精度科式流量计的检测方法,关键在于:所述的方法包括以下步骤:
A、采集振动信号:在流量计的测量管上设置有N个振动检测元件,N≥4且是偶数,每两个振动检测元件为一组,同一组的两个振动检测元件分别位于测量管的进口侧、出口侧,每个振动检测元件都将采集到的振动信号发送给与其连接的信号采集调理电路;
B、信号调理:信号采集调理电路对其接收到的振动信号进行处理得到调理信号;
C、信号处理:调理信号被输送到处理模块中,处理模块经过计算得出至少两个时间差,处理模块对所有时间差进行计算后得出至少两个质量流量,此时:
C1、如果至少有一个质量流量超出设定的阈值范围且至少有一个质量流量在设定的阈值范围内,则处理模块对所有在阈值范围内的质量流量求平均值后输出流量测量值和驱动信号,驱动信号经过数模转换器D/A被送入到激励元件(Exc)中,同时处理模块还会发出报警信号,提醒更换流量计;
C2、如果所有的质量流量都超出设定的阈值范围,则处理模块直接发出报警信号,提醒更换流量计;
C3、如果所有的质量流量都在设定的阈值范围内,则处理模块对所有在阈值范围内的质量流量求平均值后输出流量测量值和驱动信号,驱动信号经过数模转换器D/A被送入到激励元件(Exc)中。
在流量计的测量管上设置有四个振动检测元件,分别为第一振动检测元件、第二振动检测元件、第三振动检测元件和第四振动检测元件,对应地,信号采集调理电路包括与第一振动检测元件连接的第一信号采集调理电路、与第二振动检测元件连接的第二信号采集调理电路、与第三振动检测元件连接的第三信号采集调理电路、与第四振动检测元件连接的第四信号采集调理电路。
所述的处理模块包括第一模数转换器、与第一模数转换器的输出端连接的第一数字信号处理器、第二模数转换器、以及与第二模数转换器的输出端连接的第二数字信号处理器,第一信号采集调理电路和第二信号采集调理电路的输出端都与第一模数转换器的输入端连接,第一数字信号处理器上设置有流量解算信息输出端、驱动信号输出端、报警信号输出端;第三信号采集调理电路和第四信号采集调理电路的输出端都与第二模数转换器的输入端连接,第二数字信号处理器的数据接口与第一数字信号处理器连接,第二数字信号处理器上设置有流量解算信息数据接口。
所述的处理模块包括第三模数转换器、与第三模数转换器的输出端连接的第三数字信号处理器、第四模数转换器、以及与第四模数转换器的输出端连接的第四数字信号处理器,第一信号采集调理电路和第二信号采集调理电路的输出端都与第三模数转换器的输入端连接,第三数字信号处理器上设置有驱动信号输出端、报警信号输出端;第三信号采集调理电路和第四信号采集调理电路的输出端都与第四模数转换器的输入端连接,第四数字信号处理器与第三数字信号处理器的数据接口连接,第四数字信号处理器上设置有流量解算信息输出端。
所述的处理模块包括第五模数转换器、以及与第五模数转换器的输出 端连接的第五数字信号处理器,第一信号采集调理电路、第二信号采集调理电路、第三信号采集调理电路和第四信号采集调理电路的输出端都与第五数字信号处理器的输入端连接,第五数字信号处理器上设置有流量解算信息输出端、驱动信号输出端、报警信号输出端。
本发明的有益效果是:通过设置至少两对振动检测元件(比如磁钢/线圈感应速度)和相应的信号采集调理电路,使得变送器能够实现对流量计多个振动检测元件的信号的获取,在此基础上,在仪表运行中,可实时获得流量计多个位置的振动信息,通过对至少四个振动信号的处理,获得至少两个时间差信号,通过对所有的时间差进行计算,得出至少两个质量流量,处理模块将得出的所有在阈值范围内的质量流量求平均值后给出更精确的流量测量值,以减小测量的不确定度。只要有一个质量流量不在设定的阈值范围内,就可以发出报警信号提醒更换流量计,可以实现流量计故障检测报警的目的。
只要有一个质量流量处于正常范围内就可以提供正确的流量数据,即使处于报警状态下,仪器仍然可以使用正常的那对“振动检测元件”完成流量的测量,还可以在满足常规科里奥利流量计的流量检测精度情况下完成流量数据输出,不需要停止生产线运行。
基于质量流量相等的原理,正常情况下所有的质量流量都应当非常接近,在设定的阈值范围内。通过将测得的质量流量与设定的阈值相比较、或者是质量流量之间进行比较,即可在线验证测量结果是否准确。所以本发明既可以减小质量流量的不确定度,又可以在线验证测量结果的准确性,一举两得。
附图说明
图1为本发明中振动检测元件和激励元件的安装位置示意图。
图2为本发明第一实施例的原理框图。
图3为本发明第二实施例的原理框图。
图4为本发明第三实施例的原理框图。
附图中,Exc代表激励元件,S11代表第一振动检测元件,S21代表第二振动检测元件,S12代表第三振动检测元件,S22代表第四振动检测元件,A1代表第一信号采集调理电路,A2代表第二信号采集调理电路,A3代表第三信号采集调理电路,A4代表第四信号采集调理电路,A/D1代表第一模数转换器,A/D2代表第二模数转换器,A/D3代表第三模数转换器,A/D4代表第四模数转换器,A/D5代表第五模数转换器,DSP1代表第一数字信号处理器,DSP2代表第二数字信号处理器,DSP3代表第三数字信号处理器,DSP4代表第四数字信号处理器,DSP5代表第五数字信号处理器,D/A代表数模转换器。
具体实施方式
下面结合附图和具体实施例对本发明做详细说明:
实施例、一种高精度科式流量计的检测方法,所述的方法包括以下步骤:
A、采集振动信号:如图1所示,在流量计的测量管上设置有四个振动检测元件,分别为第一振动检测元件S11、第二振动检测元件S21、第三振动检测元件S12和第四振动检测元件S22,第一振动检测元件S11和第三振动检测元件S12位于流量管的同一侧,第二振动检测元件S21和第四振动检测元件S22位于流量管的另一侧,第一振动检测元件S11和第二振动检测元件S21属于同一组且二者的位置左右对称设置,第三振动检测元件 S12和第四振动检测元件S22属于同一组且二者的位置左右对称设置,激励元件Exc位于流量管顶部的中心处;
如图2至图4所示,第一振动检测元件S11将采集到的振动信号发送给与其连接的第一信号采集调理电路A1,第二振动检测元件S21将采集到的振动信号发送给与其连接的第二信号采集调理电路A2,第三振动检测元件S12将采集到的振动信号发送给与其连接的第三信号采集调理电路A3,第四振动检测元件S22将采集到的振动信号发送给与其连接的第四信号采集调理电路A4;其中,振动检测元件都是振动传感器;
B、信号调理:第一信号采集调理电路A1、第二信号采集调理电路A2、第三信号采集调理电路A3、第四信号采集调理电路A4分别对其接收到的振动信号进行处理得到调理信号;第一信号采集调理电路A1、第二信号采集调理电路A2、第三信号采集调理电路A3、第四信号采集调理电路A4结构相同,都是包括低通滤波电路和运放电路,低通滤波电路可以去除干扰噪声,运放电路可以调整增益,使进入到模数转换器的信号幅值接近,并满足模数转换器采集信号的要求;
C、信号处理:
当有一对振动检测元件时,质量流量公式为Q=Kt F,上式中的t F是两个振动检测元件之间由流量造成的时间差,K是流量标定系数,Q是对于待测量的估计值,存在着一定的不确定度u Q
本发明中设置有两对振动检测元件,可以得到四个调理信号,调理信号被输送到处理模块中,处理模块经过计算得出两个时间差t F1、t F2,处理模块对两个时间差t F1、t F2进行计算后得出两个质量流量Q 1、Q 2,Q 1=K 1t F1,Q 2=K 2t F2,此时:
C1、如果一个质量流量(例如Q 1)超出设定的阈值范围且另一个质量流量(例如Q 2)在设定的阈值范围内,则处理模块将质量流量Q 2作为流量测量值输出,同时输出驱动信号,驱动信号经过数模转换器D/A被送入到激励元件(Exc)中,同时处理模块还会发出报警信号,提醒更换流量计;
C2、如果两个质量流量Q 1、Q 2都超出设定的阈值范围,则处理模块直接发出报警信号,提醒更换流量计;
C3、如果两个质量流量Q 1、Q 2都在设定的阈值范围内,则处理模块对两个质量流量求平均值后得到的
Figure PCTCN2019111408-appb-000001
即为流量测量值,处理模块输出流量测量值和驱动信号,驱动信号经过数模转换器D/A被送入到激励元件Exc中;
假设u Q≈u Q1≈u Q2而且Q 1和Q 2不相关,因为取平均值的原因,测量值Q 12的不确定度
Figure PCTCN2019111408-appb-000002
这表明用两组振动检测元件测量得到的质量流量不确定度相对比较小,减小了大约30%。
此外,因为两组振动检测元件测量同一个质量流量,正常情况下Q 1和Q 2非常接近。通过实时的比较这两个测量值,比如
Figure PCTCN2019111408-appb-000003
通过判断该测量值是否在允许的范围之内,即可在线验证测量结果是否准确。所以本发明既可以减小质量流量的不确定度,又可以在线验证测量结果的准确性,一举两得。
本发明中的处理模块有以下三种形式:
第一种,如图2所示,处理模块包括第一模数转换器A/D1、与第一模数转换器A/D1的输出端连接的第一数字信号处理器DSP1、第二模数转换 器A/D2、以及与第二模数转换器A/D2的输出端连接的第二数字信号处理器DSP2,第一信号采集调理电路A1和第二信号采集调理电路A2的输出端都与第一模数转换器A/D1的输入端连接,第一数字信号处理器DSP1上设置有流量解算信息输出端、驱动信号输出端、报警信号输出端;第三信号采集调理电路A3和第四信号采集调理电路A4的输出端都与第二模数转换器A/D2的输入端连接,第二数字信号处理器DSP2的数据接口与第一数字信号处理器DSP1连接,第二数字信号处理器DSP2上设置有流量解算信息数据接口,数模转换器D/A和激励元件Exc的输出端都与第一模数转换器A/D1的输入端连接。
这种处理模块的第一数字信号处理器DSP1负责数字锁相激励驱动、以及第一振动检测元件S11和第二振动检测元件S21采集信号的解算,在接收到第二数字信号处理器DSP2传送过来的第三振动检测元件S12和第四振动检测元件S22的解算数据后,根据上述的步骤C进行计算和输出。
第二种,如图3所示,处理模块包括第三模数转换器A/D3、与第三模数转换器A/D3的输出端连接的第三数字信号处理器DSP3、第四模数转换器A/D4、以及与第四模数转换器A/D4的输出端连接的第四数字信号处理器DSP4,第一信号采集调理电路A1和第二信号采集调理电路A2的输出端都与第三模数转换器A/D3的输入端连接,第三数字信号处理器DSP3上设置有驱动信号输出端、报警信号输出端;第三信号采集调理电路A3和第四信号采集调理电路A4的输出端都与第四模数转换器A/D4的输入端连接,第四数字信号处理器DSP4与第三数字信号处理器DSP3的数据接口连接,第四数字信号处理器DSP4上设置有流量解算信息输出端,数模转换器D/A和激励元件Exc的输出端都与第三模数转换器A/D3的输入端连接。
数字信号处理器输出的控制信号可以反馈给信号采集调理电路,对四路采集信号的幅值进行匹配调整。第三数字信号处理器DSP3对第一振动检测元件S11和第二振动检测元件S21的采集信号进行解算,第四数字信号处理器DSP4对第三振动检测元件S12和第四振动检测元件S22的采集信号进行解算,可以按照运算量分配第三数字信号处理器DSP3和第四数字信号处理器DSP4的承担量,例如第三数字信号处理器DSP3来完成数字锁相激励驱动、以及第一振动检测元件S11和第二振动检测元件S21采集信号的解算,第三数字信号处理器DSP3的报警信号输出端还连接有报警器;第四数字信号处理器DSP4在接收到第一数字信号处理器DSP1传送过来的第一振动检测元件S11和第二振动检测元件S21的解算数据后,根据上述的步骤C进行计算和输出。
第三种,如图4所示,处理模块包括第五模数转换器A/D5、以及与第五模数转换器A/D5的输出端连接的第五数字信号处理器DSP5,第一信号采集调理电路A1、第二信号采集调理电路A2、第三信号采集调理电路A3和第四信号采集调理电路A4的输出端都与第五数字信号处理器DSP5的输入端连接,第五数字信号处理器DSP5上设置有流量解算信息输出端、驱动信号输出端、报警信号输出端。第五数字信号处理器DSP5的两个内核共同完成计算过程,然后根据上述的步骤C进行计算和输出。数模转换器D/A和激励元件Exc的输出端都与第五模数转换器A/D5的输入端连接。
综上所述,本发明采用两对振动检测元件,获得两个不同检测点的时间差,通过数字信号处理器对时间差进行解算,此时,在一个仪表中将会出现两个质量流量数据,当两个质量流量都在设定的阈值范围内时,***对两个质量流量求平均值后得到的即是流量测量值,可以得到比单一算法 更为精准且稳定的流量数据。
使用本发明的方法,用一个流量计就可以实现上述需要两台仪表才能实现的连续流量数据输出。本发明还可以实现流量计自检,即在一对“振动检测元件”的解算结果出现异常时,通过测得的质量流量与设定阈值的比较,或者是通过与仪表初始线圈驱动电压和电流数值以及仪表初始测量管振动相位差和幅度数值的比较,即可获知仪器内部出现了异常。此时仪器会发出报警信号,即使处于报警状态下,仪器仍然可以使用正常的那对“振动检测元件”完成质量流量的测量,还可以在满足常规科里奥利流量计的流量检测精度情况下完成质量流量数据输出,不需要停止生产线运行,不需要上位机在收到流量异常信号后再进行切换,保证了生产中流量数据的连续性。

Claims (5)

  1. 一种高精度科式流量计的检测方法,其特征在于:所述的方法包括以下步骤:
    A、采集振动信号:在流量计的测量管上设置有N个振动检测元件,N≥4且是偶数,每两个振动检测元件为一组,同一组的两个振动检测元件分别位于测量管的进口侧、出口侧,每个振动检测元件都将采集到的振动信号发送给与其连接的信号采集调理电路;
    B、信号调理:信号采集调理电路对其接收到的振动信号进行处理得到调理信号;
    C、信号处理:调理信号被输送到处理模块中,处理模块经过计算得出至少两个时间差,处理模块对所有时间差进行计算后得出至少两个质量流量,此时:
    C1、如果至少有一个质量流量超出设定的阈值范围且至少有一个质量流量在设定的阈值范围内,则处理模块对所有在阈值范围内的质量流量求平均值后输出流量测量值和驱动信号,驱动信号经过数模转换器D/A被送入到激励元件(Exc)中,同时处理模块还会发出报警信号,提醒更换流量计;
    C2、如果所有的质量流量都超出设定的阈值范围,则处理模块直接发出报警信号,提醒更换流量计;
    C3、如果所有的质量流量都在设定的阈值范围内,则处理模块对所有在阈值范围内的质量流量求平均值后输出流量测量值和驱动信号,驱动信号经过数模转换器D/A被送入到激励元件(Exc)中。
  2. 根据权利要求1所述的一种高精度科式流量计的检测方法,其特征在于:在流量计的测量管上设置有四个振动检测元件,分别为第一振动检 测元件(S11)、第二振动检测元件(S21)、第三振动检测元件(S12)和第四振动检测元件(S22),对应地,信号采集调理电路包括与第一振动检测元件(S11)连接的第一信号采集调理电路(A1)、与第二振动检测元件(S21)连接的第二信号采集调理电路(A2)、与第三振动检测元件(S12)连接的第三信号采集调理电路(A3)、与第四振动检测元件(S22)连接的第四信号采集调理电路(A4)。
  3. 根据权利要求2所述的一种高精度科式流量计的检测方法,其特征在于:所述的处理模块包括第一模数转换器(A/D1)、与第一模数转换器(A/D1)的输出端连接的第一数字信号处理器(DSP1)、第二模数转换器(A/D2)、以及与第二模数转换器(A/D2)的输出端连接的第二数字信号处理器(DSP2),第一信号采集调理电路(A1)和第二信号采集调理电路(A2)的输出端都与第一模数转换器(A/D1)的输入端连接,第一数字信号处理器(DSP1)上设置有流量解算信息输出端、驱动信号输出端、报警信号输出端;第三信号采集调理电路(A3)和第四信号采集调理电路(A4)的输出端都与第二模数转换器(A/D2)的输入端连接,第二数字信号处理器(DSP2)的数据接口与第一数字信号处理器(DSP1)连接,第二数字信号处理器(DSP2)上设置有流量解算信息数据接口。
  4. 根据权利要求2所述的一种高精度科式流量计的检测方法,其特征在于:所述的处理模块包括第三模数转换器(A/D3)、与第三模数转换器(A/D3)的输出端连接的第三数字信号处理器(DSP3)、第四模数转换器(A/D4)、以及与第四模数转换器(A/D4)的输出端连接的第四数字信号处理器(DSP4),第一信号采集调理电路(A1)和第二信号采集调理电路(A2)的输出端都与第三模数转换器(A/D3)的输入端连接,第三数字信 号处理器(DSP3)上设置有驱动信号输出端、报警信号输出端;第三信号采集调理电路(A3)和第四信号采集调理电路(A4)的输出端都与第四模数转换器(A/D4)的输入端连接,第四数字信号处理器(DSP4)与第三数字信号处理器(DSP3)的数据接口连接,第四数字信号处理器(DSP4)上设置有流量解算信息输出端。
  5. 根据权利要求2所述的一种高精度科式流量计的检测方法,其特征在于:所述的处理模块包括第五模数转换器(A/D5)、以及与第五模数转换器(A/D5)的输出端连接的第五数字信号处理器(DSP5),第一信号采集调理电路(A1)、第二信号采集调理电路(A2)、第三信号采集调理电路(A3)和第四信号采集调理电路(A4)的输出端都与第五数字信号处理器(DSP5)的输入端连接,第五数字信号处理器(DSP5)上设置有流量解算信息输出端、驱动信号输出端、报警信号输出端。
PCT/CN2019/111408 2019-10-14 2019-10-16 一种高精度科式流量计的检测方法 WO2021072667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910970808.5 2019-10-14
CN201910970808.5A CN110514259A (zh) 2019-10-14 2019-10-14 一种高精度科式流量计的检测方法

Publications (1)

Publication Number Publication Date
WO2021072667A1 true WO2021072667A1 (zh) 2021-04-22

Family

ID=68634279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111408 WO2021072667A1 (zh) 2019-10-14 2019-10-16 一种高精度科式流量计的检测方法

Country Status (2)

Country Link
CN (1) CN110514259A (zh)
WO (1) WO2021072667A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739825A (zh) * 2021-09-06 2021-12-03 莱弗利科技(苏州)有限公司 一种带有故障自检功能的传感器
CN115270893B (zh) * 2022-09-26 2022-12-06 中国空气动力研究与发展中心设备设计与测试技术研究所 一种高精度科氏流量计数字信号处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29609623U1 (de) * 1996-05-30 1997-09-25 Bopp & Reuther Messtechnik GmbH, 68305 Mannheim Meßgerät zur Messung des Masseflusses eines strömenden Mediums
JP2002031554A (ja) * 2000-05-12 2002-01-31 Kazumasa Onishi コリオリ流量計
CN101556173A (zh) * 2009-05-20 2009-10-14 西安东风机电有限公司 一种基于小波降噪的科里奥利质量流量计数字解算装置及方法
CN104132694A (zh) * 2007-08-22 2014-11-05 因万西斯***股份有限公司 三重冗余涡流流量计***
CN105043478A (zh) * 2014-04-17 2015-11-11 克洛纳有限公司 科里奥利质量流量测量仪
CN106352933A (zh) * 2015-07-17 2017-01-25 克洛纳测量技术有限公司 运行科里奥利质量流量测量设备的方法和相应的测量设备
CN107466361A (zh) * 2015-04-14 2017-12-12 高准公司 通过振动仪表检测不准确的流率测量结果

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927307B2 (ja) * 1991-01-18 1999-07-28 トキコ株式会社 質量流量計
US6684716B2 (en) * 2000-04-07 2004-02-03 Kazumasa Ohnishi Coriolis flowmeter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29609623U1 (de) * 1996-05-30 1997-09-25 Bopp & Reuther Messtechnik GmbH, 68305 Mannheim Meßgerät zur Messung des Masseflusses eines strömenden Mediums
JP2002031554A (ja) * 2000-05-12 2002-01-31 Kazumasa Onishi コリオリ流量計
CN104132694A (zh) * 2007-08-22 2014-11-05 因万西斯***股份有限公司 三重冗余涡流流量计***
CN101556173A (zh) * 2009-05-20 2009-10-14 西安东风机电有限公司 一种基于小波降噪的科里奥利质量流量计数字解算装置及方法
CN105043478A (zh) * 2014-04-17 2015-11-11 克洛纳有限公司 科里奥利质量流量测量仪
CN107466361A (zh) * 2015-04-14 2017-12-12 高准公司 通过振动仪表检测不准确的流率测量结果
CN106352933A (zh) * 2015-07-17 2017-01-25 克洛纳测量技术有限公司 运行科里奥利质量流量测量设备的方法和相应的测量设备

Also Published As

Publication number Publication date
CN110514259A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
KR101777154B1 (ko) 다중 미터 유체 유동 시스템의 차동 유동 특성을 결정하는 방법 및 장치
RU2535637C1 (ru) Система с множественными температурными датчиками
WO2017004887A1 (zh) 一种时差式超声波流量测量方法及装置
WO2021072667A1 (zh) 一种高精度科式流量计的检测方法
KR20010024888A (ko) 코리올리 유량계의 교정을 검증하는 시스템
CA2888939C (en) Ultrasonic flow metering system with an upstream pressure transducer
WO2007021445A2 (en) Methods for determining transducer delay time and transducer separation in ultrasonic flow meters
JPH02500214A (ja) 監視移送メータ
US8155911B2 (en) Flow rate measurement device
WO2017117242A1 (en) Ultrasonic meter employing two or more dissimilar chordal multipath integration methods in one body
RU2631916C1 (ru) Способ контроля измерения расхода текучих сред электромагнитным расходомером
CN101430216A (zh) 质量流量传感器及控制***及其实现质量流量控制的方法
US7328112B2 (en) Method for operating a magneto-inductive flow meter
CN101413816B (zh) 用于科里奥利质量流量计的检测方法
CN207867017U (zh) 分压电路参数的检测电路和电能计量芯片
JP2011033385A (ja) コリオリ質量流量計
CN110231587A (zh) 分压电路参数的检测电路、方法及电能计量芯片
CN207741813U (zh) 固体流量检测装置
CN115900850A (zh) 一种电磁流量计的检测方法以及电磁流量计
JP2002013958A (ja) 超音波流量計
EP3864380A1 (en) Cleaning and detecting a clean condition of a vibratory meter
CN104736975A (zh) 确定管道内流体的质量流的装置和方法
WO2022255999A1 (en) Selecting a zero-verification criteria for a zero verification of a vibratory meter
WO2022256001A1 (en) Detecting a measurement bias of a reference zero-flow value
EP4348187A1 (en) Determining a zero-verification criteria for a zero verification of a vibratory meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949536

Country of ref document: EP

Kind code of ref document: A1