WO2021071133A1 - 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치 - Google Patents

광 경로 제어 부재 및 이를 포함하는 디스플레이 장치 Download PDF

Info

Publication number
WO2021071133A1
WO2021071133A1 PCT/KR2020/012732 KR2020012732W WO2021071133A1 WO 2021071133 A1 WO2021071133 A1 WO 2021071133A1 KR 2020012732 W KR2020012732 W KR 2020012732W WO 2021071133 A1 WO2021071133 A1 WO 2021071133A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
light
electrode
substrate
Prior art date
Application number
PCT/KR2020/012732
Other languages
English (en)
French (fr)
Inventor
이종식
김병숙
박진경
이인회
한영주
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190124613A external-priority patent/KR20210041867A/ko
Priority claimed from KR1020190125412A external-priority patent/KR20210042627A/ko
Priority claimed from KR1020190125954A external-priority patent/KR20210043149A/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US17/754,681 priority Critical patent/US20240094591A1/en
Priority to CN202080070831.XA priority patent/CN114503025A/zh
Publication of WO2021071133A1 publication Critical patent/WO2021071133A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • the embodiment relates to a light path control member and a display device including the same.
  • the shading film blocks the transmission of light from the light source, and is attached to the front of the display panel, which is a display device used for mobile phones, notebook computers, tablet PCs, vehicle navigation, and vehicle touch, and the incident angle of light when the display transmits the screen. It is used for the purpose of expressing clear image quality at the viewing angle required by the user by adjusting the viewing angle of light according to the method.
  • the shading film may be used for windows of vehicles or buildings to partially shield external light to prevent glare or to prevent the interior from being seen from the outside.
  • the light shielding film may be a light path conversion member that blocks light in a specific direction and transmits light in a specific direction by controlling a movement path of light. Accordingly, by controlling the transmission angle of light by the light shielding film, the viewing angle of the user can be controlled.
  • such a light-shielding film is a light-shielding film that can always control the viewing angle regardless of the surrounding environment or the user's environment, and a switchable light-shielding film that allows the user to turn on-off the viewing angle control according to the surrounding environment or the user's environment. Can be distinguished.
  • Such a switchable light-shielding film may be implemented by adding particles that move electrically to the pattern portion to change the pattern portion into a light transmitting portion and a light blocking portion by dispersion and aggregation of the particles.
  • the light blocking effect according to the particles may be improved as the amount of particles increases, but when the amount of particles in a limited space increases, aggregation between particles occurs, and the movement speed of particles decreases due to the aggregation of these particles. And the viewing angle control effect may be deteriorated.
  • the embodiment provides a light path control member capable of preventing aggregation of electrophoretic particles while implementing an improved light blocking effect according to electrophoretic particles, and a display device including the same.
  • the optical path control member includes: a first substrate; A first electrode disposed on the first substrate; A second substrate disposed on the first substrate; A second electrode disposed under the second substrate; And a light conversion part disposed between the first electrode and the second electrode, wherein the light conversion part includes a partition wall part and a receiving part that are alternately disposed, and the receiving part changes a light transmittance according to the application of a voltage,
  • the receiving portion includes a plurality of unit receiving cells spaced apart from each other, the receiving portion includes a dispersion and light absorbing particles dispersed in the dispersion, the light absorbing particles include first particles and second particles, and the second The particle diameter of the first particle is larger than that of the second particle, and the surface of the first particle and the surface of the second particle are charged with the same polarity.
  • optical path control member and the display device including the same according to the embodiment may include electrophoretic particles having different particle diameters.
  • the light absorbing particle 10 including the first particle 11 and the second particle 12 having different particle diameters it has an improved packing density compared to the light absorbing particle 10 having the same particle diameter.
  • It may be arranged to be aggregated at a low height inside the receiving part.
  • the light path control member according to the embodiment may have an improved front transmittance.
  • the light path control member according to the embodiment may have improved luminance uniformity.
  • the metal oxide particles that reflect and/or scatter light on the light conversion particles disposed in the light conversion unit it is possible to improve the transmittance of the light conversion unit when the light conversion unit is driven to the transmission unit.
  • the amount of light emitted through the light scattering particles toward the user may be increased, thereby improving front transmittance.
  • the overall brightness uniformity of the optical path control member can be secured, thereby improving user visibility.
  • the path control member according to the embodiment may have a specific gravity of the sealing material larger than that of the dispersion.
  • a sealing layer that seals the dispersion inside the receiving part by disposing the sealing material on the top of the dispersion, allowing it to penetrate into the receiving part by a certain area, and then inverting the substrates 1 and 2 up and down to cure the sealing material. Can be formed.
  • the dispersion since the specific gravity of the sealing material is greater than that of the dispersion, the dispersion may be disposed by moving upward from the inside of the receiving part, and the sealing material may be disposed by moving from the inside of the receiving part to the bottom.
  • the optical path control member according to the embodiment may have improved driving characteristics and reliability.
  • FIG. 1 is a view showing a perspective view of an optical path control member according to an embodiment.
  • FIGS. 2 and 3 are views respectively showing perspective views of a first substrate and a first electrode, and a second substrate and a second electrode of an optical path control member according to an exemplary embodiment.
  • FIGS. 4 and 5 are views illustrating a cross-sectional view of an optical path control member according to an exemplary embodiment.
  • 6 to 8 are views showing an enlarged view in which area A of FIG. 5 is enlarged.
  • 9 to 12 are views showing another cross-sectional view of the optical path control member according to the embodiment.
  • 13 to 15 are views showing another enlarged view in which area A of FIG. 5 is enlarged.
  • 16 and 17 are diagrams illustrating cross-sectional views of an optical path control member according to another exemplary embodiment.
  • FIG. 18 is an enlarged view illustrating an enlarged area B of FIG. 16.
  • FIG. 19 is a diagram illustrating a cross-sectional view of a display device to which an optical path control member according to an exemplary embodiment is applied.
  • 20 and 21 are diagrams for describing an embodiment of a display device to which an optical path control member according to the embodiment is applied.
  • first, second, A, B, (a), and (b) may be used in describing the constituent elements of the embodiment of the present invention. These terms are only for distinguishing the constituent element from other constituent elements, and are not limited to the nature, order, or order of the constituent element by the term.
  • a component when a component is described as being'connected','coupled' or'connected' to another component, the component is not only directly connected, coupled, or connected to the other component, but also with the component.
  • the case of being'connected','coupled', or'connected' due to another component between the other components may also be included.
  • top (top) or bottom (bottom) is one as well as when the two components are in direct contact with each other. It also includes the case where the above other component is formed or disposed between the two components.
  • optical path control member for a switchable optical path control member that drives in various modes according to the movement of electrophoretic particles by application of a voltage.
  • the optical path control member includes a first substrate 110, a second substrate 120, a first electrode 210, a second electrode 220, and a light conversion unit. It may include (300).
  • the first substrate 110 may support the first electrode 210.
  • the first substrate 110 may be rigid or flexible.
  • the first substrate 110 may be transparent.
  • the first substrate 110 may include a transparent substrate capable of transmitting light.
  • the first substrate 110 may include glass, plastic, or a flexible polymer film.
  • flexible polymer films include polyethylene terephthalate (PET), polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (ABS), and polymethylmethacrylic.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PMMA Polymethyl Methacrylate
  • PEN Polyethylene Naphthalate
  • PES Polyether Sulfone
  • COC Cyclic Olefin Copolymer
  • Triacetylcellulose (TAC) film polyvinyl alcohol
  • Polyvinyl alcohol, PVA polyimide
  • PI polyimide
  • PS polystyrene
  • the first substrate 110 may be a flexible substrate having a flexible characteristic.
  • the first substrate 110 may be a curved or bent substrate. That is, the optical path control member including the first substrate 110 may also be formed to have a flexible, curved or bent characteristic. For this reason, the optical path control member according to the embodiment may be changed into various designs.
  • the first substrate 110 may have a thickness of 30 ⁇ m to 100 ⁇ m.
  • the first electrode 210 may be disposed on one surface of the first substrate 110.
  • the first electrode 210 may be disposed on the upper surface of the first substrate 110. That is, the first electrode 210 may be disposed between the first substrate 110 and the second substrate 120.
  • the first electrode 210 may include a transparent conductive material.
  • the first electrode 210 may include indium tin oxide, indium zinc oxide, copper oxide, tin oxide, and zinc oxide.
  • It may include a metal oxide such as titanium oxide (titanium oxide).
  • the first electrode 210 may be disposed on the first substrate 110 in a film shape.
  • the light transmittance of the first electrode 210 may be about 80% or more.
  • the first electrode 210 may be disposed on the entire surface of the first substrate 110. That is, the first electrode 210 may be disposed on the first substrate 110 as a surface electrode.
  • the first electrode 210 may have a thickness of 0.1 ⁇ m to 0.5 ⁇ m.
  • the first electrode 210 may include various metals to implement low resistance.
  • the first electrode 210 is chromium (Cr), nickel (Ni), copper (Cu), aluminum (Al), silver (Ag), molybdenum (Mo). It may include at least one metal of gold (Au), titanium (Ti), and alloys thereof.
  • the first electrode 210 may be disposed on the entire surface of the first substrate 110.
  • the first electrode 210 may be disposed as a surface electrode on one surface of the first substrate 110.
  • the embodiment is not limited thereto, and the first electrode 210 may be formed of a plurality of pattern electrodes having a predetermined pattern.
  • the first electrode 210 may include a plurality of conductive patterns.
  • the first electrode 210 may include a plurality of mesh lines crossing each other and a plurality of mesh openings formed by the mesh lines.
  • the first electrode 210 includes a metal
  • visibility may be improved because the first electrode is not visually recognized from the outside.
  • the luminance of the light path control member according to the embodiment may be improved.
  • the second substrate 120 may be disposed on the first substrate 110.
  • the second substrate 120 may be disposed on the first electrode 210 on the first substrate 110.
  • the second substrate 120 may include a material capable of transmitting light.
  • the second substrate 120 may include a transparent material.
  • the second substrate 120 may include the same material as or similar to the first substrate 110 described above.
  • the second substrate 120 may include glass, plastic, or a flexible polymer film.
  • flexible polymer films include polyethylene terephthalate (PET), polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (ABS), and polymethylmethacrylic.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PMMA Polymethyl Methacrylate
  • PEN Polyethylene Naphthalate
  • PES Polyether Sulfone
  • COC Cyclic Olefin Copolymer
  • Triacetylcellulose (TAC) film polyvinyl alcohol
  • Polyvinyl alcohol, PVA polyimide
  • PI polyimide
  • PS polystyrene
  • the second substrate 120 may be a flexible substrate having flexible characteristics.
  • the second substrate 120 may be a curved or bent substrate. That is, the optical path control member including the second substrate 120 may also be formed to have a flexible, curved or bent characteristic. For this reason, the optical path control member according to the embodiment may be changed into various designs.
  • the second substrate 120 may have a thickness of 30 ⁇ m to 100 ⁇ m.
  • the second electrode 220 may be disposed on one surface of the second substrate 120.
  • the second electrode 220 may be disposed on the lower surface of the second substrate 120. That is, the second electrode 220 may be disposed on a surface of the second substrate 120 facing the first substrate 110. That is, the second electrode 220 may be disposed facing the first electrode 210 on the first substrate 110. That is, the second electrode 220 may be disposed between the first electrode 210 and the second substrate 120.
  • the second electrode 220 may include a transparent conductive material.
  • the second electrode 220 may include indium tin oxide, indium zinc oxide, copper oxide, tin oxide, and zinc oxide. , It may include a metal oxide such as titanium oxide (titanium oxide).
  • the second electrode 220 may be disposed on the second substrate 120 in a film shape.
  • the light transmittance of the second electrode 220 may be about 80% or more.
  • the second electrode 220 may be disposed on the entire surface of the second substrate 120. That is, the second electrode 220 may be disposed on the second substrate 120 as a surface electrode.
  • the second electrode 220 may have a thickness of 0.1 ⁇ m to 0.5 ⁇ m.
  • the second electrode 220 may include various metals to implement low resistance.
  • the second electrode 220 is chromium (Cr), nickel (Ni), copper (Cu), aluminum (Al), silver (Ag), molybdenum (Mo). It may include at least one metal of gold (Au), titanium (Ti), and alloys thereof.
  • the second electrode 220 may be disposed on the entire surface of the second substrate 120.
  • the second electrode 220 may be disposed as a surface electrode on one surface of the second substrate 120.
  • the embodiment is not limited thereto, and the second electrode 220 may be formed of a plurality of pattern electrodes having a predetermined pattern.
  • the second electrode 220 may include a plurality of conductive patterns.
  • the second electrode 220 may include a plurality of mesh lines crossing each other and a plurality of mesh openings formed by the mesh lines.
  • the second electrode 220 includes a metal
  • visibility may be improved because the second electrode is not visually recognized from the outside.
  • the luminance of the light path control member according to the embodiment may be improved.
  • the light conversion unit 300 may be disposed between the first substrate 110 and the second substrate 120. In detail, the light conversion unit 300 may be disposed between the first electrode 210 and the second electrode 220.
  • the light conversion unit 300 may be adhered to the first electrode 210 and the second electrode 220.
  • a buffer layer for improving adhesion to the light conversion unit 300 is disposed on the first electrode 210, and the first electrode 210 and the light conversion unit 300 through the buffer layer are Can be glued.
  • an adhesive layer 400 for bonding to the light conversion unit 300 is disposed under the second electrode 220, and the second electrode 220 and the light conversion unit ( 300) can be bonded
  • the light conversion unit 300 may include a partition wall portion 310 and a receiving portion 320.
  • the partition wall portion 310 may be defined as a partition wall region that partitions the receiving portion. That is, the partition wall portion 310 is a partition wall region that partitions a plurality of receiving portions.
  • the receiving part 320 may be defined as a region that changes into a light blocking part and a light transmitting part according to the application of a voltage.
  • the receiving portion 320 includes a plurality of receiving portions.
  • the accommodating part 320 includes a plurality of unit accommodating cells.
  • the accommodating part 320 includes a plurality of unit accommodating cells spaced apart from each other.
  • the partition wall portion 310 and the receiving portion 320 may be alternately disposed with each other.
  • the partition wall portion 310 and the receiving portion 320 may be disposed to have different widths.
  • the width of the partition wall portion 310 may be greater than the width of the receiving portion 320.
  • the partition wall portion 310 and the receiving portion 320 may be alternately disposed with each other.
  • the partition wall portion 310 and the receiving portion 320 may be alternately disposed with each other. That is, each partition wall portion 310 may be disposed between the receiving portions 320 adjacent to each other, and each receiving portion 320 may be disposed between the partition wall portions 310 adjacent to each other.
  • the partition 310 may include a transparent material.
  • the partition 310 may include a material capable of transmitting light.
  • the partition wall portion 310 may include a resin material.
  • the partition 310 may include a photo-curable resin material.
  • the partition 310 may include a UV resin or a transparent photoresist resin.
  • the partition wall portion 310 may include a urethane resin or an acrylic resin.
  • the partition wall portion 310 may transmit light incident on one of the first substrate 110 or the second substrate 120 toward another substrate.
  • light may be emitted from the lower portion of the first substrate 110 and the light may be incident in the direction of the second substrate 120. Transmitted and transmitted light may be moved to the upper portion of the second substrate 120.
  • a sealing part 500 for sealing the light path control member may be disposed on a side surface of the partition wall part, and the side surface of the light conversion part 300 may be sealed by the sealing part.
  • the receiving part 320 may include a dispersion liquid 320a and the light absorbing particles 10 described above. Specifically, the dispersion liquid 320a is injected into the receiving part 320 to be filled, and the dispersion liquid 320a In ), a plurality of light absorbing particles 10 may be dispersed.
  • the dispersion liquid 320a may be a material that disperses the light absorbing particles 10.
  • the dispersion liquid 320a may include a transparent material.
  • the dispersion liquid 320a may contain a non-polar solvent.
  • the dispersion liquid 320a may include a material capable of transmitting light.
  • the dispersion 320a may include at least one of halocarbon oil, paraffin oil, and isopropyl alcohol.
  • the light absorbing particles 10 may be dispersed and disposed in the dispersion liquid 320a.
  • the plurality of light absorbing particles 10 may be disposed to be spaced apart from each other in the dispersion liquid 320a.
  • the light absorbing particles 10 may include a material capable of absorbing light.
  • the light absorbing particles may have a color.
  • the light absorbing particles 10 may include black particles capable of absorbing light.
  • the light absorbing particles may include carbon black particles.
  • a sealing layer may be disposed on the receiving part 320.
  • a sealing layer may be disposed on the receiving part 320 to seal the dispersion from the outside.
  • the light transmittance of the receiving part 320 may be changed by the light absorbing particles 10.
  • the light transmittance of the receiving part 320 is changed by the light absorbing particles 10 to be changed into a light blocking part and a light transmitting part. That is, the accommodating part 320 may change the light transmittance passing through the accommodating part 320 by dispersion and aggregation of the light absorbing particles 10 disposed therein in the dispersion 320a.
  • the optical path member according to the embodiment is changed from a first mode to a second mode or from a second mode to a first mode by a voltage applied to the first electrode 210 and the second electrode 220 Can be.
  • the receiving unit 320 in the first mode, may be a light blocking unit, and light of a specific angle may be blocked by the receiving unit 320. That is, the viewing angle of the user as viewed from the outside may be narrowed.
  • the receiving unit 320 in the second mode, the receiving unit 320 becomes a light transmitting unit, and the light path control member according to the embodiment is in the partition 310 and the receiving unit 320. All of them can be transmitted through light. That is, the viewing angle of the user as viewed from the outside may be widened.
  • the conversion from the first mode to the second mode that is, the conversion of the receiving part 320 from the light blocking part to the light transmitting part, will be implemented by the movement of the light absorbing particles 10 of the receiving part 320.
  • the light absorbing particles 10 have electric charges on the surface, and may move toward the first electrode or the second electrode according to the application of voltage according to the characteristics of the electric charge. That is, the light absorbing particles 10 may be electrophoretic particles.
  • the receiving part 320 may be electrically connected to the first electrode 210 and the second electrode 220.
  • the accommodating part 320 may be driven as a light blocking part.
  • the light absorbing particles 10 may be moved.
  • the light absorbing particles 10 may be moved in the direction of one end or the other end of the receiving part 320 by the voltage transmitted through the first electrode 210 and the second electrode 220. I can. That is, the light absorbing particles 10 may move toward the first electrode or the second electrode.
  • the light absorbing particles 10 in a charged state may be moved in the direction of the (+) electrode of the first electrode 210 and the second electrode 220 using the dispersion 320a as a medium.
  • the receiving part 320 may be driven as a light blocking part.
  • the light absorbing particles 10 are the first electrode in the dispersion solution 320a. It may be moved in the direction of 210, that is, the light absorbing particles 10 may be moved in one direction, and the receiving part 320 may be driven as a light transmitting part.
  • the optical path control member according to the embodiment may be driven in two modes depending on the user's surrounding environment. That is, when the user desires light transmission only at a specific viewing angle, the receiving unit may be driven as a light blocking unit, or in an environment where the user requires a wide viewing angle and high luminance, the receiving unit may be driven as a light transmitting unit by applying a voltage have.
  • the optical path control member according to the embodiment can be implemented in two modes according to the user's request, the optical path member can be applied regardless of the user's environment.
  • the emitted light may pass through the receiving unit.
  • the light path control member may increase the light transmission area of the receiving portion in the second mode by controlling the particle size of the light absorbing particles.
  • the light absorbing particles 10 may include first particles 11 and second particles 12.
  • the first particle 11 and the second particle 12 may contain the same material.
  • the first particles 11 and the second particles 12 may include carbon black particles.
  • the first particle 11 and the second particle 12 may have a spherical shape.
  • the first particle 11 and the second particle 12 may be formed in a nano-scale particle diameter.
  • the first particle 11 and the second particle 12 may have a particle diameter of 500 nm to 700 nm.
  • the particle diameter of the first particle 11 and the second particle 12 is less than 500 nm, the first particle 11 and the second particle 12 are agglomerated inside the dispersion solution 320a. As a result, dispersion safety may be lowered.
  • the particle diameter of the first particle 11 and the second particle 12 exceeds 700 nm, the weight of the first particle 11 and the second particle 12 increases, and the first A phenomenon in which the particles 11 and the second particles 12 settle below the receiving portion may occur.
  • first particles 11 and the second particles 12 may be charged with the same polarity. That is, the surfaces of the first particle 11 and the second particle 12 may be charged with (+) or (-) polarity. Accordingly, when a voltage is applied to the first electrode and/or the second electrode, the first particle 11 and the second particle 12 may move in the same direction as each other.
  • first particles 11 and the second particles 12 may have the same specific gravity.
  • the specific gravity of the first particle 11 and the second particle 12 may be 2 or less.
  • the first particle 11 and the second particle 12 may have different sizes.
  • a particle diameter of the first particle 11 and a particle diameter of the second particle 12 may be different from each other.
  • light absorbing particles having different sizes may be disposed inside each receiving portion of the light path control member. That is, light absorbing particles having different sizes are disposed inside the receiving part 320 together to achieve the same light absorbing effect, and when power is applied and the light absorbing particles are aggregated into one area, the aggregated light It is possible to improve the packing density of the absorbent particles.
  • a particle diameter of the first particle 11 may be larger than a particle diameter of the second particle 12.
  • a ratio of the particle diameter of the second particle 12 and the particle diameter of the first particle 11 may be 1:3 or more.
  • a ratio of the particle diameter of the second particle 12 and the particle diameter of the first particle 11 may be 1:3 to 1:10.
  • the ratio of the particle diameter of the second particle 12 and the particle diameter of the first particle 11 is less than 1:3, the difference between the particle diameter of the first particle 11 and the second particle 12 is not large, Since the packing density of the light absorbing particles may be reduced, the transmittance effect may not be large.
  • any one particle becomes too large to reduce the packing density of the light absorbing particle, or , There is a problem that it is difficult to manufacture any one of the particles is too small.
  • the first particle 11 and the second particle 12 may be included in different amounts.
  • the total volumes of the first particles 11 and the second particles 12 disposed inside any one of the receiving portions may be different from each other.
  • the total volume of the first particles in at least one unit receiving cell among the plurality of unit receiving cells, the total volume of the first particles may be greater than the total volume of the second particles. That is, in all of the plurality of unit receiving cells, the total volume of the first particle is greater than the total volume of the second particle, or in some of the plurality of unit receiving cells, the total volume of the first particle is It may be larger than the total volume of the second particle.
  • the second particles 12 having a relatively small particle size may be included in an amount of 5 vol% or more with respect to the total volume of the light absorbing particles.
  • the second particles 12 may be included in an amount of 5% to 20% by volume with respect to the total volume of the light absorbing particles.
  • the filling density is increased by the first particle 11, so that the effect of improving the transmittance is small, and the second particle 12 is more than 20% by volume.
  • the light absorption effect may be reduced and the viewing angle control effect may be lowered.
  • FIG. 7 is a view for explaining an example in which only light absorbing particles having the same particle diameter are disposed inside the receiving part 320
  • FIG. 8 is a first particle 11 having different particle sizes in the receiving part 320
  • It is a figure for demonstrating an example in which light-absorbing particles including the second particles 12 are arranged.
  • the second particles 12 may improve transmittance of the light path control member.
  • the light absorbing particles 10 have a first height ( h1) can be placed.
  • the packing density of the light absorbing particles aggregated in the direction of the first electrode 210 may depend on the volume% and the particle size of the first particles 11 and the second particles 12.
  • the light absorbing particles 10 have a second height h2 ) Can be placed.
  • the light absorbing particles 10 including the first particles 11 and the second particles 12 having different particle diameters the light absorbing particles 10 having the same particle diameter It can be arranged cohesively in height.
  • the light absorbing particle 10 including the first particle 11 and the second particle 12 having different particle diameters it has an improved packing density compared to the light absorbing particle 10 having the same particle diameter.
  • It may be arranged to be aggregated at a low height inside the receiving part.
  • the receiving part 320 may be formed in various shapes.
  • the receiving part 320 extends from one end of the receiving part 310 to the other end, and the width of the receiving part 320 may be changed.
  • the receiving part 320 may be formed in a trapezoidal shape.
  • the accommodating part 320 may extend from the first electrode 210 to the second electrode 220 and may be formed to have a wider width of the accommodating part 320.
  • the width of the accommodating part 320 may be narrowed while extending from the viewing surface of the user in the opposite direction.
  • the light absorbing particles of the receiving unit 320 may move in a direction in which the width of the receiving unit is narrowed.
  • the width of the accommodating part 320 may be widened while extending from the light incidence part to which light is incident in the direction of the light output part from which light is emitted.
  • the light absorbing particles move in a direction opposite to the viewing surface, not the viewing surface, it is possible to prevent blocking of light emitted in the viewing surface direction, thereby improving the luminance of the light path member.
  • the light absorbing particles move from a wide area to a narrow area, the light absorbing particles can be easily moved.
  • the light absorbing particles move to a narrow area of the accommodating portion, the amount of light transmitted in the direction of the user's viewing surface may be increased, thereby improving front luminance.
  • the accommodating part 320 may extend from the first electrode 210 to the second electrode 220 and may be formed to have a narrow width of the accommodating part 320.
  • the width of the accommodating part 320 may increase while extending from the user's viewing surface in the opposite direction.
  • the light absorbing particles of the receiving unit 320 may move in a direction in which the width of the receiving unit is widened.
  • the width of the accommodating part 320 may be narrowed while extending from the light incidence part to which light is incident to the light-exiting part direction from which light is emitted.
  • a contact area between one surface of the receiving portion and the first electrode through which the light absorbing particles move is increased, so that the moving speed of the light absorbing particles, that is, the driving speed, may be increased.
  • the receiving part 320 may be disposed to be spaced apart from the first electrode 210 or the second electrode 220.
  • the receiving part 320 may be spaced apart from the first electrode 210 and may indirectly contact the second electrode 220.
  • the same or similar material as the partition wall part 301 may be disposed in a region where the receiving part 320 and the first electrode 220 are spaced apart from each other.
  • both ends of the accommodating portion may be disposed in direct or indirect contact with the first electrode 210 and the second electrode 220, respectively.
  • the receiving unit 320 directly contacts the first electrode 210 and the second electrode 220, a voltage is easily transmitted to the receiving unit 320 without an effect of resistance, thereby improving driving characteristics. I can make it.
  • the accommodating part 320 may be disposed while having a constant inclination angle ⁇ .
  • the receiving part 320 may be disposed with an inclination angle ⁇ of greater than 0° to less than 90° with respect to the first electrode 210.
  • the accommodating part 320 may extend upward while having an inclination angle ⁇ of greater than 0° to less than 90° with respect to one surface of the first electrode 210.
  • 13 to 15 are views showing another enlarged view in which area A of FIG. 5 is enlarged.
  • the light conversion particles 10 may include first particles 11 and second particles 12.
  • the first particles 11 and the second particles 12 may be disposed together in the dispersion liquid 320a.
  • the first particles 11 and the second particles 12 may be separated from each other and dispersed in the dispersion liquid 320a.
  • the first particle 11 and the second particle 12 may have different reflectances.
  • the reflectance of the first particle 11 may be smaller than that of the second particle 12.
  • the reflectance of the first particles 11 may be about 0.1% or less, and the reflectance of the second particles 12 may be about 50% to about 90%.
  • the first particles 11 may absorb light incident into the receiving part 320. That is, the receiving part 320 may be changed into a light transmitting part and a light blocking part by the first particle 11. That is, the first particles 11 may be light absorbing particles.
  • the first particles 11 may be formed in a spherical shape. In addition, the first particles 11 may be formed in a nano-scale particle diameter. In detail, the first particles 11 may have a particle diameter of 500 nm to 700 nm.
  • the particle diameter of the first particles 11 is less than 500 nm, dispersion safety may be deteriorated due to a phenomenon in which the first particles 11 are aggregated in the dispersion liquid 320a.
  • the weight of the first particle 11 increases, so that the first particle 11 may settle below the receiving part.
  • the first particles 11 may have a color.
  • the first particles 11 may include black particles.
  • the first particles 11 may contain carbon black.
  • the second particles 12 may partially absorb and partially reflect light incident into the receiving portion. That is, the second particle 12 may have both reflection and absorption characteristics. That is, the second particles 12 may be light scattering particles.
  • the second particles 12 may be formed in a spherical shape.
  • the second particles 12 may be formed in a nano-scale particle diameter.
  • the second particles 12 may have a particle diameter of 500 nm to 700 nm.
  • the first particle 11 and the second particle 12 may have the same or similar particle diameters within the particle diameter size range.
  • the particle diameter of the second particles 12 is less than 500 nm, dispersion safety may be deteriorated due to a phenomenon in which the second particles 12 are aggregated in the dispersion liquid 320a.
  • the weight of the second particle 12 increases, so that the second particle 12 may settle below the receiving part.
  • the second particle 12 may have a color.
  • the second particles 12 may include black particles.
  • the second particle 12 may include a metal.
  • the second particle 12 may include a metal oxide.
  • the second particle 12 may include at least one of titanium dioxide (TiO2), zirconium oxide (ZrO2), indium oxide (In2O3), tin oxide (SnO2), and aluminum oxide (Al2O3).
  • first particles 11 and the second particles 12 may be charged with the same polarity. That is, the surfaces of the first particle 11 and the second particle 12 may be charged with (+) or (-) polarity. Accordingly, when a voltage is applied to the first electrode and/or the second electrode, the first particle 11 and the second particle 12 may move in the same direction as each other.
  • first particles 11 and the second particles 12 may have different specific gravity.
  • the specific gravity of the first particles 11 may be smaller than the specific gravity of the second particles 12.
  • the specific gravity of the first particles 11 may be 2 or less, and the specific gravity of the second particles 12 may be 3 to 8.
  • a dispersant for facilitating dispersion of the first particles 11 and the second particles 12 may be further included in the receiving portion.
  • the first particles 11 and the A dispersant that induces dispersion of the second particles 12 may be further included.
  • FIG. 14 is a view for explaining an example in which only the first particle 11 is disposed in the receiving part 320
  • FIG. 15 is a first particle 11 and a second particle 12 in the receiving part 320 It is a diagram for explaining an example in which is arranged together.
  • the second particles 12 may improve front luminance of the light path control member.
  • the light incident in the direction of the receiving part is mostly caused by the aggregated first particles. It can be blocked. That is, since light incident in the direction of the receiving unit is blocked and cannot be emitted in the direction of the user, the front luminance of the light path control member may be lowered. In addition, since light incident in the direction of the receiving unit is blocked so that the luminance in a specific region is smaller than that in other regions, the luminance uniformity of the light path control member may be deteriorated.
  • the second particle 12 when the first particle 11 and the second particle 12 are disposed together in the receiving part 320, the second particle 12 emits it toward the user. It is possible to increase the amount of light generated.
  • the front luminance of the light path control member can be improved, and the luminance uniformity of the light path control member can be improved.
  • first particles 11 and the second particles 12 may be included in different weight %.
  • first particles 11 may be included in more than the second particles 12 in each receiving portion.
  • the first particles 11 may be included in the interior of each receiving portion as much as 95% by weight to 99% by weight with respect to the total particles.
  • the second particles 12 may be included in an amount of 1% to 5% by weight based on the total particles.
  • the second particles 12 are included in an amount of less than about 1% by weight based on the total particles, the light scattering effect of the second particles is small, and it is difficult to improve the front transmittance.
  • the second particles 12 are included in an amount greater than about 5% by weight based on the total particles, the amount of the first particles is reduced, so that the light absorption rate in the receiving part may be reduced, and the change in front transmittance improvement may be negligible. I can.
  • a first electrode and a second electrode including indium tin oxide (IT0) were formed on one surface of the first substrate and the second substrate including polyethylene terephthalate (PET), respectively.
  • a UV resin was disposed on the first substrate and imprinted through a mold to form a receiving portion.
  • paraffin-based oil in which carbon black particles and titanium dioxide particles are dispersed in the receiving portion was filled to form a light conversion portion.
  • the titanium dioxide particles were included in an amount of 5% by weight based on the total particles.
  • the first substrate, the second substrate, and the light-displacement portion were adhered to prepare a light path control member, and then, when a voltage was applied, the front transmittance of the light path control member was measured.
  • the optical path control member was manufactured in the same manner as in Example 1, except that paraffinic oil in which carbon black particles and zirconium oxide particles were dispersed was filled inside the receiving part, and when voltage was applied, the optical path was controlled. The front transmittance of the member was measured.
  • the zirconium oxide particles were included in an amount of 5% by weight based on the total particles.
  • the optical path control member was manufactured in the same manner as in Example 1, except that paraffinic oil in which carbon black particles and indium oxide particles were dispersed was filled inside the receiving part, and when voltage was applied, the optical path was controlled. The front transmittance of the member was measured.
  • the indium oxide particles were included in an amount of 5% by weight based on the total particles.
  • the optical path control member was manufactured in the same manner as in Example 1, except that paraffinic oil in which carbon black particles and tin oxide particles were dispersed was filled inside the receiving part, and when voltage was applied, the optical path was controlled. The front transmittance of the member was measured.
  • the tin oxide particles were included in an amount of 5% by weight based on the total particles.
  • the optical path control member was manufactured in the same manner as in Example 1, except that paraffinic oil in which carbon black particles and aluminum oxide particles were dispersed was filled in the receiving part, and when voltage was applied, the optical path was controlled. The front transmittance of the member was measured.
  • the aluminum oxide particles were included in an amount of 5% by weight based on the total particles.
  • the optical path control member was manufactured in the same manner as in Example 1, except that paraffinic oil in which only carbon black particles were dispersed was filled in the receiving part, and then, when a voltage was applied, the front transmittance of the optical path control member was measured.
  • a light path control member was manufactured in the same manner as in Example 1, except that titanium dioxide particles were included in 7% by weight of the total particles, and then, when a voltage was applied, the front transmittance of the light path control member was measured.
  • the optical path control member was manufactured in the same manner as in Example 2, except that the zirconium dioxide particles were included in 7% by weight based on the total particles, and then, when a voltage was applied, the front transmittance of the optical path controlling member was measured.
  • a light path control member was manufactured in the same manner as in Example 3, except that 7% by weight of indium oxide particles were included with respect to the total particles, and then, when a voltage was applied, the front transmittance of the light path control member was measured.
  • a light path control member was manufactured in the same manner as in Example 4, except that the tin oxide particles were included in 7% by weight based on the total particles, and then, when a voltage was applied, the front transmittance of the light path control member was measured.
  • a light path control member was manufactured in the same manner as in Example 6, except that 7% by weight of the aluminum oxide particles were included with respect to the total particles, and then, when a voltage was applied, the front transmittance of the light path control member was measured.
  • the front transmittance of the light path control member according to Examples 1 to 5 is greater than the front transmittance of the light path control member according to the comparative example.
  • the effect of improving the front transmittance may be insignificant due to an increase in the side transmittance rather than the front transmittance.
  • an adhesive layer 400 is disposed between the second substrate 120 and the light conversion unit 300, and the second substrate 120 and the second substrate 120 are formed by the adhesive layer 400.
  • the light conversion unit 300 may be adhered.
  • the adhesive layer 400 may have a dielectric constant.
  • the adhesive layer 400 may have polarity.
  • the adhesive layer 400 may include an optically transparent adhesive (OCA).
  • the adhesive layer 400 may be disposed on the first substrate 110 to have different thicknesses for each region.
  • the first substrate 110 includes a first area 1A corresponding to the partition wall part 310 and a second area 2A corresponding to the receiving part 320, ,
  • the adhesive layer 400 may be disposed to have different thicknesses in the first region 1A and the second region 2A.
  • the thickness T2 of the adhesive layer in the second region may be greater than the thickness T1 of the adhesive layer in the first region. That is, the adhesive layer in the second region may be disposed while partially filling the interior of the receiving part 320, and may be disposed to be thicker than the adhesive layer in the first region by the thickness of the adhesive layer disposed in the receiving part 320.
  • the adhesive layer 400 is disposed on the first substrate 110 to have different thicknesses for each region, the adhesive surface of the adhesive layer may be formed in an uneven shape. Accordingly, after the first substrate 110 and the light conversion unit 300 are bonded to each other through the adhesive layer 400, adhesion of the light conversion unit 300 may be improved by the uneven shape.
  • a sealing layer 600 may be disposed in the receiving part 320.
  • a sealing layer 600 may be disposed inside the receiving part 320.
  • the sealing layer 600 may be disposed on the adhesive layer 400 disposed inside the receiving part 320. That is, the adhesive layer 400 under the second substrate 120, the sealing layer 600, and the dispersion liquid 320a in which the light absorbing particles are dispersed may be sequentially disposed inside the receiving part 320.
  • the sealing layer 600 prevents the properties of the dispersion liquid 320a from being changed due to the exposure of the dispersion liquid 320a to the outside, and prevents the light absorbing particles 10 from being denatured in the dispersion liquid 320a. can do.
  • the sealing layer 600 may be disposed only in a specific area. That is, the sealing layer 600 may be disposed only inside the receiving portion 320 and may not be disposed on a region corresponding to the partition wall portion 310.
  • the adhesive layer 400 may directly contact the partition wall portion 310 of the light conversion unit, and accordingly, the adhesive property of the adhesive layer 400 may be improved.
  • the adhesive layer 400 including an optically transparent adhesive
  • the adhesive layer when the adhesive layer has dielectric properties, it may have polarity, and when it directly contacts a dispersion liquid having polarity, the properties of the adhesive layer at the interface may be deteriorated.
  • the adhesive properties of the adhesive layer 400 and the polarity of the dispersion 320a may be lowered.
  • sealing layer 600 between the adhesive layer 400 and the dispersion liquid 320a, direct contact between the adhesive layer 400 and the dispersion liquid 320a may be prevented. That is, a sealing layer having no polarity may directly contact the adhesive layer and the dispersion between the adhesive layer and the dispersion.
  • the sealing layer 600 may be formed by curing a sealing material.
  • the specific gravity of the sealing layer 600 may be different from that of the dispersion liquid 320a.
  • the specific gravity of the sealing layer 600 may be greater than that of the dispersion liquid 320a.
  • the specific gravity of the dispersion 320a may be 0.7 to 0.9, and the specific gravity of the sealing material forming the sealing layer may be greater than 0.9 to 2.2.
  • the sealing material may include a polymer material having a specific gravity of more than 0.9 to 2.2.
  • the sealing material may include a material such as urethane acrylate or epoxy having a specific gravity of more than 0.9 to 2.2.
  • a photo-curable resin layer was coated on a substrate, an intaglio-shaped receiving portion was formed on the resin layer by an imprinting process, and then a dispersion in which light absorbing particles were dispersed was filled in the receiving portion. Then, after coating a sealing material on the top of the dispersion, the sealing material was cured to form a sealing layer.
  • the sealing material when the specific gravity of the sealing material is higher than the specific gravity of the dispersion, the sealing material penetrates into the lower portion of the dispersion, and there is a problem that the sealing material must use a material lower than the specific gravity of the dispersion.
  • the specific gravity of the sealing material may be higher than that of the dispersion liquid. Accordingly, the sealing material can be used with a material larger than the specific gravity of the dispersion, so that the selection of the sealing material can be increased.
  • a dispersion liquid having a higher specific gravity can be used as a dispersion liquid, and a dispersion liquid having a higher dielectric property and a low viscosity can be applied, so that the moving speed of the light absorbing particles in the dispersion liquid can be improved.
  • the dispersion since the specific gravity of the sealing material is greater than that of the dispersion, the dispersion may be disposed by moving upward from the inside of the receiving part, and the sealing material may be disposed by moving from the inside of the receiving part to the bottom.
  • the light path control member 1000 may be disposed on the display panel 2000.
  • the display panel 2000 and the light path control member 1000 may be adhered to each other and disposed.
  • the display panel 2000 and the light path control member 1000 may be adhered to each other through an adhesive member 1500.
  • the adhesive member 1500 may be transparent.
  • the adhesive member 1500 may include an adhesive or an adhesive layer including an optically transparent adhesive material.
  • the adhesive member 1500 may include a release film.
  • the light path control member and the display panel may be adhered.
  • the display panel 2000 may include a first' substrate 2100 and a second' substrate 2200.
  • the light path control member may be formed under the liquid crystal panel. That is, when a surface viewed by the user from the liquid crystal panel is defined as the upper portion of the liquid crystal panel, the light path control member may be disposed under the liquid crystal panel.
  • a first' substrate 2100 including a thin film transistor (TFT) and a pixel electrode and a second' substrate 2200 including color filter layers are bonded with a liquid crystal layer therebetween. It can be formed into a structured structure.
  • TFT thin film transistor
  • a thin film transistor, a color filter, and a black electrolyte are formed on the first' substrate 2100, and the second' substrate 2200 is the first' substrate 2100 with a liquid crystal layer interposed therebetween.
  • a liquid crystal display panel having a color filter on transistor (COT) structure that is bonded to each other. That is, a thin film transistor may be formed on the first ′ substrate 2100, a protective layer may be formed on the thin film transistor, and a color filter layer may be formed on the protective layer. Further, a pixel electrode in contact with the thin film transistor is formed on the first ′ substrate 2100.
  • the black electrolyte may be omitted, and the common electrode may be formed to also serve as the black electrolyte.
  • the display device may further include a backlight unit that provides light from a rear surface of the display panel 2000.
  • the backlight unit may be disposed under the light path control member.
  • the light path control member may be disposed under the liquid crystal panel.
  • the light path control member may be formed on the organic light emitting diode panel. That is, when the surface viewed by the user of the organic light emitting diode panel is defined as the upper portion of the organic light emitting diode panel, the light path control member may be disposed on the organic light emitting diode panel.
  • the display panel 2000 may include a self-luminous device that does not require a separate light source.
  • a thin film transistor may be formed on a first ′ substrate 2100, and an organic light emitting device in contact with the thin film transistor may be formed.
  • the organic light-emitting device may include an anode, a cathode, and an organic light-emitting layer formed between the anode and the cathode.
  • a second' substrate 2200 serving as an encapsulation substrate for encapsulation on the organic light emitting device may be further included.
  • a polarizing plate may be further disposed between the light path control member 1000 and the display panel 2000.
  • the polarizing plate may be a linear polarizing plate or an anti-reflection polarizing plate.
  • the polarizing plate may be a linear polarizing plate.
  • the polarizing plate may be a polarizing plate for preventing reflection of external light.
  • an additional functional layer 1300 such as an anti-reflection layer or anti-glare may be further disposed on the light path control member 1000.
  • the functional layer 1300 may be adhered to one surface of the first substrate 110 of the light path control member.
  • the functional layer 1300 may be adhered to each other through the first substrate 110 of the optical path control member and an adhesive layer.
  • a release film for protecting the functional layer may be further disposed on the functional layer 1300.
  • a touch panel may be further disposed between the display panel and the light path control member.
  • the light path control member is disposed above the display panel, but embodiments are not limited thereto, and the light control member is a position at which light can be adjusted, that is, a lower portion of the display panel or the display panel It may be disposed in various positions, such as between the second substrate and the first substrate.
  • the optical path control member according to the embodiment may be applied to a vehicle.
  • the light path control member according to the embodiment may be applied to a display device displaying a display.
  • the receiving part when power is not applied to the light path control member as shown in FIG. 36, the receiving part functions as a light blocking unit, so that the display device is driven in a light-shielding mode, and power is applied to the light path control member as shown in FIG.
  • the receiving portion functions as a light transmitting portion, so that the display device can be driven in the open mode.
  • the user can easily drive the display device in the privacy mode or the normal mode according to the application of power.
  • the display device to which the light path control member according to the embodiment is applied may also be applied to the interior of a vehicle.
  • the display device including the light path control member may display vehicle information and an image confirming the movement path of the vehicle.
  • the display device may be disposed between a driver's seat and a passenger seat of a vehicle.
  • optical path control member may be applied to an instrument panel that displays a vehicle speed, an engine, and a warning signal.
  • the light path control member according to the embodiment may be applied to the windshield (FG) or left and right window glass of a vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

실시예에 따른 광 경로 제어 부재는, 제 1 기판; 상기 제 1 기판의 상부에 배치되는 제 1 전극; 상기 제 1 기판 상에 배치되는 제 2 기판; 상기 제 2 기판의 하부에 배치되는 제 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 배치되는 광 변환부를 포함하고, 상기 광 변환부는 교대로 배치되는 격벽부 및 수용부를 포함하고, 상기 수용부는 전압의 인가에 따라 광 투과율이 변화되고, 상기 수용부는 서로 이격하는 복수의 단위 수용셀을 포함하고, 상기 수용부는 분산액 및 상기 분산액 내에 분산되는 광 흡수 입자를 포함하고, 상기 광 흡수 입자는 제 1 입자 및 제 2 입자를 포함하고, 상기 제 1 입자의 입경은 상기 제 2 입자의 입경보다 크고, 상기 제 1 입자의 표면 및 상기 제 2 입자의 표면은 동일한 극성으로 대전된다.

Description

광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
실시예는 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치에 관한 것이다.
차광 필름은 광원으로부터의 광이 전달되는 것을 차단하는 것으로, 휴대폰, 노트북, 태블릿 PC, 차량용 네비게이션, 차량용 터치 등에 사용되는 표시장치인 디스플레이 패널의 전면에 부착되어 디스플레이가 화면을 송출할 때 광의 입사 각도에 따라 광의 시야각을 조절하여 사용자가 필요한 시야 각도에서 선명한 화질을 표현할 수 있는 목적으로 사용되고 있다.
또한, 차광 필름은 차량이나 건물의 창문 등에 사용되어 외부 광을 일부 차폐하여 눈부심을 방지하거나, 외부에서 내부가 보이지 않도록 하는데도 사용할 수 있다.
즉, 차광 필름은 광의 이동 경로를 제어하여, 특정 방향으로의 광은 차단하고, 특정 방향으로의 광은 투과시키는 광 경로 변환 부재일 수 있다. 이에 따라, 차광 필름에 의해 광의 투과 각도를 제어하여, 사용자의 시야각을 제어할 수 있다.
한편, 이러한 차광 필름은 주변 환경 또는 사용자의 환경에 관계없이 항상 시야각을 제어할 수 있는 차광 필름과, 주변 환경 또는 사용자의 환경에 따라 사용자가 시야각 제어를 온-오프 할 수 있는 스위쳐블 차광 필름으로 구분될 수 있다.
이러한 스위쳐블 차광 필름은 패턴부에 전기적으로 이동하는 입자를 첨가하여 입자의 분산 및 응집에 의해 패턴부가 광 투과부 및 광 차단부로 변화되어 구현될 수 있다.
한편, 입자에 따른 차광효과는 입자의 양이 증가할수록 향상될 수 있으나, 한정된 공간에 입자의 양이 증가되는 경우, 입자들 간 응집이 발생하고, 이러한 입자의 응집에 의해 입자의 이동속도가 저하되고, 시야각 제어 효과가 저하될 수 있다.
따라서, 동일한 양의 입자를 첨가하면서도, 향상된 차광 효과를 구현할 수 있는 새로운 구조의 광 경로 제어 부재가 요구된다.
실시예는 전기영동 입자에 따른 향상된 차광 효과를 구현하면서, 전기영동 입자의 응집을 방지할 수 있는 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치를 제공하고자 한다.
실시예에 따른 광 경로 제어 부재는, 제 1 기판; 상기 제 1 기판의 상부에 배치되는 제 1 전극; 상기 제 1 기판 상에 배치되는 제 2 기판; 상기 제 2 기판의 하부에 배치되는 제 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 배치되는 광 변환부를 포함하고, 상기 광 변환부는 교대로 배치되는 격벽부 및 수용부를 포함하고, 상기 수용부는 전압의 인가에 따라 광 투과율이 변화되고, 상기 수용부는 서로 이격하는 복수의 단위 수용셀을 포함하고, 상기 수용부는 분산액 및 상기 분산액 내에 분산되는 광 흡수 입자를 포함하고, 상기 광 흡수 입자는 제 1 입자 및 제 2 입자를 포함하고, 상기 제 1 입자의 입경은 상기 제 2 입자의 입경보다 크고, 상기 제 1 입자의 표면 및 상기 제 2 입자의 표면은 동일한 극성으로 대전된다.
실시예에 따른 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치는 서로 다른 입경을 가지는 전기영동 입자들을 포함할 수 있다.
즉, 서로 다른 입경을 가지는 제 1 입자(11) 및 제 2 입자(12)를 포함하는 광 흡수 입자(10)의 경우, 동일한 입경을 가지는 광 흡수 입자(10)에 비해 향상된 충전밀도를 가지므로, 상기 수용부 내부에서 낮은 높이로 응집되어 배치될 수 있다.
이에 따라, 광 흡수 입자의 응집 높이를 감소시켜, 전압이 인가되어 투과모드로 구동하는 광 경로 제어 부재에서 수용부의 광 투과 영역을 증가시킬 수 있다. 따라서, 투과 모드에서 광 투과 영역을 증가시켜, 정면 휘도를 향상시킬 수 있어 사용자의 시인성을 향상시킬 수 있다.
또한, 실시예에 따른 광 경로 제어 부재는 향상된 정면 투과율을 가질 수 있다.
또한, 실시예에 따른 광 경로 제어 부재는 향상된 휘도 균일성을 가질 수 있다.
자세하게, 광 변환부에 배치되는 광 변환 입자에 광을 반사 및/또는 산란시키는 금속 산화물 입자에 의해, 광 변환부가 투과부로 구동할 때 광 변환부에서의 투과율을 향상시킬 수 있다.
즉, 광 흡수 입자가 응집되어 배치되는 영역에 광 산란 입자를 배치하여, 광 산란 입자를 통해 광이 사용자 방향으로 출사되는 광량을 증가시켜, 정면 투과율을 향상시킬 수 있다.
또한, 광 변환부 영역에 의해 광 경로 제어 부재에서 광량이 감소되는 부분이 시인되는 것을 방지할 수 있다. 즉, 광 경로 제어 부재의 전체적인 휘도 균일성을 확보하여 사용자의 시인성을 향상시킬 수 있다.
또한, 실시예에 따른 경로 제어 부재는 실링 물질의 비중을 분산액의 비중보다 크게 할 수 있다.
즉, 실링 물질을 분산액의 상부에 배치하여, 일정 영역만큼 수용부 내부로 침투되게 한 후, 1, 2, 기판을 상하반전하여, 실링 물질을 경화함으로써, 수용부의 내부에 분산액을 밀봉하는 실링층을 형성할 수 있다.
이에 따라, 실링 물질과 분산액의 비중에 따른 물질 제한을 해소하여, 비중이 높지만 밀봉 특성이 높은 실링 물질을 통해 분산액의 밀봉 특성을 향상시킬 수 있고, 비중이 높지만, 고유전율 및 저점도를 가지는 분산액을 사용하여, 분산액에 분산되는 광 흡수 입자의 이동속도를 향상시킬 수 있다.
또한, 실링물질의 비중이 상기 분산액의 비중보다 크기 때문에, 상기 분산액은 수용부 내부에서 상부로 이동하여 배치되고, 실링 물질은 수용부 내부에서 하부로 이동하여 배치될 수 있다.
이에 따라, 상기 분산액이 수용부 하부의 격벽부 방향으로 흘러 넘쳐서 분산액에 의해 격벽부가 오염되는 것을 방지할 수 있다.
즉, 상기 실링 물질의 비중을 분산액의 비중보다 크게하여, 분산액이 외부로 넘치는 현상을 방지할 수 있다.
따라서, 실시예에 따른 광 경로 제어 부재는 향상된 구동 특성 및 신뢰성을 가질 수 있다.
도 1은 실시예에 따른 광 경로 제어 부재의 사시도를 도시한 도면이다.
도 2 및 도 3은 각각 실시예에 따른 광 경로 제어 부재의 제 1 기판 및 제 1 전극과 제 2 기판 및 제 2 전극의 사시도를 도시한 도면들이다.
도 4 및 도 5는 실시예에 따른 광 경로 제어 부재의 단면도를 도시한 도면들이다.
도 6 내지 도 8은 도 5의 A 영역을 확대한 확대도롤 도시한 도면들이다.
도 9 내지 도 12는 실시예에 따른 광 경로 제어 부재의 다른 단면도를 도시한 도면들이다.
도 13 내지 도 15는 도 5의 A 영역을 확대한 다른 확대도롤 도시한 도면들이다.
도 16 및 도 17은 다른 실시예에 따른 광 경로 제어 부재의 단면도를 도시한 도면들이다.
도 18은 도 16의 B영역을 확대한 확대도를 도시한 도면들이다.
도 19는 실시예에 따른 광 경로 제어 부재가 적용되는 표시 장치의 단면도를 도시한 도면이다.
도 20 및 도 21은 실시예에 따른 광 경로 제어 부재가 적용되는 디스플레이 장치의 일 실시예를 설명하기 위한 도면들이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C중 적어도 하나(또는 한개이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속'되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다.
또한 “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하, 도면을 참조하여, 실시예에 따른 광 경로 제어 부재를 설명한다. 이하에서 설명하는 광 경로 제어 부재는 전압의 인가에 의한 전기영동 입자의 이동에 따라 다양한 모드로 구동하는 스위쳐블 광 경로 제어 부재에 대한 것이다.
도 1 내지 도 3을 참조하면, 실시예에 따른 광 경로 제어 부재는, 제 1 기판(110), 제 2 기판(120), 제 1 전극(210), 제 2 전극(220), 광 변환부(300)를 포함할 수 있다.
상기 제 1 기판(110)은 상기 제 1 전극(210)을 지지할 수 있다. 상기 제 1 기판(110)은 리지드(rigid)하거나 또는 플렉서블(flexible)할 수 있다.
또한, 상기 제 1 기판(110)은 투명할 수 있다. 예를 들어, 상기 제 1 기판(110)은 광을 투과할 수 있는 투명 기판을 포함할 수 있다.
상기 제 1 기판(110)은 유리, 플라스틱 또는 연성의 고분자 필름을 포함할 수 있다. 예를 들어, 연성의 고분자 필름은 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET), 폴리카보네이트(Polycabonate, PC), 아크릴로니트릴-부타디엔-스티렌 수지(acrylonitrile-butadiene-styrene copolymer, ABS), 폴리메틸메타아크릴레이트(Polymethyl Methacrylate, PMMA), 폴리에틸렌나프탈레이트(Polyethylene Naphthalate, PEN), 폴리에테르술폰(Polyether Sulfone, PES), 고리형 올레핀 고분자(Cyclic Olefin Copolymer, COC), TAC(Triacetylcellulose) 필름, 폴리비닐알코올(Polyvinyl alcohol, PVA) 필름, 폴리이미드(Polyimide, PI) 필름, 폴리스틸렌(Polystyrene, PS) 중 어느 하나로 이루어질 수 있으며, 이는 하나의 예시일 뿐 반드시 이에 한정되는 것은 아니다.
또한, 상기 제 1 기판(110)은 유연한 특성을 가지는 플렉서블(flexible) 기판일 수 있다.
또한, 상기 제 1 기판(110)은 커브드(curved) 또는 벤디드(bended) 기판일 수 있다. 즉, 상기 제 1 기판(110)을 포함하는 광 경로 제어 부재도 플렉서블, 커브드 또는 벤디드 특성을 가지도록 형성될 수 있다. 이로 인해, 실시예에 따른 광경로 제어 부재는 다양한 디자인으로 변경이 가능할 수 있다.
상기 제 1 기판(110)은 30㎛ 내지 100㎛의 두께를 가질 수 있다.
상기 제 1 전극(210)은 상기 제 1 기판(110)의 일면 상에 배치될 수 있다. 자세하게, 상기 제 1 전극(210)은 상기 제 1 기판(110)의 상면 상에 배치될 수 있다. 즉, 상기 제 1 전극(210)은 상기 제 1 기판(110)과 상기 제 2 기판(120) 사이에 배치될 수 있다.
상기 제 1 전극(210)은 투명한 전도성 물질을 포함할 수 있다. 예를 들어, 상기 제 1 전극(210)은 인듐 주석 산화물(indium tin oxide), 인듐 아연 산화물(indium zinc oxide), 구리 산화물(copper oxide), 주석 산화물(tin oxide), 아연 산화물(zinc oxide), 티타늄 산화물(titanium oxide) 등의 금속 산화물을 포함할 수 있다.
상기 제 1 전극(210)은 필름 형상으로 상기 제 1 기판(110) 상에 배치될 수 있다. 또한, 상기 제 1 전극(210)의 광 투과율은 약 80% 이상일 수 있다. 자세하게, 상기 제 1 전극(210)은 상기 제 1 기판(110)의 일면의 전면 상에 배치될 수 있다. 즉, 상기 제 1 전극(210)은 상기 제 1 기판(110) 상에 면전극으로 배치될 수 있다.
상기 제 1 전극(210)은 0.1㎛ 내지 0.5㎛의 두께를 가질 수 있다.
또는, 상기 제 1 전극(210)은 저저항을 구현하기 위해 다양한 금속을 포함할 수 있다. 예를 들어, 상기 제 1 전극(210)은 크롬(Cr), 니켈(Ni), 구리(Cu), 알루미늄(Al), 은(Ag), 몰리브덴(Mo). 금(Au), 티타튬(Ti) 및 이들의 합금 중 적어도 하나의 금속을 포함할 수 있다.
상기 제 1 전극(210)은 상기 제 1 기판(110)의 일면의 전면 상에 배치될 수 있다. 자세하게, 상기 제 1 전극(210)은 상기 제 1 기판(110)의 일면 상에 면전극으로 배치될 수 있다. 그러나, 실시예는 이에 제한되지 않고, 상기 제 1 전극(210)은 일정한 패턴을 가지는 복수의 패턴 전극으로 형성될 수도 있다.
예를 들어, 상기 제 1 전극(210)은 복수 개의 전도성 패턴을 포함할 수 있다. 자세하게, 상기 제 1 전극(210)은 서로 교차하는 복수 개의 메쉬선들 및 상기 메쉬선들에 의해 형성되는 복수 개의 메쉬 개구부들을 포함할 수 있다.
이에 따라, 상기 제 1 전극(210)이 금속을 포함하여도, 외부에서 상기 제 1 전극이 시인되지 않아 시인성이 향상될 수 있다. 또한, 상기 개구부들에 의해 광 투과율이 증가되어, 실시예에 따른 광 경로 제어 부재의 휘도가 향상될 수 있다.
상기 제 2 기판(120)은 상기 제 1 기판(110) 상에 배치될 수 있다. 자세하게, 상기 제 2 기판(120)은 상기 제 1 기판(110) 상의 제 1 전극(210) 상에 배치될 수 있다.
상기 제 2 기판(120)은 광을 투과할 수 있는 물질을 포함할 수 있다. 상기 제 2 기판(120)은 투명한 물질을 포함할 수 있다. 상기 제 2 기판(120)은 앞서 설명한 상기 제 1 기판(110)과 동일 또는 유사한 물질을 포함할 수 있다.
예를 들어, 상기 제 2 기판(120)은 유리, 플라스틱 또는 연성의 고분자 필름을 포함할 수 있다. 예를 들어, 연성의 고분자 필름은 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET), 폴리카보네이트(Polycabonate, PC), 아크릴로니트릴-부타디엔-스티렌 수지(acrylonitrile-butadiene-styrene copolymer, ABS), 폴리메틸메타아크릴레이트(Polymethyl Methacrylate, PMMA), 폴리에틸렌나프탈레이트(Polyethylene Naphthalate, PEN), 폴리에테르술폰(Polyether Sulfone, PES), 고리형 올레핀 고분자(Cyclic Olefin Copolymer, COC), TAC(Triacetylcellulose) 필름, 폴리비닐알코올(Polyvinyl alcohol, PVA) 필름, 폴리이미드(Polyimide, PI) 필름, 폴리스틸렌(Polystyrene, PS) 중 어느 하나로 이루어질 수 있으며, 이는 하나의 예시일 뿐 반드시 이에 한정되는 것은 아니다.
또한, 상기 제 2 기판(120)은 유연한 특성을 가지는 플렉서블(flexible) 기판일 수 있다.
또한, 상기 제 2 기판(120)은 커브드(curved) 또는 벤디드(bended) 기판일 수 있다. 즉, 상기 제 2 기판(120)을 포함하는 광 경로 제어 부재도 플렉서블, 커브드 또는 벤디드 특성을 가지도록 형성될 수 있다. 이로 인해, 실시예에 따른 광경로 제어 부재는 다양한 디자인으로 변경이 가능할 수 있다.
상기 제 2 기판(120)은 30㎛ 내지 100㎛의 두께를 가질 수 있다.
상기 제 2 전극(220)은 상기 제 2 기판(120)의 일면 상에 배치될 수 있다. 자세하게, 상기 제 2 전극(220)은 상기 제 2 기판(120)의 하부면 상에 배치될 수 있다. 즉, 상기 제 2 전극(220)은 상기 제 2 기판(120)이 상기 제 1 기판(110)과 마주보는 면 상에 배치될 수 있다. 즉, 상기 제 2 전극(220)은 상기 제 1 기판(110) 상의 상기 제 1 전극(210)과 마주보며 배치될 수 있다. 즉, 상기 제 2 전극(220)은 상기 제 1 전극(210)과 상기 제 2 기판(120) 사이에 배치될 수 있다.
상기 제 2 전극(220)은 투명한 전도성 물질을 포함할 수 있다. 예를 들어, 상기 제 2 전극(220)은 인듐 주석 산화물(indium tin oxide), 인듐 아연 산화물(indium zinc oxide), 구리 산화물(copper oxide), 주석 산화물(tin oxide), 아연 산화물(zinc oxide), 티타늄 산화물(titanium oxide) 등의 금속 산화물을 포함할 수 있다.
상기 제 2 전극(220)은 필름 형상으로 상기 제 2 기판(120) 상에 배치될 수 있다. 또한, 상기 제 2 전극(220)의 광 투과율은 약 80% 이상일 수 있다. 자세하게, 상기 제 2 전극(220)은 상기 제 2 기판(120)의 일면의 전면 상에 배치될 수 있다. 즉, 상기 제 2 전극(220)은 상기 제 2 기판(120) 상에 면전극으로 배치될 수 있다.
상기 제 2 전극(220)은 0.1㎛ 내지 0.5㎛의 두께를 가질 수 있다.
또는, 상기 제 2 전극(220)은 저저항을 구현하기 위해 다양한 금속을 포함할 수 있다. 예를 들어, 상기 제 2 전극(220)은 크롬(Cr), 니켈(Ni), 구리(Cu), 알루미늄(Al), 은(Ag), 몰리브덴(Mo). 금(Au), 티타튬(Ti) 및 이들의 합금 중 적어도 하나의 금속을 포함할 수 있다.
상기 제 2 전극(220)은 상기 제 2 기판(120)의 일면의 전면 상에 배치될 수 있다. 자세하게, 상기 제 2 전극(220)은 상기 제 2 기판(120)의 일면 상에 면전극으로 배치될 수 있다. 그러나, 실시예는 이에 제한되지 않고, 상기 제 2 전극(220)은 일정한 패턴을 가지는 복수의 패턴 전극으로 형성될 수도 있다.
예를 들어, 상기 제 2 전극(220)은 복수 개의 전도성 패턴을 포함할 수 있다. 자세하게, 상기 제 2 전극(220)은 서로 교차하는 복수 개의 메쉬선들 및 상기 메쉬선들에 의해 형성되는 복수 개의 메쉬 개구부들을 포함할 수 있다.
이에 따라, 상기 제 2 전극(220)이 금속을 포함하여도, 외부에서 상기 제 2 전극이 시인되지 않아 시인성이 향상될 수 있다. 또한, 상기 개구부들에 의해 광 투과율이 증가되어, 실시예에 따른 광 경로 제어 부재의 휘도가 향상될 수 있다.
상기 광 변환부(300)는 상기 제 1 기판(110)과 상기 제 2 기판(120) 사이에 배치될 수 있다. 자세하게, 상기 광 변환부(300)는 상기 제 1 전극(210)과 상기 제 2 전극(220) 사이에 배치될 수 있다.
상기 광 변환부(300)는 상기 제 1 전극(210) 및 상기 제 2 전극(220)과 접착될 수 있다. 예를 들어, 상기 제 1 전극(210) 상에는 상기 광 변환부(300)와의 접착력을 향상시키기 위한 버퍼층이 배치되고, 상기 버퍼층을 통해 상기 제 1 전극(210)과 상기 광 변환부(300)는 접착될 수 있다. 또한, 상기 제 2 전극(220) 하부에는 상기 광 변환부(300)와의 접착을 위한 접착층(400)이 배치되고, 상기 접착층(400)을 통해 상기 제 2 전극(220)과 상기 광 변환부(300)는 접착될 수 있다
도 4 및 도 5를 참조하면, 상기 광 변환부(300)는 격벽부(310)와 수용부(320)를 포함할 수 있다.
상기 격벽부(310)는 수용부를 구획하는 격벽 영역으로 정의될 수 있다. 즉, 상기 격벽부(310)는 복수의 수용부를 구획하는 격벽 영역이다. 또한, 상기 수용부(320)는 전압의 인가에 따라 광 차단부 및 광 투과부로 가변되는 영역으로 정의될 수 있다.
즉, 상기 수용부(320)는 복수의 수용부를 포함한다. 자세하게, 상기 수용부(320)는 복수의 단위 수용셀들을 포함한다. 더 자세하게, 상기 수용부(320)는 서로 이격하는 복수의 단위 수용셀들을 포함한다.
상기 격벽부(310)와 상기 수용부(320)는 서로 교대로 배치될 수 있다. 상기 격벽부(310)와 상기 수용부(320)는 서로 다른 폭으로 배치될 수 있다. 예를 들어, 상기 격벽부(310)의 폭은 상기 수용부(320)의 폭보다 클 수 있다.
상기 격벽부(310)와 상기 수용부(320)는 서로 교대로 배치될 수 있다. 자세하게, 상기 격벽부(310)와 상기 수용부(320)는 서로 번갈아가며 배치될 수 있다. 즉, 각각의 격벽부(310)는 서로 인접하는 상기 수용부(320)들 사이에 배치되고, 각각의 수용부(320)는 서로 인접하는 상기 격벽부(310)들 사이에 배치될 수 있다.
상기 격벽부(310)는 투명한 물질을 포함할 수 있다. 상기 격벽부(310)는 광을 투과할 수 있는 물질을 포함할 수 있다.
상기 격벽부(310)는 수지 물질을 포함할 수 있다. 예를 들어, 상기 격벽부(310)는 광 경화성 수지 물질을 포함할 수 있다. 일례로, 상기 격벽부(310)는 UV 수지 또는 투명한 포토레지스트 수지를 포함할 수 있다. 또는 상기 격벽부(310)는 우레탄 수지 또는 아크릴 수지 등을 포함할 수 있다.
상기 격벽부(310)는 상기 제 1 기판(110) 또는 상기 제 2 기판(120) 중 어느 하나의 기판으로 입사되는 광을 다른 기판 방향으로 투과시킬 수 있다.
예를 들어, 도 4 및 도 5에서는 상기 제 1 기판(110)의 하부에서 광이 출사되어 상기 제 2 기판(120) 방향으로 광이 입사될 수 있다, 상기 격벽부(310)는 상기 광을 투과하고, 투과된 광은 상기 제 2 기판(120)의 상부로 이동될 수 있다.
상기 격벽부의 측면에는 상기 광 경로 제어 부재를 밀봉하는 밀봉부(500)가 배치되고, 상기 밀봉부에 의해 상기 광 변환부(300)의 측면은 밀봉될 수 있다.
상기 수용부(320)는 분산액(320a) 및 앞서 설명한 광 흡수 입자(10)를 포함할 수 있다, 자세하게, 상기 수용부(320)에는 상기 분산액(320a)이 주입되어 충진되고, 상기 분산액(320a) 내에는 복수의 광 흡수 입자(10)들이 분산될 수 있다.
상기 분산액(320a)은 상기 광 흡수 입자(10)를 분산시키는 물질일 수 있다. 상기 분산액(320a)은 투명한 물질을 포함할 수 있다. 상기 분산액(320a)은 비극성 용매를 포함할 수 있다. 또한, 상기 분산액(320a)은 광을 투과할 수 있는 물질을 포함할 수 있다. 예를 들어, 상기 분산액(320a)은 할로카본(Halocarbon)계 오일, 파라핀계 오일 및 이소프로필 알콜 중 적어도 하나의 물질을 포함할 수 있다.
상기 광 흡수 입자(10)는 상기 분산액(320a) 내에 분산되어 배치될 수 있다. 자세하게, 상기 복수의 광 흡수 입자(10)들은 상기 분산액(320a) 내에서 서로 이격하며 배치될 수 있다.
상기 광 흡수 입자(10)는 광을 흡수할 수 있는 물질을 포함할 수 있다. 상기 광 흡수 입자는 색을 가질 수 있다. 자세하게, 상기 광 흡수 입자(10)는 광을 흡수할 수 있는 블랙 입자를 포함할 수 있다. 예를 들어, 상기 광 흡수 입자는 카본 블랙 입자를 포함할 수 있다.
도면에는 도시되지 않았지만, 상기 수용부(320)의 상부에는 실링층이 배치될 수 있다, 자세하게, 상기 수용부(320)의 상부에는 상기 분산액을 외부와 밀봉하는 실링층이 배치될 수 있다.
상기 수용부(320)는 상기 광 흡수 입자(10)에 의해 광 투과율이 변화될 수 있다. 자세하게, 상기 수용부(320)는 상기 광 흡수 입자(10)에 의해 광 투과율이 변화되어 광 차단부 및 광 투과부로 변화될 수 있다. 즉, 상기 수용부(320)는 상기 분산액(320a)에 내부에 배치되는 상기 광 흡수 입자(10)의 분산 및 응집에 의해 상기 수용부(320)를 통과하는 광 투과율을 변화시킬 수 있다.
예를 들어, 실시예에 따른 광 경로 부재는 상기 제 1 전극(210) 및 상기 제 2 전극(220)에 인가되는 전압에 의해 제 1 모드에서 제 2 모드 또는 제 2 모드에서 제 1 모드로 변화될 수 있다.
자세하게, 실시예에 따른 광 경로 제어 부재는 제 1 모드에서는 상기 수용부(320)가 광 차단부가 되고, 상기 수용부(320)에 의해 특정 각도의 광이 차단될 수 있다. 즉, 외부에서 바라보는 사용자의 시야각이 좁아질 수 있다.
또한, 실시예에 따른 광 경로 제어 부재는 제 2 모드에서는 상기 수용부(320)가 광 투과부가 되고, 실시예에 따른 광 경로 제어 부재는 상기 격벽부(310) 및 상기 수용부(320)에서 모두 광이 투과될 수 있다. 즉, 외부에서 바라보는 사용자의 시야각이 넓어질 수 있다.
상기 제 1 모드에서 제 2 모드로의 전환 즉, 상기 수용부(320)가 광 차단부에서 광 투과부로의 변환되는 것은 상기 수용부(320)의 광 흡수 입자(10)의 이동에 의해 구현될 수 있다. 즉, 광 흡수 입자(10)는 표면에 전하를 가지고 있고, 전하의 특성에 따라 전압의 인가에 따라 제 1 전극 또는 제 2 전극 방향으로 이동될 수 있다. 즉, 상기 광 흡수 입자(10)는 전기영동 입자일 수 있다.
자세하게, 상기 수용부(320)는 상기 제 1 전극(210) 및 상기 제 2 전극(220)과 전기적으로 연결될 수 있다.
이때, 외부에서 광 경로 제어 부재에 전압이 인가되지 않는 경우, 상기 수용부(320)의 상기 광 흡수 입자(10)는 상기 분산액(320a) 내에 균일하게 분산되고 이에 따라, 상기 수용부(320)는 상기 광 흡수 입자(10)에 의해 광이 차단될 수 있다. 이에 따라, 상기 제 1 모드에서는 상기 수용부(320)는 광 차단부로 구동될 수 있다.
또는, 외부에서 광 경로 제어 부재에 전압이 인가되는 경우, 상기 광 흡수 입자(10)가 이동될 수 있다. 예를 들어, 상기 제 1 전극(210) 및 상기 제 2 전극(220)을 통해 전달되는 전압에 의해 상기 광 흡수 입자(10)가 상기 수용부(320)의 일 끝단 또는 타 끝단 방향으로 이동될 수 있다. 즉, 상기 광 흡수 입자(10)는 상기 제 1 전극 또는 상기 제 2 전극 방향으로 이동될 수 있다.
자세하게, 제 1 전극(210) 및/또는 제 2 전극(220)에 전압을 인가하는 경우, 상기 제 1 전극(210) 및 상기 제 2 전극(220) 사이에서 전계(Eletric Field)가 형성되고, 대전된 상태인 광 흡수 입자(10)는 분산액(320a)을 매질로 하여 제 1 전극(210) 및 상기 제 2 전극(220) 중 (+)극의 전극 방향으로 이동될 수 있다.
즉, 상기 제 1 전극(210) 및/또는 제 2 전극(220)에 전압이 인가되지 않는 경우, 도 4에 도시되어 있듯이, 상기 광 흡수 입자(10)는 상기 분산액(320a) 내에 균일하게 분산되어 상기 수용부(320)는 광 차단부로 구동될 수 있다.
또는, 상기 제 1 전극(210) 및/또는 제 2 전극(220)에 전압이 인가되는 경우, 도 5에 도시되어 있듯이, 상기 광 흡수 입자(10)는 상기 분산액(320a) 내에서 제 1 전극(210) 방향으로 이동될 수 있다, 즉, 상기 광 흡수 입자(10)가 한쪽 방향으로 이동되고, 상기 수용부(320)는 광 투과부로 구동될 수 있다.
이에 따라, 실시예에 따른 광 경로 제어 부재는, 사용자의 주변 환경 등에 따라 2가지 모드로 구동될 수 있다. 즉, 사용자가 특정 시야 각도에서만 광 투과를 원하는 경우, 상기 수용부를 광 차단부로 구동하고, 또는, 사용자가 넓은 시야각 및 높은 휘도를 요구하는 환경에서는 전압을 인가하여 상기 수용부를 광 투과부로 구동할 수 있다.
따라서, 실시예에 따른 광 경로 제어 부재는 사용자의 요구에 따라 두 가지 모드로 구현 가능하므로, 사용자의 환경 등에 따라 구애받지 않고, 광 경로 부재를 적용할 수 있다.
한편, 상기 수용부(320)의 상기 광 흡수 입자(10)가 전극 방향으로 이동하여 상기 수용부(320)가 광 투과부로 구동하는 제 2 모드에서는 출사광이 상기 수용부를 통과할 수 있다.
이때, 상기 수용부(320) 영역 중 상기 광 흡수 입자(10)가 응집되어 있는 영역에서는 여전히 광이 차단되고 이에 따라, 응집 영역이 커질수록 광이 투과되는 영역이 감소될 수 있다.
이에 따라, 실시예에 따른 광 경로 제어 부재는 광 흡수 입자의 입경 크기를 제어하여 상기 제 2 모드에서 수용부의 광 투과 영역을 증가시킬 수 있다.
자세하게, 도 6을 참조하면, 상기 광 흡수 입자(10)는 제 1 입자(11) 및 제 2 입자(12)를 포함할 수 있다.
상기 제 1 입자(11) 및 상기 제 2 입자(12)는 동일한 물질을 포함할 수 있다. 예를 들어, 상기 제 1 입자(11) 및 상기 제 2 입자(12)는 카본블랙 입자를 포함할 수 있다.
상기 제 1 입자(11) 및 상기 제 2 입자(12)는 구형의 형상으로 형성될 수 있다. 또한, 상기 제 1 입자(11) 및 상기 제 2 입자(12)는 나노 단위의 입경으로 형성될 수 있다. 자세하게, 상기 제 1 입자(11) 및 상기 제 2 입자(12)는 500㎚ 내지 700㎚의 입경으로 형성될 수 있다.
상기 제 1 입자(11) 및 상기 제 2 입자(12)의 입경이 500㎚ 미만인 경우, 상기 제 1 입자(11) 및 상기 제 2 입자(12)가 상기 분산액(320a) 내부에서 응집되는 현상에 의해 분산 안전성이 저하될 수 있다.
또한, 상기 제 1 입자(11) 및 상기 제 2 입자(12)의 입경이 700㎚ 초과하는 경우, 상기 제 1 입자(11) 및 상기 제 2 입자(12)의 무게가 증가되어, 상기 제 1 입자(11) 및 상기 제 2 입자(12)가 수용부 하부로 침강되는 현상이 발생할 수 있다.
또한, 상기 제 1 입자(11)는 상기 제 2 입자(12)는 서로 동일한 극성으로 대전될 수 있다. 즉, 상기 제 1 입자(11)와 상기 제 2 입자(12)의 표면은 (+) 또는 (-) 극성으로 대전 될 수 있다. 이에 따라, 상기 제 1 전극 및/제 2 전극에 전압이 인가되는 경우, 상기 제 1 입자(11) 및 상기 제 2 입자(12)와 서로 동일한 방향으로 이동될 수 있다.
또한, 상기 제 1 입자(11)와 상기 제 2 입자(12)는 서로 동일한 비중을 가질 수 있다. 자세하게, 상기 제 1 입자(11)와 상기 제 2 입자(12)의 비중은 2 이하일 수 있다.
상기 제 1 입자(11)와 상기 제 2 입자(12)는 서로 다른 크기를 가질 수 있다. 자세하게, 상기 제 1 입자(11)의 입경과 상기 제 2 입자(12)의 입경은 서로 다를 수 있다.
즉, 상기 광 경로 제어 부재의 각각의 수용부 내부에는 서로 다른 크기를 가지는 광 흡수 입자가 함께 배치될 수 있다. 즉, 상기 수용부(320) 내부에 서로 다른 크기를 가지는 광 흡수 입자를 함께 배치하여, 광 흡수 효과는 동일하게 구현하면서, 전원이 인가되어 광 흡수 입자가 일 영역으로 응집될 때, 응집되는 광 흡수 입자의 충전밀도(Packing density)를 향상시킬 수 있다.
도 6을 참조하면, 상기 제 1 입자(11)의 입경은 상기 제 2 입자(12)의 입경보다 클 수 있다. 상기 제 2 입자(12)의 입경과 상기 제 1 입자(11)의 입경의 비는 1:3 이상일 수 있다. 자세하게, 상기 제 2 입자(12)의 입경과 상기 제 1 입자(11)의 입경의 비는 1:3 내지 1:10 일 수 있다.
상기 제 2 입자(12)의 입경과 상기 제 1 입자(11)의 입경의 비가 1:3 미만인 경우, 상기 제 1 입자(11)와 상기 제 2 입자(12)의 입경의 차이가 크지 않아, 광 흡수 입자의 충전밀도가 감소될 수 있어, 투과율 효과가 크지 않을 수 있다.
또한, 상기 제 2 입자(12)의 입경과 상기 제 1 입자(11)의 입경의 비는 1:10을 초과하는 경우, 어느 하나의 입자가 너무 크게되어 광 흡수 입자의 충전밀도가 감소되거나 또는, 어느 하나의 입자가 너무 작게되어 이를 제조하기 어려운 문제점이 있다.
또한, 상기 제 1 입자(11)와 상기 제 2 입자(12)는 서로 다른 양으로 포함될 수 있다. 자세하게, 어느 하나의 수용부 내부에 배치되는 상기 제 1 입자(11)와 상기 제 2 입자(12)의 전체 부피는 서로 다를 수 있다. 자세하게, 상기 복수의 단위 수용셀 중 적어도 하나의 단위 수용셀에서, 상기 제 1 입자의 전체 부피는 상기 제 2 입자의 전체 부피보다 클 수 있다. 즉, 상기 복수의 단위 수용셀들 모두에서, 상기 제 1 입자의 전체 부피는 상기 제 2 입자의 전체 부피보다 크거나, 상기 복수의 단위 수용셀들 중 일부에서, 상기 제 1 입자의 전체 부피는 상기 제 2 입자의 전체 부피보다 클 수 있다.
예를 들어, 상기 복수의 단위 수용셀 중 적어도 하나의 단위 수용셀에서, 상대적으로 입경 크기가 작은 상기 제 2 입자(12)는 상기 광 흡수 입자의 전체 부피에 대해 5 부피% 이상으로 포함될 수 있다. 자세하게, 상기 제 2 입자(12)는 상기 광 흡수 입자의 전체 부피에 대해 5 부피% 내지 20 부피%로 포함될 수 있다.
상기 제 2 입자(12)가 5 부피% 미만으로 포함되는 경우, 상기 제 1 입자(11)의해 충전밀도가 증가되어, 투과율 향상 효과가 작으며, 상기 제 2 입자(12)가 20 부피% 초과하여 포함되는 경우, 광 흡수 효과가 감소되어 시야각 제어 효과가 저하될 수 있다.
도 7은 수용부(320) 내부에 동일한 입경을 가지는 광 흡수 입자만 배치되는 예를 설명하기 위한 도면이고, 도 8은 수용부(320) 내부에 서로 입경 크기가 다른 제 1 입자(11)와 제 2 입자(12)를 포함하는 광 흡수 입자가 배치되는 예를 설명하기 위한 도면이다.
도 7 및 도 8을 참조하면, 상기 제 2 입자(12)는 상기 광 경로 제어 부재의 투과율을 향상시킬 수 있다.
자세하게, 도 7을 참조하면, 상기 수용부(320) 내부에 동일한 입경을 가지는 광 흡수 입자(10)만 배치되는 경우, 제 2 모드에서 제 1 전극(210) 방향으로 응집되는 광 흡수 입자의 충전밀도는 상기 광 흡수 입자(10)의 입경에 의존될 수 있다.
예를 들어, 도 7을 참조하면, 제 2 모드에서 제 1 전극(210) 방향으로 응집되는 광 흡수 입자의 충전밀도에 의해, 상기 수용부 내부에서 상기 광 흡수 입자(10)는 제 1 높이(h1) 만큼 배치될 수 있다.
또한, 도 8을 참조하면, 상기 수용부(320) 내부에 서로 다른 입경을 가지는 제 1 입자(11) 및 제 2 입자(12)를 포함하는 광 흡수 입자(10)가 배치되는 경우, 제 2 모드에서 제 1 전극(210) 방향으로 응집되는 광 흡수 입자의 충전밀도는 상기 제 1 입자(11) 및 상기 제 2 입자(12)의 부피% 및 입경 크기에 의존될 수 있다.
예를 들어, 도 8 참조하면, 제 2 모드에서 제 1 전극(210) 방향으로 응집되는 광 흡수 입자의 충전밀도에 의해, 상기 수용부 내부에서 상기 광 흡수 입자(10)는 제 2높이(h2) 만큼 배치될 수 있다.
이때, 서로 다른 입경을 가지는 제 1 입자(11) 및 제 2 입자(12)를 포함하는 광 흡수 입자(10)의 경우, 동일한 입경을 가지는 광 흡수 입자(10)에 비해 상기 수용부 내부에서 낮은 높이로 응집되어 배치될 수 있다.
즉, 서로 다른 입경을 가지는 제 1 입자(11) 및 제 2 입자(12)를 포함하는 광 흡수 입자(10)의 경우, 동일한 입경을 가지는 광 흡수 입자(10)에 비해 향상된 충전밀도를 가지므로, 상기 수용부 내부에서 낮은 높이로 응집되어 배치될 수 있다.
이에 따라, 광 흡수 입자의 응집 높이를 감소시켜, 제 2 모드에서 상기 수용부의 광 투과 영역을 증가시킬 수 있다. 따라서, 제 2 모드에서 광 투과 영역을 증가시켜, 정면 휘도를 향상시킬 수 있어 사용자의 시인성을 향상시킬 수 있다.
한편, 상기 수용부(320)는 다양한 형상으로 형성될 수 있다.
도 4 및 도 5를 참조하면, 상기 수용부(320)는 상기 수용부(310)의 일 끝단에서 타 끝단으로 연장하며 상기 수용부(320)의 폭이 변화될 수 있다.
예를 들어, 도 4 및 도 5를 참조하면, 상기 수용부(320)는 사다리꼴 형상으로 형성될 수 있다. 자세하게, 상기 수용부(320)는 상기 제 1 전극(210)에서 상기 제 2 전극(220) 방향으로 연장하며 상기 수용부(320)의 폭이 넓어지도록 형성될 수 있다.
즉, 상기 수용부(320)의 폭은 사용자의 시야면에서 그 반대면 방향으로 연장하면서 폭이 좁아질 수 있다. 또한, 상기 광 변환부에 전압이 인가되는 경우, 상기 수용부(320)의 광 흡수 입자들은 상기 수용부의 폭이 좁아지는 방향으로 이동될 수 있다.
즉, 상기 수용부(320)의 폭은 광이 입사되는 광 입사부에서 광이 출사되는 광 출사부 방향으로 연장하면서 폭이 넓어질 수 있다.
이에 따라, 상기 광 흡수 입자들은 상기 시야면이 아닌 시야면의 반대면 방향으로 이동되므로, 시야면 방향으로 출사되는 광의 차단을 방지할 수 있어, 광 경로 부재의 휘도를 향상시킬 수 있다.
또한, 상기 광 흡수 입자들이 폭이 넓은 영역에서 좁은 영역 방향으로 이동되므로, 광 흡수 입자들이 용이하게 이동될 수 있다.
또한, 상기 광 흡수 입자가 상기 수용부의 좁은 영역으로 이동하므로, 사용자의 시야면 방향으로 투과되는 광량을 증가시켜, 정면 휘도를 향상시킬 수 있다.
또는, 이와 반대로 상기 수용부(320)는 상기 제 1 전극(210)에서 상기 제 2 전극(220) 방향으로 연장하며 상기 수용부(320)의 폭이 좁아지도록 형성될 수 있다.
즉, 상기 수용부(320)의 폭은 사용자의 시야면에서 그 반대면 방향으로 연장하면서 폭이 넓어질 수 있다. 또한, 상기 광 변환부에 전압이 인가되는 경우, 상기 수용부(320)의 광 흡수 입자들은 상기 수용부의 폭이 넓어지는 방향으로 이동될 수 있다.
즉, 상기 수용부(320)의 폭은 광이 입사되는 광 입사부에서 광이 출사되는 광 출사부 방향으로 연장하면서 폭이 좁아질 수 있다.
이에 따라, 상기 광 흡수 입자들이 이동하는 수용부의 일면과 제 1 전극의 접촉 영역이 증가되어 광 흡수 입자의 이동 속도 즉, 구동 속도를 증가시킬 수 있다.
또한, 상기 수용부(320)는 상기 제 1 전극(210) 또는 상기 제 2 전극(220)과 이격하여 배치될 수 있다.
예를 들어, 도 4 및 도 5를 참조하면, 상기 수용부(320)는 상기 제 1 전극(210)과는 이격하고, 상기 제 2 전극(220)과는 간접적으로 잡촉할 수 있다.
상기 수용부(320)와 상기 제 1 전극(220)이 서로 이격되는 영역에는 상기 격벽부(301)와 동일 또는 유사한 물질이 배치될 수 있다.
또는, 실시예는 이에 제한되지 않고, 도 9 및 도 10에 도시되어 있듯이, 상기 수용부의 양 끝단은 각각 1 전극(210) 및 2 전극(220)과 직점 또는 간접적으로 접촉하며 배치될 수 있다.
이에 따라, 상기 수용부(320)가 상기 1 전극(210) 및 2 전극(220)과 직접 접촉하므로, 저항에 따른 영향없이 상기 수용부(320) 방향으로 전압이 용이하게 전달되어 구동특성을 향상시킬 수 있다.
또한, 상기 수용부(320)는 일정한 경사각도(θ)를 가지면서 배치될 수 있다. 자세하게, 도 11 및 도 12를 참조하면, 상기 수용부(320)는 상기 제 1 전극(210)에 대해 0° 초과 내지 90°미만의 경사각도(θ)를 가지면서 배치될 수 있다. 자세하게, 상기 수용부(320)는 상기 제 1 전극(210)의 일면에 대해 0° 초과 내지 90°미만의 경사각도(θ)를 가지면서 상부 방향으로 연장할 수 있다.
이에 따라, 상기 광 경로 부재가 표시 패널과 함께 사용될 때, 표시 패널의 패턴과 광 경로 부재의 수용부(320)의 중첩 현상에 따른 무아레를 방지하여, 사용자의 시인성을 향상시킬 수 있다.
이하, 도 13 내지 도 15를 참조하여 다른 실시예에 따른 광 경로 제어 부재를 설명한다.
도 13 내지 도 15는 도 5의 A 영역을 확대한 다른 확대도를 도시한 도면들이다.
도 13을 참조하면, 상기 광 변환 입자(10)는 제 1 입자(11) 및 제 2 입자(12)를 포함할 수 있다.
상기 제 1 입자(11)와 상기 제 2 입자(12)는 상기 분산액(320a) 내에 함께 배치될 수 있다. 자세하게, 상기 제 1 입자(11)와 상기 제 2 입자(12)는 서로 분리되어 상기 분산액(320a) 내에 분산될 수 있다.
상기 제 1 입자(11)와 상기 제 2 입자(12)는 서로 다른 반사율을 가질 수 있다. 자세하게, 상기 제 1 입자(11)의 반사율은 상기 제 2 입자(12)의 반사율보다 작을 수 있다. 예를 들어, 상기 제 1 입자(11)의 반사율은 약 0.1% 이하일 수 있고, 상기 제 2 입자(12)의 반사율은 약 50% 내지 약 90%일 수 있다.
즉, 상기 제 1 입자(11)로 입사되는 광은 거의 반사되지 않고, 상기 제 1 입자(11)가 흡수할 수 있고, 상기 제 2 입자(12)로 입사되는 광은 약 50% 내지 약 90%로 반사되어 산란 될 수 있다.
자세하게, 상기 제 1 입자(11)는 상기 수용부(320) 내부로 입사되는 광을 흡수할 수 있다. 즉, 상기 제 1 입자(11)에 의해 상기 수용부(320)는 광 투과부 및 광 차단부로 변화될 수 있다. 즉, 상기 제 1 입자(11)는 광 흡수 입자일 수 있다.
상기 제 1 입자(11)는 구형의 형상으로 형성될 수 있다. 또한, 상기 제 1 입자(11)는 나노 단위의 입경으로 형성될 수 있다. 자세하게, 상기 제 1 입자(11)는 500㎚ 내지 700㎚의 입경으로 형성될 수 있다.
상기 제 1 입자(11)의 입경이 500㎚ 미만인 경우, 상기 제 1 입자(11)가 상기 분산액(320a) 내부에서 응집되는 현상에 의해 분산 안전성이 저하될 수 있다.
또한, 상기 제 1 입자(11)의 입경이 700㎚ 초과하는 경우, 상기 제 1 입자(11)의 무게가 증가되어, 상기 제 1 입자(11)가 수용부 하부로 침강되는 현상이 발생할 수 있다.
상기 제 1 입자(11)는 색을 가질 수 있다. 자세하게, 상기 제 1 입자(11)는 흑색의 입자를 포함할 수 있다. 예를 들어, 상기 제 1 입자(11)는 카본 블랙을 포함할 수 있다.
상기 제 2 입자(12)는 상기 수용부 내부로 입사되는 광을 부분적으로는 흡수하고 부분적으로는 반사시킬 수 있다. 즉, 상기 제 2 입자(12)는 반사 및 흡수 특성을 모두 가질 수 있다. 즉, 상기 제 2 입자(12)는 광 산란 입자일 수 있다.
상기 제 2 입자(12)는 구형의 형상으로 형성될 수 있다. 또한, 상기 제 2 입자(12)는 나노 단위의 입경으로 형성될 수 있다. 자세하게, 상기 제 2 입자(12)는 500㎚ 내지 700㎚의 입경으로 형성될 수 있다. 상기 제 1 입자(11)와 상기 제 2 입자(12)는 상기 입경 크기 범위 내에서 서로 동일 또는 유사한 입경을 가질 수 있다.
상기 제 2 입자(12)의 입경이 500㎚ 미만인 경우, 상기 제 2 입자(12)가 상기 분산액(320a) 내부에서 응집되는 현상에 의해 분산 안전성이 저하될 수 있다.
또한, 상기 제 2 입자(12)의 입경이 700㎚ 초과하는 경우, 상기 제 2 입자(12)의 무게가 증가되어, 상기 제 2 입자(12)가 수용부 하부로 침강되는 현상이 발생할 수 있다.
상기 제 2 입자(12)는 색을 가질 수 있다. 자세하게, 상기 제 2 입자(12)는 흑색의 입자를 포함할 수 있다.
상기 제 2 입자(12)는 금속을 포함할 수 있다. 자세하게, 상기 제 2 입자(12)는 금속 산화물을 포함할 수 있다. 예를 들어, 상기 제 2 입자(12)는 이산화티탄(TiO2), 산화지르코늄(ZrO2), 산화인듐(In2O3), 산화주석(SnO2) 및 산화알루미늄(Al2O3) 중 적어도 하나를 포함할 수 있다.
또한, 상기 제 1 입자(11)는 상기 제 2 입자(12)는 서로 동일한 극성으로 대전될 수 있다. 즉, 상기 제 1 입자(11)와 상기 제 2 입자(12)의 표면은 (+) 또는 (-) 극성으로 대전 될 수 있다. 이에 따라, 상기 제 1 전극 및/제 2 전극에 전압이 인가되는 경우, 상기 제 1 입자(11) 및 상기 제 2 입자(12)와 서로 동일한 방향으로 이동될 수 있다.
또한, 상기 제 1 입자(11)와 상기 제 2 입자(12)는 서로 다른 비중을 가질 수 있다. 자세하게, 상기 제 1 입자(11)의 비중은 상기 제 2 입자(12)의 비중보다 작을 수 있다. 예를 들어, 상기 제 1 입자(11)의 비중은 2 이하이고, 상기 제 2 입자(12)의 비중은 3 내지 8일 수 있다.
상기 수용부 내부에는 상기 제 1 입자(11) 및 상기 제 2 입자(12)의 분산을 용이하게 하는 분산제가 더 포함될 수 있다. 자세하게, 서로 다른 물질을 포함하는 상기 제 1 입자(11) 및 상기 제 2 입자(12)의 비중 차이에 따른 상 분리 현상을 방지하기 위해, 상기 수용부 내부에는 상기 제 1 입자(11) 및 상기 제 2 입자(12)의 분산을 유도하는 분산제가 더 포함될 수 있다.
도 14는 수용부(320) 내부에 제 1 입자(11)만 배치되는 예를 설명하기 위한 도면이고, 도 15는 수용부(320) 내부에 제 1 입자(11)와 제 2 입자(12)가 함께 배치되는 예를 설명하기 위한 도면이다.
도 14 및 도 15를 참조하면, 상기 제 2 입자(12)는 상기 광 경로 제어 부재의 정면 휘도를 향상시킬 수 있다.
자세하게, 도 14를 참조하면, 상기 수용부(320) 내부에 제 1 입자(11) 즉, 광 흡수 입자만 배치되는 경우, 상기 수용부 방향으로 입사되는 광은 응집되어 있는 제 1 입자에 의해 대부분 차단될 수 있다. 즉, 상기 수용부 방향으로 입사되는 광은 차단되어 사용자 방향으로 출사되지 못하므로, 광 경로 제어 부재의 정면 휘도가 저하될 수 있다. 또한, 상기 수용부 방향으로 입사되는 광이 차단되어 특정 영역에서의 휘도가 다른 영역에서의 휘도보다 작아지므로, 광 경로 제어 부재의 휘도 균일성이 저하될 수 있다.
그러나, 도 15를 참조하면, 상기 수용부(320) 내부에 상기 제 1 입자(11)와 상기 제 2 입자(12)가 함께 배치되는 경우, 상기 제 2 입자(12)에 의해 사용자 방향으로 출사되는 광량을 증가시킬 수 있다.
자세하게, 도 15를 참조하면, 상기 제 1 입자(11)와 함께 응집되어 배치되는 상기 제 2 입자(12)에 의해 상기 제 2 입자(12)로 입사되는 광은 산란되어 굴절될 수 있다. 이에 따라, 상기 제 2 입자(12)를 통한 광의 반사 및 굴절에 의해 상기 수용부를 통과하는 광이 사용자 방향으로 출사되는 광량을 증가시킬 수 있다.
이에 따라, 광 경로 제어 부재의 정면 휘도를 향상시킬 수 있고, 광 경로 제어 부재의 휘도 균일성을 향상시킬 수 있다.
한편, 상기 제 1 입자(11)와 상기 제 2 입자(12)는 서로 다른 중량%로 포함될 수 있다. 자세하게, 각각의 수용부 내에서 상기 제 1 입자(11)는 상기 제 2 입자(12)보다 더 많이 포함될 수 있다.
자세하게, 각각의 수용부 내부에 상기 제 1 입자(11)는 전체 입자에 대해 95 중량% 내지 99중량% 만큼 포함될 수 있다. 또한, 상기 제 2 입자(12)는 전체 입자에 대해 1 중량% 내지 5 중량% 만큼 포함될 수 있다.
상기 제 2 입자(12)가 전체 입자에 대해 약 1 중량% 미만으로 포함되는 경우, 상기 제 2 입자에 따른 광 산란 효과가 적어, 정면 투과율의 향상이 구현되기 어렵다. 또한, 상기 제 2 입자(12)가 전체 입자에 대해 약 5 중량% 초과로 포함되는 경우 제 1 입자의 양이 감소되어, 수용부에서 광 흡수율이 저하될 수 있고, 정면 투과율 향상의 변화가 미미할 수 있다.
이하, 실시예들 및 비교예들에 따른 광 경로 제어 부재의 투과율을 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실시예는 본 발명을 좀더 상세하게 설명하기 위하여 예시로 제시한 것에 불과하다. 따라서 본 발명이 이러한 실시예에 한정되는 것은 아니다.
실시예 1
폴리에틸렌테레프탈레이트(PET)를 포함하는 제 1 기판 및 제 2 기판의 일면에 각각 인듐주석산화물(IT0)를 포함하는 제 1 전극 및 제 2 전극을 형성하였다.
이어서, 상기 제 1 기판 상에 UV 수지를 배치하고, 몰드를 통해 임프린팅 하여 수용부를 형성하였다.
이어서, 수용부 내부에 카본블랙 입자 및 이산화티탄 입자가 분산된 파라핀계 오일을 충진하여 광 변환부를 형성하였다.
이때, 상기 이산화티탄 입자는 전체 입자에 대해 5 중량% 만큼 포함되었다.
이어서, 제 1 기판, 제 2 기판 및 광 변황부를 접착하여 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
실시예 2
수용부 내부에 카본블랙 입자 및 산화지르코늄 입자가 분산된 파라핀계 오일을 충진하였다는 점을 제외하고는 실시예 1과 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
이때, 상기 산화지르코늄 입자는 전체 입자에 대해 5 중량% 만큼 포함되었다.
실시예 3
수용부 내부에 카본블랙 입자 및 산화인듐 입자가 분산된 파라핀계 오일을 충진하였다는 점을 제외하고는 실시예 1과 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
이때, 상기 산화인듐 입자는 전체 입자에 대해 5 중량% 만큼 포함되었다.
실시예 4
수용부 내부에 카본블랙 입자 및 산화주석 입자가 분산된 파라핀계 오일을 충진하였다는 점을 제외하고는 실시예 1과 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
이때, 상기 산화주석 입자는 전체 입자에 대해 5 중량% 만큼 포함되었다.
실시예 5
수용부 내부에 카본블랙 입자 및 산화알루미늄 입자가 분산된 파라핀계 오일을 충진하였다는 점을 제외하고는 실시예 1과 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
이때, 상기산화알루미늄 입자는 전체 입자에 대해 5 중량% 만큼 포함되었다.
비교예 1
수용부 내부에 카본블랙 입자만 분산된 파라핀계 오일을 충진하였다는 점을 제외하고는 실시예 1과 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
비교예 2
이산화티탄 입자가 전체 입자에 대해 7 중량% 포함되었다는 점을 제외하고는 실시예 1과 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
비교예 3
이산화지르코늄 입자가 전체 입자에 대해 7 중량% 포함되었다는 점을 제외하고는 실시예 2와 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
비교예 4
산화인듐 입자가 전체 입자에 대해 7 중량% 포함되었다는 점을 제외하고는 실시예 3과 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
비교예 5
산화 주석 입자가 전체 입자에 대해 7 중량% 포함되었다는 점을 제외하고는 실시예 4와 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
비교예 6
산화 알루미늄 입자가 전체 입자에 대해 7 중량% 포함되었다는 점을 제외하고는 실시예 6과 동일하게 광 경로 제어 부재를 제조한 후, 전압을 인가하였을 때, 광 경로 제어 부재의 정면 투과율을 측정하였다.
실시예1 실시예2 실시예3 실시예4 실시예5 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6
투과율(%) 52 46 42 43 45 40 56 49 42 44 47
표 1을 참조하면, 실시예 1 내지 실시예 5에 따른 광 경로 제어 부재의 정면 투과율은 비교예에 따른 광 경로 제어 부재의 정면 투과율에 비해 큰 것을 알 수 있다.
즉, 실시예 1 내지 실시예 5에 따른 광 경로 제어 부재는 전압이 인가되어 수용부가 광 투과부로 구동할 때, 광을 반사 및 산란시키는 금속 산화물 입자에 의해 정면 방향으로 이동되는 광량이 증가되는 것을 알 수 있다.
또한, 금속 산화물 입자가 전체 입자에 대해 5 중량%를 초과하는 경우, 정면 투과율이 아닌 측면 투과율의 증가로 인해 정면 투과율 향상 효과가 미미할 수 있다.
이하, 도 16 내지 도 18을 참조하여 다른 실시예에 따른 광 경로 제어 부재를 설명한다.
도 16 내지 도 18을 참조하면, 상기 제 2 기판(120)과 상기 광 변환부(300) 사이에는 접착층(400)이 배치되고, 상기 접착층(400)에 의해 상기 제 2 기판(120)과 상기 광 변환부(300)가 접착될 수 있다.
상기 접착층(400)은 유전율을 가질 수 있다. 또한, 상기 접착층(400)은 극성을 가질 수 있다. 예를 들어, 상기 접착층(400)은 광학용 투명 접착제(OCA)를 포함할 수 있다.
상기 접착층(400)은 상기 제 1 기판(110) 상에서 영역마다 서로 다른 두께로 배치될 수 있다.
자세하게, 도 18을 참조하면, 상기 제 1 기판(110)은 상기 격벽부(310)과 대응되는 제 1 영역(1A) 및 상기 수용부(320)와 대응되는 제 2 영역(2A)을 포함하고, 상기 접착층(400)은 상기 제 1 영역(1A) 및 상기 제 2 영역(2A)에서 서로 다른 두께로 배치될 수 있다.
자세하게, 상기 제 2 영역의 접착층 두께(T2)는 상기 제 1 영역의 접착층 두께(T1)보다 클 수 있다. 즉, 상기 제 2 영역의 접착층은 상기 수용부(320) 내부를 부분적으로 메우면서 배치되고, 상기 수용부(320)에 배치되는 접착층의 두께만큼 상기 제 1 영역의 접착층보다 두껍게 배치될 수 있다.
상기 접착층(400)이 상기 제 1 기판(110) 상에서 영역마다 서로 다른 두께로 배치되므로, 상기 접착층의 접착면은 요철 형상으로 형성될 수 있다. 이에 따라, 상기 접착층(400)을 통해 상기 제 1 기판(110)과 상기 광 변환부(300)를 접착한 후, 상기 요철 형상에 의해 상기 광 변환부(300)의 접착력을 향상시킬 수 있다.
따라서, 상기 광 변환부(300)가 탈막되는 것을 방지하여 광 경로 제어 부재의 신뢰성을 향상시킬 수 있다.
한편, 상기 수용부(320)에는 실링층(600)이 배치될 수 있다, 자세하게, 상기 수용부(320)의 내부에는 실링층(600)이 배치될 수 있다. 상기 실링층(600)은 상기 수용부(320)의 내부에 배치되는 상기 접착층(400) 상에 배치될 수 있다. 즉, 상기 수용부(320)의 내부에는 상기 제 2 기판(120) 하부의 접착층(400), 실링층(600) 및 광 흡수 입자가 분산된 분산액(320a)이 순차적으로 배치될 수 있다.
상기 실링층(600)은 상기 분산액(320a)이 외부에 노출되는 것에 의해 분산액(320a)의 특성이 변화되는 것을 방지하고, 분산액(320a) 내부의 광 흡수 입자(10)의 변성을 방지하는 역할을 할 수 있다.
상기 실링층(600)은 특정 영역에만 배치될 수 있다. 즉, 상기 실링층(600)은 수용부(320)의 내부에만 배치되고, 상기 격벽부(310)와 대응되는 영역 상에는 배치되지 않을 수 있다.
이에 따라, 상기 접착층(400)은 상기 광 변환부의 격벽부(310)와 직접 접촉할 수 있고, 이에 따라, 접착층(400)의 접착 특성을 향상시킬 수 있다.
또한, 상기 실링층(600)에 의해 상기 접착층(400)과 상기 분산액(320a)이 직접 접촉하는 것을 방지할 수 있다.
광학용 투명 접착제를 포함하는 접착층(400)의 경우, 접착층이 유전성을 가지는 경우, 극성을 가질 수 있고, 역시 극성을 가지는 분산액과 직접 접촉하는 경우, 계면에서 접착층의 특성이 저하될 수 있다.
즉, 상기 접착층(400)과 상기 분산액(320a)이 직접 접촉하면서, 상기 접착층(400)의 접착 특성 및 분산액(320a)의 극성이 저하될 수 있다.
이에 따라, 상기 접착층(400)과 상기 분산액(320a) 사이에 실링층(600)을 배치하여, 상기 접착층(400)과 상기 분산액(320a)이 직접 접촉하는 것을 방지할 수 있다. 즉, 극성을 가지지 않는 실링층이 상기 접착층과 분산액 사이에서 상기 접착층과 분산액에 직접 접촉될 수 있다.
이에 따라, 접착층의 접착 특성을 유지하여, 제 1 기판과 광 변환부의 접착 특성을 향상시킬 수 있고, 분산액의 극성이 저하되는 것을 방지하여, 분산액 내에서 광 흡수 입자의 이동속도가 저하되는 것을 방지할 수 있다.
상기 실링층(600)은 실링 물질을 경화하여 형성할 수 있다. 이때, 상기 실링층(600)의 비중은 상기 분산액(320a)의 비중과 다를 수 있다. 자세하게, 상기 실링층(600)의 비중은 상기 분산액(320a)의 비중보다 클 수 있다.
예를 들어, 상기 분산액(320a)의 비중은 0.7 내지 0.9일 수 있다, 또한, 상기 실링층을 형성하는 실링 물질의 비중은 0.9 초과 내지 2.2 일 수 있다. 자세하게, 상기 실링 물질은 0.9 초과 내지 2.2의 비중을 가지는 폴리머 물질을 포함할 수 있다. 예를 들어, 상기 실링 물질은 0.9 초과 내지 2.2의 비중을 가지는 우레탄아크릴레이트 또는 에폭시 등의 물질을 포함할 수 있다.
종래에는 기판 상에 광 경화성 수지층을 코팅하고, 수지층에 임프린팅 공정에 의해 음각 형상의 수용부를 형성한 후, 수용부에 광 흡수 입자가 분산된 분산액을 충진하였다. 이어서, 분산액 상부에 실링 물질을 코팅한 후, 실링 물질을 경화하여 실링층을 형성하였다.
이때, 실링 물질의 비중이 분산액의 비중보다 높은 경우, 실링 물질이 분산액 하부로 침투되는 문제로, 실링 물질은 분산액의 비중보다 낮은 물질을 사용하여야 하는 문제점이 있었다.
즉, 상기 실링 물질과 분산액의 공정 순서로 인해 실링 물질과 분산액의 비중에 따른 재료 선택의 제한이 있었다.
그러나, 실시예에 따른 광 경로 제어 부재는 실링 물질의 비중을 분산액의 비중보다 높게할 수 있다. 따라서, 실링 물질을 분산액의 비중보다 큰 물질을 사용할 수 잇어, 실링 물질의 선택의 폭이 증가할 수 있다. 또한, 분산액도 보다 비중이 큰 물질을 사용하여 보다 고유전성을 가지고, 저점도를 가지는 분산액을 적용할 수 있어, 분산액 내에서의 광 흡수 입자의 이동속도를 향상시킬 수 있다.
또한, 실링물질의 비중이 상기 분산액의 비중보다 크기 때문에, 상기 분산액은 수용부 내부에서 상부로 이동하여 배치되고, 실링 물질은 수용부 내부에서 하부로 이동하여 배치될 수 있다.
이에 따라, 상기 분산액이 수용부 하부의 격벽부 방향으로 흘러 넘쳐서 분산액에 의해 격벽부가 오염되는 것을 방지할 수 있다.
즉, 상기 실링 물질의 비중을 분산액의 비중보다 크게하여, 분산액이 외부로 넘치는 현상을 방지할 수 있다.
이하. 도 19 내지 도 21을 참조하여, 실시예에 따른 광 경로 제어 부재가 적용되는 표시 장치 및 디스플레이 장치를 설명한다.
도 19를 참조하면, 실시예에 따른 광 경로 제어 부재(1000)는 표시 패널(2000) 상에 배치될 수 있다.
상기 표시 패널(2000)과 상기 광 경로 제어 부재(1000)는 서로 접착하며 배치될 수 있다. 예를 들어, 상기 표시 패널(2000)과 상기 광 경로 제어 부재(1000)는 접착부재(1500)를 통해 서로 접착될 수 있다. 상기 접착부재(1500)는 투명할 수 있다. 예를 들어, 상기 접착부재(1500)는 광학용 투명 접착 물질을 포함하는 접착제 또는 접착층을 포함할 수 있다.
상기 접착부재(1500)는 이형 필름을 포함할 수 있다. 자세하게, 상기 광 경로 부재와 표시 패널을 접착할 때, 이형 필름을 제거한 후, 상기 광 경로 제어 부재 및 상기 표시 패널을 접착할 수 있다,
상기 표시 패널(2000)은 제 1' 기판(2100) 및 제 2' 기판(2200)을 포함할 수 있다. 상기 표시 패널(2000)이 액정표시패널인 경우, 상기 광 경로 제어 부재는 상기 액정 패널의 하부에 형성될 수 있다. 즉, 액정 패널에서 사용자가 바라보는 면이 상기 액정 패널의 상부로 정의할 때, 상기 광 경로 제어 부재는 상기 액정 패널의 하부에 배치될 수 있다. 상기 표시 패널(2000)은 박막트랜지스터(Thin Film Transistor,TFT)와 화소전극을 포함하는 제 1' 기판(2100)과 컬러필터층들을 포함하는 제 2' 기판(2200)이 액정층을 사이에 두고 합착된 구조로 형성될 수 있다.
또한, 상기 표시 패널(2000)은 박막트랜지스터, 칼라필터 및 블랙전해질이 제 1' 기판(2100)에 형성되고, 제 2' 기판(2200)이 액정층을 사이에 두고 상기 제 1' 기판(2100)과 합착되는 COT(color filter on transistor)구조의 액정표시패널일 수도 있다. 즉, 상기 제 1' 기판(2100) 상에 박막 트랜지스터를 형성하고, 상기 박막 트랜지스터 상에 보호막을 형성하고, 상기 보호막 상에 컬러필터층을 형성할 수 있다. 또한, 상기 제 1' 기판(2100)에는 상기 박막 트랜지스터와 접촉하는 화소전극을 형성한다. 이때, 개구율을 향상하고 마스크 공정을 단순화하기 위해 블랙전해질을 생략하고, 공통 전극이 블랙전해질의 역할을 겸하도록 형성할 수도 있다.
또한, 상기 표시 패널(2000)이 액정표시패널인 경우, 상기 표시 장치는 상기 표시 패널(2000) 배면에서 광을 제공하는 백라이트 유닛을 더 포함할 수 있다. 상기 백라이트 유닛은 상기 광 경로 제어 부재의 하부에 배치될 수 있다.
즉, 도 19와 같이 상기 광 경로 제어 부재는 상기 액정 패널의 하부에 배치될 수 있다.
또는, 상기 표시 패널(2000)이 유기발광 다이오드 패널인 경우, 상기 광 경로 제어 부재는 상기 유기발광 다이오드 패널의 상부에 형성될 수 있다. 즉, 유기발광 다이오드 패널에서 사용자가 바라보는 면이 상기 유기발광 다이오드 패널의 상부로 정의할 때, 상기 광 경로 제어 부재는 상기 유기발광 다이오드 패널의 상부에 배치될 수 있다. 상기 표시 패널(2000)은 별도의 광원이 필요하지 않은 자발광 소자를 포함할 수 있다. 상기 표시 패널(2000)은 제 1' 기판(2100) 상에 박막트랜지스터가 형성되고, 상기 박막트랜지스터와 접촉하는 유기발광소자가 형성될 수 있다. 상기 유기발광소자는 양극, 음극 및 상기 양극과 음극 사이에 형성된 유기발광층을 포함할 수 있다. 또한, 상기 유기발광소자 상에 인캡슐레이션을 위한 봉지 기판 역할을 하는 제 2' 기판(2200)을 더 포함할 수 있다.
또한, 도면에는 도시되지 않았지만, 상기 광 경로 제어 부재(1000)와 상기 표시 패널(2000) 사이에는 편광판이 더 배치될 수 있다. 상기 편광판은 선 편광판 또는 외광 반사 방지 편광판 일 수 있다. 예를 들면, 상기 표시 패널(2000)이 액정표시패널인 경우, 상기 편광판은 선 편광판일 수 있다. 또한, 상기 표시 패널(2000) 이 유기발광 다이오드 패널인 경우, 상기 편광판은 외광 반사 방지 편광판 일 수 있다.
또한, 상기 광 경로 제어 부재(1000) 상에는 반사 방지층 또는 안티글레어 등의 추가적인 기능층(1300)이 더 배치될 수 있다. 자세하게, 상기 기능층(1300)은 상기 광 경로 제어 부재의 상기 제 1 기판(110)의 일면과 접착될 수 있다. 도면에는 도시되지 않았지만, 상기 기능층(1300)은 상기 광 경로 제어 부재의 제 1 기판(110)과 접착층을 통해 서로 접착될 수 있다. 또한, 상기 기능층(1300) 상에는 상기 기능층을 보호하는 이형 필름이 더 배치될 수 있다.
또한, 상기 표시 패널과 광 경로 제어 부재 사이에는 터치 패널이 더 배치될 수 있다.
도면상에는 상기 광 경로 제어 부재가 상기 표시 패널의 상부에 배치되는 것에 대해 도시되었으나, 실시예는 이에 제한되지 않고, 상기 광 제어 부재는 광 조절이 가능한 위치 즉, 상기 표시 패널의 하부 또는 상기 표시 패널의 제 2 기판 및 제 1 기판 사이 등 다양한 위치에 배치될 수 있다.
도 20 및 도 21을 참조하면, 실시예에 따른 광 경로 제어 부재는 차량에 적용될 수 있다.
도 20 및 도 21을 참조하면, 실시예에 따른 광 경로 제어 부재는 디스플레이를 표시하는 디스플레이 장치에 적용될 수 있다.
예를 들어, 도 36과 같이 광 경로 제어 부재에 전원이 인가되지 않는 경우에는 상기 수용부가 광 차단부로 기능하여, 디스플레이 장치가 차광 모드로 구동되고, 도 37과 같이 광 경로 제어 부재에 전원이 인가되는 경우, 상기 수용부가 광 투과부로 기능하여, 디스플레이 장치가 공개 모드로 구동될 수 있다.
이에 따라, 사용자가 전원의 인가에 따라 디스플레이 장치를 프라이버시 모드 또는 일반 모드로 용이하게 구동할 수 있다.
또한, 도면에는 도시되지 않았지만. 실시예에 따른 광 경로 제어 부재가 적용되는 디스플레이 장치는 차량의 내부에도 적용될 수 있다.
예를 들어, 실시예에 따른 광 경로 제어 부재를 포함하는 디스플레이 장치는 차량의 정보, 차량의 이동 경로를 확인하는 영상을 표현할 수 있다. 상기 디스플레이 장치는 차량의 운전석 및 조수석 사이에 배치될 수 있다.
또한, 실시예에 따른 광 경로 제어 부재는 차량의 속도, 엔진 및 경고 신호 등을 표시하는 계기판에 적용될 수 있다.
또한, 실시예에 따른 광 경로 제어 부재는 차량의 전면 유리(FG) 또는 좌우 창문 유리에 적용될 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 제 1 기판;
    상기 제 1 기판의 상부에 배치되는 제 1 전극;
    상기 제 1 기판 상에 배치되는 제 2 기판;
    상기 제 2 기판의 하부에 배치되는 제 2 전극; 및
    상기 제 1 전극과 상기 제 2 전극 사이에 배치되는 광 변환부를 포함하고,
    상기 광 변환부는 교대로 배치되는 격벽부 및 수용부를 포함하고,
    상기 수용부는 서로 이격하는 복수의 단위 수용셀을 포함하고,
    상기 수용부는 분산액 및 상기 분산액 내에 분산되는 광 흡수 입자를 포함하고,
    상기 광 흡수 입자는 제 1 입자 및 제 2 입자를 포함하고,
    상기 제 1 입자의 입경은 상기 제 2 입자의 입경보다 크고,
    상기 제 1 입자의 표면 및 상기 제 2 입자의 표면은 동일한 극성으로 대전되는 광 경로 제어 부재.
  2. 제 1항에 있어서,
    상기 제 2 입자의 입경과 상기 제 1 입자의 입경의 비는 1:3 내지 1:10인 광 경로 제어 부재.
  3. 제 1항 또는 제 2항에 있어서,
    상기 복수의 단위 수용셀 중 적어도 하나의 단위 수용셀에서, 상기 제 1 입자의 전체 부피는 상기 제 2 입자의 전체 부피보다 큰 광 경로 제어 부재.
  4. 제 3항에 있어서,
    상기 복수의 단위 수용셀 중 적어도 하나의 단위 수용셀에서,
    상기 제 2 입자는 상기 광 흡수 입자의 전체 부피에 대해 5 부피% 내지 20 부피%인 광 경로 제어 부재.
  5. 제 1항에 있어서,
    상기 제 1 입자 및 상기 제 2 입자는 동일 물질을 포함하는 광 경로 제어 부재.
  6. 제 1항에 있어서,
    상기 제 1 입자 및 상기 제 2 입자의 입경은 500㎚ 내지 700㎚인 광 경로 제어 부재.
  7. 제 1항에 있어서,
    상기 전압이 인가되는 경우 상기 제 1 입자 및 상기 제 2 입자는 상기 제 1 전극 또는 상기 제 2 전극 방향의 동일한 방향으로 이동하는 광 경로 제어 부재.
  8. 표시 패널; 및
    상기 표시 패널 상에 배치되는 광 경로 제어 부재를 포함하고,
    상기 광 경로 제어 부재는,
    상기 제 1 기판의 상부에 배치되는 제 1 전극;
    상기 제 1 기판 상에 배치되는 제 2 기판;
    상기 제 2 기판의 하부에 배치되는 제 2 전극; 및
    상기 제 1 전극과 상기 제 2 전극 사이에 배치되는 광 변환부를 포함하고,
    상기 광 변환부는 교대로 배치되는 격벽부 및 수용부를 포함하고,
    상기 수용부는 전압의 인가에 따라 광 투과율이 변화되고,
    상기 수용부는 서로 이격하는 복수의 단위 수용셀을 포함하고,
    상기 수용부는 분산액 및 상기 분산액 내에 분산되는 광 흡수 입자를 포함하고,
    상기 광 흡수 입자는 제 1 입자 및 제 2 입자를 포함하고,
    상기 제 1 입자의 입경은 상기 제 2 입자의 입경보다 크고,
    상기 제 1 입자의 표면 및 상기 제 2 입자의 표면은 동일한 극성으로 대전되는 디스플레이 장치.
  9. 제 8항에 있어서,
    상기 제 2 입자의 입경과 상기 제 1 입자의 입경의 비는 1:3 내지 1:10이고,
    상기 복수의 단위 수용셀 중 적어도 하나의 단위 수용셀에서, 상기 제 2 입자는 상기 광 흡수 입자의 전체 부피에 대해 5 부피% 내지 20 부피%인 디스플레이 장치,
  10. 제 8항에 있어서,
    상기 제 1 입자 및 상기 제 2 입자는 카본블랙을 포함하는 광 경로 제어 부재.
PCT/KR2020/012732 2019-10-08 2020-09-21 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치 WO2021071133A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/754,681 US20240094591A1 (en) 2019-10-08 2020-09-21 Light route control member and display having the same
CN202080070831.XA CN114503025A (zh) 2019-10-08 2020-09-21 光路控制构件及具有该光路控制构件的显示器

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020190124613A KR20210041867A (ko) 2019-10-08 2019-10-08 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
KR10-2019-0124613 2019-10-08
KR1020190125412A KR20210042627A (ko) 2019-10-10 2019-10-10 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
KR10-2019-0125412 2019-10-10
KR10-2019-0125954 2019-10-11
KR1020190125954A KR20210043149A (ko) 2019-10-11 2019-10-11 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2021071133A1 true WO2021071133A1 (ko) 2021-04-15

Family

ID=75437358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012732 WO2021071133A1 (ko) 2019-10-08 2020-09-21 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치

Country Status (3)

Country Link
US (1) US20240094591A1 (ko)
CN (1) CN114503025A (ko)
WO (1) WO2021071133A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482887A (zh) * 2023-03-30 2023-07-25 惠科股份有限公司 显示装置、控制电路和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190113A1 (en) * 2003-03-24 2004-09-30 Fuji Xerox Co., Ltd. Particles for display device, image display medium using the same, and image forming device
US20060202949A1 (en) * 1999-05-03 2006-09-14 E Ink Corporation Electrophoretic display elements
KR20070041648A (ko) * 2005-10-15 2007-04-19 엘지전자 주식회사 전기영동 디스플레이 장치
KR20120034999A (ko) * 2010-10-04 2012-04-13 주식회사 이미지앤머터리얼스 전기 영동 입자들 및 이의 제조 방법, 이를 이용한 디스플레이 장치, 및 구동 방법
KR20130078440A (ko) * 2011-12-30 2013-07-10 엘지디스플레이 주식회사 컬러 전기영동 입자 및 이를 갖는 컬러 전기영동 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202949A1 (en) * 1999-05-03 2006-09-14 E Ink Corporation Electrophoretic display elements
US20040190113A1 (en) * 2003-03-24 2004-09-30 Fuji Xerox Co., Ltd. Particles for display device, image display medium using the same, and image forming device
KR20070041648A (ko) * 2005-10-15 2007-04-19 엘지전자 주식회사 전기영동 디스플레이 장치
KR20120034999A (ko) * 2010-10-04 2012-04-13 주식회사 이미지앤머터리얼스 전기 영동 입자들 및 이의 제조 방법, 이를 이용한 디스플레이 장치, 및 구동 방법
KR20130078440A (ko) * 2011-12-30 2013-07-10 엘지디스플레이 주식회사 컬러 전기영동 입자 및 이를 갖는 컬러 전기영동 표시 장치

Also Published As

Publication number Publication date
US20240094591A1 (en) 2024-03-21
CN114503025A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2022005124A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021221358A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2022005123A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021020854A1 (ko) 광 경로 제어 부재 및 이를 포함하는 표시 장치
WO2021071133A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021066368A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021145619A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021020802A1 (ko) 광 경로 제어 부재 및 이를 포함하는 표시 장치
WO2021071134A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021230510A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021020795A1 (ko) 광 경로 제어 부재 및 이를 포함하는 표시 장치
WO2021230541A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021020797A1 (ko) 광 경로 제어 부재 및 이를 포함하는 표시 장치
WO2015170836A1 (en) Electronic device
WO2021054656A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021145638A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2023128288A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021054686A1 (ko) 전기영동 입자 및 이를 포함하는 광 경로 제어 부재
WO2021145632A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2023171977A1 (ko) 광 경로 제어 부재 및 이의 구동 방법
WO2023210964A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2023210965A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2023153702A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2022050597A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2023136483A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17754681

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875409

Country of ref document: EP

Kind code of ref document: A1