WO2021070831A1 - Perfusate supply system and method for controlling perfusion device - Google Patents

Perfusate supply system and method for controlling perfusion device Download PDF

Info

Publication number
WO2021070831A1
WO2021070831A1 PCT/JP2020/037907 JP2020037907W WO2021070831A1 WO 2021070831 A1 WO2021070831 A1 WO 2021070831A1 JP 2020037907 W JP2020037907 W JP 2020037907W WO 2021070831 A1 WO2021070831 A1 WO 2021070831A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
perfusate
endoscope
supply system
tip
Prior art date
Application number
PCT/JP2020/037907
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 崇
忠雄 松永
芳賀 洋一
典子 鶴岡
Original Assignee
学校法人関西医科大学
国立大学法人鳥取大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西医科大学, 国立大学法人鳥取大学 filed Critical 学校法人関西医科大学
Publication of WO2021070831A1 publication Critical patent/WO2021070831A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/01Guiding arrangements therefore
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/307Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the urinary organs, e.g. urethroscopes, cystoscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means

Definitions

  • the present disclosure relates to a perfusate supply system that sends or inflates perfusate fluid to a surgical target site during endoscopic surgery, and in particular, a method for controlling a perfusate supply system and a perfusion device used in upper urethral endoscopic surgery. Regarding.
  • endoscopic surgery performed by inserting an endoscope into a body cavity through a hole formed on the skin surface of a patient is expanding for the purpose of reducing invasiveness.
  • Treatment for urological diseases involves upper urinary endoscopy with a renal pelvis endoscopy to remove ureteral epithelial tumors and urolithiasis in the upper ureter (ureter, renal pelvis).
  • an endoscope is inserted into the upper urethra from the urethra via the bladder and ureter, and the tip of the endoscope is inserted into the renal pelvis to form a renal pelvis ureter. While observing the surgical site, treat the target site with an excision probe.
  • the access sheath is inserted into the upper urinary tract from the urethra via the bladder and ureter, and the tip of the endoscope is inserted into the renal pelvis through the access sheath.
  • the visual field in the renal pelvis may be reduced due to calculus fragments and bleeding from the surgical site. Therefore, in upper urethral endoscopic surgery, there is a method of supplying perfusate to the surgical site using a gravitational drip or a perfusion device that can be set to a constant flow rate to ensure visibility of the surgical site through the endoscope. It has been adopted (for example, Patent Document 1).
  • the present disclosure has been made in view of the above problems, and in upper urethral endoscopic surgery, the renal pelvis pressure is detected during the operation, and the renal pelvis pressure at the time of perfusate supply is maintained at a set low renal pelvis pressure. It is an object of the present invention to provide a control method of a perfusate supply system and a perfusion device that supplies a constant flow rate for securing a field of view.
  • the perfusate supply system is a perfusate supply system used for endoscopic surgery, and includes an endoscope inserted into a body cavity and the inside of the endoscope.
  • the liquid feeding channel extending to the vicinity of the tip of the endoscope, the pressure sensor extending into the endoscope and detecting the pressure near the tip of the endoscope, and the liquid feeding channel are connected to each other.
  • a perfusion pump that supplies liquid to the vicinity of the tip of the endoscope through the liquid supply channel and discharges the supplied liquid to the outside of the body through a body cavity is electrically connected to the pressure sensor and the perfusion pump, and the pressure sensor. It is characterized by including a control unit for controlling the supply pressure of the perfusate liquid in the perfusion pump based on the pressure signal obtained from the above.
  • the perfusate supply system and the control method of the perfusion device it is possible to detect the intrarenal pelvis pressure during surgery and bring the intrarenal pelvis pressure at the time of perfusate supply close to the set reference value.
  • a constant flow rate can be supplied to secure the visual field while maintaining the intrarenal pelvis pressure adaptively set for the patient at the time of supplying the perfusate.
  • FIG. FIG. 5 is an exploded perspective view of the vicinity of the tip of the endoscope 20 in the perfusate supply system 1.
  • A is a schematic view showing an outline of the configuration of the pressure sensor 30, and (b) is an enlarged view of part A in (a).
  • A) and (b) are schematic views for explaining the pressure measurement principle in the pressure sensor 30.
  • A) is the access sheath used for the performance evaluation test in the perfusate supply system 1
  • (b) is the structure of the endoscope. This is an experimental result showing the relationship between the supply pressure and the renal pelvis pressure in the perfusate supply system 1.
  • FIG. FIG. 5 is an exploded perspective view of the vicinity of the tip of the endoscope 20 in the perfusate supply system 1B. It is the measurement result of the time change of the temperature with the laser irradiation in the upper urethral endoscopic surgery using the 12/14 Fr access sheath. It is the measurement result of the time change of the temperature with the laser irradiation in the upper urethral endoscopic surgery using the 10/12 Fr access sheath. It is a schematic diagram which shows the target part of the upper urethral endoscopic surgery. (A) and (b) are schematic diagrams for explaining the influence of the change in renal pelvic pressure due to the supply of perfusate in upper urethral endoscopic surgery.
  • FIG. 15 is a schematic view showing a target site for upper urethral endoscopic surgery.
  • the upper ureter refers to the ureter or renal pelvis, and when there are stones or tumors in the ureter or renal pelvis, the target site is excised or crushed by upper ureter endoscopic surgery using a renal pelvis endoscopy.
  • the renal pelvis ureteroscope is configured by inserting the endoscope into the access sheath, which is a flexible resin tube.
  • the endoscope has an image acquisition means at the tip, and is composed of a flexible tube having an insertion path for surgical tools such as a fluid, forceps, and a laser scalpel.
  • an access sheath is inserted from the urethra via the bladder and ureter into the upper ureter, and the tip of the endoscope is inserted into the renal pelvis to form a renal pelvis ureter.
  • the target site is treated with an excision probe while observing.
  • the continuous perfusion device is provided with, for example, an injection port at the rear of the endoscope, a liquid delivery pump is connected to the injection port to form a liquid delivery channel in the endoscope, and the perfusate is perfused using the perfusion pump. It is configured to be perfused by supplying it into the living body through a liquid feeding channel and discharging it to the outside of the body through a drainage route different from that of the liquid feeding channel.
  • a sufficient field of view may not be secured by the predetermined method, such as when the amount of bleeding from the surgical site is large or when the supply amount of perfusate is insufficient.
  • the perfusate is discharged at a maximum of 5 cc / time by increasing the irrigation pressure and flow discharged by the liquid feed pump into the body cavity. Measures will be taken to improve visibility by intermittently supplying water within the flow rate range.
  • renal pelvis pressure is associated with perfusion, typically requiring control within a range of 30 ⁇ 40cmH 2 O, but the thickness of the patient ureter, the size of the renal pelvis, the liquid feed channel thickness, the liquid feed pump It varies depending on the surgical conditions such as the supply pressure of the pelvis. Therefore, if the supply pressure of the liquid delivery pump is increased and the pressure inside the renal pelvis becomes too high, bacteria attached to the irrigated bacteriuria or calculus invade the kidney from the renal pelvis, and as a result, enter the blood vessel via the collecting duct. There is concern that postoperative complications such as sepsis associated with high renal pelvic pressure may occur.
  • FIG. 16 (a) and 16 (b) are schematic views for explaining the effect of changes in renal pelvic pressure due to the supply of perfusate in upper urethral endoscopic surgery.
  • the inner diameter of the access sheath inserted into the ureter is approximately 3.17 mm to 5.33 mm (9.5 Fr to 16 Fr) and is selected according to the diameter of the patient's ureter.
  • FIG. 16A is an example when a small diameter access sheath is used
  • FIG. 16B is an example when a large diameter access sheath is used.
  • the supply pressure of perfusate can be set to suit the patient's organs and surgical conditions from the viewpoint of securing the field of view during surgery and preventing postoperative complications. It is considered necessary.
  • the perfusate supply system is a perfusate supply system used for endoscopic surgery, in which an endoscope inserted into a body cavity and the endoscope in the endoscope A liquid feeding channel extending to the vicinity of the tip, a pressure sensor extending into the endoscope and detecting the pressure near the tip of the endoscope, and a pressure sensor connected to the liquid feeding channel and described as described through the liquid feeding channel.
  • a perfusion pump that supplies liquid to the vicinity of the tip of the endoscope and discharges the supplied liquid to the outside of the body through the body cavity is electrically connected to the pressure sensor and the perfusion pump to obtain a pressure signal obtained from the pressure sensor.
  • control unit that controls the supply pressure of the perfusate liquid in the perfusion pump.
  • control unit increases or decreases the supply pressure of the perfusate liquid in the perfusion pump so that the pressure value indicated by the pressure signal approaches a predetermined reference value. May be.
  • control unit further includes a temperature sensor that extends into the endoscope and detects a temperature in the vicinity of the tip of the endoscope.
  • the configuration may be such that the supply amount of the perfusate liquid from the perfusion pump is controlled based on the temperature signal acquired from the temperature sensor.
  • control unit corrects the pressure value indicated by the pressure signal based on the temperature signal so that the corrected pressure value approaches a predetermined reference value.
  • the supply pressure of the perfusate in the perfusion pump may be increased or decreased.
  • the pressure near the tip of the endoscope can be detected more accurately during surgery, and a constant flow rate can be supplied to secure the field of view while keeping the internal pressure in the body cavity low when the perfusate is supplied. ..
  • the body cavity is the ureter
  • the endoscope is inserted through the ureter to at least the upper urethra
  • the perfusion pump is upper through the fluid delivery channel.
  • the fluid is supplied into the ureter or the renal pelvis
  • the pressure sensor is inserted at least to the upper ureter to detect the renal pelvis pressure
  • the control unit makes the detected renal pelvis pressure approach the set reference value.
  • the configuration may be such that the supply pressure of the perfusate liquid in the perfusion pump is set.
  • the intrarenal pelvic pressure can be detected during the operation, and the intrarenal pelvic pressure at the time of perfusate supply can be brought close to the set reference value.
  • a constant flow rate can be supplied to secure the visual field while maintaining the intrarenal pelvis pressure adaptively set for the patient at the time of supplying the perfusate.
  • a ureteral access sheath that is inserted from the patient's ureter into the upper urethra and guides the endoscope to the upper urethra is provided and supplied.
  • the liquid may be configured to be discharged to the outside of the body through the access sheath.
  • the endoscope can be guided to the upper urethra, and the fluid supplied into the renal pelvis can be discharged to the outside of the body by using the inside of the ureteral access sheath as a fluid delivery route.
  • the pressure sensor comprises an optical fiber extending in the major axis direction, a half mirror composed of one end of the optical fiber, and the first mirror.
  • a diaphragm that is arranged at the end of the peripheral wall in the major axis direction, forms an air chamber together with the first mirror and the peripheral wall, and is displaced toward the air chamber by an external pressure, and the diaphragm.
  • a second mirror arranged above the first mirror, light entering from the other end of the optical fiber and reflected by the first mirror, and light from the other end of the optical fiber.
  • a measuring unit that measures a change in the phase difference from the light that enters the light and is reflected by the second mirror, and a pressure calculating unit that calculates the external pressure that is urged to the diaphragm based on the change in the phase difference. It may be configured to include.
  • control method of the perfusate supply system is a control method of the perfusate supply system for the endoscope inserted into the body cavity, and the pressure sensor extending to the endoscope.
  • the pressure By detecting the pressure near the tip of the endoscope and controlling the supply pressure of the perfusate in the perfusion pump based on the pressure signal acquired from the pressure sensor, the pressure extends to the vicinity of the tip of the endoscope. It is characterized in that a liquid is supplied to the vicinity of the tip of the endoscope through a liquid feeding channel, and the supplied liquid is discharged to the outside of the body through a body cavity.
  • the supply pressure is further applied based on a temperature signal obtained from a temperature sensor that extends to the endoscope and detects a temperature near the tip of the endoscope. It may be configured to be controlled.
  • the liquid may be discharged through an access sheath that guides the endoscope into the body cavity.
  • Embodiment 1 The perfusate supply system 1 according to the present embodiment will be described with reference to the drawings.
  • the drawings are schematic views, and the scale may differ from the actual ones.
  • the perfusate supply system 1 (hereinafter referred to as "perfusion system”) is a medical device for a doctor or the like to send or inflate perfusate fluid to a surgical target site during endoscopic surgery, and is a visual field during surgery.
  • the purpose is to optimize the intrarenal pelvic pressure from the viewpoint of ensuring and preventing postoperative complications.
  • FIG. 1 is a schematic view showing the configuration of the perfusion system 1 according to the first embodiment, which is configured in the upper urethral endoscopic surgery.
  • the upward direction on the paper surface is referred to as the "upward” direction
  • the downward direction on the paper surface is referred to as the "downward” direction in the drawings.
  • the perfusion system 1 includes an access sheath 10, an endoscope 20, a pressure sensor 30, a perfusion device 40, and a control unit 50, and these components are connected to a liquid feed channel and a liquid drainage system. It constitutes a perfusion system in which a pathway is formed.
  • the access sheath 10 has a tube portion 11 inserted into the body cavity, which is a flexible tube made of a resin material, and a handle portion 12 of an operator at the rear portion of the tube.
  • the access sheath 10 is inserted into the upper urinary tract from the urethra via the bladder and ureter, and the endoscope 20 is inserted into the tube so that the tip of the endoscope 20 reaches the renal pelvis. Functions as a guiding means.
  • the liquid supplied into the renal pelvis is discharged to the outside of the body from the open end 12a of the access sheath 10 through the space between the inner wall of the access sheath 10 inserted into the body cavity and the endoscope 20 (in FIG. 1). , FB).
  • the access sheath 10 for example, resin materials such as polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, polyimide, and polyacetal can be used.
  • the inner diameter of the tube of the access sheath 10 is selected from the range of 3.17 mm or more and 5.33 mm or less (9.5 Fr or more and 16 Fr or less) based on the inner diameter of the patient's ureter. Alternatively, it may be selected from the range of 3.17 mm or more and 4 mm or less (9.5 Fr or more and 12 Fr or less).
  • the pipe diameter and material are not limited to the above-mentioned dimensions and materials.
  • the endoscope 20 is a medical device in which the tip is inserted to the vicinity of the renal pelvis through an access sheath 10 inserted into the urinary tract, and treatment is performed on the target site using an excision probe or the like while observing the surgical site.
  • the endoscope 20 is a flexible ureteroscope, and for example, a renal pelvis ureteral fiberscope URF-P6 manufactured by Olympus Corporation may be used.
  • the endoscope 20 has a long insertion portion 20x inserted into the body cavity and an operation portion 25 located at the rear portion of the insertion portion 20x and serving as a handle portion of the operator.
  • the operation unit 25 is connected to an operation lever 251 for the operator to adjust the degree of curvature of the curved portion, a forceps port 252 for inserting the forceps and the treatment tool 60, and a water supply channel 411 derived from the perfusion device 40. It has a liquid feeding port 253 and an eyepiece 254 for observing an image.
  • the insertion portion 20x includes a flexible flexible tube 20x1, a curved portion 20x2 located on the tip side of the flexible tube and curved in two directions, up and down (up and down direction in FIG. 1) by operating an operation lever 251 described later, and further. It is composed of a tip portion 20x3 located at the tip.
  • the flexible tube 20x1 is made of a resin material such as fluororesin
  • the curved portion 20x2 is made of a rubber material such as fluororubber
  • the tip portion 20x3 is made of a resin material.
  • a liquid supply channel 21 for the perfusate, an image guide 22 for transmitting an image, and a light guide 23 for guiding the illumination light are inserted.
  • the image guide 22 is composed of an optical fiber bundle for transmitting an image, and transmits the light from the subject incident from the tip 221 to the eyepiece 254 of the operation unit 25.
  • the light guide 23 is composed of an optical fiber bundle for transmitting illumination light, and inputs the light output from the light source 23 in the vicinity of the operation unit 25 and emits the light from the tip 231.
  • the liquid feed channel 21 is composed of a resin pipeline for feeding the perfusate, and the perfusate supplied from the perfusion device 40 through the water supply channel 411 and the liquid feed port 253 of the operation unit 25 is supplied to the tip portion 20x3.
  • the liquid is fed (denoted as FF in FIG. 1) and supplied into the body cavity through the liquid feeding opening 21a located at the tip portion 20x3.
  • the liquid feeding channel 21 functions as a surgical tool channel through which the forceps and the treatment tool are inserted.
  • the forceps and the treatment tool 60 are inserted from the forceps opening 252 provided in the operation portion 25, and the treatment tool tip 61 is extended from the liquid feeding opening 21a located at the tip portion 20x of the insertion portion 20x to the target site. Treatment is taken.
  • a laser scalpel, a basket, or the like may be used as the treatment tool.
  • the forceps opening 252 is provided with a sealing stopper so that the perfusate does not leak out.
  • FIG. 2 is an exploded perspective view of the vicinity of the tip portion 20x3 of the endoscope 20.
  • the tip portion 20x3 includes a tip portion main body 202 arranged on the tip end side of the curved rubber tube 201 of the curved portion 20x2, and a tip portion cover 203 that covers the tip portion main body 202.
  • Holes are formed in the tip body 202, and the tip 221 of the image guide 22, the tip 231 of the light guide 23, and the pipe end 211 of the liquid feeding channel 21 are fitted into each hole.
  • An objective lens 222 is arranged on the tip cover 203 at a position corresponding to the tip 221 of the image guide 22, an illumination light emission opening 23a is opened at a position where the tip 231 of the light guide 23 is inserted, and a liquid feeding channel 21 is provided.
  • a liquid feeding opening 21a is provided corresponding to the pipe end 211 of the above.
  • the pressure sensor 30 is a pressure sensor that extends into the endoscope 20 and detects the pressure near the tip of the endoscope 20, and is an outer made of a resin material such as polyimide in order to prevent damage. It is installed with the tube covered.
  • the reason for arranging the pressure sensor 30 in the endoscope 20 is that the structure is simplified, the perfusate supply system 1 can be easily constructed, and the perfusate supplied from the liquid feed channel 21 is directly touched. This is because it is a suitable arrangement for measuring the pressure of the perfusate.
  • the pressure sensor 30 includes the optical fiber described in, for example, "Journal of the Institute of Electrical Engineers of Japan" Vol. 136, No. 3, 2016 (pages 147 to 150), or Patent Gazette (Japanese Patent No. 3393370). A fiber pressure sensor can be used.
  • the pressure sensor 30 includes an optical fiber 31 extending in the liquid feeding channel 21, a pressure detecting unit 32 arranged at the tip of the optical fiber 31, and a liquid feeding port of the operating unit 25 of the endoscope 20. It has a measuring unit 33 and a pressure calculating unit 34 to which the optical fiber 31 derived from 253 is connected.
  • FIG. 3A is a schematic diagram showing an outline of the configuration of the pressure sensor 30.
  • the pressure sensor 30 has a configuration in which the pressure detection unit 32 is provided at the other end of the optical fiber 31 having one end connected to the measurement unit 33.
  • the measuring unit 33 has a white light source 331, a spectroscope 332, a photocoupler 33, and an optical fiber 31 connecting them.
  • the pressure detection unit 32 has a Fabry-Perot interferometer configuration, and the interference light generated between the diaphragm and the half mirror on the end face of the optical fiber is transmitted to the photocoupler 33 by the optical fiber 31, and the spectroscope is transmitted via the photocoupler 33. It reaches 332 and is detected.
  • the pressure calculation unit 34 calculates the displacement urged by the diaphragm 323 based on the wavelength change of the interference spectrum, and calculates the external pressure from the displacement amount with respect to the pressure measured in advance.
  • FIG. 3 (b) is an enlarged view of part A (pressure detection unit 32) in FIG. 3 (a).
  • the pressure detection unit 32 includes a first mirror 321 formed from one end of an optical fiber 31 extending in the long axis direction, and a peripheral wall surrounding the first mirror 321 in the long axis direction. 322 and the diaphragm 323 arranged at the end of the peripheral wall 322 in the long axis direction, forming the air chamber 325 together with the first mirror 321 and the peripheral wall 322, and being displaced inward and outward by external pressure, and on the diaphragm 323. It has a second mirror 324 arranged so as to face the first mirror 321.
  • the second mirror 324 has a higher reflectance than the first mirror 321.
  • a total reflection mirror may be used for the second mirror 324, and a half mirror may be used for the first mirror 321.
  • the optical fiber 31 has, for example, a diameter (d1) of 125 ⁇ m, and a dielectric half mirror layer made of zinc sulfide (ZnS) or a half mirror layer made of chromium (Cr) is formed at one end of the optical fiber 31.
  • the first mirror 321 is configured.
  • the first mirror 321 may be formed by a vapor phase growth method such as a vacuum deposition method or a sputtering method.
  • the peripheral wall 322 has a length l in the major axis direction of about 2 to 6 ⁇ m and a thickness t1 in the direction perpendicular to the major axis direction of about 15 ⁇ m.
  • the diaphragm 323 has a diameter (d2) of about 120 ⁇ m and a thickness (t2) of about 0.7 ⁇ m, is made of a silicon oxide film, and may be formed by, for example, a vapor phase growth method such as a CVD method.
  • the diaphragm 323 has a diameter (d3) of about 60 ⁇ m and a thickness (t3) of 2.3 ⁇ m centered on the center in the major axis direction, and has a protruding portion 323a protruding from the first mirror 321 (the step of the protruding portion is 1. 6 ⁇ m) is formed, and a second mirror 324 is mounted on the top surface of the protruding portion 323a.
  • the second mirror 324 has a diameter (d3) of about 50 ⁇ m and a thickness (t4) of about 0.1 ⁇ m, and is made of metal.
  • metal aluminum
  • a vapor deposition method such as a vacuum deposition method or a sputtering method is used. May be formed by.
  • the first mirror 321 and the second mirror 324 are separated from each other by a distance of about 2.5 ⁇ m in the long axis direction. Facing each other.
  • the above-mentioned materials, shapes, various dimensions, and the like related to the components of the pressure sensor 30 are examples, and are not limited to the above-mentioned contents.
  • FIGS. 4 (a) and 4 (b) are schematic views for explaining the pressure measurement principle of the pressure sensor 30.
  • the light emitted by the white light source 331 of the measuring unit 33 is transmitted to the pressure detecting unit 32 by the optical fiber 31 via the photocoupler 33. Then, interference fringes are generated in the pressure detection unit 32 according to the gap length between the optical fiber and the diaphragm, and the interference light (R1, R2) transmitted through the half mirror is transmitted to the photocoupler 33 by the optical fiber 31, and the photocoupler 33 is transmitted. It reaches the spectroscope 332 and is detected as an interference spectrum. At this time, the change in the diaphragm is measured from the peak wavelength of the interference spectrum. For this measurement, for example, K. Totsu, Y. Haga and M.
  • the pressure urged on the diaphragm 323 is calculated based on the relationship between the pressure urged on the diaphragm 323 and the amount of change in the spectrum peak wavelength specified in advance by experiments or the like.
  • the access sheath 10 is inserted into the patient's upper urethra, the endoscope 20 is inserted through the access sheath 10 to at least the upper urethra, and through the fluid delivery channel 21. While the fluid is being supplied into the upper urethra or the renal pelvis, the pressure sensor 30 can be inserted at least up to the upper urethra to detect the intrarenal pelvis pressure.
  • the perfusion device 40 is a continuous perfusion device that is connected to the liquid supply port 253 of the endoscope 20 via a water supply channel 411 and supplies the perfusate to the vicinity of the tip portion 20x of the endoscope through the liquid supply channel 21. Further, the supplied perfusate is discharged to the outside of the body from the opening end 12a of the access sheath 10 through the space between the inner wall of the access sheath 10 and the endoscope 20 due to the supply pressure of the perfusate from the perfusion device 40. ..
  • the perfusion device 40 includes a perfusion pump 41 for water supply connected to the water supply channel 411. The perfusion pump 41 controls to increase or decrease the discharge pressure of the perfusate liquid (device outlet pressure) based on the control signal output from the control unit 50.
  • the perfusion pump 41 for example, a fixed-quantity liquid feed pump RP-1100 manufactured by Tokyo Rika Kikai Co., Ltd. may be used.
  • the perfusate by inputting an input voltage of 0 to 5 V to the external signal input terminal as a control signal, the perfusate is controlled to have a discharge pressure in the range of 0 to 1.4 kg / cm 2 according to the input voltage value.
  • the flow rate of the perfusate can be controlled.
  • the perfusion pump 41 may be configured to be shared by the same pump.
  • the endoscope 20 is inserted through the access sheath 10 to at least the upper urethra while the access sheath 10 is inserted into the patient's upper urethra through the ureter.
  • the perfusion pump 41 can continuously supply the liquid into the upper urethra or the renal pelvis through the liquid supply channel 21 and discharge the supplied liquid to the outside of the body through the space in the access sheath 10.
  • Control unit 50 The control unit 50 is electrically connected to the pressure sensor 30 and the perfusion pump 41, and controls the supply amount of the perfusate liquid from the perfusion pump 41 based on the output signal from the pressure sensor 30.
  • control unit 50 inputs an electric signal indicating the pressure urged to the diaphragm 323 from the pressure calculation unit 34, and the perfusion pump 41 so that the detected pressure value approaches the set reference value.
  • the feedback control is performed by increasing or decreasing the supply pressure of the perfusate in the above, and further repeating the pressure detection by the pressure sensor 30.
  • the control unit 50 may change the amount of gradually increasing or decreasing the supply pressure of the perfusate liquid in the perfusion pump 41 based on the difference between the detected pressure value and the reference value.
  • the inventor made a preliminary evaluation of the relationship between the discharge pressure of the perfusion pump and the intra-renal pelvis pressure or the perfusion fluid flow rate using a plurality of commercially available access sheaths using the perfusion fluid supply system 1. .. The test conditions are shown below.
  • the access sheath was inserted into the renal pelvis from the upper urethra of the pig, and the supply pressure (discharge pressure) of the perfusion pump was changed from 40 mbar to 180 mbar with the tip of the endoscope inserted into the renal pelvis. Then, the perfusate was sent intermittently, and the pressure in the renal pelvis and the flow rate of the perfusate were measured.
  • the intrarenal pelvis pressure was measured by inserting a catheter for a renal fistula into the renal pelvis and measuring the pressure in the renal pelvis with an arterial pressure measuring device. The perfusate flow rate was measured with a perfusion pump.
  • FIG. 5A shows the structure of the access sheath used for the test sample
  • FIG. 5B shows the structure of the endoscope.
  • FIG. 6 shows the experimental results showing the relationship between the supply pressure of the perfusate and the renal pelvis pressure.
  • the intrarenal pelvis pressure is 40 cmH 2 O or more in the entire range of the supply pressure of the perfusion pump at 140 mbar or more.
  • the renal pelvis internal pressure was 40 cmH 2 O or more at a supply pressure of 80 mbar or more of the perfusion pump.
  • the intra-renal pelvis pressure was less than the reference intra-renal pelvis pressure of 40 cmH 2 O in the entire range of the supply pressure of the perfusion pump from 40 mbar to 180 mbar.
  • FIG. 7 is an experimental result showing the relationship between the supply pressure of the perfusate and the supply amount of the perfusate. As shown in FIG. 7, in the entire supply pressure range of 40 mbar to 180 mbar of the perfusion pump, the supply amount of the perfusate increases as the cross-sectional area increases, and samples B and C having a cross-sectional area larger than 9 mm 2 are most supplied. The result was a large amount.
  • sample B or C as the access sheath 10 from the viewpoint of renal pelvis internal pressure and perfusate flow rate.
  • evaluation test by perfusate supply system 1 The inventor used the perfusate supply system 1 to measure the relationship between the renal pelvic pressure measured using a catheter for a renal fistula and the renal pelvic pressure detected by a pressure sensor. The test conditions are shown below.
  • [Test condition 1, method] Using the perfusate supply system 1, the access sheath is inserted into the renal pelvis from the upper urethra of the pig, and the supply pressure (discharge pressure) of the perfusion pump is set to 60, 80, 100 with the tip of the endoscope inserted into the renal pelvis. , 120, 140, 160, 180 mbar were changed in ascending order, and the perfusate at a temperature of 37.0 ° C. was intermittently pumped, and the intrarenal pelvic pressure and the perfusate flow rate were measured.
  • the intrarenal pelvis pressure was measured by the pressure sensor 30 in the perfusate supply system 1 (solid line in FIG. 8).
  • a catheter for a renal fistula (A line pressure) was inserted into the renal pelvis, and the pressure inside the renal pelvis was measured by an arterial pressure measuring device (in FIG. 8). Broken line).
  • the perfusate flow rate was measured with a perfusion pump.
  • B or C shown in FIG. 5 (a) was used as the access sheath, and the endoscope shown in FIG. 5 (b) was used as the endoscope.
  • FIG. 8 is an experimental result showing the temporal change of the renal pelvis pressure with the supply of the perfusate in the perfusate supply system 1. Specifically, it is an experimental result showing a time change of the intrarenal pelvis pressure measured by using a catheter for a renal fistula and the intrarenal pelvis pressure detected by a pressure sensor during supply of perfusate in the perfusate supply system 1.
  • the result was that the pressure measured by the pressure sensor was lower than the A-line pressure when the pressure was increased to 60 or 80 mbar. It is presumed to be the effect of flow path resistance.
  • the temperature changes in the renal pelvis during each pressurization period from 60 to 180 mbar are shown below.
  • the temperature rise in the renal pelvis is larger than that when the pressure is 100, 120, 140 mbar.
  • the temperature of the perfusate is higher than the body temperature and the supply pressure is high as shown in FIG. 7, it is considered that the temperature rise in the renal pelvis is large when the perfusate is pressurized to 160 or 180 mbar because the supply amount of the perfusate is large. Be done. Since the gradual increase in the difference between the pressure sensor measurement pressure and the A-line pressure during the 160 and 180 mbar pressurization period shows the same tendency as the increase in the renal pelvis temperature, it is presumed that it is caused by the increase in the renal pelvis temperature during the pressurization period. ..
  • the pressure in the renal pelvis can be appropriately detected by the pressure sensor when the perfusate supply system 1 is used and the pressure is 100, 120, or 140 mbar.
  • the pressure inside the renal pelvis can be detected by the pressure sensor immediately after pressurization, but the pressure measured by the pressure sensor during the pressurization period corresponds to the temperature rise inside the renal pelvis during the pressurization period. Was confirmed to decrease gradually. Therefore, in order to minimize the influence of the pressure sensor on the temperature change in the renal pelvis, the perfusate supply system 1B according to the second embodiment in which the temperature can be corrected will be described later.
  • the pressure inside the renal pelvis was measured by the pressure sensor 30 and the arterial pressure measuring device as a reference.
  • the access sheath, the endoscope, the temperature of the perfusate, and the liquid feeding conditions other than the above are the same as those of the test condition 1.
  • FIG. 9 shows the measurement results of the renal pelvis internal pressure at the time of feedback control of the renal pelvis internal pressure using the pressure sensor 30 in the perfusate supply by the perfusate supply system 1.
  • FIG. It is the result of time.
  • the intrarenal pressure detected by the pressure sensor 30 solid line (thick): indicated as Optic pressure sensor
  • the intrarenal pressure measured by an arterial pressure measuring device using a catheter for a renal fistula broken line (thin): Reference pressure sensor
  • the measured value shows the time change of the rotation speed of the perfusion pump 41 (solid line (middle): notation as Irrigation pump).
  • the intrarenal pelvic pressure detected by the pressure sensor 30 throughout the measurement period coincides with the intrarenal pelvic pressure measured by the arterial pressure measuring device at the time of pressurization and depressurization, respectively. confirmed.
  • control unit 50 feeds back the supply pressure of the perfusate in the perfusion pump 41 so that the pressure value detected by the pressure sensor 30 approaches the set reference value.
  • control it is possible to control the pressure in the vicinity of the tip of the endoscope 20 in which the pressure sensor 30 is arranged so as to approach the reference value.
  • the access sheath 10 is inserted into the patient's upper urethra, and the endoscope 20 is inserted through the access sheath 10 to at least the upper urethra. Then, in a state where the fluid is being supplied into the upper urethra or the renal pelvis through the liquid delivery channel 21, the pressure sensor 30 is inserted to at least the upper urethra to detect the intrarenal pelvis pressure, and the control unit 50 is detected.
  • the supply pressure of the perfusate in the perfusion pump 41 is set so that the intrarenal pelvis pressure approaches the set reference value, and the perfusion pump 41 pumps the fluid into the upper urethra or the renal pelvis through the liquid delivery channel 21 by the set supply pressure. Can be supplied.
  • the perfusate supply system 1 includes the endoscope 20 inserted into the body cavity and the feeding system 1 extending to the vicinity of the tip of the endoscope 20 in the endoscope 20. Liquid is supplied and supplied to the vicinity of the tip of the endoscope 20 through the liquid channel 21, the pressure sensor 30 extending into the endoscope 20 and detecting the pressure near the tip of the endoscope 20, and the liquid feeding channel 21.
  • a perfusion pump 40 that discharges the collected liquid to the outside of the body through a body cavity, and a control unit 50 that controls the supply pressure of the perfusate liquid in the perfusion pump 40 based on a pressure signal that is an electric signal indicating the pressure acquired from the pressure sensor 30. It is characterized by having.
  • the perfusate supply system 1 can detect the intrarenal pelvic pressure during the upper urethral endoscopic surgery and bring the intrarenal pelvic pressure at the time of perfusate supply close to the set reference value.
  • a constant flow rate can be supplied to secure the visual field while maintaining the intrarenal pelvis pressure adaptively set for the patient at the time of supplying the perfusate.
  • the access sheath 10 is inserted into the upper urinary tract from the urethra via the bladder and ureter, and the tip of the endoscope is inserted into the renal pelvis through the access sheath 10. And said. Further, in the perfusion fluid supply system 1, the fluid supplied into the renal pelvis passes through the space between the inner wall of the access sheath 10 inserted into the body cavity and the endoscope 20 to the outside of the body from the open end 12a of the access sheath 10. It was configured to be discharged.
  • the perfusate supply system has a configuration capable of controlling the pressure at the time of supplying the perfusate into the living body through the liquid delivery channel extending to the vicinity of the tip of the endoscope inserted into the body cavity.
  • the guide means for inserting the endoscope into the body cavity and the drainage route from the living body may be appropriately changed.
  • FIG. 10 is a schematic view showing the configuration of the perfusate supply system 1A according to the first modification.
  • the endoscope 10 is directly inserted into the body cavity without using the access sheath as a guiding means.
  • the liquid supplied into the living body is discharged to the outside of the body through the space between the inner wall of the body cavity and the endoscope 10. That is, it differs from the perfusate supply system 1 according to the first embodiment in that the access sheath 10 is not used, and other configurations are the same as those of the perfusate supply system 1.
  • the same configuration is assigned the same number as the perfusion system 1 and the description thereof will be omitted.
  • the perfusate supply system 1A by inserting the endoscope 10 directly into the body cavity, it is possible to reduce the possibility of ureteral damage due to the access sheath when the diameter of the ureter of the patient is small.
  • the perfusate supplied into the living body is urine through the gap between the inner wall of the ureter, which is the body cavity, and the endoscope 20 due to the supply pressure of the perfusate from the perfusion device 40. It is discharged from the body through a hole on the body surface of the tube (denoted as FB in FIG. 10).
  • the perfusate supply system 1A reduces the possibility of ureteral damage and, as in Embodiment 1, in upper urethral endoscopic surgery, detects intrarenal pelvic pressure during surgery and perfusate.
  • the intrarenal pelvic pressure at the time of supply can be brought close to the set reference value.
  • a constant flow rate can be supplied to secure the visual field while maintaining the intrarenal pelvis pressure adaptively set for the patient at the time of supplying the perfusate.
  • Embodiment 2 The perfusion system 1 according to the first embodiment has a pressure sensor 30 extending in the endoscope 20 and detecting the pressure near the tip of the endoscope 20, and the control unit 50 outputs from the pressure sensor 30. Based on the signal, the supply pressure of the perfusate in the perfusion pump 41 was controlled.
  • the perfusion system 1B further includes a temperature sensor 70A extending inside the endoscope 20 and detecting the temperature near the tip of the endoscope 20, and the control unit 50A includes a pressure sensor 30 and a temperature. It differs from the first embodiment in that the supply pressure of the perfusate liquid in the perfusion pump 40 is controlled based on the output signal from the sensor 70A.
  • FIG. 11 is a schematic view showing the configuration of the perfusate supply system 1B according to the second embodiment.
  • FIG. 12 is an exploded perspective view of the vicinity of the tip of the endoscope 20 in the perfusate supply system 1B.
  • the perfusion system 1B is different from the perfusion system 1 according to the first embodiment in that it is provided with a temperature sensor 70A and a control unit 50A, and has the same configuration as the perfusion system 1 shown in FIG. 1 for other configurations.
  • the temperature sensor 70A is a temperature sensor that extends into the endoscope 20 and detects the temperature near the tip of the endoscope 20. Specifically, for example, a temperature sensor catheter can be used.
  • the temperature sensor 70A includes a lead wire 71A extending in the endoscope 20, a temperature detection unit 711A arranged at the tip of the lead wire 71A, and a liquid feeding port of the operation unit 25 of the endoscope 20. It has a temperature measuring unit 72A to which the lead wire 71A derived from 253 is connected.
  • the temperature detection unit 711A is composed of, for example, a temperature detection element such as a thermistor.
  • the temperature measuring unit 72A calculates the amount of change in temperature detected by the temperature detecting unit 711A, for example, from the change in resistance value, and calculates the temperature around the temperature detecting unit 711A specified in advance by an experiment or the like.
  • the access sheath 10 to be inserted into the patient's upper ureter, the endoscope 20 to be inserted through the access sheath 10 to at least the upper ureter, and to supply fluid into the upper ureter or renal pelvis through the fluid delivery channel 21.
  • the temperature sensor 70A can be inserted to at least the upper urinary tract to detect the temperature in the upper urinary tract (ureter, renal pelvis).
  • FIG. 12 is an exploded perspective view of the tip portion 20x3 of the endoscope 20 in the perfusate supply system 1B.
  • the tip portion 20x3 includes a tip portion main body 202 and a tip portion cover 203 that covers the tip portion main body 202, as in the first embodiment.
  • Holes are formed in the tip body 202, and the tip 221 of the image guide 22, the tip 231 of the light guide 23, the pipe end 211 of the liquid feeding channel 21, and the temperature detection unit 711A of the temperature sensor 70 are formed in each hole. It is inserted.
  • the tip cover 203 is provided with an opening 71a corresponding to the temperature detection unit 711A of the temperature sensor.
  • Control unit 50A The control unit 50A is electrically connected to the pressure sensor 30, the temperature sensor 70A and the perfusion pump 41, and controls the supply amount of the perfusate liquid from the perfusion pump 41 based on the output signals from the pressure sensor 30 and the temperature sensor 70A.
  • control unit 50 outputs an electric signal indicating the temperature around the temperature detection unit 711A output by the temperature measurement unit 72A in addition to the electric signal indicating the pressure urged from the pressure calculation unit 34 to the diaphragm 323. input. Then, the control unit 50 corrects the detected pressure value based on the detected temperature information, and supplies the perfusate liquid in the perfusion pump 41 so that the corrected pressure value approaches the set reference value.
  • the supply pressure of the perfusate is controlled by increasing or decreasing the pressure.
  • FIGS. 13 and 14 are measurement results showing time-dependent changes in temperature associated with laser irradiation in upper urethral endoscopic surgery.
  • the same configuration as the perfusate supply system 1 is used for the perfusion system, and FIG. 13 shows the case where the 12 / 14Fr access sheath is used, and FIG. 14 shows the application energy, frequency, and pulse width of the laser beam using the 10/12 Fr access sheath. It is a measurement result of the temperature change in the renal pelvis under different conditions.
  • the access sheath 10 is inserted into the patient's upper urethra, and the endoscope 20 passes through the access sheath 10 to at least the upper urethra in response to the decrease in pressure detection accuracy due to this temperature rise.
  • the pressure sensor 30 is inserted at least to the upper urethra to detect the intrarenal pelvic pressure
  • the temperature sensor 70A is at least upper. It is inserted up to the urethra to detect the temperature inside the renal pelvis.
  • control unit 50A corrects the detected value of the renal pelvis pressure based on the detected temperature information, and supplies the perfusate liquid in the perfusion pump 41 so that the corrected pressure value approaches the set reference value.
  • the perfusion pump 41 can supply the liquid into the upper urinary tract or the renal pelvis through the liquid delivery channel 21 at the set supply temperature.
  • the perfusate supply system 1B extends into the perfusate supply system 1 according to the first embodiment and further extends into the endoscope 20 and is the tip of the endoscope 20.
  • a temperature sensor 70A for detecting a nearby temperature is provided, and the control unit 50A further determines the supply pressure of the perfusate liquid in the perfusion pump 40 based on the temperature signal which is an electric signal indicating the temperature acquired from the pressure sensor 30 and the temperature sensor 70A. It is characterized by controlling. Further, the control unit 50A corrects the pressure value indicated by the pressure signal based on the temperature signal, and increases or decreases the supply pressure of the perfusate liquid in the perfusion pump 40 so that the corrected pressure value approaches a predetermined reference value. May be good.
  • the perfusate supply systems 1, 1A, and 1B are arranged so as to extend in the endoscope 20, and the liquid delivery channel 21 is a surgical tool channel through which forceps and a treatment tool are inserted. It was configured to function as.
  • the surgical instrument channel may be a channel independent of the liquid feeding channel 21, and the surgical instrument channel may be arranged outside the liquid feeding channel 21. As a result, it is possible to prevent the volume of the liquid feeding channel from decreasing when the forceps and the treatment tool insert the insertion into the endoscope 20 during the operation, and it is possible to prevent the flow rate from decreasing.
  • the perfusate supply systems 1, 1A, and 1B are configured such that the pressure sensor 30 extends in the liquid feed channel 21 in the endoscope 20 and is arranged. This is because the structure for arranging the pressure sensor 30 is simplified and suitable for measuring the pressure of the perfusate. However, the pressure sensor 30 may be arranged outside the liquid feeding channel 21. As a result, the capacity of the liquid feeding channel can be increased.
  • the pressure sensor 30 is built in the endoscope 20, and a line in which the fiber 31 for transmitting the signal of the pressure sensor 30 and the image guide 22 for transmitting the image of the endoscope 20 are integrated is constructed. May be good. Further, the integrated line output may be configured to be connected by constructing a dedicated device in which the control portion of the endoscope image system and the perfusate supply system is connected or integrated.
  • the temperature sensor 70A is arranged in the endoscope 20 so as to extend outside the liquid feed channel 21. However, the temperature sensor 70A may be extended and arranged in the liquid feeding channel 21. The structure is simplified, and the perfusate supply system 1B can be easily constructed.
  • the perfusate supplied into the renal pelvis is discharged using the space between the inner wall of the access sheath 10 and the endoscope 20 as a drainage route.
  • the configuration is such that However, drainage channels may be independently extended and arranged within the endoscope 20.
  • the perfusate supply systems 1, 1A, and 1B are shown by taking upper urethral endoscopic surgery with a renal pelvis ureteroscope as an example in the treatment for urological diseases.
  • the application of the perfusate supply system and the control method of the perfusate supply system according to the present invention is not limited to upper urethral endoscopic surgery, but is used for endoscopic surgery performed by supplying perfusate. It can be widely used.
  • the order in which the above methods are executed is for exemplifying in order to specifically explain the present invention, and may be an order other than the above. Moreover, a part of the above-mentioned method may be executed at the same time (parallel) with another method.
  • the method for controlling a perfusate supply system and a perfusion device is widely used in medical treatment as a medical support means for sending or insufflating perfusate fluid to a surgical target site during endoscopic surgery. be able to.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Surgical Instruments (AREA)

Abstract

A perfusate supply system 1 comprises: an endoscope 20 to be inserted into a body cavity; a liquid feed channel 21 that extends inside the endoscope to the vicinity of a distal end of the endoscope; a pressure sensor 30 that extends inside the endoscope and detects the pressure at the vicinity of the distal end of the endoscope; a perfusion pump 40 that supplies liquid to the vicinity of the distal end of the endoscope through the liquid feed channel and discharges the supplied liquid outside the body through the body cavity; and a control unit 50 that controls the supply pressure of perfusate in the perfusion pump on the basis of a pressure signal obtained from the pressure sensor.

Description

潅流液供給システム及び潅流装置の制御方法Control method of perfusate supply system and perfusion device
 本開示は、内視鏡手術中に手術対象部位に潅流流体を送液又は送気する潅流液供給システムに関し、特に、上部尿路内視鏡手術に用いる潅流液供給システム及び潅流装置の制御方法に関する。 The present disclosure relates to a perfusate supply system that sends or inflates perfusate fluid to a surgical target site during endoscopic surgery, and in particular, a method for controlling a perfusate supply system and a perfusion device used in upper urethral endoscopic surgery. Regarding.
 医療分野において低侵襲化を目的として、内視鏡を患者の皮膚表面に形成した孔から体腔内に挿入して行う内視鏡手術が拡大している。泌尿器科疾患に対する治療では、上部尿路(尿管、腎盂)内の尿路上皮腫瘍や尿路結石症を切除する腎盂尿管鏡による上部尿路内視鏡手術が行われる。この上部尿路内視鏡手術では、尿道から膀胱、尿管を経由して内視鏡を上部尿路に挿入し、内視鏡の先端を腎盂に挿入して腎盂尿管鏡を構成し、手術部位を観察しながら切除プローブで対象部位への処理を行う。あるいは、尿道から膀胱、尿管を経由してアクセスシースを上部尿路に挿入し、アクセスシースを通して内視鏡の先端が腎盂に挿入される。このとき、結石破砕片や手術部位からの出血に伴い腎盂内の視野が低下する場合がある。そのため、上部尿路内視鏡手術では、重力による滴下または一定の流量に設定できる潅流装置を用いて手術部位に潅流液を供給して、内視鏡を通して手術部位の視認性を確保する手法が採られている(例えば、特許文献1)。 In the medical field, endoscopic surgery performed by inserting an endoscope into a body cavity through a hole formed on the skin surface of a patient is expanding for the purpose of reducing invasiveness. Treatment for urological diseases involves upper urinary endoscopy with a renal pelvis endoscopy to remove ureteral epithelial tumors and urolithiasis in the upper ureter (ureter, renal pelvis). In this upper urethral endoscopic surgery, an endoscope is inserted into the upper urethra from the urethra via the bladder and ureter, and the tip of the endoscope is inserted into the renal pelvis to form a renal pelvis ureter. While observing the surgical site, treat the target site with an excision probe. Alternatively, the access sheath is inserted into the upper urinary tract from the urethra via the bladder and ureter, and the tip of the endoscope is inserted into the renal pelvis through the access sheath. At this time, the visual field in the renal pelvis may be reduced due to calculus fragments and bleeding from the surgical site. Therefore, in upper urethral endoscopic surgery, there is a method of supplying perfusate to the surgical site using a gravitational drip or a perfusion device that can be set to a constant flow rate to ensure visibility of the surgical site through the endoscope. It has been adopted (for example, Patent Document 1).
特開昭62-217952号公報Japanese Unexamined Patent Publication No. 62-217952 登録実用新案第3207495号公報Registered Utility Model No. 3207495
 ところが、上部尿路内視鏡手術において、手術部位からの出血量が多い場合や、潅流液の供給量が不足する場合等、既定の方法では十分な視野を確保できないことがあり、潅流液を間欠供給して視認性を向上する措置が採られていた。その場合、高腎盂内圧に伴う敗血症等の術後合併症が発生することが懸念される。したがって、上部尿路内視鏡手術では、術後合併症予防の観点から、低腎盂内圧を保ちながら視野確保のため一定の流量を確保する灌流液の供給が必要となる。 However, in upper urethral endoscopic surgery, when there is a large amount of bleeding from the surgical site or when the amount of perfusate supplied is insufficient, it may not be possible to secure a sufficient field of view by the prescribed method. Measures were taken to improve visibility by intermittently supplying. In that case, there is a concern that postoperative complications such as sepsis associated with high pyelonephritis may occur. Therefore, in upper urethral endoscopic surgery, from the viewpoint of preventing postoperative complications, it is necessary to supply a perfusate that secures a constant flow rate in order to secure a visual field while maintaining a low intrarenal pelvic pressure.
 本開示は、上記課題に鑑みてなされたものであり、上部尿路内視鏡手術において、手術中に腎盂内圧を検出し、潅流液供給時の腎盂内圧を設定された低腎盂内圧に保ちながら、視野確保のため一定の流量を供給する潅流液供給システム及び潅流装置の制御方法を提供することを目的とする。 The present disclosure has been made in view of the above problems, and in upper urethral endoscopic surgery, the renal pelvis pressure is detected during the operation, and the renal pelvis pressure at the time of perfusate supply is maintained at a set low renal pelvis pressure. It is an object of the present invention to provide a control method of a perfusate supply system and a perfusion device that supplies a constant flow rate for securing a field of view.
 上記目的を達成するため、本開示の一態様に係る潅流液供給システムは、内視鏡手術に用いる潅流液供給システムであって、体腔内へ挿入される内視鏡と、前記内視鏡内において前記内視鏡の先端近傍まで延在する送液チャンネルと、前記内視鏡内に延在し前記内視鏡の先端近傍の圧力を検出する圧力センサと、前記送液チャンネルに接続され、前記送液チャンネルを通して前記内視鏡の先端近傍に液を供給し、供給された液を体腔を通して体外に排出する潅流ポンプと、前記圧力センサ及び前記潅流ポンプと電気的に接続され、前記圧力センサから取得した圧力信号に基づき、前記潅流ポンプにおける潅流液の供給圧力を制御する制御部とを備えたことを特徴とする。 In order to achieve the above object, the perfusate supply system according to one aspect of the present disclosure is a perfusate supply system used for endoscopic surgery, and includes an endoscope inserted into a body cavity and the inside of the endoscope. The liquid feeding channel extending to the vicinity of the tip of the endoscope, the pressure sensor extending into the endoscope and detecting the pressure near the tip of the endoscope, and the liquid feeding channel are connected to each other. A perfusion pump that supplies liquid to the vicinity of the tip of the endoscope through the liquid supply channel and discharges the supplied liquid to the outside of the body through a body cavity is electrically connected to the pressure sensor and the perfusion pump, and the pressure sensor. It is characterized by including a control unit for controlling the supply pressure of the perfusate liquid in the perfusion pump based on the pressure signal obtained from the above.
 本開示の一態様に係る潅流液供給システム、及び潅流装置の制御方法によれば、手術中に腎盂内圧を検出し、潅流液供給時の腎盂内圧を設定された基準値に近付けることができる。その結果、潅流液供給時の腎盂内圧を、患者に対し適応的に設定された低腎盂内圧に保ちながら、視野確保のため一定の流量を供給することができる。 According to the perfusate supply system and the control method of the perfusion device according to one aspect of the present disclosure, it is possible to detect the intrarenal pelvis pressure during surgery and bring the intrarenal pelvis pressure at the time of perfusate supply close to the set reference value. As a result, a constant flow rate can be supplied to secure the visual field while maintaining the intrarenal pelvis pressure adaptively set for the patient at the time of supplying the perfusate.
実施の形態1に係る潅流液供給システム1の構成を示す模式図である。It is a schematic diagram which shows the structure of the perfusion liquid supply system 1 which concerns on Embodiment 1. FIG. 潅流液供給システム1における内視鏡20の先端付近の分解斜視図である。FIG. 5 is an exploded perspective view of the vicinity of the tip of the endoscope 20 in the perfusate supply system 1. (a)は、圧力センサ30の構成の概要を示す模式図、(b)は、(a)におけるA部の拡大図である。(A) is a schematic view showing an outline of the configuration of the pressure sensor 30, and (b) is an enlarged view of part A in (a). (a)(b)は、圧力センサ30における圧力の計測原理を説明するための模式図である。(A) and (b) are schematic views for explaining the pressure measurement principle in the pressure sensor 30. (a)は、潅流液供給システム1における性能評価試験に用いたアクセスシース、(b)は内視鏡の構成である。(A) is the access sheath used for the performance evaluation test in the perfusate supply system 1, and (b) is the structure of the endoscope. 潅流液供給システム1における供給圧力と腎盂圧との関係を示す実験結果である。This is an experimental result showing the relationship between the supply pressure and the renal pelvis pressure in the perfusate supply system 1. 潅流液供給システム1における供給圧力と潅流液の供給量との関係を示す実験結果である。This is an experimental result showing the relationship between the supply pressure in the perfusate supply system 1 and the supply amount of the perfusate. 潅流液供給システム1における潅流液の供給に伴う腎盂圧の時間変化を示す実験結果である。It is an experimental result which shows the time change of the renal pelvis pressure with the supply of the perfused liquid in the perfused liquid supply system 1. 潅流液供給システム1による、潅流液供給における圧力センサ30を利用した腎盂内圧のフィードバック制御の際の腎盂内圧の計測結果であり、(a)は増圧時、(b)は降圧時の結果である。It is the measurement result of the renal pelvis internal pressure at the time of feedback control of the renal pelvis internal pressure using the pressure sensor 30 in the perfusate supply by the perfusate supply system 1, (a) is the result at the time of increasing pressure, and (b) is the result at the time of depressing. is there. 変形例1に係る潅流液供給システム1Aの構成を示す模式図である。It is a schematic diagram which shows the structure of the perfusion liquid supply system 1A which concerns on modification 1. FIG. 実施の形態2に係る潅流液供給システム1Bの構成を示す模式図である。It is a schematic diagram which shows the structure of the perfusion liquid supply system 1B which concerns on Embodiment 2. FIG. 潅流液供給システム1Bにおける内視鏡20の先端付近の分解斜視図である。FIG. 5 is an exploded perspective view of the vicinity of the tip of the endoscope 20 in the perfusate supply system 1B. 12/14Frアクセスシースを用いた上部尿路内視鏡手術におけるレーザー照射に伴う温度の時間変化の測定結果である。It is the measurement result of the time change of the temperature with the laser irradiation in the upper urethral endoscopic surgery using the 12/14 Fr access sheath. 10/12Frアクセスシースを用いた上部尿路内視鏡手術におけるレーザー照射に伴う温度の時間変化の測定結果である。It is the measurement result of the time change of the temperature with the laser irradiation in the upper urethral endoscopic surgery using the 10/12 Fr access sheath. 上部尿路内視鏡手術の対象部位を示す模式図である。It is a schematic diagram which shows the target part of the upper urethral endoscopic surgery. (a)(b)は、上部尿路内視鏡手術における潅流液の供給による腎盂圧の変化の影響を説明するための模式図である。(A) and (b) are schematic diagrams for explaining the influence of the change in renal pelvic pressure due to the supply of perfusate in upper urethral endoscopic surgery.
 ≪発明を実施するための形態に至った経緯≫
 泌尿器科疾患に対する治療では、上部尿路(尿管、腎盂)内の腫瘍や結石を切除又は破砕するために、腎盂尿管鏡による上部尿路内視鏡手術が行われる。図15は、上部尿路内視鏡手術の対象部位を示す模式図である。上部尿路とは尿管又は腎盂を指し、尿管又は腎盂内に結石又は腫瘍があるとき、腎盂尿管鏡を用いた上部尿路内視鏡手術により対象部位の切除又は破砕が行われる。
<< Background to the form for carrying out the invention >>
In the treatment of urological diseases, upper urinary endoscopy with a renal pelvis is performed to remove or crush tumors and stones in the upper ureter (ureter, renal pelvis). FIG. 15 is a schematic view showing a target site for upper urethral endoscopic surgery. The upper ureter refers to the ureter or renal pelvis, and when there are stones or tumors in the ureter or renal pelvis, the target site is excised or crushed by upper ureter endoscopic surgery using a renal pelvis endoscopy.
 腎盂尿管鏡は、可撓性を有する樹脂製の管であるアクセスシース内に内視鏡を挿入することで構成される。内視鏡は、先端部に画像取得手段を有し、流体、鉗子、レーザーメス等の術具が挿入路を有し可撓性を有する管から構成される。 The renal pelvis ureteroscope is configured by inserting the endoscope into the access sheath, which is a flexible resin tube. The endoscope has an image acquisition means at the tip, and is composed of a flexible tube having an insertion path for surgical tools such as a fluid, forceps, and a laser scalpel.
 上部尿路内視鏡手術では、アクセスシースを尿道から膀胱、尿管を経由して上部尿路に挿入し、内視鏡の先端を腎盂に挿入して腎盂尿管鏡を構成し、手術部位を観察しながら切除プローブで対象部位への処置を行う。 In upper urethral endoscopic surgery, an access sheath is inserted from the urethra via the bladder and ureter into the upper ureter, and the tip of the endoscope is inserted into the renal pelvis to form a renal pelvis ureter. The target site is treated with an excision probe while observing.
 このときに手術部位からの出血に伴い、尿管又は腎盂内の視野が低下するという問題がある。そのため、上部尿路内視鏡手術では、重力による滴下または一定の流量に設定できる潅流装置を用いて手術部位に潅流液を供給し、内視鏡を通して手術部位の視認性を向上することが行われている。持続潅流装置には、例えば、内視鏡の後部に注入口を設け、注入口に送液用ポンプを接続して内視鏡内に送液チャンネルを構成し、潅流液を灌流ポンプを使って送液チャンネルに通して生体内へ供給するとともに、送液チャンネルとは異なる排液経路から体外に排出することにより潅流させる構成が採られる。 At this time, there is a problem that the visual field in the ureter or renal pelvis is reduced due to bleeding from the surgical site. Therefore, in upper urethral endoscopic surgery, it is possible to supply perfusate to the surgical site using a gravitational drip or a perfusion device that can be set to a constant flow rate, and improve the visibility of the surgical site through the endoscope. It has been done. The continuous perfusion device is provided with, for example, an injection port at the rear of the endoscope, a liquid delivery pump is connected to the injection port to form a liquid delivery channel in the endoscope, and the perfusate is perfused using the perfusion pump. It is configured to be perfused by supplying it into the living body through a liquid feeding channel and discharging it to the outside of the body through a drainage route different from that of the liquid feeding channel.
 ところが、上部尿路内視鏡手術において、手術部位からの出血量が多い場合や、あるいは、潅流液の供給量が不足する場合等、既定の方法では十分な視野を確保できないことがある。この場合、持続潅流装置を用いて、体腔における内視鏡の視認性を向上するためには、送液ポンプが体腔に吐出する灌注圧力及び流れを高くして潅流液を、最大5cc/回の流量範囲で間欠供給して視認性を向上する措置が採られる。 However, in upper urethral endoscopic surgery, a sufficient field of view may not be secured by the predetermined method, such as when the amount of bleeding from the surgical site is large or when the supply amount of perfusate is insufficient. In this case, in order to improve the visibility of the endoscope in the body cavity by using the continuous perfusion device, the perfusate is discharged at a maximum of 5 cc / time by increasing the irrigation pressure and flow discharged by the liquid feed pump into the body cavity. Measures will be taken to improve visibility by intermittently supplying water within the flow rate range.
 しかしながら、潅流に伴う腎盂内圧は、一般的には30~40cmHO以内の範囲で制御を要するが、患者の尿管の太さ、腎盂の大きさ、送液チャンネルの太さ、送液ポンプの供給圧力といった手術条件によって変動する。そのため、送液ポンプの供給圧を高めて腎盂内圧が高くなり過ぎた場合には、灌注した細菌尿又は結石等に付着した菌が腎盂から腎臓内に侵入する結果、集合管を介して血管内へと逆流し、高腎盂内圧に伴う敗血症等の術後合併症が発生することが懸念される。 However, renal pelvis pressure is associated with perfusion, typically requiring control within a range of 30 ~ 40cmH 2 O, but the thickness of the patient ureter, the size of the renal pelvis, the liquid feed channel thickness, the liquid feed pump It varies depending on the surgical conditions such as the supply pressure of the pelvis. Therefore, if the supply pressure of the liquid delivery pump is increased and the pressure inside the renal pelvis becomes too high, bacteria attached to the irrigated bacteriuria or calculus invade the kidney from the renal pelvis, and as a result, enter the blood vessel via the collecting duct. There is concern that postoperative complications such as sepsis associated with high renal pelvic pressure may occur.
 図16(a)(b)は、上部尿路内視鏡手術における灌流液の供給による腎盂圧の変化の影響を説明するための模式図である。尿管に挿入されるアクセスシースの内径は、概ね3.17mmから5.33mm(9.5Frから16Fr)であり、患者の尿管の径に合わせて選択される。図16(a)は小径のアクセスシースを用いた場合の例であり、(b)は大径のアクセスシースを用いた場合の例である。 16 (a) and 16 (b) are schematic views for explaining the effect of changes in renal pelvic pressure due to the supply of perfusate in upper urethral endoscopic surgery. The inner diameter of the access sheath inserted into the ureter is approximately 3.17 mm to 5.33 mm (9.5 Fr to 16 Fr) and is selected according to the diameter of the patient's ureter. FIG. 16A is an example when a small diameter access sheath is used, and FIG. 16B is an example when a large diameter access sheath is used.
 図16(a)に示すように、小径のアクセスシースを用いた場合には、アクセスシースの挿入により尿管が損傷する尿管損傷に至る可能性は少ない。しかしながら、腎盂内に供給された潅流液は、アクセスシースの内壁と内視鏡との隙間を排液経路として排出されるため、アクセスシースが小径である場合には、排液経路の容量が減少し潅流液の排出量が減少する。その結果、腎盂内圧が上昇して、破砕された結石等に付着した菌が腎臓内部に侵入して、発熱、***、敗血症等の術後合併症が発生するおそれがある。 As shown in FIG. 16A, when a small-diameter access sheath is used, it is unlikely that the insertion of the access sheath will lead to ureteral damage. However, since the perfusate supplied into the renal pelvis is discharged through the gap between the inner wall of the access sheath and the endoscope as a drainage route, the volume of the drainage route decreases when the access sheath has a small diameter. The drainage of perfusate is reduced. As a result, the pressure inside the renal pelvis rises, and bacteria attached to crushed stones or the like may invade the inside of the kidney, causing postoperative complications such as fever, urinary tract infection, and sepsis.
 一方、図16(b)に示すように、大径のアクセスシースを用いた場合には、アクセスシースの内壁と内視鏡との隙間に十分な排液経路の容量を確保できるために、腎盂内に供給された潅流液は十分に排出される。そのため、腎盂内圧は上昇せず、敗血症等の術後合併症が発生する可能性は少ない。しかしながら、アクセスシース挿入時に尿管が損傷して尿管穿孔等の尿管損傷に至るおそれがあり、その後発生する尿管狭窄に伴う腎機能の廃絶に至る可能性がある。 On the other hand, as shown in FIG. 16B, when a large-diameter access sheath is used, a sufficient capacity of the drainage path can be secured in the gap between the inner wall of the access sheath and the endoscope. The perfusate supplied inside is sufficiently drained. Therefore, the pyelonephritis does not increase, and there is little possibility that postoperative complications such as sepsis will occur. However, when the access sheath is inserted, the ureter may be damaged, leading to ureteral damage such as perforation of the ureter, which may lead to the abolition of renal function associated with the subsequent ureteral stenosis.
 これに対し、上部尿路内視鏡手術では、手術中の視野確保と術後合併症予防の観点から、潅流液の供給圧力を、患者の器官や手術条件に適合するように設定することが必要と考えられる。 On the other hand, in upper urethral endoscopic surgery, the supply pressure of perfusate can be set to suit the patient's organs and surgical conditions from the viewpoint of securing the field of view during surgery and preventing postoperative complications. It is considered necessary.
 そこで、発明者らは、手術中に腎盂内圧を検出して患者に対し適応的に設定された低腎盂内圧を保ちながら、視野確保のため一定の流量を供給する潅流液供給方法について鋭意検討を行い、以下の実施の形態に至ったものである。 Therefore, the inventors have diligently studied a perfusate supply method that supplies a constant flow rate to secure the visual field while maintaining the low renal pelvic pressure adaptively set for the patient by detecting the intrarenal pelvic pressure during surgery. This has led to the following embodiments.
 ≪本発明を実施するための形態の概要≫
 本開示の実施の形態に係る潅流液供給システムは、内視鏡手術に用いる潅流液供給システムであって、体腔内へ挿入される内視鏡と、前記内視鏡内において前記内視鏡の先端近傍まで延在する送液チャンネルと、前記内視鏡内に延在し前記内視鏡の先端近傍の圧力を検出する圧力センサと、前記送液チャンネルに接続され、前記送液チャンネルを通して前記内視鏡の先端近傍に液を供給し、供給された液を体腔を通して体外に排出する潅流ポンプと、前記圧力センサ及び前記潅流ポンプと電気的に接続され、前記圧力センサから取得した圧力信号に基づき、前記潅流ポンプにおける潅流液の供給圧力を制御する制御部とを備えたことを特徴とする。また、別の態様では、上記の何れかの態様において、前記制御部は、前記圧力信号の示す圧力値が所定の基準値に近付くように、前記潅流ポンプにおける潅流液の供給圧力を増減する構成としてもよい。
<< Outline of the mode for carrying out the present invention >>
The perfusate supply system according to the embodiment of the present disclosure is a perfusate supply system used for endoscopic surgery, in which an endoscope inserted into a body cavity and the endoscope in the endoscope A liquid feeding channel extending to the vicinity of the tip, a pressure sensor extending into the endoscope and detecting the pressure near the tip of the endoscope, and a pressure sensor connected to the liquid feeding channel and described as described through the liquid feeding channel. A perfusion pump that supplies liquid to the vicinity of the tip of the endoscope and discharges the supplied liquid to the outside of the body through the body cavity is electrically connected to the pressure sensor and the perfusion pump to obtain a pressure signal obtained from the pressure sensor. Based on this, it is characterized by including a control unit that controls the supply pressure of the perfusate liquid in the perfusion pump. In another aspect, in any of the above embodiments, the control unit increases or decreases the supply pressure of the perfusate liquid in the perfusion pump so that the pressure value indicated by the pressure signal approaches a predetermined reference value. May be.
 係る構成により、手術中に内視鏡先端近傍の圧力を検出し、体腔内の内圧を設定された基準値に近付けることができる。その結果、潅流液供給時の体腔内の内圧を、患者に対し適応的に設定された低内圧に保ちながら、視野確保のため一定の流量を供給することができる。 With such a configuration, it is possible to detect the pressure near the tip of the endoscope during surgery and bring the internal pressure in the body cavity closer to the set reference value. As a result, a constant flow rate can be supplied to secure the visual field while maintaining the internal pressure in the body cavity when the perfusate is supplied at a low internal pressure adaptively set for the patient.
 また、別の態様では、上記の何れかの態様において、さらに、前記内視鏡内に延在し前記内視鏡の先端近傍の温度を検出する温度センサを備え、前記制御部は、さらに、前記温度センサから取得した温度信号に基づいて前記潅流ポンプからの潅流液の供給量を制御する構成としてもよい。 In another aspect, in any of the above embodiments, the control unit further includes a temperature sensor that extends into the endoscope and detects a temperature in the vicinity of the tip of the endoscope. The configuration may be such that the supply amount of the perfusate liquid from the perfusion pump is controlled based on the temperature signal acquired from the temperature sensor.
 また、別の態様では、上記の何れかの態様において、前記制御部は、前記温度信号に基づき前記圧力信号の示す圧力値を補正し、補正後の圧力値が所定の基準値に近付くように、前記潅流ポンプにおける潅流液の供給圧力を増減する構成としてもよい。 In another aspect, in any of the above aspects, the control unit corrects the pressure value indicated by the pressure signal based on the temperature signal so that the corrected pressure value approaches a predetermined reference value. , The supply pressure of the perfusate in the perfusion pump may be increased or decreased.
 係る構成により、手術中に内視鏡先端近傍の圧力をより精度よく検出して、潅流液供給時の体腔内の内圧を低圧に保ちながら、視野確保のため一定の流量を供給することができる。 With this configuration, the pressure near the tip of the endoscope can be detected more accurately during surgery, and a constant flow rate can be supplied to secure the field of view while keeping the internal pressure in the body cavity low when the perfusate is supplied. ..
 また、別の態様では、上記の何れかの態様において、体腔は尿管であり、前記内視鏡は尿管を通して、少なくとも上部尿路まで挿入され、前記潅流ポンプは、前記送液チャンネルを通して上部尿路又は腎盂内に液を供給し、前記圧力センサは、少なくとも上部尿路まで挿入されて腎盂内圧を検出し、前記制御部は、検出された腎盂内圧が設定された基準値に近づくよう、前記潅流ポンプにおける潅流液の供給圧力を設定する構成としてもよい。 In another aspect, in any of the above embodiments, the body cavity is the ureter, the endoscope is inserted through the ureter to at least the upper urethra, and the perfusion pump is upper through the fluid delivery channel. The fluid is supplied into the ureter or the renal pelvis, the pressure sensor is inserted at least to the upper ureter to detect the renal pelvis pressure, and the control unit makes the detected renal pelvis pressure approach the set reference value. The configuration may be such that the supply pressure of the perfusate liquid in the perfusion pump is set.
 係る構成により、腎盂尿管鏡による上部尿路内視鏡手術において、手術中に腎盂内圧を検出し、潅流液供給時の腎盂内圧を設定された基準値に近付けることができる。その結果、潅流液供給時の腎盂内圧を、患者に対し適応的に設定された低腎盂内圧に保ちながら、視野確保のため一定の流量を供給することができる。 With such a configuration, in upper urethral endoscopic surgery with a renal pelvis ureteroscope, the intrarenal pelvic pressure can be detected during the operation, and the intrarenal pelvic pressure at the time of perfusate supply can be brought close to the set reference value. As a result, a constant flow rate can be supplied to secure the visual field while maintaining the intrarenal pelvis pressure adaptively set for the patient at the time of supplying the perfusate.
 また、別の態様では、上記の何れかの態様において、さらに、患者の尿管から上部尿路に挿入され、前記内視鏡を上部尿路まで案内する尿管アクセスシースを備え、供給された液は、前記アクセスシースを通して体外に排出される構成としてもよい。 In another aspect, in any of the above embodiments, a ureteral access sheath that is inserted from the patient's ureter into the upper urethra and guides the endoscope to the upper urethra is provided and supplied. The liquid may be configured to be discharged to the outside of the body through the access sheath.
 係る構成により、前記内視鏡を上部尿路まで案内するとともに、尿管アクセスシースの管内を送液経路として、腎盂内に供給された液を体外に排出することができる。 With such a configuration, the endoscope can be guided to the upper urethra, and the fluid supplied into the renal pelvis can be discharged to the outside of the body by using the inside of the ureteral access sheath as a fluid delivery route.
 また、別の態様では、上記の何れかの態様において、前記圧力センサは、長軸方向に延伸する光ファイバと、前記光ファイバの一端から構成されたハーフミラーと、前記第1のミラーを前記長軸方向に取り囲む周壁と、前記周壁の前記長軸方向の端に配され、前記第1のミラー及び前記周壁とともに気室を構成し、外圧により前記気室内方に変位するダイヤフラムと、前記ダイヤフラム上に前記第1のミラーに対向して配された第2のミラーと、前記光ファイバの他端から入光し前記第1のミラーにて反射される光と、前記光ファイバの他端から入光し前記第2のミラーにて反射される光との位相差の変化を計測する計測部と、前記位相差の変化に基づき前記ダイヤフラムに付勢される前記外圧を算出する圧力算出部とを備えた構成としてもよい。 In another aspect, in any of the above embodiments, the pressure sensor comprises an optical fiber extending in the major axis direction, a half mirror composed of one end of the optical fiber, and the first mirror. A diaphragm that is arranged at the end of the peripheral wall in the major axis direction, forms an air chamber together with the first mirror and the peripheral wall, and is displaced toward the air chamber by an external pressure, and the diaphragm. A second mirror arranged above the first mirror, light entering from the other end of the optical fiber and reflected by the first mirror, and light from the other end of the optical fiber. A measuring unit that measures a change in the phase difference from the light that enters the light and is reflected by the second mirror, and a pressure calculating unit that calculates the external pressure that is urged to the diaphragm based on the change in the phase difference. It may be configured to include.
 係る構成により、送液チャンネルの容量をほとんど犠牲にすることなく、体腔内に挿入された内視鏡の先端近傍の圧力を検出することができる圧力センサを構築できる。 With such a configuration, it is possible to construct a pressure sensor capable of detecting the pressure near the tip of the endoscope inserted into the body cavity without sacrificing the capacity of the liquid feeding channel.
 また、本開示の実施の形態に係る潅流液供給システムの制御方法は、体腔内に挿入される内視鏡に対する潅流液供給システムの制御方法であって、前記内視鏡に延在する圧力センサにより、前記内視鏡の先端近傍の圧力を検出し、前記圧力センサから取得した圧力信号に基づき潅流ポンプにおける潅流液の供給圧力を制御することにより、前記内視鏡の先端近傍まで延在する送液チャンネルを通して前記内視鏡の先端近傍に液を供給し、供給された液を体腔を通して体外に排出することを特徴とする。 Further, the control method of the perfusate supply system according to the embodiment of the present disclosure is a control method of the perfusate supply system for the endoscope inserted into the body cavity, and the pressure sensor extending to the endoscope. By detecting the pressure near the tip of the endoscope and controlling the supply pressure of the perfusate in the perfusion pump based on the pressure signal acquired from the pressure sensor, the pressure extends to the vicinity of the tip of the endoscope. It is characterized in that a liquid is supplied to the vicinity of the tip of the endoscope through a liquid feeding channel, and the supplied liquid is discharged to the outside of the body through a body cavity.
 係る構成により、手術中に内視鏡先端近傍の圧力を検出し、体腔内の内圧を設定された基準値に近付けるような潅流液供給を行うことができる。その結果、潅流液供給時の体腔内の内圧を、患者に対し適応的に設定された圧力内に保ちながら、視野確保のため一定の流量を供給することができる。 With such a configuration, it is possible to detect the pressure near the tip of the endoscope during surgery and supply the perfusate so that the internal pressure in the body cavity approaches the set reference value. As a result, a constant flow rate can be supplied to secure the visual field while maintaining the internal pressure in the body cavity when the perfusate is supplied within the pressure adaptively set for the patient.
 また、別の態様では、上記の何れかの態様において、さらに、前記内視鏡に延在し前記内視鏡の先端近傍の温度を検出する温度センサから取得した温度信号に基づき前記供給圧力を制御する構成としてもよい。 In another aspect, in any of the above embodiments, the supply pressure is further applied based on a temperature signal obtained from a temperature sensor that extends to the endoscope and detects a temperature near the tip of the endoscope. It may be configured to be controlled.
 係る構成により、手術中に内視鏡先端近傍の圧力をより精度よく検出して、体腔内の内圧を設定された基準値により一層近付けるような潅流液供給を行うことができる。 With such a configuration, it is possible to more accurately detect the pressure near the tip of the endoscope during surgery and supply the perfusate so that the internal pressure in the body cavity is closer to the set reference value.
 また、別の態様では、上記の何れかの態様において、前記内視鏡を体腔内へ導くアクセスシースを通して液を排出する構成としてもよい。 In another aspect, in any of the above embodiments, the liquid may be discharged through an access sheath that guides the endoscope into the body cavity.
 係る構成により、潅流液供給時の体腔内の内圧を低圧に保ちながら潅流液の供給と排出を行い、視野確保のため一定の流量を供給する潅流液供給を行うことができる。 With such a configuration, it is possible to supply and discharge the perfusate while maintaining the internal pressure in the body cavity at the time of supplying the perfusate at a low pressure, and to supply the perfusate to supply a constant flow rate to secure the visual field.
 ≪実施の形態1≫
 本実施の形態に係る潅流液供給システム1について、図面を用いて説明する。なお、図面は模式図であって、その縮尺は実際とは異なる場合がある。潅流液供給システム1(以下、「潅流システム」とする)は、医師等が内視鏡手術中に手術対象部位に潅流流体を送液又は送気するための医療機器であり、手術中の視野確保と術後合併症予防の観点から腎盂内圧の適正化を図るものである。
<< Embodiment 1 >>
The perfusate supply system 1 according to the present embodiment will be described with reference to the drawings. The drawings are schematic views, and the scale may differ from the actual ones. The perfusate supply system 1 (hereinafter referred to as "perfusion system") is a medical device for a doctor or the like to send or inflate perfusate fluid to a surgical target site during endoscopic surgery, and is a visual field during surgery. The purpose is to optimize the intrarenal pelvic pressure from the viewpoint of ensuring and preventing postoperative complications.
 <潅流システム1の全体構成>
 上部尿路内視鏡手術では、上述のとおり、内視鏡を尿道から膀胱、尿管を経由して上部尿路に挿入し、内視鏡の先端を腎盂に挿入して、手術部位を観察しながら切除プローブ等を用いて対象部位への処置が行われる。あるいは、尿道から膀胱、尿管を経由してアクセスシースを上部尿路に挿入し、アクセスシースを通して内視鏡の先端が腎盂に挿入される。図1は、上部尿路内視鏡手術において構成された、実施の形態1に係る潅流システム1の構成を示す模式図である。なお、本明細書では、図面において紙面上方向を「上」方向、紙面下方向を「下」方向とする。
<Overall configuration of perfusion system 1>
In upper urinary endoscopic surgery, as described above, the endoscope is inserted into the upper urethra from the urethra via the bladder and ureter, and the tip of the endoscope is inserted into the renal pelvis to observe the surgical site. While doing so, the target site is treated using an excision probe or the like. Alternatively, the access sheath is inserted into the upper urinary tract from the urethra via the bladder and ureter, and the tip of the endoscope is inserted into the renal pelvis through the access sheath. FIG. 1 is a schematic view showing the configuration of the perfusion system 1 according to the first embodiment, which is configured in the upper urethral endoscopic surgery. In the present specification, the upward direction on the paper surface is referred to as the "upward" direction, and the downward direction on the paper surface is referred to as the "downward" direction in the drawings.
 図1に示すように、潅流システム1は、アクセスシース10、内視鏡20、圧力センサ30、潅流装置40、制御部50を有し、これらの構成要素が接続されて送液チャンネル及び排液経路が形成された潅流システムを構成する。 As shown in FIG. 1, the perfusion system 1 includes an access sheath 10, an endoscope 20, a pressure sensor 30, a perfusion device 40, and a control unit 50, and these components are connected to a liquid feed channel and a liquid drainage system. It constitutes a perfusion system in which a pathway is formed.
 <潅流システム1の各部構成>
 以下、潅流システム1の各部構成について説明する。
<Structure of each part of perfusion system 1>
Hereinafter, the configuration of each part of the perfusion system 1 will be described.
 (アクセスシース10)
 アクセスシース10は樹脂材料からなり可撓性を有する管である、体腔内に挿入される管部11と管後部に操作者の持ち手部12を有する。本例では、アクセスシース10は、尿道から膀胱、尿管を経由して上部尿路に挿入され、管内部に内視鏡20が挿入され、内視鏡20の先端を腎盂に到達させるための案内手段として機能する。また、腎盂内に供給された液は、体腔内に挿入されたアクセスシース10の内壁と内視鏡20との隙間の空間を通してアクセスシース10の開口端12aから体外に排出される(図1中、FBと表記
)。
(Access sheath 10)
The access sheath 10 has a tube portion 11 inserted into the body cavity, which is a flexible tube made of a resin material, and a handle portion 12 of an operator at the rear portion of the tube. In this example, the access sheath 10 is inserted into the upper urinary tract from the urethra via the bladder and ureter, and the endoscope 20 is inserted into the tube so that the tip of the endoscope 20 reaches the renal pelvis. Functions as a guiding means. Further, the liquid supplied into the renal pelvis is discharged to the outside of the body from the open end 12a of the access sheath 10 through the space between the inner wall of the access sheath 10 inserted into the body cavity and the endoscope 20 (in FIG. 1). , FB).
 アクセスシース10には、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリイミド、ポリアセタール等の樹脂材料を用いることができる。また、アクセスシース10の管の内径は、例えば、3.17mm以上5.33mm以下(9.5Fr以上16Fr以下)の範囲から患者の尿管の内径に基づき選択される。あるいは、3.17mm以上4mm以下(9.5Fr以上12Fr以下)の範囲から選択されてもよい。しかしながら、管径、材質は、上記した寸法、材質等に限定されないことは言うまでもない。 For the access sheath 10, for example, resin materials such as polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, polyimide, and polyacetal can be used. The inner diameter of the tube of the access sheath 10 is selected from the range of 3.17 mm or more and 5.33 mm or less (9.5 Fr or more and 16 Fr or less) based on the inner diameter of the patient's ureter. Alternatively, it may be selected from the range of 3.17 mm or more and 4 mm or less (9.5 Fr or more and 12 Fr or less). However, it goes without saying that the pipe diameter and material are not limited to the above-mentioned dimensions and materials.
 (内視鏡20)
 内視鏡20は、尿管内に挿入されたアクセスシース10を通して先端を腎盂付近まで挿入され、手術部位を観察しながら切除プローブ等を用いて対象部位への処置を行うための医療器具である。内視鏡20には、軟性尿管鏡であり、例えば、オリンパス株式会社製、腎盂尿管ファイバースコープURF-P6を用いてもよい。
(Endoscope 20)
The endoscope 20 is a medical device in which the tip is inserted to the vicinity of the renal pelvis through an access sheath 10 inserted into the urinary tract, and treatment is performed on the target site using an excision probe or the like while observing the surgical site. The endoscope 20 is a flexible ureteroscope, and for example, a renal pelvis ureteral fiberscope URF-P6 manufactured by Olympus Corporation may be used.
 内視鏡20は、体腔内に挿入される長尺状の挿入部20xと、挿入部20xの後部に位置し操作者の持ち手部分となる操作部25を有する。 The endoscope 20 has a long insertion portion 20x inserted into the body cavity and an operation portion 25 located at the rear portion of the insertion portion 20x and serving as a handle portion of the operator.
 操作部25は、操作者が湾曲部の湾曲の程度を調整するための操作レバー251、鉗子及び処置具60を挿入するための鉗子口252、潅流装置40から導出された給水路411が接続される送液口253、画像観察を行うための接眼部254を有する。 The operation unit 25 is connected to an operation lever 251 for the operator to adjust the degree of curvature of the curved portion, a forceps port 252 for inserting the forceps and the treatment tool 60, and a water supply channel 411 derived from the perfusion device 40. It has a liquid feeding port 253 and an eyepiece 254 for observing an image.
 挿入部20xは、可撓性を有する軟性管20x1と、軟性管より先端側にあり、後述する操作レバー251の操作により上下(図1における上下方向)の2方向に湾曲する湾曲部20x2、さらに先端に位置する先端部20x3から構成されている。軟性管20x1は、例えば、フッ素樹脂等の樹脂材料からなり、湾曲部20x2は、例えば、フッ素ゴム等のゴム材料からなり、先端部20x3は、樹脂材材料からなる。 The insertion portion 20x includes a flexible flexible tube 20x1, a curved portion 20x2 located on the tip side of the flexible tube and curved in two directions, up and down (up and down direction in FIG. 1) by operating an operation lever 251 described later, and further. It is composed of a tip portion 20x3 located at the tip. The flexible tube 20x1 is made of a resin material such as fluororesin, the curved portion 20x2 is made of a rubber material such as fluororubber, and the tip portion 20x3 is made of a resin material.
 挿入部20xの管内には、潅流液の送液チャンネル21、画像を伝達するためのイメージガイド22、照明光を導光するためのライトガイド23が挿通されている。 In the pipe of the insertion portion 20x, a liquid supply channel 21 for the perfusate, an image guide 22 for transmitting an image, and a light guide 23 for guiding the illumination light are inserted.
 イメージガイド22は、画像を伝達するための光ファイバ束から構成され、先端221から入射した被写体からの光を操作部25の接眼部254に伝達する。 The image guide 22 is composed of an optical fiber bundle for transmitting an image, and transmits the light from the subject incident from the tip 221 to the eyepiece 254 of the operation unit 25.
 ライトガイド23は、照明光を伝達するための光ファイバ束から構成され、操作部25付近において光源23から出力された光を入力して先端231から出射する。 The light guide 23 is composed of an optical fiber bundle for transmitting illumination light, and inputs the light output from the light source 23 in the vicinity of the operation unit 25 and emits the light from the tip 231.
 送液チャンネル21は、潅流液を送液するための樹脂管路から構成され、潅流装置40から給水路411及び操作部25の送液口253を介して供給される潅流液を先端部20x3に送液して(図1中、FFと表記)、先端部20x3に位置する送液用開口21aから体腔内に供給する。 The liquid feed channel 21 is composed of a resin pipeline for feeding the perfusate, and the perfusate supplied from the perfusion device 40 through the water supply channel 411 and the liquid feed port 253 of the operation unit 25 is supplied to the tip portion 20x3. The liquid is fed (denoted as FF in FIG. 1) and supplied into the body cavity through the liquid feeding opening 21a located at the tip portion 20x3.
 また、送液チャンネル21は、鉗子及び処置具が挿通される術具チャンネルとして機能する。鉗子及び処置具60は操作部25に設けられた鉗子口252から挿入され、挿入部20xの先端部20xに位置する送液用開口21aから、処置具先端61を延出させて、対象部位に対する処置が行われる。処置具としては、レーザーメス、バスケット等を用いてもよい。鉗子口252には潅流液が漏れ出ないように封止栓が設けられている。 Further, the liquid feeding channel 21 functions as a surgical tool channel through which the forceps and the treatment tool are inserted. The forceps and the treatment tool 60 are inserted from the forceps opening 252 provided in the operation portion 25, and the treatment tool tip 61 is extended from the liquid feeding opening 21a located at the tip portion 20x of the insertion portion 20x to the target site. Treatment is taken. As the treatment tool, a laser scalpel, a basket, or the like may be used. The forceps opening 252 is provided with a sealing stopper so that the perfusate does not leak out.
 図2は、内視鏡20の先端部20x3付近の分解斜視図である。先端部20x3は、湾曲部20x2の湾曲ゴム管201の先端側に配された先端部本体202と、先端部本体202を覆う先端部カバー203からなる。 FIG. 2 is an exploded perspective view of the vicinity of the tip portion 20x3 of the endoscope 20. The tip portion 20x3 includes a tip portion main body 202 arranged on the tip end side of the curved rubber tube 201 of the curved portion 20x2, and a tip portion cover 203 that covers the tip portion main body 202.
 先端部本体202には、孔が開設されており、それぞれの孔にイメージガイド22の先端221、ライトガイド23の先端231、送液チャンネル21の管端211が嵌挿されている。 Holes are formed in the tip body 202, and the tip 221 of the image guide 22, the tip 231 of the light guide 23, and the pipe end 211 of the liquid feeding channel 21 are fitted into each hole.
 先端部カバー203には、イメージガイド22の先端221に対応する位置に対物レンズ222が配され、ライトガイド23の先端231が挿入される位置に照明光出射開口23aが開設され、送液チャンネル21の管端211に対応して送液用開口21aが開設されている。 An objective lens 222 is arranged on the tip cover 203 at a position corresponding to the tip 221 of the image guide 22, an illumination light emission opening 23a is opened at a position where the tip 231 of the light guide 23 is inserted, and a liquid feeding channel 21 is provided. A liquid feeding opening 21a is provided corresponding to the pipe end 211 of the above.
 (圧力センサ30)
 圧力センサ30は、内視鏡20内に延在し内視鏡20の先端近傍の圧力を検出する圧力センサであり、損傷を防止するために、例えば、ポリイミド等の樹脂材料から構成されるアウターチューブを被せた状態で設置される。内視鏡20内に圧力センサ30を配する理由は、構造が簡易になり、容易に潅流液供給システム1を構築することができるとともに、送液チャンネル21から供給される潅流液に直接触れるために、潅流液の圧力を計測するために好適な配置であるからである。具体的には、圧力センサ30には、例えば、「電気学会誌」第136巻 第3号 2016年(147頁~150頁)、又は特許公報(日本国特許第3393370号)等に記載の光ファイバ圧力センサを用いることができる。
(Pressure sensor 30)
The pressure sensor 30 is a pressure sensor that extends into the endoscope 20 and detects the pressure near the tip of the endoscope 20, and is an outer made of a resin material such as polyimide in order to prevent damage. It is installed with the tube covered. The reason for arranging the pressure sensor 30 in the endoscope 20 is that the structure is simplified, the perfusate supply system 1 can be easily constructed, and the perfusate supplied from the liquid feed channel 21 is directly touched. This is because it is a suitable arrangement for measuring the pressure of the perfusate. Specifically, the pressure sensor 30 includes the optical fiber described in, for example, "Journal of the Institute of Electrical Engineers of Japan" Vol. 136, No. 3, 2016 (pages 147 to 150), or Patent Gazette (Japanese Patent No. 3393370). A fiber pressure sensor can be used.
 圧力センサ30は、送液チャンネル21内に延在して配されている光ファイバ31、光ファイバ31の先端に配された圧力検出部32と、内視鏡20の操作部25の送液口253から導出された光ファイバ31が接続される計測部33、圧力算出部34を有する。 The pressure sensor 30 includes an optical fiber 31 extending in the liquid feeding channel 21, a pressure detecting unit 32 arranged at the tip of the optical fiber 31, and a liquid feeding port of the operating unit 25 of the endoscope 20. It has a measuring unit 33 and a pressure calculating unit 34 to which the optical fiber 31 derived from 253 is connected.
 図3(a)は、圧力センサ30の構成の概要を示す模式図である。図3(a)に示すように、圧力センサ30は、計測部33に一端が接続された光ファイバ31の他端に圧力検出部32を備えた構成を採る。 FIG. 3A is a schematic diagram showing an outline of the configuration of the pressure sensor 30. As shown in FIG. 3A, the pressure sensor 30 has a configuration in which the pressure detection unit 32 is provided at the other end of the optical fiber 31 having one end connected to the measurement unit 33.
 計測部33は、白色光源331、分光器332、フォトカプラ33及びこれらを接続する光ファイバ31を有し、底コヒーレンス光である白色光源331が発した光はフォトカプラ33を介して光ファイバ31により圧力検出部32に伝達される。圧力検出部32はファブリ・ペロー干渉計の構成となっており、ダイヤフラムと光ファイバ端面のハーフミラー間で生じる干渉光が光ファイバ31によりフォトカプラ33に伝達され、フォトカプラ33を介して分光器332に到達して検出される。 The measuring unit 33 has a white light source 331, a spectroscope 332, a photocoupler 33, and an optical fiber 31 connecting them. The light emitted by the white light source 331, which is bottom coherence light, passes through the photocoupler 33 and is an optical fiber 31. Is transmitted to the pressure detection unit 32. The pressure detection unit 32 has a Fabry-Perot interferometer configuration, and the interference light generated between the diaphragm and the half mirror on the end face of the optical fiber is transmitted to the photocoupler 33 by the optical fiber 31, and the spectroscope is transmitted via the photocoupler 33. It reaches 332 and is detected.
 圧力算出部34は、干渉スペクトルの波長変化に基づきダイヤフラム323に付勢される変位を算出し、予め計測してある圧力に対する変位量から外圧を算出する。 The pressure calculation unit 34 calculates the displacement urged by the diaphragm 323 based on the wavelength change of the interference spectrum, and calculates the external pressure from the displacement amount with respect to the pressure measured in advance.
 図3(b)は、図3(a)におけるA部(圧力検出部32)の拡大図である。図3(b)に示すように、圧力検出部32は、長軸方向に延伸する光ファイバ31の一端から構成された第1のミラー321と、第1のミラー321を長軸方向に取り囲む周壁322と、周壁322の長軸方向の端に配され、第1のミラー321及び周壁322とともに気室325を構成し、外圧により気室325内および外方に変位するダイヤフラム323と、ダイヤフラム323上に第1のミラー321に対向して配された第2のミラー324とを有する。第2のミラー324は第1のミラー321よりも反射率が高く、第2のミラー324には全反射ミラー、第1のミラー321にはハーフミラーを用いてもよい。 FIG. 3 (b) is an enlarged view of part A (pressure detection unit 32) in FIG. 3 (a). As shown in FIG. 3B, the pressure detection unit 32 includes a first mirror 321 formed from one end of an optical fiber 31 extending in the long axis direction, and a peripheral wall surrounding the first mirror 321 in the long axis direction. 322 and the diaphragm 323 arranged at the end of the peripheral wall 322 in the long axis direction, forming the air chamber 325 together with the first mirror 321 and the peripheral wall 322, and being displaced inward and outward by external pressure, and on the diaphragm 323. It has a second mirror 324 arranged so as to face the first mirror 321. The second mirror 324 has a higher reflectance than the first mirror 321. A total reflection mirror may be used for the second mirror 324, and a half mirror may be used for the first mirror 321.
 具体的には、光ファイバ31は、例えば、直径(d1)125μmであり、光ファイバ31の一端に硫化亜鉛(ZnS)による誘電体ハーフミラー層、もしくはクロム(Cr)によるハーフミラー層が形成されて第1のミラー321を構成している。第1のミラー321は、真空蒸着法、スパッタリング法等の気相成長法により形成してもよい。 Specifically, the optical fiber 31 has, for example, a diameter (d1) of 125 μm, and a dielectric half mirror layer made of zinc sulfide (ZnS) or a half mirror layer made of chromium (Cr) is formed at one end of the optical fiber 31. The first mirror 321 is configured. The first mirror 321 may be formed by a vapor phase growth method such as a vacuum deposition method or a sputtering method.
 周壁322は、長軸方向の長さlは約2から6μm、長軸方向に垂直な方向の厚みt1は約15μmである。 The peripheral wall 322 has a length l in the major axis direction of about 2 to 6 μm and a thickness t1 in the direction perpendicular to the major axis direction of about 15 μm.
 ダイヤフラム323は、直径(d2)約120μm、厚み(t2)約0.7μmであり、シリコン酸化膜からなり、例えば、CVD法等の気相成長法により形成してもよい。ダイヤフラム323には、長軸方向の中心を中心として直径(d3)約60μm、厚み(t3)2.3μmであって、第1のミラー321に突出した突出部323a(突出部の段差は1.6μm)が形成されており、突出部323aの頂上面に第2のミラー324が載設されている。 The diaphragm 323 has a diameter (d2) of about 120 μm and a thickness (t2) of about 0.7 μm, is made of a silicon oxide film, and may be formed by, for example, a vapor phase growth method such as a CVD method. The diaphragm 323 has a diameter (d3) of about 60 μm and a thickness (t3) of 2.3 μm centered on the center in the major axis direction, and has a protruding portion 323a protruding from the first mirror 321 (the step of the protruding portion is 1. 6 μm) is formed, and a second mirror 324 is mounted on the top surface of the protruding portion 323a.
 第2のミラー324は、直径(d3)約50μm、厚み(t4)約0.1μmであり、金属からなり、例えば、アルミニウム(AL)を用い、真空蒸着法、スパッタリング法等の気相成長法により形成してもよい。 The second mirror 324 has a diameter (d3) of about 50 μm and a thickness (t4) of about 0.1 μm, and is made of metal. For example, aluminum (AL) is used, and a vapor deposition method such as a vacuum deposition method or a sputtering method is used. May be formed by.
 以上の構成により、圧力検出部32では、ダイヤフラム323が外圧により変形していない状態において、長軸方向において第1のミラー321と第2のミラー324とは、約2.5μmの距離を隔てて対向している。 With the above configuration, in the pressure detection unit 32, in a state where the diaphragm 323 is not deformed by the external pressure, the first mirror 321 and the second mirror 324 are separated from each other by a distance of about 2.5 μm in the long axis direction. Facing each other.
 なお、圧力センサ30の構成要素に関する上記材質、形状、各種寸法等は一例であって、上記した内容に限定されないことは言うまでもない。 Needless to say, the above-mentioned materials, shapes, various dimensions, and the like related to the components of the pressure sensor 30 are examples, and are not limited to the above-mentioned contents.
 図4(a)(b)は、圧力センサ30における圧力の計測原理を説明するための模式図である。 FIGS. 4 (a) and 4 (b) are schematic views for explaining the pressure measurement principle of the pressure sensor 30.
 計測部33の白色光源331が発した光はフォトカプラ33を介して光ファイバ31により圧力検出部32に伝達される。そして、圧力検出部32にて光ファイバとダイヤフラムのギャップ長に応じた干渉縞が生じ、ハーフミラーを透過した干渉光(R1、R2)が光ファイバ31によりフォトカプラ33に伝達され、フォトカプラ33を介して分光器332に到達して干渉スペクトルとして検出される。このとき、干渉スペクトルのピーク波長からダイヤフラムの変化を計測する。この計測には、例えば、K. Totsu, Y. Haga and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry", J. Micromech. Microeng. 15 (2005), pp. 71-75.、V. Bhatia, M. B. Sen, K. A. Murphy and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements”, Electron. Lett., Vol.32, No.3, pp.247-249, (1996)に記載された方法を用いることができる。 The light emitted by the white light source 331 of the measuring unit 33 is transmitted to the pressure detecting unit 32 by the optical fiber 31 via the photocoupler 33. Then, interference fringes are generated in the pressure detection unit 32 according to the gap length between the optical fiber and the diaphragm, and the interference light (R1, R2) transmitted through the half mirror is transmitted to the photocoupler 33 by the optical fiber 31, and the photocoupler 33 is transmitted. It reaches the spectroscope 332 and is detected as an interference spectrum. At this time, the change in the diaphragm is measured from the peak wavelength of the interference spectrum. For this measurement, for example, K. Totsu, Y. Haga and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry", J. Micromech. Microeng. 15 (2005), pp. 71-75 ., V. Bhatia, M. B. Sen, K. A. Murphy and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements”, Electron. Lett., Vol.32, No The method described in .3, pp.247-249, (1996) can be used.
 予め実験等により特定されているダイヤフラム323に付勢される圧力とスペクトルピーク波長の変化量との関係に基づいて、ダイヤフラム323に付勢された圧力を算出する。 The pressure urged on the diaphragm 323 is calculated based on the relationship between the pressure urged on the diaphragm 323 and the amount of change in the spectrum peak wavelength specified in advance by experiments or the like.
 これにより、送液チャンネル21の容量をほとんど犠牲にすることなく、体腔内に挿入された内視鏡20の先端近傍の圧力を検出することができる圧力センサを構築することができる。具体的には、上部尿路内視鏡手術において、アクセスシース10が患者の上部尿路に挿入され、内視鏡20がアクセスシース10を通して、少なくとも上部尿路まで挿入され、送液チャンネル21を通して上部尿路又は腎盂内に液を供給している状態において、圧力センサ30は、少なくとも上部尿路まで挿入されて腎盂内圧を検出することができる。 This makes it possible to construct a pressure sensor capable of detecting the pressure near the tip of the endoscope 20 inserted into the body cavity without sacrificing the capacity of the liquid feeding channel 21. Specifically, in upper urethral endoscopic surgery, the access sheath 10 is inserted into the patient's upper urethra, the endoscope 20 is inserted through the access sheath 10 to at least the upper urethra, and through the fluid delivery channel 21. While the fluid is being supplied into the upper urethra or the renal pelvis, the pressure sensor 30 can be inserted at least up to the upper urethra to detect the intrarenal pelvis pressure.
 (潅流装置40)
 潅流装置40は、内視鏡20の送液口253に給水路411を介して接続され、送液チャンネル21を通して内視鏡の先端部20x近傍に潅流液を供給する持続潅流装置である。また、供給された潅流液は、潅流装置40からの潅流液の供給圧力により、アクセスシース10の内壁と内視鏡20との間の空間を通してアクセスシース10の開口端12aから体外に排出される。潅流装置40は、給水路411に接続された給水用の潅流ポンプ41を備える。潅流ポンプ41は制御部50から出力される制御信号に基づき潅流液の吐出圧力(装置出口圧力)を増減させるように制御する。
(Perfusion device 40)
The perfusion device 40 is a continuous perfusion device that is connected to the liquid supply port 253 of the endoscope 20 via a water supply channel 411 and supplies the perfusate to the vicinity of the tip portion 20x of the endoscope through the liquid supply channel 21. Further, the supplied perfusate is discharged to the outside of the body from the opening end 12a of the access sheath 10 through the space between the inner wall of the access sheath 10 and the endoscope 20 due to the supply pressure of the perfusate from the perfusion device 40. .. The perfusion device 40 includes a perfusion pump 41 for water supply connected to the water supply channel 411. The perfusion pump 41 controls to increase or decrease the discharge pressure of the perfusate liquid (device outlet pressure) based on the control signal output from the control unit 50.
 潅流ポンプ41には、例えば、東京理化器械株式会社製、定量送液ポンプRP-1100を用いてもよい。当該装置では、制御信号として外部信号入力端子へ入力電圧0~5Vを入力することにより、入力電圧値に応じて潅流液を吐出圧力を0~1.4kg/cmの範囲に制御して、潅流液の流量を制御することができる。潅流ポンプ41は同一のポンプにおいて共用されている構成としてもよい。 As the perfusion pump 41, for example, a fixed-quantity liquid feed pump RP-1100 manufactured by Tokyo Rika Kikai Co., Ltd. may be used. In this device, by inputting an input voltage of 0 to 5 V to the external signal input terminal as a control signal, the perfusate is controlled to have a discharge pressure in the range of 0 to 1.4 kg / cm 2 according to the input voltage value. The flow rate of the perfusate can be controlled. The perfusion pump 41 may be configured to be shared by the same pump.
 これにより、上部尿路内視鏡手術において、アクセスシース10が尿管を通して、患者の上部尿路に挿入されている状態において、内視鏡20はアクセスシース10を通して、少なくとも上部尿路まで挿入され、潅流ポンプ41は送液チャンネル21を通して上部尿路又は腎盂内に液を持続的に供給するとともに、供給された液をアクセスシース10内の空間を通して体外に排出することができる。 Thus, in upper urethral endoscopic surgery, the endoscope 20 is inserted through the access sheath 10 to at least the upper urethra while the access sheath 10 is inserted into the patient's upper urethra through the ureter. The perfusion pump 41 can continuously supply the liquid into the upper urethra or the renal pelvis through the liquid supply channel 21 and discharge the supplied liquid to the outside of the body through the space in the access sheath 10.
 (制御部50)
 制御部50は、圧力センサ30及び潅流ポンプ41と電気的に接続され、圧力センサ30からの出力信号に基づき潅流ポンプ41からの潅流液の供給量を制御する。
(Control unit 50)
The control unit 50 is electrically connected to the pressure sensor 30 and the perfusion pump 41, and controls the supply amount of the perfusate liquid from the perfusion pump 41 based on the output signal from the pressure sensor 30.
 具体的には、制御部50は、圧力算出部34からダイヤフラム323に付勢された圧力を示す電気信号を入力し、検出された圧力の値が設定された基準値に近づくよう、潅流ポンプ41における潅流液の供給圧力を増減し、さらに、圧力センサ30での圧力検出を繰り返す方法で、フィードバック制御を行う。このとき、例えば、制御部50は、検出された圧力の値と基準値との差異に基づき、潅流ポンプ41における潅流液の供給圧力を漸増又は漸減する量を異ならせてもよい。 Specifically, the control unit 50 inputs an electric signal indicating the pressure urged to the diaphragm 323 from the pressure calculation unit 34, and the perfusion pump 41 so that the detected pressure value approaches the set reference value. The feedback control is performed by increasing or decreasing the supply pressure of the perfusate in the above, and further repeating the pressure detection by the pressure sensor 30. At this time, for example, the control unit 50 may change the amount of gradually increasing or decreasing the supply pressure of the perfusate liquid in the perfusion pump 41 based on the difference between the detected pressure value and the reference value.
 <評価試験>
 以下、予備試験、及び実施の形態に係る潅流液供給システム1を用いて評価試験により性能評価を行った。以下、その結果について説明する。
<Evaluation test>
Hereinafter, the performance was evaluated by the preliminary test and the evaluation test using the perfusate supply system 1 according to the embodiment. The results will be described below.
 (予備試験)
 発明者は、潅流液供給システム1を用い、市販されている異なる複数のアクセスシースを用いて、潅流ポンプの吐出圧力と腎盂内圧、又は潅流液流量との関係について、予備的に評価を行った。試験条件を以下に示す。
(Preliminary test)
The inventor made a preliminary evaluation of the relationship between the discharge pressure of the perfusion pump and the intra-renal pelvis pressure or the perfusion fluid flow rate using a plurality of commercially available access sheaths using the perfusion fluid supply system 1. .. The test conditions are shown below.
 [試験条件、方法]
 潅流液供給システム1を用い、アクセスシースを豚の上部尿路から腎盂に挿入し、内視鏡の先端を腎盂に挿入した状態で、潅流ポンプの供給圧力(吐出圧力)を40mbarから180mbarまで変化させて、潅流液を間欠的に送液し、腎盂内圧及び潅流液流量を計測した。ここでは、腎盂内圧は、腎盂内に腎瘻用のカテーテルを挿入し、腎盂内の圧力を動脈圧測定装置により測定した。潅流液流量は潅流ポンプにより測定した。
[Test conditions and methods]
Using the perfusate supply system 1, the access sheath was inserted into the renal pelvis from the upper urethra of the pig, and the supply pressure (discharge pressure) of the perfusion pump was changed from 40 mbar to 180 mbar with the tip of the endoscope inserted into the renal pelvis. Then, the perfusate was sent intermittently, and the pressure in the renal pelvis and the flow rate of the perfusate were measured. Here, the intrarenal pelvis pressure was measured by inserting a catheter for a renal fistula into the renal pelvis and measuring the pressure in the renal pelvis with an arterial pressure measuring device. The perfusate flow rate was measured with a perfusion pump.
 アクセスシースの供試サンプルとして、市販されている5種類のアクセスシース(サンプルA:Cook Medical「Flexor」(登録商標)9.5/11.5 Fr、サンプルB:Olympus「UroPass」(登録商標)10/12Fr、サンプルC:Rocamed 「BI-FLEX」(登録商標)10/12Fr、サンプルD:BARD「PROXIS」(登録商標)10/12Fr、サンプルE:Coloplast「ReTrace」(登録商標)10/12F)を用いた。内視鏡20には、オリンパス株式会社製、腎盂尿管ファイバースコープURF-P6を用いた。図5(a)は、供試サンプルに用いたアクセスシース、(b)は内視鏡の構成である。 As test samples of access sheaths, 5 types of commercially available access sheaths (Sample A: Cook Medical "Flexor" (registered trademark) 9.5 / 11.5 Fr, Sample B: Olympus "UroPass" (registered trademark) 10 / 12Fr, Sample C: Rocamed "BI-FLEX" (registered trademark) 10 / 12Fr, Sample D: BARD "PROXIS" (registered trademark) 10 / 12Fr, Sample E: Coloplast "ReTrace" (registered trademark) 10 / 12F) .. For the endoscope 20, a renal pelvis ureteral fiberscope URF-P6 manufactured by Olympus Corporation was used. FIG. 5A shows the structure of the access sheath used for the test sample, and FIG. 5B shows the structure of the endoscope.
 [試験結果]
 図6は、潅流液の供給圧力と腎盂圧との関係を示す実験結果である。図6に示すように、アクセスシースの管路の断面積が8~9mmであるサンプルD及びEでは、潅流ポンプの供給圧力の全範囲140mbar以上において、腎盂内圧は基準腎盂内圧40cmHO以上となり、断面積が7~8mmであるサンプルAでは、潅流ポンプの供給圧力80mbar以上において、腎盂内圧は基準腎盂内圧40cmHO以上となった。これに対し、断面積が9mmより大きいサンプルB及びCでは、潅流ポンプの供給圧力の全範囲40mbarから180mbarにおいて、腎盂内圧は基準腎盂内圧40cmHO未満となった。
[Test results]
FIG. 6 shows the experimental results showing the relationship between the supply pressure of the perfusate and the renal pelvis pressure. As shown in FIG. 6, in the samples D and E in which the cross-sectional area of the access sheath conduit is 8 to 9 mm 2 , the intrarenal pelvis pressure is 40 cmH 2 O or more in the entire range of the supply pressure of the perfusion pump at 140 mbar or more. In sample A having a cross-sectional area of 7 to 8 mm 2 , the renal pelvis internal pressure was 40 cmH 2 O or more at a supply pressure of 80 mbar or more of the perfusion pump. On the other hand, in the samples B and C having a cross-sectional area larger than 9 mm 2 , the intra-renal pelvis pressure was less than the reference intra-renal pelvis pressure of 40 cmH 2 O in the entire range of the supply pressure of the perfusion pump from 40 mbar to 180 mbar.
 図7は、潅流液の供給圧力と潅流液の供給量との関係を示す実験結果である。図7に示すように、潅流ポンプの供給圧力の全範囲40mbarから180mbarにおいて、潅流液の供給量は断面積の増加に伴って増加し、断面積が9mmより大きいサンプルB及びCが最も供給量が多いという結果であった。 FIG. 7 is an experimental result showing the relationship between the supply pressure of the perfusate and the supply amount of the perfusate. As shown in FIG. 7, in the entire supply pressure range of 40 mbar to 180 mbar of the perfusion pump, the supply amount of the perfusate increases as the cross-sectional area increases, and samples B and C having a cross-sectional area larger than 9 mm 2 are most supplied. The result was a large amount.
 以上の結果から、アクセスシース10としてサンプルB又はCを用いることが、腎盂内圧及び潅流液流量の観点から好ましい。 From the above results, it is preferable to use sample B or C as the access sheath 10 from the viewpoint of renal pelvis internal pressure and perfusate flow rate.
 (潅流液供給システム1による評価試験)
 発明者は、潅流液供給システム1を用い、腎瘻用のカテーテルを用いて測定される腎盂内圧と圧力センサにより検出される腎盂内圧との関係について、測定を行った。試験条件を以下に示す。
(Evaluation test by perfusate supply system 1)
The inventor used the perfusate supply system 1 to measure the relationship between the renal pelvic pressure measured using a catheter for a renal fistula and the renal pelvic pressure detected by a pressure sensor. The test conditions are shown below.
 [試験条件1、方法]
 潅流液供給システム1を用い、アクセスシースを豚の上部尿路から腎盂に挿入し、内視鏡の先端を腎盂に挿入した状態で、潅流ポンプの供給圧力(吐出圧力)を60、80、100、120、140、160、180mbarに昇順に変化させて、温度37.0℃の潅流液を間欠的に送液し、腎盂内圧及び潅流液流量を計測した。ここでは、腎盂内圧は、潅流液供給システム1における圧力センサ30により測定した(図8中の実線)。また、腎盂内圧の測定結果を検証するために、腎盂内に腎瘻用のカテーテル(Aライン圧力)を挿入し、腎盂内の圧力を動脈圧測定装置により腎盂内圧を測定した(図8中の破線)。潅流液流量は潅流ポンプにより測定した。アクセスシースには、図5(a)に示すB又はCを用い、内視鏡は図5(b)に示す内視鏡を用いた。
[Test condition 1, method]
Using the perfusate supply system 1, the access sheath is inserted into the renal pelvis from the upper urethra of the pig, and the supply pressure (discharge pressure) of the perfusion pump is set to 60, 80, 100 with the tip of the endoscope inserted into the renal pelvis. , 120, 140, 160, 180 mbar were changed in ascending order, and the perfusate at a temperature of 37.0 ° C. was intermittently pumped, and the intrarenal pelvic pressure and the perfusate flow rate were measured. Here, the intrarenal pelvis pressure was measured by the pressure sensor 30 in the perfusate supply system 1 (solid line in FIG. 8). Further, in order to verify the measurement result of the intrarenal pressure, a catheter for a renal fistula (A line pressure) was inserted into the renal pelvis, and the pressure inside the renal pelvis was measured by an arterial pressure measuring device (in FIG. 8). Broken line). The perfusate flow rate was measured with a perfusion pump. B or C shown in FIG. 5 (a) was used as the access sheath, and the endoscope shown in FIG. 5 (b) was used as the endoscope.
 [試験結果1]
 図8は、潅流液供給システム1における潅流液の供給に伴う腎盂圧の時間変化を示す実験結果である。具体的には、潅流液供給システム1における潅流液の供給中における、腎瘻用のカテーテルを用いて測定される腎盂内圧と圧力センサにより検出される腎盂内圧の時間変化を示す実験結果である。
[Test result 1]
FIG. 8 is an experimental result showing the temporal change of the renal pelvis pressure with the supply of the perfusate in the perfusate supply system 1. Specifically, it is an experimental result showing a time change of the intrarenal pelvis pressure measured by using a catheter for a renal fistula and the intrarenal pelvis pressure detected by a pressure sensor during supply of perfusate in the perfusate supply system 1.
 図8に示すように、60、80mbarの加圧時には、圧力センサ測定圧力がAライン圧力に比べ低いという結果になった。流路抵抗による影響と推定される。 As shown in FIG. 8, the result was that the pressure measured by the pressure sensor was lower than the A-line pressure when the pressure was increased to 60 or 80 mbar. It is presumed to be the effect of flow path resistance.
 また、100、120、140mbarの加圧時には、圧力センサ測定圧力とAライン圧力と一致する結果になった。 Also, when pressurizing 100, 120, 140 mbar, the result was that the pressure measured by the pressure sensor and the A-line pressure were in agreement.
 また、160、180mbarの加圧時には、加圧直後には圧力センサ測定圧力とAライン圧力とほぼ一致するが、加圧期間内に圧力センサ測定圧力が低下しAライン圧力との差が漸増するという結果になった。圧力センサ測定圧力が加圧後に0以下となった。 Further, when pressurizing 160 or 180 mbar, the pressure sensor measurement pressure and the A line pressure almost match immediately after the pressurization, but the pressure sensor measurement pressure decreases within the pressurization period and the difference from the A line pressure gradually increases. The result was that. The pressure measured by the pressure sensor became 0 or less after pressurization.
 60から180mbarまでの各加圧期間における、腎盂内温度変化を以下に示す。 The temperature changes in the renal pelvis during each pressurization period from 60 to 180 mbar are shown below.
Figure JPOXMLDOC01-appb-T000001
 160、180mbarの加圧時には、100、120、140mbarの加圧時と比べて、腎盂内温度上昇が大きい。潅流液の温度が体温よりも高く、図7に示すように供給圧力が高い場合には潅流液の供給量が多いために、160、180mbarの加圧時おいて腎盂内温度上昇が大きいと考えられる。160、180mbar加圧期間における圧力センサ測定圧力とAライン圧力との差異の漸増は腎盂内温度上昇と同様の傾向を示すことから、加圧期間における腎盂内温度上昇に起因するものと推定される。
Figure JPOXMLDOC01-appb-T000001
When the pressure is 160, 180 mbar, the temperature rise in the renal pelvis is larger than that when the pressure is 100, 120, 140 mbar. When the temperature of the perfusate is higher than the body temperature and the supply pressure is high as shown in FIG. 7, it is considered that the temperature rise in the renal pelvis is large when the perfusate is pressurized to 160 or 180 mbar because the supply amount of the perfusate is large. Be done. Since the gradual increase in the difference between the pressure sensor measurement pressure and the A-line pressure during the 160 and 180 mbar pressurization period shows the same tendency as the increase in the renal pelvis temperature, it is presumed that it is caused by the increase in the renal pelvis temperature during the pressurization period. ..
 以上の結果から、潅流液供給システム1を用い、100、120、140mbarの加圧時には、圧力センサにより腎盂内圧を適切に検出できることが確認された。 From the above results, it was confirmed that the pressure in the renal pelvis can be appropriately detected by the pressure sensor when the perfusate supply system 1 is used and the pressure is 100, 120, or 140 mbar.
 160、180mbarの加圧時には、加圧直後には、圧力センサにより腎盂内圧を検出することができるが、加圧期間における腎盂内温度上昇に対応するように、加圧期間内に圧力センサ測定圧力が漸減することが確認された。そのため、圧力センサの腎盂内温度変化に対する影響を最小限とするため、温度補正を可能とした実施の形態2に係る潅流液供給システム1Bについては後述する。 When pressurizing 160 or 180 mbar, the pressure inside the renal pelvis can be detected by the pressure sensor immediately after pressurization, but the pressure measured by the pressure sensor during the pressurization period corresponds to the temperature rise inside the renal pelvis during the pressurization period. Was confirmed to decrease gradually. Therefore, in order to minimize the influence of the pressure sensor on the temperature change in the renal pelvis, the perfusate supply system 1B according to the second embodiment in which the temperature can be corrected will be described later.
 [試験条件2、方法]
 潅流液供給システム1を用い、アクセスシースを豚の上部尿路から腎盂に挿入し、内視鏡の先端を腎盂に挿入した状態で、潅流液供給システム1による潅流液供給時における圧力センサ30の計測値に基づく腎盂内圧のフィードバック制御の評価実験を行った。具体的には、制御部50に腎盂内圧の目標値5、10、15、20mmHgを昇順及び降順に設定し、圧力センサ30からの腎盂内圧の計測値の出力が目標値に近付くように潅流ポンプ41の供給圧力(吐出圧力)を増減する制御を行って腎盂内に潅流液を送液する。この状態で、圧力センサ30及びリファレンスとして動脈圧測定装置により腎盂内圧の計測を行った。アクセスシース、内視鏡、潅流液の温度、上記以外の送液条件は試験条件1と同じである。
[Test condition 2, method]
Using the perfusate supply system 1, the access sheath is inserted into the renal pelvis from the upper urethra of the pig, and the tip of the endoscope is inserted into the renal pelvis. An evaluation experiment was conducted to evaluate the feedback control of the intrarenal pelvic pressure based on the measured values. Specifically, the target values of the renal pelvis pressure of 5, 10, 15, and 20 mmHg are set in the control unit 50 in ascending and descending order, and the perfusion pump is used so that the output of the measured value of the renal pelvis pressure from the pressure sensor 30 approaches the target value. The perfusate is sent into the renal pelvis by controlling the supply pressure (discharge pressure) of 41 to be increased or decreased. In this state, the pressure inside the renal pelvis was measured by the pressure sensor 30 and the arterial pressure measuring device as a reference. The access sheath, the endoscope, the temperature of the perfusate, and the liquid feeding conditions other than the above are the same as those of the test condition 1.
 [試験結果2]
 図9は、潅流液供給システム1による、潅流液供給における圧力センサ30を利用した腎盂内圧のフィードバック制御の際の腎盂内圧の計測結果であり、(a)は増圧時、(b)は降圧時の結果である。図9に、圧力センサ30により検出される腎盂内圧(実線(太):Optic pressure sensorと表記)、腎瘻用のカテーテルを用いて動脈圧測定装置により測定される腎盂内圧(破線(細):Reference pressure sensorと表記)、計測値は潅流ポンプ41の回転数(実線(中):Irrigation pumpと表記)の時間変化を示す。
[Test result 2]
FIG. 9 shows the measurement results of the renal pelvis internal pressure at the time of feedback control of the renal pelvis internal pressure using the pressure sensor 30 in the perfusate supply by the perfusate supply system 1. FIG. It is the result of time. In FIG. 9, the intrarenal pressure detected by the pressure sensor 30 (solid line (thick): indicated as Optic pressure sensor) and the intrarenal pressure measured by an arterial pressure measuring device using a catheter for a renal fistula (broken line (thin): Reference pressure sensor), the measured value shows the time change of the rotation speed of the perfusion pump 41 (solid line (middle): notation as Irrigation pump).
 図9(a)(b)よると、昇圧時及び降圧時のそれぞれにおいて、計測期間全体を通して圧力センサ30により検出される腎盂内圧は動脈圧測定装置により測定される腎盂内圧と一致していること確認された。 According to FIGS. 9A and 9B, the intrarenal pelvic pressure detected by the pressure sensor 30 throughout the measurement period coincides with the intrarenal pelvic pressure measured by the arterial pressure measuring device at the time of pressurization and depressurization, respectively. confirmed.
 また、図9(a)(b)に示すように、5、10、15、20mmHgと設定値を上げていくと、それに伴い潅流ポンプ41が回転数を上昇し、圧力センサ30により計測される腎盂内圧と動脈圧測定装置により計測される腎盂内圧の両方において、概ね目標圧力に達することが確認された。また、降圧時にも同様に目標圧力に追従して沿って降圧されることが確認された。また、15mmHg以上では、昇圧時、降圧時ともに腎盂内圧が設定圧力に達するために約1分程度の時間を要することが確認された。 Further, as shown in FIGS. 9A and 9B, when the set values are increased to 5, 10, 15, and 20 mmHg, the rotation speed of the perfusion pump 41 increases accordingly, and the pressure sensor 30 measures the values. It was confirmed that the target pressure was almost reached in both the intrarenal pressure and the intrarenal pressure measured by the arterial pressure measuring device. It was also confirmed that the pressure was lowered along the target pressure in the same manner during the pressure reduction. Further, it was confirmed that at 15 mmHg or more, it takes about 1 minute for the intrarenal pelvis pressure to reach the set pressure both at the time of pressurization and at the time of depressurization.
 以上の結果から、潅流液供給システム1を用い、内視鏡の先端を上部尿路から腎盂に挿入した状態で、潅流液供給システム1による圧力センサ30の計測値を利用して潅流液供給時の腎盂内圧のフィードバック制御が可能であることが確認された。
 <潅流システム1の効果>
 潅流液供給システム1では、上記した圧力範囲においては、圧力センサ30により腎盂内圧を適切に検出できることが確認された。
From the above results, when the perfusate is supplied using the perfusate supply system 1 and the tip of the endoscope is inserted into the renal pelvis from the upper urethra, using the measured value of the pressure sensor 30 by the perfusate supply system 1. It was confirmed that feedback control of the intrarenal pelvic pressure is possible.
<Effect of perfusion system 1>
It was confirmed that in the perfusate supply system 1, the pressure in the renal pelvis can be appropriately detected by the pressure sensor 30 in the above-mentioned pressure range.
 潅流液供給システム1では、圧力センサ30を用いて、制御部50は、圧力センサ30により検出された圧力の値が設定された基準値に近づくよう、潅流ポンプ41における潅流液の供給圧力をフィードバック制御を行うことにより、圧力センサ30が配された内視鏡20の先端近傍の圧力を基準値に近付けるよう制御することができる。 In the perfusate supply system 1, using the pressure sensor 30, the control unit 50 feeds back the supply pressure of the perfusate in the perfusion pump 41 so that the pressure value detected by the pressure sensor 30 approaches the set reference value. By performing the control, it is possible to control the pressure in the vicinity of the tip of the endoscope 20 in which the pressure sensor 30 is arranged so as to approach the reference value.
 その結果、潅流液供給システム1によれば、上部尿路内視鏡手術において、アクセスシース10が患者の上部尿路に挿入され、内視鏡20がアクセスシース10を通して、少なくとも上部尿路まで挿入され、送液チャンネル21を通して上部尿路又は腎盂内に液を供給している状態において、圧力センサ30は、少なくとも上部尿路まで挿入されて腎盂内圧を検出し、制御部50は、検出された腎盂内圧が設定された基準値に近づくよう、潅流ポンプ41における潅流液の供給圧力を設定し、潅流ポンプ41は、設定された供給圧力により送液チャンネル21を通して上部尿路又は腎盂内に液を供給することができる。 As a result, according to the perfusate supply system 1, in upper urethral endoscopic surgery, the access sheath 10 is inserted into the patient's upper urethra, and the endoscope 20 is inserted through the access sheath 10 to at least the upper urethra. Then, in a state where the fluid is being supplied into the upper urethra or the renal pelvis through the liquid delivery channel 21, the pressure sensor 30 is inserted to at least the upper urethra to detect the intrarenal pelvis pressure, and the control unit 50 is detected. The supply pressure of the perfusate in the perfusion pump 41 is set so that the intrarenal pelvis pressure approaches the set reference value, and the perfusion pump 41 pumps the fluid into the upper urethra or the renal pelvis through the liquid delivery channel 21 by the set supply pressure. Can be supplied.
 <まとめ>
 以上、説明したように、実施の形態1に係る潅流液供給システム1は、体腔内へ挿入される内視鏡20と、内視鏡20内において内視鏡20の先端近傍まで延在する送液チャンネル21と、内視鏡20内に延在し内視鏡20の先端近傍の圧力を検出する圧力センサ30と、送液チャンネル21を通して内視鏡20の先端近傍に液を供給し、供給された液を体腔を介して体外に排出する潅流ポンプ40と、圧力センサ30から取得した圧力を示す電気信号である圧力信号に基づき潅流ポンプ40における潅流液の供給圧力を 制御する制御部50とを備えたことを特徴とする。
<Summary>
As described above, the perfusate supply system 1 according to the first embodiment includes the endoscope 20 inserted into the body cavity and the feeding system 1 extending to the vicinity of the tip of the endoscope 20 in the endoscope 20. Liquid is supplied and supplied to the vicinity of the tip of the endoscope 20 through the liquid channel 21, the pressure sensor 30 extending into the endoscope 20 and detecting the pressure near the tip of the endoscope 20, and the liquid feeding channel 21. A perfusion pump 40 that discharges the collected liquid to the outside of the body through a body cavity, and a control unit 50 that controls the supply pressure of the perfusate liquid in the perfusion pump 40 based on a pressure signal that is an electric signal indicating the pressure acquired from the pressure sensor 30. It is characterized by having.
 係る構成により、潅流液供給システム1では、上部尿路内視鏡手術において、手術中に腎盂内圧を検出し、潅流液供給時の腎盂内圧を設定された基準値に近付けることができる。その結果、潅流液供給時の腎盂内圧を、患者に対し適応的に設定された低腎盂内圧に保ちながら、視野確保のため一定の流量を供給することができる。 With this configuration, the perfusate supply system 1 can detect the intrarenal pelvic pressure during the upper urethral endoscopic surgery and bring the intrarenal pelvic pressure at the time of perfusate supply close to the set reference value. As a result, a constant flow rate can be supplied to secure the visual field while maintaining the intrarenal pelvis pressure adaptively set for the patient at the time of supplying the perfusate.
 <変形例1>
 以上、実施の形態を1例に説明したが、例えば、実施の形態1に対して各種変形を施して得られる形態も本開示に含まれる。
<Modification example 1>
Although the embodiment has been described as an example, the present disclosure also includes, for example, a form obtained by subjecting the first embodiment to various modifications.
 以下では、そのような形態の一例として、変形例1について説明する。 Hereinafter, a modified example 1 will be described as an example of such a form.
 実施の形態に1係る潅流液供給システム1では、尿道から膀胱、尿管を経由してアクセスシース10を上部尿路に挿入し、アクセスシース10を通して内視鏡の先端が腎盂に挿入される構成とした。また、潅流液供給システム1では、腎盂内に供給された液は、体腔内に挿入されたアクセスシース10の内壁と内視鏡20との隙間の空間を通してアクセスシース10の開口端12aから体外に排出される構成とした。しかしながら、本開示に係る潅流液供給システムは、体腔内へ挿入された内視鏡の先端近傍まで延在する送液チャンネルを通した生体内への潅流液の供給時の圧力制御ができる構成であればよく、内視鏡を体腔内へ挿入するための案内手段、及び生体内からの排液経路については、適宜変更してもよい。 In the perfusate supply system 1 according to the first embodiment, the access sheath 10 is inserted into the upper urinary tract from the urethra via the bladder and ureter, and the tip of the endoscope is inserted into the renal pelvis through the access sheath 10. And said. Further, in the perfusion fluid supply system 1, the fluid supplied into the renal pelvis passes through the space between the inner wall of the access sheath 10 inserted into the body cavity and the endoscope 20 to the outside of the body from the open end 12a of the access sheath 10. It was configured to be discharged. However, the perfusate supply system according to the present disclosure has a configuration capable of controlling the pressure at the time of supplying the perfusate into the living body through the liquid delivery channel extending to the vicinity of the tip of the endoscope inserted into the body cavity. The guide means for inserting the endoscope into the body cavity and the drainage route from the living body may be appropriately changed.
 図10は、変形例1に係る潅流液供給システム1Aの構成を示す模式図である。図10に示すように、変形例1に係る潅流液供給システム1Aでは、アクセスシースを案内手段として介さずに、内視鏡10が体腔内へ直接挿入される。また、生体内に供給された液は、体腔の内壁と内視鏡10との隙間の空間を通して体外に排出される構成を採る。すなわち、実施の形態に1係る潅流液供給システム1とは、アクセスシース10を用いない点で相違し、他の構成については潅流液供給システム1と同一の構成を採る。図10では、同一の構成については潅流システム1と同じ番号を付し説明を省略する。 FIG. 10 is a schematic view showing the configuration of the perfusate supply system 1A according to the first modification. As shown in FIG. 10, in the perfusate supply system 1A according to the first modification, the endoscope 10 is directly inserted into the body cavity without using the access sheath as a guiding means. In addition, the liquid supplied into the living body is discharged to the outside of the body through the space between the inner wall of the body cavity and the endoscope 10. That is, it differs from the perfusate supply system 1 according to the first embodiment in that the access sheath 10 is not used, and other configurations are the same as those of the perfusate supply system 1. In FIG. 10, the same configuration is assigned the same number as the perfusion system 1 and the description thereof will be omitted.
 潅流液供給システム1Aでは、内視鏡10が体腔内へ直接挿入することにより、患者の尿管の径が細い場合などに、アクセスシースによる尿管損傷の可能性を低減することができる。係る構成では、生体内に供給された潅流液は、図10に示すように、潅流装置40からの潅流液の供給圧力により、体腔である尿管の内壁と内視鏡20との隙間を通して尿管の体表の孔から体外に排出される(図10中、FBと表記)。 In the perfusate supply system 1A, by inserting the endoscope 10 directly into the body cavity, it is possible to reduce the possibility of ureteral damage due to the access sheath when the diameter of the ureter of the patient is small. In such a configuration, as shown in FIG. 10, the perfusate supplied into the living body is urine through the gap between the inner wall of the ureter, which is the body cavity, and the endoscope 20 due to the supply pressure of the perfusate from the perfusion device 40. It is discharged from the body through a hole on the body surface of the tube (denoted as FB in FIG. 10).
 係る構成により、潅流液供給システム1Aでは、尿管損傷の可能性を低減するとともに、実施の形態1と同様に、上部尿路内視鏡手術において、手術中に腎盂内圧を検出し、潅流液供給時の腎盂内圧を設定された基準値に近付けることができる。その結果、潅流液供給時の腎盂内圧を、患者に対し適応的に設定された低腎盂内圧に保ちながら、視野確保のため一定の流量を供給することができる。 With this configuration, the perfusate supply system 1A reduces the possibility of ureteral damage and, as in Embodiment 1, in upper urethral endoscopic surgery, detects intrarenal pelvic pressure during surgery and perfusate. The intrarenal pelvic pressure at the time of supply can be brought close to the set reference value. As a result, a constant flow rate can be supplied to secure the visual field while maintaining the intrarenal pelvis pressure adaptively set for the patient at the time of supplying the perfusate.
 ≪実施の形態2≫
 実施の形態1に係る潅流システム1は、内視鏡20内に延在し内視鏡20の先端近傍の圧力を検出する圧力センサ30を有し、制御部50は、圧力センサ30からの出力信号に基づき潅流ポンプ41における潅流液の供給圧力を制御構成とした。
<< Embodiment 2 >>
The perfusion system 1 according to the first embodiment has a pressure sensor 30 extending in the endoscope 20 and detecting the pressure near the tip of the endoscope 20, and the control unit 50 outputs from the pressure sensor 30. Based on the signal, the supply pressure of the perfusate in the perfusion pump 41 was controlled.
 実施の形態2に係る潅流システム1Bでは、さらに、内視鏡20内に延在し内視鏡20の先端近傍の温度を検出する温度センサ70Aを備え、制御部50Aは、圧力センサ30及び温度センサ70Aからの出力信号に基づき潅流ポンプ40における潅流液の供給圧力を制御する構成とした点で、実施の形態1と相違する。 The perfusion system 1B according to the second embodiment further includes a temperature sensor 70A extending inside the endoscope 20 and detecting the temperature near the tip of the endoscope 20, and the control unit 50A includes a pressure sensor 30 and a temperature. It differs from the first embodiment in that the supply pressure of the perfusate liquid in the perfusion pump 40 is controlled based on the output signal from the sensor 70A.
 以下、実施の形態2に係る潅流システム1Bについて、図面を参照しながら説明する。 Hereinafter, the perfusion system 1B according to the second embodiment will be described with reference to the drawings.
 <潅流システム1Bの構成>
 図11は、実施の形態2に係る潅流液供給システム1Bの構成を示す模式図である。図12は、潅流液供給システム1Bにおける内視鏡20の先端付近の分解斜視図である。
<Structure of perfusion system 1B>
FIG. 11 is a schematic view showing the configuration of the perfusate supply system 1B according to the second embodiment. FIG. 12 is an exploded perspective view of the vicinity of the tip of the endoscope 20 in the perfusate supply system 1B.
 潅流システム1Bは、温度センサ70A及び制御部50Aを備えた点で、実施の形態1に係る潅流システム1と相違し、他の構成については図1に示した潅流システム1と同じ構成を採る。 The perfusion system 1B is different from the perfusion system 1 according to the first embodiment in that it is provided with a temperature sensor 70A and a control unit 50A, and has the same configuration as the perfusion system 1 shown in FIG. 1 for other configurations.
 以下、潅流システム1Bの温度センサ70A及び制御部50Aの構成について説明し、他の構成要素については潅流システム1と同じ番号を付し説明を省略する。 Hereinafter, the configurations of the temperature sensor 70A and the control unit 50A of the perfusion system 1B will be described, and the other components will be numbered the same as those of the perfusion system 1 and the description will be omitted.
 (温度センサ70A)
 温度センサ70Aは、内視鏡20内に延在し内視鏡20の先端近傍の温度を検出する温度センサである。具体的には、例えば、温度センサカテーテルを用いることができる。
(Temperature sensor 70A)
The temperature sensor 70A is a temperature sensor that extends into the endoscope 20 and detects the temperature near the tip of the endoscope 20. Specifically, for example, a temperature sensor catheter can be used.
 温度センサ70Aは、内視鏡20内に延在して配されているリードワイヤ71A、リードワイヤ71Aの先端に配された温度検出部711Aと、内視鏡20の操作部25の送液口253から導出されたリードワイヤ71Aが接続される温度計測部72Aを有する。 The temperature sensor 70A includes a lead wire 71A extending in the endoscope 20, a temperature detection unit 711A arranged at the tip of the lead wire 71A, and a liquid feeding port of the operation unit 25 of the endoscope 20. It has a temperature measuring unit 72A to which the lead wire 71A derived from 253 is connected.
 温度検出部711Aは、例えば、サーミスタ等の温度検出素子から構成される。 The temperature detection unit 711A is composed of, for example, a temperature detection element such as a thermistor.
 温度計測部72Aは、温度検出部711Aにより検出された、例えば、抵抗値の変化から温度の変化量を算出して、予め実験等により特定されている温度検出部711A周囲の温度を算出する。 The temperature measuring unit 72A calculates the amount of change in temperature detected by the temperature detecting unit 711A, for example, from the change in resistance value, and calculates the temperature around the temperature detecting unit 711A specified in advance by an experiment or the like.
 これにより、アクセスシース10が患者の上部尿路に挿入され、内視鏡20がアクセスシース10を通して、少なくとも上部尿路まで挿入され、送液チャンネル21を通して上部尿路又は腎盂内に液を供給している状態において、温度センサ70Aは、少なくとも上部尿路まで挿入されて上部尿路(尿管、腎盂)内の温度を検出することができる。 This causes the access sheath 10 to be inserted into the patient's upper ureter, the endoscope 20 to be inserted through the access sheath 10 to at least the upper ureter, and to supply fluid into the upper ureter or renal pelvis through the fluid delivery channel 21. In this state, the temperature sensor 70A can be inserted to at least the upper urinary tract to detect the temperature in the upper urinary tract (ureter, renal pelvis).
 図12は、潅流液供給システム1Bにおける内視鏡20の先端部20x3付近の分解斜視図である。先端部20x3は、実施の形態1と同様、先端部本体202と、先端部本体202を覆う先端部カバー203からなる。 FIG. 12 is an exploded perspective view of the tip portion 20x3 of the endoscope 20 in the perfusate supply system 1B. The tip portion 20x3 includes a tip portion main body 202 and a tip portion cover 203 that covers the tip portion main body 202, as in the first embodiment.
 先端部本体202には、孔が開設されており、それぞれの孔にイメージガイド22の先端221、ライトガイド23の先端231、送液チャンネル21の管端211、温度センサ70の温度検出部711Aが嵌挿されている。 Holes are formed in the tip body 202, and the tip 221 of the image guide 22, the tip 231 of the light guide 23, the pipe end 211 of the liquid feeding channel 21, and the temperature detection unit 711A of the temperature sensor 70 are formed in each hole. It is inserted.
 先端部カバー203には、対物レンズ222、照明光出射開口23a、送液用開口21aに加えて、温度センサの温度検出部711Aに対応して開口71aが開設されている。 In addition to the objective lens 222, the illumination light emitting opening 23a, and the liquid feeding opening 21a, the tip cover 203 is provided with an opening 71a corresponding to the temperature detection unit 711A of the temperature sensor.
 (制御部50A)
 制御部50Aは、圧力センサ30、温度センサ70A及び潅流ポンプ41と電気的に接続され、圧力センサ30及び温度センサ70Aからの出力信号に基づき潅流ポンプ41からの潅流液の供給量を制御する。
(Control unit 50A)
The control unit 50A is electrically connected to the pressure sensor 30, the temperature sensor 70A and the perfusion pump 41, and controls the supply amount of the perfusate liquid from the perfusion pump 41 based on the output signals from the pressure sensor 30 and the temperature sensor 70A.
 具体的には、制御部50は、圧力算出部34からダイヤフラム323に付勢された圧力を示す電気信号に加えて、温度計測部72Aが出力する温度検出部711A周囲の温度を示す電気信号を入力する。そして、制御部50は、検出された温度情報に基づき、検出された圧力の値を補正し、補正後の圧力の値が設定された基準値に近づくよう、潅流ポンプ41における潅流液の供給圧力を増減する方法により、潅流液の供給圧力を制御する。 Specifically, the control unit 50 outputs an electric signal indicating the temperature around the temperature detection unit 711A output by the temperature measurement unit 72A in addition to the electric signal indicating the pressure urged from the pressure calculation unit 34 to the diaphragm 323. input. Then, the control unit 50 corrects the detected pressure value based on the detected temperature information, and supplies the perfusate liquid in the perfusion pump 41 so that the corrected pressure value approaches the set reference value. The supply pressure of the perfusate is controlled by increasing or decreasing the pressure.
 <潅流システム1Bの効果>
 上部尿路内視鏡手術において、上部尿路を含む腎盂内の温度上昇の要因として以下の理由が挙げられる。
<Effect of perfusion system 1B>
In upper urethral endoscopic surgery, the following reasons can be cited as factors for the temperature rise in the renal pelvis including the upper urethra.
 先ず、図8に示すように、潅流液の温度が体温よりも高く、供給圧力が高い場合には腎盂内温度が上昇すると考えられる。 First, as shown in FIG. 8, when the temperature of the perfusate is higher than the body temperature and the supply pressure is high, it is considered that the temperature in the renal pelvis rises.
 また、発明者の実験によれば、上部尿路内視鏡手術では、レーザーメスにより対象部位に処置を施す場合にも、腎盂内の温度が上昇することが確認されている。 In addition, according to the inventor's experiment, it has been confirmed that in upper urethral endoscopic surgery, the temperature inside the renal pelvis rises even when the target site is treated with a laser scalpel.
 図13、14は、上部尿路内視鏡手術におけるレーザー照射に伴う温度の時間変化を示す測定結果である。潅流システムに潅流液供給システム1と同じ構成を用い、図13は、12/14Frアクセスシースを用いた場合、図14は、10/12Frアクセスシースを用い、レーザー光の印加エネルギー、周波数、パルス幅を異ならせた条件における腎盂内温度変化の測定結果である。 FIGS. 13 and 14 are measurement results showing time-dependent changes in temperature associated with laser irradiation in upper urethral endoscopic surgery. The same configuration as the perfusate supply system 1 is used for the perfusion system, and FIG. 13 shows the case where the 12 / 14Fr access sheath is used, and FIG. 14 shows the application energy, frequency, and pulse width of the laser beam using the 10/12 Fr access sheath. It is a measurement result of the temperature change in the renal pelvis under different conditions.
 図13、14に示すように、レーザー照射に伴い腎盂内の温度が上昇していることが見て取れる。10/12Frアクセスシースを用いた図14では、12/14Frアクセスシースを用いた図13よりも、排液チャンネルの容量が小さく潅流液による冷却効果が少ないために、レーザー照射に伴う温度上昇が大きいと推定される。 As shown in FIGS. 13 and 14, it can be seen that the temperature inside the renal pelvis rises with the laser irradiation. In FIG. 14 using the 10/12 Fr access sheath, the temperature rise due to laser irradiation is large because the capacity of the drainage channel is smaller and the cooling effect by the perfusate is smaller than in FIG. 13 using the 12/14 Fr access sheath. It is estimated to be.
 このような腎盂内の温度上昇が発生した場合、図8に示すように、腎盂内温度上昇に対応するように圧力センサによる検出圧力が漸減すると考えられる。 When such a temperature rise in the renal pelvis occurs, it is considered that the pressure detected by the pressure sensor gradually decreases in response to the temperature rise in the renal pelvis, as shown in FIG.
 この温度上昇に伴う圧力検出精度の低下に対し、潅流液供給システム1Bによれば、アクセスシース10が患者の上部尿路に挿入され、内視鏡20がアクセスシース10を通して、少なくとも上部尿路まで挿入され、送液チャンネル21を通して上部尿路又は腎盂内に液を供給している状態において、圧力センサ30は、少なくとも上部尿路まで挿入されて腎盂内圧を検出し、温度センサ70Aは、少なくとも上部尿路まで挿入されて腎盂内の温度を検出する。そして、制御部50Aは、検出された腎盂内圧の値を検出された温度情報に基づき補正し、補正後の圧力の値が設定された基準値に近づくよう、潅流ポンプ41における潅流液の供給温度を設定することにより、潅流ポンプ41は、設定された供給温度により送液チャンネル21を通して上部尿路又は腎盂内に液を供給することができる。 According to the perfusate supply system 1B, the access sheath 10 is inserted into the patient's upper urethra, and the endoscope 20 passes through the access sheath 10 to at least the upper urethra in response to the decrease in pressure detection accuracy due to this temperature rise. With the fluid being inserted and supplying fluid into the upper urinary tract or renal pelvis through the fluid delivery channel 21, the pressure sensor 30 is inserted at least to the upper urethra to detect the intrarenal pelvic pressure, and the temperature sensor 70A is at least upper. It is inserted up to the urethra to detect the temperature inside the renal pelvis. Then, the control unit 50A corrects the detected value of the renal pelvis pressure based on the detected temperature information, and supplies the perfusate liquid in the perfusion pump 41 so that the corrected pressure value approaches the set reference value. By setting, the perfusion pump 41 can supply the liquid into the upper urinary tract or the renal pelvis through the liquid delivery channel 21 at the set supply temperature.
 <まとめ>
 以上、説明したように、実施の形態2に係る潅流液供給システム1Bは、実施の形態1に係る潅流液供給システム1に、さらに、内視鏡20内に延在し内視鏡20の先端近傍の温度を検出する温度センサ70Aを備え、制御部50Aは、さらに、圧力センサ30及び温度センサ70Aから取得した温度を示す電気信号である温度信号に基づき潅流ポンプ40における潅流液の供給圧力を制御することを特徴とする。また、制御部50Aは、温度信号に基づき圧力信号の示す圧力値を補正し、補正後の圧力値が所定の基準値に近付くように、潅流ポンプ40における潅流液の供給圧力を増減する構成としてもよい。
<Summary>
As described above, the perfusate supply system 1B according to the second embodiment extends into the perfusate supply system 1 according to the first embodiment and further extends into the endoscope 20 and is the tip of the endoscope 20. A temperature sensor 70A for detecting a nearby temperature is provided, and the control unit 50A further determines the supply pressure of the perfusate liquid in the perfusion pump 40 based on the temperature signal which is an electric signal indicating the temperature acquired from the pressure sensor 30 and the temperature sensor 70A. It is characterized by controlling. Further, the control unit 50A corrects the pressure value indicated by the pressure signal based on the temperature signal, and increases or decreases the supply pressure of the perfusate liquid in the perfusion pump 40 so that the corrected pressure value approaches a predetermined reference value. May be good.
 係る構成により、潅流液供給システム1Bでは、上部尿路内視鏡手術において、手術中に腎盂内圧をより精度よく検出して、潅流液供給時の腎盂内圧を低腎盂内圧に保ちながら、視野確保のため一定の流量を供給することができる。 With this configuration, in the perfusate supply system 1B, in the upper urethral endoscopic surgery, the renal pelvis pressure is detected more accurately during the operation, and the visual field is secured while maintaining the renal pelvis pressure during the perfusate supply at a low renal pelvis pressure. Therefore, a constant flow rate can be supplied.
 ≪その他の変形例≫
 以上、本開示の具体的な構成について、実施形態を例に説明したが、本開示は、その本質的な特徴的構成要素を除き、以上の実施の形態に何ら限定を受けるものではない。例えば、実施の形態に対して各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
≪Other variants≫
Although the specific configuration of the present disclosure has been described above by taking an embodiment as an example, the present disclosure is not limited to the above-described embodiment except for its essential characteristic components. For example, the present disclosure also includes a form obtained by subjecting various modifications to the embodiment, and a form realized by arbitrarily combining the components and functions in each embodiment without departing from the spirit of the present invention. included.
 以下では、そのような形態の一例として、変形例について説明する。
(1)上記実施の形態では、潅流液供給システム1、1A、1Bは、内視鏡20内に延在して配される送液チャンネル21は、鉗子及び処置具が挿通される術具チャンネルとして機能する構成とした。しかしながら、術具チャンネルを送液チャンネル21とは独立のチャンネルとして、送液チャンネル21の外部に術具チャンネルを配する構成としもよい。これにより、手術の際、鉗子及び処置具が挿通を内視鏡20に挿通させたときに、送液チャンネルの容量が減少することを防止することができ、これより流量低下を防止できる。
(2)上記実施の形態では、潅流液供給システム1、1A、1Bは、内視鏡20内において、圧力センサ30を送液チャンネル21内に延在して配される構成としている。圧力センサ30を配するための構造が簡易になり、潅流液の圧力を計測するために好適であるためである。しかしながら、圧力センサ30は、送液チャンネル21外に配してもよい。これにより、送液チャンネルの容量を増加することができる。
Hereinafter, a modified example will be described as an example of such a form.
(1) In the above embodiment, the perfusate supply systems 1, 1A, and 1B are arranged so as to extend in the endoscope 20, and the liquid delivery channel 21 is a surgical tool channel through which forceps and a treatment tool are inserted. It was configured to function as. However, the surgical instrument channel may be a channel independent of the liquid feeding channel 21, and the surgical instrument channel may be arranged outside the liquid feeding channel 21. As a result, it is possible to prevent the volume of the liquid feeding channel from decreasing when the forceps and the treatment tool insert the insertion into the endoscope 20 during the operation, and it is possible to prevent the flow rate from decreasing.
(2) In the above embodiment, the perfusate supply systems 1, 1A, and 1B are configured such that the pressure sensor 30 extends in the liquid feed channel 21 in the endoscope 20 and is arranged. This is because the structure for arranging the pressure sensor 30 is simplified and suitable for measuring the pressure of the perfusate. However, the pressure sensor 30 may be arranged outside the liquid feeding channel 21. As a result, the capacity of the liquid feeding channel can be increased.
 また、圧力センサ30を内視鏡20内に内蔵し、圧力センサ30の信号を伝送するファイバ31と内視鏡20の画像を伝達するためのイメージガイド22が一体化されたラインを構築してもよい。さらに、この一体化されたライン出力に対し、内視鏡の画像システムと潅流液供給システムとの制御部分が連結又は一体化された専用デバイスを構築して接続できる構成としてもよい。
(3)上記実施の形態に係る潅流液供給システム1Bでは、内視鏡20内において、温度センサ70Aは、送液チャンネル21外に延在して配される構成としている。しかしながら、温度センサ70Aを送液チャンネル21内に延在して配してもよい。構造が簡易になり、容易に潅流液供給システム1Bを構築することができる。
(4)上記実施の形態では、潅流液供給システム1、1Bは、アクセスシース10の内壁と内視鏡20との隙間の空間を排液経路として、腎盂内に供給された潅流液が排出される構成としている。しかしながら、排液チャンネルを内視鏡20内に独立して延在して配してもよい。
(5)上記実施の形態では、潅流液供給システム1、1A、1Bについて、泌尿器科疾患に対する治療において、腎盂尿管鏡による上部尿路内視鏡手術を例に、実施の形態を示した。しかしながら、本発明に係る潅流液供給システム、及び潅流液供給システムの制御方法の用途は、上部尿路内視鏡手術に限定されるものではなく、潅流液を供給して行う内視鏡手術に広く活用することができる。
Further, the pressure sensor 30 is built in the endoscope 20, and a line in which the fiber 31 for transmitting the signal of the pressure sensor 30 and the image guide 22 for transmitting the image of the endoscope 20 are integrated is constructed. May be good. Further, the integrated line output may be configured to be connected by constructing a dedicated device in which the control portion of the endoscope image system and the perfusate supply system is connected or integrated.
(3) In the perfusate supply system 1B according to the above embodiment, the temperature sensor 70A is arranged in the endoscope 20 so as to extend outside the liquid feed channel 21. However, the temperature sensor 70A may be extended and arranged in the liquid feeding channel 21. The structure is simplified, and the perfusate supply system 1B can be easily constructed.
(4) In the above embodiment, in the perfusate supply systems 1 and 1B, the perfusate supplied into the renal pelvis is discharged using the space between the inner wall of the access sheath 10 and the endoscope 20 as a drainage route. The configuration is such that However, drainage channels may be independently extended and arranged within the endoscope 20.
(5) In the above-described embodiment, the perfusate supply systems 1, 1A, and 1B are shown by taking upper urethral endoscopic surgery with a renal pelvis ureteroscope as an example in the treatment for urological diseases. However, the application of the perfusate supply system and the control method of the perfusate supply system according to the present invention is not limited to upper urethral endoscopic surgery, but is used for endoscopic surgery performed by supplying perfusate. It can be widely used.
 ≪補足≫
 以上で説明した実施の形態は、いずれも本発明の好ましい一具体例を示すものである。実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは一例であり、本発明を限定する主旨ではない。また、実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていないものについては、より好ましい形態を構成する任意の構成要素として説明される。
≪Supplement≫
Each of the embodiments described above shows a preferable specific example of the present invention. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, processes, order of processes, etc. shown in the embodiments are examples, and are not intended to limit the present invention. Further, among the components in the embodiment, those not described in the independent claims indicating the highest level concept of the present invention will be described as arbitrary components constituting the more preferable form.
 また、上記の方法が実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記方法の一部が、他の方法と同時(並列)に実行されてもよい。 Further, the order in which the above methods are executed is for exemplifying in order to specifically explain the present invention, and may be an order other than the above. Moreover, a part of the above-mentioned method may be executed at the same time (parallel) with another method.
 また、発明の理解の容易のため、上記各実施の形態で挙げた各図の構成要素の縮尺は実際のものと異なる場合がある。また本発明は上記各実施の形態の記載によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。 Further, for the sake of easy understanding of the invention, the scale of the components of each figure mentioned in each of the above embodiments may differ from the actual scale. Further, the present invention is not limited to the description of each of the above embodiments, and can be appropriately modified without departing from the gist of the present invention.
 また、各実施の形態及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。 Further, at least a part of the functions of each embodiment and its modified example may be combined.
 本開示の一態様に係る潅流液供給システム及び潅流装置の制御方法は、医療において、内視鏡手術中に手術対象部位に潅流流体を送液又は送気するための医療支援手段として広く利用することができる。 The method for controlling a perfusate supply system and a perfusion device according to one aspect of the present disclosure is widely used in medical treatment as a medical support means for sending or insufflating perfusate fluid to a surgical target site during endoscopic surgery. be able to.
 1、1A 潅流液供給システム
 10 アクセスシース
  11 管部
   11a 送液経路
  12 持ち手部
   12a 開口端
 20 内視鏡
   20x 挿入部
20x1 軟性管
   20x2 湾曲部
    201 湾曲ゴム管
   20x3 先端部
    202 先端部本体
    203 先端部カバー
  21 送液チャンネル
  22 イメージガイド
   221 先端部
   222 対物レンズ
  23 ライトガイド
   231 先端部
   232 光源
  25 操作部
   251 操作レバー
   252 鉗子口
   253 送液口
   254 接眼部
 30 圧力センサ
  31 光ファイバ
  32 圧力検出部
   321 第1のミラー
   322 スペーサ
   323 ダイヤフラム
   322a 突出部
   324 第2のミラー
   325 気室
  33 計測部
  34 圧力算出部
 40 潅流装置
  41 潅流ポンプ
   411 給水路
 50、50A 制御部
 60、61 処置具
 70A 温度センサ
1, 1A Perfusion solution supply system 10 Access sheath 11 Tube part 11a Liquid delivery path 12 Handle part 12a Open end 20 Endoscope 20x Insertion part 20x1 Flexible tube 20x2 Curved part 201 Curved rubber tube 20x3 Tip 202 Tip body 203 Tip Part cover 21 Liquid feeding channel 22 Image guide 221 Tip 22 Objective lens 23 Light guide 231 Tip 232 Light source 25 Operation part 251 Operation lever 252 Force opening 253 Liquid feeding port 254 Eyepiece 30 Pressure sensor 31 Optical fiber 32 Pressure detector 321 First mirror 322 Spacer 323 Diaphragm 322a Protruding part 324 Second mirror 325 Air chamber 33 Measuring unit 34 Pressure calculation unit 40 Perfusion device 41 Perfusion pump 411 Water supply channel 50, 50A Control unit 60, 61 Treatment tool 70A Temperature sensor

Claims (10)

  1.  内視鏡手術に用いる潅流液供給システムであって、
     体腔内へ挿入される内視鏡と、
     前記内視鏡内において前記内視鏡の先端近傍まで延在する送液チャンネルと、
     前記内視鏡内に延在し前記内視鏡の先端近傍の圧力を検出する圧力センサと、
     前記送液チャンネルに接続され、前記送液チャンネルを通して前記内視鏡の先端近傍に液を供給し、供給された液を体腔を通して体外に排出する潅流ポンプと、
     前記圧力センサから取得した圧力信号に基づき、前記潅流ポンプにおける潅流液の供給圧力を制御する制御部とを備えた
     潅流液供給システム。
    A perfusate supply system used for endoscopic surgery.
    An endoscope that is inserted into the body cavity and
    In the endoscope, a liquid feeding channel extending to the vicinity of the tip of the endoscope, and
    A pressure sensor that extends into the endoscope and detects the pressure near the tip of the endoscope.
    A perfusion pump connected to the liquid feeding channel, supplying liquid to the vicinity of the tip of the endoscope through the liquid feeding channel, and discharging the supplied liquid to the outside of the body through a body cavity.
    A perfusate supply system including a control unit that controls the supply pressure of the perfusate in the perfusion pump based on a pressure signal acquired from the pressure sensor.
  2.  前記制御部は、前記圧力信号の示す圧力値が所定の基準値に近付くように、前記潅流ポンプにおける潅流液の供給圧力を増減する
     請求項1に記載の潅流液供給システム。
    The perfusate supply system according to claim 1, wherein the control unit increases or decreases the supply pressure of the perfusate in the perfusion pump so that the pressure value indicated by the pressure signal approaches a predetermined reference value.
  3.  さらに、前記内視鏡内に延在し前記内視鏡の先端近傍の温度を検出する温度センサを備え、
     前記制御部は、さらに、前記温度センサから取得した温度信号に基づいて前記潅流ポンプからの潅流液の供給量を制御する
     請求項1に記載の潅流液供給システム。
    Further, a temperature sensor extending inside the endoscope and detecting a temperature near the tip of the endoscope is provided.
    The perfusate supply system according to claim 1, wherein the control unit further controls the supply amount of the perfusate from the perfusion pump based on the temperature signal acquired from the temperature sensor.
  4.  前記制御部は、前記温度信号に基づき前記圧力信号の示す圧力値を補正し、補正後の圧力値が所定の基準値に近付くように、前記潅流ポンプにおける潅流液の供給圧力を増減する
     請求項3に記載の潅流液供給システム。
    The control unit corrects the pressure value indicated by the pressure signal based on the temperature signal, and increases or decreases the supply pressure of the perfusate liquid in the perfusion pump so that the corrected pressure value approaches a predetermined reference value. 3. The perfusate supply system according to 3.
  5.  体腔は尿管であり、
     前記内視鏡は尿管を通して、少なくとも上部尿路まで挿入され、
     前記潅流ポンプは、前記送液チャンネルを通して上部尿路又は腎盂内に液を供給し、
     前記圧力センサは、少なくとも上部尿路まで挿入されて腎盂内圧を検出し、
     前記制御部は、検出された腎盂内圧が設定された基準値に近づくよう、前記潅流ポンプにおける潅流液の供給圧力を設定する
     請求項1から4の何れか1項に記載の潅流液供給システム。
    The body cavity is the ureter,
    The endoscope is inserted through the ureter to at least the upper urethra.
    The perfusion pump supplies fluid into the upper urethra or renal pelvis through the fluid delivery channel.
    The pressure sensor is inserted at least to the upper urethra to detect the pressure in the renal pelvis.
    The perfusate supply system according to any one of claims 1 to 4, wherein the control unit sets the supply pressure of the perfusate in the perfusion pump so that the detected renal pelvis pressure approaches a set reference value.
  6.  さらに、患者の尿管から上部尿路に挿入され、前記内視鏡を上部尿路まで案内する尿管アクセスシースを備え、
     供給された液は、前記アクセスシースを通して体外に排出される
     請求項5に記載の潅流液供給システム。
    In addition, it is provided with a ureteral access sheath that is inserted from the patient's ureter into the upper urethra and guides the endoscope to the upper urethra.
    The perfusate supply system according to claim 5, wherein the supplied liquid is discharged to the outside of the body through the access sheath.
  7.  前記圧力センサは、
     長軸方向に延伸する光ファイバと、
     前記光ファイバの一端から構成されたハーフミラーと、
     前記第1のミラーを前記長軸方向に取り囲む周壁と、
     前記周壁の前記長軸方向の端に配され、前記第1のミラー及び前記周壁とともに気室を構成し、外圧により前記気室内、および外方に変位するダイヤフラムと、
     前記ダイヤフラム上に前記第1のミラーに対向して配された第2のミラーと、
     前記光ファイバの他端から入光し前記第1のミラーにて反射される光と、前記光ファイバの他端から入光し前記第2のミラーにて反射される光との位相差の変化を計測する計測部と、
    前記位相差の変化に基づき前記ダイヤフラムに付勢される前記外圧を算出する圧力算出部とを備えた
     請求項1から6の何れか1項に記載の潅流液供給システム。
    The pressure sensor is
    An optical fiber extending in the long axis direction and
    A half mirror composed of one end of the optical fiber and
    A peripheral wall that surrounds the first mirror in the long axis direction,
    A diaphragm arranged at the end of the peripheral wall in the long axis direction, forming an air chamber together with the first mirror and the peripheral wall, and being displaced outward by external pressure.
    A second mirror arranged on the diaphragm so as to face the first mirror,
    Change in phase difference between light that enters from the other end of the optical fiber and is reflected by the first mirror and light that enters from the other end of the optical fiber and is reflected by the second mirror. And the measuring unit that measures
    The perfusate supply system according to any one of claims 1 to 6, further comprising a pressure calculation unit for calculating the external pressure urged on the diaphragm based on the change in the phase difference.
  8.  体腔内に挿入される内視鏡に対する潅流液供給システムの制御方法であって、
     前記内視鏡に延在する圧力センサにより、前記内視鏡の先端近傍の圧力を検出し、前記圧力センサから取得した圧力信号に基づき潅流ポンプにおける潅流液の供給圧力を制御することにより、前記内視鏡の先端近傍まで延在する送液チャンネルを通して前記内視鏡の先端近傍に液を供給し、供給された液を体腔を通して外に排出する
     潅流液供給システムの制御方法。
    A method of controlling a perfusate supply system for an endoscope inserted into a body cavity.
    The pressure sensor extending to the endoscope detects the pressure near the tip of the endoscope, and the supply pressure of the perfusate liquid in the perfusion pump is controlled based on the pressure signal acquired from the pressure sensor. A control method for a perfusate supply system in which a liquid is supplied to the vicinity of the tip of the endoscope through a liquid supply channel extending to the vicinity of the tip of the endoscope, and the supplied liquid is discharged to the outside through a body cavity.
  9.  さらに、前記内視鏡に延在し前記内視鏡の先端近傍の温度を検出する温度センサから取得した温度信号に基づき前記供給圧力を制御する
     請求項8に記載の潅流液供給システムの制御方法。
    Further, the control method of the perfusate supply system according to claim 8, wherein the supply pressure is controlled based on a temperature signal obtained from a temperature sensor that extends to the endoscope and detects a temperature near the tip of the endoscope. ..
  10.  前記内視鏡を体腔内へ導くアクセスシースを通して液を排出する
     請求項8又は9に記載の潅流液供給システムの制御方法。
    The method for controlling a perfusate supply system according to claim 8 or 9, wherein the liquid is discharged through an access sheath that guides the endoscope into the body cavity.
PCT/JP2020/037907 2019-10-07 2020-10-06 Perfusate supply system and method for controlling perfusion device WO2021070831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019184806A JP2021058422A (en) 2019-10-07 2019-10-07 Perfusate supply system and perfusion device control method
JP2019-184806 2019-10-07

Publications (1)

Publication Number Publication Date
WO2021070831A1 true WO2021070831A1 (en) 2021-04-15

Family

ID=75381018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037907 WO2021070831A1 (en) 2019-10-07 2020-10-06 Perfusate supply system and method for controlling perfusion device

Country Status (2)

Country Link
JP (1) JP2021058422A (en)
WO (1) WO2021070831A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113855161A (en) * 2021-10-27 2021-12-31 纯派生活武汉科技有限公司 Ureter soft endoscope sheath and continuous circulation type perfusion and suction system
WO2023279434A1 (en) * 2021-07-05 2023-01-12 江西医为特科技有限公司 Endoscopic surgical system having automatic hydraulic monitoring function
CN116763261A (en) * 2023-04-17 2023-09-19 上海璞跃医疗器械有限公司 Method and system for monitoring and controlling temperature in renal pelvis and perfusion suction platform

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4162892A1 (en) 2021-10-07 2023-04-12 Olympus Corporation Insertion apparatus for lithotripsy
US11963665B2 (en) 2021-10-27 2024-04-23 Olympus Medical Systems Corp. Endoscope and endoscope system
CN114452011B (en) * 2022-01-29 2024-04-26 上海璞跃医疗器械有限公司 Renal pelvis internal pressure control system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095028A (en) * 1995-04-17 1997-01-10 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk Optical sensor
JP2000035369A (en) * 1998-05-14 2000-02-02 Masaki Esashi Pressure sensor and its manufacturing method
US20050171401A1 (en) * 2004-02-03 2005-08-04 Woltjen John A. Endoscope tip pressure feedback control system for insufflated fluids and gases
WO2008047859A1 (en) * 2006-10-18 2008-04-24 Fujikura Ltd. Optical fiber thermometer and temperature compensation optical fiber sensor
CN106963344A (en) * 2017-04-01 2017-07-21 武汉大学 Temperature, pressure for urogenital tract intracavity operation monitors adjusting means in real time
CN107440672A (en) * 2017-07-14 2017-12-08 广州医科大学附属第医院 A kind of electronics Flexible ureteroscope and its operating method with real-time pressure monitoring function
WO2018236513A1 (en) * 2017-06-19 2018-12-27 Boston Scientific Scimed, Inc. Automated fluid management system
CN109998698A (en) * 2019-04-05 2019-07-12 福建医科大学附属协和医院 It can be to the digital control system of renal plevis pressure row real-time control in Flexible ureteroscope art based on sheath optical fiber pressure sensor monitoring

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095028A (en) * 1995-04-17 1997-01-10 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk Optical sensor
JP2000035369A (en) * 1998-05-14 2000-02-02 Masaki Esashi Pressure sensor and its manufacturing method
US20050171401A1 (en) * 2004-02-03 2005-08-04 Woltjen John A. Endoscope tip pressure feedback control system for insufflated fluids and gases
WO2008047859A1 (en) * 2006-10-18 2008-04-24 Fujikura Ltd. Optical fiber thermometer and temperature compensation optical fiber sensor
CN106963344A (en) * 2017-04-01 2017-07-21 武汉大学 Temperature, pressure for urogenital tract intracavity operation monitors adjusting means in real time
WO2018236513A1 (en) * 2017-06-19 2018-12-27 Boston Scientific Scimed, Inc. Automated fluid management system
CN107440672A (en) * 2017-07-14 2017-12-08 广州医科大学附属第医院 A kind of electronics Flexible ureteroscope and its operating method with real-time pressure monitoring function
CN109998698A (en) * 2019-04-05 2019-07-12 福建医科大学附属协和医院 It can be to the digital control system of renal plevis pressure row real-time control in Flexible ureteroscope art based on sheath optical fiber pressure sensor monitoring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279434A1 (en) * 2021-07-05 2023-01-12 江西医为特科技有限公司 Endoscopic surgical system having automatic hydraulic monitoring function
CN113855161A (en) * 2021-10-27 2021-12-31 纯派生活武汉科技有限公司 Ureter soft endoscope sheath and continuous circulation type perfusion and suction system
CN113855161B (en) * 2021-10-27 2023-06-23 纯派生活武汉科技有限公司 Ureteral soft lens sheath and continuous circulation type perfusion and suction system
CN116763261A (en) * 2023-04-17 2023-09-19 上海璞跃医疗器械有限公司 Method and system for monitoring and controlling temperature in renal pelvis and perfusion suction platform
CN116763261B (en) * 2023-04-17 2024-04-26 上海璞跃医疗器械有限公司 Method and system for monitoring and controlling temperature in renal pelvis and perfusion suction platform

Also Published As

Publication number Publication date
JP2021058422A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2021070831A1 (en) Perfusate supply system and method for controlling perfusion device
US6295877B1 (en) Pressure sensing cannula
US8801654B2 (en) Method and device for irrigation of body cavities
US9681923B2 (en) Medical ultrasound device with force detection
US8608682B2 (en) Method and device for irrigation of body cavities
EP2116188B1 (en) Ultrasound probe device
CN104918544A (en) Fiber optic sensor assembly for sensor delivery device
JP4601728B1 (en) Actuator system and endoscope apparatus
CN109938679B (en) Endoscope with protective sleeve
CN112672671A (en) Tube for endoscope and endoscope
CN107106001A (en) Monitoring system
CN114269276B (en) System for temperature monitoring in performing laser-based in vivo lithotripsy
JP7160845B2 (en) Abnormality detection system, laser therapy device, laser therapy system
US11963665B2 (en) Endoscope and endoscope system
CN113242708A (en) Endoscope system having a shaft including a sensor
CN219539185U (en) Three-cavity ureteral sheath with pressure measuring function
US12016529B2 (en) Endoscopic scope device with a sensor
CN215384605U (en) Protection device for human body pipe wall
EP4201312A1 (en) Pressure sensor module for an interventional medical device
JPS62500078A (en) Cleaning control device for human body cavities and tubular organs
CN117018309A (en) Running state detection method, device and system of drainage tube and storage medium
WO2018047796A1 (en) Pressure measuring catheter
CN113081256A (en) Protection device for human body pipe wall

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874611

Country of ref document: EP

Kind code of ref document: A1