WO2021070282A1 - Natural gas liquefying apparatus - Google Patents

Natural gas liquefying apparatus Download PDF

Info

Publication number
WO2021070282A1
WO2021070282A1 PCT/JP2019/039815 JP2019039815W WO2021070282A1 WO 2021070282 A1 WO2021070282 A1 WO 2021070282A1 JP 2019039815 W JP2019039815 W JP 2019039815W WO 2021070282 A1 WO2021070282 A1 WO 2021070282A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
region
cooler group
natural gas
group arrangement
Prior art date
Application number
PCT/JP2019/039815
Other languages
French (fr)
Japanese (ja)
Inventor
暁人 平井
信裕 木村
秀人 萩谷
眞一 東條
淳一 西田
松尾 知明
文香 植村
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to US17/639,570 priority Critical patent/US20220290917A1/en
Priority to JP2021551003A priority patent/JP7313459B2/en
Priority to PCT/JP2019/039815 priority patent/WO2021070282A1/en
Publication of WO2021070282A1 publication Critical patent/WO2021070282A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0085Ethane; Ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0207Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as at least a three level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]

Definitions

  • the present invention relates to a natural gas liquefier that cools and liquefies natural gas using a refrigerant.
  • NG liquefier The natural gas liquefier (NG liquefier) cools and liquefies natural gas (NG: Natural Gas) produced in gas wells, etc., and produces liquefied natural gas (LNG: Liquefied Natural Gas).
  • NG Natural Gas
  • LNG Liquefied Natural Gas
  • the NG liquefaction apparatus includes equipment such as a precooling heat exchanger that precools natural gas as described in Patent Document 1 and an ultra-low temperature heat exchanger that liquefies natural gas. Each process is performed in order by circulating through the pipes connected between the devices of. Further, the precooling heat exchanger and the ultra-low temperature heat exchanger are each configured to cool the NG by heat exchange using a refrigerant, and are provided between the heat exchanger and the compressor for compressing the refrigerant used for the heat exchange. These refrigerants are configured to flow through the provided pipes. In addition to this, in NG liquefaction equipment equipped with a large number of equipment, it is required to search for the arrangement of equipment that is easy to construct and can reduce the amount of materials used such as members that make up piping as much as possible. There is.
  • the present invention has been made against such a background, and an object of the present invention is to provide a natural gas liquefaction device having good workability and a reduced amount of materials used.
  • the natural gas liquefier of the present invention is a natural gas liquefier that liquefies natural gas.
  • a precooling unit including a precooling heat exchanger that precools the natural gas supplied to the natural gas liquefaction apparatus using a precooling refrigerant, and a liquefaction heat that liquefies the precooled natural gas using a liquefaction refrigerant.
  • the liquefied part including the exchanger, the cooling area where the exchanger is arranged, and A compression region in which a first compressor for compressing the vaporized precooling refrigerant and a second compressor for compressing the vaporized liquefaction refrigerant are arranged.
  • the air-cooled cooler group for cooling the precooling refrigerant compressed by the first compressor is arranged in a rectangular shape when viewed from the upper surface, and the first refrigerant cooler group arrangement region.
  • the air-cooled cooler group for cooling the liquefied refrigerant compressed by the second compressor includes a second refrigerant cooler group arrangement region arranged in a rectangular shape when viewed from the upper surface. At least a part of the cooling region and the compression region were arranged at positions facing each other with the long side of the rectangle of the second refrigerant cooler group arrangement region interposed therebetween.
  • the first refrigerant cooler group arrangement region is located at a position where the long side of the first refrigerant cooler group arrangement region faces a side different from the long side of the second refrigerant cooler group arrangement region of the rectangular region including the compression region. It is characterized by being placed.
  • the natural gas liquefier may have the following features.
  • (A) The first refrigerant cooler group arrangement region and the second refrigerant cooler group arrangement region are arranged so as to face each other with the rectangular region in between.
  • (B) The first refrigerant cooler group arrangement region and the second refrigerant cooler group arrangement region are two sides in which the long side of each refrigerant cooler group arrangement region sandwiches a common corner of the rectangular region. They were arranged so as to face each other.
  • a supercooling unit including a supercooling heat exchanger that supercools the liquefied natural gas using a supercooling refrigerant, and a third that compresses the liquefied refrigerant vaporized by the supercooling heat exchanger. That the compressor and was placed.
  • the first refrigerant cooler group arrangement area is divided into two refrigerant cooler group arrangement areas arranged in a rectangular shape when viewed from the upper surface.
  • the two refrigerant cooler group arrangement regions were arranged adjacent to each other in the short side direction with their long sides facing the same direction.
  • the drive that drives the first compressor and the drive that drives the second compressor are common.
  • At least a part of the compression region in which the machine is arranged is arranged at a position facing each other with the long side of the second refrigerant cooler group arrangement region for cooling the liquefying refrigerant.
  • the long side of the first refrigerant cooler group arrangement region for cooling the precooling refrigerant is different from the one whose long side faces the long side of the second refrigerant cooler group arrangement region of the rectangular region including the compression region. It is placed at a position facing the side.
  • the natural gas (NG) liquefaction apparatus provides hot section 1 that performs pretreatment such as removal of mercury, acid gas (hydrogen sulfide, mercaptan, carbon dioxide, etc.) contained in NG produced from the well, and various impurities such as water and heavy components. I have. Further, a pre-cooling section 2 that precools the pretreated NG to about ⁇ 35 ° C., a heavy component removing section 20 that separates the liquefied heavy component from the pre-cooled NG, and an NG from which the heavy component has been removed. Is provided with a liquefaction unit 3 that cools the water from ⁇ 100 ° C.
  • the supercooling unit 4 that supercools the liquefied LNG to ⁇ 150 ° C. to -156 ° C. and a part of the supercooled LNG are adiabatically expanded to 159 ° C. to ⁇ 159 ° C. It is provided with an end flash unit 40 that lowers the temperature to about -162 ° C. and acquires LNG of liquid at normal pressure.
  • Each part (hot section 1, precooling part 2, heavy weight removing part 20, liquefaction part 3, supercooling part 4, end flush part 40) that constitutes the NG liquefaction device is a static device such as a tower tank or a heat exchanger.
  • a large number of devices (equipment groups) such as moving devices such as pumps and connecting pipes connecting each static device and the moving devices are provided. These equipment groups are collectively arranged in a multi-story frame with a skeleton structure for each part.
  • the frame lines having the reference numerals "1, 2, 3, 4, 20, 40" corresponding to each part indicate the arrangement area of the device group constituting these devices. There is.
  • the precooling unit 2 includes a heat exchanger (precooling heat exchanger) that precools NG using a precooling refrigerant.
  • the NG liquefaction apparatus includes a first compressor 21 that compresses the precooling refrigerant vaporized in the precooling section, and a first refrigerant including a plurality of air-cooled coolers (ACHE) that cool the compressed precooling refrigerant.
  • a cooler group 22 is provided.
  • the liquefaction unit 3 and the supercooling unit 4 are heat exchangers (liquefaction heat exchanger, overcooling heat exchanger) that liquefy NG and overcool LNG using the liquefaction refrigerant and the supercooling refrigerant, respectively. It has.
  • the NG liquefier includes a second compressor 31 that compresses the vaporized liquefaction refrigerant, a second refrigerant cooler group 32 that includes a plurality of ACHEs that cool the compressed liquefaction refrigerant, and a vaporized overcooling device.
  • a third compressor 41 for compressing the refrigerant and a third refrigerant cooler group 42 including a plurality of ACHEs for cooling the compressed overcooling refrigerant are provided.
  • the drive that drives the first compressor 21 and the drive that drives the second compressor 31 are configured as a gas turbine compressor 9 driven by a common drive (gas turbine) 90.
  • two gas turbine compressors 9 are provided.
  • the number of gas turbine compressors 9 may be one, and the first compressor 21 and the second compressor 31 may be driven by individual drivers.
  • the liquefaction refrigerant / precooling refrigerant heat exchange that further cools the liquefaction refrigerant cooled by the second refrigerant cooler group 32 by using the precooling refrigerant described above.
  • a device 8 hereinafter, also referred to as a “refrigerant cooling heat exchanger 8” is provided.
  • the NG liquefier of this example is configured to produce LNG using three types of refrigerants.
  • these refrigerants include the case where propane is used as the precooling refrigerant, MR (mixed refrigerant) such as nitrogen, methane, ethane, and propane is used as the liquefaction refrigerant, and nitrogen is used as the overcooling refrigerant.
  • MR mixed refrigerant
  • nitrogen is used as the overcooling refrigerant.
  • propane is used as the precooling refrigerant
  • ethylene is used as the liquefaction refrigerant
  • methane is used as the supercooling refrigerant
  • the NG liquefaction apparatus includes a first pipe rack 10A and a second pipe rack 10B.
  • the first and second pipe racks 10A and 10B are each composed of a rectangular frame when viewed from the upper surface, and have a plurality of layers, for example, a three-stage hierarchical structure.
  • the refrigerant cooler group arrangement regions 23, 33 in which the first to third refrigerant cooler groups 22, 32, 42 are arranged in a rectangular shape when viewed from the upper surface, It is 43.
  • the upper surface of the first pipe rack 10A is configured as the first refrigerant cooler group arrangement region 23, and the right hand side of the second pipe rack 10B in the long side direction toward FIG. Is configured as a second refrigerant cooler group arrangement region 33, and a region on the left hand side is configured as a third refrigerant cooler group arrangement region 43.
  • the frame lines having the reference numerals "10A and 10B" corresponding to the pipe racks are the first and second pipe racks 10A and 10B. It shows the arrangement area of the frame that constitutes. Further, in FIGS. 1, 2, 5 and 6, the dotted frame frame superimposed on the second pipe rack 10B indicates the second and third refrigerant cooler group arrangement regions 33 and 43. Further, in FIGS. 1, 2 and 4 to 7, the circles drawn together in the frame lines of the pipe racks 10A and 10B schematically show a part of ACHE. In FIGS. 1, 2 and 4 to 7, ACHE is described only in a part of the pipe racks 10A and 10B in order to avoid complicating the description of the drawings.
  • the ACHE included in the above-mentioned refrigerant cooler groups 22, 32, and 42 takes in air from an air suction port provided on the lower side of the ACHE (below the upper surface of the pipe rack) by using a rotary fan. It is configured to discharge from a discharge port provided upward (not shown). By supplying cooling air toward the tube bundle in which the tubes through which the fluid to be cooled (refrigerant) flows are bundled, the fluid to be cooled (refrigerant) sent to the refrigerant cooler group can be cooled.
  • the NG liquefier includes a boiler or hot water that generates steam that is a heat source for a distillation tower provided in the heavy component removing unit 20, in addition to the power source of the turbine.
  • a group of utility equipment such as a heating system that heats a heat medium such as hot oil is provided. Note that the description of these utility devices is omitted in FIGS. 1, 2, 4 to 6.
  • a second pipe rack 10B is arranged substantially in the center of the NG liquefaction apparatus. Then, along the long side of one side of the second pipe rack 10B, from one end side to the other end side of the second pipe rack 10B, the hot section 1, the heavy component removing portion 20, the precooling portion 2, and the like.
  • the liquefaction unit 3, the refrigerant cooling heat exchanger 8, and the end flush unit 40 are provided in this order. Further, along the long side of the other side of the second pipe rack 10B, from one end side to the other end side of the second pipe rack 10B, the third compressor 41, the supercooling unit 4, and the two gases are used. Turbine compressors 9 are provided in this order.
  • a sub-pipe rack 100 is provided between the two gas turbine compressors 9.
  • the region where the two gas turbine compressors 9 are provided is called the compression region 5, and the region where the precooling unit 2, the liquefaction unit 3 and the refrigerant cooling heat exchanger 8 are provided is called the cooling region 6.
  • the compression region 5 and the cooling region 6 is provided at positions facing each other with the long side of the second pipe rack 10B interposed therebetween.
  • the rectangular region facing the long side of the second pipe rack 10B when focusing on the rectangular region including the compressed region 5 (in FIG. 1, the region surrounded by the alternate long and short dash line corresponding to the compressed region 5), the rectangular region facing the long side of the second pipe rack 10B.
  • the first pipe rack 10A is arranged so that its long side faces the side opposite to one side.
  • the first pipe rack 10A (first refrigerant cooler group arrangement region 23) and the second pipe rack 10B (second refrigerant cooler group arrangement region 33) sandwich the above-mentioned rectangular region. They are arranged so as to face each other.
  • FIG. 1 shows the approximate flow of the process fluid (NG, LNG after liquefaction) with solid arrows.
  • the NG produced from the well is the second pipe rack in the order of hot section (pretreatment section) 1 ⁇ precooling section 2 ⁇ heavy component removing section 20 ⁇ liquefaction section 3 ⁇ supercooling section 4 ⁇ end flush section 40. It is processed while flowing through 10B, and flows out from the NG liquefier as LNG.
  • FIG. 2 the approximate path through which each refrigerant flows in the NG liquefaction apparatus is indicated by arrows, the solid line arrow is the precooling refrigerant, the chain line arrow is the liquefaction refrigerant, and the broken line arrow is the overcooling refrigerant. Shows the flow of.
  • FIGS. 4 to 6 also show a schematic path of the flow of each refrigerant in the same manner.
  • the precooling refrigerant used in the precooling unit 2 is supplied to the precooling heat exchanger (not shown) and the refrigerant cooling heat exchanger 8 provided in the precooling unit 2, and is used for precooling the NG and cooling the liquefied refrigerant. ..
  • the precooling refrigerant is vaporized by heat exchange in the precooling heat exchanger and the refrigerant cooling heat exchanger 8 of the precooling unit 2, and then sent in parallel to the two first compressors 21.
  • the vaporized precooling refrigerant is compressed by the first compressor 21, then sent to the first pipe rack 10A via the sub pipe rack 100, and cooled by the first refrigerant cooler group 22. Liquefied and supercooled.
  • the further cooled precooling refrigerant is supplied to the precooling heat exchanger and the refrigerant cooling heat exchanger 8 of the precooling unit 2 across the second pipe rack 10B via the sub-pipe rack 100.
  • the liquefaction refrigerant used in the liquefaction unit 3 is vaporized by heat exchange in the ultra-low temperature heat exchanger (not shown), which is the liquefaction heat exchanger of the liquefaction unit 3, and then is transferred to the two second compressors 31. Air is sent in parallel.
  • the liquefiing refrigerant boosted by the second compressor 31 is sent to the second pipe rack 10B, cooled by the second refrigerant cooler group 32, and liquefied.
  • the liquefiing refrigerant cooled by the second refrigerant cooler group 32 is further cooled by the refrigerant cooling heat exchanger 8 and supplied to the ultra-low temperature heat exchanger.
  • the supercooling refrigerant used in the supercooling unit 4 is vaporized by heat exchange in the supercooling heat exchanger of the supercooling unit 4, and then sent to the third compressor 41.
  • the supercooling refrigerant boosted by the third compressor 41 is sent to the second pipe rack 10B, cooled and liquefied by the third refrigerant cooler group 42, and supplied to the supercooling heat exchanger. Will be done.
  • the effect of the NG liquefaction apparatus according to the above-described embodiment will be described while comparing with the arrangement example of the NG liquefaction apparatus according to the comparative embodiment shown in FIG.
  • the NG liquefaction apparatus according to the comparative embodiment has a first pipe rack 10A provided with a first refrigerant cooler group arrangement region 23 in the center of the NG liquefaction apparatus, and a second pipe rack 10A provided with a second refrigerant cooler group arrangement region 33.
  • the pipe racks 10B and the pipe racks 10B are provided side by side with their long sides aligned with each other.
  • a hot section 1, a heavy weight removing section 20, and an end flush section 40 are provided in this order along one long side of the arrangement of the first and second pipe racks 10A and 10B. Further, along the long side on the other side of the arrangement of the first and second pipe racks 10A and 10B, the gas turbine compressor 9, the precooling unit 2, the liquefaction unit 3, the refrigerant cooling heat exchanger 8, and the gas turbine compressor 9 are arranged. It is provided in this order.
  • the distance between the two pipe racks 10A and 10B becomes narrow. Therefore, when trying to perform work such as installing a pipe between the two pipe racks 10A and 10B, the crane cannot enter between the pipe racks 10A and 10B. Therefore, it may be necessary to work over the pipe racks 10A and 10B by using a large crane from the side of the arrangement of the two pipe racks 10A and 10B.
  • a compression region 5 is provided between the first pipe rack 10A and the second pipe rack 10B, and these pipe racks 10A and 10B are provided. Are placed apart. For this reason, it is possible to secure a sufficient space for the crane or the like to enter and perform the work, so that the construction work is easy and the workability is improved.
  • an NG liquefaction device In general, when constructing an NG liquefaction device, the devices are installed in order from the center to the periphery of the site of the NG liquefaction device. Therefore, in the NG liquefaction apparatus of the comparative form shown in FIG. 7, two pipe racks 10A and 10B arranged in the center are first installed, and then the equipment of each surrounding part is installed. On the other hand, in the NG liquefaction apparatus according to the present embodiment, only the second pipe rack 10B is arranged in the center of the NG liquefaction apparatus. Therefore, as compared with the case where two pipe racks 10A and 10B are installed, the work associated with the installation of one pipe rack 10B is less. Therefore, after the installation of the second pipe rack 10B, the installation of the peripheral equipment can be started in a relatively short period of time.
  • the treatment of the liquefaction refrigerant and the supercooling refrigerant is performed in the first pipe rack 10A (first). Cooling by the refrigerant cooler group 22) is not performed. That is, the first pipe rack 10A (first refrigerant cooler arrangement region) that is not directly involved in the liquefaction refrigerant or the supercooling refrigerant is provided at a position deviated from the flow path of these refrigerants. Therefore, in the first pipe rack 10A, a pipe for flowing these refrigerants is not installed or crossed. Further, as shown in FIG.
  • the first pipe rack 10A since the first pipe rack 10A is also out of the NG processing path, no pipe for circulating NG is installed. Since the number of pipes arranged in the first pipe rack 10A is reduced due to the above-mentioned structure, the first pipe rack 10A can be lowered as compared with the above-described comparative embodiment. As a result, the amount of the constituent members of the first pipe rack 10A can be reduced, and the amount of construction work can be suppressed.
  • the hot air discharged from the ACHE arranged in the short pipe rack is taken in from the lower surface side of the ACHE arranged in the tall pipe rack.
  • HAR Hot Air Recirculation
  • measures may be taken so that the heights of the air outlets of the ACHE are aligned between the pipe racks having different heights, for example, by raising the duct of the ACHE provided in the short pipe rack.
  • the number of pipes arranged in the first pipe rack 10A is reduced, so that the ventilation of the first pipe rack 10A is improved and the ACHE easily sucks air.
  • the amount of air sucked is stable.
  • the cooling efficiency of the refrigerant cooler group 22 including ACHE is stabilized.
  • the pipe racks 10A and 10B arranged side by side are not crossed with the large-diameter pipe through which the vaporized precooling refrigerant and the liquefaction refrigerant flow.
  • the compressors 21 and 31, the precooling section 2 and the liquefiing section 3 may be arranged apart from each other in the longitudinal direction of the pipe racks 10A and 10B.
  • the distance through which the refrigerant flows becomes long and the pipe length becomes long, so that the material and the amount of construction work increase.
  • the pipe connecting the compressors 21 and 31 to the precooling unit 2 and the liquefied unit 3 has a large diameter, and the extension of this pipe greatly increases the piping material and the amount of construction work.
  • the height of the pipe racks 10A and 10B is increased by selecting the equipment arrangement in which the large-diameter pipes do not intersect with the pipe racks 10A and 10B. It was suppressing the conversion.
  • FIG. 2 in the NG liquefaction apparatus of this example, in which at least a part of the compression region 5 and the cooling region 6 are arranged so as to face each other with the long side of the second pipe rack 10B interposed therebetween.
  • a large-diameter pipe through which vaporized refrigerant flows is arranged to cross the second pipe rack 10B.
  • the inventors omit, for example, the pipe 201 having the largest diameter extending from the heat exchanger 200 on the precooling portion 2 side and crossing the second pipe rack 10B in the lateral direction.
  • the pipe rack By forming the pipe rack in a straight tubular shape, the height of the pipe rack can be lowered as in the comparative mode in which the pipe 201 is not traversed.
  • the large-diameter pipe is bent and arranged while avoiding the interference between the large-diameter pipe and other pipes, the amount of materials used increases and the pipe rack becomes expensive, which complicates the construction.
  • the pipe 201 of the present invention has a substantially straight tubular shape, and such a problem does not occur.
  • each part shown in FIG. 1 is arranged in the same manner as the NG liquefaction apparatus according to the comparative embodiment (compared to the comparative embodiment shown in FIG. 7).
  • Section 1 is arranged in the same manner as in FIG. 1, and NG is liquefied using three refrigerants provided with the same supercooling unit 4, the third compressor 41, and the third refrigerant cooler group 42 as in FIG. ), The calculation result that the total pipe length can be shortened by about 9% was obtained.
  • the NG liquefaction device does not have to include the supercooling unit 4.
  • FIG. 4 shows such an NG liquefaction device. Compared to the NG liquefaction apparatus shown in FIG. 1, the location where the third compressor 41 and the supercooling unit 4 were not provided and the third compressor 41 and the supercooling unit 4 were provided. The difference is that the hot section 1 is provided in the. Also in this example, (1) the first refrigerant cooler group arrangement region 23 and the second refrigerant cooler group arrangement region 33 are arranged apart from each other, and (2) at least a part of the compression region 5 and the cooling region 6.
  • the first refrigerant cooler group arrangement region 23 is divided into two first pipe racks 10A arranged in a rectangular shape when viewed from the upper surface, and the long sides of the first pipe racks 10A are oriented in the same direction. , May be arranged next to each other in the short side direction.
  • the long side of the first refrigerant cooler group arrangement region 23 faces the long side of the second refrigerant cooler group arrangement region 33 of the rectangular region including the compression region 5. It suffices if it is arranged at a position facing a side different from one side. For example, as shown in FIG. 6, the long sides of the refrigerant cooler group arrangement regions 23 and 33 sandwich a common corner of the rectangular region including the compression region 5 (the lower right corner of the rectangular upper region shown in FIG. 6).
  • the first refrigerant cooler group arrangement region 23 and the second refrigerant cooler group arrangement region 33 may be arranged.
  • Precooling unit 3 Liquefaction unit 5 Compression area 6 Cooling area 21 First compressor 23 First refrigerant cooler group arrangement area 31 Second compressor 33 Second refrigerant cooler group arrangement area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

[Problem] To provide a natural gas liquefying apparatus that exhibits favorable construction performance and that allows reduction in the amount of material to be used. [Solution] At least a portion of a cooling region 6 in which a precooling part 2 and a liquefying part 3 are arranged, and at least a portion of a compression region 5 in which first and second compressors 21, 31 for compressing a refrigerant for use in the precooling part 2 and the liquefying part 3 are arranged, are disposed at positions facing each other having therebetween long edges of an arrangement region 43 of a second refrigerant cooler group for cooling a liquefying refrigerant. Accordingly, pipes connecting the precooling part 2, the liquefying part 3, and the first and second compressors 21, 31 can be substantially straight and short pipes and work volume can be reduced. Further, an arrangement region 23 of a first refrigerant cooler group for cooling a cooling refrigerant is disposed at a position where a long edge thereof faces an edge of a rectangular region including the compression region 5, the edge being different from the long edges of an arrangement region 33 of the second refrigerant cooler group. Accordingly, workability between the arrangement regions of the refrigerant cooler groups is enhanced and construction performance improves.

Description

天然ガス液化装置Natural gas liquefaction device
 本発明は、冷媒を用いて天然ガスを冷却して液化を行う天然ガス液化装置に関する。 The present invention relates to a natural gas liquefier that cools and liquefies natural gas using a refrigerant.
 天然ガス液化装置(NG液化装置)は、ガス井などで産出した天然ガス(NG:Natural Gas)を冷却、液化し液化天然ガス(LNG:Liquefied Natural Gas)を製造する。 The natural gas liquefier (NG liquefier) cools and liquefies natural gas (NG: Natural Gas) produced in gas wells, etc., and produces liquefied natural gas (LNG: Liquefied Natural Gas).
 NG液化装置は、例えば特許文献1に記載されているように天然ガスの予備冷却を行う予冷熱交換器や、天然ガスの液化を行う極低温熱交換器などの機器を備え、NGは、これらの機器間に接続された配管を介して流通して各処理が順番に行われる。また予冷熱交換器や極低温熱交換器は、夫々冷媒を用いた熱交換によりNGを冷却するように構成され、熱交換器と熱交換に用いた冷媒を圧縮する圧縮機との間に設けられた配管を介してこれらの冷媒を流通させるように構成されている。この他にも多数の機器が設けられるNG液化装置においては、建設しやすく、配管を構成する部材などの資材の使用量をできるだけ低減することが可能な機器の配置を探求することが求められている。 The NG liquefaction apparatus includes equipment such as a precooling heat exchanger that precools natural gas as described in Patent Document 1 and an ultra-low temperature heat exchanger that liquefies natural gas. Each process is performed in order by circulating through the pipes connected between the devices of. Further, the precooling heat exchanger and the ultra-low temperature heat exchanger are each configured to cool the NG by heat exchange using a refrigerant, and are provided between the heat exchanger and the compressor for compressing the refrigerant used for the heat exchange. These refrigerants are configured to flow through the provided pipes. In addition to this, in NG liquefaction equipment equipped with a large number of equipment, it is required to search for the arrangement of equipment that is easy to construct and can reduce the amount of materials used such as members that make up piping as much as possible. There is.
特許第4912564号公報Japanese Patent No. 4912564
 本発明は、このような背景の下になされたものであり、建設性が良く、資材使用量を抑えた天然ガス液化装置を提供することにある。 The present invention has been made against such a background, and an object of the present invention is to provide a natural gas liquefaction device having good workability and a reduced amount of materials used.
 本発明の天然ガス液化装置は、天然ガスを液化する天然ガス液化装置において、
 予冷用冷媒を用い、前記天然ガス液化装置に供給された天然ガスを予冷する予冷用熱交換器を含む予冷部と、液化用冷媒を用い前記予冷された後の天然ガスを液化する液化用熱交換器を含む液化部と、が配置された冷却領域と、
 気化した前記予冷用冷媒を圧縮する第1の圧縮機と、気化した前記液化用冷媒を圧縮する第2の圧縮機と、が配置された圧縮領域と、
 前記第1の圧縮機にて圧縮された予冷用冷媒を冷却する空冷式クーラー群が、上面から見て長方形に整列配置された第1の冷媒クーラー群配置領域と、
 前記第2の圧縮機にて圧縮された液化用冷媒を冷却する空冷式クーラー群が、上面から見て長方形に整列配置された第2の冷媒クーラー群配置領域と、を備え、
 前記冷却領域と、前記圧縮領域と、の少なくとも一部が前記第2の冷媒クーラー群配置領域の前記長方形の長辺を挟んで互いに対向する位置に配置されたことと、
 前記第1の冷媒クーラー群配置領域は、その長辺が、前記圧縮領域を含む矩形状領域の前記第2の冷媒クーラー群配置領域の長辺と対向する一辺とは異なる辺と対向する位置に配置されたことと、を特徴とする。
The natural gas liquefier of the present invention is a natural gas liquefier that liquefies natural gas.
A precooling unit including a precooling heat exchanger that precools the natural gas supplied to the natural gas liquefaction apparatus using a precooling refrigerant, and a liquefaction heat that liquefies the precooled natural gas using a liquefaction refrigerant. The liquefied part including the exchanger, the cooling area where the exchanger is arranged, and
A compression region in which a first compressor for compressing the vaporized precooling refrigerant and a second compressor for compressing the vaporized liquefaction refrigerant are arranged.
The air-cooled cooler group for cooling the precooling refrigerant compressed by the first compressor is arranged in a rectangular shape when viewed from the upper surface, and the first refrigerant cooler group arrangement region.
The air-cooled cooler group for cooling the liquefied refrigerant compressed by the second compressor includes a second refrigerant cooler group arrangement region arranged in a rectangular shape when viewed from the upper surface.
At least a part of the cooling region and the compression region were arranged at positions facing each other with the long side of the rectangle of the second refrigerant cooler group arrangement region interposed therebetween.
The first refrigerant cooler group arrangement region is located at a position where the long side of the first refrigerant cooler group arrangement region faces a side different from the long side of the second refrigerant cooler group arrangement region of the rectangular region including the compression region. It is characterized by being placed.
 前記天然ガス液化装置は以下の特徴を備えていてもよい。
(a)前記第1の冷媒クーラー群配置領域と、第2の冷媒クーラー群配置領域と、は、前記矩形状領域を挟んで互いに対向するように配置されたこと。
(b)前記第1の冷媒クーラー群配置領域と、第2の冷媒クーラー群配置領域と、は、各冷媒クーラー群配置領域の長辺が前記矩形状領域の共通の一角を挟む2つの辺と各々対向するように配置されたこと。
(c)過冷却用冷媒を用い前記液化した天然ガスを過冷却する過冷却用熱交換器を含む過冷却部と、前記過冷却用熱交換器にて気化した液化用冷媒を圧縮する第3の圧縮機と、が配置されたこと。
(d)前記第1の冷媒クーラー群配置領域は、上面から見て長方形に整列配置された2つの冷媒クーラー群配置領域に分けて設けられ、
 前記2つの冷媒クーラー群配置領域は、互いの長辺を同じ方向に向け、短辺方向に隣り合って配置されたこと。
(e)前記第1の圧縮機を駆動する駆動機と、前記第2の圧縮機を駆動する駆動機と、が共通であること。
The natural gas liquefier may have the following features.
(A) The first refrigerant cooler group arrangement region and the second refrigerant cooler group arrangement region are arranged so as to face each other with the rectangular region in between.
(B) The first refrigerant cooler group arrangement region and the second refrigerant cooler group arrangement region are two sides in which the long side of each refrigerant cooler group arrangement region sandwiches a common corner of the rectangular region. They were arranged so as to face each other.
(C) A supercooling unit including a supercooling heat exchanger that supercools the liquefied natural gas using a supercooling refrigerant, and a third that compresses the liquefied refrigerant vaporized by the supercooling heat exchanger. That the compressor and was placed.
(D) The first refrigerant cooler group arrangement area is divided into two refrigerant cooler group arrangement areas arranged in a rectangular shape when viewed from the upper surface.
The two refrigerant cooler group arrangement regions were arranged adjacent to each other in the short side direction with their long sides facing the same direction.
(E) The drive that drives the first compressor and the drive that drives the second compressor are common.
 本発明は、予冷用熱交換器を含む予冷部及び液化用熱交換器を含む液化部が配置された冷却領域と、予冷部及び液化部で用いられる冷媒を圧縮する第1及び第2の圧縮機が配置された圧縮領域と、の少なくとも一部が、液化用冷媒を冷却する第2の冷媒クーラー群配置領域の長辺を挟んで互いに対向する位置に配置している。これにより予冷部及び液化部と、第1及び第2の圧縮機と、接続する配管を短くすることができるため配管材料の使用量を減らすことができる。 
 また予冷用冷媒を冷却する第1の冷媒クーラー群配置領域を、その長辺が、前記圧縮領域を含む矩形状領域の前記第2の冷媒クーラー群配置領域の長辺と対向する一辺とは異なる辺と対向する位置に配置している。このように第1の冷媒クーラー群配置領域と、第2の冷媒クーラー群配置領域とを離して配置することにより、クレーンなどを用いた建設作業がしやすくなり建設性が良くなる。
In the present invention, a cooling region in which a precooling section including a precooling heat exchanger and a liquefiing section including a liquefaction heat exchanger are arranged, and first and second compressions for compressing the refrigerant used in the precooling section and the liquefiing section. At least a part of the compression region in which the machine is arranged is arranged at a position facing each other with the long side of the second refrigerant cooler group arrangement region for cooling the liquefying refrigerant. As a result, the pipes connected to the precooling part and the liquefiing part, the first and second compressors, and the pipes can be shortened, so that the amount of piping material used can be reduced.
Further, the long side of the first refrigerant cooler group arrangement region for cooling the precooling refrigerant is different from the one whose long side faces the long side of the second refrigerant cooler group arrangement region of the rectangular region including the compression region. It is placed at a position facing the side. By arranging the first refrigerant cooler group arrangement area and the second refrigerant cooler group arrangement area apart from each other in this way, the construction work using a crane or the like becomes easy and the workability is improved.
本発明の実施の形態に係るNG液化装置の全体を示す平面図である。It is a top view which shows the whole of the NG liquefaction apparatus which concerns on embodiment of this invention. NG液化装置における冷媒の流通経路を示す平面図である。It is a top view which shows the flow path of the refrigerant in an NG liquefaction apparatus. 冷却領域と圧縮領域との間を接続する配管を説明する説明図である。It is explanatory drawing explaining the piping which connects between a cooling region and a compression region. NG液化装置の他の例を示す平面図である。It is a top view which shows the other example of the NG liquefaction apparatus. NG液化装置のさらに他の例を示す平面図である。It is a top view which shows still another example of an NG liquefaction apparatus. NG液化装置の別の例を示す平面図である。It is a top view which shows another example of the NG liquefaction apparatus. 比較形態に係るNG液化装置の全体を示す平面図である。It is a top view which shows the whole of the NG liquefaction apparatus which concerns on a comparative form.
 本実施の形態に係る天然ガス(NG)液化装置について図1を用いて説明する。NG液化装置は、井戸元から産出されたNGに含まれる水銀、酸性ガス(硫化水素、メルカプタン、二酸化炭素など)、水分や重質分などの各種不純物の除去といった前処理を行うホットセクション1を備えている。さらに前処理が行われたNGを-35℃程度に予冷する予冷部2と、予冷後のNGから液化した重質分を分離する重質分除去部20と、重質分が除去されたNGを-100℃から-120℃に冷却して液化する液化部3と、を備えている。さらに本実施の形態に係るNG液化装置は、液化したLNGを-150℃~-156℃に過冷却する過冷却部4と、過冷却後のLNGの一部を断熱膨張させて-159℃~-162℃程度まで温度を低下させ、常圧で液体のLNGを取得するエンドフラッシュ部40と、を備えている。 The natural gas (NG) liquefaction apparatus according to the present embodiment will be described with reference to FIG. The NG liquefaction device provides hot section 1 that performs pretreatment such as removal of mercury, acid gas (hydrogen sulfide, mercaptan, carbon dioxide, etc.) contained in NG produced from the well, and various impurities such as water and heavy components. I have. Further, a pre-cooling section 2 that precools the pretreated NG to about −35 ° C., a heavy component removing section 20 that separates the liquefied heavy component from the pre-cooled NG, and an NG from which the heavy component has been removed. Is provided with a liquefaction unit 3 that cools the water from −100 ° C. to −120 ° C. to liquefy it. Further, in the NG liquefaction apparatus according to the present embodiment, the supercooling unit 4 that supercools the liquefied LNG to −150 ° C. to -156 ° C. and a part of the supercooled LNG are adiabatically expanded to 159 ° C. to −159 ° C. It is provided with an end flash unit 40 that lowers the temperature to about -162 ° C. and acquires LNG of liquid at normal pressure.
 NG液化装置を構成する各部(ホットセクション1、予冷部2、重質分除去部20、液化部3、過冷却部4、エンドフラッシュ部40)には、塔槽や熱交換器などの静機器、ポンプなどの動機器、各静機器と動機器との間を接続する接続配管などの多数の機器(機器群)が設けられている。これらの機器群は、各部ごとに骨組み構造の複数階建ての架構内にまとめて配置されている。図1~図7に示す枠線のうち各部に対応する符号「1、2、3、4、20、40」を付した枠線は、これらの機器を構成する機器群の配置領域を示している。 Each part (hot section 1, precooling part 2, heavy weight removing part 20, liquefaction part 3, supercooling part 4, end flush part 40) that constitutes the NG liquefaction device is a static device such as a tower tank or a heat exchanger. , A large number of devices (equipment groups) such as moving devices such as pumps and connecting pipes connecting each static device and the moving devices are provided. These equipment groups are collectively arranged in a multi-story frame with a skeleton structure for each part. Of the frame lines shown in FIGS. 1 to 7, the frame lines having the reference numerals "1, 2, 3, 4, 20, 40" corresponding to each part indicate the arrangement area of the device group constituting these devices. There is.
 予冷部2は、予冷用冷媒を用いてNGの予冷を行う熱交換器(予冷用熱交換器)を備える。またNG液化装置には、予冷部にて気化した予冷用冷媒を圧縮する第1の圧縮機21と、圧縮された予冷用冷媒を冷却する複数の空冷式クーラー(ACHE)を含む第1の冷媒クーラー群22と、が設けられている。 
 同様に液化部3及び過冷却部4は、夫々液化用冷媒及び過冷却用冷媒を用いNGの液化、LNGの過冷却を行う熱交換器(液化用熱交換器、過冷却用熱交換器)を備えている。そしてNG液化装置には、気化した液化用冷媒を圧縮する第2の圧縮機31及び圧縮された液化用冷媒を冷却する複数のACHEを含む第2の冷媒クーラー群32と、気化した過冷却用冷媒を圧縮する第3の圧縮機41及び圧縮された過冷却用冷媒を冷却する複数のACHEを含む第3の冷媒クーラー群42と、が設けられている。
The precooling unit 2 includes a heat exchanger (precooling heat exchanger) that precools NG using a precooling refrigerant. Further, the NG liquefaction apparatus includes a first compressor 21 that compresses the precooling refrigerant vaporized in the precooling section, and a first refrigerant including a plurality of air-cooled coolers (ACHE) that cool the compressed precooling refrigerant. A cooler group 22 is provided.
Similarly, the liquefaction unit 3 and the supercooling unit 4 are heat exchangers (liquefaction heat exchanger, overcooling heat exchanger) that liquefy NG and overcool LNG using the liquefaction refrigerant and the supercooling refrigerant, respectively. It has. The NG liquefier includes a second compressor 31 that compresses the vaporized liquefaction refrigerant, a second refrigerant cooler group 32 that includes a plurality of ACHEs that cool the compressed liquefaction refrigerant, and a vaporized overcooling device. A third compressor 41 for compressing the refrigerant and a third refrigerant cooler group 42 including a plurality of ACHEs for cooling the compressed overcooling refrigerant are provided.
 本例においては、第1の圧縮機21を駆動する駆動機と、第2の圧縮機31を駆動する駆動機は、共通の駆動機(ガスタービン)90によって駆動されるガスタービンコンプレッサー9として構成されていると共に、このガスタービンコンプレッサー9が2台設けられている。なおガスタービンコンプレッサー9は1台でも良く、さらに第1の圧縮機21、及び第2の圧縮機31が夫々個別の駆動機により駆動される構成でも良い。 
 また本実施の形態に係るNG液化装置は、既述の予冷用冷媒を用いて、第2の冷媒クーラー群32にて冷却された液化用冷媒をさらに冷却する液化用冷媒/予冷用冷媒熱交換器8(以下、「冷媒冷却熱交換器8」ともいう)を備えている。
In this example, the drive that drives the first compressor 21 and the drive that drives the second compressor 31 are configured as a gas turbine compressor 9 driven by a common drive (gas turbine) 90. In addition, two gas turbine compressors 9 are provided. The number of gas turbine compressors 9 may be one, and the first compressor 21 and the second compressor 31 may be driven by individual drivers.
Further, in the NG liquefaction apparatus according to the present embodiment, the liquefaction refrigerant / precooling refrigerant heat exchange that further cools the liquefaction refrigerant cooled by the second refrigerant cooler group 32 by using the precooling refrigerant described above. A device 8 (hereinafter, also referred to as a “refrigerant cooling heat exchanger 8”) is provided.
 このように本例のNG液化装置は、3種類の冷媒を用いてLNGの生産を行う構成となっている。これらの冷媒の例としては、予冷用冷媒としてプロパン、液化用冷媒として窒素、メタン、エタン、プロパンなどのMR(混合冷媒)、過冷却用冷媒として窒素を使用する場合を挙げることができる。また他の冷媒の組み合わせ例としては、予冷用冷媒としてプロパン、液化用冷媒としてエチレン、過冷却用冷媒としてメタンを用いる場合を挙げることもできる。 As described above, the NG liquefier of this example is configured to produce LNG using three types of refrigerants. Examples of these refrigerants include the case where propane is used as the precooling refrigerant, MR (mixed refrigerant) such as nitrogen, methane, ethane, and propane is used as the liquefaction refrigerant, and nitrogen is used as the overcooling refrigerant. Further, as an example of the combination of other refrigerants, a case where propane is used as the precooling refrigerant, ethylene is used as the liquefaction refrigerant, and methane is used as the supercooling refrigerant can be mentioned.
 またNG液化装置は、第1のパイプラック10A及び第2のパイプラック10Bを備えている。第1及び第2のパイプラック10A、10Bは、各々上面から見て長方形の架構により構成され、複数の階層、例えば3段の階層構造となっている。第1及び第2のパイプラック10A、10Bの各階層には、NGの処理を行う各部の間でNGの授受を行う配管や、各熱交換器、圧縮機21、31、41、及び冷媒クーラー群22、32、42の間で冷媒を流すための配管(不図示)が設けられている。 Further, the NG liquefaction apparatus includes a first pipe rack 10A and a second pipe rack 10B. The first and second pipe racks 10A and 10B are each composed of a rectangular frame when viewed from the upper surface, and have a plurality of layers, for example, a three-stage hierarchical structure. In each layer of the first and second pipe racks 10A and 10B, there are pipes for exchanging NG between each part that processes NG, heat exchangers, compressors 21, 31, 41, and a refrigerant cooler. Piping (not shown) for flowing the refrigerant is provided between the groups 22, 32, and 42.
 また第1及び第2のパイプラック10A、10Bの上面は、第1~第3の冷媒クーラー群22、32、42が上面から見て長方形に整列配置される冷媒クーラー群配置領域23、33、43となっている。本例のNG液化装置の場合は、第1のパイプラック10Aの上面が第1の冷媒クーラー群配置領域23として構成され、図1に向かって第2のパイプラック10Bの長辺方向の右手側の領域が第2の冷媒クーラー群配置領域33、左手側の領域が第3の冷媒クーラー群配置領域43として構成されている。 Further, on the upper surfaces of the first and second pipe racks 10A and 10B, the refrigerant cooler group arrangement regions 23, 33, in which the first to third refrigerant cooler groups 22, 32, 42 are arranged in a rectangular shape when viewed from the upper surface, It is 43. In the case of the NG liquefier of this example, the upper surface of the first pipe rack 10A is configured as the first refrigerant cooler group arrangement region 23, and the right hand side of the second pipe rack 10B in the long side direction toward FIG. Is configured as a second refrigerant cooler group arrangement region 33, and a region on the left hand side is configured as a third refrigerant cooler group arrangement region 43.
 図1、図2、図4~図7に示す矩形上の枠線のうち、パイプラックに対応する符号「10A、10B」を付した枠線は、第1及び第2のパイプラック10A、10Bを構成する架構の配置領域を示している。また図1、図2、図5及び図6において、第2のパイプラック10Bに重ねて付した点線の枠は、第2及び第3の冷媒クーラー群配置領域33、43を示している。さらに図1、図2、図4~図7において、パイプラック10A,10Bの枠線内に併記した円はACHEの一部を模式的に示したものである。図1、図2、図4~図7には、図面の記載が煩雑になることを避けるためパイプラック10A、10Bの一部領域のみにACHEを記載している。 Among the rectangular frame lines shown in FIGS. 1, 2 and 4 to 7, the frame lines having the reference numerals "10A and 10B" corresponding to the pipe racks are the first and second pipe racks 10A and 10B. It shows the arrangement area of the frame that constitutes. Further, in FIGS. 1, 2, 5 and 6, the dotted frame frame superimposed on the second pipe rack 10B indicates the second and third refrigerant cooler group arrangement regions 33 and 43. Further, in FIGS. 1, 2 and 4 to 7, the circles drawn together in the frame lines of the pipe racks 10A and 10B schematically show a part of ACHE. In FIGS. 1, 2 and 4 to 7, ACHE is described only in a part of the pipe racks 10A and 10B in order to avoid complicating the description of the drawings.
 既述の冷媒クーラー群22、32、42に含まれるACHEは、回転式のファンを用いて、ACHEの下方側(パイプラックの上面の下方)に設けられた空気の吸引口から空気を取り込み、上方に向けて設けられた排出口から排出するように構成される(図示省略)。被冷却流体(冷媒)が流れるチューブを束ねたチューブバンドルに向けて冷却用空気を供給することにより、冷媒クーラー群に送気された被冷却流体(冷媒)を冷却することができる。 The ACHE included in the above-mentioned refrigerant cooler groups 22, 32, and 42 takes in air from an air suction port provided on the lower side of the ACHE (below the upper surface of the pipe rack) by using a rotary fan. It is configured to discharge from a discharge port provided upward (not shown). By supplying cooling air toward the tube bundle in which the tubes through which the fluid to be cooled (refrigerant) flows are bundled, the fluid to be cooled (refrigerant) sent to the refrigerant cooler group can be cooled.
 なおNG液化装置には、この他、発電用のタービンや発電機、前記タービンの動力源の他、重質分除去部20に設けられた蒸留塔の熱源となる蒸気を発生させるボイラーまたは温水、ホットオイルなどの熱媒を加熱する加熱システムなどのユーティリティ機器群が設けられている。なお図1、2、4~6ではこれらユーティリティ機器群の記載は省略している。 In addition to the turbine and generator for power generation, the NG liquefier includes a boiler or hot water that generates steam that is a heat source for a distillation tower provided in the heavy component removing unit 20, in addition to the power source of the turbine. A group of utility equipment such as a heating system that heats a heat medium such as hot oil is provided. Note that the description of these utility devices is omitted in FIGS. 1, 2, 4 to 6.
 本実施の形態に係るNG液化装置の各部の配置について説明する。図1に示すようにNG液化装置の略中央には、第2のパイプラック10Bが配置されている。そして、第2のパイプラック10Bの一方側の長辺に沿って、当該第2のパイプラック10Bの一端側から他端側に向かい、ホットセクション1、重質分除去部20、予冷部2、液化部3、冷媒冷却熱交換器8及びエンドフラッシュ部40がこの順で設けられている。また第2のパイプラック10Bの他方側の長辺に沿って、第2のパイプラック10Bの一端側から他端側に向かい、第3の圧縮機41、過冷却部4、及び2台のガスタービンコンプレッサー9がこの順で設けられている。なお2台のガスタービンコンプレッサー9の間には、サブパイプラック100が設けられている。 The arrangement of each part of the NG liquefaction apparatus according to the present embodiment will be described. As shown in FIG. 1, a second pipe rack 10B is arranged substantially in the center of the NG liquefaction apparatus. Then, along the long side of one side of the second pipe rack 10B, from one end side to the other end side of the second pipe rack 10B, the hot section 1, the heavy component removing portion 20, the precooling portion 2, and the like. The liquefaction unit 3, the refrigerant cooling heat exchanger 8, and the end flush unit 40 are provided in this order. Further, along the long side of the other side of the second pipe rack 10B, from one end side to the other end side of the second pipe rack 10B, the third compressor 41, the supercooling unit 4, and the two gases are used. Turbine compressors 9 are provided in this order. A sub-pipe rack 100 is provided between the two gas turbine compressors 9.
 ここで2台のガスタービンコンプレッサー9が設けられた領域を圧縮領域5と呼び、予冷部2、液化部3及び冷媒冷却熱交換器8が設けられた領域を冷却領域6と呼ぶ。このとき、これら圧縮領域5と冷却領域6との少なくとも一部が、第2のパイプラック10Bの長辺を挟んで互いに対向する位置に設けられている。 Here, the region where the two gas turbine compressors 9 are provided is called the compression region 5, and the region where the precooling unit 2, the liquefaction unit 3 and the refrigerant cooling heat exchanger 8 are provided is called the cooling region 6. At this time, at least a part of the compression region 5 and the cooling region 6 is provided at positions facing each other with the long side of the second pipe rack 10B interposed therebetween.
 そして圧縮領域5を含む矩形状領域(図1においては、圧縮領域5に対応する一点鎖線で囲んだ領域)に着目したとき、前記第2のパイプラック10Bの長辺と対向する前記矩形状領域の一辺とは反対側の辺に対し、第1のパイプラック10Aが、その長辺を対向させるように配置されている。言い替えると、第1のパイプラック10A(第1の冷媒クーラー群配置領域23)と第2のパイプラック10B(第2の冷媒クーラー群配置領域33)とが、既述の矩形状領域を挟んで互いに対向するように配置されている。 Then, when focusing on the rectangular region including the compressed region 5 (in FIG. 1, the region surrounded by the alternate long and short dash line corresponding to the compressed region 5), the rectangular region facing the long side of the second pipe rack 10B. The first pipe rack 10A is arranged so that its long side faces the side opposite to one side. In other words, the first pipe rack 10A (first refrigerant cooler group arrangement region 23) and the second pipe rack 10B (second refrigerant cooler group arrangement region 33) sandwich the above-mentioned rectangular region. They are arranged so as to face each other.
 以上に説明したように各部が配置されたNG液化装置について図1には、プロセス流体(NG、液化後のLNG)の概略の流れを実線の矢印で示している。例えば井戸元から産出されたNGは、ホットセクション(前処理部)1→予冷部2→重質分除去部20→液化部3→過冷却部4→エンドフラッシュ部40の順に第2のパイプラック10Bを介して流れながら処理され、LNGとしてNG液化装置から流出する。 Regarding the NG liquefier in which each part is arranged as described above, FIG. 1 shows the approximate flow of the process fluid (NG, LNG after liquefaction) with solid arrows. For example, the NG produced from the well is the second pipe rack in the order of hot section (pretreatment section) 1 → precooling section 2 → heavy component removing section 20 → liquefaction section 3 → supercooling section 4 → end flush section 40. It is processed while flowing through 10B, and flows out from the NG liquefier as LNG.
 また図2には、当該NG液化装置における各冷媒の流れる概略の経路を矢印で示しており、実線の矢印が予冷用冷媒、鎖線の矢印が液化用冷媒、及び破線の矢印が過冷却用冷媒の流れを示す。以下図4~図6についても同様に各冷媒の流れの概略経路を示す。 Further, in FIG. 2, the approximate path through which each refrigerant flows in the NG liquefaction apparatus is indicated by arrows, the solid line arrow is the precooling refrigerant, the chain line arrow is the liquefaction refrigerant, and the broken line arrow is the overcooling refrigerant. Shows the flow of. Hereinafter, FIGS. 4 to 6 also show a schematic path of the flow of each refrigerant in the same manner.
 予冷部2で用いられる予冷用冷媒は、予冷部2に設けられた予冷用熱交換器(不図示)及び冷媒冷却熱交換器8に供給され、NGの予冷及び液化用冷媒の冷却に用いられる。予冷用冷媒は、予冷部2の予冷用熱交換器及び冷媒冷却熱交換器8にて熱交換により気化した後、2台の第1の圧縮機21に並列に送気される。気化した予冷用冷媒は、第1の圧縮機21にて圧縮された後、サブパイプラック100を介して第1のパイプラック10Aに送気され、第1の冷媒クーラー群22にて冷却され、液化、過冷却される。さらに冷却された予冷用冷媒は、サブパイプラック100を介し、第2のパイプラック10Bを横断して予冷部2の予冷用熱交換器及び冷媒冷却熱交換器8に供給される。 The precooling refrigerant used in the precooling unit 2 is supplied to the precooling heat exchanger (not shown) and the refrigerant cooling heat exchanger 8 provided in the precooling unit 2, and is used for precooling the NG and cooling the liquefied refrigerant. .. The precooling refrigerant is vaporized by heat exchange in the precooling heat exchanger and the refrigerant cooling heat exchanger 8 of the precooling unit 2, and then sent in parallel to the two first compressors 21. The vaporized precooling refrigerant is compressed by the first compressor 21, then sent to the first pipe rack 10A via the sub pipe rack 100, and cooled by the first refrigerant cooler group 22. Liquefied and supercooled. The further cooled precooling refrigerant is supplied to the precooling heat exchanger and the refrigerant cooling heat exchanger 8 of the precooling unit 2 across the second pipe rack 10B via the sub-pipe rack 100.
 液化部3で用いられる液化用冷媒は、液化部3の液化用熱交換器である極低温熱交換器(不図示)における熱交換にて気化した後、2台の第2の圧縮機31に並列に送気される。第2の圧縮機31にて昇圧された液化用冷媒は、第2のパイプラック10Bに送気され、第2の冷媒クーラー群32にて冷却され、液化される。第2の冷媒クーラー群32にて冷却された液化用冷媒は、さらに、冷媒冷却熱交換器8にて冷却されて、極低温熱交換器に供給される。 The liquefaction refrigerant used in the liquefaction unit 3 is vaporized by heat exchange in the ultra-low temperature heat exchanger (not shown), which is the liquefaction heat exchanger of the liquefaction unit 3, and then is transferred to the two second compressors 31. Air is sent in parallel. The liquefiing refrigerant boosted by the second compressor 31 is sent to the second pipe rack 10B, cooled by the second refrigerant cooler group 32, and liquefied. The liquefiing refrigerant cooled by the second refrigerant cooler group 32 is further cooled by the refrigerant cooling heat exchanger 8 and supplied to the ultra-low temperature heat exchanger.
 過冷却部4にて用いられる過冷却用冷媒は、過冷却部4の過冷却用熱交換器における熱交換にて気化した後、第3の圧縮機41に送気される。第3の圧縮機41にて昇圧された過冷却用冷媒は、第2のパイプラック10Bに送気され、第3の冷媒クーラー群42にて冷却、液化され、過冷却用熱交換器に供給される。 The supercooling refrigerant used in the supercooling unit 4 is vaporized by heat exchange in the supercooling heat exchanger of the supercooling unit 4, and then sent to the third compressor 41. The supercooling refrigerant boosted by the third compressor 41 is sent to the second pipe rack 10B, cooled and liquefied by the third refrigerant cooler group 42, and supplied to the supercooling heat exchanger. Will be done.
 上述の実施の形態に係るNG液化装置の効果について、図7に示す比較形態に係るNG液化装置の配置例と比較しながら説明する。比較形態に係るNG液化装置は、NG液化装置の中央に第1の冷媒クーラー群配置領域23を設けた第1のパイプラック10Aと、第2の冷媒クーラー群配置領域33を設けた第2のパイプラック10Bと、が互いに長辺の向きを揃えて並べて設けられている。そしてこれら第1及び第2のパイプラック10A、10Bの並びの一方側の長辺に沿って、ホットセクション1、重質分除去部20、及びエンドフラッシュ部40がこの順に設けられている。また第1及び第2のパイプラック10A、10Bの並びの他方側の長辺に沿って、ガスタービンコンプレッサー9、予冷部2、液化部3、冷媒冷却熱交換器8、及びガスタービンコンプレッサー9がこの順に設けられている。 The effect of the NG liquefaction apparatus according to the above-described embodiment will be described while comparing with the arrangement example of the NG liquefaction apparatus according to the comparative embodiment shown in FIG. The NG liquefaction apparatus according to the comparative embodiment has a first pipe rack 10A provided with a first refrigerant cooler group arrangement region 23 in the center of the NG liquefaction apparatus, and a second pipe rack 10A provided with a second refrigerant cooler group arrangement region 33. The pipe racks 10B and the pipe racks 10B are provided side by side with their long sides aligned with each other. A hot section 1, a heavy weight removing section 20, and an end flush section 40 are provided in this order along one long side of the arrangement of the first and second pipe racks 10A and 10B. Further, along the long side on the other side of the arrangement of the first and second pipe racks 10A and 10B, the gas turbine compressor 9, the precooling unit 2, the liquefaction unit 3, the refrigerant cooling heat exchanger 8, and the gas turbine compressor 9 are arranged. It is provided in this order.
 このような比較形態に係るNG液化装置のように、2本のパイプラック10A、10Bを並べて設けた場合、2本のパイプラック10A、10Bの間の間隔が狭くなってしまう。そのため2本のパイプラック10A、10B間に配管の設置などの作業を行おうとしたときに、パイプラック10A、10B間にクレーンを進入させることができない。このため、2本のパイプラック10A、10Bの並びの側方から大型のクレーンを用いパイプラック10A、10Bを越えて作業せざるを得ない場合がある。 
 このような問題に対して、本実施の形態に係るNG液化装置では、第1のパイプラック10Aと第2のパイプラック10Bとの間に圧縮領域5が設けられ、これらのパイプラック10A、10Bが離れて配置されている。このため、クレーン等が進入し作業を行う空間を十分に確保することができるため、建設作業がしやすく建設性が良くなる。
When two pipe racks 10A and 10B are provided side by side as in the NG liquefaction apparatus according to such a comparative embodiment, the distance between the two pipe racks 10A and 10B becomes narrow. Therefore, when trying to perform work such as installing a pipe between the two pipe racks 10A and 10B, the crane cannot enter between the pipe racks 10A and 10B. Therefore, it may be necessary to work over the pipe racks 10A and 10B by using a large crane from the side of the arrangement of the two pipe racks 10A and 10B.
In response to such a problem, in the NG liquefaction apparatus according to the present embodiment, a compression region 5 is provided between the first pipe rack 10A and the second pipe rack 10B, and these pipe racks 10A and 10B are provided. Are placed apart. For this reason, it is possible to secure a sufficient space for the crane or the like to enter and perform the work, so that the construction work is easy and the workability is improved.
 また一般に、NG液化装置を建設するにあたっては、NG液化装置の敷地の中央から周縁に向けて順番に機器が設置されていく。そのため図7に示す比較形態のNG液化装置では、まず中央に配置される2本のパイプラック10A、10Bが設置され、その後に周囲の各部の機器の設置を行う。 
 これに対して本実施の形態に係るNG液化装置では、NG液化装置の中央に第2のパイプラック10Bのみを配置している。このため、2本のパイプラック10A、10Bを設置する場合と比較して、1本のパイプラック10Bの設置に付随する作業は少ない。そのため、第2のパイプラック10Bの設置後、比較的短期間で周囲機器の設置を開始することができる。
In general, when constructing an NG liquefaction device, the devices are installed in order from the center to the periphery of the site of the NG liquefaction device. Therefore, in the NG liquefaction apparatus of the comparative form shown in FIG. 7, two pipe racks 10A and 10B arranged in the center are first installed, and then the equipment of each surrounding part is installed.
On the other hand, in the NG liquefaction apparatus according to the present embodiment, only the second pipe rack 10B is arranged in the center of the NG liquefaction apparatus. Therefore, as compared with the case where two pipe racks 10A and 10B are installed, the work associated with the installation of one pipe rack 10B is less. Therefore, after the installation of the second pipe rack 10B, the installation of the peripheral equipment can be started in a relatively short period of time.
 また図2を用いて概略の冷媒の流れを説明したように、本実施の形態に係るNG液化装置では、第1のパイプラック10Aにおいて、液化用冷媒や過冷却用冷媒の処理(第1の冷媒クーラー群22による冷却)は行わない。即ち、液化用冷媒や過冷却用冷媒に直接、関与しない第1のパイプラック10A(第1の冷媒クーラー配置領域)がこれらの冷媒の流れる経路から外れた位置に設けられる。そのため第1のパイプラック10Aには、これらの冷媒を流す配管が設置されたり、横断することがない。また図1に示すように第1のパイプラック10Aは、NGの処理経路からも外れるためNGを流通させる配管も設置されない。上述の構造により第1のパイプラック10Aに配置される配管が少なくなるため、既述の比較形態と比べて第1のパイプラック10Aを低くすることができる。これにより第1のパイプラック10Aの構成部材の使用量を少なくすることができ工事量を抑制することもできる。 Further, as described in the schematic flow of the refrigerant with reference to FIG. 2, in the NG liquefaction apparatus according to the present embodiment, the treatment of the liquefaction refrigerant and the supercooling refrigerant is performed in the first pipe rack 10A (first). Cooling by the refrigerant cooler group 22) is not performed. That is, the first pipe rack 10A (first refrigerant cooler arrangement region) that is not directly involved in the liquefaction refrigerant or the supercooling refrigerant is provided at a position deviated from the flow path of these refrigerants. Therefore, in the first pipe rack 10A, a pipe for flowing these refrigerants is not installed or crossed. Further, as shown in FIG. 1, since the first pipe rack 10A is also out of the NG processing path, no pipe for circulating NG is installed. Since the number of pipes arranged in the first pipe rack 10A is reduced due to the above-mentioned structure, the first pipe rack 10A can be lowered as compared with the above-described comparative embodiment. As a result, the amount of the constituent members of the first pipe rack 10A can be reduced, and the amount of construction work can be suppressed.
 なお高さが異なるパイプラックが設置されると、背の低いパイプラックに配置されたACHEから排出された温度の高い空気が、背の高いパイプラックに配置されたACHEの下面側から取り込まれて当該ACHEの冷却能力を低下させるHAR(Hot Air Recirculation)が発生するおそれがある。そこで、例えば背の低いパイプラックに設けられたACHEのダクトを高くするなど、高さの異なるパイプラック間でACHEの空気の排出口の高さが揃うような対策を講じてもよい。 When pipe racks with different heights are installed, the hot air discharged from the ACHE arranged in the short pipe rack is taken in from the lower surface side of the ACHE arranged in the tall pipe rack. HAR (Hot Air Recirculation) that reduces the cooling capacity of the ACHE may occur. Therefore, measures may be taken so that the heights of the air outlets of the ACHE are aligned between the pipe racks having different heights, for example, by raising the duct of the ACHE provided in the short pipe rack.
 さらに本実施の形態のNG液化装置では、第1のパイプラック10Aに配置される配管が少なくなることで第1のパイプラック10Aの風通しが良くなり、ACHEが空気を吸引しやすくなるためACHEの空気の吸引量が安定する。これによりACHEを含む冷媒クーラー群22の冷却効率が安定する。 Further, in the NG liquefaction apparatus of the present embodiment, the number of pipes arranged in the first pipe rack 10A is reduced, so that the ventilation of the first pipe rack 10A is improved and the ACHE easily sucks air. The amount of air sucked is stable. As a result, the cooling efficiency of the refrigerant cooler group 22 including ACHE is stabilized.
 また比較形態に係るNG液化装置においては、2つ並べて配置されたパイプラック10A、10Bと、気化した予冷用冷媒や液化用冷媒が流れる大口径配管とを交差させないことにより、パイプラック10A、10Bの高背化を抑制していた。この結果、例えば図7に示すように圧縮機21、31と予冷部2、及び液化部3とがパイプラック10A、10Bの長手方向に離れて配置されることもあった。この場合には図7に示すように冷媒を流す距離が長くなり配管長が長くなることで材料や工事量が増える。特に圧縮機21、31と予冷部2、及び液化部3とを接続する配管は径が太く、この配管が伸びることで、配管材料や工事量が大きく増加する。 Further, in the NG liquefaction apparatus according to the comparative embodiment, the pipe racks 10A and 10B arranged side by side are not crossed with the large-diameter pipe through which the vaporized precooling refrigerant and the liquefaction refrigerant flow. Was suppressing the increase in height. As a result, for example, as shown in FIG. 7, the compressors 21 and 31, the precooling section 2 and the liquefiing section 3 may be arranged apart from each other in the longitudinal direction of the pipe racks 10A and 10B. In this case, as shown in FIG. 7, the distance through which the refrigerant flows becomes long and the pipe length becomes long, so that the material and the amount of construction work increase. In particular, the pipe connecting the compressors 21 and 31 to the precooling unit 2 and the liquefied unit 3 has a large diameter, and the extension of this pipe greatly increases the piping material and the amount of construction work.
 これに対して本実施の形態に係るNG液化装置は、第1及び第2の圧縮機21、31が配置される圧縮領域5と、予冷部2、及び液化部3が配置される冷却領域6と、を第2のパイプラック10B(第2の冷媒クーラー群配置領域33)の長辺を挟んで対向するように配置している。そのため圧縮機21、31と予冷部2、及び液化部3との距離が近く、配管を短くすることができるため、材料や工事量の増加を抑制することができる。 On the other hand, in the NG liquefaction apparatus according to the present embodiment, the compression region 5 in which the first and second compressors 21 and 31 are arranged, and the cooling region 6 in which the precooling unit 2 and the liquefaction unit 3 are arranged. And are arranged so as to face each other across the long side of the second pipe rack 10B (second refrigerant cooler group arrangement region 33). Therefore, the distances between the compressors 21 and 31 and the precooling section 2 and the liquefiing section 3 are short, and the piping can be shortened, so that an increase in the amount of materials and construction work can be suppressed.
 ここで既述のように、図7に示す比較形態に係るNG液化装置においては、大口径配管をパイプラック10A、10Bと交差させない機器配置を選択することにより、パイプラック10A、10Bの高背化を抑制していた。 
 これに対して図2に示すように、第2のパイプラック10Bの長辺を挟んで、圧縮領域5と冷却領域6との少なくとも一部を対向させて配置した本例のNG液化装置では、例えば気化した冷媒が流れる大口径配管が、第2のパイプラック10Bを横切る配置となってしまう。 
As described above, in the NG liquefaction apparatus according to the comparative embodiment shown in FIG. 7, the height of the pipe racks 10A and 10B is increased by selecting the equipment arrangement in which the large-diameter pipes do not intersect with the pipe racks 10A and 10B. It was suppressing the conversion.
On the other hand, as shown in FIG. 2, in the NG liquefaction apparatus of this example, in which at least a part of the compression region 5 and the cooling region 6 are arranged so as to face each other with the long side of the second pipe rack 10B interposed therebetween. For example, a large-diameter pipe through which vaporized refrigerant flows is arranged to cross the second pipe rack 10B.
 この点につき発明者らは、図3に示すように、例えば予冷部2側の熱交換器200から伸び、第2のパイプラック10Bを短手方向に横断する最も口径の大きな配管201を、略直管状に構成することにより、当該配管201を横断させない比較形態と同様にパイプラックの高さを低くすることができる。
 一方、大口配管と他の配管の干渉を避けて大口径配管を屈曲して配置する場合、資材使用量が増え、パイプラックが高くなるため建設が複雑となる。本発明の配管201は略直管状であり、このような問題は生じない。
In this regard, as shown in FIG. 3, the inventors omit, for example, the pipe 201 having the largest diameter extending from the heat exchanger 200 on the precooling portion 2 side and crossing the second pipe rack 10B in the lateral direction. By forming the pipe rack in a straight tubular shape, the height of the pipe rack can be lowered as in the comparative mode in which the pipe 201 is not traversed.
On the other hand, when the large-diameter pipe is bent and arranged while avoiding the interference between the large-diameter pipe and other pipes, the amount of materials used increases and the pipe rack becomes expensive, which complicates the construction. The pipe 201 of the present invention has a substantially straight tubular shape, and such a problem does not occur.
 以上に説明した特徴を備える本実施の形態に係るNG液化装置によれば、比較形態に係るNG液化装置と同様に図1に示す各部を配置した構成(図7の比較形態に対して、ホットセクション1を図1と同様の配置にするとともに、図1と同様の過冷却部4、第3の圧縮機41、第3の冷媒クーラー群42を設けた3冷媒を用いてNGを液化する構成)と比較して、総配管長を9%ほど短くできるという計算結果が得られた。 According to the NG liquefaction apparatus according to the present embodiment having the features described above, each part shown in FIG. 1 is arranged in the same manner as the NG liquefaction apparatus according to the comparative embodiment (compared to the comparative embodiment shown in FIG. 7). Section 1 is arranged in the same manner as in FIG. 1, and NG is liquefied using three refrigerants provided with the same supercooling unit 4, the third compressor 41, and the third refrigerant cooler group 42 as in FIG. ), The calculation result that the total pipe length can be shortened by about 9% was obtained.
 ここで、本例にかかるNG液化装置は、過冷却部4を備えていなくてもよい。図4は、このようなNG液化装置を示している。図1に示したNG液化装置と比較して、第3の圧縮機41及び、過冷却部4が設けられておらず、第3の圧縮機41及び、過冷却部4が設けられていた個所にホットセクション1が設けられている点が異なる。 
 この例においても、(1)第1の冷媒クーラー群配置領域23と第2の冷媒クーラー群配置領域33とを離して配置し、(2)圧縮領域5と、冷却領域6との少なくとも一部が、第2のパイプラック10Bの長辺を挟んで互いに対向する位置に設けることにより、既述の実施形態と同様の効果が得られる。
 また図5に示すように第1の冷媒クーラー群配置領域23を上面から見て長方形に整列配置された2本の第1のパイプラック10Aに分けて設け、互いの長辺を同じ方向に向け、短辺方向に隣り合って配置してもよい。
Here, the NG liquefaction device according to this example does not have to include the supercooling unit 4. FIG. 4 shows such an NG liquefaction device. Compared to the NG liquefaction apparatus shown in FIG. 1, the location where the third compressor 41 and the supercooling unit 4 were not provided and the third compressor 41 and the supercooling unit 4 were provided. The difference is that the hot section 1 is provided in the.
Also in this example, (1) the first refrigerant cooler group arrangement region 23 and the second refrigerant cooler group arrangement region 33 are arranged apart from each other, and (2) at least a part of the compression region 5 and the cooling region 6. However, by providing the second pipe rack 10B at positions facing each other with the long side sandwiched between them, the same effect as that of the above-described embodiment can be obtained.
Further, as shown in FIG. 5, the first refrigerant cooler group arrangement region 23 is divided into two first pipe racks 10A arranged in a rectangular shape when viewed from the upper surface, and the long sides of the first pipe racks 10A are oriented in the same direction. , May be arranged next to each other in the short side direction.
 さらに本例かかるNG液化装置において、第1の冷媒クーラー群配置領域23は、その長辺が、圧縮領域5を含む矩形状領域の前記第2の冷媒クーラー群配置領域33の長辺と対向する一辺とは異なる辺と対向する位置に配置されていればよい。例えば図6に示すように、各冷媒クーラー群配置領域23、33の長辺が圧縮領域5を含む矩形状領域の共通の一角(図6に示す矩形上領域の右下の角)を挟むように第1の冷媒クーラー群配置領域23と、第2の冷媒クーラー群配置領域33と、を配置してもよい。 Further, in the NG liquefaction apparatus of this example, the long side of the first refrigerant cooler group arrangement region 23 faces the long side of the second refrigerant cooler group arrangement region 33 of the rectangular region including the compression region 5. It suffices if it is arranged at a position facing a side different from one side. For example, as shown in FIG. 6, the long sides of the refrigerant cooler group arrangement regions 23 and 33 sandwich a common corner of the rectangular region including the compression region 5 (the lower right corner of the rectangular upper region shown in FIG. 6). The first refrigerant cooler group arrangement region 23 and the second refrigerant cooler group arrangement region 33 may be arranged.
2       予冷部
3       液化部
5       圧縮領域
6       冷却領域
21      第1の圧縮機
23      第1の冷媒クーラー群配置領域
31      第2の圧縮機
33      第2の冷媒クーラー群配置領域
2 Precooling unit 3 Liquefaction unit 5 Compression area 6 Cooling area 21 First compressor 23 First refrigerant cooler group arrangement area 31 Second compressor 33 Second refrigerant cooler group arrangement area

Claims (6)

  1.  天然ガスを液化する天然ガス液化装置において、
     予冷用冷媒を用い、前記天然ガス液化装置に供給された天然ガスを予冷する予冷用熱交換器を含む予冷部と、液化用冷媒を用い前記予冷された後の天然ガスを液化する液化用熱交換器を含む液化部と、が配置された冷却領域と、
     気化した前記予冷用冷媒を圧縮する第1の圧縮機と、気化した前記液化用冷媒を圧縮する第2の圧縮機と、が配置された圧縮領域と、
     前記第1の圧縮機にて圧縮された予冷用冷媒を冷却する空冷式クーラー群が、上面から見て長方形に整列配置された第1の冷媒クーラー群配置領域と、
     前記第2の圧縮機にて圧縮された液化用冷媒を冷却する空冷式クーラー群が、上面から見て長方形に整列配置された第2の冷媒クーラー群配置領域と、を備え、
     前記冷却領域と、前記圧縮領域と、の少なくとも一部が前記第2の冷媒クーラー群配置領域の前記長方形の長辺を挟んで互いに対向する位置に配置されたことと、
     前記第1の冷媒クーラー群配置領域は、その長辺が、前記圧縮領域を含む矩形状領域の前記第2の冷媒クーラー群配置領域の長辺と対向する一辺とは異なる辺と対向する位置に配置されたことと、を特徴とする天然ガス液化装置。
    In a natural gas liquefaction device that liquefies natural gas
    A precooling unit including a precooling heat exchanger that precools the natural gas supplied to the natural gas liquefaction apparatus using a precooling refrigerant, and a liquefaction heat that liquefies the precooled natural gas using a liquefaction refrigerant. The liquefied part including the exchanger, the cooling area where the exchanger is arranged, and
    A compression region in which a first compressor for compressing the vaporized precooling refrigerant and a second compressor for compressing the vaporized liquefaction refrigerant are arranged.
    The air-cooled cooler group for cooling the precooling refrigerant compressed by the first compressor is arranged in a rectangular shape when viewed from the upper surface, and the first refrigerant cooler group arrangement region.
    The air-cooled cooler group for cooling the liquefied refrigerant compressed by the second compressor includes a second refrigerant cooler group arrangement region arranged in a rectangular shape when viewed from the upper surface.
    At least a part of the cooling region and the compression region were arranged at positions facing each other with the long side of the rectangle of the second refrigerant cooler group arrangement region interposed therebetween.
    The first refrigerant cooler group arrangement region is located at a position where the long side of the first refrigerant cooler group arrangement region faces a side different from the long side of the second refrigerant cooler group arrangement region of the rectangular region including the compression region. A natural gas liquefaction device that is characterized by being placed.
  2.  前記第1の冷媒クーラー群配置領域と、第2の冷媒クーラー群配置領域と、は、前記矩形状領域を挟んで互いに対向するように配置されたことを特徴とする請求項1に記載の天然ガス液化装置。 The natural gas according to claim 1, wherein the first refrigerant cooler group arrangement region and the second refrigerant cooler group arrangement region are arranged so as to face each other with the rectangular region interposed therebetween. Gas liquefier.
  3.  前記第1の冷媒クーラー群配置領域と、第2の冷媒クーラー群配置領域と、は、各冷媒クーラー群配置領域の長辺が前記矩形状領域の共通の一角を挟む2つの辺と各々対向するように配置されたことを特徴とする請求項1に記載の天然ガス液化装置。 The first refrigerant cooler group arrangement region and the second refrigerant cooler group arrangement region each have a long side of each refrigerant cooler group arrangement region facing two sides sandwiching a common corner of the rectangular region. The natural gas liquefaction apparatus according to claim 1, wherein the natural gas liquefaction apparatus is arranged in such a manner.
  4.  過冷却用冷媒を用い前記液化した天然ガスを過冷却する過冷却用熱交換器を含む過冷却部と、前記過冷却用熱交換器にて気化した液化用冷媒を圧縮する第3の圧縮機と、が配置されたことを特徴とする請求項1に記載の天然ガス液化装置。 A supercooling unit including a supercooling heat exchanger that supercools the liquefied natural gas using a supercooling refrigerant, and a third compressor that compresses the liquefied refrigerant vaporized by the supercooling heat exchanger. The natural gas liquefaction apparatus according to claim 1, wherein the and is arranged.
  5.  前記第1の冷媒クーラー群配置領域は、上面から見て長方形に整列配置された2つの冷媒クーラー群配置領域に分けて設けられ、
     前記2つの冷媒クーラー群配置領域は、互いの長辺を同じ方向に向け、短辺方向に隣り合って配置されたことを特徴とする請求項1に記載の天然ガス液化装置。
    The first refrigerant cooler group arrangement region is divided into two refrigerant cooler group arrangement regions arranged in a rectangular shape when viewed from the upper surface.
    The natural gas liquefaction apparatus according to claim 1, wherein the two refrigerant cooler group arrangement regions are arranged adjacent to each other in the short side direction with their long sides facing the same direction.
  6.  前記第1の圧縮機を駆動する駆動機と、前記第2の圧縮機を駆動する駆動機と、が共通であることを特徴とする請求項1に記載の天然ガス液化装置。 The natural gas liquefaction apparatus according to claim 1, wherein the drive for driving the first compressor and the drive for driving the second compressor are common.
PCT/JP2019/039815 2019-10-09 2019-10-09 Natural gas liquefying apparatus WO2021070282A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/639,570 US20220290917A1 (en) 2019-10-09 2019-10-09 Natural gas liquefying apparatus
JP2021551003A JP7313459B2 (en) 2019-10-09 2019-10-09 natural gas liquefier
PCT/JP2019/039815 WO2021070282A1 (en) 2019-10-09 2019-10-09 Natural gas liquefying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039815 WO2021070282A1 (en) 2019-10-09 2019-10-09 Natural gas liquefying apparatus

Publications (1)

Publication Number Publication Date
WO2021070282A1 true WO2021070282A1 (en) 2021-04-15

Family

ID=75437050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039815 WO2021070282A1 (en) 2019-10-09 2019-10-09 Natural gas liquefying apparatus

Country Status (3)

Country Link
US (1) US20220290917A1 (en)
JP (1) JP7313459B2 (en)
WO (1) WO2021070282A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506064A (en) * 2003-09-17 2007-03-15 エア プロダクツ アンド ケミカルズ インコーポレイテッド Hybrid gas liquefaction cycle with multiple expanders
JP4912564B2 (en) * 2003-11-18 2012-04-11 日揮株式会社 Gas liquefaction plant
US20140053599A1 (en) * 2012-08-22 2014-02-27 Woodside Energy Technologies Pty Ltd. Modular LNG Production Facility
JP2018150930A (en) * 2017-01-24 2018-09-27 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. Compression train including one centrifugal compressor, and lng plant
JP2018185102A (en) * 2017-04-26 2018-11-22 千代田化工建設株式会社 Construction method of natural gas liquefaction plant
WO2018235267A1 (en) * 2017-06-23 2018-12-27 日揮株式会社 Natural gas liquefaction device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3359896A1 (en) * 2015-10-06 2018-08-15 Exxonmobil Upstream Research Company Modularization of a hydrocarbon processing plant
KR20180064471A (en) * 2015-10-06 2018-06-14 엑손모빌 업스트림 리서치 캄파니 Integrated Cooling and Liquefaction Modules in Hydrocarbon Processing Plants
ITUB20160839A1 (en) * 2016-02-18 2017-08-18 Nuovo Pignone Tecnologie Srl COMPLETE TURBOMACCHINE MODULE WITH SECONDARY REFRIGERATORS FOR THE TURBINE INTER-REFRIGERATOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506064A (en) * 2003-09-17 2007-03-15 エア プロダクツ アンド ケミカルズ インコーポレイテッド Hybrid gas liquefaction cycle with multiple expanders
JP4912564B2 (en) * 2003-11-18 2012-04-11 日揮株式会社 Gas liquefaction plant
US20140053599A1 (en) * 2012-08-22 2014-02-27 Woodside Energy Technologies Pty Ltd. Modular LNG Production Facility
JP2018150930A (en) * 2017-01-24 2018-09-27 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. Compression train including one centrifugal compressor, and lng plant
JP2018185102A (en) * 2017-04-26 2018-11-22 千代田化工建設株式会社 Construction method of natural gas liquefaction plant
WO2018235267A1 (en) * 2017-06-23 2018-12-27 日揮株式会社 Natural gas liquefaction device

Also Published As

Publication number Publication date
US20220290917A1 (en) 2022-09-15
JP7313459B2 (en) 2023-07-24
JPWO2021070282A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
US10663220B2 (en) Multiple pressure mixed refrigerant cooling process and system
US10323880B2 (en) Mixed refrigerant cooling process and system
US10030908B2 (en) Natural gas liquefaction process
US10753676B2 (en) Multiple pressure mixed refrigerant cooling process
WO2016001952A1 (en) Air-cooled type liquefied gas production facility
US10852059B2 (en) Multiple pressure mixed refrigerant cooling system
WO2016024372A1 (en) Liquefied gas production device
EP3604993A2 (en) Balancing power in split mixed refrigerant liquefaction system
WO2019097571A1 (en) Natural gas liquification device, and natural gas liquification device design method
WO2021070282A1 (en) Natural gas liquefying apparatus
US11408677B2 (en) Module for natural gas liquefier apparatus and natural gas liquefier apparatus
JP7313466B2 (en) natural gas liquefier
AU2017419936B2 (en) Natural gas liquefaction device
WO2020075295A1 (en) Natural gas liquefaction device
JP2020159647A (en) Natural gas liquefaction device
WO2020021668A1 (en) Natural gas treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948336

Country of ref document: EP

Kind code of ref document: A1