WO2021069763A1 - Sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono - Google Patents

Sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono Download PDF

Info

Publication number
WO2021069763A1
WO2021069763A1 PCT/ES2019/070679 ES2019070679W WO2021069763A1 WO 2021069763 A1 WO2021069763 A1 WO 2021069763A1 ES 2019070679 W ES2019070679 W ES 2019070679W WO 2021069763 A1 WO2021069763 A1 WO 2021069763A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule
carbon dioxide
tank
vertical
electrical energy
Prior art date
Application number
PCT/ES2019/070679
Other languages
English (en)
French (fr)
Inventor
Sergio Rafael VEGA CAMA
Original Assignee
Vega Cama Sergio Rafael
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Cama Sergio Rafael filed Critical Vega Cama Sergio Rafael
Priority to PCT/ES2019/070679 priority Critical patent/WO2021069763A1/es
Publication of WO2021069763A1 publication Critical patent/WO2021069763A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • F03B17/025Other machines or engines using hydrostatic thrust and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a system for generating electrical energy from a gravitational force obtained in a carbon dioxide pumping process.
  • the electrical power generation system of the invention is adapted to be implemented in a Carbon Capture and Storage or CAC (Carbon Capture and Storage or CCS) facility.
  • CAC Carbon Capture and Storage or CCS
  • CO2 carbon dioxide
  • Carbon dioxide storage can be carried out in depleted salt or hydrocarbon (oil or gas) reservoirs, or in rock formations under underground basalt rock beds, as well as in underwater cavities where carbon dioxide in a liquid state it could settle to assimilate with the rock of the seabed and over time form carbonates, or its use has even been tested in empty oil tanks located under the seabed to inject carbon dioxide in a liquid state.
  • the carbon dioxide molecule weighs approximately 3.67 times that of carbon, and 2.75 times that of methane because it incorporates diatomic oxygen in combustion, which means more energy in transport to dislodge carbon dioxide than it supposed the feeding of the fuel.
  • carbon dioxide is raised to the supercritical condition (which is where the gaseous and liquid states coexist), which is reached at a pressure from 80 bars and at a temperature of 31 ° C. In this state, carbon dioxide is quasi-liquid, maintaining a density close to that of a liquid while the viscosity is that of a gas, which allows transport in a concentrated mass at low resistance, with the consequent energy savings.
  • the density of carbon dioxide at the supercritical point is 660 Kg / m 3 or 65% the density of water.
  • renewable energies obtained from natural sources are abundant and inexhaustible, but have the disadvantage that their energy production is irregular due to the variable weather conditions themselves.
  • Patent application WO2015027113 A1 refers to a system and a method for storing potential energy, capable of generating electrical energy from the force of gravity, which comprises a sliding piston inside a hollow cylinder, whose walls define a volume internal containing a liquid, a sealing gasket arranged between the piston and the cylinder walls, and a liquid conduit in communication with the cylinder.
  • the piston divides the interior volume into a first upper chamber and a second lower chamber, both chambers being interconnected through the conduit.
  • the system further comprises a reversible pump / turbine operatively coupled in the liquid conduit to drive a reversible motor / generator, and control valves.
  • the piston is capable of moving within the cylinder between a raised position to a lower position.
  • the turbine stops working so that the generated energy is used to drive the pump motor which in turn drives the liquid through the conduit from the upper chamber to the lower chamber, thus increasing the pressure in the lower chamber under the piston.
  • the pressure difference causes the piston to rise to the raised position, storing potential energy in the system.
  • the pump then stops working so that the potential energy stored allows the piston to descend, the weight of which drives the liquid into the conduit from the lower chamber to the upper chamber so that the liquid flows through the turbine thus driving the generator to produce electrical energy, which can be used in a power plant.
  • This system can be used, for example, to store potential energy that has been generated during the hours of lower demand for electricity consumption.
  • a system for generating electrical energy from a gravitational force, obtained in a process of pumping carbon dioxide comprises at least one electricity generating unit comprising
  • a capsule housed inside the vertical conduit configured with the ability to move with a reciprocating movement between a lifting position and a lowering position of the vertical conduit, the capsule being provided with a tank for loading a volume of carbon dioxide ;
  • - Loading means configured to inject a volume of carbon dioxide inside the capsule reservoir, when said capsule is in the lifting position, which ensures a downward movement of the capsule towards its lowering position by effect of a downward thrust force exerted on the capsule;
  • - discharge means configured to evacuate the volume of carbon dioxide contained in the capsule reservoir, when said capsule is in the lowering position, which provides an upward movement of the capsule towards its raised position, by effect an upward thrust force exerted on the capsule with the ability to counteract the force of gravity;
  • the system is adapted to be implemented in a carbon capture and storage facility, of the type comprising a feed line arranged at a higher level that conducts the carbon dioxide captured from the earth's surface towards an evacuation line arranged at a lower level that injects carbon dioxide into an underground cavity, located under the marine mantle or the terrestrial mantle for its confinement; the loading means for filling the capsule being connected to said supply line and the unloading means for emptying the capsule being connected to said evacuation line, so that the capsule during its descent phase operates as a means of transport of carbon dioxide for subsequent confinement. Consequently, the arrangement of the system of the invention makes it possible to link in symbiosis the process of lowering the capsule and the process of underground transport of carbon dioxide en route to its confinement, in order to take advantage of the potential energy obtained to generate electricity.
  • the very descent of the capsule filled with the carbon dioxide charge is used to in turn transport the carbon dioxide to a lower level located deep within underground cavities, thus helping to reduce the problem of contamination. that produces the carbon dioxide released into the atmosphere.
  • system of the invention can be implemented in a simple structuring way, which makes it possible to save energy costs and reduce operating costs.
  • the electrical energy generation system is characterized in that the at least one electricity generating unit is configured so that
  • the vertical conduit is arranged submerged below sea level, so that it contains a volume of water within it, since its respective upper and lower ends are in communication with the seawater mass that surrounds it;
  • the capsule being arranged submerged in the interior volume of water of the vertical conduit, and provided with a watertight hollow casing that houses inside the tank for charging the carbon dioxide in a preferably liquid state;
  • the loading means being configured by a supply conduit provided with a non-return loading valve located on the upper part of the vertical conduit, and adapted to be coupled to a loading mouth of the tank when the capsule is in its lifting position, so that the filling of the tank with the carbon dioxide charge provides a controlled lowering of the capsule towards its lowering position due to the effect of a driving force exerted by the energy conversion means;
  • the discharge means being configured by an evacuation conduit provided with a non-return discharge valve located under the lower part of the vertical conduit, and adapted to be coupled to an outlet mouth of the tank when the capsule is in its lowering position, so that the emptying of the tank provides a controlled ascent of the capsule towards its lifting position by the effect of a hydrostatic thrust force capable of counteracting the force of gravity;
  • the energy conversion means being configured by at least one hydrostatic turbine coupled on its inlet side to the upper part of the vertical duct by means of a bypass pipe and coupled on its outlet side to a pipe that empties into the seawater body , so that the turbine is capable of receiving the pressure of the volume of water displaced by the empty capsule during its upward movement due to the hydrostatic thrust force, and a driving shaft of the turbine being mechanically connected to an electric power generator to generate electricity in each lifting movement of the capsule.
  • the shell of the capsule is provided with a rigid wall provided with a peripheral jacket containing compressed air to thermally insulate the reservoir.
  • the peripheral jacket comprises at least one through hole in communication with the reservoir to form a closed air circuit, so that during the carbon dioxide emptying operation, the air contained in the peripheral jacket is able to occupy the interior space of Deposit; and so that during the filling operation, the carbon dioxide is able to displace the air contained in the tank towards the peripheral jacket.
  • the carbon dioxide is injected into the tank in a liquid state, and previously subjected to a cooling operation to increase its density so that, taking into account the weight of the casing of the capsule and the weight of the liquid carbon dioxide inside, allow to keep the capsule in neutral flotation, that is, with the capsule immobile, without descending due to the weight or ascending due to support.
  • the hydraulic turbine is capable of operating with the motor of the electric power generator rotating in the opposite direction, acting in pump or propeller mode, to exert a motive force capable of driving a stream of water in a downward direction at a speed such that it ensures the controlled descent of the filled capsule in neutral floating, in order to avoid the impact of the capsule when it reaches the descent position, the energy consumed being of a much lower order of magnitude compared to that obtained from the turbine.
  • the descent speed is limited to a maximum of 1 m / s, in order to keep the friction losses of the water with the internal wall of the duct practically insignificant, thus producing no more than dynamic pressure.
  • said bypass pipe comprises a horizontal section connected to the hydraulic turbine and a vertical section connected to the upper part of the vertical conduit and provided with an interior housing intended to receive the capsule in its raised position during the loading operation of the carbon dioxide. carbon, said housing being provided with an orifice connected at its upper part with the charging valve of the carbon dioxide supply line.
  • the system comprises a lower receptacle arranged under the lower part of the vertical duct, intended to support the capsule in its lowering position during the operation of carbon dioxide discharge, said receptacle being provided with an orifice connected at the bottom with the discharge valve of the carbon dioxide evacuation conduit.
  • the capsule is configured by a cylindrical central portion closed at both ends by two hemispherical portions.
  • the vertical conduit is anchored at its lower part by means of one or more tie rods to the rocky mantle of the seabed.
  • the vertical duct is formed by several connected cylindrical sections contiguous to each other.
  • the riser can be made of a textile material.
  • the vertical duct includes an external structure formed by spirals along its length, in order to maintain its hydrodynamic stability against marine currents, avoiding the occurrence of the phenomenon of vortex detachment that can lead to resonance of the assembly. .
  • the electrical energy generation system is characterized in that the at least one electricity generating unit is configured so that
  • the vertical duct is arranged underground below the level of the earth's crust, so that it contains inside a volume of air at atmospheric pressure as its upper end is open to the atmosphere;
  • the capsule being housed within the vertical conduit, and provided with a watertight hollow casing that houses inside the tank for the charge of carbon dioxide in a preferably semi-liquid state;
  • the loading means being configured by a supply conduit provided with a non-return loading valve located on the upper part of the vertical conduit, and adapted to be coupled to a loading mouth of the tank when the capsule is in its position of elevation, so that the filling of the tank with the carbon dioxide charge provides a controlled descent of the capsule towards its position of descent under the effect of the force of gravity;
  • the discharge means being configured by an evacuation conduit provided with a non-return discharge valve located under the lower part of the vertical conduit, and adapted to be coupled to an outlet mouth of the tank when the capsule is in its lowering position, so that the emptying of the tank provides a controlled ascent of the capsule towards its lifting position by the effect of a mechanical traction force exerted by the energy conversion means, capable of counteracting the force of gravity;
  • the energy conversion means being configured by at least one winch arranged above the upper part of the vertical conduit, provided with a tie rod wound to the rotating axis of the winch and coupled at its free end to the upper part of the capsule shell by means of an anchoring element, so that the winch is able to receive the tensile force of the tie rod generated by the weight of the capsule filled with the carbon dioxide charge during its downward movement due to the force of gravity, and being a driving shaft of the winch mechanically connected to an electric power generator, through a gear train that acts as a speed reducer, to generate electricity in each lowering movement of the capsule.
  • the winch is capable of operating with the motor of the electric power generator rotating in the opposite direction, in order to exert a traction force capable of lifting the empty capsule from the lowering position to the lifting position, the energy being negligible consumed.
  • the capsule comprises bearings intended to slide on complementary longitudinal rails arranged on the inner wall of the vertical conduit, in order to maintain the stability of the capsule during its reciprocating movement along the vertical conduit.
  • the system can comprise multiple generating units arranged so that the respective capsules are synchronized according to a sequential order of load, in order to multiply the productive capacity and in turn generate continuity in the electrical supply. .
  • - Fig. 1 is a schematic view of the system of the invention according to a first preferred embodiment, referring to the underwater case;
  • - Figs. 2 and 3 are respectively perspective and top plan views of the vertical duct, showing the loading point of the carbon dioxide reservoir;
  • FIG. 4a and 4b are schematic views of the hydraulic turbine that acts in a reversible way connected to the upper part of the vertical duct, showing by means of arrows its operation in water circulation mode with a propeller during the descent of the capsule, and in electrical generation mode during the ascent of the capsule, respectively;
  • FIG. 5a and 4b are schematic views of the system showing by means of arrows the water circulation through the vertical duct, the turbine operating in the propeller water circulation mode, and in electricity generation mode, respectively;
  • Figs. 6a to 6c show the position of the capsule through the vertical conduit, in its raised position, in an intermediate position, and in the lowered position housed in the discharge receptacle, respectively;
  • Fig. 7 is a top plan view of the receptacle that receives the capsule in the lowered position;
  • Fig. 8 is a schematic view of the system showing details of the carbon dioxide discharge operation for its confinement in an underground cavity under the marine mantle;
  • Fig. 9 is a schematic elevation view of a vertical duct showing its structural configuration;
  • Figs. 10a to 10c show different capsule geometries, according to a first spherical shape, a second shape with a cylindrical central section with two hemispherical ends, and a third shape similar to the second, but with a substantially greater length;
  • Fig. 11 is a schematic view of the capsule according to the geometry represented in Fig. 10b, showing the loading and unloading ports of the tank, and the peripheral pressure air jacket;
  • Fig. 12 is a schematic view of an operational sequence of a set of six generating units to ensure continuity of power supply
  • Fig. 13 is a schematic view of the system of the invention according to a second preferred embodiment, referring to the underground case;
  • FIG. 14 and 15 are respectively perspective and top plan views of the capsule in the raised position within the vertical conduit, showing the loading point of the carbon dioxide tank and the anchoring point of the winch strap;
  • Fig. 16 is a top perspective view of the tank in an intermediate position within the vertical conduit, showing the rails of the vertical conduit;
  • Figs. 17 and 18 are respectively perspective and bottom plan views of the capsule in the lowered position within the vertical conduit, showing the discharge point of the carbon dioxide reservoir; Y
  • FIGs. 19a and 19b are schematic views of a power room of the energy conversion means made up of a winch, a gear train and an electric power generator, arranged in the upper part of the vertical duct, showing by means of arrows the direction of the force on the strut in its operation in the power generation mode during the descent of the capsule and in the potential energy recovery mode during the ascent of the capsule, respectively.
  • a power generation system 1a, 1b is described electrical power from a gravitational force, obtained in a carbon dioxide pumping process.
  • the electric power generation system 1a, 1b of the invention is adapted to be implemented in a Carbon Capture and Storage or CAC (in English, Carbon Capture and Storage or CCS) facility, of the type comprising a supply line 8 arranged at an upper level that conducts the carbon dioxide captured from the earth's surface towards an evacuation line 9 arranged at a lower level that injects the carbon dioxide into an underground cavity 10, located under the mantle marine 11 (see figure 1) or the land cover 12 (see figure 13) for its confinement.
  • CAC Carbon Capture and Storage or CCS
  • FIG. 1 A first embodiment of the invention is shown in Figures 1 to 12, in which the electrical power generation system 1a is arranged in a submarine environment, as will be detailed below.
  • the system 1a may comprise one or more electricity generating units.
  • a single electricity generating unit comprising
  • a capsule 3 arranged submerged in the interior volume of water of the vertical conduit 2, configured with the ability to move with a reciprocating movement between a lifting position A and a lowering position B of the vertical conduit 2, the capsule 3 being provided with a tank 4 (see figure 11) for charging carbon dioxide in liquid state;
  • - Loading means 5 configured by a supply conduit 13 provided with a non-return loading valve 14 located on the upper part of the vertical conduit 2, and adapted to be coupled to a loading mouth 4a of the tank 4 when the capsule 3 is located in your position of elevation A, so that the filling of the tank 4 with the carbon dioxide charge provides a controlled descent of the capsule 3 towards its position of descent B by the effect of a motive force as will be explained later;
  • - Discharge means 6 configured by an evacuation conduit 15 provided with a non-return discharge valve 16 located under the lower part of the vertical conduit 2, and adapted to be coupled to a discharge mouth 4b of the tank 4 when the capsule 3 is in in its lowering position B, so that the emptying of the tank 4 provides a controlled ascent of the capsule 3 towards its lifting position A by the effect of a hydrostatic thrust force capable of counteracting the force of gravity; Y
  • - energy conversion means 7 configured by at least one hydrostatic turbine 17 coupled on its inlet side to the upper part of the vertical duct 2 by means of a bypass pipe 18 and coupled on its outlet side to a pipe 19 that empties into the mass of seawater S, so that the turbine 17 is able to receive the pressure of the volume of water displaced by the empty capsule 3 during its upward movement due to the effect of the hydrostatic thrust force (see Figures 4b and 5b), and being a turbine drive shaft 17 mechanically connected to an electric power generator 20 to generate electricity in each lifting movement of the capsule 3.
  • the system is integrated into a carbon capture and storage facility, so that the loading means 5 for filling the capsule 3 are connected to the power line 8 of the facility and the means for discharge 6 for emptying the capsule 3 are connected to the evacuation line 9 of the installation.
  • the capsule 3 during its descent phase operates as a means of transporting carbon dioxide for its subsequent confinement.
  • said bypass pipe 18 comprises a horizontal section connected to the hydraulic turbine 17 and a vertical section connected to the upper part of the vertical conduit 2 and provided of an inner housing designed to receive the capsule 3 in its raised position A during the carbon dioxide loading operation, said housing being provided with an orifice 23 (see Figures 2 and 3) connected at the top with the valve of charge 14 of the supply line 13 of the carbon dioxide.
  • the system has a lower receptacle 24 arranged under the lower part of the vertical duct 2 (see Figures 1, 6c and 7), intended to support the capsule 3 in its lowering position B during the dioxide discharge operation. of carbon, said receptacle 24 being provided with an orifice 25 connected at its bottom with the discharge valve 16 of the carbon dioxide evacuation conduit 15 (see Figures 1 and 8).
  • the receptacle 24 is arranged spaced a predetermined distance below the lower part of the vertical duct 2 to ensure the evacuation of the volume of water displaced by the capsule 3 during its descent, which empties into the mass of seawater S.
  • the receptacle 24 is furthermore fixed to the rocky mantle of the seabed 11, and has lateral openings 24a to facilitate the expulsion of the water out of the receptacle 24 during the support of the capsule 3 thereon.
  • the capsule 3 is provided with a watertight hollow casing that houses the tank 4.
  • the carbon dioxide is charged through the loading mouth 4a located in its upper part.
  • the discharge of carbon dioxide is carried out through the discharge mouth 4b located in its lower part.
  • both inlet 4a and discharge 4b are provided with respective non-return valves (not shown).
  • the shell of the capsule 3 is provided with a rigid wall 21 provided with a peripheral jacket 22 that contains compressed air to thermally insulate the reservoir 4, as will be detailed later.
  • the peripheral sleeve 22 comprises at least one through hole (not shown) in communication with the tank 4 to form a closed air circuit, so that during the carbon dioxide emptying operation, the air contained in the peripheral jacket 22 is able to occupy the interior space of the tank 4; and so that during the filling operation, the carbon dioxide is able to displace the air contained in the tank 4 towards the peripheral jacket 22.
  • the carbon dioxide is injected into the tank 4 in a liquid state, and previously subjected to a cooling operation to increase its density so that, taking into account the weight of the capsule shell 3 and the weight of the dioxide of liquid carbon in its interior, allows the capsule 3 to be kept in neutral float, that is, with the capsule 3 immobile, without descending due to weight or ascending due to lift.
  • the hydraulic turbine 17 is capable of operating with the motor of the electric power generator 20 rotating in the opposite direction (see Figures 4a and 5a), acting in pump or propeller mode 17 '(in a hybrid impulse and reaction turbine, for example, Francis type, or reaction type, Kaplan type). This mode makes it possible to direct the descent in a controlled manner, canceling its inertia and avoiding an acceleration due to the weight of the capsule 3 that would cause an unwanted impact against the seabed.
  • a hybrid impulse and reaction turbine for example, Francis type, or reaction type, Kaplan type
  • the energy used to push the capsule 3 towards the bottom is exclusively due to the flow of the flow (kinetic energy, analogous to the propeller of a boat), which is much lower compared to that obtained in the ascent (see figures 4b and 5b) adding the pressure component, which is the energy contribution resulting from the lift force due to the difference in densities between water and air.
  • the inside diameter of the vertical conduit 2 is approximately the outside diameter of the capsule 3, there is a certain clearance defined by a ring of liquid around the capsule 3. As it descends, the capsule 3 pushes water downwards and also travels between the water, which flows in the opposite direction to the displacement of the capsule 3. The greater the thermal jump and the speed relative to water relative to capsule 3, the greater the convection heat dissipation.
  • the shell of the capsule 3 is provided with a sealed compressed air jacket 22 that runs along the entire inner perimeter of the tank 4 (see figure 11), which serves as a thermal insulator between the carbon dioxide (a about - 20 ° C for a density of 1057 kg / m 3 ) and the surrounding water (at about 15 ° C), taking into account the water as convective medium in the displacement of the capsule 3 throughout the descent, and that also confers a pressure gradient between the exterior and the interior, relieving stresses on the external wall 21 after the discharge of carbon dioxide at the underwater bottom (depths can be greater than 2.3 km, about 230 atmospheres).
  • the evacuation conduit 15 connects in turn with the evacuation line 9 belonging to the capture and storage facility, provided with an injection valve 9a for its entry into the underground cavity 10 confinement, pushed by the pressure of about 80 bars.
  • the same transport lines and valves known as “Christmas tree” valves, that were used for the extraction can be used. of oil, except that with the system of the invention they would work by reversing the direction of flow.
  • This type of valve 9a regulates the pressure and prevents seawater from entering the confinement cavity 10 and coming into contact with unextracted hydrocarbons.
  • a gate 17a for feeding the turbine 17 remains closed (see figures 4a and 4b), to keep the capsule 3 in position and prevent it from detaching before completely emptying the carbon dioxide content.
  • the vertical duct 2 is anchored by its lower part by means of one or more tie rods 26 to the rocky mantle of the seabed 11 (see figures 6c and 8), so that it remains extended, which conveniently allows its folding and transport from one project to another. .
  • the vertical duct 2 is made up of several cylindrical sections 2.1 to 2.n connected adjacent to each other, and can be manufactured from textile material, which is advantageous from the point of view of logistical and economic view. It is also envisaged that the textile material includes an outer structure formed by spirals 27 along the length of the vertical conduit 2, which provide rigidity and help to expand the vertical conduit 2 while maintaining the circular shape of the section. The main reason for adopting spirals 27 is, however, linked to the hydrodynamic stability against marine currents, preventing the phenomenon of vortex detachment that can lead to resonance of the whole from occurring.
  • Hydraulic power is essentially the product of pressure (intensity) and flow (quantity), both variables being reciprocal (power has two degrees of freedom; a fixed quantity can be obtained by decreasing one variable in the same proportion that the other is increased, and the opposite).
  • the lift force provides the difference in density between the surrounding medium (water) and the air inside the empty capsule 3 multiplied by the interior volume of the capsule 3 (since it is the buoyancy of the gas itself that exerts the force).
  • the spherical geometry also offers the minimum surface area for the same volume, which translates into less material (therefore also specific weight and cost) and less contact surface, thereby minimizing friction with water, which in turn it implies less heat losses by convection.
  • the capsule 3 has neutral floating, its displacement is practically with the water that surrounds it (as in a transmission belt), that is to say that the relative speed of the capsule 3 with the surrounding water is minimal, so that the effects of friction and forced convection are irrelevant (not the thermal gradient due to the internment space and the amount of material).
  • the sphere presents the problem that it can rotate freely in any axis, and since it is intended to keep the loading valves 14 and unloading 16 aligned on the vertical axis of the conduit 2, it is necessary to restrict the rotation on the two axes. different from vertical.
  • An ideal geometry is that which comprises a central cylindrical portion closed at both ends by two hemispherical portions (capsule 3b), as shown in Figures 10b and 11.
  • This geometry offers the best compromise, since it maintains an internment distance close to that of the sphere, but its moderate vertical elongation results in an increase in the angular moment of inertia that restricts the rotation in the transverse axes, sufficient to ensure verticality.
  • the system 1a can operate with multiple generating units so that the respective capsules 3 are synchronized according to a sequential load order, in order to multiply the productive capacity and in turn generate continuity in the supply. electric.
  • the respective capsules 3 within their vertical duct 2 have been schematically represented and the ascending or descending direction of each capsule 3 has been illustrated with arrows.
  • six generating units have been used, of which five operate ascending in sequential mode and one descending to regain its initial state.
  • Power is the product of pressure (intensity) and flow (quantity and movement).
  • the pressure is the result of the force concentrated in an area, therefore, the characterization of the capsule is elongated, in order to distribute the volume vertically (to influence the bearing force in a concentrated space).
  • the resulting manometric height, of 215 meters of water column, is typical of hydroelectric plants where impulse technology (pelton type turbines) or hybrid impulse and reaction technology (Francis type turbines, over reaction) prevail, which are characterized by operate with a high pressure to the turbine and little flow, as corresponds to a mountainous orography.
  • the flow is huge because it is a 2.5-kilometer water column, which is equivalent to operating a mega hydroelectric plant.
  • it is essentially a gravitationally inverted hydroelectric plant under the sea, with the possibility of sizing all the parameters (manometric height, flow and number of units) on a capital scale.
  • FIG. 13 to 19b A second embodiment of the invention is shown in Figures 13 to 19b, in which the electrical power generation system 1b is arranged in an underground environment, as will be detailed below.
  • the same numerical references have been used to identify those common elements of the system
  • the system 1b can comprise one or more electricity generating units.
  • a single electricity generating unit comprising
  • a capsule 3 housed inside the vertical conduit 2, configured with the ability to move with a reciprocating movement between a lifting position A and a lowering position B of the vertical conduit 2, the capsule 3 being provided with a watertight hollow casing that houses in its interior the tank 4 (see figure 14) for charging the carbon dioxide in a semi-liquid state;
  • - Loading means 5 configured by a supply conduit 13 provided with a non-return loading valve 14 located on the upper part of the vertical conduit 2, and adapted to be coupled to a loading mouth 4a of the tank 4 when the capsule 3 is located in its lifting position A, so that the filling of the tank 4 with the carbon dioxide charge provides a controlled descent of the capsule 3 towards its lowering position B under the effect of the force of gravity;
  • - Discharge means 6 configured by an evacuation conduit 15 provided with a non-return discharge valve 16 located under the lower part of the vertical conduit 2, and adapted to be coupled to a mouth of outlet 4b of the tank 4 when the capsule 3 is in its lowering position B, so that the emptying of the tank 4 provides a controlled ascent of the capsule 3 towards its lifting position A by the effect of a mechanical traction force capable of counteract the force of gravity; Y
  • - energy conversion means 7 configured by at least one winch 30 arranged above the upper part of the vertical duct 2, provided with a tie rod 31 wound to the rotating shaft of the winch 30 and coupled at its free end to the upper part of the shell of the capsule 3 by means of an anchoring element 32, so that the winch 30 is able to receive the traction force of the tie 31 generated by the weight of the capsule 3 filled with the carbon dioxide charge during its downward movement by effect of the force of gravity, and being a driving shaft of the winch 30 mechanically connected to an electric power generator 20, through a gear train 33 that acts as a speed reducer, to generate electricity in each lowering movement of capsule 3.
  • the winch 30 is capable of operating with the motor of the electric power generator 20 rotating in the opposite direction, in order to exert a traction force capable of lifting the empty capsule 3 from the lowering position B to the lifting position. A. Therefore, once the capsule 3 has been emptied, the motor of the winch 30 allows the capsule 3 to be raised, the energy consumed being negligible.
  • Figure 19a shows schematically by means of an arrow the direction of the traction force on the tie rod 31 of the winch 30 during the descent of the capsule 3 filled with the carbon dioxide charge due to the effect of the force of gravity to generate electricity
  • figure 19b the traction force on the tie rod 31 of the winch 30 during the ascent of the empty capsule 3 driven by the motor of the electric power generator 20 to recover the potential energy given up has been represented.
  • the capsule 3 comprises bearings 34 (see Figures 15 and 18) designed to slide on complementary longitudinal rails 35 arranged on the inner wall of the vertical duct 2 (see figure 16), in order to maintain the stability of the capsule 3 during its reciprocating movement along the vertical duct 2.
  • systems 1a, 1b fulfill the same function, dispense with a downstream transport line for the transport of carbon dioxide for its underground confinement, doing so by means of capsules 3 itinerant, which makes it possible to generate electricity by taking advantage of the potential energy that results from the vertical distance between the discharge point (valve 16) and the surface (land level or sea level).
  • the confinement of carbon dioxide takes place under an impermeable rocky mantle, typically at depths greater than one kilometer.
  • the idea is to transport the carbon dioxide up to the last valve 9a (see figure 8), located at the upper level of the marine 11 or terrestrial 12 rocky mantle, in the semi-liquid state with which it is transported in pipelines, but doing so by filling various 3 capsules descending and ascending in coordination.
  • the force is given by the floating of the air or vacuum inside the capsule 3, which makes it emerge through the surrounding, denser medium, displacing the column of water above it. Therefore, instead of mgh, the potential energy is expressed as Dr V gh, where Dr V are respectively the difference in density between the interior of capsule 3 (during the process of energy conversion, or ascent of capsule 3) and that of the surrounding medium, water, and the volume of the interior of capsule 3.
  • the mass for the underground case of the second embodiment is expressed also as a product of the density of carbon dioxide in the supercritical state (approximately 70% that of water) multiplied by the volume of the interior of the capsule 3: p ⁇ 2 ⁇ V g h.
  • the potential energy in turn is converted into useful work on the energy conversion medium, being the only thing that changes between the systems of both embodiments.
  • the energy extracted at vertical distance parity is similar since the difference in densities can be approximately compensated with the difference in efficiency between one energy conversion medium and another (hydraulic turbine versus winch).
  • both systems 1a, 1b fulfill the same function and generate (through different mechanisms) and from the same primary source of energy (potential energy) an equivalent amount of electrical energy. It can also be understood as the same concept and function, but acting in different environments (underwater and underground).
  • the vertical duct 2 is submerged (underwater case) or buried (underground case), allows the system to operate under controlled conditions and continuously, without the meteorology being a determining factor and without also generating disruption on the environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Sistema de generación de energía eléctrica a partir de una fuerza gravitacional, que comprende un conducto vertical (2);una cápsula (3) desplazable dentro del conducto vertical (2) con un movimiento alternativo, y provista de un depósito (4) para la carga de dióxido de carbono mediante medios de carga (5) y descarga (6), de modo que el llenado de la carga procura un movimiento descendente de la cápsula (3) por efecto de una fuerza de empuje descendente, y el vaciado de la carga procura un movimiento ascendente de la cápsula (3) por efecto de una fuerza de empuje ascendente; y medios de conversión energética (7) configurados para convertir la energía potencial resultante del movimiento de elevación o descenso de la cápsula (3) en energía eléctrica. El sistema está implementado en una instalación de captura y almacenamiento de carbono, actuando la cápsula (3) como medio de transporte del dióxido de carbono para su posterior confinamiento.

Description

Figure imgf000003_0001
“Sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono”
Sector técnico de la invención
La invención se refiere a un sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono.
Según otro aspecto, el sistema de generación de energía eléctrica de la invención está adaptado para ser implementado en una instalación de Captura y Almacenamiento de Carbono o CAC (en inglés, Carbón Capture and Storage o CCS).
Antecedentes de la invención
Como es sabido, la acumulación de dióxido de carbono (CO2) en la atmósfera crece a un ritmo trepidante debido principalmente al crecimiento expansivo de la actividad industrial, agropecuaria, de transporte y generación eléctrica, y asimismo por el largo tiempo de permanencia de la molécula en el aire.
Es previsible que los compromisos internacionales en materia de reducción de gases de efecto invernadero establezcan, y hagan efectivos, imperativos cada vez más restrictivos respecto al alcance de la producción eléctrica a partir de combustibles fósiles, lo que redundará en una mayor inversión en energías renovables, aquellas que no producen efectos adversos sobre la atmósfera ni el medio ambiente, tales como la energía del sol, viento, marea y olas, entre otras.
Si bien cada vez es mayor la urgencia de evitar que los efectos adversos sobre el medio ambiente se produzcan de manera irreversible, la dependencia de los combustibles fósiles se impone pese a los esfuerzos y voluntad de restringir su uso.
Una posibilidad que permitiría mantener en operación los procesos de combustión industriales y de conversión energética, tales como plantas térmicas, sin que éstas generasen una contribución de dióxido de carbono atmosférico, es la captura directa del dióxido de carbono de las chimeneas o del aire atmosférico según una tecnología actualmente en funcionamiento denominada “Captura y Almacenamiento de Carbono” o CAC, y posteriormente transportarlo a un lugar de almacenamiento geológico para aislarlo de la atmósfera a largo plazo. El almacenamiento del dióxido de carbono se puede llevar a cabo en yacimientos de sal o de hidrocarburos (petróleo o gas) agotados, o en formaciones rocosas bajo mantos de roca basáltica subterráneos, así como también en cavidades submarinas donde el dióxido de carbono en estado líquido podría asentarse para irse asimilando con la roca del fondo marino y con el tiempo formar carbonatos, o incluso se ha probado su uso en depósitos vacíos de petróleo situados bajo el lecho marino para inyectar dióxido de carbono en estado líquido.
La molécula de dióxido de carbono pesa aproximadamente 3,67 veces la de carbón, y 2,75 veces la de metano pues incorpora el oxígeno diatómico en la combustión, lo que supone mayor energía en el transporte para el desalojo del dióxido de carbono del que supuso la alimentación del combustible.
Para optimizar la energía en el transporte del dióxido de carbono a lo largo de los gaseoductos, el dióxido de carbono se eleva a la condición supercrítica (que es donde coexisten los estados gaseoso y líquido), que se alcanza a una presión a partir de 80 bares y a una temperatura de 31 °C. En dicho estado, el dióxido de carbono es cuasilíquido, conservando una densidad próxima al de un líquido en tanto que la viscosidad es la propia de un gas, lo que permite el transporte en una masa concentrada a baja resistencia, con el consiguiente ahorro energético. La densidad del dióxido de carbono en el punto supercrítico es de 660 Kg/m3 o un 65% la densidad del agua.
La finalidad de los sistemas de captura y almacenamiento de carbono no sería su puesta en aplicación de maneara indefinida, sino durante la transición hacia una descarbonización, que comportaría el abandono progresivo de los combustibles fósiles, en respuesta a una conciencia del entorno natural. Existen múltiples pruebas piloto a nivel mundial que avalan la viabilidad técnica y geológica del almacenamiento del dióxido de carbono, en algunos casos ofreciendo un rendimiento muy superior al proyectado.
No obstante, la captura y confinamiento de carbón sigue siendo casi testimonial debido a su alto costo energético, que se concentra primordialmente en la fase de captura, en la disociación del dióxido de carbono de los demás gases presentes en la combustión (óxidos de nitrógeno, hidrocarburos no quemados, óxidos de azufre, en algunos procesos también ácido clorhídrico, etc.).
En base a los procesos y tecnología actual, el coste de producción de una tonelada de dióxido de carbono a partir de los gases de combustión sigue siendo bastante superior al de la tasa de emisión de la misma tonelada de dióxido de carbono a la atmósfera en prácticamente todo el mundo. La financiación de manera extensiva de este tipo de proyectos mediante subsidios gubernamentales podría producirse en el supuesto de que la percepción del problema medioambiental hiciese más acuciante la descarbonización hasta el punto en que las tasas de emisión de carbono situasen la opción de los sistemas de captura y almacenamiento de carbono en un terreno más competitivo.
Por otra parte, cabe destacar que las energías renovables obtenidas a partir de fuentes naturales son abundantes e inagotables, pero presentan el inconveniente de que su producción de energía es irregular debido a las propias condiciones meteorológicas variables.
La demanda intensiva de electricidad producto de la actividad industrial, entre otros criterios particulares, impone medios masivos de producción eléctrica, como la que ofrecen las centrales térmicas, que puedan garantizar el suministro de potencia de manera continua y sostenida. Esta circunstancia, aunada a la disponibilidad intermitente de energía extraíble de los medios naturales, limita las posibilidades de cobertura de la demanda mediante fuentes renovables.
La incapacidad de almacenar la electricidad producida a la escala requerida de un modo viable económicamente presenta asimismo un desafío importante, que tiene una incidencia económica que se explica por el desajuste de la oferta con la demanda. Ciertas tecnologías son capaces de atajar esa limitante, como es el caso de un número de plantas hidroeléctricas con capacidad de operar de manera reversible, turbinando (y por tanto generando electricidad) en horas de demanda eléctrica, y consumiendo electricidad para bombear el agua previamente turbinada durante el horario nocturno, cuando la baja o nula demanda supone costos de electricidad proporcionalmente bajos, o acaso inexistentes. El bombeo de agua equivale a dotarse de energía potencial con un mayor gasto neto de energía, que sin embargo es a un costo marginal, mientras que se reserva el agua para producir electricidad en los horarios en que la demanda, y por lo tanto el precio del kWh, es más alta.
La solicitud de patente WO2015027113 A1 se refiere a un sistema y un método para almacenar energía potencial, capaz de generar energía eléctrica a partir de la fuerza de gravedad, que comprende un pistón deslizable en el interior de un cilindro hueco, cuyas paredes definen un volumen interno que contiene un líquido, una junta de sellado dispuesta entre el pistón y las paredes del cilindro, y un conducto de líquido en comunicación con el cilindro. El pistón divide el volumen interior en una primera cámara superior y una segunda cámara inferior, estando ambas cámaras intercomunicadas a través del conducto. El sistema comprende además una bomba/turbina reversible acoplada operativamente en el conducto de líquido para accionar un motor/generador reversible, y válvulas de control. El pistón es susceptible de moverse dentro del cilindro entre una posición elevada a una posición inferior. Cuando el pistón se encuentra en la posición inferior, la turbina deja de funcionar de modo que la energía generada es usada para accionar el motor de la bomba que a su vez impulsa el líquido a través del conducto desde la cámara superior hacia la cámara inferior, aumentando así la presión en la cámara inferior bajo el pistón. La diferencia de presión provoca la elevación del pistón hasta alcanzar la posición elevada, almacenándose energía potencial en el sistema. A continuación, la bomba deja de funcionar de manera que la energía potencial almacenada permite el descenso del pistón, cuyo peso impulsa el líquido hacia el conducto desde la cámara inferior hacia la cámara superior de modo que el líquido fluye a través de la turbina accionando así el generador para producir energía eléctrica, que puede ser utilizada en una central eléctrica. Este sistema puede ser usado, por ejemplo, para almacenar energía potencial que haya sido generada durante las horas de menor demanda de consumo eléctrico.
Sin embargo, se trata de un sistema provisto de una bomba/turbina reversible, análogo al de una planta hidroeléctrica reversible, que requiere electricidad para accionar la bomba para elevar el pistón en modo de recuperar energía potencial, siendo la bomba la misma turbina con rotación inversa. Por tanto, la eficiencia global del ciclo es negativa ya que se extrae menos energía de la que se suministra, aunque por otra parte se obtiene rentabilidad económica al alimentarse con el excedente de energía y producir en horario de alta demanda, cuando el precio del kWh es mayor.
En la actualidad, la necesidad de encontrar soluciones que compatibilicen los intereses económicos y ecológicos afecta a la cadena entera del sistema eléctrico, desde la tecnología de generación eléctrica hasta el consumo eficiente.
Por tanto, sería deseable disponer de un sistema de generación de energía eléctrica a partir de energía potencial, que permita generar electricidad en modo inmediato y continuo, y que garantice en todo momento una eficiencia global del ciclo positiva, esto es con un nulo o insignificante aporte de energía eléctrica para restaurar la energía potencial cedida.
Por otra parre, es de interés disponer de un sistema de generación de energía eléctrica que además contribuya a disminuir la contaminación medioambiental de las emisiones de dióxido de carbono concentradas en la atmósfera.
Asimismo, es de interés que la solución pueda implementarse de una forma estructuralmente sencilla, economizando el coste energético y reduciendo los costes de explotación.
Explicación de la invención
Con objeto de aportar una solución a los problemas planteados, se da a conocer un sistema de generación de energía eléctrica a partir de una fuerza gravitacional, obtenida en un proceso de bombeo de dióxido de carbono, caracterizado porque comprende al menos una unidad generadora de electricidad que comprende
- un conducto vertical;
- una cápsula alojada en el interior del conducto vertical configurada con capacidad para desplazarse con un movimiento alternativo entre una posición de elevación y una posición de descenso del conducto vertical, estando la cápsula provista de un depósito para la carga de un volumen de dióxido de carbono;
- unos medios de carga configurados para inyectar un volumen de dióxido de carbono en el interior del depósito de la cápsula, cuando dicha cápsula se encuentra en la posición de elevación, lo que procura un movimiento descendente de la cápsula hacia su posición de descenso por efecto de una fuerza de empuje descendente ejercida sobre la cápsula;
- unos medios de descarga configurados para evacuar el volumen de dióxido de carbono contenido en el depósito de la cápsula, cuando dicha cápsula se encuentra en la posición de descenso, lo que procura un movimiento ascendente de la cápsula hacia su posición de elevación, por efecto de una fuerza de empuje ascendente ejercida sobre la cápsula con capacidad de contrarrestar la fuerza de gravedad; y
- unos medios de conversión energética asociados operativamente con la cápsula y configurados para convertir la energía potencial resultante del movimiento de elevación o descenso de la cápsula en energía eléctrica; y porque el sistema está adaptado para ser implementado en una instalación de captura y almacenamiento de carbono, del tipo que comprende una línea de alimentación dispuesta en un nivel superior que conduce el dióxido de carbono capturado desde la superficie terrestre hacia una línea de evacuación dispuesta en un nivel inferior que inyecta el dióxido de carbono en una cavidad subterránea, ubicada bajo el manto marino o el manto terrestre para su confinamiento; estando los medios de carga para el llenado de la cápsula conectados a dicha línea de alimentación y estando los medios de descarga para el vaciado de la cápsula conectados a dicha línea de evacuación, de modo que la cápsula durante su fase de descenso opera como medio de transporte del dióxido de carbono para su posterior confinamiento. Por consiguiente, la disposición del sistema de la invención permite enlazar en simbiosis el proceso de descenso de la cápsula y el proceso de transporte subterráneo de dióxido de carbono en ruta a su confinamiento, con el propósito de aprovechar la energía potencial obtenida para generar electricidad.
En efecto, se aprovecha el propio descenso de la cápsula llena con la carga de dióxido de carbono para a su vez transportar el dióxido de carbono hasta un nivel inferior situado a gran profundidad dentro de cavidades subterráneas, contribuyendo así a disminuir el problema de la contaminación medioambiental que produce el dióxido de carbono liberado en la atmósfera.
De este modo, se obtiene un sistema que permite generar electricidad en modo inmediato y continuo, garantizando en todo momento una eficiencia global del ciclo positiva, esto es con un nulo o insignificante aporte de energía eléctrica para restaurar la energía potencial cedida, a diferencia de los sistemas de generación de energía eléctrica conocidos en el estado de la técnica que requerían almacenar la energía potencial para su uso en horas de mayores picos de demanda de electricidad.
Además, el sistema de la invención se puede implementar de una forma estructurante sencilla, lo cual permite economizar el coste energético y reducir los costes de explotación.
De acuerdo con una primera realización de la invención, el sistema de generación de energía eléctrica se caracteriza porque la al menos una unidad generadora de electricidad está configurada de modo que
- el conducto vertical está dispuesto sumergido bajo el nivel marino, de modo que contiene en su interior un volumen de agua al estar sus respectivos extremos superior e inferior en comunicación con la masa de agua marina que lo rodea;
- estando la cápsula dispuesta sumergida en el volumen interior de agua del conducto vertical, y provista de una carcasa hueca estanca que alberga en su interior el depósito para la carga del dióxido de carbono en estado preferentemente líquido; - estando los medios de carga configurados por una conducción de alimentación provista de una válvula de carga antirretorno situada sobre la parte superior del conducto vertical, y adaptada para acoplarse a una boca de carga del depósito cuando la cápsula se encuentra en su posición de elevación, de modo que el llenado del depósito con la carga de dióxido de carbono procura un descenso controlado de la cápsula hacia su posición de descenso por efecto de una fuerza de empuje motriz ejercida por los medios de conversión energética;
- estando los medios de descarga configurados por una conducción de evacuación provista de una válvula de descarga antirretorno situada bajo la parte inferior del conducto vertical, y adaptada para acoplarse a una boca de salida del depósito cuando la cápsula se encuentra en su posición de descenso, de modo que el vaciado del depósito procura un ascenso controlado de la cápsula hacia su posición de elevación por efecto de una fuerza de empuje hidrostático capaz de contrarrestar la fuerza de gravedad; y
- estando los medios de conversión energética configurados por al menos una turbina hidrostática acoplada por su lado de entrada a la parte superior del conducto vertical mediante una tubería en derivación y acoplada por su lado de salida a una tubería que desemboca en la masa de agua marina, de modo que la turbina es capaz de recibir la presión del volumen de agua desplazado por la cápsula vacía durante su movimiento ascendente por efecto de la fuerza de empuje hidrostático, y estando un eje motriz de la turbina conectado mecánicamente a un generador de energía eléctrica para generar electricidad en cada movimiento de elevación de la cápsula.
Según otra característica de la invención, la carcasa de la cápsula está provista de una pared rígida dotada de una camisa periférica que contiene aire comprimido para aislar térmicamente el depósito.
Preferentemente, la camisa periférica comprende al menos un orificio de paso en comunicación con el depósito para conformar un circuito cerrado de aire, de modo que durante la operación de vaciado del dióxido de carbono, el aire contenido en la camisa periférica es capaz de ocupar el espacio interior del depósito; y de modo que durante la operación de llenado, el dióxido de carbono es capaz de desplazar el aire contenido en el depósito hacia la camisa periférica.
Conforme a otra característica de la invención, se prevé que el dióxido de carbono sea inyectado en el depósito en estado líquido, y sometido previamente a una operación de enfriamiento para aumentar su densidad de modo que, teniendo en cuenta el peso de la carcasa de la cápsula y el peso del dióxido de carbono líquido en su interior, permita mantener la cápsula en flotación neutra, esto es con la cápsula inmóvil, sin descender por el peso ni ascender por sustentación.
Ventajosamente, la turbina hidráulica es capaz de operar con el motor del generador de energía eléctrica girando en sentido inverso, actuando en modo bomba o hélice, para ejercer una fuerza motriz capaz de impulsar una corriente de agua en sentido descendente a una velocidad tal que procura el descenso controlado de la cápsula llena en flotación neutra, con el propósito de evitar el impacto de la cápsula cuando alcanza la posición de descenso, siendo la energía consumida de un orden de magnitud muy inferior respecto a la obtenida de la turbina. Para ello, la velocidad de descenso se limita a un máximo de 1 m/s, en modo de mantener las pérdidas por fricción del agua con la pared interna del conducto prácticamente insignificantes, no produciendo por tanto más que presión dinámica.
Preferentemente, dicha tubería en derivación comprende un tramo horizontal conectado a la turbina hidráulica y un tramo vertical conectado a la parte superior del conducto vertical y dotado de un alojamiento interior previsto para recibir la cápsula en su posición elevada durante la operación de carga del dióxido de carbono, estando para ello dicho alojamiento dotado de un orificio conectado por su parte superior con la válvula de carga de la conducción de alimentación del dióxido de carbono.
Según otra característica de la invención, el sistema comprende un receptáculo inferior dispuesto bajo la parte inferior del conducto vertical, previsto para el apoyo de la cápsula en su posición de descenso durante la operación de descarga del dióxido de carbono, estando para ello dicho receptáculo dotado de un orificio conectado por su parte inferior con la válvula de descarga de la conducción de evacuación del dióxido de carbono.
Preferentemente, la cápsula está configurada por una porción central cilindrica cerrada en ambos extremos por dos porciones semiesféricas.
De acuerdo con otra característica de la invención, el conducto vertical está anclado por su parte inferior mediante uno o varios tirantes al manto rocoso del fondo marino.
Preferiblemente, el conducto vertical está formado por varios tramos cilindricos acoplados contiguos entre sí. Asimismo, el conducto vertical puede estar fabricado de un material textil.
Ventajosamente, el conducto vertical incluye una estructura exterior formada por espirales a lo largo de su longitud, con el propósito de mantener su estabilidad hidrodinámica frente a las corrientes marinas, evitando que se produzca el fenómeno de desprendimiento de vórtice que pueda derivar en resonancia del conjunto.
De acuerdo con una segunda realización de la invención, el sistema de generación de energía eléctrica se caracteriza porque la al menos una unidad generadora de electricidad está configurada de modo que
- el conducto vertical está dispuesto soterrado bajo el nivel de la corteza terrestre, de modo que contiene en su interior un volumen de aire a presión atmosférica al estar su extremo superior abierto a la atmósfera;
- estando la cápsula alojada dentro del conducto vertical, y provista de una carcasa hueca estanca que alberga en su interior el depósito para la carga del dióxido de carbono en estado preferentemente semilíquido;
- estando los medios de carga configurados por una conducción de alimentación provista de una válvula de carga antirretorno situada sobre la parte superior del conducto vertical, y adaptada para acoplarse a una boca de carga del depósito cuando la cápsula se encuentra en su posición de elevación, de modo que el llenado del depósito con la carga de dióxido de carbono procura un descenso controlado de la cápsula hacia su posición de descenso por efecto de la fuerza de gravedad;
- estando los medios de descarga configurados por una conducción de evacuación provista de una válvula de descarga antirretorno situada bajo la parte inferior del conducto vertical, y adaptada para acoplarse a una boca de salida del depósito cuando la cápsula se encuentra en su posición de descenso, de modo que el vaciado del depósito procura un ascenso controlado de la cápsula hacia su posición de elevación por efecto de una fuerza de tracción mecánica ejercida por los medios de conversión energética, capaz de contrarrestar la fuerza de gravedad; y
- estando los medios de conversión energética configurados por al menos un cabrestante dispuesto por encima de la parte superior del conducto vertical, provisto de un tirante enrollado al eje giratorio del cabrestante y acoplado por su extremo libre a la parte superior de la carcasa de la cápsula mediante un elemento de anclaje, de modo que el cabrestante es capaz de recibir la fuerza de tracción del tirante generada por el peso de la cápsula llena con la carga de dióxido de carbono durante su movimiento descendente por efecto de la fuerza de gravedad, y estando un eje motriz del cabrestante conectado mecánicamente a un generador de energía eléctrica, a través de un tren de engranajes que actúa como un reductor de velocidad, para generar electricidad en cada movimiento de descenso de la cápsula.
Ventajosamente, el cabrestante es capaz de operar con el motor del generador de energía eléctrica girando en sentido inverso, con el propósito de ejercer una fuerza de tracción capaz de elevar la cápsula vacía desde la posición de descenso hasta la posición de elevación, siendo la energía consumida insignificante.
Según otra característica de la invención, la cápsula comprende unos rodamientos previstos para deslizar sobre unos railes longitudinales complementarios dispuestos en la pared interior del conducto vertical, con el propósito de mantener la estabilidad de la cápsula durante su movimiento alternativo a lo largo del conducto vertical. Ventajosamente, en cualquiera de las dos realizaciones preferidas, el sistema puede comprender múltiples unidades generadoras dispuestas de modo que las respectivas cápsulas están sincronizadas según un orden secuencial de carga, con el propósito de multiplicar la capacidad productiva y a su vez generar continuidad en el suministro eléctrico.
Breve descripción de los dibujos
En los dibujos adjuntos se ilustra, a título de ejemplo no limitativo, dos modos de realización preferidos del sistema de generación de energía eléctrica a partir de una fuerza gravitacional, obtenida en un proceso de bombeo de dióxido de carbono, de la invención. En dichos dibujos:
- la Fig. 1 es una vista esquemática del sistema de la invención según una primera realización preferida, referente al caso submarino; - las Figs. 2 y 3 son respectivamente vistas en perspectiva y en planta superior del conducto vertical, mostrando el punto de carga del depósito del dióxido de carbono;
- las Figs. 4a y 4b son vistas esquemáticas de la turbina hidráulica que actúa de manera reversible conectada a la parte superior del conducto vertical, que muestran mediante flechas su funcionamiento en modo circulación de agua con hélice durante el descenso de la cápsula, y en modo generación eléctrica durante el ascenso de la cápsula, respectivamente;
- las Figs. 5a y 4b son vistas esquemáticas del sistema que muestran mediante flechas la circulación de agua a través del conducto vertical, actuando la turbina en el modo circulación de agua con hélice, y en modo generación eléctrica, respectivamente;
- las Figs. 6a a 6c muestran la posición de la cápsula a través del conducto vertical, en su posición elevada, en una posición intermedia, y en la posición de descenso alojada en el receptáculo de descarga, respectivamente; - la Fig. 7 es una vista en planta superior del receptáculo que recibe la cápsula en la posición de descenso;
- la Fig. 8 es una vista esquemática del sistema mostrando detalles de la operación de descarga del dióxido de carbono para su confinamiento en una cavidad subterránea bajo el manto marino; - la Fig. 9 es una vista esquemática en alzado de un conducto vertical mostrando su configuración estructural;
- las Figs. 10a a 10c muestran diferentes geometrías de capsulas, según una primera forma esférica, una segunda forma con un tramo central cilindrico con dos extremos semiesféricos, y una tercera forma similar a la segunda, pero con una longitud sustancialmente mayor;
- la Fig. 11 es una vista esquemática de la cápsula según la geometría representada en la Fig. 10b, mostrando las bocas de carga y descarga del depósito, y la camisa periférica de aire a presión;
- la Fig. 12 es una vista esquemática de una secuencia operativa de un conjunto de seis unidades generadoras para procurar continuidad de suministro de potencia;
- la Fig. 13 es una vista esquemática del sistema de la invención según una segunda realización preferida, referente al caso subterráneo;
- las Figs. 14 y 15 son respectivamente vistas en perspectiva y en planta superior de la cápsula en la posición de elevación dentro del conducto vertical, mostrando el punto de carga del depósito del dióxido de carbono y el punto de anclaje del tirante del cabrestante;
- la Fig. 16 es una vista en perspectiva superior del depósito en una posición intermedia dentro del conducto vertical, mostrando los raíles del conducto vertical;
- las Figs. 17 y 18 son respectivamente vistas en perspectiva y en planta inferior de la cápsula en la posición de descenso dentro del conducto vertical, mostrando el punto de descarga del depósito del dióxido de carbono; y
- las Figs. 19a y 19b son vistas esquemáticas de un cuarto de potencia de los medios de conversión energética conformado por un cabrestante, un tren de engranajes y un generador de energía eléctrica, dispuestos en la parte superior del conducto vertical, que muestran mediante flechas el sentido de la fuerza sobre el tirante en su funcionamiento en modo de generación de energía durante el descenso de la cápsula y en modo de recuperación de la energía potencial durante el ascenso de la cápsula, respectivamente.
Descripción detallada de la invención
A continuación, se describe un sistema 1a, 1b de generación de energía eléctrica a partir de una fuerza gravitacional, obtenida en un proceso de bombeo de dióxido de carbono.
Tal como se describirá en adelante, el sistema 1a, 1b de generación de energía eléctrica de la invención está adaptado para ser implementado en una instalación de Captura y Almacenamiento de Carbono o CAC (en inglés, Carbón Capture and Storage o CCS), del tipo que comprende una línea de alimentación 8 dispuesta en un nivel superior que conduce el dióxido de carbono capturado desde la superficie terrestre hacia una línea de evacuación 9 dispuesta en un nivel inferior que inyecta el dióxido de carbono en una cavidad subterránea 10, ubicada bajo el manto marino 11 (ver figura 1) o el manto terrestre 12 (ver figura 13) para su confinamiento.
Una primera realización de la invención se muestra en las figuras 1 a 12, en la que el sistema 1a de generación de energía eléctrica se encuentra dispuesto en un medio submarino, como se detallará a continuación.
El sistema 1a puede comprender una o múltiples unidades generadoras de electricidad. Por motivos de claridad, en las figuras 1 a 11 se ha representado una sola unidad generadora de electricidad que comprende
- un conducto vertical 2 dispuesto sumergido bajo el nivel marino M, de modo que contiene en su interior un volumen de agua al estar sus respectivos extremos superior e inferior en comunicación con la masa de agua marina S que lo rodea;
- una cápsula 3 dispuesta sumergida en el volumen interior de agua del conducto vertical 2, configurada con capacidad para desplazarse con un movimiento alternativo entre una posición de elevación A y una posición de descenso B del conducto vertical 2, estando la cápsula 3 provista de un depósito 4 (ver figura 11) para la carga de dióxido de carbono en estado líquido;
- unos medios de carga 5 configurados por una conducción de alimentación 13 provista de una válvula de carga 14 antirretorno situada sobre la parte superior del conducto vertical 2, y adaptada para acoplarse a una boca de carga 4a del depósito 4 cuando la cápsula 3 se encuentra en su posición de elevación A, de modo que el llenado del depósito 4 con la carga de dióxido de carbono procura un descenso controlado de la cápsula 3 hacia su posición de descenso B por efecto de una fuerza motriz tal como se explicará más adelante;
- unos medios de descarga 6 configurados por una conducción de evacuación 15 provista de una válvula de descarga 16 antirretorno situada bajo la parte inferior del conducto vertical 2, y adaptada para acoplarse a una boca de descarga 4b del depósito 4 cuando la cápsula 3 se encuentra en su posición de descenso B, de modo que el vaciado del depósito 4 procura un ascenso controlado de la cápsula 3 hacia su posición de elevación A por efecto de una fuerza de empuje hidrostático capaz de contrarrestar la fuerza de la gravedad; y
- unos medios de conversión energética 7 configurados por al menos una turbina 17 hidrostática acoplada por su lado de entrada a la parte superior del conducto vertical 2 mediante una tubería en derivación 18 y acoplada por su lado de salida a una tubería 19 que desemboca en la masa de agua marina S, de modo que la turbina 17 es capaz de recibir la presión del volumen de agua desplazado por la cápsula 3 vacía durante su movimiento ascendente por efecto de la fuerza de empuje hidrostático (ver figuras 4b y 5b), y estando un eje motriz de la turbina 17 conectado mecánicamente a un generador de energía eléctrica 20 para generar electricidad en cada movimiento de elevación de la cápsula 3.
Tal como se ha mencionado, el sistema está integrado en una instalación de captura y almacenamiento de carbono, de manera que los medios de carga 5 para el llenado de la cápsula 3 están conectados a la línea de alimentación 8 de la instalación y los medios de descarga 6 para el vaciado de la cápsula 3 están conectados a la línea de evacuación 9 de la instalación. De este modo, la cápsula 3 durante su fase de descenso opera como medio de transporte del dióxido de carbono para su posterior confinamiento.
Tal como se puede apreciar en las figuras 4a y 4b, dicha tubería en derivación 18 comprende un tramo horizontal conectado a la turbina 17 hidráulica y un tramo vertical conectado a la parte superior del conducto vertical 2 y dotado de un alojamiento interior previsto para recibir la cápsula 3 en su posición elevada A durante la operación de carga del dióxido de carbono, estando para ello dicho alojamiento dotado de un orificio 23 (ver figuras 2 y 3) conectado por su parte superior con la válvula de carga 14 de la conducción de alimentación 13 del dióxido de carbono.
Además, el sistema dispone de un receptáculo 24 inferior dispuesto bajo la parte inferior del conducto vertical 2 (ver figuras 1 , 6c y 7), previsto para el apoyo de la cápsula 3 en su posición de descenso B durante la operación de descarga del dióxido de carbono, estando para ello dicho receptáculo 24 dotado de un orificio 25 conectado por su parte inferior con la válvula de descarga 16 de la conducción de evacuación 15 del dióxido de carbono (ver figuras 1 y 8).
El receptáculo 24 está dispuesto separado una distancia predeterminada por debajo de la parte inferior del conducto vertical 2 para procurar la evacuación del volumen de agua desplazada por la cápsula 3 durante su descenso que desemboca hacia la masa de agua marina S. El receptáculo 24 además está fijado al manto rocoso del fondo marino 11 , y presenta unas aberturas laterales 24a para facilitar la expulsión del agua fuera del receptáculo 24 durante el apoyo de la cápsula 3 sobre el mismo.
Tal como se puede apreciar en la figura 11, la cápsula 3 está provista de una carcasa hueca estanca que alberga en su interior el depósito 4. La carga del dióxido de carbono se realiza a través de la boca de carga 4a situada en su parte superior, mientras que la descarga del dióxido de carbono se realiza a través de la boca de descarga 4b situada en su parte inferior. Asimismo, ambas bocas de carga 4a y descarga 4b están provistas de respectivas válvulas antirretorno (no mostradas).
Asimismo, la carcasa de la cápsula 3 está provista de una pared 21 rígida dotada de una camisa periférica 22 que contiene aire comprimido para aislar térmicamente el depósito 4, como se detallará más adelante.
Además, la camisa periférica 22 comprende al menos un orificio de paso (no mostrado) en comunicación con el depósito 4 para conformar un circuito cerrado de aire, de modo que durante la operación de vaciado del dióxido de carbono, el aire contenido en la camisa periférica 22 es capaz de ocupar el espacio interior del depósito 4; y de modo que durante la operación de llenado, el dióxido de carbono es capaz de desplazar el aire contenido en el depósito 4 hacia la camisa periférica 22.
Se prevé que el dióxido de carbono sea inyectado en el depósito 4 en estado líquido, y sometido previamente a una operación de enfriamiento para aumentar su densidad de modo que, teniendo en cuenta el peso de la carcasa de la cápsula 3 y el peso del dióxido de carbono líquido en su interior, permita mantener la cápsula 3 en flotación neutra, esto es con la cápsula 3 inmóvil, sin descender por el peso ni ascender por sustentación.
La turbina 17 hidráulica es capaz de operar con el motor del generador de energía eléctrica 20 girando en sentido inverso (ver figuras 4a y 5a), actuando en modo bomba o hélice 17’ (en una turbina híbrida de impulso y reacción, por ejemplo, tipo francis, o bien de reacción, tipo kaplan). Este modo permite dirigir el descenso de manera controlada, anulando su inercia y evitando una aceleración debida al peso de la cápsula 3 que provocaría un indeseado impacto contra el fondo marino.
La energía empleada para el empuje de la cápsula 3 hacia el fondo es debida exclusivamente a la circulación del caudal (energía cinética, en modo análogo a la hélice de una embarcación), que resulta muy inferior comparativamente con la obtenida en el ascenso (ver figuras 4b y 5b) añadiendo el componente de presión, que es la contribución energética que resulta de la fuerza de sustentación debida a la diferencia de densidades entre el agua y el aire.
Aunque el diámetro interior del conducto vertical 2 es aproximadamente el diámetro exterior de la cápsula 3, existe una cierta holgura definida por un anillo de líquido alrededor de la cápsula 3. Al descender, la cápsula 3 empuja agua hacia abajo y se desplaza igualmente entre el agua, que fluye en sentido contrario al del desplazamiento de la cápsula 3. Como mayor sea el salto térmico y la velocidad relativa del agua respecto a la cápsula 3, mayor la disipación de calor por convección. Tal como se ha mencionado, la carcasa de la cápsula 3 está provista de una camisa 22 de aire comprimido sellado que discurre por todo el perímetro interior del depósito 4 (ver figura 11), que sirve de aislante térmico entre el dióxido de carbono (a unos - 20°C para una densidad de 1057 kg/m3) y el agua circundante (a unos 15°C), tomando en cuenta el agua como medio convectivo en el desplazamiento de la cápsula 3 a lo largo de todo el descenso, y que asimismo confiere un gradiente de presión entre el exterior y el interior, aliviando esfuerzos sobre la pared 21 externa tras la descarga del dióxido de carbono en el fondo submarino (las profundidades pueden ser superiores a 2,3 km, unas 230 atmósferas).
Tal como se puede apreciar por ejemplo en la figura 8, la conducción de evacuación 15 enlaza a su vez con la línea de evacuación 9 perteneciente a la instalación de captura y almacenamiento, provista de una válvula de inyección 9a para su ingreso a la cavidad subterránea 10 de confinamiento, empujado por la presión de unos 80 bares. En el caso de utilizar un depósito vacío de petróleo bajo el lecho marino para el almacenamiento del dióxido de carbono, se pueden aprovechar las mismas líneas de transporte y las válvulas, conocidas como válvulas de “árbol de navidad”, que se emplearon para la extracción del petróleo, salvo que con el sistema de la invención funcionarían invirtiendo el sentido de flujo. Este tipo de válvula 9a regula la presión y evita que el agua de mar ingrese en la cavidad 10 de confinamiento y entre en contacto con hidrocarburos no extraídos.
Durante la operación de descarga, una compuerta 17a de alimentación a la turbina 17 permanece cerrada (ver figura 4a y 4b), para mantener la cápsula 3 en posición y evitar que despegue antes de vaciar completamente el contenido de dióxido de carbono.
Con la descarga completamente realizada, se cierra la válvula de descarga
16 del dióxido de carbono, se abre la compuerta 17a de alimentación a la turbina
17 y la fuerza de flotación de la cápsula 3, debido a la diferencia de densidad con el agua asciende empujando y desplazando toda el agua contenida en la columna arriba suyo, haciéndola circular por la turbina 17, que acoplada al eje del generador de energía eléctrica 20 convertirá la potencia procedente del empuje (presión) y caudal del agua desplazada en electricidad.
Durante el ascenso de la cápsula 3, el conducto vertical 2 succiona agua de la parte inferior y vuelve nuevamente al mar en la descarga de la turbina 17 a través de la tubería 19, conformando así un circuito hidráulico (ver figuras 4b y 5b). Durante el bombeo de dióxido de carbono, se invierte el ciclo, tomando agua de la superficie marina y descargándola por la parte inferior del conducto vertical 2 (ver figuras 4a y 5a). Por consiguiente, se trata fundamentalmente de una planta hidráulica operando bajo el mar en modo gravitacionalmente invertido.
El conducto vertical 2 está anclado por su parte inferior mediante uno o varios tirantes 26 al manto rocoso del fondo marino 11 (ver figuras 6c y 8), en modo de quedar extendido, lo que convenientemente permite su repliegue y transporte de un proyecto a otro.
Según se puede apreciar en la figura 9, en esta realización, el conducto vertical 2 está formado por varios tramos cilindricos 2.1 a 2.n acoplados contiguos entre sí, y puede fabricarse a partir de material textil, lo que resulta ventajoso desde el punto de vista logístico y económico. Se prevé también que el material textil incluya una estructura exterior formada por espirales 27 a lo largo de la longitud del conducto vertical 2, que aportan rigidez y contribuyen a expandir el conducto vertical 2 manteniendo la forma circular de la sección. La razón principal de adoptar espirales 27 está, no obstante, ligada a la estabilidad hidrodinámica frente a las corrientes marinas, evitando que se produzca el fenómeno de desprendimiento de vórtice que pueda derivar en resonancia del conjunto.
En las figuras 10a a 10c, se muestran tres tipos de cápsulas 3a a 3c de diferentes geometrías. Además, se ha ilustrado con flechas la rotación que puede experimentar cada cápsula 3 sobre los tres ejes en el espacio.
El diseño de las cápsulas 3 responde asimismo a diversos criterios. Por una parte, la caracterización del flujo determina la geometría. La potencia hidráulica resulta esencialmente del producto de la presión (intensidad) y caudal (cantidad), siendo ambas variables recíprocas (la potencia tiene dos grados de libertad; una cantidad fija puede obtenerse de disminuir una variable en la misma proporción que se aumenta la otra, y lo opuesto).
La fuerza de sustentación provee la diferencia de densidad entre el medio circundante (agua) y el aire del interior de la cápsula 3 vacía multiplicado por el volumen interior de la cápsula 3 (pues es la propia flotación del gas la que ejerce la fuerza).
Por tanto, fijando el volumen del interior de la cápsula 3, extraer potencia privilegiando la presión al caudal supone una forma alargada en vertical, pues la presión es la fuerza ejercida sobre un área, y conviene por tanto concentrar dicha fuerza para aumentar la presión. El diámetro de la cápsula 3 será contenido, pero la altura es prominente tal como se puede apreciar en la figura 10c (capsula 3c).
Lo opuesto se da con el mismo volumen ocupando una forma esférica (cápsula 3a), como se muestra en la figura 10a. La fuerza queda distribuida transversalmente resultando en una menor presión específica, si bien la cantidad de fluido desplazado en el recorrido es mayor (como mayor el diámetro). Partiendo del mismo volumen en uno u otro caso, en teoría la potencia transferida es equivalente.
Considerando el salto térmico del dióxido de carbono en estado líquido, transportado a -20°C, con la temperatura del agua marina, que en promedio puede ser de alrededor de 15°C (como apuntado, no obstante la camisa 22 de aire perimetral, cuya función, además de regular la flotación de la cápsula 3 durante el descenso, es de proveer aislamiento térmico) la opción de la cápsula esférica (ver figura 3a) resulta ser la óptima por tener un espacio de internamiento mayor en su interior, lo que favorece un mayor gradiente térmico.
La geometría esférica ofrece además la mínima área superficial por un mismo volumen, lo que se traduce en menor material (por tanto también peso específico y costo) y menos superficie de contacto, con ello minimizando la fricción con el agua, lo que a su vez implica menor pérdidas de calor por convección. Si bien el descenso, al tener la cápsula 3 flotación neutra, su desplazamiento es prácticamente con el agua que lo circunda (como en una correa de transmisión), es decir que la velocidad relativa de la cápsula 3 con el agua circundante es mínima, de modo que los efectos de fricción y convección forzada son irrelevantes (no así el gradiente térmico por el espacio de internamiento y la cantidad de material).
Sin embargo, la esfera presenta el problema de que puede rotar libremente en cualquier eje, y debido a que se pretende mantener las válvulas de carga 14 y descarga 16 alineadas sobre el eje vertical del conducto 2, resulta necesario restringir la rotación sobre los dos ejes diferentes al vertical.
Una geometría idónea es la que comprende una porción central cilindrica cerrada en ambos extremos por dos porciones semiesféricas (capsula 3b), tal como se muestra en las figuras 10b y 11. Esta geometría ofrece el mejor compromiso, pues mantiene una distancia de internamiento próxima a la de la esfera, pero su moderado alargamiento vertical resulta en un aumento del momento de inercia angular que restringe la rotación en los ejes transversales, suficiente para asegurar la verticalidad.
Tal como se muestra en la figura 12, el sistema 1a puede operar con múltiples unidades generadoras de modo que las respectivas cápsulas 3 están sincronizadas según un orden secuencial de carga, con el propósito de multiplicar la capacidad productiva y a su vez generar continuidad en el suministro eléctrico. Por motivos de claridad, solo se ha representado esquemáticamente las respectivas cápsulas 3 dentro de su conducto vertical 2 y se ha ilustrado con flechas el sentido ascendente o descendente de cada cápsula 3. En el ejemplo representado se han empleado seis unidades generadoras, de las cuales cinco operan ascendiendo en modo secuencial y una desciende para recuperar su estado inicial.
Ejemplo de un caso práctico:
A modo de ejemplo, a continuación, se incluye un caso práctico idealizado de esta primera realización del sistema de generación de energía eléctrica, con objeto de ilustrar su contribución energética potencial técnicamente. Este ejemplo se basa en un sistema de múltiples unidades de energía y el tipo de cápsula empleada es la que presente un cuerpo central cilindrico con dos semiesferas en sus extremos.
• Datos del sistema múltiple conformado como se indica:
- Número de circuitos (conductos): 20
- Longitud del conducto: 2.5 km
- Diámetro de la cápsula (cilindro y semiesferas): 15 metros
- Longitud del tramo cilindrico de la cápsula: 200 metros
- Volumen de la cápsula: 37.110 m3
• Fuerza de sustentación: Fs = ( H2o - aire) g V = (1.029 - 1,23) x 9,81 x 37.110 = 374 MN (meganewtons), o empuje gravitacional equivalente al de una masa de 38 mil toneladas. Para efectos de simplicidad, y tomando en cuenta la disparidad dimensional, no se considera el peso de la carcasa.
• Presión a la turbina: P = Fs /A = (374.159.422 x 4) / (p (152)) = 2.117.309 Pa (altura manométrica: h = 215,9 metros de columna de agua)
Suponiendo que la turbina se diseña para admitir el caudal de todo el conducto en 6 horas (cumpliendo 3 descensos en 1 día).
• Volumen desplazado: Va = p r2 H = p x (7, 5)2 x 2.500 = 441.786 m3
• Caudal: Q = Vd / 1 = 441.786 / (6 x 3600) = 20,45 m3/s
• Potencia teórica: W = P Q = p g h Q = 1.029 x 9,81 x 215,9 x 20,45 = 44.568.738 Watts « 44.5 MW por conducto (calculado sin considerar la eficiencia de la turbina)
• Pérdidas de energía en descenso:
Asumiendo que el desplazamiento se ajusta a 1 hora: 2,5 km/h = 0,69 m/s. La energía de impulsión (tomando en cuenta nula diferencia de presión a través de la bomba/hélice; por simplicidad se excluyen igualmente las pérdidas por fricción con el perímetro del conducto) se produce fundamentalmente por el cambio de energía cinética a través de la hélice. La fuerza de impulsión: F = 1/2 p Area ( Vf 2 - V0 2) = 0,5 x 1029 x p x (7,5)2 x (0,69)2 = 43.287 N Energía: W = F d = 43.287 c 2.500 = 108.217.119 ; / 3.600.000 = 30 kWh
Considerando 3 descensos al día en 20 circuitos, la pérdida total de energía:
WT = 30 x 20 x 3 = 1.800 kWh = 1 ,8 MWh
• Energía entregada:
E = W t = 44,5 x 6 h = 267 MWh c 20 (circuitos) c 3 (descensos diarios)
E = 16,04 GWh « 16 GWh\ la pérdida por energía de descenso es residual.
La potencia es producto de la presión (intensidad) por el caudal (cantidad y movimiento). La presión es resultado de la fuerza concentrada en un área, por lo tanto, la caracterización de la cápsula es alargada, en modo de distribuir el volumen verticalmente (para incidir la fuerza de sustentación en un espacio concentrado). La altura manométrica resultante, de 215 metros de columna de agua es propia de plantas hidroeléctricas donde prima la tecnología de impulso (turbinas tipo pelton) o híbridas de impulso y reacción (turbinas tipo francis, por sobre la de reacción), que se caracterizan por operar con una presión alta a la turbina y poco caudal, como corresponde a una orografía montañosa.
En este caso, sin embargo, el caudal es gigantesco por tratarse de una columna de agua de 2 kilómetros y medio, lo que equivale a operar una mega planta hidroeléctrica. Como comentado anteriormente, se trata esencialmente de una planta hidroeléctrica gravitacionalmente invertida bajo el mar, con la posibilidad de dimensionar todos los parámetros (altura manométrica, caudal y número de unidades) a una escala mayúscula.
El caso práctico tiene como objetivo ilustrar el potencial técnico para generar electricidad. Cabe recordar que la generación incluye el bombeo del dióxido de carbono líquido dentro de las cavidades ubicadas por debajo del manto subacuático. Para producir electricidad diaria a esos niveles habría de bombearse cantidades ingentes de bióxido de carbono.
Para concluir, el factor que limita la capacidad productiva de electricidad es el caudal diario de dióxido de carbono de que se pueda disponer para bombearlo bajo el mar o la capacidad misma del pozo o manto que aloje el dióxido de carbono. Por lo que, sin embargo, respecta al mecanismo de conversión energética, éste es replicable y escalable prácticamente en modo indefinido.
Una segunda realización de la invención se muestra en las figuras 13 a 19b, en la que el sistema 1b de generación de energía eléctrica se encuentra dispuesto en un medio subterráneo, como se detallará a continuación. Se han utilizado las mismas referencias numéricas para identificar aquellos elementos comunes del sistema
Del mismo modo, el sistema 1b puede comprender una o múltiples unidades generadoras de electricidad. Por motivos de claridad, en las figuras 13 a 19b se ha representado una sola unidad generadora de electricidad que comprende
- un conducto vertical 2 dispuesto soterrado bajo el nivel de la corteza terrestre T, de modo que contiene en su interior un volumen de aire a presión atmosférica al estar su extremo superior abierto a la atmósfera;
- una cápsula 3 alojada dentro del conducto vertical 2, configurada con capacidad para desplazarse con un movimiento alternativo entre una posición de elevación A y una posición de descenso B del conducto vertical 2, estando la cápsula 3 provista de una carcasa hueca estanca que alberga en su interior el depósito 4 (ver figura 14) para la carga del dióxido de carbono en estado semilíquido;
- unos medios de carga 5 configurados por una conducción de alimentación 13 provista de una válvula de carga 14 antirretorno situada sobre la parte superior del conducto vertical 2, y adaptada para acoplarse a una boca de carga 4a del depósito 4 cuando la cápsula 3 se encuentra en su posición de elevación A, de modo que el llenado del depósito 4 con la carga de dióxido de carbono procura un descenso controlado de la cápsula 3 hacia su posición de descenso B por efecto de la fuerza de gravedad;
- unos medios de descarga 6 configurados por una conducción de evacuación 15 provista de una válvula de descarga 16 antirretorno situada bajo la parte inferior del conducto vertical 2, y adaptada para acoplarse a una boca de salida 4b del depósito 4 cuando la cápsula 3 se encuentra en su posición de descenso B, de modo que el vaciado del depósito 4 procura un ascenso controlado de la cápsula 3 hacia su posición de elevación A por efecto de una fuerza de tracción mecánica capaz de contrarrestar la fuerza de gravedad; y
- unos medios de conversión energética 7 configurados por al menos un cabrestante 30 dispuesto por encima de la parte superior del conducto vertical 2, provisto de un tirante 31 enrollado al eje giratorio del cabrestante 30 y acoplado por su extremo libre a la parte superior de la carcasa de la cápsula 3 mediante un elemento de anclaje 32, de modo que el cabrestante 30 es capaz de recibir la fuerza de tracción del tirante 31 generada por el peso de la cápsula 3 llena con la carga de dióxido de carbono durante su movimiento descendente por efecto de la fuerza de gravedad, y estando un eje motriz del cabrestante 30 conectado mecánicamente a un generador de energía eléctrica 20, a través de un tren de engranajes 33 que actúa como un reductor de velocidad, para generar electricidad en cada movimiento de descenso de la cápsula 3.
Asimismo, el cabrestante 30 es capaz de operar con el motor del generador de energía eléctrica 20 girando en sentido inverso, con el propósito de ejercer una fuerza de tracción capaz de elevar la cápsula 3 vacía desde la posición de descenso B hasta la posición de elevación A. Por tanto, una vez se ha vaciado la cápsula 3, el motor del cabrestante 30 permite subir la cápsula 3, siendo para ello la energía consumida insignificante.
En la figura 19a se muestra esquemáticamente mediante una flecha la dirección de la fuerza de tracción sobre el tirante 31 del cabrestante 30 durante el descenso de la cápsula 3 llena con la carga de dióxido de carbono por efecto de la fuerza de gravedad para generar electricidad, mientras que en la figura 19b se ha representado la fuerza de tracción sobre el tirante 31 del cabrestante 30 durante el ascenso de la cápsula 3 vacía accionada por el motor del generador de energía eléctrica 20 para recuperar la energía potencial cedida.
Además, la cápsula 3 comprende unos rodamientos 34 (ver figuras 15 y 18) previstos para deslizar sobre unos railes 35 longitudinales complementarios dispuestos en la pared interior del conducto vertical 2 (ver figura 16), con el propósito de mantener la estabilidad de la cápsula 3 durante su movimiento alternativo a lo largo del conducto vertical 2.
Es importante destacar que en ambas realizaciones descritas (caso submarino y caso subterráneo), los sistemas 1a, 1b cumplen con la misma función, prescindir de una línea de transporte bajante para el transporte de dióxido de carbono para su confinamiento subterráneo, haciéndolo mediante cápsulas 3 itinerantes, lo que permite generar electricidad aprovechando la energía potencial que resulta de la distancia vertical entre el punto de descarga (válvula 16) y la superficie (nivel terrestre o nivel del mar).
Tal como se ha mencionado, el confinamiento del dióxido de carbono tiene lugar bajo un manto rocoso impermeable, típicamente a profundidades superiores a un kilómetro. La idea es vehicular el dióxido de carbono hasta la última válvula 9a (ver figura 8), ubicada al nivel superior del manto rocoso marino 11 o terrestre 12, en el estado semilíquido con que se transporta en ductos, pero haciéndolo mediante el llenado de diversas cápsulas 3 que descienden y ascienden coordinadamente.
A paridad de distancia de descenso, la energía primaria es también la misma en ambos casos, tratándose de energía potencial. Esta resulta:
E p = Fuerza gravitacional X Distancia = (m · g) x h siendo: m, la masa; g, la aceleración producida por el campo gravitacional en la tierra ó g = 9.81 m/s2, y h la distancia vertical.
Para el caso submarino de la primera realización, la fuerza viene dada por la flotación del aire o vacío al interior de la cápsula 3, que la hace emerger a través del medio circundante, más denso, desplazando la columna de agua arriba suyo. Por tanto, en lugar de m g h, la energía potencial se expresa como Dr V g h, donde Dr · V son respectivamente la diferencia de densidad entre el interior de la cápsula 3 (durante el proceso de conversión de energía, o ascenso de la cápsula 3) y la del medio circundante, agua, y el volumen del interior de la cápsula 3. La masa para el caso subterráneo de la segunda realización se expresa también como producto de la densidad del dióxido de carbono en estado supercrítico (aproximadamente el 70% la del agua) multiplicado por el volumen del interior de la cápsula 3: p¥ 2 · V g h. La energía potencial se convierte a su vez en trabajo útil sobre el medio de conversión energética, siendo lo único que cambia entre los sistemas de ambas realizaciones.
Si bien son dos mecanismos diferenciados, en el caso subterráneo la fuerza gravitacional actuando en sentido invertido al del terrestre, en ambos casos la energía es producto de la relación p V g h.
La energía extraída a paridad de distancia vertical es similar pues la diferencia de densidades puede aproximadamente compensarse con la diferencia de eficiencia entre un medio y otro de conversión energética (turbina hidráulica versus cabrestante).
En conclusión, ambos sistemas 1a, 1b cumplen la misma función y generan (mediante mecanismos diferentes) y a partir de la misma fuente primaria de energía (energía potencial) una cantidad equivalente de energía eléctrica. Puede entenderse igualmente como mismo concepto y función, pero actuando en medios diferentes (submarino y subterráneo).
Además, el hecho de que el conducto vertical 2 está sumergido (caso submarino) o soterrado (caso subterráneo), permite al sistema operar en condiciones controladas y continuamente, sin que la meteorología suponga un condicionante y sin generar asimismo disrupción sobre el entorno.

Claims

1. Sistema (1 a, 1 b) de generación de energía eléctrica a partir de una fuerza gravitacional, obtenida en un proceso de bombeo de dióxido de carbono, caracterizado porque comprende al menos una unidad generadora de electricidad que comprende
- un conducto vertical (2);
- una cápsula (3) alojada en el interior del conducto vertical (2) configurada con capacidad para desplazarse con un movimiento alternativo entre una posición de elevación (A) y una posición de descenso (B) del conducto vertical (2), estando la cápsula (3) provista de un depósito (4) para la carga de un volumen de dióxido de carbono;
- unos medios de carga (5) configurados para inyectar un volumen de dióxido de carbono en el interior del depósito (4) de la cápsula (3), cuando dicha cápsula (3) se encuentra en la posición de elevación (A), lo que procura un movimiento descendente de la cápsula (3) hacia su posición de descenso (B) por efecto de una fuerza de empuje descendente ejercida sobre la cápsula (3);
- unos medios de descarga (6) configurados para evacuar el volumen de dióxido de carbono contenido en el depósito (4) de la cápsula (3), cuando dicha cápsula (3) se encuentra en la posición de descenso (B), lo que procura un movimiento ascendente de la cápsula (3) hacia su posición de elevación (A), por efecto de una fuerza de empuje ascendente ejercida sobre la cápsula (3) con capacidad de contrarrestar la fuerza de gravedad; y
- unos medios de conversión energética (7) asociados operativamente con la cápsula (3) y configurados para convertir la energía potencial resultante del movimiento de elevación o descenso de la cápsula (3) en energía eléctrica; y porque el sistema (1a, 1b) está adaptado para ser implementado en una instalación de captura y almacenamiento de carbono, del tipo que comprende una línea de alimentación (8) dispuesta en un nivel superior que conduce el dióxido de carbono capturado desde la superficie terrestre hacia una línea de evacuación (9) dispuesta en un nivel inferior que inyecta el dióxido de carbono en una cavidad subterránea (10), ubicada bajo el manto marino (11) o el manto terrestre (12) para su confinamiento; estando los medios de carga (5) para el llenado de la cápsula (3) conectados a dicha línea de alimentación (8) y estando los medios de descarga (6) para el vaciado de la cápsula (3) conectados a dicha línea de evacuación (9), de modo que la cápsula (3) durante su fase de descenso opera como medio de transporte del dióxido de carbono para su posterior confinamiento.
2. Sistema (1a) de generación de energía eléctrica, según la reivindicación 1 , caracterizado porque la al menos una unidad generadora de electricidad está configurada de modo que
- el conducto vertical (2) está dispuesto sumergido bajo el nivel marino (M), de modo que contiene en su interior un volumen de agua al estar sus respectivos extremos superior e inferior en comunicación con la masa de agua marina (S) que lo rodea;
- estando la cápsula (2) dispuesta sumergida en el volumen interior de agua del conducto vertical (2), y provista de una carcasa hueca estanca que alberga en su interior el depósito (4) para la carga del dióxido de carbono en estado preferentemente líquido;
- estando los medios de carga (5) configurados por una conducción de alimentación (13) provista de una válvula de carga (14) antirretorno situada sobre la parte superior del conducto vertical (2), y adaptada para acoplarse a una boca de carga (4a) del depósito (4) cuando la cápsula (3) se encuentra en su posición de elevación (A), de modo que el llenado del depósito (4) con la carga de dióxido de carbono procura un descenso controlado de la cápsula (3) hacia su posición de descenso (B) por efecto de una fuerza de empuje motriz ejercida por los medios de conversión energética;
- estando los medios de descarga (6) configurados por una conducción de evacuación (15) provista de una válvula de descarga (16) antirretorno situada bajo la parte inferior del conducto vertical (2), y adaptada para acoplarse a una boca de descarga (4b) del depósito (4) cuando la cápsula (3) se encuentra en su posición de descenso (B), de modo que el vaciado del depósito (4) procura un ascenso controlado de la cápsula (3) hacia su posición de elevación (A) por efecto de una fuerza de empuje hidrostático capaz de contrarrestar la fuerza de gravedad; y
- estando los medios de conversión energética (7) configurados por al menos una turbina (17) hidrostática acoplada por su lado de entrada a la parte superior del conducto vertical (2) mediante una tubería en derivación (18) y acoplada por su lado de salida a una tubería (19) que desemboca en la masa de agua marina (S), de modo que la turbina (17) es capaz de recibir la presión del volumen de agua desplazado por la cápsula (3) vacía durante su movimiento ascendente por efecto de la fuerza de empuje hidrostático, y estando un eje motriz de la turbina (17) conectado mecánicamente a un generador de energía eléctrica (20) para generar electricidad en cada movimiento de elevación de la cápsula (3).
3. Sistema (1a) de generación de energía eléctrica, según la reivindicación
2, caracterizado porque la carcasa de la cápsula (3) está provista de una pared (21) rígida dotada de una camisa periférica (22) que contiene aire comprimido para aislar térmicamente el depósito (4).
4. Sistema (1a) de generación de energía eléctrica, según la reivindicación
3, caracterizado porque la camisa periférica (22) comprende al menos un orificio de paso en comunicación con el depósito (4) para conformar un circuito cerrado de aire, de modo que durante la operación de vaciado del dióxido de carbono, el aire contenido en la camisa periférica (22) es capaz de ocupar el espacio interior del depósito (4); y de modo que durante la operación de llenado, el dióxido de carbono es capaz de desplazar el aire contenido en el depósito (4) hacia la camisa periférica (22).
5. Sistema (1a) de generación de energía eléctrica, según una cualquiera de las reivindicaciones 2 a 4, caracterizado porque se prevé que el dióxido de carbono sea inyectado en el depósito (4) en estado líquido, y sometido previamente a una operación de enfriamiento para aumentar su densidad de modo que, teniendo en cuenta el peso de la carcasa de la cápsula (3) y el peso del dióxido de carbono líquido en su interior, permita mantener la cápsula (3) en flotación neutra, esto es con la cápsula (3) inmóvil, sin descender por el peso ni ascender por sustentación.
6. Sistema (1a) de generación de energía eléctrica, según la reivindicación 5, caracterizado porque la turbina (17) hidráulica es capaz de operar con el motor del generador de energía eléctrica (20) girando en sentido inverso, actuando en modo bomba o hélice (17’), para ejercer una fuerza motriz capaz de impulsar una corriente de agua en sentido descendente a una velocidad tal que procura el descenso controlado de la cápsula (3) llena en flotación neutra, con el propósito de evitar el impacto de la cápsula (3) cuando alcanza la posición de descenso (B).
7. Sistema (1a) de generación de energía eléctrica, según una cualquiera de las reivindicaciones 2 a 6, caracterizado porque dicha tubería en derivación (18) comprende un tramo horizontal conectado a la turbina (17) hidráulica y un tramo vertical conectado a la parte superior del conducto vertical (4) y dotado de un alojamiento interior previsto para recibir la cápsula (3) en su posición elevada (A) durante la operación de carga del dióxido de carbono, estando para ello dicho alojamiento dotado de un orificio (23) conectado por su parte superior con la válvula de carga (14) de la conducción de alimentación (13) del dióxido de carbono.
8. Sistema (1a) de generación de energía eléctrica, según una cualquiera de las reivindicaciones 2 a 7, caracterizado porque comprende un receptáculo (24) inferior dispuesto bajo la parte inferior del conducto vertical (2), previsto para el apoyo de la cápsula (3) en su posición de descenso (B) durante la operación de descarga del dióxido de carbono, estando para ello dicho receptáculo (24) dotado de un orificio (25) conectado por su parte inferior con la válvula de descarga (16) de la conducción de evacuación (15) del dióxido de carbono.
9. Sistema (1a) de generación de energía eléctrica, según una cualquiera de las reivindicaciones 2 a 8, caracterizado porque la cápsula (3) está configurada por una porción central cilindrica cerrada en ambos extremos por dos porciones semiesféricas.
10. Sistema (1a) de generación de energía eléctrica, según una cualquiera de las reivindicaciones 2 a 9, caracterizado porque el conducto vertical (2) está anclado por su parte inferior mediante uno o varios tirantes (26) al manto rocoso del fondo marino (11).
11. Sistema (1a) de generación de energía eléctrica, según una cualquiera de las reivindicaciones 2 a 10, caracterizado porque el conducto vertical (2) está formado por varios tramos cilindricos (2.1-2.n) acoplados contiguos entre sí.
12. Sistema (1a) de generación de energía eléctrica, según una cualquiera de las reivindicaciones 2 a 11 , caracterizado porque el conducto vertical (2) incluye una estructura exterior formada por espirales (27) a lo largo de su longitud.
13. Sistema (1b) de generación de energía eléctrica, según la reivindicación 1 , caracterizado porque la al menos una unidad generadora de electricidad está configurada de modo que
- el conducto vertical (2) está dispuesto soterrado bajo el nivel de la corteza terrestre (T), de modo que contiene en su interior un volumen de aire a presión atmosférica al estar su extremo superior abierto a la atmósfera;
- estando la cápsula (3) alojada dentro del conducto vertical (2), y provista de una carcasa hueca estanca que alberga en su interior el depósito (4) para la carga del dióxido de carbono en estado preferentemente semilíquido;
- estando los medios de carga (5) configurados por una conducción de alimentación (13) provista de una válvula de carga (14) antirretorno situada sobre la parte superior del conducto vertical (2), y adaptada para acoplarse a una boca de carga (4a) del depósito (4) cuando la cápsula (3) se encuentra en su posición de elevación (A), de modo que el llenado del depósito (4) con la carga de dióxido de carbono procura un descenso controlado de la cápsula (3) hacia su posición de descenso (B) por efecto de la fuerza de gravedad;
- estando los medios de descarga (6) configurados por una conducción de evacuación (15) provista de una válvula de descarga (16) antirretorno situada bajo la parte inferior del conducto vertical (2), y adaptada para acoplarse a una boca de salida (4b) del depósito (4) cuando la cápsula (3) se encuentra en su posición de descenso (B), de modo que el vaciado del depósito (4) procura un ascenso controlado de la cápsula (3) hacia su posición de elevación (A) por efecto de una fuerza de tracción mecánica ejercida por los medios de conversión energética, capaz de contrarrestar la fuerza de gravedad; y - estando los medios de conversión energética (7) configurados por al menos un cabrestante (30) dispuesto por encima de la parte superior del conducto vertical (2), provisto de un tirante (31) enrollado al eje giratorio del cabrestante (30) y acoplado por su extremo libre a la parte superior de la carcasa de la cápsula (3) mediante un elemento de anclaje (32), de modo que el cabrestante (30) es capaz de recibir la fuerza de tracción del tirante (31) generada por el peso de la cápsula (3) llena con la carga de dióxido de carbono durante su movimiento descendente por efecto de la fuerza de gravedad, y estando un eje motriz del cabrestante (30) conectado mecánicamente a un generador de energía eléctrica (20), a través de un tren de engranajes (33) que actúa como un reductor de velocidad, para generar electricidad en cada movimiento de descenso de la cápsula (3).
14. Sistema (1b) de generación de energía eléctrica, según la reivindicación 13, caracterizado porque el cabrestante (30) es capaz de operar con el motor del generador de energía eléctrica (20) girando en sentido inverso, con el propósito de ejercer una fuerza de tracción capaz de elevar la cápsula (3) vacía desde la posición de descenso (B) hasta la posición de elevación (A).
15. Sistema (1b) de generación de energía eléctrica, según la reivindicación 13 o 14, caracterizado porque la cápsula (3) comprende unos rodamientos (34) previstos para deslizar sobre unos railes (35) longitudinales complementarios dispuestos en la pared interior del conducto vertical (2), con el propósito de mantener la estabilidad de la cápsula (3) durante su movimiento alternativo a lo largo del conducto vertical (2).
16. Sistema (1a, 1b) de generación de energía eléctrica, según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende múltiples unidades generadoras dispuestas de modo que las respectivas cápsulas están sincronizadas según un orden secuencial de carga, con el propósito de multiplicar la capacidad productiva y a su vez generar continuidad en el suministro eléctrico.
PCT/ES2019/070679 2019-10-08 2019-10-08 Sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono WO2021069763A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070679 WO2021069763A1 (es) 2019-10-08 2019-10-08 Sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070679 WO2021069763A1 (es) 2019-10-08 2019-10-08 Sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono

Publications (1)

Publication Number Publication Date
WO2021069763A1 true WO2021069763A1 (es) 2021-04-15

Family

ID=69061395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070679 WO2021069763A1 (es) 2019-10-08 2019-10-08 Sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono

Country Status (1)

Country Link
WO (1) WO2021069763A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061293A (ja) * 1998-08-18 2000-02-29 Toshiba Corp メタンハイドレートを燃料として利用するシステム
WO2013034817A1 (fr) * 2011-09-08 2013-03-14 Fabron Jean-Luc Réacteur gravitationnel
US20150033717A1 (en) * 2013-08-05 2015-02-05 Kuo-Hua Hsu Ocean buoyancy power generating system
WO2015027113A1 (en) 2013-08-22 2015-02-26 Gravity Power LLC System and method for storing energy
WO2018071014A1 (en) * 2016-10-12 2018-04-19 Safety Design Usa, Inc. Underwater turbine system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061293A (ja) * 1998-08-18 2000-02-29 Toshiba Corp メタンハイドレートを燃料として利用するシステム
WO2013034817A1 (fr) * 2011-09-08 2013-03-14 Fabron Jean-Luc Réacteur gravitationnel
US20150033717A1 (en) * 2013-08-05 2015-02-05 Kuo-Hua Hsu Ocean buoyancy power generating system
WO2015027113A1 (en) 2013-08-22 2015-02-26 Gravity Power LLC System and method for storing energy
WO2018071014A1 (en) * 2016-10-12 2018-04-19 Safety Design Usa, Inc. Underwater turbine system

Similar Documents

Publication Publication Date Title
Wang et al. A review of marine renewable energy storage
JP6781199B2 (ja) 揚水発電所
ES2637007T3 (es) Sistema y método para almacenar energía
ES2660554T3 (es) Acumulador de energía hidráulica
US8011182B2 (en) Vertical gravity/buoyancy power generator
ES2820299T3 (es) Turbina flotante
US7969033B2 (en) Buoyancy energy cell
US20100107627A1 (en) Buoyancy energy storage and energy generation system
US20090021012A1 (en) Integrated wind-power electrical generation and compressed air energy storage system
US20030145589A1 (en) Fluid displacement method and apparatus
US10267287B2 (en) Oscillating unites buoyancy hydro electric loop pistons
ES2774929T3 (es) Dispositivo de recuperación de energía sobre espectros amplios de oleajes
EP1734255A1 (en) Wave energy converter
ES2375005A1 (es) Central eléctrica sobre una plataforma flotante sumergida.
US11480147B2 (en) Eccentrically rotating mass turbine
WO2007009192A1 (en) Power generation system
US20120119503A1 (en) Submerged energy storage
US20100102567A1 (en) Aqua Aura Power Generation Process
WO2021069763A1 (es) Sistema de generación de energía eléctrica a partir de una fuerza gravitacional obtenida en un proceso de bombeo de dióxido de carbono
WO2010086474A1 (es) Sistema de generación de energía eléctrica por aprovechamiento de corrientes de agua
ES2306209T3 (es) Ensamblaje y metodo de generacion de energia hidrodinamica.
ES2594305B1 (es) Hidrogenerador de corriente electrica por gravedad
CN203272010U (zh) 海流潮汐发电装置
JP2009167925A (ja) 潮汐エネルギ利用水力発電方法及び装置
ES2798158A1 (es) Sistema y metodo de generacion y almacenamiento de energia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19829253

Country of ref document: EP

Kind code of ref document: A1