WO2021068708A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2021068708A1
WO2021068708A1 PCT/CN2020/114598 CN2020114598W WO2021068708A1 WO 2021068708 A1 WO2021068708 A1 WO 2021068708A1 CN 2020114598 W CN2020114598 W CN 2020114598W WO 2021068708 A1 WO2021068708 A1 WO 2021068708A1
Authority
WO
WIPO (PCT)
Prior art keywords
psfch resources
psfch
transmit power
priority
resources
Prior art date
Application number
PCT/CN2020/114598
Other languages
English (en)
French (fr)
Inventor
刘云
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022521678A priority Critical patent/JP2022551321A/ja
Priority to US17/768,041 priority patent/US20220386247A1/en
Priority to EP20874241.1A priority patent/EP4030671A4/en
Priority to KR1020227012425A priority patent/KR20220065802A/ko
Publication of WO2021068708A1 publication Critical patent/WO2021068708A1/zh
Priority to JP2023130864A priority patent/JP2023144026A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the Internet of Vehicles (vehicle to everything, V2X) is the key technology of the intelligent transportation system, and it is considered to be one of the fields with the most industrial potential and the clearest market demand in the Internet of Things system. Telematics generally refer to information provided by the vehicle sensors in the car load, car terminal, etc., to achieve a vehicle to the vehicle (vehicle to vehicle, V2V), vehicle-to-infrastructure (vehicle to infrastructure, V2I), the vehicle network (vehicle to network, V2N) and a communication network for mutual communication between vehicles to pedestrians (V2P).
  • V2V vehicle to vehicle
  • V2I vehicle-to-infrastructure
  • V2N vehicle network
  • V2P vehicle to network
  • V2X has the characteristics of wide application space, great industrial potential, and strong social benefits. It is useful for promoting the innovative development of the automobile and information and communication industries, building new models and new business formats for automobiles and transportation services, and promoting unmanned driving, assisted driving, intelligent driving, and connected driving.
  • the innovation and application of technologies such as, intelligent networked driving, autonomous driving, and car sharing, as well as the improvement of traffic efficiency and safety levels, are of great significance.
  • HARQ hybrid automatic repeat request
  • the feedback is an acknowledgement (ACK) or a negative acknowledgement (NACK).
  • ACK indicates that the receiving terminal correctly receives the data
  • NACK indicates that the receiving terminal does not correctly receive the data.
  • HARQ feedback is carried on the physical sidelink feedback channel (PSFCH).
  • PSSCH physical sidelink shared channels
  • the receiving terminal needs to perform HARQ feedback for each PSSCH.
  • the transmit power of the receiving terminal may not be able to support HARQ feedback to all PSSCHs at the same time.
  • the receiving terminal can select M'PSFCH resources to simultaneously perform HARQ feedback on some of the multiple PSSCHs, but the selection of M'PSFCH resources is not given.
  • the advantages and disadvantages of each selection method may further affect the overall performance of the communication system.
  • the embodiments of the present application provide a communication method and device to ensure the overall performance of the communication system.
  • a communication method which includes: a receiving terminal receives X PSSCHs corresponding to X PSFCH resources one-to-one from one or more sending terminals, and according to the priority of the X PSFCH resources, the X PSFCH resources The corresponding transmit power and the total transmit power of the receiving terminal determine M PSFCH resources, and then send feedback information to part or all of the one or more sending terminals on the M PSFCH resources.
  • the time domain resources of the X PSFCH resources are the same, X is an integer greater than 1, M is less than or equal to M', and M'is the upper limit of the number of PSFCH resources occupied on the same time domain resource.
  • the receiving terminal can determine M PSFCH resources according to the priority of the PSFCH resource, the transmission power corresponding to the PSFCH resource, and the total transmission power of the receiving terminal, so as to transmit according to the transmission capability (ie, the total transmission power) of the receiving terminal M PSFCH resources improve the overall performance of the network system.
  • the receiving terminal determines M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal, including: the receiving terminal determines the M PSFCH resources according to the X PSFCH resources
  • the transmit power corresponding to the PSFCH resource is accumulated in the order of priority from high to low; the accumulated result after the transmit power corresponding to m PSFCH resources is accumulated is less than or equal to the total transmit power, and m is equal to M', or m is accumulated
  • the receiving terminal determines that m PSFCH resources are M PSFCH resources.
  • This possible implementation can ensure that M PSFCH resources are sent within the receiving terminal's sending capability (that is, within the total transmit power of the receiving terminal), and that the number of determined M PSFCH resources is less than or equal to The upper limit of the number of PSFCH resources occupied on the same time domain resource, thereby improving the overall performance of the network system.
  • the receiving terminal determines M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal, including: the receiving terminal determines the M PSFCH resources according to the X PSFCH resources
  • the transmit power corresponding to the PSFCH resource is accumulated in order of priority from high to low; the accumulated result after the transmit power corresponding to m PSFCH resources is accumulated is less than or equal to the total transmit power, and the transmit power corresponding to m+1 PSFCH resources is accumulated
  • the receiving terminal determines that the m PSFCH resources are M PSFCH resources.
  • This possible implementation can ensure that M PSFCH resources are sent within the receiving terminal's sending capability (that is, within the total transmit power of the receiving terminal), and that the number of determined M PSFCH resources is less than or equal to The upper limit of the number of PSFCH resources occupied on the same time domain resource, thereby improving the overall performance of the network system.
  • the receiving terminal determines M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal, including: the receiving terminal determines the M PSFCH resources according to the X PSFCH resources
  • the transmit power corresponding to the PSFCH resource is accumulated in order of priority from high to low; the accumulated result after the transmit power corresponding to m PSFCH resources is accumulated is less than or equal to the total transmit power, and the transmit power corresponding to m+1 PSFCH resources is accumulated
  • the receiving terminal reduces the transmit power corresponding to the m+1th PSFCH resource among the m+1 PSFCH resources, so that the accumulated m+
  • the cumulative result of the transmission power corresponding to one PSFCH resource is less than or equal to the total transmission power of the receiving terminal; the receiving terminal determines that m+1 PSFCH
  • This possible implementation can ensure that M PSFCH resources are sent within the receiving terminal's sending capability (that is, within the total transmit power of the receiving terminal), and that the number of determined M PSFCH resources is less than or equal to The upper limit of the number of PSFCH resources occupied on the same time domain resource, thereby improving the overall performance of the network system.
  • the receiving terminal determines M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal, including: the receiving terminal determines the M PSFCH resources according to the X PSFCH resources
  • the transmit power corresponding to the PSFCH resource is accumulated in order of priority from high to low; the accumulated result after the transmit power corresponding to m PSFCH resources is accumulated is less than or equal to the total transmit power, and the transmit power corresponding to m+1 PSFCH resources is accumulated
  • the receiving terminal reduces the transmit power corresponding to the PSFCH resource in the first priority among the m+1 PSFCH resources, so that m is accumulated
  • the cumulative result after the transmission power corresponding to the +1 PSFCH resource is less than or equal to the total transmission power, the first priority is the priority of the m+1 PSFCH resource
  • This possible implementation can ensure that M PSFCH resources are sent within the receiving terminal's sending capability (that is, within the total transmit power of the receiving terminal), and that the number of determined M PSFCH resources is less than or equal to The upper limit of the number of PSFCH resources occupied on the same time domain resource, thereby improving the overall performance of the network system.
  • the receiving terminal determines M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal, including: the receiving terminal determines the M PSFCH resources according to the X PSFCH resources
  • the transmit power corresponding to the PSFCH resource is accumulated in order of priority from high to low; the accumulated result after the transmit power corresponding to m PSFCH resources is accumulated is less than or equal to the total transmit power, and the transmit power corresponding to m+1 PSFCH resources is accumulated
  • the receiving terminal reduces the transmit power corresponding to x1 PSFCH resources in the first priority, so that the accumulation is m+1-x2+x1
  • the cumulative result after the transmit power corresponding to each PSFCH resource is less than or equal to the total transmit power
  • the first priority is the priority of the m+1 PSFCH resource in the
  • This possible implementation can ensure that M PSFCH resources are sent within the receiving terminal's sending capability (that is, within the total transmit power of the receiving terminal), and that the number of determined M PSFCH resources is less than or equal to The upper limit of the number of PSFCH resources occupied on the same time domain resource, thereby improving the overall performance of the network system.
  • the receiving terminal determines M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal, including: the receiving terminal determines the M PSFCH resources according to the X PSFCH resources The transmit power corresponding to the PSFCH resource is accumulated in order of priority from high to low; the accumulated result after the transmit power corresponding to m PSFCH resources is accumulated is less than or equal to the total transmit power, and the transmit power corresponding to m+1 PSFCH resources is accumulated When the accumulated result after the power is greater than the total transmit power and m+1 is less than or equal to M', the receiving terminal determines the first combination among multiple combinations, and the multiple combinations are combinations of PSFCH resources in the first priority.
  • the first priority is the priority of the m+1 PSFCH resource among the m+1 PSFCH resources; the receiving terminal determines that the accumulated m+1-x2+x3 PSFCH resources are M PSFCH resources, where x2 is The number of PSFCH resources belonging to the first priority among m+1 PSFCH resources, and x3 is the number of PSFCH resources in the first combination; where, compared with other combinations, the first combination meets the following characteristics: The sum of the number of PSFCH resources in the combination and the number of PSFCH resources in all priorities higher than the first priority is less than or equal to M', and the transmission power corresponding to the PSFCH resources in the first combination is higher than the first priority.
  • the sum of the transmit powers corresponding to the PSFCH resources in all the priorities of the priority is less than or equal to the total transmit power, the number of PSFCH resources in the first combination and the number of PSFCH resources in all priorities higher than the first priority
  • the sum of the numbers is the largest. This possible implementation can ensure that M PSFCH resources are sent within the receiving terminal's sending capability (that is, within the total transmit power of the receiving terminal), and that the number of determined M PSFCH resources is less than or equal to
  • the upper limit of the number of PSFCH resources occupied on the same time domain resource can also make the number of determined M PSFCH resources the largest, thereby improving the overall performance of the network system.
  • the first combination also satisfies the following characteristics: the transmit power corresponding to the PSFCH resource in the first combination corresponds to the PSFCH resources in all priorities higher than the first priority
  • the sum of the transmission powers is the smallest, or the sum of the transmission powers corresponding to the PSFCH resources in the first combination and the transmission powers corresponding to the PSFCH resources in all priority levels higher than the first priority has the largest difference with the total transmission power.
  • This possible implementation can ensure that M PSFCH resources are sent within the receiving terminal's sending capability (that is, within the total transmit power of the receiving terminal), and that the number of determined M PSFCH resources is less than or equal to
  • the upper limit of the number of PSFCH resources occupied on the same time domain resource can also minimize the sum of the determined transmit powers of the M PSFCH resources, thereby improving the overall performance of the network system.
  • a communication device including: a communication unit and a processing unit; the communication unit is configured to receive X PSSCHs corresponding to X PSFCH resources one-to-one from at least one transmitting terminal, and X corresponding to the X PSSCHs.
  • the time domain resources of the PSFCH resources are the same, and X is an integer greater than 1.
  • the processing unit is used to determine M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the device, M is less than or equal to M', and M'is the upper limit of the number of PSFCH resources occupied on the same time domain resource; the communication unit is also used to send part or all of the M PSFCH resources to at least one sending terminal Feedback.
  • the processing unit is specifically configured to: sequentially accumulate the transmission power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources; after accumulating the transmission power corresponding to the m PSFCH resources If the accumulation result of is less than or equal to the total transmit power and m is equal to M', or the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is equal to the total transmit power and m is less than M', determine m PSFCH resources Is M PSFCH resources.
  • the processing unit is specifically configured to: sequentially accumulate the transmission power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources; after accumulating the transmission power corresponding to the m PSFCH resources If the accumulation result of is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power and m+1 is less than or equal to M', determine m PSFCH resources as M PSFCH resources.
  • the processing unit is specifically configured to: sequentially accumulate the transmission power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources; after accumulating the transmission power corresponding to the m PSFCH resources If the accumulated result of is less than or equal to the total transmit power, and the accumulated result of the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 is less than or equal to M', reduce m+1 PSFCH The transmission power corresponding to the m+1th PSFCH resource in the resource, so that the cumulative result after accumulating the transmission power corresponding to m+1 PSFCH resources is less than or equal to the total transmission power; determine m+1 PSFCH resources as M PSFCH resources .
  • the processing unit is specifically configured to: sequentially accumulate the transmission power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources; after accumulating the transmission power corresponding to the m PSFCH resources If the accumulated result of is less than or equal to the total transmit power, and the accumulated result of the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 is less than or equal to M', reduce m+1 PSFCH The transmission power corresponding to the PSFCH resource in the first priority in the resource, so that the cumulative result after accumulating the transmission power corresponding to m+1 PSFCH resources is less than or equal to the total transmission power, and the first priority is m+1 PSFCH resources The priority of the m+1th PSFCH resource in, and the m+1 PSFCH resources are determined to be M PSFCH resources.
  • the processing unit is specifically configured to: sequentially accumulate the transmission power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources; after accumulating the transmission power corresponding to the m PSFCH resources If the cumulative result of is less than or equal to the total transmit power, and the cumulative result of the cumulative transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 is less than or equal to M', lower the first priority
  • the transmit power corresponding to the x1 PSFCH resources of, so that the accumulated result after the transmit power corresponding to m+1-x2+x1 PSFCH resources is accumulated is less than or equal to the total transmit power, and the first priority is that of the m+1 PSFCH resources
  • the processing unit is specifically configured to: sequentially accumulate the transmission power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources; after accumulating the transmission power corresponding to the m PSFCH resources If the cumulative result of is less than or equal to the total transmit power, and the cumulative result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 is less than or equal to M', determine in multiple combinations The first combination, multiple combinations are combinations of PSFCH resources in the first priority, the first priority is the priority of the m+1 PSFCH resource in the m+1 PSFCH resources; determine the accumulated m+1 -x2+x3 PSFCH resources are M PSFCH resources, where x2 is the number of PSFCH resources belonging to the first priority among the m+1 PSFCH resources, and x3 is the number of PSFCH resources in the first combination; Among them, compared with other combinations, the first combination satisfies the following
  • the first combination also satisfies the following characteristics: the transmit power corresponding to the PSFCH resource in the first combination corresponds to the PSFCH resources in all priorities higher than the first priority
  • the sum of the transmission powers is the smallest, or the sum of the transmission powers corresponding to the PSFCH resources in the first combination and the transmission powers corresponding to the PSFCH resources in all priority levels higher than the first priority has the largest difference with the total transmission power.
  • a communication device including a processor.
  • the processor is connected to the memory, and the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, thereby implementing any one of the methods provided in the first aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the communication device or outside the communication device.
  • the processor includes a logic circuit, and also includes at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • the communication device further includes a communication interface and a communication bus, and the processor, the memory, and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the communication device exists in the form of a chip product.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute any of the methods provided in the first aspect.
  • a computer program product containing instructions is provided. When the instructions are run on a computer, the computer executes any of the methods provided in the first aspect.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the application
  • Figure 2 is a schematic diagram of a sub-channel provided by an embodiment of the application.
  • 3 and 4 are schematic diagrams of resources occupied by channels on a side link provided by an embodiment of the application.
  • FIG. 5 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a PSFCH resource provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of the composition of a communication device provided by an embodiment of this application.
  • FIG. 8 and FIG. 9 are respectively schematic diagrams of the hardware structure of a communication device provided by an embodiment of the application.
  • A/B can mean A or B.
  • “And/or” in this article is only an association relationship describing the associated objects, which means that there can be three kinds of relationships.
  • a and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone. These three situations.
  • “at least one” means one or more, and “plurality” means two or more.
  • the words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • the network elements involved in this application include network equipment and terminals in a communication system.
  • the method provided by the embodiment of the present application mainly involves the communication between the terminal and the terminal, and the communication between the terminal and the network device.
  • the communication systems in the embodiments of this application include but are not limited to long term evolution (LTE) systems, fifth-generation (5th-generation, 5G) systems, NR systems, wireless local area networks (WLAN) systems, and Future evolution system or multiple communication fusion systems.
  • LTE long term evolution
  • 5th-generation 5th-generation
  • NR fifth-generation
  • WLAN wireless local area networks
  • Future evolution system or multiple communication fusion systems include but are not limited to long term evolution (LTE) systems, fifth-generation (5th-generation, 5G) systems, NR systems, wireless local area networks (WLAN) systems, and Future evolution system or multiple communication fusion systems.
  • the 5G system can be a non-standalone (NSA) 5G system or a standalone (SA) 5G system.
  • the network device in the embodiment of the present application is an entity on the network side that is used to send signals, receive signals, or send signals and receive signals.
  • the network equipment may be a device that is deployed in a radio access network (RAN) to provide wireless communication functions for the terminal, such as a transmission reception point (TRP), a base station, and various forms of control nodes ( For example, a network controller, a wireless controller (for example, a wireless controller in a cloud radio access network (CRAN) scenario)).
  • the network equipment may be various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points (access points, AP), etc., and may also be antenna panels of base stations.
  • the control node may be connected to multiple base stations and configure resources for multiple terminals under the coverage of the multiple base stations.
  • the names of devices with base station functions may be different.
  • the LTE system can be called an evolved NodeB (eNB or eNodeB), and the 5G system or NR system can be called the next generation node base station (gNB).
  • eNB evolved NodeB
  • gNB next generation node base station
  • the specific name of the base station in this application Not limited.
  • the network equipment may also be the network equipment in the public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • the terminal in the embodiment of the present application is an entity on the user side that is used to receive signals, or send signals, or receive signals and send signals.
  • the terminal is used to provide users with one or more of voice services and data connectivity services.
  • the terminal can also be called user equipment (UE), terminal equipment, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user Device.
  • the terminal can be a V2X device, for example, a smart car (smart car or intelligent car), a digital car (digital car), an unmanned car (unmanned car or driverless car or pilotless car or automobile), and an automatic car (self-driving car or autonomous car).
  • the terminal can also be a D2D device, such as an electric meter, a water meter, and so on.
  • the terminal can also be a mobile station (MS), subscriber unit (subscriber unit), drone, Internet of things (IoT) equipment, station (ST) in WLAN, and cellular phone (cellular phone).
  • the terminal may also be a terminal in a next-generation communication system, for example, a terminal in a 5G system or a terminal in a future evolved PLMN, a terminal in an NR system, and so on.
  • D2D device to device
  • V2X unmanned driving
  • ADS automated driving
  • driver assistance driver assistance
  • ADAS driver assistance
  • the V2X architecture is divided into two types: Standalone and Multi-Rat Dual Connectivity (MR-DC).
  • two terminals performing V2X communication access the same network device, and the network device manages or configures the two terminals.
  • the network equipment may be gNB, next-generation eNB (ng-eNB), eNB, and so on.
  • two terminals performing V2X communication are both connected to a primary node (main node, MN) and a secondary node (secondary node, SN).
  • main node, MN primary node
  • secondary node secondary node
  • the terminal 1 and the terminal 4 in FIG. 1 both access the network device 1 and the network device 2, and one of the network device 1 and the network device 2 is the primary node, and the other is the secondary node.
  • the master node can manage or configure terminals for V2X communication.
  • the communication link for direct communication between the terminal and the terminal may be referred to as a side link (sidelink, SL) or a side link.
  • SL side link
  • the sending terminal can directly send data to the receiving terminal, without first sending the data to the network device, and then forwarding it through the core network, and then sending it to the receiving terminal, which can greatly reduce the data transmission delay.
  • SL HARQ combines forward error correction (FEC) and automatic repeat request (ARQ). By adding redundant information, FEC enables the receiving terminal to correct some errors, thereby reducing the number of retransmissions. For errors that cannot be corrected by FEC, the receiving terminal requests the sending terminal to retransmit data through the ARQ mechanism.
  • the receiving terminal uses error detection codes, such as cyclic redundancy check (CRC), to detect whether the received data is in error. If there is no error, the receiving terminal will send an ACK to the sending terminal, and after receiving the ACK, the sending terminal will continue to send the next data. If an error occurs, the receiving terminal will send a NACK to the sending terminal, and after receiving the NACK, the sending terminal will retransmit the data.
  • ACK and NACK are HARQ feedback.
  • the ARQ mechanism described above after receiving the data packet, if the receiving terminal decodes the data packet, it will discard the data packet and request a retransmission.
  • the decoded data packet contains useful information. If it is discarded, the useful information will be lost. .
  • the data packets with decoding errors will be stored in a HARQ buffer, and will be decoded after soft combining with the subsequently received retransmitted data packets.
  • you can continue to repeat the above process combine the newly received retransmitted data with the data in the buffer, and decode it again.
  • the probability of successful decoding is improved.
  • LTE V2X since LTE V2X only supports broadcast services, SL HARQ feedback is not supported.
  • NR V2X supports unicast, multicast, and broadcast services, but only supports SL HARQ feedback in unicast and multicast scenarios.
  • Resource pool is a logical concept.
  • a resource pool includes multiple physical resources, and any one of the physical resources can be used to transmit data.
  • the network device configures one or more resource pools for multiple terminals, and the multiple terminals share the one or more resource pools.
  • a terminal When a terminal performs data transmission, it needs to use a physical resource from the resource pool for transmission.
  • the terminal is controlled by the network device, and according to the instruction information sent by the network device, selects a physical resource from the resource pool for data transmission. In another case, the terminal autonomously selects a physical resource from the resource pool for data transmission.
  • Each resource pool contains one or more subchannels.
  • the frequency domain resource size (that is, the number of physical resource blocks (PRB)) of each sub-channel in a resource pool is the same.
  • the frequency domain resource sizes of the subchannels in different resource pools may be the same or different.
  • the bandwidth occupied by the physical resources in a resource pool is 20M, and 20M is divided into 4 sub-channels, the bandwidth occupied by one sub-channel is 5M.
  • the number of sub-channels included in a resource pool and the bandwidth occupied by each sub-channel can be configured by the network device to the terminal.
  • PSCCH Physical sidelink control channel
  • PSSCH Physical sidelink control channel
  • PSFCH Physical sidelink control channel
  • the sub-channels can include PSCCH, PSSCH, and PSFCH.
  • the PSCCH is used to carry control information of SL data, and the control information can be carried in sidelink control information (SCI) in the PSCCH.
  • PSSCH is used to carry SL data.
  • PSFCH is used to carry the HARQ feedback of SL data.
  • the PSFCH includes one or two symbols in the time domain and one or more PRBs in the frequency domain, and these one or more PRBs are part of the PSSCH frequency domain resources.
  • the period of the PSFCH time-frequency resource (referred to as PSFCH resource) is N slots, and the value of N is currently 1, 2, and 4.
  • PSFCH resource the period of the PSFCH time-frequency resource
  • N the value of N is currently 1, 2, and 4.
  • the corresponding PSFCH appears on the time slot (n+a), and a is the smallest integer greater than or equal to K.
  • K has not yet been determined.
  • N PSFCH corresponding to the PSSCH there will be N PSFCH corresponding to the PSSCH that need to share a PSFCH resource.
  • the SL data carried by the PSSCH on time slot n and time slot (n+1) needs to use PSFCH resources on time slot (n+2) Perform HARQ feedback.
  • the SL data carried by the PSSCH on the time slot n needs to use part of the PSFCH resources on the time slot (n+2) for HARQ feedback
  • the SL data carried by the PSSCH on the time slot (n+2) needs to use the time slot
  • the other part of the PSFCH resources on (n+2) performs HARQ feedback.
  • sending (or receiving) SL data carried on one PSSCH is described as “sending (or receiving) PSSCH”.
  • the PSFCH resource can carry a sequence, and the sequence has a certain sequence interval.
  • the sequence interval refers to the number of bits that a sequence is cyclically shifted. For example, (1,2,3,4) is a sequence, then cyclic shift 1 bit to get (2,3,4,1), the sequence interval between these two sequences is 1.
  • the sequence interval may be the same or different, and may be specifically configured by the network device.
  • the sequence on the PSFCH resource containing 1 PRB is used to represent ACK/NACK.
  • On a PRB there are a total of 12 subcarriers, so it can support a maximum of 12 mutually orthogonal sequences. These sequences are based on a base.
  • a sequence for example, a physical uplink control channel (PUCCH) format (format) 0 sequence
  • the base sequence can be called sequence 0
  • the sequence obtained by shifting x can be called sequence x.
  • the error rate between different ACK/NACKs is related to the sequence interval. The larger the sequence interval, the lower the error rate.
  • an embodiment of the present application provides a communication method (which can also be considered as a method for determining PSFCH resources). As shown in FIG. 5, the method includes:
  • At least one sending terminal sends X PSSCHs to the receiving terminal.
  • the receiving terminal receives X PSSCHs from at least one sending terminal.
  • X is an integer greater than 1.
  • any one of the at least one sending terminal and the receiving terminal can perform unicast communication or multicast communication (in this case, the receiving terminal is one of all receiving terminals in the multicast communication).
  • the at least one sending terminal may be one or multiple.
  • One sending terminal can send one PSSCH to the receiving terminal, or multiple PSSCHs to the receiving terminal.
  • a transmitting terminal can send a PSSCH to the receiving terminal in time slot n through subchannel 1, and in subchannel 1.
  • Slot (n+1) sends another PSSCH to the receiving terminal.
  • the sending terminal 1 can send a PSSCH to the receiving terminal in the time slot n through the subchannel 1, and the sending terminal 2 can Another PSSCH is sent to the receiving terminal through subchannel 2 in slot n.
  • the sending terminal 1 can send a PSSCH to the receiving terminal in the time slot (n+1) through subchannel 1, and the sending terminal 2 can send a PSSCH through subchannel 2 in the time slot (n+1).
  • Time slot n and time slot (n+1) respectively send a PSSCH to the receiving terminal.
  • one PSSCH corresponds to one PSFCH resource
  • the feedback information of one PSSCH is carried on the corresponding PSFCH resource
  • the time domain resources of the X PSFCH resources corresponding to the X PSSCHs are the same.
  • the period of PSFCH resources is N time slots. When N is greater than 1, N PSSCHs may need to share PSFCH resources. Therefore, the part of PSFCH resources shared by N PSSCHs will be divided into N parts (may be evenly divided).
  • the N shares are considered to be N PSFCH resources.
  • the PSFCH resource on the time slot (n+2) is 2 PSFCH resources, one PSFCH resource corresponds to the PSSCH on time slot n, and the other PSFCH resource corresponds to the time slot ( n+1) PSSCH on.
  • the PSFCH resources on the time slot (n+2) on subchannel 1 and subchannel 2 in (c) in FIG. 6 are the same.
  • one PSFCH resource on the time slot (n+2) on the subchannel 1 in (c) in Figure 6 corresponds to the PSSCH on the time slot (n+1), and the time slot (n+2)
  • the PSFCH resource corresponding to the PSSCH on the time slot (n+1) is the PSFCH resource corresponding to the PSSCH on the time slot (n+1).
  • the receiving terminal determines M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal.
  • M is less than or equal to M', and M'is the upper limit of the number of PSFCH resources occupied on the same time domain resource, that is, the maximum number of PSFCH resources that can be used by the receiving terminal at the same time.
  • M' can be the value specified in the communication standard.
  • the priority of PSFCH resources can be classified according to priority rules.
  • the priority of the PSFCH resource may be determined based on the corresponding PSCCH or PSSCH.
  • the transmission power corresponding to the PSFCH resource may be obtained through channel measurement. For example, when the channel measurement result indicates that the channel quality is worse, the transmission power corresponding to the PSFCH resource may be higher.
  • the receiving terminal sends feedback information to part or all of the at least one sending terminal on the M PSFCH resources.
  • some or all of the at least one sending terminal receives feedback information from the receiving terminal on M PSFCH resources.
  • the feedback information may be HARQ feedback of the receiving terminal for the PSSCH sent by the transmitting terminal, and may specifically be ACK or NACK.
  • the receiving terminal may only send feedback information to some of the at least one sending terminal, and the feedback information of the remaining sending terminals may be sent or not sent subsequently, and this application is not limited.
  • the receiving terminal can determine M PSFCH resources according to the priority of the PSFCH resource, the transmission power corresponding to the PSFCH resource, and the total transmission power of the receiving terminal, thereby according to the transmission capability of the receiving terminal (that is, the total transmission power) Send M PSFCH resources to improve the overall performance of the network system.
  • Step 502 may include in specific implementation: the receiving terminal sequentially accumulates the transmit power corresponding to the PSFCH resource in the descending order of priority of the X PSFCH resources, and determines the M PSFCH resources according to the accumulation situation.
  • the X PSFCH resources are divided into L priorities, where the number of PSFCH resources in the i-th priority among the L priorities is denoted as li, i
  • li the number of PSFCH resources in the i-th priority among the L priorities.
  • P j represents the transmit power corresponding to the j-th PSFCH resource sorted in the order of priority from high to low
  • j is an integer greater than
  • k is the number of accumulated PSFCH resources.
  • Case 1 The accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power of the receiving terminal and m is equal to M', or the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is equal to the receiving terminal The total transmit power of, and m is less than M'.
  • the receiving terminal determines that m PSFCH resources are M PSFCH resources.
  • the receiving terminal determines that the accumulated m PSFCH resources are M PSFCH resources.
  • P max represents the total transmit power of the receiving terminal.
  • PSFCH1 to PSFCH6 which are divided into 3 priority levels, and the number of PSFCH resources at each priority level is 2.
  • the first priority has PSFCH1 and PSFCH2, the second priority has PSFCH3 and PSFCH4, and the third priority has PSFCH5 and PSFCH6.
  • M' 2
  • P 1 ⁇ P max , P 1 + P 2 ⁇ P max the receiving terminal determines that PSFCH1 and PSFCH2 are M PSFCH resources.
  • Case 2 The accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power of the receiving terminal, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power of the receiving terminal and m+1 is less than or equal to M'.
  • the receiving terminal determines that the m PSFCH resources are M PSFCH resources.
  • the receiving terminal determines that the accumulated m PSFCH resources are M PSFCH resources.
  • PSFCH1 to PSFCH6 which are divided into 3 priority levels, and the number of PSFCH resources at each priority level is 2.
  • the first priority has PSFCH1 and PSFCH2
  • the second priority has PSFCH3 and PSFCH4
  • the receiving terminal determines that PSFCH1, PSFCH2, and PSFCH3 are M PSFCH resources.
  • Case 3 The accumulated result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power of the receiving terminal, and the accumulated result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power of the receiving terminal, And m+1 is less than or equal to M'.
  • the receiving terminal may determine M PSFCH resources in any one of the following manners 1 to 4.
  • Method 1 specifically includes the following steps 11) and 12):
  • the receiving terminal reduces the transmit power corresponding to the m+1th PSFCH resource in the m+1 PSFCH resources, so that the accumulated result after accumulating the transmit power corresponding to the m+1 PSFCH resources is less than or equal to the receiving terminal The total transmit power.
  • the receiving terminal determines that the m+1 PSFCH resources are M PSFCH resources.
  • the receiving terminal when And when m+1 ⁇ M', the receiving terminal reduces the transmission power corresponding to the m+1th PSFCH resource, so that the cumulative result after accumulating the transmission power corresponding to the m+1 PSFCH resource is less than or equal to the total transmission of the receiving terminal Power, and determine that the m+1 PSFCH resources are M PSFCH resources.
  • the receiving terminal may reduce the transmission power corresponding to the m+1th PSFCH resource to the original ⁇ ( ⁇ is greater than 0 and less than or equal to 1) times.
  • PSFCH1 to PSFCH6 which are divided into 3 priority levels, and the number of PSFCH resources at each priority level is 2.
  • the first priority has PSFCH1 and PSFCH2
  • the second priority has PSFCH3 and PSFCH4
  • the third priority has PSFCH5 and PSFCH6.
  • the receiving terminal can reduce P 4 to ⁇ P 4 so that P 1 +P 2 +P 3 + ⁇ P 4 ⁇ P max , and determine that PSFCH1, PSFCH2, PSFCH3, and PSFCH4 are M PSFCH resources.
  • the second method specifically includes the following steps 21) and 22):
  • the receiving terminal reduces the transmit power corresponding to the PSFCH resource in the first priority among the m+1 PSFCH resources, so that the accumulated result after accumulating the transmit power corresponding to the m+1 PSFCH resources is less than or equal to the received
  • the first priority is the priority of the m+1 PSFCH resource among the m+1 PSFCH resources.
  • the receiving terminal determines that the m+1 PSFCH resources are M PSFCH resources.
  • the receiving terminal when And when m+1 ⁇ M', the receiving terminal reduces the transmission power corresponding to the PSFCH resource in the first priority among the m+1 PSFCH resources, so that after accumulating the transmission power corresponding to the m+1 PSFCH resources
  • the accumulation result of is less than or equal to the total transmit power of the receiving terminal, and it is determined that the m+1 PSFCH resources are M PSFCH resources.
  • the same ratio can be reduced, for example, x2 PSFCH resources
  • the corresponding transmission power is reduced to the original ⁇ ( ⁇ is greater than 0 and less than or equal to 1) times, and different ratios can also be reduced.
  • the corresponding transmission power of some PSFCH resources in x2 PSFCH resources is reduced to the original ⁇ 1 ( ⁇ 1) If it is greater than 0 and less than or equal to 1) times, the transmit power corresponding to some PSFCH resources is reduced to the original ⁇ 2 ( ⁇ 2 is greater than 0 and less than or equal to 1) times.
  • this application will take the reduction of the same ratio as an example for exemplification.
  • PSFCH1 to PSFCH6 which are divided into 3 priority levels, and the number of PSFCH resources at each priority level is 2.
  • the first priority has PSFCH1 and PSFCH2
  • the second priority has PSFCH3 and PSFCH4, and the third priority has PSFCH5 and PSFCH6.
  • M ' 3
  • P 1 ⁇ P max, P 1 + P 2 ⁇ P max, P 1 + P 2 + P 3> P max the receiving terminal can be reduced to P 3 ⁇ P 3, such that P 1 + P 2 + ⁇ P 3 ⁇ P max , and it is determined that PSFCH1, PSFCH2, and PSFCH3 are M PSFCH resources.
  • the receiving terminal can reduce P 3 to ⁇ P 3 and P 4 to ⁇ P 4 so that P 1 +P 2 + ⁇ P 3 + ⁇ P 4 ⁇ P max , and determine PSFCH1, PSFCH2, PSFCH3, and PSFCH4 as M PSFCH resources .
  • the third method specifically includes the following steps 31) and 32):
  • the receiving terminal reduces the transmission power corresponding to x1 PSFCH resources in the first priority, so that the cumulative result after accumulating the transmission power corresponding to m+1-x2+x1 PSFCH resources is less than or equal to the total transmission power of the receiving terminal,
  • the first priority is the priority of the m+1 PSFCH resource among the m+1 PSFCH resources
  • x2 is the number of PSFCH resources belonging to the first priority among the m+1 PSFCH resources
  • x1 min(x3, M'-(m+1-x2))
  • min is the minimum value function
  • x3 is the number of PSFCH resources in the first priority.
  • the receiving terminal determines that the m+1-x2+x1 PSFCH resources are M PSFCH resources.
  • the receiving terminal when And when m+1 ⁇ M', the receiving terminal reduces the transmission power corresponding to x1 PSFCH resources in the first priority, so that the cumulative result after accumulating the transmission power corresponding to m+1-x2+x1 PSFCH resources is less than or equal to Receive the total transmit power of the terminal, and determine that the m+1-x2+x1 PSFCH resources are M PSFCH resources.
  • the accumulation result after accumulating the transmission power corresponding to the m+1-x2+x1 PSFCH resources can be expressed as: If The receiving terminal determines that the m+1-x2+x1 PSFCH resources are M PSFCH resources.
  • m+1-x2 is the number of all PSFCH resources in all priorities higher than the first priority
  • min(x3, M'-(m+1-x2)) is: min (the number of PSFCH resources in the first priority, M'-the number of all PSFCH resources in all priorities higher than the first priority)
  • the value of x1 can be determined according to this method to ensure the accumulated PSFCH resources The number of is less than or equal to M'.
  • the M PSFCH resources determined by the receiving terminal include all PSFCH resources in all priorities higher than the first priority, and min (first The number of PSFCH resources in the priority, M'-the number of all PSFCH resources in all priorities higher than the first priority) PSFCH resources.
  • PSFCH1 to PSFCH6 which are divided into 3 priority levels, and the number of PSFCH resources at each priority level is 2.
  • the first priority has PSFCH1 and PSFCH2
  • the second priority has PSFCH3 and PSFCH4
  • the third priority has PSFCH5 and PSFCH6.
  • the third method will be exemplified through case 1 to case 3.
  • Mode 4 specifically includes the following steps 41) and 42):
  • the receiving terminal determines a first combination among multiple combinations, the multiple combinations are combinations of PSFCH resources in the first priority, and the first priority is the m+1 PSFCH among the m+1 PSFCH resources The priority of the resource.
  • the above multiple combinations may be part or all of all combinations of PSFCH resources in the first priority.
  • the receiving terminal determines that the accumulated m+1-x2+x3 PSFCH resources are M PSFCH resources, where x2 is the number of PSFCH resources belonging to the first priority among the m+1 PSFCH resources, x3 is the number of PSFCH resources in the first combination.
  • the receiving terminal can traverse the combination of PSFCH resources in the first priority, and determine the first combination, and then determine that the accumulated m+1-x2+x3 PSFCH resources are M PSFCH resources .
  • the first combination satisfies the following characteristics 1 to 3:
  • Feature 1 The sum of the number of PSFCH resources in the first combination and the number of PSFCH resources in all priorities higher than the first priority is less than or equal to M'.
  • Feature 2 The sum of the transmission power corresponding to the PSFCH resource in the first combination and the transmission power corresponding to the PSFCH resources in all priority levels higher than the first priority is less than or equal to the total transmission power of the receiving terminal.
  • feature 2 can be expressed as: I is a combination of PSFCH resources in the nth priority.
  • Feature 3 The sum of the number of PSFCH resources in the first combination and the number of PSFCH resources in all priorities higher than the first priority is the largest. That is to say, the combination selected by the receiving terminal satisfies feature 1 and feature 2 and can make the combination with the largest M among the determined M PSFCH resources. Specifically, among all I that satisfy feature 1 and feature 2, select The number of PSFCH resources is less than or equal to The number of PSFCH resources in the combination is the largest.
  • the receiving terminal may select one of the multiple as the first combination.
  • the first combination also satisfies the following feature 4:
  • the sum of the transmit power corresponding to the PSFCH resource in the first combination and the transmit power corresponding to the PSFCH resources in all priority levels higher than the first priority is the smallest (that is, the total power is the smallest), or, in the first combination
  • the sum of the transmission power corresponding to the PSFCH resource and the transmission power corresponding to the PSFCH resources in all priority levels higher than the first priority has the largest difference with the total transmission power of the receiving terminal (that is, the maximum power margin).
  • the receiving terminal can select one of the multiple as the first combination according to feature 4. Specifically, the selection can be such that (I.e. maximum power margin) or (That is, the minimum total power), the receiving terminal can determine that the priority is higher than the nth priority PSFCH resources and PSFCH resources in combination I in the nth priority are M PSFCH resources.
  • PSFCH1 to PSFCH6 which are divided into 3 priority levels, and the number of PSFCH resources at each priority level is 2.
  • the first priority has PSFCH1 and PSFCH2
  • the second priority has PSFCH3 and PSFCH4
  • the third priority has PSFCH5 and PSFCH6.
  • the fourth method is exemplified through Case 1 and Case 2 respectively.
  • I1 and I2 Since the number of PSFCH resources in I1 and I2 is the same, a combination of I1 and I2 that can minimize the total power of the M PSFCH resources or maximize the power headroom can be selected.
  • I1 can minimize the total power, and the receiving terminal determines that PSFCH1, PSFCH2, and PSFCH3 are M PSFCH resources.
  • I2 can minimize the total power, and the receiving terminal determines to transmit PSFCH1, PSFCH2, and PSFCH4 as M PSFCH resources.
  • ⁇ 1 P max -P 1 -P 2 -P 3
  • ⁇ 2 P max -P 1 -P 2 -P 4 .
  • the Pmax used when calculating ⁇ 1 is calculated based on PSFCH1, PSFCH2, and PSFCH3 combined with the power of the receiving terminal's hardware
  • the Pmax used when calculating ⁇ 2 is based on PSFCH1, PSFCH2, and PSFCH4 combined with the receiving terminal's hardware
  • the two Pmax values may be the same or different.
  • I1 can maximize the power headroom, and the receiving terminal determines that PSFCH1, PSFCH2, and PSFCH3 are M PSFCH resources.
  • I2 can maximize the power headroom, and the receiving terminal determines to transmit PSFCH1, PSFCH2, and PSFCH4 as M PSFCH resources.
  • I1 and I2 Since the number of PSFCH resources in I1 and I2 is the same, a combination of I1 and I2 that can minimize the total power of the M PSFCH resources or maximize the power headroom can be selected.
  • I1 can minimize the total power, and the receiving terminal determines that PSFCH1, PSFCH2, and PSFCH3 are M PSFCH resources.
  • P 1 + P 2 + P 3 > P 1 + P 2 + P 4 I2 can minimize the total power, and the receiving terminal determines that PSFCH1, PSFCH2, and PSFCH4 are M PSFCH resources.
  • ⁇ 1 P max -P 1 -P 2 -P 3
  • ⁇ 2 P max -P 1 -P 2 -P 4 .
  • the Pmax used when calculating ⁇ 1 is calculated based on PSFCH1, PSFCH2, and PSFCH3 combined with the power of the receiving terminal's hardware
  • the Pmax used when calculating ⁇ 2 is based on PSFCH1, PSFCH2, and PSFCH4 combined with the receiving terminal's hardware
  • the two Pmax values may be the same or different.
  • I1 can maximize the power headroom, and the receiving terminal determines that PSFCH1, PSFCH2, and PSFCH3 are M PSFCH resources.
  • I2 can maximize the power headroom, and the receiving terminal determines that PSFCH1, PSFCH2, and PSFCH4 are M PSFCH resources.
  • the above method 1, method 2, and method 3 are simpler than the method 4, but compared with the method 1, the method 2 and the method 3, although the complexity is high, the method can make the determined M PSFCH resources.
  • the corresponding transmit power sum is the lowest.
  • the foregoing embodiment provides the selection process of M PSFCH resources and the details of power control, which can ensure that the M PSFCH resources are sent within the receiving terminal's sending capacity (that is, within the receiving terminal's total transmit power), and the determination can be guaranteed.
  • the number of M PSFCH resources is less than or equal to the upper limit of the number of PSFCH resources occupied on the same time domain resource, thereby improving the overall performance of the network system.
  • the one-to-one correspondence between PSSCH and PSFCH resources is taken as an example to illustrate the method provided in the embodiments of this application. In actual implementation, multiple PSSCHs sent by a transmitting terminal can also correspond to one. PSFCH resources.
  • the PSFCH resource transmits feedback information for multiple PSSCHs.
  • each network element for example, the sending terminal and the receiving terminal, in order to implement the above-mentioned functions, includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the sending terminal and the receiving terminal into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 7 shows a possible structural diagram of the communication device (denoted as the communication device 70) involved in the above-mentioned embodiment.
  • the communication device 70 includes a processing unit 701 and a communication unit 702. , May also include a storage unit 703.
  • the schematic structural diagram shown in FIG. 7 may be used to illustrate the structure of the transmitting terminal or the receiving terminal involved in the foregoing embodiment.
  • the processing unit 701 is used to control and manage the actions of the sending terminal.
  • the processing unit 701 is used to support the sending terminal to execute the diagram. 501 and 503 in 5, and/or actions performed by the sending terminal in other processes described in the embodiments of this application.
  • the processing unit 701 may communicate with other network entities through the communication unit 702, for example, communicate with the receiving terminal shown in FIG. 5.
  • the storage unit 703 is used to store the program code and data of the sending terminal.
  • the communication device 70 may be a device or a chip in the device.
  • the processing unit 701 is used to control and manage the actions of the receiving terminal.
  • the processing unit 701 is used to support the receiving terminal to execute the diagram. Steps 501 to 503 in 5, and/or actions performed by the receiving terminal in other processes described in the embodiments of this application.
  • the processing unit 701 may communicate with other network entities through the communication unit 702, for example, communicate with the sending terminal shown in FIG. 5.
  • the storage unit 703 is used to store the program code and data of the receiving terminal.
  • the communication device 70 may be a device or a chip in the device.
  • the processing unit 701 may be a processor or a controller, and the communication unit 702 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, and the like.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 703 may be a memory.
  • the processing unit 701 may be a processor or a controller, and the communication unit 702 may be an input interface and/or an output interface, a pin or a circuit, or the like.
  • the storage unit 703 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in the device.
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 70 can be regarded as the communication unit 702 of the communication device 70, and the processor with processing function can be regarded as the processing unit 701 of the communication device 70.
  • the device for implementing the receiving function in the communication unit 702 may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device for implementing the sending function in the communication unit 702 can be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiment of the present application, and the sending unit can be a transmitter, a transmitter, a sending circuit, and the like.
  • the integrated unit in FIG. 7 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.
  • the unit in FIG. 7 may also be referred to as a module, for example, the processing unit may be referred to as a processing module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device.
  • the communication device includes a processor 801 and, optionally, a memory 802 connected to the processor 801.
  • the processor 801 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the application. integrated circuit.
  • the processor 801 may also include multiple CPUs, and the processor 801 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 802 may be a ROM or other types of static storage devices that can store static information and instructions, RAM, or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, and the embodiment of the present application does not impose any limitation on this.
  • the memory 802 may exist independently, or may be integrated with the processor 801. Wherein, the memory 802 may contain computer program code.
  • the processor 801 is configured to execute the computer program code stored in the memory 802, so as to implement the method provided in the embodiment of the present application.
  • the communication device further includes a transceiver 803.
  • the processor 801, the memory 802, and the transceiver 803 are connected by a bus.
  • the transceiver 803 is used to communicate with other devices or a communication network.
  • the transceiver 803 may include a transmitter and a receiver.
  • the device used for implementing the receiving function in the transceiver 803 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the device used for implementing the sending function in the transceiver 803 can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
  • FIG. 8 may be used to illustrate the structure of the transmitting terminal or the receiving terminal involved in the foregoing embodiment.
  • the processor 801 is used to control and manage the actions of the sending terminal.
  • the processor 801 is used to support the sending terminal to execute the diagram. 501 and 503 in 5, and/or actions performed by the sending terminal in other processes described in the embodiments of this application.
  • the processor 801 may communicate with other network entities through the transceiver 803, for example, communicate with the receiving terminal shown in FIG. 5.
  • the memory 802 is used to store program codes and data of the sending terminal.
  • the processor 801 is used to control and manage the actions of the receiving terminal.
  • the processor 801 is used to support the receiving terminal to execute the diagram. Steps 501 to 503 in 5, and/or actions performed by the receiving terminal in other processes described in the embodiments of this application.
  • the processor 801 may communicate with other network entities through the transceiver 803, for example, communicate with the sending terminal shown in FIG. 5.
  • the memory 802 is used to store the program code and data of the receiving terminal.
  • the processor 801 includes a logic circuit and an input interface and/or an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • FIG. 9 the schematic structural diagram shown in FIG. 9 may be used to illustrate the structure of the transmitting terminal or the receiving terminal involved in the foregoing embodiment.
  • the processor 801 is used to control and manage the actions of the sending terminal.
  • the processor 801 is used to support the sending terminal to execute the diagram. 501 and 503 in 5, and/or actions performed by the sending terminal in other processes described in the embodiments of this application.
  • the processor 801 may communicate with other network entities through an input interface and/or an output interface, for example, with the receiving terminal shown in FIG. 5.
  • the memory 802 is used to store program codes and data of the sending terminal.
  • the processor 801 is used to control and manage the actions of the receiving terminal.
  • the processor 801 is used to support the receiving terminal to execute the diagram. Steps 501 to 503 in 5, and/or actions performed by the receiving terminal in other processes described in the embodiments of this application.
  • the processor 801 may communicate with other network entities through an input interface and/or an output interface, for example, with the sending terminal shown in FIG. 5.
  • the memory 802 is used to store the program code and data of the receiving terminal.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • An embodiment of the present application also provides a communication system, including: the above-mentioned sending terminal and receiving terminal. Optionally, it also includes the aforementioned terminal.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • Embodiment 1 A communication method, wherein the method includes:
  • the receiving terminal receives X physical side uplink shared channel PSSCH from at least one sending terminal, one PSSCH corresponds to one physical side uplink feedback channel PSFCH resource, and the X PSFCH resources corresponding to the X PSSCHs have the same time domain resources, X is an integer greater than 1;
  • the receiving terminal determines M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal, where M is less than or equal to M′, and M′ is The upper limit of the number of PSFCH resources occupied on the same time domain resource;
  • the receiving terminal sends feedback information to part or all of the at least one sending terminal on the M PSFCH resources.
  • Embodiment 2 According to the method described in embodiment 1, the receiving terminal determines M according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal PSFCH resources, including:
  • the receiving terminal sequentially accumulates the transmit power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources;
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power and m is equal to M', or the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is equal to the total transmit power
  • the receiving terminal determines that the m PSFCH resources are the M PSFCH resources.
  • Embodiment 3 According to the method of embodiment 1, the receiving terminal determines M according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal.
  • PSFCH resources including:
  • the receiving terminal sequentially accumulates the transmit power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources;
  • the accumulation result after accumulating the transmission power corresponding to m PSFCH resources is less than or equal to the total transmission power, and the accumulation result after accumulating the transmission power corresponding to m+1 PSFCH resources is greater than the total transmission power and m+1 is less than If it is equal to or equal to M', the receiving terminal determines that the m PSFCH resources are the M PSFCH resources.
  • Embodiment 4 According to the method described in embodiment 1, the receiving terminal determines M according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal.
  • PSFCH resources including:
  • the receiving terminal sequentially accumulates the transmit power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources;
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 If it is less than or equal to M', the receiving terminal reduces the transmission power corresponding to the m+1 PSFCH resource among the m+1 PSFCH resources, so that the transmission power corresponding to the m+1 PSFCH resources is accumulated The subsequent accumulation result is less than or equal to the total transmit power;
  • the receiving terminal determines that the m+1 PSFCH resources are the M PSFCH resources.
  • Embodiment 5 the receiving terminal determines M according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal.
  • PSFCH resources including:
  • the receiving terminal sequentially accumulates the transmit power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources;
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 If it is less than or equal to M', the receiving terminal reduces the transmission power corresponding to the PSFCH resource in the first priority among the m+1 PSFCH resources, so that the transmission corresponding to the m+1 PSFCH resources is accumulated
  • the accumulation result after power is less than or equal to the total transmit power, and the first priority is the priority of the m+1 PSFCH resource among the m+1 PSFCH resources;
  • the receiving terminal determines that the m+1 PSFCH resources are the M PSFCH resources.
  • Embodiment 6 According to the method described in embodiment 1, the receiving terminal determines M according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal.
  • PSFCH resources including:
  • the receiving terminal sequentially accumulates the transmit power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources;
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1
  • the receiving terminal reduces the transmission power corresponding to x1 PSFCH resources in the first priority, so that the cumulative result after accumulating the transmission power corresponding to m+1-x2+x1 PSFCH resources is less than Or equal to the total transmit power
  • the first priority is the priority of the m+1 PSFCH resource in the m+1 PSFCH resources
  • x2 is the priority of all the m+1 PSFCH resources.
  • the receiving terminal determines that the m+1-x2+x1 PSFCH resources are the M PSFCH resources.
  • Embodiment 7 According to the method of embodiment 1, the receiving terminal determines M according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the receiving terminal.
  • PSFCH resources including:
  • the receiving terminal sequentially accumulates the transmit power corresponding to the PSFCH resource in descending order of priority of the X PSFCH resources;
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 If it is less than or equal to M', the receiving terminal determines a first combination among multiple combinations, where the multiple combinations are combinations of PSFCH resources in the first priority, and the first priority is the m The priority of the m+1th PSFCH resource among the +1 PSFCH resources;
  • the receiving terminal determines that the accumulated m+1-x2+x3 PSFCH resources are the M PSFCH resources, where x2 is the PSFCH resource belonging to the first priority among the m+1 PSFCH resources X3 is the number of PSFCH resources in the first combination;
  • the first combination satisfies the following characteristics: the number of PSFCH resources in the first combination and the number of PSFCH resources in all priorities higher than the first priority The sum is less than or equal to M', and the sum of the transmission power corresponding to the PSFCH resources in the first combination and the transmission power corresponding to the PSFCH resources in all priorities higher than the first priority is less than or equal to the total transmission Power, the sum of the number of PSFCH resources in the first combination and the number of PSFCH resources in all priorities higher than the first priority is the largest.
  • Embodiment 8 According to the method of embodiment 7, compared with other combinations, the first combination also satisfies the following characteristics: the transmit power corresponding to the PSFCH resource in the first combination is higher than the first priority. The sum of the transmission powers corresponding to the PSFCH resources in all the priorities of the first priority is the smallest, or the transmission power corresponding to the PSFCH resources in the first combination corresponds to the PSFCH resources in all the priorities higher than the first priority The difference between the sum of transmit power and the total transmit power is the largest.
  • Embodiment 9 A communication device, wherein the communication device includes: a communication unit and a processing unit;
  • the communication unit is configured to receive X physical side link shared channel PSSCH from at least one sending terminal, one PSSCH corresponds to one physical side link feedback channel PSFCH resource, and the X PSFCH resources corresponding to the X PSSCH
  • the time domain resources are the same, and X is an integer greater than 1;
  • the processing unit is configured to determine M PSFCH resources according to the priority of the X PSFCH resources, the transmission power corresponding to the X PSFCH resources, and the total transmission power of the device, where M is less than or equal to M', M 'Is the upper limit of the number of PSFCH resources occupied on the same time domain resource;
  • the communication unit is further configured to send feedback information to part or all of the at least one sending terminal on the M PSFCH resources.
  • Embodiment 10 According to the device described in embodiment 9, the processing unit is specifically configured to:
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power and m is equal to M', or the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is equal to the total transmit power And when m is less than M', it is determined that the m PSFCH resources are the M PSFCH resources.
  • Embodiment 11 According to the device described in embodiment 9, the processing unit is specifically configured to:
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power and m+1 is less than If it is equal to or equal to M', it is determined that the m PSFCH resources are the M PSFCH resources.
  • Embodiment 12 According to the device described in embodiment 9, the processing unit is specifically configured to:
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 If it is less than or equal to M', reduce the transmission power corresponding to the m+1 PSFCH resource in the m+1 PSFCH resources, so that the cumulative result after accumulating the transmission power corresponding to the m+1 PSFCH resources Less than or equal to the total transmit power;
  • the m+1 PSFCH resources are the M PSFCH resources.
  • Embodiment 13 According to the device described in embodiment 9, the processing unit is specifically configured to:
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 If it is less than or equal to M', reduce the transmit power corresponding to the PSFCH resource in the first priority among the m+1 PSFCH resources, so that the accumulation after accumulating the transmit power corresponding to the m+1 PSFCH resources The result is less than or equal to the total transmit power, and the first priority is the priority of the m+1th PSFCH resource among the m+1 PSFCH resources;
  • the m+1 PSFCH resources are the M PSFCH resources.
  • Embodiment 14 According to the device described in embodiment 9, the processing unit is specifically configured to:
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 If it is less than or equal to M', reduce the transmission power corresponding to x1 PSFCH resources in the first priority, so that the cumulative result after accumulating the transmission power corresponding to m+1-x2+x1 PSFCH resources is less than or equal to said Total transmit power
  • the first priority is the priority of the m+1 PSFCH resource among the m+1 PSFCH resources
  • x2 is the priority of the m+1 PSFCH resources belonging to the first priority
  • the m+1-x2+x1 PSFCH resources are the M PSFCH resources.
  • Embodiment 15 According to the device described in embodiment 9, the processing unit is specifically configured to:
  • the accumulation result after accumulating the transmit power corresponding to m PSFCH resources is less than or equal to the total transmit power, and the accumulation result after accumulating the transmit power corresponding to m+1 PSFCH resources is greater than the total transmit power, and m+1 If it is less than or equal to M', a first combination is determined among multiple combinations, and the multiple combinations are combinations of PSFCH resources in the first priority, and the first priority is the m+1 PSFCHs The priority of the m+1th PSFCH resource in the resource;
  • the accumulated m+1-x2+x3 PSFCH resources are the M PSFCH resources, where x2 is the number of PSFCH resources belonging to the first priority among the m+1 PSFCH resources, x3 is the number of PSFCH resources in the first combination;
  • the first combination satisfies the following characteristics: the number of PSFCH resources in the first combination and the number of PSFCH resources in all priorities higher than the first priority The sum is less than or equal to M', and the sum of the transmission power corresponding to the PSFCH resources in the first combination and the transmission power corresponding to the PSFCH resources in all priorities higher than the first priority is less than or equal to the total transmission Power, the sum of the number of PSFCH resources in the first combination and the number of PSFCH resources in all priorities higher than the first priority is the largest.
  • the first combination compared with other combinations, the first combination also satisfies the following characteristics: the transmit power corresponding to the PSFCH resource in the first combination is higher than that of the first priority.
  • the sum of the transmission powers corresponding to the PSFCH resources in all the priorities of the first priority is the smallest, or the transmission power corresponding to the PSFCH resources in the first combination corresponds to the PSFCH resources in all the priorities higher than the first priority
  • the difference between the sum of transmit power and the total transmit power is the largest.
  • Embodiment 17 A communication device, wherein the communication device includes a processor;
  • the processor is connected to a memory, and the memory is used to store computer-executable instructions, and the processor executes the computer-executable instructions stored in the memory, so that the device can realize the same as described in any one of Embodiments 1-8. The method described.
  • Embodiment 18 A computer-readable storage medium comprising instructions, when the instructions run on a computer, cause the computer to execute the method described in any one of the embodiments 1-8.
  • Embodiment 19 A computer program product comprising instructions, when the instructions are executed on a computer, the computer executes the method described in any one of the embodiments 1-8.
  • Embodiment 20 A chip includes instructions, when the instructions run on a computer, the computer executes the method described in any one of the embodiments 1-8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,涉及通信技术领域。该方法中,接收终端从一个或多个发送终端接收与X个PSFCH资源一一对应的X个PSSCH,并根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,进而在M个PSFCH资源上向上述一个或多个发送终端中的部分或全部发送反馈信息,从而使得接收终端可以根据自身的发送能力(即总发射功率)发送M个PSFCH资源,提高网络***的整体性能。其中,X个PSFCH资源的时域资源是相同的,X是大于1的整数,M小于或等于M',M'为在相同的时域资源上占用的PSFCH资源的个数的上限。

Description

通信方法及装置
本申请要求于2019年10月12日提交国家知识产权局、申请号为201910969472.0、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
车联网(vehicle to everything,V2X)是智能交通运输***的关键技术,被认为是物联网体系中最有产业潜力、市场需求最明确的领域之一。车联网一般是指通过装载在车上的传感器、车载终端等提供车辆信息,实现车辆到车辆(vehicle to vehicle,V2V),车辆到基础设施(vehicle to infrastructure,V2I),车辆到网络(vehicle to network,V2N)以及车辆到行人(vehicle to pedestrian,V2P)之间的相互通信的通信网络。
V2X具有应用空间广、产业潜力大、社会效益强的特点,对促进汽车和信息通信产业创新发展,构建汽车和交通服务新模式新业态,推动无人驾驶、辅助驾驶、智能驾驶、网联驾驶、智能网联驾驶、自动驾驶、汽车共享等技术的创新和应用,以及提高交通效率和安全水平等都具有重要意义。
在新无线(new radio,NR)V2X的场景中,发送终端采用一个子信道向接收终端发送数据之后,接收终端要向发送终端进行混合自动重传请求(hybrid automatic repeat request,HARQ)反馈,HARQ反馈为肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK),ACK表示接收终端正确接收到数据,NACK表示接收终端未正确接收到数据。
HARQ反馈承载在物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)上。若一个或多个发送终端向一个接收终端发送了多个物理侧行链路共享信道(physical sidelink shared channel,PSSCH),接收终端需要针对每个PSSCH进行HARQ反馈。但是,接收终端的发射功率可能无法支持同时对所有的PSSCH进行HARQ反馈。此时,根据标准中目前的规定,基于优先级的高低,接收终端可以选择M'个PSFCH资源同时对多个PSSCH中的部分PSSCH进行HARQ反馈,但是并未给出M'个PSFCH资源的选择方式,而各选择方式存在优劣,可能进一步影响通信***的整体性能。
发明内容
本申请实施例提供了一种通信方法及装置,用于保证通信***的整体性能。
为达到上述目的,本申请提供了以下技术方案:
第一方面,提供了一种通信方法,包括:接收终端从一个或多个发送终端接收与X个PSFCH资源一一对应的X个PSSCH,并根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,进而在M个PSFCH资源上向上述一个或多个发送终端中的部分或全部发送反馈信息。其中,X个PSFCH资源的时域资源是相同的,X是大于1的整数,M小于或等于M',M'为在相同的时域资源上占用的PSFCH资源的个数的上限。第一方面提供的方法,接收终端可以根据PSFCH 资源的优先级、PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,从而根据接收终端的发送能力(即总发射功率)发送M个PSFCH资源,提高网络***的整体性能。
在一种可能的实现方式中,接收终端根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,包括:接收终端按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且m等于M',或者,累加m个PSFCH资源对应的发射功率之后的累加结果等于总发射功率、且m小于M'的情况下,接收终端确定m个PSFCH资源为M个PSFCH资源。该种可能的实现方式,可以保证在接收终端的发送能力之内(即在接收终端的总发射功率之内)发送M个PSFCH资源,并且可以保证确定的M个PSFCH资源个数小于或等于在相同的时域资源上占用的PSFCH资源的个数的上限,从而提高网络***的整体性能。
在一种可能的实现方式中,接收终端根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,包括:接收终端按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率且m+1小于或等于M'的情况下,接收终端确定m个PSFCH资源为M个PSFCH资源。该种可能的实现方式,可以保证在接收终端的发送能力之内(即在接收终端的总发射功率之内)发送M个PSFCH资源,并且可以保证确定的M个PSFCH资源个数小于或等于在相同的时域资源上占用的PSFCH资源的个数的上限,从而提高网络***的整体性能。
在一种可能的实现方式中,接收终端根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,包括:接收终端按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率、且m+1小于或等于M'的情况下,接收终端降低m+1个PSFCH资源中的第m+1个PSFCH资源对应的发射功率,使得累加m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率;接收终端确定m+1个PSFCH资源为M个PSFCH资源。该种可能的实现方式,可以保证在接收终端的发送能力之内(即在接收终端的总发射功率之内)发送M个PSFCH资源,并且可以保证确定的M个PSFCH资源个数小于或等于在相同的时域资源上占用的PSFCH资源的个数的上限,从而提高网络***的整体性能。
在一种可能的实现方式中,接收终端根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,包括:接收终端按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率、且m+1小于或等于M'的情况下,接收终端降低m+1个PSFCH资源中的第一优先级中的PSFCH资源对应的发射功率,使得累加m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功 率,第一优先级为m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;接收终端确定m+1个PSFCH资源为M个PSFCH资源。该种可能的实现方式,可以保证在接收终端的发送能力之内(即在接收终端的总发射功率之内)发送M个PSFCH资源,并且可以保证确定的M个PSFCH资源个数小于或等于在相同的时域资源上占用的PSFCH资源的个数的上限,从而提高网络***的整体性能。
在一种可能的实现方式中,接收终端根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,包括:接收终端按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率、且m+1小于或等于M'的情况下,接收终端降低第一优先级中的x1个PSFCH资源对应的发射功率,使得累加m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率,第一优先级为m+1个PSFCH资源中的第m+1个PSFCH资源的优先级,x2为m+1个PSFCH资源中的属于第一优先级的PSFCH资源的个数,x1=min(x3,M'-(m+1-x2)),min为最小值函数,x3为第一优先级中的PSFCH资源的个数;接收终端确定m+1-x2+x1个PSFCH资源为M个PSFCH资源。该种可能的实现方式,可以保证在接收终端的发送能力之内(即在接收终端的总发射功率之内)发送M个PSFCH资源,并且可以保证确定的M个PSFCH资源个数小于或等于在相同的时域资源上占用的PSFCH资源的个数的上限,从而提高网络***的整体性能。
在一种可能的实现方式中,接收终端根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,包括:接收终端按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率、且m+1小于或等于M'的情况下,接收终端在多个组合中确定第一组合,多个组合为第一优先级中的PSFCH资源的组合,第一优先级为m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;接收终端确定被累加的m+1-x2+x3个PSFCH资源为M个PSFCH资源,其中,x2为m+1个PSFCH资源中的属于第一优先级的PSFCH资源的个数,x3为第一组合中的PSFCH资源的个数;其中,与其他组合相比,第一组合满足如下特征:第一组合中的PSFCH资源的个数与高于第一优先级的全部优先级中的PSFCH资源的个数之和小于或等于M',第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发射功率之和小于或等于总发射功率,第一组合中的PSFCH资源的个数与高于第一优先级的全部优先级中的PSFCH资源的个数之和最大。该种可能的实现方式,可以保证在接收终端的发送能力之内(即在接收终端的总发射功率之内)发送M个PSFCH资源,并且可以保证确定的M个PSFCH资源个数小于或等于在相同的时域资源上占用的PSFCH资源的个数的上限,还可以使得确定的M个PSFCH资源个数最多,从而提高网络***的整体性能。
在一种可能的实现方式中,与其他组合相比,第一组合还满足如下特征:第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发 射功率之和最小,或,第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发射功率之和与总发射功率差距最大。该种可能的实现方式,可以保证在接收终端的发送能力之内(即在接收终端的总发射功率之内)发送M个PSFCH资源,并且可以保证确定的M个PSFCH资源个数小于或等于在相同的时域资源上占用的PSFCH资源的个数的上限,还可以使得确定的M个PSFCH资源的发射功率之和最小,从而提高网络***的整体性能。
第二方面,提供了一种通信装置,包括:通信单元和处理单元;通信单元,用于从至少一个发送终端接收与X个PSFCH资源一一对应的X个PSSCH,X个PSSCH对应的X个PSFCH资源的时域资源相同,X为大于1的整数;处理单元,用于根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及该装置的总发射功率确定M个PSFCH资源,M小于或等于M',M'为在相同的时域资源上占用的PSFCH资源的个数的上限;通信单元,还用于在M个PSFCH资源上向至少一个发送终端中的部分或全部发送反馈信息。
在一种可能的实现方式中,处理单元,具体用于:按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且m等于M',或者,累加m个PSFCH资源对应的发射功率之后的累加结果等于总发射功率、且m小于M'的情况下,确定m个PSFCH资源为M个PSFCH资源。
在一种可能的实现方式中,处理单元,具体用于:按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率且m+1小于或等于M'的情况下,确定m个PSFCH资源为M个PSFCH资源。
在一种可能的实现方式中,处理单元,具体用于:按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率、且m+1小于或等于M'的情况下,降低m+1个PSFCH资源中的第m+1个PSFCH资源对应的发射功率,使得累加m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率;确定m+1个PSFCH资源为M个PSFCH资源。
在一种可能的实现方式中,处理单元,具体用于:按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率、且m+1小于或等于M'的情况下,降低m+1个PSFCH资源中的第一优先级中的PSFCH资源对应的发射功率,使得累加m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率,第一优先级为m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;确定m+1个PSFCH资源为M个PSFCH资源。
在一种可能的实现方式中,处理单元,具体用于:按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射 功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率、且m+1小于或等于M'的情况下,降低第一优先级中的x1个PSFCH资源对应的发射功率,使得累加m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率,第一优先级为m+1个PSFCH资源中的第m+1个PSFCH资源的优先级,x2为m+1个PSFCH资源中的属于第一优先级的PSFCH资源的个数,x1=min(x3,M'-(m+1-x2)),min为最小值函数,x3为第一优先级中的PSFCH资源的个数;确定m+1-x2+x1个PSFCH资源为M个PSFCH资源。
在一种可能的实现方式中,处理单元,具体用于:按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率;在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于总发射功率、且m+1小于或等于M'的情况下,在多个组合中确定第一组合,多个组合为第一优先级中的PSFCH资源的组合,第一优先级为m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;确定被累加的m+1-x2+x3个PSFCH资源为M个PSFCH资源,其中,x2为m+1个PSFCH资源中的属于第一优先级的PSFCH资源的个数,x3为第一组合中的PSFCH资源的个数;其中,与其他组合相比,第一组合满足如下特征:第一组合中的PSFCH资源的个数与高于第一优先级的全部优先级中的PSFCH资源的个数之和小于或等于M',第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发射功率之和小于或等于总发射功率,第一组合中的PSFCH资源的个数与高于第一优先级的全部优先级中的PSFCH资源的个数之和最大。
在一种可能的实现方式中,与其他组合相比,第一组合还满足如下特征:第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发射功率之和最小,或,第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发射功率之和与总发射功率差距最大。
第三方面,提供了一种通信装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于通信装置内,也可以位于通信装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置以芯片的产品形态存在。
第四方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第五方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第二方面至第五方面中的任一种实现方式所带来的技术效果可参见第一方面中的对应实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种***架构的示意图;
图2为本申请实施例提供的子信道的示意图;
图3和图4分别为本申请实施例提供的侧行链路上的信道所占用的资源的示意图;
图5为本申请实施例提供的一种通信方法的流程图;
图6为本申请实施例提供的一种PSFCH资源的示意图;
图7为本申请实施例提供的一种通信装置的组成示意图;
图8和图9分别为本申请实施例提供的一种通信装置的硬件结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请涉及到的网元包括通信***中的网络设备和终端。参见图1,本申请实施例提供的方法主要涉及终端和终端之间的通信,以及终端和网络设备之间的通信。
本申请实施例中的通信***包括但不限于长期演进(long term evolution,LTE)***、第五代(5th-generation,5G)***、NR***,无线局域网(wireless local area networks,WLAN)***以及未来演进***或者多种通信融合***。其中,5G***可以为非独立组网(non-standalone,NSA)的5G***或独立组网(standalone,SA)的5G***。
本申请实施例中的网络设备为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。网络设备可以为部署在无线接入网(radio access network,RAN)中为终端提供无线通信功能的装置,例如可以为传输接收点(transmission reception point,TRP)、基站、各种形式的控制节点(例如,网络控制器、无线控制器(例如,云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器))等。具体的,网络设备可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,AP)等,也可以为基站的天线面板。所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个终端配置资源。在采用不同的无线接入技术的***中,具备基站功能的设备的名称可能会有所不同。例如,LTE***中可以称为演进型基站(evolved NodeB,eNB或eNodeB),5G***或NR***中可以称为下一代基站节点(next generation node base station,gNB),本申请对基站的具体名称不作限定。网络设备还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。
本申请实施例中的终端是用户侧的一种用于接收信号,或者,发送信号,或者,接收 信号和发送信号的实体。终端用于向用户提供语音服务和数据连通***中的一种或多种。终端还可以称为用户设备(user equipment,UE)、终端设备、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端可以是V2X设备,例如,智能汽车(smart car或intelligent car)、数字汽车(digital car)、无人汽车(unmanned car或driverless car或pilotless car或automobile)、自动汽车(self-driving car或autonomous car)、纯电动汽车(pure EV或Battery EV)、混合动力汽车(hybrid electric vehicle,HEV)、增程式电动汽车(range extended EV,REEV)、插电式混合动力汽车(plug-in HEV,PHEV)、新能源汽车(new energy vehicle)、路边装置(road site unit,RSU)。终端也可以是D2D设备,例如,电表、水表等。终端还可以是移动站(mobile station,MS)、用户单元(subscriber unit)、无人机、物联网(internet of things,IoT)设备、WLAN中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端还可以为下一代通信***中的终端,例如,5G***中的终端或者未来演进的PLMN中的终端,NR***中的终端等。
本申请实施例提供的方法可适用但不限于如下领域:设备到设备(device to device,D2D)、V2X、无人驾驶(unmanned driving)、自动驾驶(automated driving,ADS)、辅助驾驶(driver assistance,ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(intelligent network driving)、汽车共享(car sharing)等。
在NR中,V2X架构分为独立部署(Standalone)和多制式双连接部署(Multi-Rat Dual Connectivity,MR-DC)两种类型。在独立部署场景中,进行V2X通信的两个终端(例如,图1中的终端2和终端3)接入同一个网络设备,该网络设备对这两个终端进行管理或配置。示例性的,该网络设备可以为gNB、下一代eNB(ng-eNB)、eNB等。在多制式双连接部署场景中,进行V2X通信的两个终端均接入主节点(main node,MN)和辅节点(secondary node,SN)。例如,图1中的终端1和终端4均接入网络设备1和网络设备2,网络设备1和网络设备2中一个为主节点,另一个为辅节点。主节点可以对进行V2X通信的终端进行管理或配置。
在V2X场景以及其他通信场景下,终端与终端之间进行直连通信的通信链路可以称之为侧行链路(sidelink,SL)或者边链路。在SL上,发送终端可以直接发送数据给接收终端,而不需要先把数据发送给网络设备,再通过核心网的转发,再发给接收终端,可以大大减少数据的传输时延。
为了使得本申请实施例更加的清楚,以下对与本申请实施例相关的概念和部分内容作简单介绍。
1、SL HARQ反馈
SL HARQ结合了前向纠错(forward error correction,FEC)与自动重传请求(automatic repeat request,ARQ)。FEC通过添加冗余信息,使得接收终端能纠正一部分错误,从而减 少重传次数。对于FEC无法纠正的错误,接收终端会通过ARQ机制请求发送终端重传数据。接收终端使用检错码,如循环冗余校验(cyclic redundancy check,CRC),来检测接收到的数据是否出错。如果没有出错,则接收终端会发送ACK给发送终端,发送终端收到ACK后,会接着发送下一个数据。如果出错,则接收终端会发送NACK给发送终端,发送终端收到NACK后,会重传该数据。ACK和NACK即HARQ反馈。
前面介绍的ARQ机制,接收终端在接收到数据包之后,若解码出错,则丢弃数据包并请求重传,解码出错的数据包包含了有用的信息,如果丢弃了,这些有用的信息就丢失了。通过使用带软合并的HARQ(HARQ with soft combining),解码出错的数据包会保存在一个HARQ缓存中,并与后续接收到的重传数据包进行软合并之后解码。同样,若解码仍然失败,可以继续重复上述过程,将新接收到的重传数据与缓存中的数据进行合并,并再次解码。相比于单独解码(即每次传输的数据都单独解码,不和之前的数据合并进行解码),提高了解码成功的几率。
LTE V2X中由于仅支持广播业务,因此,不支持SL HARQ反馈。NR V2X中支持单播、组播和广播业务,但是只有在单播和组播场景下支持SL HARQ反馈。
2、SL资源池(resouce pool)
在NR中,SL传输是基于资源池的。资源池是一个逻辑上的概念,一个资源池包括多个物理资源,其中任意一个物理资源可以用于传输数据。
需要说明的是,网络设备会为多个终端配置一个或多个资源池,该多个终端是共享该一个或多个资源池的。一个终端进行数据传输时,需要从资源池中使用一个物理资源进行传输。在一种情况下,终端受到网络设备的控制,根据网络设备发送的指示信息,从资源池中选择一个物理资源进行数据传输。另一种情况下,终端自主从资源池中选择一个物理资源进行数据传输。
3、子信道
每个资源池包含一个或多个子信道(subchannel)。根据目前相关通信标准的进展,在一个资源池内各子信道的频域资源大小(即物理资源块(physical resource block,PRB)个数)是相同的。不同的资源池中的子信道的频域资源大小可以相同也可以不同。
示例性的,参见图2,若一个资源池中的物理资源所占据的带宽为20M,20M被分为了4个子信道,则一个子信道占据的带宽为5M。
其中,一个资源池中包含的子信道的个数以及每个子信道占据的带宽可以为网络设备配置给终端的。
4、物理侧行链路控制信道(physical sidelink control channel,PSCCH)、PSSCH、PSFCH
子信道中可以包括PSCCH、PSSCH和PSFCH。其中,PSCCH用于承载SL数据的控制信息,控制信息具体可以承载在PSCCH中的侧行链路控制信息(sidelink control information,SCI)中。PSSCH用于承载SL数据。PSFCH用于承载SL数据的HARQ反馈。
在目前的讨论中认为,PSFCH在时域上包括1个或2个符号,在频域上包括1个或多个PRB,这1个或多个PRB为PSSCH频域资源的一部分。在一个资源池中,PSFCH时频资源(简称为PSFCH资源)的周期为N个时隙(slot),N的取值目前为1、2和4。示例性的,图3中的(a)和图3中的(b)分别示出了N=1和N=2时PSFCH资源所在位置的示意图。
对于时隙n(n为大于或等于0的整数)上的PSSCH,其对应的PSFCH出现在时隙(n+a)上,a是大于或等于K的最小整数。目前还没有确定K的值,假设所有终端的K相同,则会有N个PSSCH对应的PSFCH需要共用一块PSFCH资源。示例性的,参见图4中的(a),假设N=1,a=1,则时隙n上的PSSCH承载的SL数据需要采用时隙(n+1)上的PSFCH资源进行HARQ反馈。参见图4中的(b),假设N=2,a=1,则时隙n和时隙(n+1)上的PSSCH承载的SL数据需要采用时隙(n+2)上的PSFCH资源进行HARQ反馈。其中,时隙n上的PSSCH承载的SL数据需要采用时隙(n+2)上的PSFCH资源中的一部分进行HARQ反馈,时隙(n+2)上的PSSCH承载的SL数据需要采用时隙(n+2)上的PSFCH资源中的另一部分进行HARQ反馈。
为了方便描述,本申请实施例中将“发送(或接收)承载在一个PSSCH上的SL数据”描述为“发送(或接收)PSSCH”。
5、序列间隔
PSFCH资源上可以承载序列,序列有一定的序列间隔,序列间隔是指一个序列进行循环移位的位数。例如,(1,2,3,4)是一个序列,则循环移位1位得到(2,3,4,1),这两个序列的序列间隔就是1。针对每个子信道上的PSFCH资源上的序列,序列间隔可以相同也可以不同,具体可以是网络设备配置的。
现在的通信标准中,采用包含1个PRB的PSFCH资源上的序列表示ACK/NACK,在一个PRB上,共有12个子载波,因此可以支持最大12个相互正交的序列,这些序列是通过一个基序列(例如,物理上行控制信道(physical uplink control channel,PUCCH)格式(format)0的序列)进行循环移位得到。其中,基序列可以称为序列0,移位x得到的序列可以称为序列x。当用不同的序列标识不同的ACK/NACK时,不同的ACK/NACK之间的误码率与序列间隔有关,序列间隔越大,误码率越低。
为了解决背景技术中提出的问题,本申请实施例提供了一种通信方法(也可以认为是一种确定PSFCH资源的方法),如图5所示,该方法包括:
501、至少一个发送终端向接收终端发送X个PSSCH。相应的,接收终端从至少一个发送终端接收X个PSSCH。X为大于1的整数。
其中,至少一个发送终端中的任意一个发送终端和接收终端可以单播通信,也可以组播通信(此时,接收终端为组播通信中的所有接收终端中的一个终端)。
其中,至少一个发送终端可以为一个,也可以为多个。一个发送终端可以向接收终端发送一个PSSCH,也可以向接收终端发送多个PSSCH。例如,参见图6中的(a),X=2,上述N=2,上述a=1,则一个发送终端可以通过子信道1在时隙n向接收终端发送一个PSSCH,通过子信道1在时隙(n+1)向接收终端发送另一个PSSCH。再例如,参见图6中的(b),X=2,上述N=1,上述a=1,则发送终端1可以通过子信道1在时隙n向接收终端发送一个PSSCH,发送终端2可以通过子信道2在时隙n向接收终端发送另一个PSSCH。再例如,X=3,上述N=2,上述a=1,则发送终端1可以通过子信道1在时隙(n+1)向接收终端发送一个PSSCH,发送终端2可以通过子信道2在时隙n和时隙(n+1)分别向接收终端发送一个PSSCH。
其中,一个PSSCH对应一个PSFCH资源,一个PSSCH的反馈信息承载在对应的PSFCH资源上,X个PSSCH对应的X个PSFCH资源的时域资源相同。例如,图6中的 (a)和图6中的(b)中均有2个PSFCH资源,2个PSFCH资源的时域资源相同,图6中的(c)中有3个PSFCH资源,3个PSFCH资源的时域资源相同。需要说明的是,PSFCH资源的周期为N个时隙,当N大于1时,N个PSSCH可能需要共享PSFCH资源,因此,N个PSSCH共享的这部分PSFCH资源会分为N份(可能均分也可能不均分),此时,这N份认为是N个PSFCH资源。示例性的,参见图6中的(a),时隙(n+2)上的PSFCH资源为2个PSFCH资源,1个PSFCH资源对应时隙n上的PSSCH,另一个PSFCH资源对应时隙(n+1)上的PSSCH。图6中的(c)中的子信道1和子信道2上的时隙(n+2)上的PSFCH资源同理。其中,图6中的(c)中的子信道1上的时隙(n+2)上的1个PSFCH资源对应的是时隙(n+1)上的PSSCH,时隙(n+2)上的PSFCH资源被分为2份后,其中的1份即与时隙(n+1)上的PSSCH对应的PSFCH资源。
502、接收终端根据X个PSFCH资源的优先级、X个PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源。
其中,M小于或等于M',M'为在相同的时域资源上占用的PSFCH资源的个数的上限,即接收终端同时可以采用的PSFCH资源的最大个数。M'可以为通信标准中规定的值。
可选的,PSFCH资源的优先级可以根据优先级规则进行分类。PSFCH资源的优先级可以基于对应的PSCCH或PSSCH确定。
可选的,PSFCH资源对应的发射功率可以通过信道测量得到,例如,信道测量结果表示信道质量越差时,PSFCH资源对应的发送功率可以越高。
503、接收终端在M个PSFCH资源上向至少一个发送终端中的部分或全部发送反馈信息。相应的,至少一个发送终端中的部分或全部终端在M个PSFCH资源上从接收终端接收反馈信息。
其中,反馈信息可以是接收终端针对发送终端发送的PSSCH的HARQ反馈,具体可以为ACK或NACK。
需要说明的是,由于M可能小于X,因此,接收终端可能只可以对至少一个发送终端中的部分发送终端发送反馈信息,其余发送终端的反馈信息可以后续发送或者不发送,本申请不作限制。
本申请实施例提供的方法,接收终端可以根据PSFCH资源的优先级、PSFCH资源对应的发射功率以及接收终端的总发射功率确定M个PSFCH资源,从而根据接收终端的发送能力(即总发射功率)发送M个PSFCH资源,提高网络***的整体性能。
步骤502在具体实现时可以包括:接收终端按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率,根据累加的情况确定M个PSFCH资源。
假设根据优先级规则对X个PSFCH资源进行分类之后,将X个PSFCH资源划分到了L个优先级上,其中,L个优先级中的第i个优先级中PSFCH资源的数量记为li,i越小时,优先级越高,则按照X个PSFCH资源的优先级由高至低的顺序依次累加PSFCH资源对应的发射功率,得到的累加结果可以表示为:
Figure PCTCN2020114598-appb-000001
其中,P j表示按照优先级由高至低的顺序排序后的第j个PSFCH资源对应的发射功率,j为大于0的整数,k为累加的PSFCH资源的个数。
以下通过情况一至情况三对根据累加的情况确定M个PSFCH资源的过程分别进行描 述。
情况一、累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率、且m等于M',或者,累加m个PSFCH资源对应的发射功率之后的累加结果等于接收终端的总发射功率、且m小于M'。
在情况一下,接收终端确定m个PSFCH资源为M个PSFCH资源。
也就是说,当m=M'且满足
Figure PCTCN2020114598-appb-000002
或者,当m<M'且满足
Figure PCTCN2020114598-appb-000003
时,接收终端确定累加的m个PSFCH资源为M个PSFCH资源。本申请实施例中,P max表示接收终端的总发射功率。
示例性的,假设有6个PSFCH资源,记为PSFCH1至PSFCH6,划分到3个优先级上,每个优先级上PSFCH资源的个数为2。第1个优先级上有PSFCH1和PSFCH2,第2个优先级上有PSFCH3和PSFCH4,第3个优先级上有PSFCH5和PSFCH6。若M'=2,且P 1≤P max,P 1+P 2≤P max,则接收终端确定PSFCH1和PSFCH2为M个PSFCH资源。若M'=3,且P 1≤P max,P 1+P 2=P max,则接收终端确定PSFCH1和PSFCH2为M个PSFCH资源。
情况二、累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于接收终端的总发射功率且m+1小于或等于M'。
在情况二下,接收终端确定m个PSFCH资源为M个PSFCH资源。
也就是说,当
Figure PCTCN2020114598-appb-000004
且m+1≤M'且
Figure PCTCN2020114598-appb-000005
时,接收终端确定累加的m个PSFCH资源为M个PSFCH资源。
示例性的,假设有6个PSFCH资源,记为PSFCH1至PSFCH6,划分到3个优先级上,每个优先级上PSFCH资源的个数为2。第1个优先级上有PSFCH1和PSFCH2,第2个优先级上有PSFCH3和PSFCH4,第3个优先级上有PSFCH5和PSFCH6。若M'=2,且P 1≤P max,P 1+P 2>P max,则接收终端确定PSFCH1为M个PSFCH资源。若M'=4,且P 1≤P max,P 1+P 2≤P max,P 1+P 2+P 3≤P max,且P 1+P 2+P 3+P 4>P max,则接收终端确定PSFCH1、PSFCH2和PSFCH3为M个PSFCH资源。
情况三、累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于接收终端的总发射功率、且m+1小于或等于M'。
在情况三下,接收终端可以通过以下方式一至方式四中的任意一种方式确定M个PSFCH资源。
方式一
方式一具体包括以下步骤11)和步骤12):
11)接收终端降低所述m+1个PSFCH资源中的第m+1个PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率。
12)接收终端确定所述m+1个PSFCH资源为M个PSFCH资源。
也就是说,当
Figure PCTCN2020114598-appb-000006
且m+1≤M'时,接收终端降低第m+1个PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率,并确定所述m+1个PSFCH资源为M个PSFCH资源。
具体的,接收终端可以将第m+1个PSFCH资源对应的发射功率降低到原本的β(β大于0小于或等于1)倍。
示例性的,假设有6个PSFCH资源,记为PSFCH1至PSFCH6,划分到3个优先级上,每 个优先级上PSFCH资源的个数为2。第1个优先级上有PSFCH1和PSFCH2,第2个优先级上有PSFCH3和PSFCH4,第3个优先级上有PSFCH5和PSFCH6。若M'=4,且P 1≤P max,P 1+P 2≤P max,P 1+P 2+P 3≤P max,且P 1+P 2+P 3+P 4>P max时,接收终端可以将P 4降低到βP 4,使得P 1+P 2+P 3+βP 4≤P max,并确定PSFCH1、PSFCH2、PSFCH3和PSFCH4为M个PSFCH资源。
方式二
方式二具体包括以下步骤21)和步骤22):
21)接收终端降低所述m+1个PSFCH资源中的第一优先级中的PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率,第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级。
22)接收终端确定所述m+1个PSFCH资源为M个PSFCH资源。
也就是说,当
Figure PCTCN2020114598-appb-000007
且m+1≤M'时,接收终端降低所述m+1个PSFCH资源中的第一优先级中的PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率,并确定所述m+1个PSFCH资源为M个PSFCH资源。
其中,若所述m+1个PSFCH资源中的属于第一优先级的PSFCH资源有x2个,在降低x2个PSFCH资源对应的发射功率时,可以降低相同的比例,例如,将x2个PSFCH资源对应的发射功率均降低到原本的β(β大于0小于或等于1)倍,也可以降低不同的比例,例如,x2个PSFCH资源中的有些PSFCH资源对应的发射功率降低到原本的β1(β1大于0小于或等于1)倍,有些PSFCH资源对应的发射功率降低到原本的β2(β2大于0小于或等于1)倍。本申请下文中以降低相同的比例为例进行示例性说明。
示例性的,假设有6个PSFCH资源,记为PSFCH1至PSFCH6,划分到3个优先级上,每个优先级上PSFCH资源的个数为2。第1个优先级上有PSFCH1和PSFCH2,第2个优先级上有PSFCH3和PSFCH4,第3个优先级上有PSFCH5和PSFCH6。若M'=3,且P 1≤P max,P 1+P 2≤P max,P 1+P 2+P 3>P max时,接收终端可以将P 3降低到βP 3,使得P 1+P 2+βP 3≤P max,并确定PSFCH1、PSFCH2和PSFCH3为M个PSFCH资源。若M'=4,且P 1≤P max,P 1+P 2≤P max,P 1+P 2+P 3≤P max,且P 1+P 2+P 3+P 4>P max时,接收终端可以将P 3降低到βP 3,将P 4降低到βP 4,使得P 1+P 2+βP 3+βP 4≤P max,并确定PSFCH1、PSFCH2、PSFCH3和PSFCH4为M个PSFCH资源。
方式三
方式三具体包括以下步骤31)和步骤32):
31)接收终端降低第一优先级中的x1个PSFCH资源对应的发射功率,使得累加m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率,第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级,x2为所述m+1个PSFCH资源中的属于第一优先级的PSFCH资源的个数,x1=min(x3,M'-(m+1-x2)),min为最小值函数,x3为第一优先级中的PSFCH资源的个数。
32)接收终端确定所述m+1-x2+x1个PSFCH资源为M个PSFCH资源。
也就是说,当
Figure PCTCN2020114598-appb-000008
且m+1≤M'时,接收终端降低第一优先级中的x1个PSFCH资源对应的发射功率,使得累加m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果小于或等于接收终端的总发射功率,并确定所述m+1-x2+x1个PSFCH资源为M个PSFCH资源。
其中,若第一优先级为第n个优先级,则累加所述m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果可以表示为:
Figure PCTCN2020114598-appb-000009
则若
Figure PCTCN2020114598-appb-000010
Figure PCTCN2020114598-appb-000011
接收终端确定所述m+1-x2+x1个PSFCH资源为M个PSFCH资源。
可以理解的是,m+1-x2即高于第一优先级的全部优先级中的全部PSFCH资源的个数,则min(x3,M'-(m+1-x2))的含义为:min(第一优先级中的PSFCH资源的个数,M'-高于第一优先级的全部优先级中的全部PSFCH资源的个数),根据该方法确定x1的值可以保证累加的PSFCH资源的个数是小于或等于M'的。那么可以理解的是,接收终端确定的M个PSFCH资源包括高于第一优先级的全部优先级中的全部PSFCH资源,以及以β倍发射功率发送的第n个优先级内的min(第一优先级中的PSFCH资源的个数,M'-高于第一优先级的全部优先级中的全部PSFCH资源的个数)个PSFCH资源。
与方式二类似的,在降低x1个PSFCH资源对应的发射功率时,可以降低相同的比例,也可以降低不同的比例,具体可参见上文进行理解,不再赘述。
示例性的,假设有6个PSFCH资源,记为PSFCH1至PSFCH6,划分到3个优先级上,每个优先级上PSFCH资源的个数为2。第1个优先级上有PSFCH1和PSFCH2,第2个优先级上有PSFCH3和PSFCH4,第3个优先级上有PSFCH5和PSFCH6。以下通过情况1至情况3分别对方式三进行示例性说明。
情况1:若M'=4,且P 1≤P max,P 1+P 2≤P max,P 1+P 2+P 3≤P max,且P 1+P 2+P 3+P 4>P max时,接收终端降低第2个优先级中的min(2,4-2)=2个PSFCH资源的发射功率,即降低PSFCH3和PSFCH4的发射功率,使得P 1+P 2+βP 3+βP 4≤P max,并确定PSFCH1、PSFCH2、PSFCH3和PSFCH4为M个PSFCH资源。
情况2:若M'=3,且P 1≤P max,P 1+P 2≤P max,且P 1+P 2+P 3>P max,接收终端降低第2个优先级中的min(2,3-2)=1个PSFCH资源的发射功率,即降低PSFCH3的发射功率,使得P 1+P 2+βP 3≤P max,并确定PSFCH1、PSFCH2和PSFCH3为M个PSFCH资源。
情况3:若M'=4,且P 1≤P max,P 1+P 2≤P max,且P 1+P 2+P 3>P max,接收终端降低第2个优先级中的min(2,4-2)=2个PSFCH资源的发射功率,即降低PSFCH3和PSFCH4的发射功率,使得P 1+P 2+βP 3+βP 4≤P max,并确定PSFCH1、PSFCH2、PSFCH3和PSFCH4为M个PSFCH资源。
方式四
方式四具体包括以下步骤41)和步骤42):
41)接收终端在多个组合中确定第一组合,多个组合为第一优先级中的PSFCH资源的组合,第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级。
其中,上述多个组合可以为第一优先级中的PSFCH资源的全部组合中的部分或全部。
42)接收终端确定被累加的m+1-x2+x3个PSFCH资源为M个PSFCH资源,其中,x2为所述m+1个PSFCH资源中的属于第一优先级的PSFCH资源的个数,x3为第一组合中的PSFCH资源的个数。
也就是说,当
Figure PCTCN2020114598-appb-000012
且m+1≤M'时,接收终端可以遍历第一优先级中的PSFCH资源的组合,并确定第一组合,进而确定被累加的m+1-x2+x3个PSFCH资源为M个PSFCH资源。
其中,与其他组合相比,第一组合满足如下特征1至特征3:
特征1、第一组合中的PSFCH资源的个数与高于第一优先级的全部优先级中的PSFCH 资源的个数之和小于或等于M'。
特征2、第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发射功率之和小于或等于接收终端的总发射功率。
其中,若第一优先级为第n个优先级,特征2可以表示为:
Figure PCTCN2020114598-appb-000013
I是第n个优先级中的PSFCH资源的一种组合。
特征3、第一组合中的PSFCH资源的个数与高于第一优先级的全部优先级中的PSFCH资源的个数之和最大。也就是说,接收终端选择的组合为满足特征1和特征2、且可以使得确定的M个PSFCH资源中,M最大的组合,具体的,在满足上述特征1和特征2的所有I中,选择PSFCH资源的个数小于或等于
Figure PCTCN2020114598-appb-000014
的组合中PSFCH资源个数最多的。
需要说明的是,满足上述特征1至特征3的组合可以有一个或多个,若有多个,则接收终端可以从多个中选择一个作为第一组合。
可选的,与其他组合相比,第一组合还满足如下特征4:
特征4、第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发射功率之和最小(即总功率最小),或,第一组合中的PSFCH资源对应的发射功率与高于第一优先级的全部优先级中的PSFCH资源对应的发射功率之和与接收终端的总发射功率差距最大(即功率余量最大)。
可以理解的是,当满足上述特征1至特征3的组合有多个时,则接收终端可以根据特征4从多个中选择一个作为第一组合,具体的,选择可以使得
Figure PCTCN2020114598-appb-000015
Figure PCTCN2020114598-appb-000016
(即功率余量最大)或者
Figure PCTCN2020114598-appb-000017
(即总功率最小)的组合,接收终端可以确定高于第n个优先级的
Figure PCTCN2020114598-appb-000018
个PSFCH资源和第n个优先级内的组合I内的PSFCH资源为M个PSFCH资源。
示例性的,假设有6个PSFCH资源,记为PSFCH1至PSFCH6,划分到3个优先级上,每个优先级上PSFCH资源的个数为2。第1个优先级上有PSFCH1和PSFCH2,第2个优先级上有PSFCH3和PSFCH4,第3个优先级上有PSFCH5和PSFCH6。以下通过情况1和情况2分别对方式四进行示例性说明。
情况1:当M'=4时,若满足:
P 1≤P max,P 1+P 2≤P max,P 1+P 2+P 3≤P max,且P 1+P 2+P 3+P 4>P max
在第2个优先级内满足个数小于或等于M'-l1=2个的PSFCH资源的所有可能的组合包括:I1={PSFCH3}、I2={PSFCH4}、I3={PSFCH3、PSFCH4},遍历全部的可能组合,并满足功率要求的有:
P 1+P 2+P 3≤P max和P 1+P 2+P 4≤P max,此时M'=4的上限无法满足,M个PSFCH资源最多有3个。
由于I1和I2中的PSFCH资源的个数相同,可以在I1和I2中选择可以使得M个PSFCH资源的总功率最小或者功率余量最大的组合。
以总功率最小为标准:
当P 1+P 2+P 3≤P 1+P 2+P 4时,I1可以使得总功率最小,接收终端确定PSFCH1、PSFCH2和PSFCH3为M个PSFCH资源。
当P 1+P 2+P 3>P 1+P 2+P 4时,I2可以使得总功率最小,接收终端确定传输PSFCH1、PSFCH2和PSFCH4为M个PSFCH资源。
以功率余量最大为标准:
Δ1=P max-P 1-P 2-P 3,Δ2=P max-P 1-P 2-P 4
其中,在计算Δ1时所采用的Pmax是基于PSFCH1、PSFCH2和PSFCH3并结合接收终端的硬件的功率计算出来的,在计算Δ2时所采用的Pmax是基于PSFCH1、PSFCH2和PSFCH4并结合接收终端的硬件的功率计算出来的,这两个Pmax的值可能相同,也可能不同。
当Δ1≥Δ2时,I1可以使得功率余量最大,接收终端确定PSFCH1、PSFCH2和PSFCH3为M个PSFCH资源。
当Δ1<Δ2时,I2可以使得功率余量最大,接收终端确定传输PSFCH1、PSFCH2和PSFCH4为M个PSFCH资源。
情况2:当M'=3时,若满足:
P 1≤P max,P 1+P 2≤P max,P 1+P 2+P 3≤P max
在第2个优先级内满足个数小于或等于M'-l1=1个的PSFCH资源的所有可能的组合包括:I1={PSFCH3}、I2={PSFCH4},与情况1中M'=4的区别在于,因为M'的限制少了I3={PSFCH3,PSFCH4}这种组合。遍历全部的可能组合,并满足功率要求的有:
P 1+P 2+P 3≤P max和P 1+P 2+P 4≤P max
由于I1和I2中的PSFCH资源的个数相同,可以在I1和I2中选择可以使得M个PSFCH资源的总功率最小或者功率余量最大的组合。
以总功率最小为标准:
当P 1+P 2+P 3≤P 1+P 2+P 4时,I1可以使得总功率最小,接收终端确定PSFCH1、PSFCH2和PSFCH3为M个PSFCH资源。
当P 1+P 2+P 3>P 1+P 2+P 4时,I2可以使得总功率最小,接收终端确定PSFCH1、PSFCH2和PSFCH4为M个PSFCH资源。
以功率余量最大为标准:
Δ1=P max-P 1-P 2-P 3,Δ2=P max-P 1-P 2-P 4
其中,在计算Δ1时所采用的Pmax是基于PSFCH1、PSFCH2和PSFCH3并结合接收终端的硬件的功率计算出来的,在计算Δ2时所采用的Pmax是基于PSFCH1、PSFCH2和PSFCH4并结合接收终端的硬件的功率计算出来的,这两个Pmax的值可能相同,也可能不同。
当Δ1≥Δ2时,I1可以使得功率余量最大,接收终端确定PSFCH1、PSFCH2和PSFCH3为M个PSFCH资源。
当Δ1<Δ2时,I2可以使得功率余量最大,接收终端确定PSFCH1、PSFCH2和PSFCH4为M个PSFCH资源。
上述方式一、方式二和方式三相比方式四而言实现过程更加的简单,但方式四相比方式一、方式二和方式三而言,复杂度虽高但是可以使得确定的M个PSFCH资源对应的发射功率之和最低。
上述实施例提供了M个PSFCH资源的选择流程以及功率控制的细节,可以保证在接收终端的发送能力之内(即在接收终端的总发射功率之内)发送M个PSFCH资源,并且可以保证确定的M个PSFCH资源个数小于或等于在相同的时域资源上占用的PSFCH资源的个数的上限,从而提高网络***的整体性能。需要说明的是,上述实施例中,均以PSSCH和PSFCH资源一一对应为例对本申请实施例提供的方法作示例性说明,在实际实现时,一个发送终端发送的多个PSSCH也可以对应一个PSFCH资源,此时,选择M个PSFCH资源的方法类似,所不同的地方仅在于,接收终端需要通过码分(例如,通过上述实施例中描述的不同的序列进行码分)的方式采用同一个PSFCH资源发送针对多个 PSSCH的反馈信息。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,发送终端和接收终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发送终端和接收终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的通信装置(记为通信装置70)的一种可能的结构示意图,该通信装置70包括处理单元701和通信单元702,还可以包括存储单元703。图7所示的结构示意图可以用于示意上述实施例中所涉及的发送终端或接收终端的结构。
当图7所示的结构示意图用于示意上述实施例中所涉及的发送终端的结构时,处理单元701用于对发送终端的动作进行控制管理,例如,处理单元701用于支持发送终端执行图5中的501和503,和/或本申请实施例中所描述的其他过程中的发送终端执行的动作。处理单元701可以通过通信单元702与其他网络实体通信,例如,与图5中示出的接收终端之间通信。存储单元703用于存储发送终端的程序代码和数据。
当图7所示的结构示意图用于示意上述实施例中所涉及的发送终端的结构时,通信装置70可以是一个设备,也可以是设备内的芯片。
当图7所示的结构示意图用于示意上述实施例中所涉及的接收终端的结构时,处理单元701用于对接收终端的动作进行控制管理,例如,处理单元701用于支持接收终端执行图5中的501至503,和/或本申请实施例中所描述的其他过程中的接收终端执行的动作。处理单元701可以通过通信单元702与其他网络实体通信,例如,与图5中示出的发送终端之间通信。存储单元703用于存储接收终端的程序代码和数据。
当图7所示的结构示意图用于示意上述实施例中所涉及的接收终端的结构时,通信装置70可以是一个设备,也可以是设备内的芯片。
其中,当通信装置70为一个设备时,处理单元701可以是处理器或控制器,通信单元702可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元703可以是存储器。当通信装置70为一个设备内的芯片时,处理单元701可以是处理器或控制器,通信单元702可以是输入接口和/或输出接口、管脚或电路等。存储单元703可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
其中,通信单元也可以称为收发单元。通信装置70中的具有收发功能的天线和控制 电路可以视为通信装置70的通信单元702,具有处理功能的处理器可以视为通信装置70的处理单元701。可选的,通信单元702中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元702中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图7中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图7中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置的硬件结构示意图,参见图8或图9,该通信装置包括处理器801,可选的,还包括与处理器801连接的存储器802。
处理器801可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器801也可以包括多个CPU,并且处理器801可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器802可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器802可以是独立存在,也可以和处理器801集成在一起。其中,存储器802中可以包含计算机程序代码。处理器801用于执行存储器802中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图8,通信装置还包括收发器803。处理器801、存储器802和收发器803通过总线相连接。收发器803用于与其他设备或通信网络通信。可选的,收发器803可以包括发射机和接收机。收发器803中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器803中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图8所示的结构示意图可以用于示意上述实施例中所涉及的发送终端或接收终端的结构。
当图8所示的结构示意图用于示意上述实施例中所涉及的发送终端的结构时,处理器801用于对发送终端的动作进行控制管理,例如,处理器801用于支持发送终端执行图5 中的501和503,和/或本申请实施例中所描述的其他过程中的发送终端执行的动作。处理器801可以通过收发器803与其他网络实体通信,例如,与图5中示出的接收终端之间通信。存储器802用于存储发送终端的程序代码和数据。
当图8所示的结构示意图用于示意上述实施例中所涉及的接收终端的结构时,处理器801用于对接收终端的动作进行控制管理,例如,处理器801用于支持接收终端执行图5中的501至503,和/或本申请实施例中所描述的其他过程中的接收终端执行的动作。处理器801可以通过收发器803与其他网络实体通信,例如,与图5中示出的发送终端之间通信。存储器802用于存储接收终端的程序代码和数据。
在第二种可能的实现方式中,处理器801包括逻辑电路以及输入接口和/或输出接口。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图9,图9所示的结构示意图可以用于示意上述实施例中所涉及的发送终端或接收终端的结构。
当图9所示的结构示意图用于示意上述实施例中所涉及的发送终端的结构时,处理器801用于对发送终端的动作进行控制管理,例如,处理器801用于支持发送终端执行图5中的501和503,和/或本申请实施例中所描述的其他过程中的发送终端执行的动作。处理器801可以通过输入接口和/或输出接口与其他网络实体通信,例如,与图5中示出的接收终端之间通信。存储器802用于存储发送终端的程序代码和数据。
当图9所示的结构示意图用于示意上述实施例中所涉及的接收终端的结构时,处理器801用于对接收终端的动作进行控制管理,例如,处理器801用于支持接收终端执行图5中的501至503,和/或本申请实施例中所描述的其他过程中的接收终端执行的动作。处理器801可以通过输入接口和/或输出接口与其他网络实体通信,例如,与图5中示出的发送终端之间通信。存储器802用于存储接收终端的程序代码和数据。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信***,包括:上述发送终端和接收终端。可选的,还包括上述终端。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设 备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
结合以上,本申请还提供如下实施例:
实施例1、一种通信方法,其中,所述方法包括:
接收终端从至少一个发送终端接收X个物理侧行链路共享信道PSSCH,一个PSSCH对应一个物理侧行链路反馈信道PSFCH资源,所述X个PSSCH对应的X个PSFCH资源的时域资源相同,X为大于1的整数;
所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,M小于或等于M',M'为在相同的时域资源上占用的PSFCH资源的个数的上限;
所述接收终端在所述M个PSFCH资源上向所述至少一个发送终端中的部分或全部发送反馈信息。
实施例2、根据实施例1所述的方法,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且m等于M',或者,累加m个PSFCH资源对应的发射功率之后的累加结果等于所述总发射功率、且m小于M'的情况下,所述接收终端确定所述m个PSFCH资源为所述M个PSFCH资源。
实施例3、根据实施例1所述的方法,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、 且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率且m+1小于或等于M'的情况下,所述接收终端确定所述m个PSFCH资源为所述M个PSFCH资源。
实施例4、根据实施例1所述的方法,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,所述接收终端降低所述m+1个PSFCH资源中的第m+1个PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率;
所述接收终端确定所述m+1个PSFCH资源为所述M个PSFCH资源。
实施例5、根据实施例1所述的方法,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,所述接收终端降低所述m+1个PSFCH资源中的第一优先级中的PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;
所述接收终端确定所述m+1个PSFCH资源为所述M个PSFCH资源。
实施例6、根据实施例1所述的方法,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,所述接收终端降低第一优先级中的x1个PSFCH资源对应的发射功率,使得累加m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级,x2为所述m+1个PSFCH资源中的属于所述第一优先级的PSFCH资源的个数,x1=min(x3,M'-(m+1-x2)),min为最小值函数,x3为所述第一优先级中的PSFCH资源的个数;
所述接收终端确定所述m+1-x2+x1个PSFCH资源为所述M个PSFCH资源。
实施例7、根据实施例1所述的方法,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,所述接收终端在多个组合中确定第一组合,所述多个组合为第一优先级中的PSFCH资源的组合,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;
所述接收终端确定被累加的m+1-x2+x3个PSFCH资源为所述M个PSFCH资源,其中,x2为所述m+1个PSFCH资源中的属于所述第一优先级的PSFCH资源的个数,x3为所述第一组合中的PSFCH资源的个数;
其中,与其他组合相比,所述第一组合满足如下特征:所述第一组合中的PSFCH资源的个数与高于所述第一优先级的全部优先级中的PSFCH资源的个数之和小于或等于M',所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和小于或等于所述总发射功率,所述第一组合中的PSFCH资源的个数与高于所述第一优先级的全部优先级中的PSFCH资源的个数之和最大。
实施例8、根据实施例7所述的方法,与其他组合相比,所述第一组合还满足如下特征:所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和最小,或,所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和与所述总发射功率差距最大。
实施例9、一种通信装置,其中,所述通信装置包括:通信单元和处理单元;
所述通信单元,用于从至少一个发送终端接收X个物理侧行链路共享信道PSSCH,一个PSSCH对应一个物理侧行链路反馈信道PSFCH资源,所述X个PSSCH对应的X个PSFCH资源的时域资源相同,X为大于1的整数;
所述处理单元,用于根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述装置的总发射功率确定M个PSFCH资源,M小于或等于M',M'为在相同的时域资源上占用的PSFCH资源的个数的上限;
所述通信单元,还用于在所述M个PSFCH资源上向所述至少一个发送终端中的部分或全部发送反馈信息。
实施例10、根据实施例9所述的装置,所述处理单元,具体用于:
按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且m等于M',或者,累加m个PSFCH资源对应的发射功率之后的累加结果等于所述总发射功率、且m小于M'的情况下,确定所述m个PSFCH资源为所述M个PSFCH资源。
实施例11、根据实施例9所述的装置,所述处理单元,具体用于:
按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率且m+1小于或等于M'的情况下,确定所述m个PSFCH资源为所述M个PSFCH资源。
实施例12、根据实施例9所述的装置,所述处理单元,具体用于:
按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,降低所述m+1个PSFCH资源中的第m+1个PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率;
确定所述m+1个PSFCH资源为所述M个PSFCH资源。
实施例13、根据实施例9所述的装置,所述处理单元,具体用于:
按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,降低所述m+1个PSFCH资源中的第一优先级中的PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;
确定所述m+1个PSFCH资源为所述M个PSFCH资源。
实施例14、根据实施例9所述的装置,所述处理单元,具体用于:
按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,降低第一优先级中的x1个PSFCH资源对应的发射功率,使得累加m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级,x2为所述m+1个PSFCH资源中的属于所述第一优先级的PSFCH资源的个数,x1=min(x3,M'-(m+1-x2)),min为最小值函数,x3为所述第一优先级中的PSFCH资源的个数;
确定所述m+1-x2+x1个PSFCH资源为所述M个PSFCH资源。
实施例15、根据实施例9所述的装置,所述处理单元,具体用于:
按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,在多个组合中确定第一组合,所述多个组合为第一优先级中的PSFCH资源的组合,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;
确定被累加的m+1-x2+x3个PSFCH资源为所述M个PSFCH资源,其中,x2为所述m+1个PSFCH资源中的属于所述第一优先级的PSFCH资源的个数,x3为所述第一组合中的PSFCH资源的个数;
其中,与其他组合相比,所述第一组合满足如下特征:所述第一组合中的PSFCH资源的个数与高于所述第一优先级的全部优先级中的PSFCH资源的个数之和小于或等于M',所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和小于或等于所述总发射功率,所述第一组合中的PSFCH资源的个数与高于所述第一优先级的全部优先级中的PSFCH资源的个数之和最大。
实施例16、根据实施例15所述的装置,与其他组合相比,所述第一组合还满足如下特征:所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和最小,或,所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和与所述总发射功率差距最大。
实施例17、一种通信装置,其中,所述通信装置包括:处理器;
所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如实施例1-8任一项所述的方法。
实施例18、一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如实施例1-8任一项所述的方法。
实施例19、一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如实施例1-8任一项所述的方法。
实施例20、一种芯片,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如实施例1-8任一项所述的方法。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    接收终端从至少一个发送终端接收X个物理侧行链路共享信道PSSCH,一个PSSCH对应一个物理侧行链路反馈信道PSFCH资源,所述X个PSSCH对应的X个PSFCH资源的时域资源相同,X为大于1的整数;
    所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,M小于或等于M',M'为在相同的时域资源上占用的PSFCH资源的个数的上限;
    所述接收终端在所述M个PSFCH资源上向所述至少一个发送终端中的部分或全部发送反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
    所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且m等于M',或者,累加m个PSFCH资源对应的发射功率之后的累加结果等于所述总发射功率、且m小于M'的情况下,所述接收终端确定所述m个PSFCH资源为所述M个PSFCH资源。
  3. 根据权利要求1所述的方法,其特征在于,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
    所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率且m+1小于或等于M'的情况下,所述接收终端确定所述m个PSFCH资源为所述M个PSFCH资源。
  4. 根据权利要求1所述的方法,其特征在于,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
    所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,所述接收终端降低所述m+1个PSFCH资源中的第m+1个PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率;
    所述接收终端确定所述m+1个PSFCH资源为所述M个PSFCH资源。
  5. 根据权利要求1所述的方法,其特征在于,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
    所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,所述接收终端降低所述m+1个PSFCH资源中的第一优先级中的PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;
    所述接收终端确定所述m+1个PSFCH资源为所述M个PSFCH资源。
  6. 根据权利要求1所述的方法,其特征在于,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
    所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,所述接收终端降低第一优先级中的x1个PSFCH资源对应的发射功率,使得累加m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级,x2为所述m+1个PSFCH资源中的属于所述第一优先级的PSFCH资源的个数,x1=min(x3,M'-(m+1-x2)),min为最小值函数,x3为所述第一优先级中的PSFCH资源的个数;
    所述接收终端确定所述m+1-x2+x1个PSFCH资源为所述M个PSFCH资源。
  7. 根据权利要求1所述的方法,其特征在于,所述接收终端根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述接收终端的总发射功率确定M个PSFCH资源,包括:
    所述接收终端按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,所述接收终端在多个组合中确定第一组合,所述多个组合为第一优先级中的PSFCH资源的组合,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;
    所述接收终端确定被累加的m+1-x2+x3个PSFCH资源为所述M个PSFCH资源,其中,x2为所述m+1个PSFCH资源中的属于所述第一优先级的PSFCH资源的个数,x3为所述第一组合中的PSFCH资源的个数;
    其中,与其他组合相比,所述第一组合满足如下特征:所述第一组合中的PSFCH资源的个数与高于所述第一优先级的全部优先级中的PSFCH资源的个数之和小于或等于M',所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和小于或等于所述总发射功率,所述第一组合中的PSFCH资源的个数与高于所述第一优先级的全部优先级中的PSFCH资源的个数之和最大。
  8. 根据权利要求7所述的方法,其特征在于,与其他组合相比,所述第一组合还满足如下特征:所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和最小,或,所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和与所述总发射功率差距最大。
  9. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于从至少一个发送终端接收X个物理侧行链路共享信道PSSCH,一个PSSCH对应一个物理侧行链路反馈信道PSFCH资源,所述X个PSSCH对应的X个PSFCH资源的时域资源相同,X为大于1的整数;
    所述处理单元,用于根据所述X个PSFCH资源的优先级、所述X个PSFCH资源对应的发射功率以及所述装置的总发射功率确定M个PSFCH资源,M小于或等于M',M'为在相同的时域资源上占用的PSFCH资源的个数的上限;
    所述通信单元,还用于在所述M个PSFCH资源上向所述至少一个发送终端中的部分或全部发送反馈信息。
  10. 根据权利要求9所述的装置,其特征在于,所述处理单元,具体用于:
    按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且m等于M',或者,累加m个PSFCH资源对应的发射功率之后的累加结果等于所述总发射功率、且m小于M'的情况下,确定所述m个PSFCH资源为所述M个PSFCH资源。
  11. 根据权利要求9所述的装置,其特征在于,所述处理单元,具体用于:
    按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率且m+1小于或等于M'的情况下,确定所述m个PSFCH资源为所述M个PSFCH资源。
  12. 根据权利要求9所述的装置,其特征在于,所述处理单元,具体用于:
    按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,降低所述m+1个PSFCH资源中的第m+1个PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率;
    确定所述m+1个PSFCH资源为所述M个PSFCH资源。
  13. 根据权利要求9所述的装置,其特征在于,所述处理单元,具体用于:
    按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,降低所述m+1个PSFCH资源中的第一优先级中的PSFCH资源对应的发射功率,使得累加所述m+1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;
    确定所述m+1个PSFCH资源为所述M个PSFCH资源。
  14. 根据权利要求9所述的装置,其特征在于,所述处理单元,具体用于:
    按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,降低第一优先级中的x1个PSFCH资源对应的发射功率,使得累加m+1-x2+x1个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级,x2为所述m+1个PSFCH资源中的属于所述第一优先级的PSFCH资源的个数,x1=min(x3,M'-(m+1-x2)),min为最小值函数,x3为所述第一优先级中的PSFCH资源的个数;
    确定所述m+1-x2+x1个PSFCH资源为所述M个PSFCH资源。
  15. 根据权利要求9所述的装置,其特征在于,所述处理单元,具体用于:
    按照所述X个PSFCH资源的优先级由高至低的顺序依次累加所述PSFCH资源对应的发射功率;
    在累加m个PSFCH资源对应的发射功率之后的累加结果小于或等于所述总发射功率、且累加m+1个PSFCH资源对应的发射功率之后的累加结果大于所述总发射功率、且m+1小于或等于M'的情况下,在多个组合中确定第一组合,所述多个组合为第一优先级中的PSFCH资源的组合,所述第一优先级为所述m+1个PSFCH资源中的第m+1个PSFCH资源的优先级;
    确定被累加的m+1-x2+x3个PSFCH资源为所述M个PSFCH资源,其中,x2为所述m+1个PSFCH资源中的属于所述第一优先级的PSFCH资源的个数,x3为所述第一组合中的PSFCH资源的个数;
    其中,与其他组合相比,所述第一组合满足如下特征:所述第一组合中的PSFCH资源的个数与高于所述第一优先级的全部优先级中的PSFCH资源的个数之和小于或等于M',所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和小于或等于所述总发射功率,所述第一组合中的PSFCH资源的个数与高于所述第一优先级的全部优先级中的PSFCH资源的个数之和最大。
  16. 根据权利要求15所述的装置,其特征在于,与其他组合相比,所述第一组合还 满足如下特征:所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和最小,或,所述第一组合中的PSFCH资源对应的发射功率与高于所述第一优先级的全部优先级中的PSFCH资源对应的发射功率之和与所述总发射功率差距最大。
  17. 一种通信装置,其特征在于,包括:处理器;
    所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如权利要求1-8任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-8任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-8任一项所述的方法。
PCT/CN2020/114598 2019-10-12 2020-09-10 通信方法及装置 WO2021068708A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022521678A JP2022551321A (ja) 2019-10-12 2020-09-10 通信方法及び装置
US17/768,041 US20220386247A1 (en) 2019-10-12 2020-09-10 Communications method and apparatus
EP20874241.1A EP4030671A4 (en) 2019-10-12 2020-09-10 METHOD AND COMMUNICATION DEVICE
KR1020227012425A KR20220065802A (ko) 2019-10-12 2020-09-10 통신 방법 및 장치
JP2023130864A JP2023144026A (ja) 2019-10-12 2023-08-10 通信方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910969472.0A CN112653541B (zh) 2019-10-12 2019-10-12 通信方法及装置
CN201910969472.0 2019-10-12

Publications (1)

Publication Number Publication Date
WO2021068708A1 true WO2021068708A1 (zh) 2021-04-15

Family

ID=75343015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114598 WO2021068708A1 (zh) 2019-10-12 2020-09-10 通信方法及装置

Country Status (6)

Country Link
US (1) US20220386247A1 (zh)
EP (1) EP4030671A4 (zh)
JP (2) JP2022551321A (zh)
KR (1) KR20220065802A (zh)
CN (3) CN115225231A (zh)
WO (1) WO2021068708A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210074874A (ko) * 2019-12-12 2021-06-22 삼성전자주식회사 무선 통신 시스템에서 단말의 송신 전력 제어 방법 및 장치
US11716753B2 (en) * 2021-01-26 2023-08-01 Qualcomm Incorporated Feedback methods for subband full duplex systems
WO2023060600A1 (zh) * 2021-10-15 2023-04-20 Oppo广东移动通信有限公司 无线通信的方法和终端
CN115884385A (zh) * 2022-03-31 2023-03-31 中兴通讯股份有限公司 信道传输方法、通信装置、通信设备、存储介质及产品
CN115915261A (zh) * 2022-08-01 2023-04-04 中兴通讯股份有限公司 信息确定方法及装置、存储介质及电子装置
CN117641619A (zh) * 2022-08-17 2024-03-01 中兴通讯股份有限公司 一种直连通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104284439A (zh) * 2013-07-10 2015-01-14 ***通信集团公司 一种用户终端的调度方法和装置
US20180006783A1 (en) * 2015-02-13 2018-01-04 Sony Corporation Apparatus and method for wireless communication
WO2019041261A1 (zh) * 2017-08-31 2019-03-07 华为技术有限公司 一种通信方法及设备
US20190191446A1 (en) * 2017-12-20 2019-06-20 Industrial Technology Research Institute Base station and scheduling method of uplink resource unit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965908B (zh) * 2018-11-29 2023-08-29 北京小米移动软件有限公司 资源碰撞解决方法、装置及存储介质
CN118174830A (zh) * 2019-01-09 2024-06-11 交互数字专利控股公司 侧链路反馈信道
WO2020220290A1 (zh) * 2019-04-30 2020-11-05 富士通株式会社 边链路数据的发送和接收方法以及装置
US11695531B2 (en) * 2019-05-02 2023-07-04 Intel Corporation Resources selection for feedback based NR-V2X communication
US20210391951A1 (en) * 2019-05-03 2021-12-16 Lg Electronics Inc. Sidelink harq feedback for groupcast transmission
WO2020228772A1 (en) * 2019-05-14 2020-11-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and device
WO2021034083A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 무선통신시스템에서 사이드링크 신호를 송수신하는 방법
WO2021063405A1 (en) * 2019-10-03 2021-04-08 FG Innovation Company Limited Methods and apparatuses for harq codebook construction
US11716648B2 (en) * 2019-10-04 2023-08-01 Qualcomm Incorporated Congestion control for NR V2X
WO2021091352A1 (ko) * 2019-11-08 2021-05-14 엘지전자 주식회사 Nr v2x에서 sl 전송 자원을 선택하는 방법 및 장치
KR102597334B1 (ko) * 2019-12-03 2023-11-03 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 장치 대 장치 사이드링크 harq-ack 생성을 위한 방법 및 장치
JP7419553B2 (ja) * 2020-02-24 2024-01-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド フィードバックリソース決定方法およびフィードバックリソース決定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104284439A (zh) * 2013-07-10 2015-01-14 ***通信集团公司 一种用户终端的调度方法和装置
US20180006783A1 (en) * 2015-02-13 2018-01-04 Sony Corporation Apparatus and method for wireless communication
WO2019041261A1 (zh) * 2017-08-31 2019-03-07 华为技术有限公司 一种通信方法及设备
US20190191446A1 (en) * 2017-12-20 2019-06-20 Industrial Technology Research Institute Base station and scheduling method of uplink resource unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Discussion of In-device coexistence between LTE and NR sidelinks", 3GPP DRAFT; R1-1910516-LTE_NR_SL-COEXISTENCE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20190814 - 20190820, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789321 *

Also Published As

Publication number Publication date
KR20220065802A (ko) 2022-05-20
CN115225231A (zh) 2022-10-21
JP2023144026A (ja) 2023-10-06
EP4030671A1 (en) 2022-07-20
EP4030671A4 (en) 2022-11-16
CN115225230A (zh) 2022-10-21
US20220386247A1 (en) 2022-12-01
CN112653541A (zh) 2021-04-13
JP2022551321A (ja) 2022-12-08
CN112653541B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2021068708A1 (zh) 通信方法及装置
US11804940B2 (en) Resources selection for feedback based NR-V2X communication
CN111149383B (zh) 用于在无线通信***中发送分组的方法和设备
WO2018059173A1 (zh) 免授权的传输上行信息的方法、网络设备和终端设备
WO2020244645A1 (zh) 一种通信方法及装置
WO2020200014A1 (zh) 通信方法及装置
US20220217768A1 (en) Communication Method and Apparatus
WO2020063410A1 (zh) 一种通信方法及通信装置
CN116367359A (zh) 一种确定物理直连反馈信道资源的方法及装置
US11929960B2 (en) Resource allocation method and device, storage medium and terminal
WO2021068693A1 (zh) 通信方法及装置
WO2020220962A1 (zh) 直通链路传输方法和终端
JP2023537184A (ja) ラプターコードのための情報表示
WO2022082800A1 (zh) 处理侧行链路进程的方法及装置
RU2748852C1 (ru) Способ и устройство
WO2021056146A1 (zh) 一种控制信息的传输方法、装置及***
JP2018526925A (ja) ユーザ機器を動作させる方法及びベースバンドユニットを動作させる方法
CN117354950A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227012425

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020874241

Country of ref document: EP

Effective date: 20220412