WO2021068286A1 - 一种光电混合分层交换光接入网 - Google Patents

一种光电混合分层交换光接入网 Download PDF

Info

Publication number
WO2021068286A1
WO2021068286A1 PCT/CN2019/112683 CN2019112683W WO2021068286A1 WO 2021068286 A1 WO2021068286 A1 WO 2021068286A1 CN 2019112683 W CN2019112683 W CN 2019112683W WO 2021068286 A1 WO2021068286 A1 WO 2021068286A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
switching
access
domain
edge
Prior art date
Application number
PCT/CN2019/112683
Other languages
English (en)
French (fr)
Inventor
孙小菡
郑宇�
戈志群
叶晓凯
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2021068286A1 publication Critical patent/WO2021068286A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects

Definitions

  • the invention belongs to the field of optical fiber communication, and particularly relates to a photoelectric hybrid layered switching optical access network.
  • Scenarios such as mobile communications, data centers, Internet of Things, and industrial Internet have profoundly changed the temporal and spatial distribution of data generated by the access system. It is necessary to rely on high-speed and large-capacity optical access network technology to achieve data collection, integration, transmission, exchange and processing, and optical connection. Access to the network is no longer limited to the construction of a high-speed broadband fixed-line access system.
  • the next-generation optical access network standards such as NG-PON2 and NG-EPON adopt the TWDM-PON system to realize high-speed and large-capacity optical access networks by expanding the number of wavelengths.
  • the software-defined optical access network realizes the unified control of various heterogeneous optical access technologies, and can realize dynamic resource allocation and virtualization at different levels of the network.
  • the software-defined network (SDN) technology can only flexibly implement various control functions, and cannot make up for the defect that the current optical access network architecture based on multi-point access does not have a switching function.
  • Optoelectronic hybrid switching technology can use electrical switching equipment to solve the cache problem and improve network performance, but existing solutions have their own limitations.
  • the optical access network architecture with switching capabilities needs to be further optimized for application requirements.
  • the purpose of the present invention is to provide a photoelectric hybrid hierarchical switching optical access network, which can realize mass multi-source heterogeneous data convergence, exchange and unified control, solve the root node bandwidth bottleneck, and improve the performance and efficiency of the optical access network .
  • the solution of the present invention is:
  • An optoelectronic hybrid hierarchical switching optical access network including a top-down core switching layer, an intra-domain switching layer, a passive optical distribution layer, and an edge access layer;
  • the optoelectronic hybrid core switching node has core domain functions and access domains The core domain function is located at the core switching layer, the access domain function is located at the intra-domain switching layer, the passive optical distribution node is located at the passive optical distribution layer, and the edge access nodes and users are located at the edge access layer; the optoelectronic hybrid core switching node interacts with each other.
  • each optoelectronic hybrid core switching node Connected to form a grid topology to form the core domain, each optoelectronic hybrid core switching node is also connected to the access domain under its jurisdiction to realize edge access functions; the optoelectronic hybrid core switching node is used as the root node, and passive optical distribution nodes and edge connections are used.
  • the ingress node is a child node, forming a tree topology, and the connection level is the optical hybrid core switching node-passive optical distribution node-edge access node-user.
  • the above-mentioned users include, but are not limited to, telecommunication terminal equipment, various sensing/executing equipment in the Internet of Things, active antenna units in 5G mobile communications, and edge computing equipment.
  • the data channels between the opto-electronic hybrid core switching node and the passive optical distribution node, and the passive optical distribution node and the edge access node are divided into uplink and downlink channels, which occupy the ⁇ u and ⁇ d bands, respectively.
  • the optoelectronic hybrid core switching node dynamically configures the output bandwidth of the core port based on electrical domain packet switching and optical cross-connection.
  • the optoelectronic hybrid core switching node is connected to the passive optical distribution node through the edge port to realize the intra-domain switching between the edge access nodes.
  • the passive optical distribution nodes are respectively connected to the optoelectronic hybrid core switching node and edge access node through the convergence and access ports to realize the intra-set switching between the edge access nodes.
  • every n edge access nodes are connected to 1 passive optical distribution node, and each edge access node is connected to k users to realize intra-cluster switching between users, and n and k are positive integers.
  • the above-mentioned optical access network also has a unified control plane, which is connected to the optoelectronic hybrid core switching node in the core domain through a control channel, and is connected to edge access nodes and users in the access domain through the optoelectronic hybrid core switching node.
  • the above-mentioned control channel occupies an independent ⁇ ctrl wavelength to transmit control commands.
  • the above-mentioned optical access network implements hierarchical distributed optical and electrical hybrid switching through the hierarchical media access control of clusters, clusters, and domains.
  • In-cluster switching refers to data exchange between users connected to the same edge access node.
  • a point-to-point connection is used with edge access nodes to send data at any time;
  • intra-set switching refers to data exchange between edge access nodes connected to the same passive optical distribution node, through lumped or distributed
  • the scheduling algorithm determines the transmission time slot or transmission authority of each edge access node, so that each edge access node using the same wavelength channel multiplexes the physical layer transmission link in the time domain; intra-domain switching refers to each of the passive optical distribution nodes.
  • the edge access nodes exchange data through the optoelectronic hybrid core switching node.
  • the exchange process is divided into uplink and downlink transmission.
  • Uplink transmission realizes the multiple connections from each edge access node connected to the same passive optical distribution node to the optoelectronic hybrid core switching node.
  • Point access and downlink transmission realize the broadcast from the optoelectronic hybrid core switching node to each edge access node connected to the same passive optical distribution node.
  • the optoelectronic hybrid core switching node can send data at any time.
  • the opto-electronic hybrid core switching node and the edge access node perform clock synchronization through the synchronization identifier in the fixed-length downlink frame.
  • the opto-electronic hybrid core switching node divides the signaling transmission time slot for each edge access node according to the logical link identifier, so that Each edge access node periodically transmits signaling to the opto-electronic hybrid core switching node.
  • the foregoing opto-electronic hybrid core switching node uses the time slot close scheduling algorithm to dynamically allocate data transmission time slots to the edge access node, and the time when the opto-electronic hybrid core switching node sends a GATE message to the i-th edge access node is
  • the length of the time slot requested by the i-th edge access node through the REPORT frame and the length of the data transmission time slot allocated to it are respectively
  • RTT i is the round-trip time of signal transmission between the i-th edge access node and the optoelectronic hybrid core switching node
  • I the minimum transmission slot length of the i-th edge access node
  • the present invention aims at the current optical access network does not have switching function, and the network architecture based on multi-point access has defects.
  • the optical access network provided can pass "unified control, two types of domains, three types of domains”. "Band, four-layer exchange”, divide clusters, sets, and domains, penetrate the physical layer and the media access control layer, and realize the aggregation and integration of massive multi-source heterogeneous data, layered exchange, and unified control functions.
  • Optoelectronic hybrid hierarchical switching optical access network constitutes a mesh-tree network architecture through the core and access domains. Based on a unified control plane, it realizes the hierarchical distributed optoelectronic hybrid switching of clusters, sets, and domains, and distributes through passive light.
  • the node builds a transmission path between the optoelectronic hybrid core switching node and the edge access node, and between each edge access node, so that the data exchange sinks to the access domain.
  • Switches in clusters, sets, and domains are implemented through edge access nodes, passive optical distribution nodes, and optoelectronic hybrid core switching nodes, respectively.
  • optical transceivers can be independently configured for the two exchanges to realize dual-media access control.
  • the unified control plane receives all kinds of requests in real time, and completes dynamic control and flexible reconstruction of the optical and electrical hybrid hierarchical switching optical access network; the core and access two types of domains determine the network architecture based on the mesh-tree topology, and access
  • the domain is divided into clusters, sets, and domains from bottom to top; the uplink and downlink data channels and control channels are based on three bands, which ensure the access of massive multi-source heterogeneous data; the four layers of cluster, set, domain, and core are exchanged and divided.
  • Layer media access control seamlessly connects the physical layer and the media access control layer, realizing hierarchical distributed optical and electrical hybrid switching from the bottom user to the core node, reducing the load of the root node of the optical access network, and solving the bandwidth bottleneck problem.
  • the periodic signaling transmission mechanism realizes the real-time acquisition of the buffer occupancy of the edge access node by the opto-electronic hybrid core switching node, and the time slot close scheduling algorithm realizes the high-performance media access control of the opto-electronic hybrid hierarchical switching optical access network upstream channel , With high throughput and low latency performance.
  • Figure 1 is a schematic diagram of the architecture of the present invention
  • Figure 2 is a schematic diagram of the access control of the cluster, cluster, and domain stratified coal quality in the present invention
  • Fig. 3 is a schematic diagram of the process of real-time collection of buffer occupancy of edge access nodes by adopting periodic signaling transmission in the present invention
  • Figure 4 shows the throughput and average frame time of the upstream channel of the optoelectronic hybrid hierarchical switching optical access network with 16 edge access nodes connected to a single passive optical distribution node and the traditional optical access network based on IPACT and DPP algorithms.
  • Figure 1 is a schematic diagram of the architecture of the optoelectronic hybrid hierarchical switching optical access network of the present invention, including a core switching layer, an intra-domain switching layer, a passive optical distribution layer, and an edge access layer.
  • the optoelectronic hybrid core switching node and passive optical distribution It consists of nodes, edge access nodes and users.
  • the optoelectronic hybrid core switching node has core domain functions and access domain functions.
  • the core domain function is located at the core switching layer, the access domain function is located at the intra-domain switching layer, and the passive optical distribution node is located at the passive Optical distribution layer, edge access nodes and users are located at the edge access layer; optical hybrid core switching nodes are interconnected through core ports to form a mesh topology to form the core domain, and each optical hybrid core switching node is connected to its jurisdiction through edge ports;
  • the access domain realizes the edge access function, and the optical hybrid core switching node is the root node, the passive optical distribution node and the edge access node are the child nodes to form a tree-shaped topology; the core domain and the access domain constitute
  • the mesh-tree network architecture realizes the interconnection and data exchange between various network nodes and users.
  • all users connected to the same passive optical distribution node form a cluster, and n edge access nodes connected to the same passive optical distribution node and their The connected users are a set, m passive optical distribution nodes connected to the same optoelectronic hybrid core switching node and mn edge access nodes and their connected users are a domain, m and n are positive integers; in particular,
  • the users of the optoelectronic hybrid hierarchical switching optical access network include, but are not limited to, telecommunication terminal equipment, various sensing/executing equipment in the Internet of Things, active antenna units in 5G mobile communications, edge computing equipment, etc.
  • the data channel is divided into uplink and downlink channels, respectively occupying ⁇ u and ⁇ d bands, and the control channel occupies an independent ⁇ ctrl wavelength to transmit control signaling, and the data channel Shared physical layer transmission link.
  • the optoelectronic hybrid core switching node dynamically configures the output bandwidth of the core port based on the electrical domain packet switching and the optical cross-connection to realize the core switching function.
  • the optoelectronic hybrid core switching node is connected to the passive optical distribution node through the edge port to realize the intra-domain switching between the edge access nodes.
  • m passive optical distribution nodes are connected to the optoelectronic hybrid core switching node and edge access node through the convergence and access ports, respectively, to build the optoelectronic hybrid core switching node and the edge access node, and each edge connection
  • the transmission path between the access nodes realizes the intra-set switching between the edge access nodes.
  • every n edge access nodes are connected to 1 passive optical distribution node, and each edge access node is connected to k users to realize intra-cluster switching between users, and k is a positive integer; various types of user data are determined by
  • the edge access node generates a frame with a unified data format after aggregation, which realizes the aggregation and fusion function of massive multi-source heterogeneous data.
  • the optoelectronic hybrid hierarchical switching optical access network has a unified control plane, which is connected to the optoelectronic hybrid core switching node in the core domain through the control channel, and is connected to the edge access node in the access domain through the optoelectronic hybrid core switching node , Users connect, receive network node requests in real time, obtain traffic statistics, neighboring nodes and link status and other information, complete the dynamic control and flexible reconstruction of the optoelectronic hybrid hierarchical switching optical access network.
  • the optical-electrical hybrid hierarchical switching optical access network realizes hierarchical distributed optical-electrical hybrid switching through hierarchical media access control of clusters, sets, and domains.
  • intra-cluster exchange refers to data exchange between users connected to the same edge access node. Each user and the edge access node adopt a point-to-point connection, and data can be sent at any time.
  • Intra-set switching refers to data exchange between edge access nodes connected to the same passive optical distribution node. Since passive optical distribution nodes build transmission paths between edge access nodes, they are connected to the same passive optical distribution node. Each edge access node realizes multi-point-to-multipoint connection through passive optical distribution nodes.
  • the scheduling algorithm used in the set switching can be divided into lumped and distributed.
  • the unified control plane can be used
  • Each edge access node is allocated a transmission time slot, and the distributed scheduling algorithm can be divided into a competition type and a round-robin type.
  • Typical scheduling algorithms are CSMA/CD and token ring.
  • Intra-domain switching refers to the data exchange between each edge access node connected to the passive optical distribution node through the optoelectronic hybrid core switching node.
  • the switching process is divided into uplink and downlink transmission, and the uplink transmission realizes each connection to the same passive optical distribution node.
  • a lumped scheduling algorithm is generally used to allocate transmission time slots for each edge access node to achieve the media access control function; downlink transmission achieves the optoelectronic hybrid core switching node to For the broadcast of each edge access node connected to the same passive optical distribution node, the optoelectronic hybrid core switching node can send data at any time.
  • the opto-electronic hybrid core switching node and the edge access node perform clock synchronization through the synchronization identifier in the fixed-length downlink frame, and the opto-electronic hybrid hierarchical switching optical access network has a global clock.
  • the optoelectronic hybrid core switching node divides the signaling transmission time slot for each edge access node according to the logical link identifier, so that each edge access node periodically transmits signaling to the optoelectronic hybrid core switching node to realize the periodic signaling transmission mechanism.
  • each edge access node Based on the periodic signaling transmission mechanism, each edge access node sends a REPORT frame to the optoelectronic hybrid core switching node through the control channel in the signaling transmission time slot of the node, and periodically reports the buffer occupancy of the node so that each edge access node The sent REPORT frames continuously reach the opto-electronic hybrid core switching node, completing real-time collection of the buffer occupancy of the edge access node.
  • n is the number of edge access nodes
  • T sig is the length of the signaling transmission time slot
  • T g is the length of the guard time slot.
  • the edge access node does not send the REPORT frame in the signaling transmission time slot (In Figure 3, the dotted line is used to indicate).
  • the opto-electronic hybrid core switching node uses a time slot close scheduling algorithm to dynamically allocate data transmission time slots to edge access nodes.
  • time slot close scheduling algorithm it is assumed that the time when the optoelectronic hybrid core switching node sends a GATE message to the i-th edge access node is The length of the time slot requested by the i-th edge access node through the REPORT frame and the length of the data transmission time slot allocated to it are respectively
  • RTT i is the round-trip time of signal transmission between the i-th edge access node and the optoelectronic hybrid core switching node
  • I the minimum transmission slot length of the i-th edge access node
  • Figure 4 shows the throughput of the upstream channel of the optoelectronic hybrid hierarchical switching optical access network realized by 16 edge access nodes connected to a single passive optical distribution node and the traditional optical access network based on IPACT and DPP algorithms. Simulation results with average frame delay.
  • the simulation uses the same traffic model and the transmission distance is 20km.
  • the comparative analysis shows that when the network load is equal to 1.3 (high load), the throughput of the former is increased by 8.0% and 10.6% respectively than the latter, and the network load is equal to 0.24 ( Low load), the average frame delay of the former is 31.8% and 28.1% of the latter, respectively.
  • the photoelectric hybrid hierarchical switching optical access network based on the periodic signaling transmission mechanism and the close scheduling algorithm of the time slot has realized the high throughput and low delay performance of the uplink channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开一种光电混合分层交换光接入网,包括自上而下的核心交换层、域内交换层、无源光分配层和边缘接入层;光电混合核心交换节点具有核心域功能和接入域功能,核心域功能位于核心交换层,接入域功能位于域内交换层,无源光分配节点位于无源光分配层,边缘接入节点及用户均位于边缘接入层;光电混合核心交换节点互连形成网格拓扑构成核心域,每个光电混合核心交换节点还连接其管辖的接入域,实现边缘接入功能;以光电混合核心交换节点为根节点,以无源光分配节点和边缘接入节点为子节点,构成树形拓扑。此种光接入网架构可实现海量多源异构数据汇聚融合、交换和统一控制,解决根节点带宽瓶颈,提高光接入网性能与效率。

Description

一种光电混合分层交换光接入网 技术领域
本发明属于光纤通信领域,特别涉及一种光电混合分层交换光接入网。
背景技术
移动通信、数据中心、物联网和工业互联网等场景深刻改变了接入***产生数据的时空分布,需要依托高速大容量光接入网技术实现数据的采集、融合、传输、交换与处理,光接入网已不再局限于构建高速宽带固网接入***。为了与现有光分配网等基础设施兼容,NG-PON2、NG-EPON等下一代光接入网标准采用TWDM-PON***,通过扩展波长数量实现高速大容量光接入网。基于各类新型光接入网架构,可以分别实现灵活的端到端长距离接入网、极高谱效率和光网络单元间的传输通路。但是,目前光接入网不具有交换功能,以多点接入为基础的网络架构存在缺陷,使光接入网根节点需要处理并转发网内所有数据,带宽瓶颈问题突显,且将随着光接入网容量不断增大而逐渐加剧。
软件定义光接入网实现了各类异构光接入技术的统一控制,并可以在网络的不同层次实现动态资源配置与虚拟化。然而,软件定义网络(SDN)技术仅能灵活实现各类控制功能,无法弥补目前以多点接入为基础的光接入网架构不具有交换功能的缺陷。光电混合交换技术可以借助电交换设备解决缓存问题提升网络性能,但已有方案均具有各自的局限性,具有交换能力的光接入网架构需要针对应用需求进行进一步优化。因此,需要融合SDN、光电混合交换等技术,提出新型的光接入网架构,实现海量多源异构数据汇聚融合、交换和统一控制,解决根节点带宽瓶颈,提高光接入网性能与效率。
发明内容
本发明的目的,在于提供一种光电混合分层交换光接入网,其可实现海量多源异构数据汇聚融合、交换和统一控制,解决根节点带宽瓶颈,提高光接入网性 能与效率。
为了达成上述目的,本发明的解决方案是:
一种光电混合分层交换光接入网,包括自上而下的核心交换层、域内交换层、无源光分配层和边缘接入层;光电混合核心交换节点具有核心域功能和接入域功能,核心域功能位于核心交换层,接入域功能位于域内交换层,无源光分配节点位于无源光分配层,边缘接入节点及用户均位于边缘接入层;光电混合核心交换节点互连形成网格拓扑构成核心域,每个光电混合核心交换节点还连接其管辖的接入域,实现边缘接入功能;以光电混合核心交换节点为根节点,以无源光分配节点和边缘接入节点为子节点,构成树形拓扑,连接层级为光电混合核心交换节点-无源光分配节点-边缘接入节点-用户。
上述用户包括但不限于电信终端设备、物联网中各类传感/执行设备、5G移动通信中的有源天线单元、边缘计算设备。
上述光电混合核心交换节点与无源光分配节点之间、无源光分配节点与边缘接入节点的数据信道分为上、下行信道,分别占用Λ u、Λ d波段。
在核心交换层中,光电混合核心交换节点基于电域分组交换和光交叉连接动态配置核心端口输出带宽。
在域内交换层中,光电混合核心交换节点通过边缘端口连接无源光分配节点,实现边缘接入节点间的域内交换。
在无源光分配层中,无源光分配节点分别通过汇聚、接入端口连接光电混合核心交换节点、边缘接入节点,实现边缘接入节点间的集内交换。
在边缘接入层中,每n个边缘接入节点连接1个无源光分配节点,每个边缘接入节点连接k个用户,实现用户间的簇内交换,n、k为正整数。
上述光接入网还具有统一控制平面,统一控制平面通过控制信道与核心域内中的光电混合核心交换节点连接,并通过光电混合核心交换节点与接入域中的边缘接入节点、用户连接。
上述控制信道占用独立的λ ctrl波长传输控制指令。
上述光接入网通过簇、集、域分层媒质接入控制实现分层分布式光电混合交换,其中,簇内交换指连接至同一个边缘接入节点的各个用户间的数据交换,各 个用户与边缘接入节点间采用点到点连接方式,在任意时刻发送数据;集内交换指连接至同一个无源光分配节点的各个边缘接入节点间的数据交换,通过集总式或分布式调度算法确定各个边缘接入节点的发送时隙或发送权限,使采用相同波长信道的各个边缘接入节点在时域复用物理层传输链路;域内交换指连接至无源光分配节点的各个边缘接入节点间通过光电混合核心交换节点的数据交换,交换过程分为上行和下行传输,上行传输实现连接至同一个无源光分配节点的各个边缘接入节点至光电混合核心交换节点的多点接入,下行传输实现光电混合核心交换节点至连接同一个无源光分配节点的各个边缘接入节点的广播,光电混合核心交换节点能够在任意时刻发送数据。
上述光电混合核心交换节点与边缘接入节点通过定长下行帧中的同步标识符进行时钟同步,光电混合核心交换节点根据逻辑链路标识为每个边缘接入节点划分信令传输时隙,使各边缘接入节点周期地向光电混合核心交换节点传输信令。
上述光电混合核心交换节点采用时隙密排调度算法为边缘接入节点动态分配数据传输时隙,设光电混合核心交换节点向第i个边缘接入节点发送GATE消息的时刻为
Figure PCTCN2019112683-appb-000001
第i个边缘接入节点通过REPORT帧请求的时隙长度、为其分配的数据传输时隙长度分别为
Figure PCTCN2019112683-appb-000002
第i个边缘接入节点数据传输时隙开始时刻为
Figure PCTCN2019112683-appb-000003
当i=2,3,...,n时,其取值分别为:
Figure PCTCN2019112683-appb-000004
Figure PCTCN2019112683-appb-000005
Figure PCTCN2019112683-appb-000006
特别地,当i=1时,
Figure PCTCN2019112683-appb-000007
Figure PCTCN2019112683-appb-000008
Figure PCTCN2019112683-appb-000009
其中RTT i为第i个边缘接入节点与光电混合核心交换节点间信号传输的往返时间,
Figure PCTCN2019112683-appb-000010
为第i个边缘接入节点的最小传输时隙长度。
采用上述方案后,本发明针对目前光接入网不具有交换功能,以多点接入为 基础的网络架构存在缺陷,提供的光接入网可以通过“一统控制、二类分域、三种波段、四层交换”,划分簇、集、域,贯通物理层与媒质接入控制层,实现海量多源异构数据汇聚融合、分层交换、统一控制功能。
本发明具有以下有益效果:
(1)光电混合分层交换光接入网通过核心、接入域构成mesh-tree网络架构,基于统一控制平面实现了簇、集、域的分层分布式光电混合交换,通过无源光分配节点搭建了光电混合核心交换节点与边缘接入节点间、各个边缘接入节点间的传输通路,使数据交换下沉至接入域。簇、集、域内交换分别通过边缘接入节点、无源光分配节点、光电混合核心交换节点实现。特别地,当光电混合分层交换光接入网的集内交换与域内交换的上行传输均采用集总式调度算法时,集、域内交换可以占用相同的波长信道,共用边缘接入节点的光收发器;当光电混合分层交换光接入网的集内交换与域内交换的上行传输分别采用分布式、集总式调度算法时,集、域内交换需要占用各自独立的波长信道,此时,在边缘接入节点中可以为两种交换独立配置光收发器,实现双媒质接入控制。
(2)统一控制平面实时接收各类请求,完成光电混合分层交换光接入网动态控制与灵活重构;核心、接入二类分域确定了基于mesh-tree拓扑的网络架构,接入域自下而上分为簇、集、域;上、下行数据信道和控制信道基于三种波段,保证了海量多源异构数据的接入;簇、集、域及核心四层交换以及分层媒质接入控制将物理层与媒质接入控制层无缝贯通,实现了从底层用户到核心节点的分层分布式光电混合交换,降低了光接入网的根节点负载,解决了带宽瓶颈问题。
(3)在传统光接入网中,对于第k个边缘接入节点,在第N周期传输时隙结束的t 1时刻至第N+1周期传输时隙开始的t 2时刻的时间间隔内,会接收数据并产生新的数据帧,而该部分数据帧的缓存占用量并未通过第N周期传输时隙内发送的REPORT消息报告至光电混合核心交换节点,光电混合核心交换节点无法为其分配传输时隙,只能延后一个轮询周期,在第N+2传输周期发送,将导致较大的平均帧时延,造成“N+2”时延问题。周期信令传输机制实现了光电混合核心交换节点对边缘接入节点缓存占用量的实时获取,时隙密排调度算法实现了光电混合分层交换光接入网上行信道的高性能媒质接入控制,具有高吞吐量 低时延性能。
附图说明
图1是本发明的架构示意图;
图2是本发明中簇、集、域分层煤质接入控制示意图;
图3是本发明中采用周期信令传输实现边缘接入节点缓存占用量实时采集过程示意图;
图4是16个边缘接入节点连接至单个无源光分配节点实现的光电混合分层交换光接入网与基于IPACT、DPP算法的传统光接入网的上行信道的吞吐量与平均帧时延的仿真结果示意图。
具体实施方式
以下将结合附图,对本发明的技术方案及有益效果进行详细说明。
图1为本发明的光电混合分层交换光接入网的架构示意图,包括核心交换层、域内交换层、无源光分配层、边缘接入层,由光电混合核心交换节点、无源光分配节点、边缘接入节点和用户组成,光电混合核心交换节点具有核心域功能和接入域功能,核心域功能位于核心交换层、接入域功能位于域内交换层,无源光分配节点位于无源光分配层,边缘接入节点及用户位于边缘接入层;光电混合核心交换节点通过核心端口互连形成网格(mesh)拓扑构成核心域,每个光电混合核心交换节点通过边缘端口连接其管辖的接入域,实现边缘接入功能,以光电混合核心交换节点为根节点、无源光分配节点和边缘接入节点为子节点,构成树(tree)形拓扑;核心域、接入域构成mesh-tree网络架构,实现各个网络节点以及用户间的互连与数据交换。
并且,在所述光电混合分层交换光接入网中,连接至同一个无源光分配节点的所有用户为一个簇,连接至同一个无源光分配节点的n个边缘接入节点及其连接的用户为一个集,连接至同一个光电混合核心交换节点的m个无源光分配节点与mn个边缘接入节点及其连接的用户为一个域,m、n为正整数;特别地,光电混合分层交换光接入网的用户包括但不限于电信终端设备、物联网中各类传 感/执行设备、5G移动通信中的有源天线单元、边缘计算设备等。
并且,在所述光电混合分层交换光接入网中,数据信道分为上、下行信道,分别占用Λ u、Λ d波段,控制信道占用独立的λ ctrl波长传输控制信令,与数据信道共享物理层传输链路。
并且,在所述光电混合分层交换光接入网的核心交换层中,光电混合核心交换节点基于电域分组交换和光交叉连接动态配置核心端口输出带宽,实现核心交换功能。在域内交换层中,光电混合核心交换节点通过边缘端口连接无源光分配节点,实现边缘接入节点间的域内交换。在无源光分配层中,m个无源光分配节点分别通过汇聚、接入端口连接光电混合核心交换节点、边缘接入节点,搭建光电混合核心交换节点与边缘接入节点间、各个边缘接入节点间的传输通路,实现边缘接入节点间的集内交换。边缘接入层中,每n个边缘接入节点连接1个无源光分配节点,每个边缘接入节点连接k个用户实现用户间的簇内交换,k为正整数;各类用户数据由边缘接入节点汇聚后生成具有统一数据格式的帧,实现海量多源异构数据汇聚融合功能。
并且,所述光电混合分层交换光接入网具有统一控制平面,通过控制信道与核心域中的光电混合核心交换节点连接,并通过光电混合核心交换节点与接入域中的边缘接入节点、用户连接,实时接收网络节点请求,获取流量统计、相邻节点和链路状态等信息,完成对光电混合分层交换光接入网的动态控制与灵活重构。
进一步地,参照图2,光电混合分层交换光接入网通过簇、集、域分层媒质接入控制实现分层分布式光电混合交换。具体地,簇内交换指连接至同一个边缘接入节点的各个用户间的数据交换,各个用户与边缘接入节点间采用点到点连接方式,可以在任意时刻发送数据。集内交换指连接至同一个无源光分配节点的各个边缘接入节点间的数据交换,由于无源光分配节点搭建了边缘接入节点间的传输通路,连接至同一个无源光分配节点的各个边缘接入节点间通过无源光分配节点实现多点到多点连接,此时,需要通过具体的调度算法确定各个边缘接入节点的发送时隙或发送权限以避免数据冲突,使采用相同波长信道的各个边缘接入节点在时域复用物理层传输链路;集内交换采用的调度算法可以分为集总式和分布式,采用集总式调度算法时,可以通过统一控制平面为每个边缘接入节点分配传 输时隙,而分布式调度算法可以分为竞争式和轮询式,典型的调度算法为CSMA/CD和令牌环。域内交换指连接至无源光分配节点的各个边缘接入节点间通过光电混合核心交换节点的数据交换,交换过程分为上行和下行传输,上行传输实现连接至同一个无源光分配节点的各个边缘接入节点至光电混合核心交换节点的多点接入,一般采用集总式调度算法为每个边缘接入节点分配传输时隙实现媒质接入控制功能;下行传输实现光电混合核心交换节点至连接同一个无源光分配节点的各个边缘接入节点的广播,光电混合核心交换节点可以在任意时刻发送数据。
进一步地,参照图3,光电混合核心交换节点与边缘接入节点通过定长下行帧中的同步标识符进行时钟同步,光电混合分层交换光接入网具有全局时钟。光电混合核心交换节点根据逻辑链路标识为每个边缘接入节点划分信令传输时隙,使各边缘接入节点周期地向光电混合核心交换节点传输信令,实现周期信令传输机制。基于周期信令传输机制,各个边缘接入节点在本节点的信令传输时隙内通过控制信道向光电混合核心交换节点发送REPORT帧,周期地报告本节点缓存占用量,使各个边缘接入节点发送的REPORT帧连续到达光电混合核心交换节点,完成边缘接入节点缓存占用量实时采集。图3中的信令传输周期
Figure PCTCN2019112683-appb-000011
其中,n为边缘接入节点数量,T sig为信令传输时隙长度,T g为保护时隙长度。第i(i=1,2,...,n)个边缘接入节点的传输时隙的开始时刻为
Figure PCTCN2019112683-appb-000012
Figure PCTCN2019112683-appb-000013
a为正整数。特别地,当某边缘接入节点在数据传输时隙内,或缓存占用量与上一信令传输周期相比未发生变化时,该边缘接入节点在信令传输时隙内不发送REPORT帧(图3中采用虚线表示)。
更进一步,光电混合核心交换节点采用时隙密排调度算法为边缘接入节点动态分配数据传输时隙。具体地,在所述时隙密排调度算法中,设光电混合核心交换节点向第i个边缘接入节点发送GATE消息的时刻为
Figure PCTCN2019112683-appb-000014
第i个边缘接入节点通过REPORT帧请求的时隙长度、为其分配的数据传输时隙长度分别为
Figure PCTCN2019112683-appb-000015
Figure PCTCN2019112683-appb-000016
第i个边缘接入节点数据传输时隙开始时刻为
Figure PCTCN2019112683-appb-000017
当i=2,3,...,n时,其 取值分别为:
Figure PCTCN2019112683-appb-000018
Figure PCTCN2019112683-appb-000019
Figure PCTCN2019112683-appb-000020
特别地,当i=1时,
Figure PCTCN2019112683-appb-000021
Figure PCTCN2019112683-appb-000022
Figure PCTCN2019112683-appb-000023
其中RTT i为第i个边缘接入节点与光电混合核心交换节点间信号传输的往返时间,
Figure PCTCN2019112683-appb-000024
为第i个边缘接入节点的最小传输时隙长度。
再进一步,图4给出16个边缘接入节点连接至单个无源光分配节点实现的光电混合分层交换光接入网与基于IPACT、DPP算法的传统光接入网的上行信道的吞吐量与平均帧时延的仿真结果。仿真采用相同的流量模型,传输距离为20km,对比分析得知,网络负载等于1.3时(高负载),前者的吞吐量比后者的分别提高了8.0%、10.6%,网络负载等于0.24时(低负载),前者的平均帧时延分别为后者的31.8%和28.1%。说明基于周期信令传输机制与时隙密排调度算法的光电混合分层交换光接入网实现了上行信道高吞吐量、低时延性能。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (10)

  1. 一种光电混合分层交换光接入网,其特征在于:包括自上而下的核心交换层、域内交换层、无源光分配层和边缘接入层;光电混合核心交换节点具有核心域功能和接入域功能,核心域功能位于核心交换层,接入域功能位于域内交换层,无源光分配节点位于无源光分配层,边缘接入节点及用户均位于边缘接入层;光电混合核心交换节点互连形成网格拓扑构成核心域,每个光电混合核心交换节点还连接其管辖的接入域,实现边缘接入功能;以光电混合核心交换节点为根节点,以无源光分配节点和边缘接入节点为子节点,构成树形拓扑,连接层级为光电混合核心交换节点-无源光分配节点-边缘接入节点-用户。
  2. 如权利要求1所述的光电混合分层交换光接入网,其特征在于:所述光电混合核心交换节点与无源光分配节点之间、无源光分配节点与边缘接入节点的数据信道分为上、下行信道,分别占用Λ u、Λ d波段。
  3. 如权利要求1所述的光电混合分层交换光接入网,其特征在于:在核心交换层中,光电混合核心交换节点基于电域分组交换和光交叉连接动态配置核心端口输出带宽。
  4. 如权利要求1所述的光电混合分层交换光接入网,其特征在于:在域内交换层中,光电混合核心交换节点通过边缘端口连接无源光分配节点,实现边缘接入节点间的域内交换。
  5. 如权利要求1所述的光电混合分层交换光接入网,其特征在于:在无源光分配层中,无源光分配节点分别通过汇聚、接入端口连接光电混合核心交换节点、边缘接入节点,实现边缘接入节点间的集内交换。
  6. 如权利要求1所述的光电混合分层交换光接入网,其特征在于:在边缘接入层中,每n个边缘接入节点连接1个无源光分配节点,每个边缘接入节点连接k个用户,实现用户间的簇内交换,n、k为正整数。
  7. 如权利要求1所述的光电混合分层交换光接入网,其特征在于:所述光接入网还具有统一控制平面,统一控制平面通过控制信道与核心域内中的光电混合核心交换节点连接,并通过光电混合核心交换节点与接入域中的边缘接入节点、 用户连接。
  8. 如权利要求1所述的光电混合分层交换光接入网,其特征在于:所述光接入网通过簇、集、域分层媒质接入控制实现分层分布式光电混合交换,其中,簇内交换指连接至同一个边缘接入节点的各个用户间的数据交换,各个用户与边缘接入节点间采用点到点连接方式,在任意时刻发送数据;集内交换指连接至同一个无源光分配节点的各个边缘接入节点间的数据交换,通过集总式或分布式调度算法确定各个边缘接入节点的发送时隙或发送权限,使采用相同波长信道的各个边缘接入节点在时域复用物理层传输链路;域内交换指连接至无源光分配节点的各个边缘接入节点间通过光电混合核心交换节点的数据交换,交换过程分为上行和下行传输,上行传输实现连接至同一个无源光分配节点的各个边缘接入节点至光电混合核心交换节点的多点接入,下行传输实现光电混合核心交换节点至连接同一个无源光分配节点的各个边缘接入节点的广播,光电混合核心交换节点能够在任意时刻发送数据。
  9. 如权利要求1所述的光电混合分层交换光接入网,其特征在于:所述光电混合核心交换节点与边缘接入节点通过定长下行帧中的同步标识符进行时钟同步,光电混合核心交换节点根据逻辑链路标识为每个边缘接入节点划分信令传输时隙,使各边缘接入节点周期地向光电混合核心交换节点传输信令。
  10. 如权利要求9所述的光电混合分层交换光接入网,其特征在于:所述光电混合核心交换节点采用时隙密排调度算法为边缘接入节点动态分配数据传输时隙,设光电混合核心交换节点向第i个边缘接入节点发送GATE消息的时刻为
    Figure PCTCN2019112683-appb-100001
    第i个边缘接入节点通过REPORT帧请求的时隙长度、为其分配的数据传输时隙长度分别为
    Figure PCTCN2019112683-appb-100002
    第i个边缘接入节点数据传输时隙开始时刻为
    Figure PCTCN2019112683-appb-100003
    当i=2,3,...,n时,其取值分别为:
    Figure PCTCN2019112683-appb-100004
    Figure PCTCN2019112683-appb-100005
    Figure PCTCN2019112683-appb-100006
    特别地,当i=1时,
    Figure PCTCN2019112683-appb-100007
    Figure PCTCN2019112683-appb-100008
    Figure PCTCN2019112683-appb-100009
    其中,RTT i为第i个边缘接入节点与光电混合核心交换节点间信号传输的往返时间,
    Figure PCTCN2019112683-appb-100010
    为第i个边缘接入节点的最小传输时隙长度。
PCT/CN2019/112683 2019-10-10 2019-10-23 一种光电混合分层交换光接入网 WO2021068286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910958806.4A CN110769332B (zh) 2019-10-10 2019-10-10 一种光电混合分层交换光接入***
CN201910958806.4 2019-10-10

Publications (1)

Publication Number Publication Date
WO2021068286A1 true WO2021068286A1 (zh) 2021-04-15

Family

ID=69331616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112683 WO2021068286A1 (zh) 2019-10-10 2019-10-23 一种光电混合分层交换光接入网

Country Status (2)

Country Link
CN (1) CN110769332B (zh)
WO (1) WO2021068286A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261667B (zh) * 2020-10-19 2022-09-09 重庆大学 一种基于边缘计算的fiwi网络媒体接入控制***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089338A1 (en) * 2011-10-10 2013-04-11 Rad Data Communications Ltd. Communication network
CN106230512A (zh) * 2016-07-21 2016-12-14 国网信息通信产业集团有限公司 一种电力泛在光接入组网***
CN107196876A (zh) * 2017-06-15 2017-09-22 北京智芯微电子科技有限公司 一种无源光接入网络及其流量调度方法
CN108989916A (zh) * 2018-07-05 2018-12-11 国网福建省电力有限公司福州供电公司 一种面向量子保护通信业务的配电通信网跨域保护组网

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676531B2 (ja) * 2006-05-25 2011-04-27 富士通株式会社 光アクセスネットワークシステム
ES2572184T3 (es) * 2006-10-04 2016-05-30 Orange Procedimiento de gestión de la conexión en una red de acceso óptico, plataforma, central, red y producto de programa informático correspondientes
CN105072513B (zh) * 2015-07-16 2018-10-02 清华大学 支持多种传输交换模式的光网络控制方法
CN107343231B (zh) * 2017-09-04 2023-10-24 南京曦光信息科技有限公司 非对称缓存与转发模块及由其组成的分组交换节点及网络
CN110113271B (zh) * 2019-04-04 2021-04-27 中国科学院计算技术研究所 一种基于光电混合交换网络的mpi应用加速***及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089338A1 (en) * 2011-10-10 2013-04-11 Rad Data Communications Ltd. Communication network
CN106230512A (zh) * 2016-07-21 2016-12-14 国网信息通信产业集团有限公司 一种电力泛在光接入组网***
CN107196876A (zh) * 2017-06-15 2017-09-22 北京智芯微电子科技有限公司 一种无源光接入网络及其流量调度方法
CN108989916A (zh) * 2018-07-05 2018-12-11 国网福建省电力有限公司福州供电公司 一种面向量子保护通信业务的配电通信网跨域保护组网

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG YU, ZIJIAN MAO, SHIJIE MA, XIAOHAN SUN: "Research of Data Centre Oriented Opto-electronic Packet Switching Node", THE SEVENTEENTH NATIONAL CONFERENCE ON OPTICAL FIBER COMMUNICATION AND THE EIGHTEENTH SESSION OF INTEGRATED OPTICS – OFCIO 2015, 1 January 2015 (2015-01-01), XP055800092 *

Also Published As

Publication number Publication date
CN110769332B (zh) 2021-10-08
CN110769332A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN105594143B (zh) 一种光网络单元onu注册的方法、装置及***
Lu et al. Flexible and scalable optical interconnects for data centers: Trends and challenges
CN105072513B (zh) 支持多种传输交换模式的光网络控制方法
CN105162721A (zh) 基于软件定义网络的全光互连数据中心网络***及数据通信方法
CN101924706B (zh) 基于onu端口的吉比特无源光网络带宽管理方法
US20090252492A1 (en) Optical communication system , and optical communication method and communication unit therefor
Zheng et al. Dual MAC based hierarchical optical access network for hyperscale data centers
US9698930B2 (en) Bandwidth map update method and device
CN107343231B (zh) 非对称缓存与转发模块及由其组成的分组交换节点及网络
WO2021068286A1 (zh) 一种光电混合分层交换光接入网
Liu et al. Wavelength-reused hierarchical optical network on chip architecture for manycore processors
Helmy et al. Integrating fog with long-reach PONs from a dynamic bandwidth allocation perspective
CN106160864A (zh) 大数据交换平台网络架构
CN110430486A (zh) 一种基于集成式混合光交换网络的边界交换节点
Zheng et al. Low latency passive optical node for optical access network
CN207150772U (zh) 非对称缓存与转发模块及由其组成的分组交换节点及网络
Liem et al. SD-enabled mobile fronthaul dynamic bandwidth and wavelength allocation (DBWA) mechanism in converged TWDM-EPON architecture
Zhang et al. Efficient polling cycle adaptive passive optical network for low-latency 5G fronthaul
Yang et al. Dynamic bandwidth allocation (DBA) algorithm for passive optical networks
CN106792283B (zh) 一种基于多层环结构的光接入网***
Yuan et al. Traffic aware wavelength and resource allocation scheme for TWDM-PON based 5G fronthaul
Bouabdallah Sub-Wavelength Solutions for Next-Generation Optical Networks [Topics in Optical Communications]
CN104993903B (zh) 一种多级波分复用环形光网络
CN104243351B (zh) 光网络承载分组网络带宽公平分配方法和***
CN102111688A (zh) 无源光网络的上行带宽分配方法及光线路终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948339

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19948339

Country of ref document: EP

Kind code of ref document: A1