WO2021068260A1 - 调整服务质量的方法、装置和*** - Google Patents

调整服务质量的方法、装置和*** Download PDF

Info

Publication number
WO2021068260A1
WO2021068260A1 PCT/CN2019/110882 CN2019110882W WO2021068260A1 WO 2021068260 A1 WO2021068260 A1 WO 2021068260A1 CN 2019110882 W CN2019110882 W CN 2019110882W WO 2021068260 A1 WO2021068260 A1 WO 2021068260A1
Authority
WO
WIPO (PCT)
Prior art keywords
data stream
network device
qos
indication information
data
Prior art date
Application number
PCT/CN2019/110882
Other languages
English (en)
French (fr)
Inventor
陆伟
吴义壮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/110882 priority Critical patent/WO2021068260A1/zh
Publication of WO2021068260A1 publication Critical patent/WO2021068260A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present invention relates to wireless communication technology, in particular to a method, device and system for adjusting service quality.
  • QoS Flow Quality of Service Flow
  • service requirements such as different service requirements that need to meet different delays and packet loss.
  • Quality of service such as rate or jitter.
  • the QoS Flow carrying service data may change its requirements for service quality.
  • a terminal such as a surveillance camera
  • a surveillance server can establish a PDU session with a surveillance server.
  • network-side equipment such as PCF
  • PCF can set a guaranteed bit rate (GBR) for the QoS Flow of video surveillance according to the contract information or the requirements of the application server, so that the network can be the data of the video surveillance.
  • the stream allocates GBR resources to ensure the quality of service for data stream transmission.
  • the surveillance camera can have a built-in video processing algorithm to perform preliminary processing on the data stream of the surveillance video, such as face recognition. The surveillance camera sends the captured valuable video data stream to the video surveillance server for further processing.
  • the embodiments of the present invention provide a method, device and system for adjusting service quality, which are used to improve the efficiency of service quality adjustment.
  • an embodiment of the present application provides a method for adjusting the quality of service.
  • the method includes: a network device obtains first indication information associated with a first data stream, where the first indication information is used to indicate that the first The data stream performs local quality of service QoS adjustment; in response to the first indication information, the network device performs local QoS adjustment on the first data stream. After obtaining the identifier of the first data stream and the first indication information, the network device can learn that the first indication information is associated with the first data stream.
  • the network device can determine the first data stream that needs local QoS adjustment according to the first indication information associated with the first data stream, and perform local QoS adjustment on the first data stream to reduce triggering other network elements or
  • the signaling interaction process of QoS adjustment by the device reduces signaling overhead and improves data processing and transmission efficiency.
  • the performing local QoS adjustment on the first data stream by the network device in response to the first indication information includes: responding to the first indication information, when the first indication information is When the data stream meets the first condition, the network device performs the local QoS adjustment on the first data stream.
  • the first condition includes one or more of the following: the transmission time interval of the data stream satisfies the first threshold; or, the transmission rate of the data stream satisfies the second threshold; or, the data stream bearer The load of the network device meets the third threshold; or, the idle time of the data stream meets the fourth threshold; or, the signaling of the network device that carries the data stream is overloaded.
  • the local QoS adjustment performed by the network device on the first data stream is: the network device performs the network device-side QoS adjustment on the first data stream, and other network devices perform the local QoS adjustment on the first data stream.
  • the QoS adjustment of the first data stream is not triggered by the network device.
  • the local QoS adjustment performed by the network device on the first data stream includes: retaining the original QoS parameter value of the first data stream, and applying a new QoS parameter to the first data stream Value; or, when the first data stream is a guaranteed bit rate GBR data stream, treat the first data stream as a non-guaranteed bit rate non-GBR data stream; or, when the first data stream is In the case of a non-GBR data stream, the first data stream is processed as a GBR data stream; or, the first data stream is suspended; or, the context of the first data stream is retained and the first data stream is released or modified A data stream resource.
  • the network device restores the QoS of the first data flow.
  • the network device obtains second indication information, where the second indication information is used to indicate to restore the QoS of the data stream.
  • the acquiring, by the network device, the first indication information associated with the first data stream includes: the network device acquiring the first indication information from AMF or SMF.
  • the network device is a base station or a user plane function UPF.
  • an embodiment of the present application provides a method for adjusting the quality of service.
  • the method includes: a network device obtains characteristic information of a data flow, and the characteristic information of the data flow is used to determine a data flow for local QoS adjustment; The network device determines a first data stream that meets the characteristic information of the data stream; the network device performs local QoS adjustment on the first data stream.
  • the network device can determine the first data stream that needs local QoS adjustment according to the characteristic information of the data stream, and perform local QoS adjustment on the first data stream, reducing the information that triggers other network elements or devices to perform QoS adjustment.
  • the interaction process reduces signaling overhead and improves data processing and transmission efficiency.
  • the characteristic information of the data stream includes one or more of the following: QoS parameters; or, service type; or, the threshold of the transmission time interval; or, the threshold of the transmission rate.
  • the local QoS adjustment performed by the network device on the first data stream is: the network device performs the network device-side QoS adjustment on the first data stream, and other network devices perform the local QoS adjustment on the first data stream.
  • the QoS adjustment of the first data stream is not triggered by the network device.
  • the local QoS adjustment performed by the network device on the first data stream includes: retaining the original QoS parameter value of the first data stream, and applying a new QoS parameter to the first data stream Value; or, when the first data stream is a guaranteed bit rate GBR data stream, treat the first data stream as a non-guaranteed bit rate non-GBR data stream; or, when the first data stream is In the case of a non-GBR data stream, the first data stream is processed as a GBR data stream; or, the first data stream is suspended; or, the context of the first data stream is retained and the first data stream is released or modified A data stream resource.
  • the network device restores the QoS of the first data flow.
  • the network device obtains second indication information, where the second indication information is used to indicate to restore the QoS of the data stream.
  • the acquiring, by the network device, the identifier and the first indication information of the first data stream includes: the network device acquiring the first indication information from AMF or SMF.
  • the network device is a base station or a user plane function UPF.
  • an embodiment of the present application provides a method for adjusting the quality of service.
  • the method includes: a network device sends first indication information associated with a first data stream, where the first indication information is used to instruct to The data stream performs local quality of service QoS adjustments.
  • an embodiment of the present application provides a method for adjusting the quality of service.
  • the method includes: a network device sends characteristic information of a data flow, and the characteristic information of the data flow is used to determine a data flow for local QoS adjustment.
  • an embodiment of the present application provides a communication device for implementing the communication device of the first aspect.
  • the communication device of the fifth aspect includes corresponding modules, units, or means for realizing the above-mentioned functions, and the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the communication device of the second aspect.
  • the communication device of the sixth aspect includes corresponding modules, units, or means for realizing the above-mentioned functions, and the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the communication device of the third aspect.
  • the communication device of the seventh aspect includes corresponding modules, units, or means for realizing the above-mentioned functions.
  • the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the communication device of the fourth aspect.
  • the communication device of the seventh aspect includes corresponding modules, units, or means for realizing the above-mentioned functions.
  • the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, including a processor, configured to read an instruction from a memory, and execute the instruction to implement the method of the first aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the method of the second aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the method of the third aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device including a processor, and the processor is configured to read instructions from a memory and execute the instructions to implement the method of the fourth aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a method for adjusting the quality of service, including: sending first indication information associated with a first data stream, where the first indication information is used to instruct to perform a local service on the first data stream Quality QoS adjustment.
  • the method further includes: receiving the second indication information, where the second indication information is used to instruct to perform local quality of service QoS adjustment on the first data stream.
  • the design of the thirteenth aspect can refer to the related design of the above aspects.
  • an embodiment of the present application provides a communication device for implementing the method of the thirteenth aspect.
  • the device may include a processor.
  • the device may include a memory.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, characterized in that, when the instructions are executed on a communication device, the communication device is caused to implement any of the foregoing methods.
  • an embodiment of the present application provides a computer program product, including instructions, characterized in that, when the instructions are executed on a communication device, the communication device is caused to implement any of the foregoing methods.
  • an embodiment of the present application provides a communication system, including the communication device of the fifth aspect, or the sixth aspect, or the ninth aspect, or the tenth aspect.
  • it further includes the communication device of the seventh aspect or the eleventh aspect.
  • it further includes the communication device of the eighth aspect or the twelfth aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of a PDU session structure provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a method for adjusting service quality provided by an embodiment of this application
  • FIG. 4 is a schematic flowchart of another method for adjusting service quality provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of another method for adjusting service quality provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a method for restoring service quality according to an embodiment of the application.
  • FIG. 7 is a schematic flowchart of another method for adjusting service quality provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of another method for adjusting service quality provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • the embodiment of the application introduces the technical solution based on the 5G communication system.
  • the solution of this application can also be used in 4G communication systems; with the evolution and changes of communication technology, the solution of this application can also be applied to other communication systems, such as 6G communication systems. This is not limited.
  • Table 1 lists the English abbreviations, full English names and corresponding Chinese names involved in this application.
  • AMF Access and Mobility Management Function Access and mobility management functions SMF Session Management Function Session management function UPF User Plane Function User plane function PCF Policy Control Function Strategy control function AF Application Function Application function RAN Radio Access Network Wireless access network NG-RAN next generation radio access network Next Generation Wireless Access Network UE User Equipment User equipment DN Data Network Data network IP internet protocol Internet protocol QoS quality of service service quality ARP allocation retention priority Assign retention priority QFI QoS flow identity QoS flow identifier GBR guaranteed flow bit rate Guaranteed bit rate PDU protocol data unit Protocol data unit CQI channel quality information Channel quality information
  • At least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • network devices can sometimes be expressed as network elements.
  • FIG. 1 shows a schematic diagram of the architecture of a 5G communication system.
  • the communication system includes a core network part and a radio access network part.
  • the core network may include AMF network elements, SMF network elements, one or more UPF network elements, and PCF network elements.
  • the AF network element can be connected to the PCF to provide application services.
  • UPF can be connected to DN.
  • the UE can access the DN through the communication system.
  • the wireless access network equipment can be referred to as an access network for short.
  • the access network includes one or more access network devices.
  • AMF network element is a network element used for access and mobility management. This network element is mainly used for access control, mobility management, attach and detach, and SMF network element selection. This network element can be used as the anchor point of the N1 and N2 signaling connection to provide N1/N2 SM message routing for SMF.
  • the SMF network element is a network element used for session management. This network element is mainly used to provide control plane functions for session management, such as session creation, modification, and release. This network element can assign IP addresses to users, select and redirect UPF network elements.
  • the UPF network element is a network element used for user plane processing. This network element is mainly used for service processing on the user plane, such as data packet routing and forwarding, QoS mapping and execution.
  • the network element can receive user data from the DN and transmit it to the UE through the access network device; the network element can also receive user data from the UE through the access network device and forward it to the DN.
  • the transmission resources and scheduling functions of the network element that provide services for the UE are managed and controlled by the SMF network element.
  • the PCF network element is a network element used for policy control. This network element is mainly used to provide a unified policy framework to manage network behaviors, provide policy rules to control layer network functions, and be responsible for obtaining user subscription information related to policy decisions.
  • An access network device is a device that provides wireless communication functions for terminal devices.
  • Access network equipment includes but is not limited to: evolved node B (evolved node B, eNB), radio network controller (RNC), node B (node B, NB), donor base station (donor evolved node B, DeNB) ), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), base band unit (BBU) ,
  • the antenna panel may also be a network node that constitutes a gNB or transmission point, such as a BBU or a distributed unit (DU).
  • gNB next generation NB
  • TRP transmission point
  • TP new radio
  • the antenna panel may also be a network node that constitutes a gNB or transmission point, such as a BBU or a distributed unit (DU).
  • DU distributed unit
  • DN is a data network. DN is mainly used to provide users with services and can deploy application services, such as operator services, Internet access services, and third-party services.
  • the AF network element is a functional device used for application services.
  • This functional device is mainly used to interact with the 3GPP core network to provide services, such as influencing data routing decisions, policy control functions, or providing third-party services to the network side.
  • a terminal device which may be referred to as a terminal for short, is a device with a wireless transceiver function, and may be referred to as a UE in the embodiments of the present application.
  • Terminal devices can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as airplanes, balloons, and satellites, etc.).
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, VR terminals, AR terminals, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and wireless terminals in smart grids. , Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the access network equipment is connected to the UPF through the user plane interface N3 to transmit UE data; the access network equipment establishes a control plane signaling connection with the AMF through the control plane interface N2; AMF establishes a signaling connection with the UE through the N1 interface; AMF It is connected to the SMF through the N11 interface, and the AMF serves as the anchor point of the N1 and N2 signaling connection to provide the SMF with the routing of SM messages on the N1 or N2 interface; the UPF is connected to the SMF through the N4 interface.
  • the UE in a 5G network, can establish at least one PDU session (PDU session) between the access network device and the UPF on the core network side.
  • a PDU session includes at least one QoS flow.
  • a QoS flow can be identified by QFI, which is unique in each PDU session.
  • the transmission unit of a QoS flow is a data packet. Data packets on the same QoS flow get the same QoS guarantee (such as packet delay, packet error rate, priority, etc.), and different QoS guarantees need different QoS flows to provide.
  • the PCF can determine the QoS parameters for the QoS flow according to information such as the subscription information of the UE and the requirements of the application server.
  • QoS parameters include GBR, MBR, ARP, etc.
  • the data stream configured with GBR needs to ensure the transmission bit rate. For example, when the network is congested, the transmission resources of the GBR data stream are guaranteed.
  • the access network device, or the UE, or the core network side device can trigger the PDU session modification process to modify the quality of service of the data flow in the PDU session.
  • Figure 3 shows a modification process of a PDU session, which includes:
  • S101 SMF triggers PDU session modification to modify the QoS of the QoS flow.
  • This step may be based on a locally configured policy or may be based on receiving trigger signaling from the access network device. For example, when the access network device notifies the SMF that it has released the resources of a specific QoS flow, the SMF can trigger the modification of the PDU session. In this example, the access network device sends an N2 message to the SMF through AMF.
  • the N2 message includes QFI, user location information, and indication information that the QOS QoS Flow is released.
  • S102 SMF and PCF perform the SM policy modification process.
  • the SMF sends the Npcf_SMPolicyControl_Update_request message to the PCF.
  • the message may include SMF updated policy information.
  • the PCF sends a Npcf_SMPolicyControl_Update_response message to the SMF, and the message includes the updated policy information authorized by the PCF.
  • S102a If the PDU session modification process initiated by the SMF is triggered by the access network, the SMF sends a Response of Nsmf_PDUSession_UpdateSMContext message to the AMF, and the message includes: N2 SM information, Session-AMBR, etc.
  • S103 The SMF sends an N2 Session Request message to the access network device.
  • This message includes N2 SM information, NAS message, etc.
  • N2 SM information includes new QoS parameters.
  • the access network device After receiving the new QoS parameters, the access network device performs QoS adjustment for the QoS flow of the PDU session according to the new QoS parameters.
  • the access network device sends an AN-specific resource modification message to the UE.
  • This message includes PDU session modification command/Ack.
  • the access network device sends an N2 session response message to the SMF.
  • the message includes N2 SM information, UE location and other information.
  • the SMF may send a Nsmf_PDUSession_UpdateSMContext Request message to the UPF.
  • the Nsmf_PDUSession_UpdateSMContext Request message includes new QoS parameters.
  • the UPF can perform QoS adjustment on the QoS flow of the PDU session according to the new QoS parameter.
  • the UPF sends an Nsmf_PDUSession_UpdateSMContext Response message to the SMF.
  • the embodiment of the present application provides a method for adjusting the quality of service to improve the efficiency of QoS adjustment.
  • a PDU session is a type of session
  • a QoS flow is a type of data flow.
  • the solution provided by the embodiment of the present application is not only applicable to QoS adjustment of QoS flow, but also applicable to QoS adjustment of other data flows.
  • the QoS adjustment for the PDU session is the abbreviation for the QoS adjustment for the QoS flow in the PDU session.
  • Fig. 4 is a schematic flowchart of a method for adjusting service quality proposed by this application.
  • This method can be used to adjust the QoS for the data flow. For example, release the transmission resources of the data stream with the original specific QoS parameter, or modify the QoS parameter of the data stream with the original specific QoS parameter to a different QoS parameter.
  • the method shown in Figure 4 uses the network elements or devices in the network to make local QoS adjustments without triggering the PDU session modification process, reducing signaling overhead, and improving data processing and transmission efficiency.
  • the method can be applied to scenes such as video surveillance and video transmission, and can adjust QoS in time during video transmission, improve the utilization of network resources, reduce the time delay caused by this process, and improve the efficiency of QoS adjustment.
  • the method includes:
  • S201 The UE sends a PDU session establishment request to the AMF.
  • S202 The AMF sends a PDU session creation session context request message to the SMF.
  • the AMF can select an SMF, and send the PDU session creation session context request message to the selected SMF.
  • S203 The SMF sends a PDU session creation context request response message to the AMF.
  • S204 is an optional process.
  • S205 SMF selects the PCF network element.
  • S206 The SMF sends an Npcf_SMPolicyControl_Get message to the PCF.
  • S208 is an optional step.
  • the PCF sends an Npcf_SMPolicyControl_Get_response message to the SMF.
  • the message includes the identification of the first data stream.
  • the identifier of the first data flow may be a packet filter (packet filter template) or an application identifier (application id).
  • the PCF may generate indication information indicating that local QoS adjustment can be performed on the first data stream.
  • the message also includes the first indication information.
  • the first indication information is indication information associated with the first data stream.
  • the first indication information is used to indicate that local QoS adjustment can be performed on the first data stream.
  • the first indication information may be expressed by a parameter. When the parameter is set to 1, it means that local QoS adjustment can be performed on the first data stream. When the parameter is set to 0, it means that the first data stream cannot be adjusted. A data stream performs local QoS adjustment.
  • the first indication information may be expressed by an enumerated value.
  • the enumerated value When the enumerated value is included, it means that local QoS adjustment can be performed on the first data stream. When the enumerated value is not included Indicates that the local QoS adjustment cannot be performed on the first data stream.
  • the first indication information may be expressed by a specific QFI value. When the specific QFI value is included, it means that local QoS adjustment can be performed on the first data stream. The QFI value indicates that the local QoS adjustment cannot be performed on the first data stream.
  • being able to perform local QoS adjustment on the first data stream can also be understood as performing local QoS adjustment on the first data stream
  • being unable to perform local QoS adjustment on the first data stream can also be understood as not performing local QoS adjustment on the first data stream.
  • the flow performs local QoS adjustment.
  • the identifier of the first data stream and the first indication information may be multiplexed together. That is, the message includes the first indication information, and the first indication information not only indicates the identifier of the first data flow, but also indicates that the local QoS adjustment can be performed on the first data flow.
  • the value range of QFI is 1-6, and the value 4-6 is used as the specific QFI value.
  • the first indication information is 5, it means that the identifier of the first data stream is 5, and the first data stream can be The data stream performs local QoS adjustment.
  • the first indication information is 2, it indicates that the identifier of the first data stream is 2, and the local QoS adjustment cannot be performed on the first data stream.
  • the message includes a policy and charging control rule PCC rule, and the PCC rule includes the identifier of the first data flow and the first indication information.
  • local QoS adjustment can be understood as the local device (the device that receives the first indication information) performs QoS adjustment on the first data stream, and other devices in the system (such as UE or UPF) The local device is not aware of adjusting the QoS of the first data flow.
  • local QOS adjustment can be understood as the local device (the device that receives the first indication information) performs the local device-side QoS adjustment on the first data stream, and other network devices perform the QoS adjustment on the first data stream.
  • the QoS adjustment of the flow is not triggered by the local device.
  • local QoS adjustment can be understood as the local device (the device that receives the first indication information) performs the local device-side QoS adjustment on the first data stream, and the local device does not initiate any involvement in other networks.
  • the QoS modification process of the device for example, the process shown in Figure 3).
  • Performing the QoS adjustment on the local device side on the first data stream can also be understood as performing QoS adjustment on the first data stream on the local device.
  • the SMF sends a Namf_communication_N1N2transfer information message to the AMF.
  • the SMF may generate indication information indicating that local QoS adjustment can be performed on the first data stream.
  • the message includes the identifier of the first data stream and the second indication information.
  • the second indication information is indication information associated with the first data stream.
  • the function of the second indication information is the same as that of the first indication information, and is used to indicate that the local QoS adjustment can be performed on the first data stream.
  • the design of the second indication information may refer to the design of the first indication information.
  • the design of the second indication information may be the same or different from the design of the first indication information, that is, the data structure or expression form of the second indication information may be the same or different from the data structure or expression form of the first indication information.
  • the first data stream may be one or more data streams.
  • the identifier of the first data stream and the second indication information may be multiplexed together. That is, the message includes the second indication information, and the second indication information not only indicates the identifier of the first data flow, but also indicates that the local QoS adjustment can be performed on the first data flow.
  • the value range of QFI is 1-6, and the value 4-6 is used as the specific QFI value.
  • the second indication information is 5, it means that the identifier of the first data stream is 5, and the first data stream can be The data stream performs local QoS adjustment.
  • the second indication information is 2, it indicates that the identifier of the first data stream is 2, and the local QoS adjustment cannot be performed on the first data stream.
  • the identifier of the first data flow in S210 may be QFI or PDU session ID.
  • the first data stream is the data stream corresponding to the QFI; when the identifier of the first data stream is PDU session ID, the first data stream is the PDU session ID The data flow in the corresponding PDU session.
  • the AMF sends an N2 PDU session request message to the access network device.
  • the N2 PDU session request message may include third indication information.
  • the third indication information is indication information associated with the first data stream.
  • the function of the third indication information is the same as that of the first indication information and the second indication information, and is used to indicate that local QoS adjustment can be performed on the first data stream.
  • the design of the third indication information may refer to the design of the first indication information.
  • the design of the third indication information may be the same as or different from the design of the first indication information or the second indication information, that is, the data structure or expression form of the third indication information may be the same as the data structure or expression of the first indication information or the second indication information. Same or different form.
  • the N2 PDU session request message may also include the identifier of the first data flow.
  • the identifier of the first data stream and the third indication information may be multiplexed together. That is, the message includes the third indication information, and the third indication information not only indicates the identifier of the first data flow, but also indicates that the local QoS adjustment can be performed on the first data flow.
  • the value range of QFI is 1-6, and the value 4-6 is used as the specific QFI value.
  • the third indication information is 5, it means that the identifier of the first data stream is 5, and the first data stream can be The data stream performs local QoS adjustment.
  • the third indication information is 2, it means that the identifier of the first data stream is 2, and the local QoS adjustment cannot be performed on the first data stream.
  • the design of the identifier of the first data stream in S211 may refer to the design of the identifier of the first data stream in S210.
  • the design of the identifier of the first data stream in S211 may be the same as or different from the design of the identifier of the first data stream in S210. That is, the data structure or expression form of the identifier of the first data stream in S211 may be the same as that of the first data stream in S210.
  • the data structure or manifestation of the stream identifier is the same or different.
  • the first data stream may be the data stream of the UE.
  • the access network device After receiving the third indication information, the access network device can learn that the first data stream can perform local QoS adjustment.
  • S212 The SMF sends an N4 session establishment request message to the UPF.
  • the N4 session establishment request message includes the identifier of the first data flow and fourth indication information.
  • the fourth indication information is indication information associated with the first data stream.
  • the function of the fourth indication information is the same as the functions of the first indication information, the second indication information, and the third indication information, and is used to indicate that local QoS adjustment can be performed on the first data stream.
  • the design of the fourth indication information may refer to the design of the first indication information.
  • the design of the fourth indication information may be the same as or different from the design of the first indication information, the second indication information, or the third indication information. That is, the data structure or expression form of the fourth indication information may be the same as that of the first indication information, the second indication information, or the second indication information.
  • the data structure or presentation form of the instruction information or the third instruction information is the same or different.
  • the identification of the first data stream and the fourth indication information may be multiplexed together. That is, the message includes fourth indication information, and the fourth indication information not only indicates the identifier of the first data flow, but also indicates that the local QoS adjustment can be performed on the first data flow.
  • the value range of QFI is 1-6, and the value 4-6 is used as the specific QFI value.
  • the fourth indication information is 5, it means that the identifier of the first data stream is 5, and the first data stream can be The data stream performs local QoS adjustment.
  • the fourth indication information is 2, it means that the identifier of the first data stream is 2, and the local QoS adjustment cannot be performed on the first data stream.
  • the design of the identifier of the first data stream in S212 may refer to the design of the identifier of the first data stream in S209 and S210.
  • the identifier of the first data flow in S212 may be a packet filter, application identifier, QFI, or PDU session ID.
  • the design of the identifier of the first data stream in S212 may be the same as or different from the design of the identifier of the first data stream in S209, S210, and S211. That is, the data structure or expression form of the identifier of the first data stream in S212 may be the same as that of S209. ,
  • the data structure or manifestation of the first data stream identifier in S210 and S211 is the same or different.
  • the UPF After the UPF receives the fourth indication information, it can learn that the first data stream can perform local QoS adjustment.
  • UPF sends an N4 session establishment response message to SMF.
  • the response message is the response message of S212.
  • the access network device or the UPF can perform local QoS adjustment on the data flow according to service requirements. As shown in S214 and S215.
  • S214 The access network device performs local QoS adjustment on the first data stream.
  • performing local QoS adjustment on the first data stream may include, but is not limited to, one or more of the following implementation manners:
  • the new QoS parameter value may be specified by the protocol, pre-configured, or issued by the PCF.
  • the first data stream is processed as a GBR data stream
  • the resources of the first data stream are used to transmit other data streams, but the data stream is not transmitted, but the context information of the data stream is retained.
  • the access network device may perform local QoS adjustment on the first data stream when the first data stream meets the first condition.
  • the first condition includes but is not limited to one or more of the following conditions:
  • the first threshold is 10 seconds, and when the transmission time interval of the data packets of the data stream exceeds 10 seconds, it is considered that the condition a) is satisfied.
  • the transmission time interval may be a sampling value within a period of time or an average value.
  • the transmission rate of the data stream on the access network device drops significantly.
  • the maximum transmission rate is only 500K, it is considered that the condition b) is satisfied.
  • the transmission rate can be a sampled value or an average value within a period of time.
  • the load can be a sampled value or an average value over a period of time.
  • the idle time may be a sampling value or an average value within a period of time.
  • the signaling load of the device can be a sampled value or an average value over a period of time
  • the first condition may be stipulated in the agreement, pre-configured by the network management system, or issued by the PCF.
  • the PCF can send the first condition to the SMF through the message of S209, the SMF sends the first condition to the AMF through the message of S210, and the AMF sends the first condition to the access network device through the message of S211.
  • the data structure or expression of the first condition may change.
  • the access network device may perform local QoS adjustment on the first data stream when needed, and this application does not limit the specific timing of performing the local QOS adjustment.
  • the QoS adjustment of the data stream can be realized without triggering the PDU session modification process. In scenarios where frequent QoS adjustment is required, the signaling interaction between network elements is reduced, the delay is reduced, and the data processing and QoS adjustment are improved. Transmission efficiency.
  • the access network device may notify the UE that it has performed the local QoS adjustment on the first data stream.
  • the UE can make corresponding QoS adjustments, for example: retaining the context of the first data stream and releasing or modifying the transmission resources of the first data stream.
  • S215 The UPF performs local QoS adjustment on the first data stream.
  • the local QoS adjustment for the first data stream can refer to the design of the local QoS adjustment in S214.
  • the manner of local QoS adjustment in S215 may be the same as or different from the manner of local QoS adjustment in S214.
  • the local QoS adjustment implementation a) is adopted in S215
  • the local QoS adjustment implementation b) is adopted in S214.
  • the new QoS parameter value applied in S215 may be the same or different from the new QoS parameter value applied in S214.
  • the UPF may perform local QoS adjustment on the first data stream when the first data stream meets the second condition.
  • the second condition may be the same as or different from the first condition.
  • the second condition includes but is not limited to one or more of the following conditions:
  • the fifth threshold may be the same or different from the first threshold
  • the sixth threshold may be the same or different from the second threshold
  • the seventh threshold may be the same or different from the third threshold
  • the fourth threshold may be the same or different from the eighth threshold.
  • UPF can detect whether the first data stream meets condition a) to start local QoS adjustment of the first data stream, and in S214, the access network device can also detect whether the first data stream meets condition a) to start. Perform local QoS adjustment on the first data stream.
  • the UPF can detect whether the first data stream meets the condition a) to start local QoS adjustment of the first data stream, and in S214, the access network device can detect whether the first data stream meets the condition b) to start Perform local QoS adjustment on the first data stream.
  • the second condition may be stipulated in the agreement, pre-configured by the network management system, or issued by the PCF.
  • the PCF may send the second condition to the SMF through the message of S209, and the SMF sends the second condition to the UPF through the message of S212.
  • the data structure or expression of the second condition may change.
  • UPF can perform local QoS adjustment on the first data stream when needed, so that the QoS adjustment of the data stream can be achieved without triggering the PDU session modification process.
  • network elements are reduced. The signaling interaction between the two can reduce the time delay and improve the data processing and transmission efficiency of QoS adjustment.
  • S214 and S215 are not limited in this embodiment of the application.
  • both S214 and S215 may be executed, it is also possible to execute S214 without executing S215, or it is possible to execute S215 without executing S214.
  • the access network device and the UPF can respectively learn the data streams that can be adjusted for local QoS, and make local QoS adjustments by themselves.
  • the method for adjusting the data stream QoS provided in the embodiment of the present application may not trigger the PDU session modification process, reducing signaling overhead, and improving data processing and transmission efficiency.
  • the method When the method is applied to scenes such as video surveillance and video transmission, it can adjust QoS in time during video transmission, improve the utilization of network resources, reduce the time delay caused by this process, and improve the experience of video services.
  • the method shown in FIG. 4 describes as an example the process of sending information indicating that the data stream can perform local QoS adjustment to the network device (such as the base station, UPF) related to the data plane through the PDU session establishment process.
  • the information indicating that the data flow can be adjusted locally to the data plane can also be delivered to the network elements related to the data plane through other processes capable of transferring information between various network elements, such as a PDU session modification process.
  • the network equipment for local QoS adjustment can also be other data plane-related network elements.
  • the embodiment of the present application also proposes a method for adjusting service quality.
  • This method is a variant of the method shown in FIG. 4.
  • the difference from the method shown in FIG. 4 is that the device that performs local QoS adjustment determines the data flow for local QoS adjustment according to the characteristic information of the data flow. .
  • the method includes:
  • S301 The UE sends a PDU session establishment request to the AMF.
  • the AMF sends a PDU session creation session context request message to the SMF.
  • S303 The SMF sends a PDU session creation context request response message to the AMF.
  • S305 SMF selects a PCF network element.
  • S306 The SMF sends an Npcf_SMPolicyControl_Get message to the PCF.
  • S301 to S308 can refer to S201 to S208, which will not be repeated here.
  • the PCF sends an Npcf_SMPolicyControl_Get_response message to the SMF.
  • the message includes the first characteristic information of the data flow, and the first characteristic information of the data flow is used to determine the data flow for local QoS adjustment.
  • the first characteristic information of the data stream includes one or more of the following characteristic parameters:
  • local QOS adjustment is performed for a data stream with a specific value of CQI, or local QoS adjustment is performed for a data stream with a specific value of ARP.
  • local QoS adjustment is performed for data packets whose transmission time interval is 30 seconds.
  • the transmission time interval may be a sampling value or an average value within a period of time.
  • the transmission rate can be a sampled value or an average value within a period of time.
  • S310 The SMF sends a Namf_communication_N1N2transfer information message to the AMF.
  • the message includes the second characteristic information of the data stream.
  • the second characteristic information has the same function as the first characteristic information, and is used to determine the data flow for local QoS adjustment.
  • the design of the second feature information can refer to the design of the first feature information.
  • the data structure or expression form of the second characteristic information may be the same as or different from the data structure or expression form of the first characteristic information.
  • the data stream determined by the second characteristic information is the same as the data stream determined by the first characteristic information.
  • S311 The AMF sends an N2 PDU session request message to the access network device.
  • the message includes the third characteristic information of the data stream.
  • the third characteristic information has the same function as the first characteristic information and the second characteristic information, and is used to determine the data flow for local QoS adjustment.
  • the design of the third feature information can refer to the design of the first feature information.
  • the data structure or presentation form of the third feature information may be the same as or different from the data structure or presentation form of the first feature information or the second feature information.
  • the data stream determined by the third characteristic information is the same as the data stream determined by the first characteristic information or the second characteristic information.
  • the access network device can determine the first data flow that meets the third characteristic information, and the first data flow is the data flow to be adjusted locally.
  • the number of the first data stream may be one or more.
  • S312 The SMF sends an N4 session establishment request message to the UPF.
  • the message includes the fourth characteristic information of the data stream.
  • the fourth characteristic information has the same function as the first characteristic information, the second characteristic information, and the third characteristic information, and is used to determine the data flow for local QoS adjustment.
  • the design of the fourth feature information can refer to the design of the first feature information.
  • the data structure or expression form of the fourth characteristic information may be the same as or different from the data structure or expression form of the first characteristic information, the second characteristic information, or the third characteristic information.
  • the data stream determined by the fourth characteristic information is the same as the data stream determined by the first characteristic information, the second characteristic information, or the third characteristic information.
  • the UPF After the UPF receives the fourth characteristic information, it can determine the first data flow that meets the fourth characteristic information, and the first data flow is the data flow to be adjusted locally.
  • the number of the first data stream may be one or more.
  • UPF sends an N4 session establishment response message to SMF.
  • the response message is the response message of S312.
  • the access network device or the UPF can perform local QoS adjustment on the data flow according to service requirements. As shown in S314 and S315.
  • S314 The access network device performs local QoS adjustment on the first data stream.
  • the access network device can match the data stream for local QoS adjustment through the characteristic information of the data stream and perform local QoS adjustment on the data stream, so that the QoS adjustment of the data stream can be realized without triggering the PDU session modification process.
  • frequent QoS adjustments are required, signaling interactions between network elements are reduced, time delays are reduced, and data processing and transmission efficiency for QoS adjustments are improved.
  • UPF performs local QoS adjustment on the first data stream.
  • the UPF can match the data flow for local QoS adjustment through the characteristic information of the data flow and perform local QoS adjustment on the data flow, so that the QoS adjustment of the data flow can be achieved without triggering the PDU session modification process.
  • QoS adjustment signaling interaction between network elements is reduced, time delay is reduced, and data processing and transmission efficiency of QoS adjustment are improved.
  • S314 and S315 are not limited in this embodiment of the application.
  • both S314 and S315 may be executed, it is also possible to execute S314 without executing S315, or it is possible to execute S315 without executing S314.
  • the access network device and the UPF can respectively learn the data streams that can be adjusted for local QoS, and make local QoS adjustments by themselves.
  • the method for adjusting the data stream QoS provided in the embodiment of the present application may not trigger the PDU session modification process, reducing signaling overhead, and improving data processing and transmission efficiency.
  • the method When the method is applied to scenes such as video surveillance and video transmission, it can adjust QoS in time during video transmission, improve the utilization of network resources, reduce the time delay caused by this process, and improve the experience of video services.
  • the method shown in FIG. 5 is used as an example to describe the process of delivering the characteristic information of the above-mentioned data stream to the network device (such as the base station, UPF) related to the data plane through the PDU session establishment process.
  • the characteristic information of the data stream can also be delivered to the network elements related to the data plane through other processes capable of transferring information between various network elements, such as a PDU session modification process.
  • the network equipment for local QoS adjustment can also be other data plane-related network elements.
  • the network elements related to the data plane can adjust the QoS of the data flow locally. According to business requirements, it is sometimes necessary to restore the original service instructions of the data stream.
  • the embodiment of the present application also provides a method for adjusting QoS to restore the QoS of the data stream.
  • the method includes:
  • S401 The UE sends a request message to the access network device.
  • the request message is used to request transmission resources for uplink data. After the access network device receives the request message, the QoS of the first data stream can be restored.
  • the request message includes sixth indication information, and the sixth indication information is used to instruct to restore the QoS of the first data stream.
  • the sixth indication information includes the identifier of the first data flow or the original QoS parameter value of the first data flow.
  • the access network device restores the QoS of the first data stream.
  • restoring the QoS of the first data stream may include one or more of the following implementation manners:
  • S403 The access network device sends seventh indication information to the AMF.
  • the seventh indication information is used to indicate the restoration of the QoS of the first data stream.
  • the design of the seventh indication information can refer to the design of the sixth indication information.
  • the data structure or expression form of the seventh indication information may be the same as or different from the sixth indication information.
  • S404 AMF sends eighth indication information to SMF.
  • the eighth indication information is used to indicate the restoration of the QoS of the first data stream.
  • the design of the eighth indication information can refer to the design of the sixth indication information.
  • the data structure or expression form of the eighth indication information may be the same as or different from the sixth indication information or the seventh indication information.
  • S405 The SMF sends ninth indication information to the UPF.
  • the ninth indication information is used to indicate the restoration of the QoS of the first data stream.
  • the design of the ninth indication information can refer to the design of the sixth indication information.
  • the data structure or expression form of the ninth indication information may be the same as or different from the sixth indication information, the seventh indication information, or the eighth indication information.
  • restoring the QoS of the first data stream may include one or more of the following implementation manners:
  • each user plane-related network element (such as a base station, UPF) can be notified to restore the QoS of the data stream to meet the needs of the service.
  • each user plane-related network element can also restore the QoS of the first data stream by itself according to a preset condition.
  • restoring the QoS of the first data stream refer to the description of related content in FIG. 6.
  • the signaling interaction for QoS adjustment of the data stream can be further reduced, so that the efficiency of QoS adjustment is higher.
  • an embodiment of the present application provides a method for adjusting the service quality of a data stream. This method is described from the side of the network device that performs local QoS adjustment. As shown in Figure 7, the method includes:
  • S501 The network device obtains first indication information associated with the first data stream.
  • the first indication information is used to indicate that local service quality QoS adjustment is performed on the first data stream.
  • S502 The network device performs local QoS adjustment on the first data stream.
  • the network device In response to the first indication information, the network device performs local QoS adjustment on the first data stream.
  • the network device performing local QoS adjustment on the first data stream includes: in response to the first indication information, when the first data stream satisfies the first condition, the network device performs the local QoS adjustment on the first data stream.
  • Local QoS adjustment For details, please refer to S214 and S215.
  • the first condition includes one or more of the following: the transmission time interval of the data stream meets the first threshold; or, the transmission rate of the data stream meets the second threshold; or, the load of the network device that carries the data stream meets the first threshold.
  • the local QoS adjustment performed by the network device on the first data stream is: the network device performs network device-side QoS adjustment on the first data stream, and the QoS adjustment on the first data stream by other network devices is not triggered by the network device.
  • the network device performs network device-side QoS adjustment on the first data stream
  • the QoS adjustment on the first data stream by other network devices is not triggered by the network device.
  • the local QoS adjustment of the first data stream by the network device includes: retaining the original QoS parameter value of the first data stream and applying the new QoS parameter value to the first data stream; or, when the first data stream is a guaranteed bit When the rate GBR data stream, the first data stream is processed as a non-guaranteed bit rate non-GBR data stream; or, when the first data stream is a non-GBR data stream, the first data stream is processed as a GBR data stream ; Or, suspend the first data stream; Or, reserve the context of the first data stream and release or modify the resources of the first data stream.
  • the network device restores the QoS of the first data stream.
  • the network device restores the QoS of the first data stream.
  • the network device obtains second indication information, where the second indication information is used to indicate to restore the QoS of the data stream.
  • the second indication information is used to indicate to restore the QoS of the data stream.
  • the network device obtains the first indication information associated with the first data stream includes: the network device obtains the first indication information from AMF or SMF.
  • the network device obtains the first indication information from AMF or SMF For details, please refer to S209 to S212.
  • the network equipment is a base station or a user plane function UPF.
  • the network equipment is a base station or a user plane function UPF.
  • S209 to S212 please refer to S209 to S212.
  • the network device can determine the first data stream for local QoS adjustment according to the first indication information associated with the first data stream, and perform the local QoS adjustment.
  • Local QoS adjustment can reduce the signaling interaction process that triggers other network elements to perform QoS adjustment, reduce signaling overhead, and improve data processing and transmission efficiency.
  • the above method is applied to scenes such as video surveillance, video transmission, etc., it can adjust QoS for video transmission in time, improve the utilization of network resources, and reduce the time delay caused by this process.
  • an embodiment of the present application provides a method for adjusting the service quality of a data stream. This method is described from the side of the network device that performs local QoS adjustment. As shown in Figure 8, the method includes:
  • S601 The network device obtains characteristic information of the data stream.
  • the characteristic information of the data stream is used to determine the data stream for local QoS adjustment.
  • the network device determines the first data stream that meets the characteristic information of the data stream.
  • S603 The network device performs local QoS adjustment on the first data stream.
  • the characteristic information of the data stream includes one or more of the following: QoS parameters; or, service type; or, the threshold of the transmission time interval; or, the threshold of the transmission rate.
  • QoS parameters or, service type; or, the threshold of the transmission time interval; or, the threshold of the transmission rate.
  • the local QoS adjustment performed by the network device on the first data stream is: the network device performs network device-side QoS adjustment on the first data stream, and the QoS adjustment on the first data stream by other network devices is not triggered by the network device.
  • the network device performs network device-side QoS adjustment on the first data stream
  • the QoS adjustment on the first data stream by other network devices is not triggered by the network device.
  • the local QoS adjustment of the first data stream by the network device includes: retaining the original QoS parameter value of the first data stream and applying the new QoS parameter value to the first data stream; or, when the first data stream is a guaranteed bit When the rate GBR data stream, the first data stream is processed as a non-guaranteed bit rate non-GBR data stream; or, when the first data stream is a non-GBR data stream, the first data stream is processed as a GBR data stream ; Or, suspend the first data stream; Or, reserve the context of the first data stream and release or modify the resources of the first data stream.
  • the network device restores the QoS of the first data stream.
  • the network device restores the QoS of the first data stream.
  • the network device obtains second indication information, where the second indication information is used to indicate to restore the QoS of the data stream.
  • the second indication information is used to indicate to restore the QoS of the data stream.
  • the network device obtains the identifier of the first data stream and the first indication information includes: the network device obtains the first indication information from AMF or SMF.
  • the network device obtains the first indication information from AMF or SMF For details, please refer to S309 to S312.
  • the network equipment is a base station or a user plane function UPF.
  • the network equipment is a base station or a user plane function UPF.
  • the network device can determine the first data stream for local QoS adjustment according to the characteristic information of the data stream, and perform the local QoS adjustment.
  • Local QoS adjustment can reduce the signaling interaction process that triggers other network elements to perform QoS adjustment, reduce signaling overhead, and improve data processing and transmission efficiency.
  • the above method is applied to scenes such as video surveillance, video transmission, etc., it can adjust QoS for video transmission in time, improve the utilization of network resources, and reduce the time delay caused by this process.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 includes an antenna 901, a radio frequency device 902, and a baseband device 903.
  • the antenna 901 is connected to the radio frequency device 902.
  • the radio frequency device 902 receives the information sent by the terminal device through the antenna 901, and sends the information sent by the terminal device to the baseband device 903 for processing.
  • the baseband device 903 processes the information of the terminal device and sends it to the radio frequency device 902, and the radio frequency device 902 processes the information of the terminal device and sends it to the terminal device via the antenna 901.
  • the baseband device 903 may include one or more processing elements 9031, for example, including a main control CPU and other integrated circuits.
  • the baseband device 903 may also include a storage element 9032 and an interface 9033.
  • the storage element 9032 is used to store computer-executed instructions for executing the solution of the present application, and the processing element 9031 controls the execution; the interface 9033 is used to communicate with other devices (such as core network elements).
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the access network device in FIG. 4 may be a communication device as shown in FIG. 9.
  • the processing element 9031 in FIG. 9 can support the apparatus 900 to perform the functions performed by the access network device in FIG. 4.
  • the processing element 9031 may perform the function of determining the first data stream and performing local QoS adjustment in S214.
  • the interface 9033 in FIG. 9 can support the device 900 to communicate with other devices.
  • the interface 9033 may support the device 900 to perform the communication process of S211 in FIG. 4.
  • the access network device in FIG. 5 may be a communication device as shown in FIG. 9.
  • the processing element 9031 in FIG. 9 can support the apparatus 900 to perform the functions performed by the access network device in FIG. 5.
  • the processing element 9031 may perform the function of determining the first data stream and performing local QoS adjustment in S314.
  • the interface 9033 in FIG. 9 can support the device 900 to communicate with other devices.
  • the interface 9033 can support the device 900 to perform the communication process of S311 in FIG. 5.
  • the access network device in FIG. 6 may be a communication device as shown in FIG. 9.
  • the processing element 9031 in FIG. 9 can support the apparatus 900 to perform the functions performed by the access network device in FIG. 6.
  • the processing element 9031 may perform the function of determining the first data flow and restoring the QoS for the first data flow in S402.
  • the interface 9033 in FIG. 9 can support the device 900 to communicate with other devices.
  • the interface 9033 can support the device 900 to perform the communication process of S403 in FIG. 6.
  • the antenna 901 and the radio frequency device 902 in FIG. 9 can support the device 900 to communicate with the UE.
  • the device 900 may implement the communication process of S401 through the antenna 901 and the radio frequency device 902.
  • the network device in FIG. 7 may be a communication device as shown in FIG. 9.
  • the processing element 9031 in FIG. 9 can support the apparatus 900 to perform the functions performed by the network device in FIG. 7.
  • the processing element 9031 may perform the function of performing local QoS adjustment on the first data stream in S502.
  • the interface 9033 in FIG. 9 can support the device 900 to communicate with other devices.
  • the interface 9033 can support the device 900 to perform the communication process of S501 in FIG. 7.
  • the network device in FIG. 8 may be the communication device shown in FIG. 9.
  • the processing element 9031 in FIG. 9 can support the apparatus 900 to perform the functions performed by the network device in FIG. 8.
  • the processing element 9031 may perform the function of determining the first data stream that meets the characteristic information of the data stream in S602, and the processing element 9031 may also perform the function of performing local QoS adjustment on the first data stream in S603.
  • the interface 9033 in FIG. 9 can support the device 900 to communicate with other devices.
  • the interface 9033 can support the device 900 to perform the communication process of S601 in FIG. 8.
  • the methods and/or steps implemented by the access network equipment can also be implemented by a chip on the baseband device 903.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform the above access.
  • the interface circuit is used to communicate with other devices.
  • Fig. 10 shows a communication device provided by an embodiment of the present application.
  • the embodiments of the present application may divide the communication device into functional units according to the foregoing method embodiments.
  • each functional unit may be divided corresponding to each function, or two or more units may be integrated into one processing module.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of this application.
  • the communication device 1000 includes a processing unit 1001 and a transceiver unit 1002.
  • the access network device in FIG. 4 may be the communication device shown in FIG. 10.
  • the processing unit 1001 in FIG. 10 can support the apparatus 1000 to perform the functions performed by the access network device in FIG. 4.
  • the processing unit 1001 may perform the function of determining the first data stream and performing local QoS adjustment in S214.
  • the transceiver unit 1002 in FIG. 10 can support the device 1000 to communicate with other devices.
  • the transceiving unit 1002 can support the device 1000 to perform the communication process of S211 in FIG. 4.
  • the access network device in FIG. 5 may be the communication device shown in FIG. 10.
  • the processing unit 1001 in FIG. 10 can support the apparatus 1000 to perform the functions performed by the access network device in FIG. 5.
  • the processing unit 1001 may perform the function of determining the first data stream and performing local QoS adjustment in S314.
  • the transceiver unit 1002 in FIG. 10 can support the device 1000 to communicate with other devices.
  • the transceiving unit 1002 may support the device 1000 to perform the communication process of S311 in FIG. 5.
  • the access network device in FIG. 6 may be the communication device shown in FIG. 10.
  • the processing unit 1001 in FIG. 10 can support the apparatus 1000 to perform the functions performed by the access network device in FIG. 6.
  • the processing unit 1001 may perform the function of determining the first data stream and restoring the QoS for the first data stream in S402.
  • the transceiver unit 1002 in FIG. 10 can support the device 1000 to communicate with other devices.
  • the transceiver unit 1002 can support the device 1000 to perform the communication process of S401 and S403 in FIG. 6.
  • the transceiving unit 1002 may include a first transceiving unit and a second transceiving unit. The first transceiving unit is used to communicate with the UE, and the second transceiving unit is used to communicate with core network elements.
  • the network device in FIG. 7 may be the communication device shown in FIG. 10.
  • the processing unit 1001 in FIG. 10 can support the apparatus 1000 to perform the functions performed by the network device in FIG. 7.
  • the processing unit 1001 may perform the function of performing local QoS adjustment on the first data stream in S502.
  • the transceiver unit 1002 in FIG. 10 can support the device 1000 to communicate with other devices.
  • the transceiving unit 1002 can support the device 1000 to perform the communication process of S501 in FIG. 7.
  • the network device in FIG. 8 may be the communication device shown in FIG. 10.
  • the processing unit 1001 in FIG. 10 can support the apparatus 1000 to perform the functions performed by the network device in FIG. 8.
  • the processing unit 1001 may perform the function of determining the first data stream that meets the characteristic information of the data stream in S602, and the processing unit 1001 may also perform the function of performing local QoS adjustment on the first data stream in S603.
  • the transceiver unit 1002 in FIG. 10 can support the device 1000 to communicate with other devices.
  • the transceiving unit 1002 can support the device 1000 to perform the communication process of S601 in FIG. 8.
  • the functions/implementation process of the transceiving unit 1002 and the processing unit 1001 in FIG. 10 can be implemented by the processor in the communication device of FIG. 9 calling computer execution instructions stored in the memory.
  • the function/implementation process of the processing unit 1001 in FIG. 10 may be implemented by the processor in the communication device of FIG. 9 calling computer execution instructions stored in the memory
  • the function/implementation process of the transceiver unit 1002 in FIG. 10 may be implemented by The communication interface in the communication device of FIG. 9 is implemented.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of this application.
  • the communication device 1100 includes one or more processors 1101, a communication line 1102, and at least one communication interface (in FIG. 11, it is only an example that includes a communication interface 1103 and a processor 1101 as an example), optional
  • the memory 1104 may also be included.
  • the processor 1101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 1102 is used to connect different components.
  • the communication interface 1103 may be a transceiver module used to communicate with other equipment or communication devices or communication networks, such as Ethernet.
  • the above transceiver module may be a network card or an optical fiber switching device.
  • the communication interface 1103 may also be a transceiver circuit located in the processor 1101 to implement signal input and signal output of the processor.
  • the memory 1104 may be a device with a storage function.
  • it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can
  • the memory may exist independently, and is connected to the processor through a communication line 1102.
  • the memory can also be integrated with the processor.
  • the memory 1104 is used to store computer execution instructions for executing the solution of the present application, and the processor 1101 controls the execution.
  • the processor 1101 is configured to execute computer-executable instructions stored in the memory 1104.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 1101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 11.
  • the communication device 1100 may include multiple processors, such as the processor 1101 and the processor 1105 in FIG. 11. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the aforementioned communication device 1100 may be a general-purpose device or a dedicated device.
  • the communication device 1100 may be a network server, an embedded device, or a device having a similar structure in FIG. 11.
  • the embodiment of the present application does not limit the type of the communication device 1100.
  • the UPF in FIG. 4 may be a communication device as shown in FIG. 11.
  • the processor 1101 in FIG. 11 may support the apparatus 1100 to perform the functions performed by the UPF in FIG. 4.
  • the processor 1101 may perform the function of determining the first data stream and performing local QoS adjustment in S215.
  • the communication interface 1103 in FIG. 11 can support the device 1100 to communicate with other devices.
  • the communication interface 1103 can support the device 1100 to perform the communication processes of S212 and S213 in FIG. 4.
  • the UPF in FIG. 5 may be a communication device as shown in FIG. 11.
  • the processor 1101 in FIG. 11 can support the apparatus 1100 to perform the functions performed by the UPF in FIG. 5.
  • the processor 1101 may perform the function of determining the first data stream and performing local QoS adjustment in S315.
  • the communication interface 1103 in FIG. 11 can support the device 1100 to communicate with other devices.
  • the communication interface 1103 can support the device 1100 to perform the communication processes of S312 and S313 in FIG. 5.
  • the UPF in FIG. 6 may be the communication device shown in FIG. 10.
  • the processor 1101 in FIG. 11 may support the apparatus 1100 to perform the functions performed by the UPF in FIG. 6.
  • the processor 11031 may perform the function of determining the first data flow and restoring the QoS for the first data flow in S406.
  • the communication interface 1103 in FIG. 11 can support the device 1100 to communicate with other devices.
  • the communication interface 1103 may support the device 1100 to perform the communication process of S405 in FIG. 6.
  • the network device in FIG. 7 may be the communication device shown in FIG. 11.
  • the processor 1101 in FIG. 11 can support the apparatus 1100 to perform the functions performed by the network device in FIG. 7.
  • the processor 1101 may perform the function of performing local QoS adjustment on the first data stream in S502.
  • the communication interface 1103 in FIG. 11 can support the device 1100 to communicate with other devices.
  • the communication interface 1103 may support the device 1100 to perform the communication process of S501 in FIG. 7.
  • the network device in FIG. 8 may be the communication device shown in FIG. 11.
  • the processor 11031 in FIG. 11 can support the apparatus 1100 to perform the functions performed by the network device in FIG. 8.
  • the processor 1101 may perform the function of determining the first data stream that meets the characteristic information of the data stream in S602, and the processing element 1101 may also perform the function of performing local QoS adjustment on the first data stream in S603.
  • the communication interface 1103 in FIG. 11 can support the device 1100 to communicate with other devices.
  • the communication interface 1103 can support the device 1100 to perform the communication process of S601 in FIG. 8.
  • the methods and/or steps implemented by the UPF may also be implemented by a chip system that implements the functions of the first network element or the first device.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the application.
  • the communication device 1200 includes a processing unit 1201 and a transceiver unit 1202.
  • the UPF in FIG. 4 may be a communication device as shown in FIG. 12.
  • the processing unit 1201 in FIG. 12 can support the apparatus 1200 to perform the functions performed by the UPF in FIG. 4.
  • the processing unit 1201 may perform the function of determining the first data stream and performing local QoS adjustment in S215.
  • the transceiver unit 1202 in FIG. 12 can support the device 1200 to communicate with other devices.
  • the transceiving unit 1202 may support the device 1200 to perform the communication process of S212 and S213 in FIG. 4.
  • the UPF in FIG. 5 may be a communication device as shown in FIG. 12.
  • the processing unit 1201 in FIG. 12 can support the apparatus 1200 to perform the functions performed by the UPF in FIG. 5.
  • the processing unit 1201 may perform the function of determining the first data stream and performing local QoS adjustment in S315.
  • the transceiver unit 1202 in FIG. 12 can support the device 1200 to communicate with other devices.
  • the transceiving unit 1202 may support the apparatus 1200 to perform the communication process of S312 and S313 in FIG. 5.
  • the UPF in FIG. 6 may be the communication device shown in FIG. 12.
  • the processing unit 1201 in FIG. 12 can support the apparatus 1200 to perform the functions performed by the UPF in FIG. 6.
  • the processing unit 1201 may perform the function of restoring the QoS of the first data stream in S406.
  • the transceiver unit 1202 in FIG. 12 can support the device 1200 to communicate with other devices.
  • the transceiving unit 1202 may support the apparatus 1200 to perform the communication process of S405 in FIG. 6.
  • the network device in FIG. 7 may be a communication device as shown in FIG. 12.
  • the processing unit 1201 in FIG. 12 can support the apparatus 1200 to perform the functions performed by the network device in FIG. 7.
  • the processing unit 1201 may perform the function of performing local QoS adjustment on the first data stream in S502.
  • the transceiver unit 1202 in FIG. 12 can support the device 1200 to communicate with other devices.
  • the transceiving unit 1202 may support the apparatus 1200 to perform the communication process of S501 in FIG. 7.
  • the network device in FIG. 8 may be the communication device shown in FIG. 12.
  • the processing unit 1201 in FIG. 12 can support the apparatus 1200 to perform the functions performed by the network device in FIG. 8.
  • the processing unit 1201 may perform the function of determining the first data stream that meets the characteristic information of the data stream in S602, and the processing unit 1201 may also perform the function of performing local QoS adjustment on the first data stream in S603.
  • the transceiver unit 1202 in FIG. 12 can support the device 1200 to communicate with other devices.
  • the transceiving unit 1202 may support the apparatus 1200 to perform the communication process of S601 in FIG. 8.
  • the functions/implementation process of the transceiving unit 1202 and the processing unit 1201 in FIG. 12 may be implemented by the processor in the communication device of FIG. 11 invoking computer execution instructions stored in the memory.
  • the function/implementation process of the processing unit 1201 in FIG. 12 may be implemented by the processor in the communication device of FIG. 11 calling computer execution instructions stored in the memory, and the function/implementation process of the transceiver unit 1202 in FIG. 12 may be implemented by The communication interface in the communication device of FIG. 11 is implemented.
  • the embodiment of the present application also provides an AMF, the structure of which can refer to the device shown in FIG. 11 or FIG. 12.
  • the AMF can implement the functions of the AMF in FIG. 4, FIG. 5, or FIG. 6 through the processor or processing unit in FIG. 11 or FIG. 12.
  • the embodiment of the present application also provides an SMF, the structure of which can refer to the device shown in FIG. 11 or FIG. 12.
  • the SMF may implement the functions of the SMF in FIG. 4, FIG. 5, or FIG. 6 through the processor or processing unit in FIG. 11 or FIG. 12.
  • the embodiment of the present application also provides a PCF, the structure of which can refer to the device shown in FIG. 11 or FIG. 12.
  • the SMF can implement the functions of the PCF in FIG. 4 or FIG. 5 through the processor or processing unit in FIG. 11 or FIG. 12.
  • the disclosed system, device, and method may be implemented in other ways.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种调整服务质量的方法、装置和***。基于本发明实施例提供的方案,网络设备可以通过指示信息获知能够进行本地服务质量调整的数据流,并可以对该数据流进行本地服务质量调整,从而避免了频繁的PDU会话修改过程的信令来执行服务质量的调整。利用该方案,在调整QoS时可以减少网络设备之间的信令交互,降低时延,提高了QoS调整的效率。该方案可以适用于视频监控领域。

Description

调整服务质量的方法、装置和*** 技术领域
本发明涉及无线通信技术,特别涉及一种调整服务质量的方法、装置和***。
背景技术
在移动通信技术中,可以通过服务质量流(Quality of Service Flow,QoS Flow)为粒度对业务服务质量进行保障,以满足不同的业务需求,例如不同的业务需求需要满足不同的时延,丢包率或抖动等服务质量。在通信过程中,承载业务数据的QoS Flow对服务质量的需求可能发生变化。通过调整QoS Flow的服务质量,可以在合理分配网络资源的同时,满足变化的业务需求。
例如,在视频监控应用中,终端(例如:监控摄像头)可以与监控服务器之间建立PDU会话。为了保证监控视频传输的质量,网络侧设备,例如PCF,根据签约信息或者应用服务器的需求,可以为视频监控的QoS Flow设置保证比特速率(gurantee bitrate,GBR),使网络为该视频监控的数据流分配GBR资源,保证数据流传输的服务质量。另外,为了减少数据传输量,监控摄像头可以内置视频处理算法,对监控视频的数据流执行初步处理,例如人脸识别。监控摄像头将捕捉到的有价值的视频数据流发送到视频监控服务器进行进一步处理。因此,在数据传输过程中,可能不是一直存在高价值的数据包,从而出现某段时间内监控摄像头没有数据传输。可能造成为数据流分配的GBR资源的浪费。此时,可以调整该数据流的服务质量。
然而频繁调整QoS Flow的服务质量会有频繁的信令交互,时延高,效率低。
发明内容
本发明实施例提供了一种调整服务质量的方法、装置和***,用于提高服务质量调整的效率。
第一方面,本申请实施例提供一种调整服务质量的方法,该方法包括:网络设备获取与第一数据流关联的第一指示信息,所述第一指示信息用于指示对所述第一数据流进行本地服务质量QoS调整;响应于所述第一指示信息,所述网络设备对所述第一数据流进行本地QoS调整。网络设备获取第一数据流的标识和所述第一指示信息后,可以获知所述第一指示信息与第一数据流关联。
根据第一方面的方法,网络设备能够根据与第一数据流关联的第一指示信息确定需要进行本地QoS调整的第一数据流,对第一数据流进行本地QoS调整,减少触发其他网元或者设备进行QoS调整的信令交互过程,降低了信令开销,提高了数据处理和传输效率。
作为一种可选的设计,所述响应于所述第一指示信息,所述网络设备对所述第一数据流进行本地QoS调整包括:响应于所述第一指示信息,当所述第一数据流满足第一条件时,所述网络设备对所述第一数据流进行所述本地QoS调整。
作为一种可选的设计,所述第一条件包括以下一种或多种:数据流的传输时间间隔满足第一阈值;或者,数据流的传输速率满足第二阈值;或者,承载数据流的网络设备的负载满足第三阈值;或者,数据流空闲的时间满足第四阈值;或者,承载数据流的网络设备的信令过载。
作为一种可选的设计,所述网络设备对所述第一数据流进行本地QoS调整为:所述网络设备对所述第一数据流进行所述网络设备端的QoS调整且其他网络设备对所述第一数据流的QoS调整不被所述网络设备触发。
作为一种可选的设计,所述网络设备对所述第一数据流进行本地QoS调整包括:保留所述第一数据流的原QoS参数值,对所述第一数据流应用新的QoS参数值;或者,当所述第一数据流为保证比特速率GBR数据流时,将所述第一数据流作为非保证比特速率non-GBR数据流进行处理;或者,当所述第一数据流为non-GBR数据流时,将所述第一数据流作为GBR数据流进行处理;或者,挂起所述第一数据流;或者,保留所述第一数据流的上下文且释放或者修改所述第一数据流的资源。
作为一种可选的设计,所述网络设备恢复所述第一数据流的QoS。
作为一种可选的设计,所述网络设备获取第二指示信息,所述第二指示信息用于指示恢复数据流的QoS。
作为一种可选的设计,所述网络设备获取与第一数据流关联的第一指示信息包括:所述网络设备从AMF、或者SMF获取所述第一指示信息。
作为一种可选的设计,所述网络设备为基站、或者用户面功能UPF。
第二方面,本申请实施例提供一种调整服务质量的方法,该方法包括:网络设备获取数据流的特征信息,所述数据流的特征信息用于确定进行本地QoS调整的数据流;所述网络设备确定满足所述数据流的特征信息的第一数据流;所述网络设备对第一数据流进行本地QoS调整。
根据第二方面的方法,网络设备能够根据数据流的特征信息确定需要进行本地QoS调整的第一数据流,对第一数据流进行本地QoS调整,减少触发其他网元或者设备进行QoS调整的信令交互过程,降低了信令开销,提高了数据处理和传输效率。
作为一种可选的设计,所述数据流的特征信息包括以下一种或多种:QoS参数;或者,业务类型;或者,传输时间间隔的阈值;或者,传输速率的阈值。
作为一种可选的设计,所述网络设备对所述第一数据流进行本地QoS调整为:所述网络设备对所述第一数据流进行所述网络设备端的QoS调整且其他网络设备对所述第一数据流的QoS调整不被所述网络设备触发。
作为一种可选的设计,所述网络设备对所述第一数据流进行本地QoS调整包括:保留所述第一数据流的原QoS参数值,对所述第一数据流应用新的QoS参数值;或者,当所述第一数据流为保证比特速率GBR数据流时,将所述第一数据流作为非保证比特速率non-GBR数据流进行处理;或者,当所述第一数据流为non-GBR数据流时,将所述第一数据流作为GBR数据流进行处理;或者,挂起所述第一数据流;或者,保留所述第一数据流的上下文且释放或者修改所述第一数据流的资源。
作为一种可选的设计,所述网络设备恢复所述第一数据流的QoS。
作为一种可选的设计,所述网络设备获取第二指示信息,所述第二指示信息用于 指示恢复数据流的QoS。
作为一种可选的设计,所述网络设备获取第一数据流的标识和第一指示信息包括:所述网络设备从AMF、或者SMF获取所述第一指示信息。
作为一种可选的设计,所述网络设备为基站、或者用户面功能UPF。
第三方面,本申请实施例提供一种调整服务质量的方法,该方法包括:网络设备发送与第一数据流关联的第一指示信息,所述第一指示信息用于指示对所述第一数据流进行本地服务质量QoS调整。
第四方面,本申请实施例提供一种调整服务质量的方法,该方法包括:网络设备发送数据流的特征信息,所述数据流的特征信息用于确定进行本地QoS调整的数据流。
第五方面,本申请实施例提供一种通信装置,用于实现第一方面的通信装置。第五方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第六方面,本申请实施例提供一种通信装置,用于实现第二方面的通信装置。第六方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第七方面,本申请实施例提供一种通信装置,用于实现第三方面的通信装置。第七方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第八方面,本申请实施例提供一种通信装置,用于实现第四方面的通信装置。第七方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第九方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第一方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第二方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十一方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第三方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十二方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第四方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十三方面,本申请实施例提供一种调整服务质量的方法,包括:发送与第一数据流关联的第一指示信息,该第一指示信息用于指示对该第一数据流进行本地服务质 量QoS调整。可选的,该方法还包括:接收所述第二指示信息,该第二指示信息用于指示对该第一数据流进行本地服务质量QoS调整。
第十三方面的设计可以参考以上各方面相关的设计。
第十四方面,本申请实施例提供一种通信装置,用于实现如第十三方面的方法。该装置可以包括处理器。可选的,该装置可以包括存储器。
第十五方面,本申请实施例提供一种计算机可读存储介质,包括指令,其特征在于,当所述指令在通信装置上执行时,使得所述通信装置实现上述任一种方法。
第十六方面,本申请实施例提供一种计算机程序产品,包括指令,其特征在于,当所述指令在通信装置上执行时,使得所述通信装置实现上述任一种方法。
第十七方面,本申请实施例提供一种通信***,包括第五方面、或者第六方面、或者第九方面、或者第十方面的通信装置。可选的,还包括第七方面或者第十一方面的通信装置。可选的,还包括第八方面或者第十二方面的通信装置。
通过本申请的方案,能够在监测到数据流需要进行QoS调整时对该数据流进行本地QoS调整,减少触发其他网元或者设备进行QoS调整的信令交互过程,降低了信令开销,提高了数据处理和传输效率。
附图说明
图1为本申请实施例提供的一种通信***的示意图;
图2为本申请实施例提供的一种PDU会话结构的示意图;
图3为本申请实施例提供的一种调整服务质量的方法的流程示意图;
图4为本申请实施例提供的另一种调整服务质量的方法的流程示意图;
图5为本申请实施例提供的又一种调整服务质量的方法的流程示意图;
图6为本申请实施例提供的一种恢复服务质量的方法的流程示意图;
图7为本申请实施例提供的又一种调整服务质量的方法的流程示意图;
图8为本申请实施例提供的又一种调整服务质量的方法的流程示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图;
图11为本申请实施例提供的又一种通信装置的结构示意图;
图12为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。
本申请实施例以5G通信***为基础进行技术方案的介绍。本领域技术人员应知,本申请的方案还可以用于4G通信***;随着通信技术的演进和变化,本申请的方案也可适用于其他通信***,例如6G通信***,本申请实施例对此不作限定。
为了便于描述,表1列出了本申请涉及的英文缩略语,英文全称和对应的中文。
英文缩略语 完整的英文表述/英文标准用语 中文表述/中文术语
AMF Access and Mobility Management Function 接入与移动性管理功能
SMF Session Management Function 会话管理功能
UPF User Plane Function 用户面功能
PCF Policy Control Function 策略控制功能
AF Application Function 应用功能
RAN Radio Access Network 无线接入网
NG-RAN next generation radio access network 下一代无线接入网
UE User Equipment 用户设备
DN Data Network 数据网络
IP internet protocol 互联网协议
QoS quality of service 服务质量
ARP allocation retention priority 分配保留优先级
QFI QoS flow identity QoS流标识符
GBR guaranteed flow bit rate 保证比特率
PDU protocol data unit 协议数据单元
CQI channel quality information 信道质量信息
表1
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。在本申请中,网络设备有时可以表达为网元。
图1示出了一种5G通信***的架构示意图,该通信***包括核心网部分和无线接入网部分。核心网可以包括AMF网元、SMF网元、一个或多个UPF网元、PCF网元。AF网元可以与PCF相连,以提供应用服务。UPF可以和DN相连。UE通过该通信***可以访问DN。无线接入网设备可简称为接入网。接入网包括一个或多个接入网设备。
AMF网元是一种用于接入和移动性管理的网元。该网元主要用于接入控制、移动性管理、附着与去附着、和SMF网元选择。该网元可以作为N1和N2信令连接的锚点为SMF提供N1/N2 SM消息的路由。
SMF网元是一种用于会话管理的网元。该网元主要用于提供会话管理的控制面功能,如会话创建、修改、释放。该网元可以为用户分配IP地址、选择和重定向UPF网元。
UPF网元是一种用于用户面处理的网元。该网元主要用于用户面的业务处理,例如数据包的路由转发、QoS映射和执行。该网元可以从DN接收用户数据,通过接入网设备传输给UE;该网元还可以通过接入网设备从UE接收用户数据,转发到DN。该网元中为UE提供服务的传输资源和调度功能由SMF网元管理控制。
PCF网元是一种用于策略控制的网元。该网元主要用于提供统一的策略框架以管理网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。
接入网设备是一种为终端设备提供无线通信功能的设备。接入网设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、施主基站(donor evolved nodeB,DeNB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等。还可以为5G,如新空口(new radio,NR)***中的下一代NB(generation,gNB)或传输点(如TRP或TP),5G***中基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如BBU或分布式单元(distributed unit,DU)等。
DN是一种数据网络。DN主要用于为用户提供业务,可以部署应用业务,比如运营商的业务、互联网接入业务和第三方业务。
AF网元是一种用于应用服务的功能设备。该功能设备主要用于与3GPP核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务。
终端设备,可以简称为终端,是具有无线收发功能的设备,在本申请实施例中可称为UE。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是手机、平板电脑、带无线收发功能的电脑、VR终端、AR终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。
接入网设备通过用户面接口N3和UPF相连,用于传送UE的数据;接入网设备通过控制面接口N2和AMF建立控制面信令连接;AMF通过N1接口与UE建立信令连接;AMF通过N11接口与SMF相连,AMF作为N1和N2信令连接的锚点为SMF提供N1或N2接口SM消息的路由;UPF通过N4接口与SMF相连。
如图2所示,在5G网络中,UE可以通过接入网设备与核心网侧的UPF之间建立至少一个PDU会话(PDU session)。一个PDU会话至少包括一个QoS流。一个QoS流可以用QFI来标识,QFI在每个PDU会话中唯一。一个QoS流的传输单元是数据 包。相同QoS流上的数据包获得相同的QoS保障(如包时延,误包率,优先级等),不同的QoS保障需要不同的QoS流来提供。
PCF可以根据UE的签约信息、应用服务器的需求等信息为QoS流确定QoS参数。QoS参数包括GBR,MBR、ARP等。配置有GBR的数据流是需要保证传输比特率的。例如当网络发生拥塞时,保证该GBR数据流的传输资源。在通信过程中,,接入网设备、或者UE、或者核心网侧设备可以触发PDU会话修改过程以修改PDU会话中的数据流的服务质量。图3示出了一种PDU会话的修改流程,该流程包括:
S101:SMF触发PDU会话修改以修改QoS流的QoS。
该步骤可以基于本地配置的策略或者可以基于接收到了来自接入网设备的触发信令。例如当接入网设备向SMF通知其释放了特定QoS流的资源,SMF则可以触发PDU会话修改。在该示例中,接入网设备通过AMF向SMF发送N2消息,该N2消息中包括QFI,用户位置信息与QOS QoS Flow被释放的指示信息。
S102:SMF与PCF进行SM策略修改过程。
SMF向PCF发送Npcf_SMPolicyControl_Update_request消息。
该消息中可以包括SMF更新的策略信息。
PCF向SMF发送Npcf_SMPolicyControl_Update_response消息,消息中包括PCF授权的更新的策略信息。
可选的,S102a:如果SMF发起的PDU会话修改过程是由接入网触发的,SMF向AMF发送Response of Nsmf_PDUSession_UpdateSMContext消息,消息中包括:N2 SM information,Session-AMBR等。
S103:SMF向接入网设备发送N2 Session Request消息。
该消息中包括N2 SM information,NAS消息等。其中,N2 SM information包括新的QoS参数。
接入网设备接收到新的QoS参数后,根据新的QoS参数为该PDU会话的QoS流进行QoS调整。
S104:接入网设备向UE发送AN-specific resource modifcation消息。
该消息中包括PDU session modification command/Ack.
S105:接入网设备向SMF发送N2 session response消息。
该消息中包括N2 SM information、UE位置等信息。
S106:SMF可能向UPF发送Nsmf_PDUSession_UpdateSMContext Request消息。
Nsmf_PDUSession_UpdateSMContext Request消息包括新的QoS参数。UPF可以根据该新的QoS参数对该PDU会话的QoS流进行QoS调整。
S107:UPF向SMF发送Nsmf_PDUSession_UpdateSMContext Response消息。
上述过程具体可以参考3GPP标准23.502 v16.2.0章节4.3.3.2的内容。
上述QoS的调整过程中网元之间交互信令量较多,涉及的网元设备较多。鉴于视频监控业务的特点,在视频监控数据传输与数据停止传输以及数据重新传输的过程中可能需要频繁调整QoS Flow的服务质量,从而导致上述过程的频繁执行,使得各网元间信令交互频繁,调整QoS的时延高,效率低下。鉴于此,本申请实施例提供一种调整服务质量的方法,用于提高QoS调整的效率。在本申请中,PDU会话是会话的一种, QoS流是数据流的一种。本申请实施例提供的方案不但可适用于QoS流的QoS调整,也可以适用于其他数据流的QoS调整。为了便于叙述,本申请中,对PDU会话的QoS调整是对PDU会话中QoS流的QoS调整的简称。
图4是本申请提出的一种调整服务质量方法的流程示意图。该方法能够用于为数据流调整QoS。例如将原特定QoS参数的数据流的传输资源释放,或者,将原特定QoS参数的数据流的QoS参数修改为不同的QoS参数。与图3所示方法不同的是,图4所示的方法通过网络中的网元或者设备自行进行本地QoS调整,不触发PDU会话修改流程,降低了信令开销,提高了数据处理和传输效率。该方法可应用于视频监控、视频传输等场景时,能够在视频传输时及时调整QoS、提高网络资源利用率的同时,降低这一过程所带来的时延,提高了QoS调整的效率。
如图4所示,该方法包括:
S201:UE向AMF发送PDU会话建立请求。
S202:AMF向SMF发送PDU会话创建会话上下文请求消息。
在S202中,AMF可选择SMF,并向选择的SMF发送该PDU会话创建会话上下文请求消息。
S203:SMF向AMF发送PDU会话创建上下文请求响应消息。
S204:进行PDU会话鉴权/授权过程。
S204为可选过程。
S205:SMF选择PCF网元。
S206:SMF向PCF发送Npcf_SMPolicyControl_Get消息。
S207:PCF进行策略决策。
S208:PCF从UDR获取签约信息;
S208为可选的步骤。
S209:PCF向SMF发送Npcf_SMPolicyControl_Get_response消息。
该消息包括第一数据流的标识。作为一种可选的设计,第一数据流的标识可以是数据包过滤器(packet filter template),或者应用标识(application id)。
可选的,可以由PCF生成指示能够对该第一数据流进行本地QoS调整的指示信息。此时,该消息还包括第一指示信息。该第一指示信息是与该第一数据流关联的指示信息。该第一指示信息用于指示能够对该第一数据流进行本地QoS调整。作为一种可选的设计,第一指示信息可以通过一个参数表达,该参数取值为1时表示能够对该第一数据流进行本地QoS调整,该参数取值为0时表示不能对该第一数据流进行本地QoS调整。作为另一种可选的设计,该第一指示信息可以通过一个枚举值表达,当包括该枚举值时,表示能够对该第一数据流进行本地QoS调整,当不包括该枚举值时,表示不能对该第一数据流进行本地QoS调整。作为另一种可选的设计,该第一指示信息可以通过特定的QFI值来表达,当包括该特定的QFI值时,表示能够对该第一数据流进行本地QoS调整,当不是该特定的QFI值时表示不能对该第一数据流进行本地QoS调整。可选的,能够对该第一数据流进行本地QoS调整也可以理解为对该第一数据流进行本地QoS调整,不能对该第一数据流进行本地QoS调整也可以理解为不对该第一数据流进行本地QoS调整。
可选的,当第一指示信息采用QFI值来表达时,第一数据流的标识和第一指示信息可以复用在一起。即该消息包括第一指示信息,该第一指示信息既指示了第一数据流的标识,又指示了能够对该第一数据流进行本地QoS调整。例如:QFI的取值范围为1-6,将其中取值4-6作为特定的QFI值,当第一指示信息为5时,表示第一数据流的标识为5,且能够对该第一数据流进行本地QoS调整,当第一指示信息为2时,表示第一数据流的标识为2,且不能对该第一数据流进行本地QoS调整。
作为一种可选的实施方式,该消息包括策略与计费控制规则PCC rule,该PCC rule包括该第一数据流的标识和该第一指示信息。
作为一种可选的理解,本地QoS调整可以理解为本地设备(接收到第一指示信息的设备)对该第一数据流进行QoS调整,且***中的其它的设备(例如UE、或者UPF)对本地设备调整该第一数据流的QoS不感知。
作为另一种可选的理解,本地QOS调整可以理解为本地设备(接收到第一指示信息的设备)对该第一数据流进行该本地设备端的QoS调整,且其他网络设备对该第一数据流的QoS调整不被该本地设备触发。
作为再一种可选的理解,本地QoS调整可以理解为本地设备(接收到第一指示信息的设备)对该第一数据流进行该本地设备端的QoS调整,且该本地设备不发起涉及其他网络设备的QoS修改流程(例如图3所示的流程)。
对该第一数据流进行该本地设备端的QoS调整也可以理解为在本地设备上对该第一数据流进行QoS调整。
S210:SMF向AMF发送Namf_communication_N1N2transfer information消息。
可选的,可以由SMF生成指示能够对该第一数据流进行本地QoS调整的指示信息。
该消息包括该第一数据流的标识和第二指示信息。该第二指示信息是与该第一数据流关联的指示信息。该第二指示信息的作用与第一指示信息的作用相同,用于指示能够对该第一数据流进行本地QoS调整。该第二指示信息的设计可以参考第一指示信息的设计。第二指示信息的设计可以与第一指示信息的设计相同或者不同,即第二指示信息的数据结构或者表现形式可以与第一指示信息的数据结构或者表现形式相同或者不相同。需要说明的是,该第一数据流可以是一个或多个数据流。
可选的,当第二指示信息采用QFI值来表达时,第一数据流的标识和第二指示信息可以复用在一起。即该消息包括第二指示信息,该第二指示信息既指示了第一数据流的标识,又指示了能够对该第一数据流进行本地QoS调整。例如:QFI的取值范围为1-6,将其中取值4-6作为特定的QFI值,当第二指示信息为5时,表示第一数据流的标识为5,且能够对该第一数据流进行本地QoS调整,当第二指示信息为2时,表示第一数据流的标识为2,且不能对该第一数据流进行本地QoS调整。
作为一种可选的设计,S210中的该第一数据流的标识可以是QFI,或者PDU session ID。当该第一数据流的标识是QFI时,该第一数据流为该QFI所对应的数据流;当该第一数据流的标识为PDU session ID时,该第一数据流是该PDU session ID对应的PDU会话中的数据流。
S211:AMF向接入网设备发送N2 PDU会话请求消息。
该N2 PDU会话请求消息可以包括第三指示信息。该第三指示信息是与该第一数据流关联的指示信息。该第三指示信息的作用与第一指示信息和第二指示信息的作用相同,用于指示能够对该第一数据流进行本地QoS调整。该第三指示信息的设计可以参考第一指示信息的设计。第三指示信息的设计可以与第一指示信息或者第二指示信息的设计相同或者不同,即第三指示信息的数据结构或者表现形式可以与第一指示信息或者第二指示信息的数据结构或者表现形式相同或者不相同。
可选的,该N2 PDU会话请求消息还可以包括该第一数据流的标识。
可选的,当第三指示信息采用QFI值来表达时,第一数据流的标识和第三指示信息可以复用在一起。即该消息包括第三指示信息,该第三指示信息既指示了第一数据流的标识,又指示了能够对该第一数据流进行本地QoS调整。例如:QFI的取值范围为1-6,将其中取值4-6作为特定的QFI值,当第三指示信息为5时,表示第一数据流的标识为5,且能够对该第一数据流进行本地QoS调整,当第三指示信息为2时,表示第一数据流的标识为2,且不能对该第一数据流进行本地QoS调整。
S211中的第一数据流的标识的设计可以参考S210中第一数据流的标识的设计。S211中的第一数据流的标识的设计可以与S210中第一数据流标识的设计相同或者不相同,即S211中的第一数据流的标识的数据结构或者表现形式可以与S210中第一数据流标识的数据结构或者表现形式相同或者不相同。
可选的,若接入网设备收到的N2 PDU会话请求消息不包括第一数据流的标识,则可以认为该第一数据流可以是该UE的数据流。
接入网设备收到第三指示信息后,可以获知该第一数据流能够进行本地QoS调整。
S212:SMF向UPF发送N4会话建立请求消息。
该N4会话建立请求消息包括该第一数据流的标识和第四指示信息。该第四指示信息是与该第一数据流关联的指示信息。该第四指示信息的作用与第一指示信息、第二指示信息、和第三指示信息的作用相同,用于指示能够对该第一数据流进行本地QoS调整。该第四指示信息的设计可以参考第一指示信息的设计。该第四指示信息的设计可以与第一指示信息、第二指示信息、或者第三指示信息的设计相同或者不同,即第四指示信息的数据结构或者表现形式可以与第一指示信息、第二指示信息、或者第三指示信息的数据结构或者表现形式相同或者不相同。
可选的,当第四指示信息采用QFI值来表达时,第一数据流的标识和第四指示信息可以复用在一起。即该消息包括第四指示信息,该第四指示信息既指示了第一数据流的标识,又指示了能够对该第一数据流进行本地QoS调整。例如:QFI的取值范围为1-6,将其中取值4-6作为特定的QFI值,当第四指示信息为5时,表示第一数据流的标识为5,且能够对该第一数据流进行本地QoS调整,当第四指示信息为2时,表示第一数据流的标识为2,且不能对该第一数据流进行本地QoS调整。
S212中的该第一数据流的标识的设计可以参考S209和S210中第一数据流的标识的设计。例如,S212中该第一数据流的标识可以是数据包过滤器、应用标识、QFI、或者PDU session ID。S212中该第一数据流的标识的设计可以与S209、S210和S211中第一数据流标识的设计相同或者不相同,即S212中的第一数据流的标识的数据结构或者表现形式可以与S209、S210和S211中第一数据流标识的数据结构或者表现形式 相同或者不相同。
UPF收到第四指示信息后,可以获知该第一数据流能够进行本地QoS调整。
S213:UPF向SMF发送N4会话建立响应消息。
该响应消息为S212的响应消息。
在获知能够进行本地QoS调整的数据流后,接入网设备或者UPF可以根据业务需要对该数据流进行本地QoS调整。如S214和S215所示。
S214:接入网设备对该第一数据流进行本地QoS调整。
作为一种可选的设计,对第一数据流进行本地QoS调整可以包括但不限于以下一种或多种实施方式:
a)保留第一数据流的原QoS参数值,对第一数据流应用新的QoS参数值;
该新的QoS参数值可以是协议规定的、预配置的、或者是由PCF下发的。
b)当第一数据流为保证比特速率GBR数据流时,将第一数据流作为非保证比特速率non-GBR数据流进行处理;
c)当第一数据流为non-GBR数据流时,将第一数据流作为GBR数据流进行处理;
d)挂起第一数据流的资源;
例如:将该第一数据流的资源用于传输其它的数据流,而不传输该数据流,但是保留该数据流的上下文信息。
e)保留第一数据流的上下文且释放或者修改第一数据流的资源。
可选的,在S214中,接入网设备可以在第一数据流满足第一条件的情况下,对第一数据流进行本地QoS调整。该第一条件包括但不限于以下一种或多种条件:
a)数据流的传输时间间隔满足第一阈值;
例如,该第一阈值为10秒,该数据流的数据包的传输时间间隔超过10秒时,认为满足条件a)。该传输时间间隔可以是一段时间内的采样值或者是均值。
b)数据流的传输速率满足第二阈值;
例如,当发生拥塞等情况时,接入网设备上的数据流的传输速率明显下降,比如,最高传输速率只有500K时,认为满足条件b)。该传输速率可以是一段时间内的采样值或者平均值。
c)承载数据流的网络设备的负载满足第三阈值;
例如,当承载数据流的网络设备的负载达到90%时,认为满足条件c)。该负载可以是一段时间内的采样值或者均值。
d)数据流空闲的时间满足第四阈值;
例如,当该数据流在30秒内无数据包传输时,认为满足条件d)。该空闲的时间可以是一段时间内的采样值或者均值。
e)承载数据流的网络设备的信令过载。
例如,当该设备的信令负荷达到80%时,认为满足条件e)。该信令负荷可以是一段时间内的采样值或者均值
可选的,该第一条件可以是协议规定的、由网管***预配置的、或者由PCF下发的。作为一种示例,PCF可以通过S209的消息将第一条件下发给SMF,SMF通过S210的消息将该第一条件发送给AMF,AMF通过S211的消息将该第一条件发送到接入网 设备。在第一条件的传递过程中,第一条件的数据结构或者表达方式可以发生变化。
在S214中,接入网设备在需要的时候可以对第一数据流进行本地QoS调整,本申请不限制具体执行本地QOS调整的时机。通过S214可以不触发PDU会话修改过程来实现数据流的QoS调整,在需要频繁进行QoS调整的场景中,减少了网元之间的信令交互,降低时延,提高了QoS调整的数据处理和传输效率。
可选的,在接入网设备对第一数据流采用上述本地QoS调整的实施方式时,接入网设备可以通知UE其对第一数据流进行了本地QoS调整。这样UE可以作出相应的QoS调整,例如:保留该第一数据流的上下文并释放或者修改该第一数据流的传输资源。
S215:UPF对第一数据流进行本地QoS调整。
作为一种可选的设计,对第一数据流进行本地QoS调整可以参考S214中本地QoS调整的设计。S215中本地QoS调整的方式可以与S214中本地QoS调整的方式相同或者不同。例如S215中采用本地QoS调整的实施方式a),并且在S214中采用本地QoS调整的实施方式b)。对于实施方式a),S215应用的新的QoS参数值可以与S214应用的新的QoS参数值相同或者不同。
可选的,在S215中,UPF可以在第一数据流满足第二条件的情况下,对第一数据流进行本地QoS调整。该第二条件可以与第一条件相同或者不同。例如:该第二条件包括但不限于以下一种或多种条件:
a)数据流的传输时间间隔满足第五阈值;
b)数据流的传输速率满足第六阈值;
c)承载数据流的网络设备的负载满足第七阈值;
d)数据流空闲的时间满足第八阈值;
e)承载数据流的网络设备的信令过载。
其中,第五阈值可以与第一阈值相同或者不同,第六阈值可以与第二阈值相同或者不同,第七阈值可以与第三阈值相同或者不同,第四阈值可以与第八阈值相同或者不同。
例如,在S215中UPF可以检测第一数据流是否满足条件a)来启动对第一数据流进行本地QoS调整,在S214中接入网设备也可以检测第一数据流是否满足条件a)来启动对第一数据流进行本地QoS调整。
又例如,在S215中UPF可以检测第一数据流是否满足条件a)来启动对第一数据流进行本地QoS调整,在S214中接入网设备可以检测第一数据流是否满足条件b)来启动对第一数据流进行本地QoS调整。
可选的,该第二条件可以是协议规定的、由网管***预配置的、或者由PCF下发的。作为一种示例,PCF可以通过S209的消息将第二条件下发给SMF,SMF通过S212的消息将该第二条件发送给UPF。在第二条件的传递过程中,第二条件的数据结构或者表达方式可以发生变化。
在S215中,UPF在需要的时候可以对第一数据流进行本地QoS调整,从而可以不触发PDU会话修改过程来实现数据流的QoS调整,在需要频繁进行QoS调整的场景中,减少了网元之间的信令交互,降低时延,提高了QoS调整的数据处理和传输效 率。
上述S214和S215执行的时序本申请实施例对此不作限定。可选的,S214和S215可以都被执行,也有可能执行S214而不执行S215,或者有可能执行S215而不执行S214。
基于上述方法,接入网设备和UPF可以分别获知能够进行本地QoS调整的数据流,并自行进行本地QoS调整。与图3所示的方法相比,本申请实施例提供的数据流QoS调整的方法可以不触发PDU会话修改流程,降低了信令开销,提高了数据处理和传输效率。该方法在应用于视频监控、视频传输等场景时,能够在视频传输时及时调整QoS、提高网络资源利用率的同时,降低这一过程所带来的时延,提高了视频业务的体验。
图4所示的方法作为一种示例描述了通过PDU会话建立流程将指示数据流能够进行本地QoS调整的信息下发到数据面相关的网络设备(例如基站,UPF)的过程。作为其他可选的实施方式,也可以通过例如PDU会话修改流程等其他能够在各个网元间传递信息的流程将指示数据流能够进行本地QoS调整的信息下发到数据面相关的网元。进行本地QoS调整的网络设备除了基站和UPF,也可以是其他数据面相关的网元。
本申请实施例还提出一种调整服务质量的方法。该方法为图4所示方法的一种变形。与图4所示的方法的区别在于:进行本地QoS调整的设备根据数据流的特征信息确定进行本地QoS调整的数据流。。如图5所示,该方法包括:
S301:UE向AMF发送PDU会话建立请求。
S302:AMF向SMF发送PDU会话创建会话上下文请求消息。
S303:SMF向AMF发送PDU会话创建上下文请求响应消息。
S304:进行PDU会话鉴权/授权过程。
S305:SMF选择PCF网元。
S306:SMF向PCF发送Npcf_SMPolicyControl_Get消息。
S307:PCF进行策略决策。
S308:PCF从UDR获取签约信息;
S301至S308可以参考S201至S208,此处不作赘述。
S309:PCF向SMF发送Npcf_SMPolicyControl_Get_response消息。
该消息包括数据流的第一特征信息,该数据流的第一特征信息用于确定进行本地QoS调整的数据流。
作为一种可选的设计,该数据流的第一特征信息包括以下一项或多项特征参数:
a)QoS参数;
例如,针对CQI为特定值的数据流执行本地QOS调整,或者,针对ARP为特定值的数据流执行本地QoS调整。
b)业务类型;
例如,对于视频业务类型执行本地QoS调整。
c)传输时间间隔的阈值;
例如,对于数据包的传输时间间隔为30秒的数据包执行本地QoS调整。该传输时间间隔可以是一段时间内的采样值或者均值。
d)传输速率的阈值。
例如,对于数据流的传输速率为50K的数据流执行本地QoS调整。该传输速率可以是一段时间内的采样值或者均值。
当某个数据流满足该第一特征信息时,可以对该数据流进行本地QoS调整。
S310:SMF向AMF发送Namf_communication_N1N2transfer information消息。
该消息包括数据流的第二特征信息。该第二特征信息与第一特征信息的作用相同,用于确定进行本地QoS调整的数据流。该第二特征信息的设计可以参考第一特征信息的设计。该第二特征信息的数据结构或者表现形式可以与第一特征信息的数据结构或者表现形式相同或者不同。通过第二特征信息确定出的数据流与通过第一特征信息确定出的数据流相同。
S311:AMF向接入网设备发送N2 PDU会话请求消息。
该消息包括数据流的第三特征信息。该第三特征信息与第一特征信息和第二特征信息的作用相同,用于确定进行本地QoS调整的数据流。该第三特征信息的设计可以参考第一特征信息的设计。该第三特征信息的数据结构或者表现形式可以与第一特征信息或者第二特征信息的数据结构或者表现形式相同或者不同。通过第三特征信息确定出的数据流与通过第一特征信息或者第二特征信息确定出的数据流相同。接入网设备接收到第三特征信息后,可以确定出满足该第三特征信息的第一数据流,该第一数据流即为要进行本地QoS调整的数据流。该第一数据流的数量可以是一个或多个。
S312:SMF向UPF发送N4会话建立请求消息。
该消息包括数据流的第四特征信息。该第四特征信息与第一特征信息、第二特征信息、以及第三特征信息的作用相同,用于确定进行本地QoS调整的数据流。该第四特征信息的设计可以参考第一特征信息的设计。该第四特征信息的数据结构或者表现形式可以与第一特征信息、第二特征信息、或者第三特征信息的数据结构或者表现形式相同或者不同。通过第四特征信息确定出的数据流与通过第一特征信息、第二特征信息、或者第三特征信息确定出的数据流相同。
UPF接收到第四特征信息后,可以确定出满足该第四特征信息的第一数据流,该第一数据流即为要进行本地QoS调整的数据流。该第一数据流的数量可以是一个或多个。
S313:UPF向SMF发送N4会话建立响应消息。
该响应消息为S312的响应消息。
在获知能够进行本地QoS调整的数据流后,接入网设备或者UPF可以根据业务需要对该数据流进行本地QoS调整。如S314和S315所示。
S314:接入网设备对该第一数据流进行本地QoS调整。
接入网设备对该第一数据流进行本地QoS调整可以参考S214,此处不作赘述。
在S314中,接入网设备通过数据流的特征信息可以匹配出进行本地QoS调整的数据流并对该数据流进行本地QoS调整,从而可以不触发PDU会话修改过程来实现数据流的QoS调整,在需要频繁进行QoS调整的场景中,减少了网元之间的信令交互,降低时延,提高了QoS调整的数据处理和传输效率。
S315:UPF对第一数据流进行本地QoS调整。
UPF对该第一数据流进行本地QoS调整可以参考S215,此处不作赘述。
在S315中,UPF通过数据流的特征信息可以匹配出进行本地QoS调整的数据流并对该数据流进行本地QoS调整,从而可以不触发PDU会话修改过程来实现数据流的QoS调整,在需要频繁进行QoS调整的场景中,减少了网元之间的信令交互,降低时延,提高了QoS调整的数据处理和传输效率。
上述S314和S315执行的时序本申请实施例对此不作限定。可选的,S314和S315可以都被执行,也有可能执行S314而不执行S315,或者有可能执行S315而不执行S314。
基于上述方法,接入网设备和UPF可以分别获知能够进行本地QoS调整的数据流,并自行进行本地QoS调整。与图3所示的方法相比,本申请实施例提供的数据流QoS调整的方法可以不触发PDU会话修改流程,降低了信令开销,提高了数据处理和传输效率。该方法在应用于视频监控、视频传输等场景时,能够在视频传输时及时调整QoS、提高网络资源利用率的同时,降低这一过程所带来的时延,提高了视频业务的体验。
图5所示的方法作为一种示例描述了通过PDU会话建立流程将上述数据流的特征信息下发到数据面相关的网络设备(例如基站,UPF)的过程。作为其他可选的实施方式,也可以通过例如PDU会话修改流程等其他能够在各个网元间传递信息的流程将上述数据流的特征信息下发到数据面相关的网元。进行本地QoS调整的网络设备除了基站和UPF,也可以是其他数据面相关的网元。
通过上述方法,数据面相关的网元可以在本地自行对数据流的QoS进行调整。根据业务需求,有时需要恢复该数据流原有的服务指令。为此,本申请实施例还提供一种调整QoS的方法,用以恢复数据流的QoS。
如图6所示,,该方法包括:
S401:UE向接入网设备发送请求消息。
该请求消息用于为上行数据请求传输资源。当接入网设备接收到该请求消息后,可以恢复第一数据流的QoS。
作为一种可选的设计,该请求消息包括第六指示信息,该第六指示信息用于指示恢复第一数据流的QoS。可选的,该第六指示信息包括该第一数据流的标识或者第一数据流的原QoS参数值。
第一数据流的标识的设计可以参见图4和图5所示方法的相关说明,此处不作赘述。
S402:接入网设备恢复第一数据流的QoS。
作为一种可选的设计,恢复第一数据流的QoS可以包括以下一项或多项实施方式:
a)对第一数据流应用原QoS参数值;
b)将第一数据流恢复为GBR数据流;
c)将第一数据流恢复为non-GBR数据流;
d)取消挂起第一数据流;
e)根据保留的第一数据流的上下文恢复第一数据流的资源。
S403:接入网设备向AMF发送第七指示信息。
该第七指示信息用于指示恢复第一数据流的QoS。第七指示信息的设计可以参考 第六指示信息的设计。第七指示信息的数据结构或者表达形式可以与第六指示信息相同或者不同。
S404:AMF向SMF发送第八指示信息。
该第八指示信息用于指示恢复第一数据流的QoS。第八指示信息的设计可以参考第六指示信息的设计。第八指示信息的数据结构或者表达形式可以与第六指示信息或者第七指示信息相同或者不同。
S405:SMF向UPF发送第九指示信息。
该第九指示信息用于指示恢复第一数据流的QoS。第九指示信息的设计可以参考第六指示信息的设计。第九指示信息的数据结构或者表达形式可以与第六指示信息、第七指示信息、或者第八指示信息相同或者不同。
S406:UPF恢复第一数据流的QoS。
作为一种可选的设计,恢复第一数据流的QoS可以包括以下一项或多项实施方式:
a)对第一数据流应用原QoS参数值;
b)将第一数据流恢复为GBR数据流;
c)将第一数据流恢复为non-GBR数据流;
d)取消挂起第一数据流;
e)根据保留的第一数据流的上下文恢复第一数据流的资源。
S406与S402中恢复第一数据流的QoS的实施方式相同或者不同。
通过该方法,在需要恢复数据流QoS时,可以通知各个用户面相关的网元(例如基站,UPF)恢复数据流的QoS,以满足业务的需要。
作为另一种可选的实施方式,在本申请中各个用户面相关的网元也可以根据预设的条件来自行恢复第一数据流的QoS。具体恢复第一数据流的QoS可以参考图6中相关内容的说明。此时,并不要如图6中各个网元之间的信令交互来传递上述指示信息。通过该实施方式,可以进一步减少数据流进行QoS调整的信令交互,使得QoS调整的效率更高。
基于图4和图6的方法,本申请实施例提供一种调整数据流服务质量的方法。该方法从进行本地QoS调整的网络设备侧进行描述。如图7所示,该方法包括:
S501:网络设备获取与第一数据流关联的第一指示信息。
其中,该第一指示信息用于指示对第一数据流进行本地服务质量QoS调整。
具体可参考S209至S212。
S502:网络设备对第一数据流进行本地QoS调整。
响应于第一指示信息,网络设备对第一数据流进行本地QoS调整。
具体可参考S214,S215。
可选的,响应于第一指示信息,网络设备对第一数据流进行本地QoS调整包括:响应于第一指示信息,当第一数据流满足第一条件时,网络设备对第一数据流进行本地QoS调整。具体可参考S214,S215。
可选的,第一条件包括以下一种或多种:数据流的传输时间间隔满足第一阈值;或者,数据流的传输速率满足第二阈值;或者,承载数据流的网络设备的负载满足第三阈值;或者,数据流空闲的时间满足第四阈值;或者,承载数据流的网络设备的信 令过载。具体可参考S214,S215。
可选的,网络设备对第一数据流进行本地QoS调整为:网络设备对第一数据流进行网络设备端的QoS调整且其他网络设备对第一数据流的QoS调整不被网络设备触发。具体可参考S214,S215。
可选的,网络设备对第一数据流进行本地QoS调整包括:保留第一数据流的原QoS参数值,对第一数据流应用新的QoS参数值;或者,当第一数据流为保证比特速率GBR数据流时,将第一数据流作为非保证比特速率non-GBR数据流进行处理;或者,当第一数据流为non-GBR数据流时,将第一数据流作为GBR数据流进行处理;或者,挂起第一数据流;或者,保留第一数据流的上下文且释放或者修改第一数据流的资源。具体可参考S214,S215,S314,S315。
可选的,网络设备恢复第一数据流的QoS。具体可参考S402,S406。
可选的,网络设备获取第二指示信息,第二指示信息用于指示恢复数据流的QoS。具体可参考S401,S405。
可选的,网络设备获取与第一数据流关联的第一指示信息包括:网络设备从AMF、或者SMF获取第一指示信息。具体可参考S209至S212。
可选的,网络设备为基站、或者用户面功能UPF。具体可参考S209至S212。
基于上述方法,网络设备可以根据与第一数据流关联的第一指示信息确定进行本地QoS调整的第一数据流,并进行本地QoS调整。本地QoS调整能够减少触发其他网元进行QoS调整的信令交互过程,降低了信令开销,提高了数据处理和传输效率。当上述方法应用于视频监控、视频传输等场景时,能够在为视频传输及时调整QoS、提高网络资源利用率的同时,降低这一过程所带来的时延。
基于图5和图6的方法,本申请实施例提供一种调整数据流服务质量的方法。该方法从进行本地QoS调整的网络设备侧进行描述。如图8所示,该方法包括:
S601:网络设备获取数据流的特征信息。
其中,数据流的特征信息用于确定进行本地QoS调整的数据流。
具体可参考S309至S312。
S602:网络设备确定满足数据流的特征信息的第一数据流。
具体可参考S214,S215。
S603:网络设备对第一数据流进行本地QoS调整。
具体可参考S214,S215。
可选的,数据流的特征信息包括以下一种或多种:QoS参数;或者,业务类型;或者,传输时间间隔的阈值;或者,传输速率的阈值。具体可参考S214,S215。
可选的,网络设备对第一数据流进行本地QoS调整为:网络设备对第一数据流进行网络设备端的QoS调整且其他网络设备对第一数据流的QoS调整不被网络设备触发。具体可参考S214,S215。
可选的,网络设备对第一数据流进行本地QoS调整包括:保留第一数据流的原QoS参数值,对第一数据流应用新的QoS参数值;或者,当第一数据流为保证比特速率GBR数据流时,将第一数据流作为非保证比特速率non-GBR数据流进行处理;或者,当第一数据流为non-GBR数据流时,将第一数据流作为GBR数据流进行处理; 或者,挂起第一数据流;或者,保留第一数据流的上下文且释放或者修改第一数据流的资源。具体可参考S214,S215。
可选的,网络设备恢复第一数据流的QoS。具体可参考S402,S406。
可选的,网络设备获取第二指示信息,第二指示信息用于指示恢复数据流的QoS。具体可参考S401,S405。
可选的,网络设备获取第一数据流的标识和第一指示信息包括:网络设备从AMF、或者SMF获取第一指示信息。具体可参考S309至S312。
可选的,网络设备为基站、或者用户面功能UPF。具体可参考S309至S312。
基于上述方法,网络设备可以根据数据流的特征信息确定进行本地QoS调整的第一数据流,并进行本地QoS调整。本地QoS调整能够减少触发其他网元进行QoS调整的信令交互过程,降低了信令开销,提高了数据处理和传输效率。当上述方法应用于视频监控、视频传输等场景时,能够在为视频传输及时调整QoS、提高网络资源利用率的同时,降低这一过程所带来的时延。
图9所示是本申请实施例提供的一种通信装置的结构示意图。该通信装置900包括天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收终端设备发送的信息,将终端设备发送的信息发送给基带装置903进行处理。在下行方向上,基带装置903对终端设备的信息进行处理,并发送给射频装置902,射频装置902对终端设备的信息进行处理后经过天线901发送给终端设备。
基带装置903可以包括一个或多个处理元件9031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置903还可以包括存储元件9032和接口9033。存储元件9032用于存储执行本申请方案的计算机执行指令,并由处理元件9031来控制执行;接口9033用于与其它装置通信(例如核心网网元)。本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
可选的,图4中的接入网设备可以是如图9所示的通信装置。图9中的处理元件9031可以支持装置900执行图4中由接入网设备完成的功能。例如,处理元件9031可以执行S214中确定第一数据流并进行本地QoS调整的功能。图9中的接口9033可以支持装置900与其他装置进行通信。例如,接口9033可以支持装置900执行图4中S211的通信过程。
可选的,图5中的接入网设备可以是如图9所示的通信装置。图9中的处理元件9031可以支持装置900执行图5中由接入网设备完成的功能。例如,处理元件9031可以执行S314中确定第一数据流并进行本地QoS调整的功能。图9中的接口9033可以支持装置900与其他装置进行通信。例如,接口9033可以支持装置900执行图5中S311的通信过程。
可选的,图6中的接入网设备可以是如图9所示的通信装置。图9中的处理元件9031可以支持装置900执行图6中由接入网设备完成的功能。例如,处理元件9031可以执行S402中确定第一数据流并为第一数据流恢复QoS的功能。图9中的接口9033可以支持装置900与其他装置进行通信。例如,接口9033可以支持装置900执行图6中S403的通信过程。图9中的天线901和射频装置902可以支持装置900与UE进行 通信。例如,装置900可以通过天线901和射频装置902实现S401的通信过程。
可选的,图7中的网络设备可以是如图9所示的通信装置。图9中的处理元件9031可以支持装置900执行图7中由网络设备完成的功能。例如,处理元件9031可以执行S502中对第一数据流进行本地QoS调整的功能。图9中的接口9033可以支持装置900与其他装置进行通信。例如,接口9033可以支持装置900执行图7中S501的通信过程。
可选的,图8中的网络设备可以是图9所示的通信装置。图9中的处理元件9031可以支持装置900执行图8中由网络设备完成的功能。例如,处理元件9031可以执行S602中确定满足数据流的特征信息的第一数据流的功能,处理元件9031还可以执行S603中对第一数据流进行本地QoS调整的功能。图9中的接口9033可以支持装置900与其他装置进行通信。例如,接口9033可以支持装置900执行图8中S601的通信过程。
以上各个实施例中,由接入网设备实现的方法和/或步骤,也可以由基带装置903上的芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上接入网设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。
图10所示是本申请实施例提供的一种通信装置。本申请实施例可以根据上述方法实施例中对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的单元集成在一个处理模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图10所示为本申请实施例提供的通信装置1000的结构示意图。该通信装置1000包括处理单元1001和收发单元1002。
可选的,图4中的接入网设备可以是图10所示的通信装置。图10中的处理单元1001可以支持装置1000执行图4中由接入网设备完成的功能。例如,处理单元1001可以执行S214中确定第一数据流并进行本地QoS调整的功能。图10中的收发单元1002可以支持装置1000与其他装置进行通信。例如,收发单元1002可以支持装置1000执行图4中S211的通信过程。
可选的,图5中的接入网设备可以是图10所示的通信装置。图10中的处理单元1001可以支持装置1000执行图5中由接入网设备完成的功能。例如,处理单元1001可以执行S314中确定第一数据流并进行本地QoS调整的功能。图10中的收发单元1002可以支持装置1000与其他装置进行通信。例如,收发单元1002可以支持装置1000执行图5中S311的通信过程。
可选的,图6中的接入网设备可以是图10所示的通信装置。图10中的处理单元1001可以支持装置1000执行图6中由接入网设备完成的功能。例如,处理单元1001可以执行S402中确定第一数据流并为第一数据流恢复QoS的功能。图10中的收发单元1002可以支持装置1000与其他装置进行通信。例如,收发单元1002可以支持装置1000执行图6中S401,S403的通信过程。具体的,该收发单元1002可以包括第一收发单元和第二收发单元,第一收发单元用于与UE进行通信,第二收发单元用于与核 心网网元进行通信。
可选的,图7中的网络设备可以是图10所示的通信装置。图10中的处理单元1001可以支持装置1000执行图7中由网络设备完成的功能。例如,处理单元1001可以执行S502中对第一数据流进行本地QoS调整的功能。图10中的收发单元1002可以支持装置1000与其他装置进行通信。例如,收发单元1002可以支持装置1000执行图7中S501的通信过程。
可选的,图8中的网络设备可以是图10所示的通信装置。图10中的处理单元1001可以支持装置1000执行图8中由网络设备完成的功能。例如,处理单元1001可以执行S602中确定满足数据流的特征信息的第一数据流的功能,处理单元1001还可以执行S603中对第一数据流进行本地QoS调整的功能。图10中的收发单元1002可以支持装置1000与其他装置进行通信。例如,收发单元1002可以支持装置1000执行图8中S601的通信过程。
具体的,图10中的收发单元1002和处理单元1001的功能/实现过程可以通过图9的通信装置中的处理器调用存储器中存储的计算机执行指令来实现。或者,图10中的处理单元1001的功能/实现过程可以通过图9的通信装置中的处理器调用存储器中存储的计算机执行指令来实现,图10中的收发单元1002的功能/实现过程可以通过图9的通信装置中的通信接口来实现。
图11所示为本申请实施例提供的通信装置1100的结构示意图。该通信装置1100包括一个或多个处理器1101,通信线路1102,以及至少一个通信接口(图11中仅是示例性的以包括通信接口1103,以及一个处理器1101为例进行说明),可选的还可以包括存储器1104。
处理器1101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路1102用于连接不同组件。
通信接口1103,可以是收发模块用于与其他设备或通信装置或通信网络,如以太网等。例如,上述收发模块可以是网卡,光纤交换装置。可选的,通信接口1103也可以是位于处理器1101内的收发电路,用以实现处理器的信号输入和信号输出。
存储器1104可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1102与处理器相连接。存储器也可以和处理器集成在一起。其中,存储器1104用于存储执行本申请方案的计算机执行指令,并由处理器1101来控制执行。处理器1101用于执行存储器1104中存储的计算机执行指令。本申请实施 例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1101可以包括一个或多个CPU,例如图11中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1100可以包括多个处理器,例如图11中的处理器1101和处理器1105。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的通信装置1100可以是一个通用装置或者是一个专用装置。例如通信装置1100可以是网络服务器、嵌入式设备或具有图11中类似结构的设备。本申请实施例不限定通信装置1100的类型。
可选的,图4中的UPF可以是如图11所示的通信装置。图11中的处理器1101可以支持装置1100执行图4中由UPF完成的功能。例如,处理器1101可以执行S215中确定第一数据流并进行本地QoS调整的功能。图11中的通信接口1103可以支持装置1100与其他装置进行通信。例如,通信接口1103可以支持装置1100执行图4中S212,S213的通信过程。
可选的,图5中的UPF可以是如图11所示的通信装置。图11中的处理器1101可以支持装置1100执行图5中由UPF完成的功能。例如,处理器1101可以执行S315中确定第一数据流并进行本地QoS调整的功能。图11中的通信接口1103可以支持装置1100与其他装置进行通信。例如,通信接口1103可以支持装置1100执行图5中S312,S313的通信过程。
可选的,图6中的UPF可以是图10所示的通信装置。图11中的处理器1101可以支持装置1100执行图6中由UPF完成的功能。例如,处理器11031可以执行S406中确定第一数据流并为第一数据流恢复QoS的功能。图11中的通信接口1103可以支持装置1100与其他装置进行通信。例如,通信接口1103可以支持装置1100执行图6中S405的通信过程。
可选的,图7中的网络设备可以是图11所示的通信装置。图11中的处理器1101可以支持装置1100执行图7中由网络设备完成的功能。例如,处理器1101可以执行S502中对第一数据流进行本地QoS调整的功能。图11中的通信接口1103可以支持装置1100与其他装置进行通信。例如,通信接口1103可以支持装置1100执行图7中S501的通信过程。
可选的,图8中的网络设备可以是图11所示的通信装置。图11中的处理器11031可以支持装置1100执行图8中由网络设备完成的功能。例如,处理器1101可以执行S602中确定满足数据流的特征信息的第一数据流的功能,处理元件1101还可以执行S603中对第一数据流进行本地QoS调整的功能。图11中的通信接口1103可以支持装置1100与其他装置进行通信。例如,通信接口1103可以支持装置1100执行图8中S601的通信过程。
可以理解的是,以上各个实施例中,由UPF实现的方法和/或步骤,也可以由实现上述第一网元或者第一装置功能的芯片***实现。
图12所示为本申请实施例提供的通信装置1200的结构示意图。该通信装置1200 包括处理单元1201和收发单元1202。
可选的,图4中的UPF可以是如图12所示的通信装置。图12中的处理单元1201可以支持装置1200执行图4中由UPF完成的功能。例如,处理单元1201可以执行S215中确定第一数据流并进行本地QoS调整的功能。图12中的收发单元1202可以支持装置1200与其他装置进行通信。例如,收发单元1202可以支持装置1200执行图4中S212,S213的通信过程。
可选的,图5中的UPF可以是如图12所示的通信装置。图12中的处理单元1201可以支持装置1200执行图5中由UPF完成的功能。例如,处理单元1201可以执行S315中确定第一数据流并进行本地QoS调整的功能。图12中的收发单元1202可以支持装置1200与其他装置进行通信。例如,收发单元1202可以支持装置1200执行图5中S312,S313的通信过程。
可选的,图6中的UPF可以是图12所示的通信装置。图12中的处理单元1201可以支持装置1200执行图6中由UPF完成的功能。例如,处理单元1201可以执行S406中恢复第一数据流QoS的功能。图12中的收发单元1202可以支持装置1200与其他装置进行通信。例如,收发单元1202可以支持装置1200执行图6中S405的通信过程。
可选的,图7中的网络设备可以是如图12所示的通信装置。图12中的处理单元1201可以支持装置1200执行图7中由网络设备完成的功能。例如,处理单元1201可以执行S502中对第一数据流进行本地QoS调整的功能。图12中的收发单元1202可以支持装置1200与其他装置进行通信。例如,收发单元1202可以支持装置1200执行图7中S501的通信过程。
可选的,图8中的网络设备可以是图12所示的通信装置。图12中的处理单元1201可以支持装置1200执行图8中由网络设备完成的功能。例如,处理单元1201可以执行S602中确定满足数据流的特征信息的第一数据流的功能,处理单元1201还可以执行S603中对第一数据流进行本地QoS调整的功能。图12中的收发单元1202可以支持装置1200与其他装置进行通信。例如,收发单元1202可以支持装置1200执行图8中S601的通信过程。
具体的,图12中的收发单元1202和处理单元1201的功能/实现过程可以通过图11的通信装置中的处理器调用存储器中存储的计算机执行指令来实现。或者,图12中的处理单元1201的功能/实现过程可以通过图11的通信装置中的处理器调用存储器中存储的计算机执行指令来实现,图12中的收发单元1202的功能/实现过程可以通过图11的通信装置中的通信接口来实现。
本申请实施例还提供一种AMF,其结构可参考图11或图12所示的装置。该AMF可通过图11或者图12中的处理器或者处理单元实现如图4、图5、或者图6中AMF的功能。
本申请实施例还提供一种SMF,其结构可参考图11或图12所示的装置。该SMF可通过图11或者图12中的处理器或者处理单元实现如图4、图5、或者图6中SMF的功能。
本申请实施例还提供一种PCF,其结构可参考图11或图12所示的装置。该SMF可通过图11或者图12中的处理器或者处理单元实现如图4、或者图5中PCF的功能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

Claims (22)

  1. 一种调整服务质量的方法,其特征在于,包括:
    网络设备获取与第一数据流关联的第一指示信息,所述第一指示信息用于指示对所述第一数据流进行本地服务质量QoS调整;
    响应于所述第一指示信息,所述网络设备对所述第一数据流进行本地QoS调整。
  2. 根据权利要求1所述的方法,所述响应于所述第一指示信息,所述网络设备对所述第一数据流进行本地QoS调整包括:
    响应于所述第一指示信息,当所述第一数据流满足第一条件时,所述网络设备对所述第一数据流进行所述本地QoS调整。
  3. 根据权利要求2所述的方法,所述第一条件包括以下一种或多种:
    数据流的传输时间间隔满足第一阈值;或者,
    数据流的传输速率满足第二阈值;或者,
    承载数据流的网络设备的负载满足第三阈值;或者,
    数据流空闲的时间满足第四阈值;或者,
    承载数据流的网络设备的信令过载。
  4. 根据权要求1-3任一所述的方法,所述网络设备对所述第一数据流进行本地QoS调整为:
    所述网络设备对所述第一数据流进行所述网络设备端的QoS调整且其他网络设备对所述第一数据流的QoS调整不被所述网络设备触发。
  5. 根据权利要求1-4任一所述的方法,所述网络设备对所述第一数据流进行本地QoS调整包括:
    保留所述第一数据流的原QoS参数值,对所述第一数据流应用新的QoS参数值;或者,
    当所述第一数据流为保证比特速率GBR数据流时,将所述第一数据流作为非保证比特速率non-GBR数据流进行处理;或者,
    当所述第一数据流为non-GBR数据流时,将所述第一数据流作为GBR数据流进行处理;或者,
    挂起所述第一数据流;或者,
    保留所述第一数据流的上下文且释放或者修改所述第一数据流的资源。
  6. 根据权利要求1-5任一所述的方法,还包括:
    所述网络设备恢复所述第一数据流的QoS。
  7. 根据权利要求6所述的方法,还包括:
    所述网络设备获取第二指示信息,所述第二指示信息用于指示恢复数据流的QoS。
  8. 根据权利要求1-7任一所述的方法,所述网络设备获取与第一数据流关联的第一指示信息包括:
    所述网络设备从AMF、或者SMF获取所述第一指示信息。
  9. 根据权利要求1-8任一所述的方法,
    所述网络设备为基站、或者用户面功能UPF。
  10. 一种调整服务质量的方法,其特征在于,包括:
    网络设备获取数据流的特征信息,所述数据流的特征信息用于确定进行本地QoS调整的数据流;
    所述网络设备确定满足所述数据流的特征信息的第一数据流;
    所述网络设备对第一数据流进行本地QoS调整。
  11. 根据权利要求10所述的方法,所述数据流的特征信息包括以下一种或多种:
    QoS参数;或者,
    业务类型;或者,
    传输时间间隔的阈值;或者,
    传输速率的阈值。
  12. 根据权要求10或11所述的方法,所述网络设备对所述第一数据流进行本地QoS调整为:
    所述网络设备对所述第一数据流进行所述网络设备端的QoS调整且其他网络设备对所述第一数据流的QoS调整不被所述网络设备触发。
  13. 根据权利要求10-12任一所述的方法,所述网络设备对所述第一数据流进行本地QoS调整包括:
    保留所述第一数据流的原QoS参数值,对所述第一数据流应用新的QoS参数值;或者,
    当所述第一数据流为保证比特速率GBR数据流时,将所述第一数据流作为非保证比特速率non-GBR数据流进行处理;或者,
    当所述第一数据流为non-GBR数据流时,将所述第一数据流作为GBR数据流进行处理;或者,
    挂起所述第一数据流;或者,
    保留所述第一数据流的上下文且释放或者修改所述第一数据流的资源。
  14. 根据权利要求10-13任一所述的方法,还包括:
    所述网络设备恢复所述第一数据流的QoS。
  15. 根据权利要求14所述的方法,还包括:
    所述网络设备获取第二指示信息,所述第二指示信息用于指示恢复数据流的QoS。
  16. 根据权利要求10-15任一所述的方法,所述网络设备获取第一数据流的标识和第一指示信息包括:
    所述网络设备从AMF、或者SMF获取所述第一指示信息。
  17. 根据权利要求10-16任一所述的方法,
    所述网络设备为基站、或者用户面功能UPF。
  18. 一种通信装置,包括:
    处理器,用于读取并运行存储器中的指令,以实现如权利要求1-9任一所述的方法。
  19. 一种通信装置,包括:
    处理器,用于读取并运行存储器中的指令,以实现如权利要求10-17任一所述的方法。
  20. 一种计算机存储介质,用于存储指令,当所述指令在通信装置上运行时,以实现如权利要求1-17任一所述的方法。
  21. 一种计算机程序产品,包括指令,当所述指令在通信装置上运行时,以实现如权利要求1-17任一所述的方法。
  22. 一种通信***,包括如权利要求18所述的通信装置和如权利要求19所述的通信装置。
PCT/CN2019/110882 2019-10-12 2019-10-12 调整服务质量的方法、装置和*** WO2021068260A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110882 WO2021068260A1 (zh) 2019-10-12 2019-10-12 调整服务质量的方法、装置和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110882 WO2021068260A1 (zh) 2019-10-12 2019-10-12 调整服务质量的方法、装置和***

Publications (1)

Publication Number Publication Date
WO2021068260A1 true WO2021068260A1 (zh) 2021-04-15

Family

ID=75437783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110882 WO2021068260A1 (zh) 2019-10-12 2019-10-12 调整服务质量的方法、装置和***

Country Status (1)

Country Link
WO (1) WO2021068260A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734562A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 一种业务传输控制方法、相关设备及通信***
CN109392014A (zh) * 2017-08-14 2019-02-26 电信科学技术研究院 一种QoS流的接纳控制方法及通信装置
CN109392013A (zh) * 2017-08-14 2019-02-26 电信科学技术研究院 一种服务质量QoS的调整方法及通信装置
CN109526029A (zh) * 2017-09-20 2019-03-26 ***通信有限公司研究院 一种业务优化方法、介质、相关装置和设备
US10433203B1 (en) * 2017-04-19 2019-10-01 Sprint Spectrum L.P. Providing a quality of service to wireless devices attached to relay access nodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734562A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 一种业务传输控制方法、相关设备及通信***
US10433203B1 (en) * 2017-04-19 2019-10-01 Sprint Spectrum L.P. Providing a quality of service to wireless devices attached to relay access nodes
CN109392014A (zh) * 2017-08-14 2019-02-26 电信科学技术研究院 一种QoS流的接纳控制方法及通信装置
CN109392013A (zh) * 2017-08-14 2019-02-26 电信科学技术研究院 一种服务质量QoS的调整方法及通信装置
CN109526029A (zh) * 2017-09-20 2019-03-26 ***通信有限公司研究院 一种业务优化方法、介质、相关装置和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "QoS rule structure improvement", 3GPP DRAFT; S2-184888_23501CR0361QOS RULE_STRUCTURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Newport Beach, California, USA;, 27 May 2018 (2018-05-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051448406 *
NOKIA, NOKIA SHANGHAI BELL: "Updates to PDU session establishment / modification procedure", 3GPP DRAFT; S2-180062 -23502- SM CORRECTIONS -, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Gothenburg, Sweden; 20180122 - 20180126, 16 January 2018 (2018-01-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051389523 *

Similar Documents

Publication Publication Date Title
CN111684774B (zh) 移动边缘计算(mec)中的服务质量(qos)控制方法、***
US10917831B2 (en) Radio access network slice generation method, radio access network, and slice manager
US20220217587A1 (en) Session Handling Method and Related Device
US10721754B2 (en) Data transmission method and apparatus
US11223976B2 (en) Multiple-slice application delivery based on network slice associations
JP7396768B2 (ja) グラントフリー伝送のためのアップリンクデータスケジューリングのためのシステムおよび方法
WO2019228214A1 (zh) 一种无线承载建立、业务流的监测方法及装置
EP3565350B1 (en) Method and device for establishing wireless connection
EP2922336A1 (en) Method, apparatus, and system for radio bearer control
US11824783B2 (en) Maximum data burst volume (MDBV) determining method, apparatus, and system
WO2020125573A1 (zh) 通信方法、装置、终端、网络设备及存储介质
WO2018233451A1 (zh) 通信方法、装置和***
US20220132528A1 (en) Systems and methods for prioritizing bi-directional traffic flows
WO2018028636A1 (zh) Rrc连接控制方法及装置、***
US20230254859A1 (en) Downlink Transmission Method and Communication Apparatus
WO2021068260A1 (zh) 调整服务质量的方法、装置和***
WO2021081915A1 (zh) 通信方法、装置及***
WO2024032603A1 (zh) 一种通信方法及装置
US20230043387A1 (en) Data transmission method and related device
CN113905449B (zh) 计算资源调度方法、***及设备
WO2024103315A1 (zh) 无线通信方法、网元和装置
WO2022237505A1 (zh) 一种通信方法、设备及***
WO2022022504A1 (zh) 资源的分配方法及装置、网络侧设备和可读存储介质
KR20220036614A (ko) 네트워크장치 및 그 장치에서 수행되는 세션 로드 제어방법
KR20230160585A (ko) 제어평면(cp)의 리소스 운영 장치 및 사용자평면(up)의 장치, 리소스 운영 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948552

Country of ref document: EP

Kind code of ref document: A1