WO2021066435A1 - 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDF

Info

Publication number
WO2021066435A1
WO2021066435A1 PCT/KR2020/013167 KR2020013167W WO2021066435A1 WO 2021066435 A1 WO2021066435 A1 WO 2021066435A1 KR 2020013167 W KR2020013167 W KR 2020013167W WO 2021066435 A1 WO2021066435 A1 WO 2021066435A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
layer
core
organic
Prior art date
Application number
PCT/KR2020/013167
Other languages
English (en)
French (fr)
Inventor
최태섭
김원삼
박정환
이남걸
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200106937A external-priority patent/KR20210039932A/ko
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Publication of WO2021066435A1 publication Critical patent/WO2021066435A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/18Ring systems of four or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material.
  • An organic electric device using the organic light emission phenomenon has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often made of a multilayer structure composed of different materials in order to increase the efficiency and stability of the organic electronic device, and may be formed of, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Materials used as an organic material layer in an organic electric device can be classified into light-emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron transport materials, and electron injection materials, according to their functions.
  • the light-emitting material can be classified into a high molecular type and a low molecular type according to the molecular weight, and according to the light emitting mechanism, it can be classified into a fluorescent material derived from the singlet excited state of the electron and a phosphorescent material derived from the triplet excited state of the electron have.
  • the light-emitting material may be classified into blue, green, and red light-emitting materials and yellow and orange light-emitting materials necessary to realize a better natural color according to the light-emitting color.
  • a host/dopant system may be used as a light-emitting material in order to increase the luminous efficiency through.
  • the principle is that when a small amount of a dopant having an energy band gap smaller than that of the host forming the light-emitting layer is mixed in the light-emitting layer, excitons generated in the light-emitting layer are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host moves to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant used.
  • Efficiency, lifespan, and driving voltage are related to each other. As the efficiency increases, the driving voltage decreases relatively, and as the driving voltage decreases, crystallization of organic materials by Joule heating generated during driving decreases. It shows a tendency to increase the lifespan. However, the efficiency cannot be maximized simply by improving the organic material layer. This is because the long life and high efficiency can be achieved at the same time when the optimum combination of the energy level and T1 value between each organic material layer and the intrinsic properties of the material (mobility, interfacial properties, etc.) is achieved.
  • electrons are transferred from the electron transport layer to the light emitting layer, and holes are transferred from the hole transport layer to the light emitting layer, and excitons are generated by recombination.
  • the color purity and efficiency of the organic electric device are deteriorated, and the lifespan is shortened. Therefore, it must be a material having a HOMO level between the HOMO energy level of the hole transport layer and the HOMO energy level of the light emitting layer, has a high T1 value, and has a suitable driving voltage range (within the range of the driving voltage of the blue device of the full device). Mobility) is urgently required to develop a light emitting auxiliary layer.
  • the low glass transition temperature of the light-emitting layer and the light-emitting auxiliary layer material decreases the uniformity of the thin film surface when the device is driven, and the material may be deformed due to heat generated when the device is driven, which is reported to have a great effect on the life of the device.
  • a material that can withstand a long time during evaporation that is, a material with strong heat resistance
  • materials that form the organic material layer in the device such as hole injection materials, hole transport materials, and light emission, are required to fully exhibit the excellent characteristics of organic electronic devices.
  • a material, an electron transport material, an electron injection material, and a light-emitting auxiliary layer material should be supported by a stable and efficient material. In particular, development of materials used for the light-emitting auxiliary layer and the light-emitting layer is urgently required.
  • An object of the present invention is to provide a compound having high heat resistance, lowering the driving voltage of the device, and improving the luminous efficiency, color purity, and lifetime of the device, an organic electric device using the same, and an electronic device including the organic electric device It is done.
  • the present invention provides a compound represented by the following formula.
  • the present invention provides an organic electric device and an electronic device using the compound represented by the above formula.
  • FIG. 1 to 3 schematically illustrate organic electric devices according to embodiments of the present invention.
  • the present invention provides a compound represented by the following formula.
  • the present invention provides an organic electric device and an electronic device using the compound represented by the above formula.
  • first, second, A, B, (a), and (b) may be used. These terms are for distinguishing the constituent element from other constituent elements, and the nature, order, or order of the constituent element is not limited by the term.
  • a component such as a layer, film, region, or plate
  • it is not only “directly over” another component, but also when another component is in the middle. It should be understood that cases may also be included. Conversely, it should be understood that when an element is “directly above” another part, it means that there is no other part in the middle.
  • halo or halogen as used in this application includes fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) unless otherwise specified.
  • alkyl or "alkyl group” as used in the present application has 1 to 60 carbons connected by a single bond, unless otherwise stated, a straight-chain alkyl group, a branched-chain alkyl group, a cycloalkyl (alicyclic) group, an alkyl-substituted It means a radical of a saturated aliphatic functional group including a cycloalkyl group and a cycloalkyl-substituted alkyl group.
  • haloalkyl group or "halogenalkyl group” as used in the present application means an alkyl group in which halogen is substituted unless otherwise specified.
  • alkenyl or “alkynyl” as used in the present application each have a double bond or a triple bond, unless otherwise specified, include a straight or branched chain group, and have a carbon number of 2 to 60, but are limited thereto. It does not become.
  • cycloalkyl as used in the present application means an alkyl forming a ring having 3 to 60 carbon atoms unless otherwise specified, and is not limited thereto.
  • alkoxy group or "alkyloxy group” used in the present application refers to an alkyl group to which an oxygen radical is bonded, and has a carbon number of 1 to 60 unless otherwise specified, but is not limited thereto.
  • alkenyl group means an alkenyl group to which an oxygen radical is attached, and unless otherwise specified, 2 to 60 It has a carbon number of, but is not limited thereto.
  • aryl group and “arylene group” used in the present application each have 6 to 60 carbon atoms, but are not limited thereto.
  • the aryl group or the arylene group includes a single cyclic type, a group of rings, a conjugated cyclic compound, and the like.
  • the aryl group may include a phenyl group, a biphenyl monovalent functional group, a naphthalene monovalent functional group, a fluorenyl group, a substituted fluorenyl group
  • the arylene group may include a fluorenylene group, a substituted fluorenylene group It may contain a group.
  • ring assemblies refers to two or more ring systems (single ring or fused ring system) being directly connected to each other through a single bond or a double bond, and between such rings It means that the number of direct linkages is one less than the total number of ring systems in the compound. In the ring aggregate, the same or different ring systems may be directly linked to each other through a single bond or a double bond.
  • the aryl group since the aryl group includes a ring aggregate, the aryl group includes biphenyl and terphenyl in which a benzene ring, which is a single aromatic ring, is connected by a single bond.
  • the aryl group also includes a compound in which an aromatic ring system conjugated with an aromatic single ring is connected by a single bond, for example, a compound in which fluorene, an aromatic ring system conjugated with an aromatic single ring benzene ring, is connected by a single bond. do.
  • conjugated multiple ring systems refers to a fused ring form sharing at least two atoms, and includes a form in which two or more hydrocarbon ring systems are fused and at least one heteroatom And the like in which at least one heterocyclic system is conjugated.
  • fused ring systems may be an aromatic ring, a heteroaromatic ring, an aliphatic ring, or a combination of these rings.
  • the aryl group may be a naphthalenyl group, a phenanthrenyl group, or a fluorenyl group, but is not limited thereto.
  • spyro compound as used in the present application has a'spiro union', and the spiro linkage refers to a connection made by two rings sharing only one atom. At this time, the atoms shared in the two rings are referred to as'spyro atoms', and depending on the number of spyro atoms in one compound, these are respectively referred to as'monospiro-','dispiro-', and'trispyro-'. 'It is called a compound.
  • fluorenyl group fluorenylene group
  • fluorentriyl group is all hydrogen in the following structures, unless otherwise specified. It means a monovalent, divalent or trivalent functional group, and "substituted fluorenyl group”, “substituted fluorenylene group” or “substituted fluorentriyl group” is a substituent R, R', R", R' It means that at least one of "is a substituent other than hydrogen, and includes a case in which R and R'are bonded to each other to form a spy compound together with the carbon to which they are bonded.
  • a fluorenyl group, a fluorenylene group, and a fluorenetriyl group may all be referred to as fluorene groups regardless of a valence such as monovalent, divalent, or trivalent.
  • R, R', R" and R'" are each independently an alkyl group having a carbon number of 1 to 20, an alkenyl group having a carbon number of 1 to 20, an aryl group having a carbon number of 6 to 30, 3 to It may be a heterocyclic group having 30 carbon atoms, for example, the aryl group may be phenyl, biphenyl, naphthalene, anthracene or phenanthrene, and the heterocyclic group may be pyrrole, furan, thiophene, pyrazole, imidazole, Triazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine, indole, benzofuran, quinazoline or quinoxaline.
  • the aryl group may be phenyl, biphenyl, naphthalene, anthracene or phenanthrene
  • the heterocyclic group may be pyrrole, furan, thi
  • substituted fluorenyl group and fluorenylene group are monovalent of 9,9-dimethylfluorene, 9,9-diphenylfluorene and 9,9'-spirobi[9H-fluorene], respectively. It may be a functional group or a divalent functional group.
  • heterocyclic group used in the present application includes not only an aromatic ring such as a “heteroaryl group” or a “heteroarylene group”, but also a non-aromatic ring, and unless otherwise stated, each carbon number including one or more heteroatoms It means a ring of 2 to 60, but is not limited thereto.
  • heteroatom used in the present application represents N, O, S, P, or Si unless otherwise specified, and the heterocyclic group is a monocyclic type containing a heteroatom, a ring aggregate, a conjugated ring system, spy It means a compound and the like.
  • ring as used in the present application includes monocyclic and polycyclic rings, including hydrocarbon rings as well as heterocycles including at least one heteroatom, and includes aromatic and non-aromatic rings.
  • polycyclic used in the present application includes ring assemblies such as biphenyl, terphenyl, etc., several fused ring systems and spiro compounds, and includes not only aromatic but also non-aromatic, hydrocarbon Rings of course include heterocycles containing at least one heteroatom.
  • aliphatic ring group refers to cyclic hydrocarbons excluding aromatic hydrocarbons, and includes monocyclic types, cyclic aggregates, conjugated cyclic systems, spiro compounds, etc., unless otherwise stated, It means a ring of 3 to 60, but is not limited thereto. For example, even when benzene, which is an aromatic ring, and cyclohexane, which is a non-aromatic ring, are fused, it corresponds to an aliphatic ring.
  • arylalkoxy group it means an alkoxy group substituted with an aryl group
  • alkoxycarbonyl group it means a carbonyl group substituted with an alkoxy group
  • arylcarbonylalkenyl group it means an alkenyl group substituted with an arylcarbonyl group, where The arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • substituted or unsubstituted refers to deuterium, halogen, amino group, nitrile group, nitro group, C 1 -C 20 alkyl group, C 1 -C 20 alkoxy group, C 1 -C 20 alkylamine group, C 1 -C 20 alkylthiophene group, C 6 -C 20 arylthiophene group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl, C 3 -C 20 cycloalkyl group of, C 6 -C 20 aryl group, of a C 6 -C 20 aryl group substituted with a heavy hydrogen, C 8 -C 20 aryl alkenyl group, a silane group, a boron It means substituted with one or more substituents selected from the group consisting of a C 2 -C 20 heterocyclic group including
  • the'functional group name' corresponding to the aryl group, arylene group, heterocyclic group, etc. exemplified as examples of each symbol and its substituent may describe'the name of the functional group reflecting the number', but it is described as the'parent compound name' You may.
  • the monovalent'group' is'phenanthryl (group)'
  • the divalent group is named by dividing the valences such as'phenanthrylene (group)', etc.
  • pyrimidine even in the case of pyrimidine, it is described as'pyrimidine' regardless of the valence, or in the case of monovalent, it is referred to as pyrimidinyl (group), and in the case of divalent, the'group of the corresponding valency, such as It can also be written as'name of'. Accordingly, in the present application, when the type of the substituent is described as the name of the parent compound, it may mean an n-valent'group' formed by desorption of a hydrogen atom bonded to a carbon atom and/or a heteroatom of the parent compound.
  • the substituent R 1 means that the substituent R 1 is absent, that is, when a is 0, it means that all hydrogens are bonded to the carbon forming the benzene ring. It may be omitted and the formula or compound may be described.
  • a is an integer of 1
  • one substituent R 1 is bonded to any one of carbons forming a benzene ring, and when a is an integer of 2 or 3, it may be bonded, for example, as follows, and a is 4 to 6
  • R 1 may be the same or different from each other.
  • a ring means that adjacent groups are bonded to each other to form a single ring or several conjugated rings, and a single ring and a plurality of conjugated rings formed are hydrocarbon rings as well as at least one It includes a heterocycle including a heteroatom, and may include aromatic and non-aromatic rings.
  • a number in'number-condensed ring' indicates the number of condensed rings.
  • a form in which three rings are condensed with each other, such as anthracene, phenanthrene, benzoquinazoline, etc. can be expressed as a 3-condensed ring.
  • bridged bicyclic compound refers to a compound in which two rings share three or more atoms to form a ring unless otherwise specified.
  • the shared atoms may include carbon or heteroatoms.
  • an organic electric device 100 includes a first electrode 110, a second electrode 170, and a first electrode 110 formed on a substrate (not shown).
  • An organic material layer including the compound according to the present invention is included between the second electrodes 170.
  • the first electrode 110 may be an anode (anode)
  • the second electrode 170 may be a cathode (cathode)
  • a first electrode may be a cathode and a second electrode may be an anode.
  • the organic material layer may include a hole injection layer 120, a hole transport layer 130, a light emitting layer 140, an electron transport layer 150, and an electron injection layer 160.
  • a hole injection layer 120, a hole transport layer 130, a light emitting layer 140, an electron transport layer 150, and an electron injection layer 160 may be sequentially formed on the first electrode 110.
  • the capping layer 180 may be formed on one surface of the first electrode 110 or the second electrode 170 that is not in contact with the organic material layer, and when the capping layer 180 is formed, organic electricity The light efficiency of the device can be improved.
  • the capping layer 180 may be formed on the second electrode 170.
  • the capping layer 180 is formed so that the capping layer 180 is formed on the second electrode 170.
  • Optical energy loss due to SPPs surface plasmon polaritons
  • the capping layer 180 can function as a buffer for the second electrode 170 .
  • a buffer layer 210 or an emission auxiliary layer 220 may be further formed between the hole transport layer 130 and the emission layer 140, which will be described with reference to FIG. 2.
  • an organic electric device 200 includes a hole injection layer 120, a hole transport layer 130, a buffer layer 210, which are sequentially formed on the first electrode 110. It may include a light-emitting auxiliary layer 220, a light-emitting layer 140, an electron transport layer 150, an electron injection layer 160, and a second electrode 170, and a capping layer 180 is formed on the second electrode. I can.
  • an electron transport auxiliary layer may be further formed between the light emitting layer 140 and the electron transport layer 150.
  • the organic material layer may have a plurality of stacks including a hole transport layer, an emission layer, and an electron transport layer. This will be described with reference to FIG. 3.
  • two stacks ST1 and ST2 formed of a multi-layered organic material layer are disposed between the first electrode 110 and the second electrode 170.
  • a set or more may be formed, and a charge generation layer CGL may be formed between the stacks of organic material layers.
  • the organic electric device includes a first electrode 110, a first stack ST1, a charge generation layer (CGL), a second stack ST2, and a second electrode. 170 and a capping layer 180 may be included.
  • the first stack ST1 is an organic material layer formed on the first electrode 110, which is a first hole injection layer 320, a first hole transport layer 330, a first emission layer 340, and a first electron transport layer ( 350).
  • the second stack ST2 may include a second hole injection layer 420, a second hole transport layer 430, a second emission layer 440, and a second electron transport layer 450.
  • the first stack and the second stack may be organic material layers having the same laminated structure, but may be organic material layers having different laminated structures.
  • a charge generation layer CGL may be formed between the first stack ST1 and the second stack ST2.
  • the charge generation layer CGL may include a first charge generation layer 360 and a second charge generation layer 361.
  • the charge generation layer CGL is formed between the first emission layer 340 and the second emission layer 440 to increase current efficiency generated in each emission layer and smoothly distribute electric charges.
  • the first emission layer 340 may include a light emitting material including a blue fluorescent dopant in a blue host, and the second emission layer 440 is a material doped with a greenish yellow dopant and a red dopant in a green host. May be included, but the materials of the first emission layer 340 and the second emission layer 440 according to the exemplary embodiment of the present invention are not limited thereto.
  • the second hole transport layer 430 includes a second stack ST2 in which the energy level is set higher than the triplet excitation energy level of the second emission layer 440.
  • the second hole transport layer 430 may function as an exciton blocking layer that prevents tripping of triplet excitons while transporting holes from the inherent second emission layer 440. .
  • first hole transport layer 330 may also be set to an energy level higher than the triplet excitation energy level of the first emission layer 340 for the function of the exciton blocking layer.
  • first electron transport layer 350 is also set to an energy level higher than the energy level of the triplet excited state of the first emission layer 340, and the second electron transport layer 450 is also triplet excitation of the second emission layer 440. It is preferable to set the energy level higher than the energy level of the state.
  • n may be an integer of 1 to 5.
  • a charge generation layer CGL and a third stack may be additionally stacked on the second stack ST2.
  • the compound represented by Formula 1 of the present invention is a hole injection layer (120, 320, 420), a hole transport layer (130, 330, 430), a buffer layer (210), a light emission auxiliary layer (220), an electron transport layer (150, 350). , 450), the electron injection layer 160, the light emitting layer 140, 340, 440, or may be used as a material of the capping layer 180, but preferably, the hole transport layer 130, 330, 430, the light emission auxiliary layer 220 ), the light emitting layers 140, 340, and 440, and/or the capping layer 180 may be used as a material.
  • the organic electric device according to FIGS. 1 to 3 may further include a protective layer (not shown) and an encapsulation layer (not shown).
  • the protective layer may be located on the capping layer, the encapsulation layer is located on the capping layer, and at least one side portion of the first electrode, the second electrode, and the organic material layer to protect the first electrode, the second electrode, and the organic material layer It can be formed to cover.
  • the protective layer may provide a flattened surface so that the encapsulation layer can be uniformly formed, and may serve to protect the first electrode, the second electrode, and the organic material layer in the manufacturing process of the encapsulation layer.
  • the encapsulation layer may play a role of preventing external oxygen and moisture from penetrating into the organic electric device.
  • the band gap, electrical characteristics, and interface characteristics may vary depending on which substituent is bonded to a certain position, so the selection of the core and the combination of the sub-substituents bonded thereto may vary.
  • long life and high efficiency can be achieved at the same time when the optimum combination of the energy level and T1 value between each organic material layer and the intrinsic properties of the material (mobility, interfacial properties, etc.) is achieved.
  • the compound represented by Formula 1 as a material for the auxiliary light emitting layer 220, the light emitting layers 140, 340, and 440, and/or the capping layer 180, the energy level and the T1 value between each organic material layer, By optimizing the intrinsic properties of the material (mobility, interfacial properties, etc.), it was possible to simultaneously improve the life and efficiency of the organic electric device.
  • the organic electroluminescent device may be manufactured using various deposition methods. It can be manufactured using a deposition method such as PVD or CVD. For example, a metal or a conductive metal oxide or an alloy thereof is deposited on a substrate to form the anode 110, and a hole injection layer 120 thereon. 320, 420), hole transport layers (130, 330, 430), light emitting layers (140, 340, 440), electron transport layers (150, 350, 450), and after forming an organic material layer including the electron injection layer 160, It can be manufactured by depositing a material that can be used as the cathode 170 thereon.
  • a deposition method such as PVD or CVD.
  • a metal or a conductive metal oxide or an alloy thereof is deposited on a substrate to form the anode 110, and a hole injection layer 120 thereon.
  • a light emission auxiliary layer 220 between the hole transport layers 130, 330, and 430 and the emission layers 140, 340, and 440, and an electron transport auxiliary layer between the emission layer 140 and the electron transport layer 150 May be further formed or may be formed in a stack structure as described above.
  • the organic material layer is a solution process or a solvent process other than a vapor deposition method using various polymer materials, such as a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, a roll-to-roll process, and a doctor blaze. It can be manufactured with fewer layers by a method such as a ding process, a screen printing process, or a thermal transfer method. Since the organic material layer according to the present invention can be formed by various methods, the scope of the present invention is not limited by the forming method.
  • the organic electric device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the organic electric device may include an organic electroluminescent device, an organic solar cell, an organic photoreceptor, an organic transistor, a monochromatic lighting device, and a quantum dot display device.
  • Another embodiment of the present invention may include a display device including the organic electric device of the present invention described above, and an electronic device including a control unit for controlling the display device.
  • the electronic device may be a current or future wired or wireless communication terminal, and includes all electronic devices such as mobile communication terminals such as mobile phones, PDAs, electronic dictionaries, PMPs, remote controls, navigation, game consoles, various TVs, and various computers.
  • a compound according to an aspect of the present invention is represented by the following formula (1).
  • Ar 1 to Ar 4 are each independently a C 6 to C 60 aryl group; Fluorenyl group; O, N, S, Si, and C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of P; A fused ring group of an aliphatic ring of C 3 to C 60 and an aromatic ring of C 6 to C 60; A C 1 to C 50 alkyl group; C 2 ⁇ C 20 alkenyl group; Alkynyl group of C 2 ⁇ C 20; An alkoxyl group of C 1 to C 30; C 6 ⁇ C 30 aryloxy group; Or a combination thereof; Or neighboring groups can be bonded to each other to form a ring,
  • R 1 to R 5 are each independently hydrogen; heavy hydrogen; halogen; Cyano group; Nitro group; Amino group; C 6 ⁇ C 60 aryl group; Fluorenyl group; O, N, S, Si, and C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of P; A fused ring group of an aliphatic ring of C 3 to C 60 and an aromatic ring of C 6 to C 60; A C 1 to C 50 alkyl group; C 2 ⁇ C 20 alkenyl group; Alkynyl group of C 2 ⁇ C 20; An alkoxyl group of C 1 to C 30; C 6 ⁇ C 30 aryloxy group; C 6 ⁇ C 30 arylthio group; Or neighboring groups can be bonded to each other to form a ring,
  • L 1 and L 2 are each independently a single bond; C 6 ⁇ C 60 arylene group; Fluorenylene group; O, N, S, Si, and C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of P; A fused ring group of an aliphatic ring of C 3 to C 60 and an aromatic ring of C 6 to C 60; A divalent aliphatic hydrocarbon group; Or a combination thereof,
  • X and Y are independently of each other NR, O, S or CR'R'',
  • R, R'and R” are independently of each other hydrogen; heavy hydrogen; halogen; Cyano group; Nitro group; Amino group; C 6 ⁇ C 60 aryl group; Fluorenyl group; O, N, S, Si, and C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of P; A fused ring group of an aliphatic ring of C 3 to C 60 and an aromatic ring of C 6 to C 60; A C 1 to C 50 alkyl group; C 2 ⁇ C 20 alkenyl group; Alkynyl group of C 2 ⁇ C 20; An alkoxyl group of C 1 to C 30; C 6 ⁇ C 30 aryloxy group; C 6 ⁇ C 30 arylthio group; Or neighboring groups can be bonded to each other to form a ring,
  • n is an integer of 0 or 1
  • a and d to e are integers of 0 to 4; b is an integer of 0-2; c is an integer from 0 to 3,
  • Ar 1 to Ar 4 , L 1 to L 2 , R 1 to R 5 , R, R', R' and the rings formed by bonding of adjacent groups to each other are deuterium, respectively; halogen; A silane group unsubstituted or substituted with a C 1 -C 20 alkyl group or a C 6 -C 20 aryl group; Siloxane group; Boron group; Germanium group; Cyano group; Nitro group; C 1 -C 20 alkylthio group; C 1 -C 20 alkoxy group; A C 6 -C 20 arylalkoxy group; C6-C20 aryloxy group; C6-C20 arylthio group; A C 1 -C 20 alkyl group; An alkenyl group of C 2 -C 20; Alkynyl group of C 2 -C 20; C 6 -C 20 aryl group; A C 6 -C 20 aryl group unsubstituted or substituted with deuterium;
  • Ar 1 to Ar 4 , R 1 to R 5 , R, R'and R'' are an aryl group, preferably an aryl group of C 6 to C 30 , more preferably C 6 to C 18 It may be an aryl group such as phenyl, biphenyl, naphthyl, terphenyl, and the like.
  • L 1 to L 2 , Ar 1 to Ar 4 , R 1 to R 5 , R, R'and R'' are heterocyclic groups, preferably a C 2 to C 30 heterocyclic group, more preferably It may be a C 2 ⁇ C 18 heterocyclic group, such as dibenzofuran, dibenzothiophene, naphthobenzothiophene, naphthobenzofuran, and the like.
  • Ar 1 to Ar 4 , R 1 to R 5 , R, R'and R'' are fluorenyl groups, preferably 9,9-dimethyl-9H-fluorene, 9,9-diphenyl- It may be a 9H-fluorenyl group, 9,9'-spirobifluorene, and the like.
  • L 1 to L 2 is an arylene group, preferably an arylene group of C 6 to C 30 , more preferably an arylene group of C 6 to C 18 , such as phenyl, biphenyl, naphthyl, terphenyl, etc. have.
  • Ar 1 to Ar 4 , R 1 to R 5 , R, R'and R'' are alkyl groups, they may be preferably C 1 to C 10 alkyl groups, such as methyl, t-butyl, and the like.
  • R 1 to Ar 4 , R 1 to R 5 , R, R'and R'' are alkoxy groups, preferably a C 1 to C 20 alkoxyl group, more preferably a C 1 to C 10 alkoxyl group , Such as methoxy, t-butoxy, and the like.
  • the ring formed by bonding of adjacent groups of L 1 to L 2 , Ar 1 to Ar 4 , R 1 to R 5 , R, R'and R′′ to each other is an aromatic ring group of C 6 to C 60; Fluorenyl group; O, N, S, Si, and C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of P; Or it may be an aliphatic ring group of C 3 ⁇ C 60 , for example, when adjacent groups are bonded to each other to form an aromatic ring, preferably an aromatic ring of C 6 ⁇ C 20 , more preferably C 6 ⁇ C 14 Aromatic rings, such as benzene, naphthalene, phenanthrene, and the like can be formed.
  • Formula 1 may be represented by any one of Formulas 1-1 to 1-4 below, but is not limited thereto.
  • R 1 to R 5 , R, R', R”, Ar 1 to Ar 4 , L 1 to L 2 , a to e and Y are defined in Formula 1 It is the same.
  • Formula 1 may be represented by any one of the following Formulas 1-5 to 1-8, but is not limited thereto.
  • R 1 to R 5 , R, R', R”, Ar 1 to Ar 4 , L 1 to L 2 , and a to e are defined in Formula 1 Same as.
  • the formula 1 may be represented by any one of the following formulas 1-9 to 1-16, but is not limited thereto.
  • R 1 to R 5 , R, R', R”, Ar 1 to Ar 4 , L 1 to L 2 , and a to e are defined in Formula 1 Same as.
  • At least one of Ar 1 to Ar 4 may be represented by the following Formula B-1, but is not limited thereto.
  • T and U are independently of each other NAr 5 , O, S, CR a R b or a single bond; However, except when T and U are a single bond at the same time,
  • a and B rings are independently of each other C 6 ⁇ C 20 aryl group, C 4 ⁇ C 20 heterocyclic group,
  • R a and R b are each independently hydrogen; heavy hydrogen; halogen; A silane group unsubstituted or substituted with a C 1 to C 20 alkyl group or a C 6 to C 20 aryl group; Cyano group; Nitro group; C 1 ⁇ C 20 alkylthio group; C 1 ⁇ C 20 alkoxy group; C 6 ⁇ C 20 aryloxy group; A C 1 to C 20 alkyl group; C 2 ⁇ C 20 alkenyl group; Alkynyl group of C 2 ⁇ C 20; C 6 ⁇ C 20 aryl group; Fluorenyl group; O, N, S, Si, and C 2 ⁇ C 20 heterocyclic group containing at least one heteroatom selected from the group consisting of P; C 3 ⁇ C 20 aliphatic ring group; C 7 ⁇ C 20 arylalkyl group; And C 8 ⁇ C 20 is selected from the group consisting of an arylalkenyl group; Or, neighboring groups can be combined with
  • Ar 5 is a C 6 ⁇ C 20 aryl group; Fluorenyl group; O, N, S, Si, and C 2 ⁇ C 20 heterocyclic group containing at least one heteroatom of P; C 3 ⁇ C 20 aliphatic ring group; Or it is selected from the group consisting of a combination thereof.
  • the compound represented by Formula 1 may be one of the following P1 to P147, but is not limited thereto.
  • the present invention provides a first electrode; A second electrode; And an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a compound represented by Formula 1 alone or in combination.
  • the present invention provides a first electrode; A second electrode; An organic material layer formed between the first electrode and the second electrode; And a capping layer, wherein the capping layer is formed on one surface not in contact with the organic material layer among both surfaces of the first electrode and the second electrode, and the organic material layer or the capping layer is represented by Formula 1
  • the compound to be used alone or as a mixture is included.
  • the organic material layer includes at least one of a hole injection layer, a hole transport layer, a light emission auxiliary layer, a light emission layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer. That is, at least one of a hole injection layer, a hole transport layer, a light emission auxiliary layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, or an electron injection layer included in the organic material layer may include a compound represented by Formula (1). .
  • the organic material layer includes at least one of the hole transport layer, an emission auxiliary layer, and an emission layer. That is, the compound may be included in at least one of the hole transport layer, the light emitting auxiliary layer, and the light emitting layer.
  • the organic material layer includes two or more stacks including a hole transport layer, an emission layer, and an electron transport layer sequentially formed on the anode.
  • the organic material layer further includes a charge generation layer formed between the two or more stacks.
  • the present invention is to provide an electronic device including a display device including an organic electric device including a compound represented by Formula 1 and a control unit for driving the display device.
  • the compound of Formula 1 may be included alone, the compound may be included in a combination of two or more different from each other, or the compound may be included in a combination of two or more with another compound.
  • the final product represented by Formula 1 according to the present invention may be synthesized by reacting Core 1 with Sub 1 as shown in Scheme 1 below, but is not limited thereto.
  • Hal 1 and Hal 2 are each independently I, Br or Cl; G 1 is Ar 1 or Ar 3 ; G 2 is Ar 2 or Ar 4 .
  • Core 1 of Scheme 1 may be synthesized by the reaction route of Schemes 2 to 4 below, but is not limited thereto.
  • the Hal 1 to Hal 3 are each independently I, Br or Cl.
  • Core 1-1-b (15.01 g, 36.7 mmol) was added to 100 ml of H 2 SO 4 and stirred at 65°C. When the reaction was completed, after neutralization using an aqueous NaOH solution, the resulting compound was recrystallized with a silica gel column to obtain 14.8 g (yield: 89%) of Core1-1.
  • the compound belonging to Core 1 may be the following compound, but is not limited thereto.
  • Table 1 below shows the FD-MS values of some compounds belonging to Core 1.
  • Sub 1 of Scheme 1 may be synthesized by the reaction path of Scheme 6 below (refer to Korean Patent Registration No. 10-1251451 (registered on April 5, 2013) of the applicant), but is not limited thereto.
  • G 1 is Ar 1 or Ar 3 as defined in Formula 1;
  • G 2 is Ar 2 or Ar 4 as defined in Formula 1 above.
  • Examples of the compound belonging to Sub 1 are as follows, but are not limited thereto.
  • Table 2 below shows the FD-MS values of compounds belonging to Sub 1.
  • Example 1 Red organic electroluminescent device (light emission auxiliary layer)
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a light emitting auxiliary layer material.
  • N 1 -(naphthalen-2-yl)-N 4 ,N 4 -bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N 1 -Phenylbenzene-1,4-diamine (hereinafter, 2-TNATA) was vacuum deposited to a thickness of 60 nm to form a hole injection layer.
  • NPB 4,4-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
  • the compound P1 of the present invention was vacuum-deposited to a thickness of 20 nm on the hole transport layer to form a light emission auxiliary layer.
  • CBP[4,4'-N,N'-dicarbazole-biphenyl] is used as a host material, and bis-(1-phenylisoquinolyl)iridium(III)acetylacetonate (hereinafter, (piq) 2 Ir( acac)) was used as a dopant material and doped at a weight ratio of 95:5 to deposit a light emitting layer having a thickness of 30 nm on the light emitting auxiliary layer.
  • BAlq (1,1'-bisphenyl)-4-oleato)bis(2-methyl-8-quinolinoleato) aluminum
  • BeBq2 Bis(10-hydroxybenzo[h]quinolinato)beryllium
  • an electron injection layer was formed by depositing LiF, an alkali metal halide, to a thickness of 0.2 nm, and then Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that the compound of the present invention described in Table 4 below was used instead of the compound P1 of the present invention as the light emitting auxiliary layer material of Example 1.
  • Example 2 An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the light emission auxiliary layer of Example 1 was not formed.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that one of the following Comparative Compounds 1 to 3 was used as the light emitting auxiliary layer material of Example 1.
  • Electroluminescence (EL) characteristics were measured with a PR-650 of photoresearch company by applying a forward bias DC voltage to the organic electroluminescent devices manufactured according to Examples 1 to 17 and Comparative Examples 1 to 4, and the measurement As a result, the T95 life was measured using a life measurement equipment manufactured by McScience at a reference luminance of 2500 cd/m 2. Table 4 below shows the results of device fabrication and evaluation.
  • Comparative Examples 2 to 4 the device characteristics of Comparative Examples 2 to 4 in which the light-emitting auxiliary layers were formed by using Comparative Compounds 1 to 3 having the same basic skeleton as Formula 1 of the present invention were improved than Comparative Example 1 in which the light-emitting auxiliary layer was not formed.
  • Comparative Example 1 the device characteristics of Comparative Examples 2 to 4 in which the light-emitting auxiliary layers were formed by using Comparative Compounds 1 to 3 having the same basic skeleton as Formula 1 of the present invention were improved than Comparative Example 1 in which the light-emitting auxiliary layer was not formed.
  • the luminous efficiency, lifespan, and driving voltage of the organic electroluminescent device using the compound of the present invention as a light emitting auxiliary layer material were significantly improved.
  • Comparative Compounds 1 to 3 have the same core skeleton as the compound of the present invention, but there is a difference in that the number of substitutions of the amine group or the substitution position of the amine group are different. According to the difference described above, the compound of the present invention has a strong hole injection characteristic, and as hole injection from the hole transport layer to the light emission auxiliary layer is improved, the driving, life and efficiency of the organic light emitting device using the compound of the present invention are improved. see.
  • the physical properties of the compound such as hole properties, light efficiency properties, energy levels (LUMO, HOMO, T1 levels), hole injection and mobility properties, etc. This suggests that the device result may be derived due to this change.
  • organic electric device 110 first electrode
  • capping layer 210 buffer layer
  • first hole transport layer 340 first emission layer
  • second charge generation layer 420 second hole injection layer
  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 상기 유기전기소자를 포함하는 전자장치에 관한 것으로, 본 발명에 따르면 높은 발광효율, 낮은 구동전압 및 고내열성을 가지는 유기전기소자를 제공할 수 있고, 유기전기소자의 색순도 및 수명을 향상시킬 수 있다.

Description

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. 그리고 상기 발광 재료는 분자량에 따라 고분자형과 저분자형으로 분류될 수 있고, 발광 메커니즘에 따라 전자의 일중항 여기상태로부터 유래되는 형광 재료와 전자의 삼중항 여기상태로부터 유래되는 인광 재료로 분류될 수 있다. 또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다.
한편, 발광 재료로서 하나의 물질만 사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여 발광 재료로서 호스트/도판트계를 사용할 수 있다. 그 원리는 발광층을 형성하는 호스트보다 에너지 대역 간극이 작은 도판트를 발광층에 소량 혼합하면, 발광층에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
현재 휴대용 디스플레이 시장은 대면적 디스플레이로 그 크기가 증가하고 있는 추세이며, 이로 인해 기존 휴대용 디스플레이에서 요구하던 소비전력 보다 더 큰 소비전력이 요구되고 있다. 따라서, 배터리라는 제한적인 전력 공급원을 가지고 있는 휴대용 디스플레이 입장에서는 소비전력이 중요한 요소가 되었고, 효율과 수명 문제 또한 반드시 해결해야 하는 중요한 요소이다.
효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동시 발생되는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 높아지는 경향을 나타낸다. 하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성 할 수 있기 때문이다.
또한, 최근 유기 전기 발광소자에 있어 정공수송층에서의 발광 문제를 해결 하기 위해 정공수송층과 발광층 사이에 발광보조층을 사용하는 방법이 연구되고 있으며, 각각의 발광층(R, G, B)에 따라 원하는 물질적 특성이 상이하여, 각각의 발광층에 따른 발광보조층의 개발이 필요한 시점이다.
일반적으로 전자수송층에서 발광층으로 전자(electron)가 전달되고 정공(hole)이 정공수송층에서 발광층으로 전달되어 재조합(recombination)에 의해 엑시톤(exciton)이 생성된다.
하지만, 정공수송층에 사용되는 물질의 경우 낮은 HOMO 값을 가져야 하기 때문에 대부분 낮은 T1 값을 가지며, 이로 인해 발광층에서 생성된 엑시톤(exciton)이 정공수송층 계면 또는 정공수송층 쪽으로 넘어가게 되어 결과적으로 정공수송층 계면에서의 발광 또는 발광층 내 전하 불균형(charge unbalance)을 초래하여 정공수송층 계면에서 발광하게 된다.
정공수송층 계면에서 발광될 경우, 유기전기소자의 색순도 및 효율이 저하되고 수명이 짧아지는 문제점이 발생하게 된다. 따라서, 정공수송층 HOMO 에너지 준위와 발광층의 HOMO 에너지 준위 사이의 HOMO 준위를 갖는 물질이어야 하며, 높은 T1 값을 가지고, 적당한 구동전압 범위 내(full device의 blue 소자 구동전압 범위 내) 정공 이동도(hole mobility)를 갖는 발광보조층의 개발이 절실히 요구된다.
하지만, 이는 단순히 발광보조층 물질의 코어에 대한 구조적 특성으로 이루어 질 수 없으며, 발광보조층 물질의 코어 및 sub-치환기의 특성 그리고 발광보조층과 정공수송층, 발광보조층과 발광층 간의 알맞은 조합이 이루어졌을 때 고효율 및 고수명의 소자가 구현될 수 있는 것이다.
한편, 소자 구동시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이온도를 갖는 발광층 및 발광보조층 재료에 대한 개발 역시 필요한 상태이다. 발광층 및 발광보조층 재료의 낮은 유리전이 온도는 소자 구동시 박막 표면의 균일도를 저하시키고, 소자 구동 시 발생하는 열로 인하여 물질이 변형될 수 있으며 이는 소자수명에 큰 영향을 미치는 것으로 보고되고 있다.
따라서, 증착시 오랫동안 견딜 수 있는 재료, 즉 내열특성이 강한 재료 개발이 필요하며, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨데 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하는데, 특히 발광보조층 및 발광층 등에 사용되는 재료에 대한 개발이 절실히 요구되고 있다.
본 발명은 고내열성을 갖고, 소자의 구동전압을 낮추고, 소자의 발광효율, 색순도 및 수명을 향상시킬 수 있는 화합물, 이를 이용한 유기전기소자 및 상기 유기전기소자를 포함하는 전자장치를 제공하는 것을 목적으로 한다.
일 측면에서, 본 발명은 하기 화학식으로 표시되는 화합물을 제공한다.
<화학식 1>
Figure PCTKR2020013167-appb-img-000001
다른 측면에서, 본 발명은 상기 화학식으로 표시되는 화합물을 이용한 유기전기소자 및 그 전자장치를 제공한다.
본 발명에 따른 화합물을 이용함으로써 소자의 높은 발광효율, 낮은 구동전압, 고내열성을 달성할 수 있고, 소자의 색순도 및 수명을 향상시킬 수 있는 효과가 있다.
도 1 내지 도 3은 본 발명의 실시예들에 따른 유기전기소자를 개략적으로 도시한 것이다.
도 4는 본 발명의 일 측면에 따른 화학식을 나타낸다.
일 측면에서, 본 발명은 하기 화학식으로 표시되는 화합물을 제공한다.
<화학식 1>
Figure PCTKR2020013167-appb-img-000002
다른 측면에서, 본 발명은 상기 화학식으로 표시되는 화합물을 이용한 유기전기소자 및 그 전자장치를 제공한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다.
본 실시예들을 설명하기 위해, 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 아래에서 참조되는 도면들에서는 축적비가 적용되지 않는다.
본 발명의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
또한, 층, 막, 영역, 판 등의 구성 요소가 다른 구성 요소 "위에" 또는 "상에" 있다고 하는 경우, 이는 다른 구성 요소 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 구성 요소가 있는 경우도 포함할 수 있다고 이해되어야 할 것이다. 반대로, 어떤 구성 요소가 다른 부분 "바로 위에" 있다고 하는 경우에는 중간에 또 다른 부분이 없는 것을 뜻한다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 용어는, 본 발명의 사상을 일탈하지 않는 범위내에서, 달리 언급하지 않는 한 하기와 같다.
본 출원에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 염소(Cl), 브롬(Br), 및 요오드(I)를 포함한다.
본 출원에서 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 단일결합으로 연결된 1 내지 60의 탄소를 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 출원에서 사용된 용어 "할로알킬기" 또는 "할로겐알킬기"는 다른 설명이 없는 한 할로겐이 치환된 알킬기를 의미한다.
본 출원에서 사용된 용어 "알케닐" 또는 "알키닐"은 다른 설명이 없는 한 각각 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하고, 2 내지 60의 탄소수를 가지나, 이에 한정되는 것은 아니다.
본 출원에서 사용된 용어 "사이클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 한정되는 것은 아니다.
본 출원에서 사용된 용어 "알콕시기" 또는 "알킬옥시기"는 산소 라디칼이 결합된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지나, 이에 한정되는 것은 아니다.
본 출원에서 사용된 용어 "알켄옥실기", "알켄옥시기", "알켄일옥실기", 또는 "알켄일옥시기"는 산소 라디칼이 부착된 알켄일기를 의미하며, 다른 설명이 없는 한 2 내지 60의 탄소수를 가지나, 이에 한정되는 것은 아니다.
본 출원에서 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지나, 이에 한정되는 것은 아니다. 본 출원에서 아릴기 또는 아릴렌기는 단일 고리형, 고리 집합체, 접합된 여러 고리계 화합물 등을 포함한다. 예를 들면, 상기 아릴기는 페닐기, 바이페닐의 1가 작용기, 나프탈렌의 1가 작용기, 플루오렌일기, 치환된 플루오렌일기를 포함할 수 있고, 아릴렌기는 플루오렌일렌기, 치환된 플루오렌일렌기를 포함할 수 있다.
본 출원에서 사용된 용어 "고리 집합체(ring assemblies)"는 둘 또는 그 이상의 고리계(단일고리 또는 접합된 고리계)가 단일결합이나 또는 이중결합을 통해서 서로 직접 연결되어 있고, 이와 같은 고리 사이의 직접 연결의 수가 그 화합물에 들어 있는 고리계의 총 수보다 1개가 적은 것을 의미한다. 고리 집합체는 동일 또는 상이한 고리계가 단일결합이나 이중결합을 통해 서로 직접 연결될 수 있다.
본 출원에서 아릴기는 고리 집합체를 포함하므로, 아릴기는 단일 방향족고리인 벤젠고리가 단일결합에 의해 연결된 바이페닐, 터페닐을 포함한다. 또한, 아릴기는 방향족 단일 고리와 접합된 방향족 고리계가 단일결합에 의해 연결된 화합물도 포함하므로, 예를 들면, 방향족 단일 고리인 벤젠 고리와 접합된 방향족 고리계인 플루오렌이 단일결합에 의해 연결된 화합물도 포함한다.
본 출원에서 사용된 용어 "접합된 여러 고리계"는 적어도 두 개의 원자를 공유하는 접합된(fused) 고리 형태를 의미하며, 둘 이상의 탄화수소류의 고리계가 접합된 형태 및 적어도 하나의 헤테로원자를 포함하는 헤테로고리계가 적어도 하나 접합된 형태 등을 포함한다. 이러한 접합된 여러 고리계는 방향족고리, 헤테로방향족고리, 지방족 고리 또는 이들 고리의 조합일 수 있다. 예를 들어 아릴기의 경우, 나프탈렌일기, 페난트렌일기, 플루오레닐기 등이 될 수 있으나, 이에 한정된 것은 아니다.
본 출원에서 사용된 용어 "스파이로 화합물"은 '스파이로 연결 (spiro union)'을 가지며, 스파이로 연결은 2개의 고리가 오로지 1개의 원자를 공유함으로써 이루어지는 연결을 의미한다. 이때, 두 고리에 공유된 원자를 '스파이로 원자'라 하며, 한 화합물에 들어 있는 스파이로 원자의 수에 따라 이들을 각각 '모노스파이로-', '다이스파이로-', '트라이스파이로-' 화합물이라 한다.
본 출원에서 사용된 용어 "플루오렌일기", "플루오렌일렌기", "플루오렌트리일기"는 다른 설명이 없는 한 각각 하기 구조에서 R, R', R" 및 R'"이 모두 수소인 1가, 2가 또는 3가의 작용기를 의미하며, "치환된 플루오렌일기", "치환된 플루오렌일렌기" 또는 "치환된 플루오렌트리일기"는 치환기 R, R', R", R'"중 적어도 하나가 수소 이외의 치환기인 것을 의미하며, R과 R'이 서로 결합되어 이들이 결합된 탄소와 함께 스파이로 화합물을 형성한 경우를 포함한다. 본 명세서에서는 1가, 2가, 3가 등과 같은 가수와 상관없이 플루오렌일기, 플루오렌일렌기, 플루오렌트리일기를 모두 플루오렌기라고 명명할 수도 있다.
Figure PCTKR2020013167-appb-img-000003
또한, 상기 R, R', R" 및 R'"은 각각 독립적으로, 1 내지 20의 탄소수를 가지는 알킬기, 1 내지 20의 탄소수를 가지는 알케닐기, 6 내지 30의 탄소수를 가지는 아릴기, 3 내지 30의 탄소수를 가지는 헤테로고리기일 수 있고, 예를 들면, 상기 아릴기는 페닐, 바이페닐, 나프탈렌, 안트라센 또는 페난트렌일 수 있으며, 상기 헤테로고리기는 피롤, 푸란, 티오펜, 피라졸, 이미다졸, 트리아졸, 피리딘, 피리미딘, 피리다진, 피라진, 트리아진, 인돌, 벤조퓨란, 퀴나졸린 또는 퀴녹살린일 수 있다. 예를 들면, 상기 치환된 플루오렌일기 및 플루오렌일렌기는 각각 9,9-디메틸플루오렌, 9,9-디페닐플루오렌 및 9,9'-스파이로바이[9H-플루오렌]의 1가 작용기 또는 2가 작용기일 수 있다.
본 출원에서 사용된 용어 "헤테로고리기"는 "헤테로아릴기" 또는 "헤테로아릴렌기"와 같은 방향족 고리뿐만 아니라 비방향족 고리도 포함하며, 다른 설명이 없는 한 각각 하나 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 고리를 의미하나 여기에 한정되는 것은 아니다. 본 출원에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타내며, 헤테로고리기는 헤테로원자를 포함하는 단일고리형, 고리집합체, 접합된 여러 고리계, 스파이로 화합물 등을 의미한다.
예를 들어, “헤테로고리기”는 고리를 형성하는 탄소 대신 하기 화합물과 같이 SO 2, P=O 등과 같은 헤테로원자단을 포함하는 화합물도 포함할 수 있다.
Figure PCTKR2020013167-appb-img-000004
본 출원에서 사용된 용어 "고리"는 단일환 및 다환을 포함하며, 탄화수소고리는 물론 적어도 하나의 헤테로원자를 포함하는 헤테로고리를 포함하고, 방향족 및 비방향족 고리를 포함한다.
본 출원에서 사용된 용어 "다환"은 바이페닐, 터페닐 등과 같은 고리 집합체(ring assemblies), 접합된(fused) 여러 고리계 및 스파이로 화합물을 포함하며, 방향족뿐만 아니라 비방향족도 포함하고, 탄화수소고리는 물론 적어도 하나의 헤테로원자를 포함하는 헤테로고리를 포함한다.
본 출원에서 사용된 용어 "지방족고리기"는 방향족탄화수소를 제외한 고리형 탄화수소를 의미하며, 단일고리형, 고리집합체, 접합된 여러 고리계, 스파이로 화합물 등을 포함하며, 다른 설명이 없는 한 탄소수 3 내지 60의 고리를 의미하나, 이에 한정되는 것은 아니다. 예컨대, 방향족고리인 벤젠과 비방향족고리인 사이클로헥산이 융합된 경우에도 지방족 고리에 해당한다.
또한, 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕시카르보닐기의 경우 알콕시기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
또한 명시적인 설명이 없는 한, 본 출원에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C 1-C 20의 알킬기, C 1-C 20의 알콕시기, C 1-C 20의 알킬아민기, C 1-C 20의 알킬티오펜기, C 6-C 20의 아릴티오펜기, C 2-C 20의 알켄일기, C 2-C 20의 알킨일기, C 3-C 20의 사이클로알킬기, C 6-C 20의 아릴기, 중수소로 치환된 C 6-C 20의 아릴기, C 8-C 20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C 2-C 20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 한정되는 것은 아니다.
본 출원에서 각 기호 및 그 치환기의 예로 예시되는 아릴기, 아릴렌기, 헤테로고리기 등에 해당하는 '작용기 명칭'은 '가수를 반영한 작용기의 명칭'을 기재할 수도 있지만, '모체 화합물 명칭'으로 기재할 수도 있다. 예컨대, 아릴 기의 일종인 '페난트렌'의 경우, 1가의 '기'는 '페난트릴(기)'로, 2가의 기는 '페난트릴렌(기)' 등과 같이 가수를 구분하여 기의 이름을 기재할 수도 있지만, 가수와 상관없이 모체 화합물 명칭인 '페난트렌'으로 기재할 수도 있다.
유사하게, 피리미딘의 경우에도, 가수와 상관없이 '피리미딘'으로 기재하거나, 1가인 경우에는 피리미딘일(기)로, 2가의 경우에는 피리미딘일렌(기) 등과 같이 해당 가수의 '기의 이름'으로 기재할 수도 있다. 따라서, 본 출원에서 치환기의 종류를 모체 화합물 명칭으로 기재할 경우, 모체 화합물의 탄소 원자 및/또는 헤테로원자와 결합하고 있는 수소 원자가 탈리되어 형성되는 n가의 '기'를 의미할 수 있다.
또한, 본 명세서에서는 화합물 명칭이나 치환기 명칭을 기재함에 있어 위치를 표시하는 숫자나 알파벳 등은 생략할 수도 있다. 예컨대, 피리도[4,3-d]피리미딘을 피리도피리미딘으로, 벤조퓨로[2,3-d]피리미딘을 벤조퓨로피리미딘으로, 9,9-다이메틸-9H-플루오렌을 다이메틸플루오렌 등과 같이 기재할 수 있다. 따라서, 벤조[g]퀴녹살린이나 벤조[f]퀴녹살린을 모두 벤조퀴녹살린이라고 기재할 수 있다.
또한 명시적인 설명이 없는 한, 본 출원에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure PCTKR2020013167-appb-img-000005
여기서, a가 0의 정수인 경우 치환기 R 1은 부존재하는 것을 의미하는데, 즉 a가 0인 경우는 벤젠고리를 형성하는 탄소에 모두 수소가 결합된 것을 의미하며, 이때 탄소에 결합된 수소의 표시를 생략하고 화학식이나 화합물을 기재할 수 있다. 또한, a가 1의 정수인 경우 하나의 치환기 R 1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 예컨대 아래와 같이 결합할 수 있고, a가 4 내지 6의 정수인 경우에도 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, a가 2 이상의 정수인 경우 R 1은 서로 같거나 상이할 수 있다.
Figure PCTKR2020013167-appb-img-000006
본 출원에서 다른 설명이 없는 한, 고리를 형성한다는 것은, 인접한 기가 서로 결합하여 단일고리 또는 접합된 여러고리를 형성하는 것을 의미하고, 단일고리 및 형성된 접합된 여러 고리는 탄화수소고리는 물론 적어도 하나의 헤테로원자를 포함하는 헤테로고리를 포함하고, 방향족 및 비방향족 고리를 포함할 수 있다.
또한, 본 명세서에서 다른 설명이 없는 한, 축합환을 표시할 때 '숫자-축합환'에서 숫자는 축합되는 고리의 개수를 나타낸다. 예컨데, 안트라센, 페난트렌, 벤조퀴나졸린 등과 같이 3개의 고리가 서로 축합한 형태는 3-축합환으로 표기할 수 있다.
한편, 본 출원에서 사용된 용어 "다리걸친 고리 화합물(bridged bicyclic compound)"은 다른 설명이 없는 한, 2개의 고리가 3개 이상의 원자를 공유하여 고리를 형성한 화합물을 말한다. 이때 공유하는 원자는 탄소 또는 헤테로원자를 포함할 수 있다.
이하, 본 발명의 화합물이 포함된 유기전기소자의 적층 구조에 대하여 도 1 내지 도 3을 참조하여 설명한다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 유기전기소자(100)는 기판(미도시) 상에 형성된 제1 전극(110), 제2 전극(170) 및 제1 전극(110)과 제2 전극(170) 사이에 본 발명에 따른 화합물을 포함하는 유기물층을 포함한다.
상기 제1 전극(110)은 애노드(양극)이고, 제2 전극(170)은 캐소드(음극)일 수 있으며, 인버트형의 경우에는 제1 전극이 캐소드이고 제2 전극이 애노드일 수 있다.
상기 유기물층은 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함할 수 있다. 구체적으로, 제1 전극(110) 상에 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)이 순차적으로 형성될 수 있다.
바람직하게는, 상기 제1 전극(110) 또는 제2 전극(170)의 양면 중에서 유기물층과 접하지 않는 일면에 캡핑층(180)이 형성될 수 있으며, 캡핑층(180)이 형성될 경우 유기전기소자의 광효율이 향상될 수 있다.
예를 들면, 제2 전극(170) 상에 캡핑층(180)이 형성될 수 있는데, 전면발광(top emission) 유기발광소자의 경우, 캡핑층(180)이 형성됨으로써 제2 전극(170)에서의 SPPs (surface plasmon polaritons)에 의한 광학에너지 손실을 줄일 수 있고, 배면발광(bottom emission) 유기발광소자의 경우, 캡핑층(180)이 제2 전극(170)에 대한 완충 역할을 수행할 수 있다.
한편, 정공수송층(130)과 발광층(140) 사이에 버퍼층(210)이나 발광보조층(220)이 더 형성될 수 있는데 이에 대해 도 2를 참조하여 설명한다.
도 2를 참조하면, 본 발명의 다른 실시예에 따른 유기전기소자(200)는 제1 전극(110) 상에 순차적으로 형성된 정공주입층(120), 정공수송층(130), 버퍼층(210), 발광보조층(220), 발광층(140), 전자수송층(150), 전자주입층(160), 제2 전극(170)을 포함할 수 있고, 제2 전극 상에 캡핑층(180)이 형성될 수 있다.
도 2에 도시되지는 않았으나, 발광층(140)과 전자수송층(150) 사이에 전자수송보조층이 더 형성될 수도 있다.
또한, 본 발명의 다른 실시예에 따르면 유기물층은 정공수송층, 발광층 및 전자수송층을 포함하는 스택이 복수 개가 형성된 형태일 수도 있다. 이에 대해 도 3을 참조하여 설명한다.
도 3을 참조하면, 본 발명의 또 다른 실시예에 따른 유기전기소자(300)는 제1 전극(110)과 제2 전극(170) 사이에 다층으로 이루어진 유기물층의 스택(ST1, ST2)이 두 세트 이상 형성될 수 있고 유기물층의 스택 사이에 전하생성층(CGL)이 형성될 수도 있다.
구체적으로, 본 발명에 일 실시예에 따른 유기전기소자는 제1 전극(110), 제1 스택(ST1), 전하생성층(CGL: Charge Generation Layer), 제2 스택(ST2), 제2 전극(170) 및 캡핑층(180)을 포함할 수 있다.
상기 제1 스택(ST1)은 제1 전극(110) 상에 형성된 유기물층으로, 이는 제1 정공주입층(320), 제1 정공수송층(330), 제1 발광층(340) 및 제1 전자수송층(350)을 포함할 수 있다.
상기 제2 스택(ST2)은 제2 정공주입층(420), 제2 정공수송층(430), 제2 발광층(440) 및 제2 전자수송층(450)을 포함할 수 있다.
이와 같이 제1 스택과 제2 스택은 동일한 적층 구조를 갖는 유기물층일 수도 있지만 서로 다른 적층 구조의 유기물층일 수도 있다.
상기 제1 스택(ST1)과 제2 스택(ST2) 사이에는 전하 생성층(CGL)이 형성 될 수 있다. 전하 생성층(CGL)은 제1 전하 생성층(360)과 제2 전하생성층(361)을 포함할 수 있다. 이러한 전하생성층(CGL)은 제1 발광층(340)과 제2 발광층(440) 사이에 형성되어 각각의 발광층에서 발생하는 전류 효율을 증가시키고, 전하를 원활하게 분배하는 역할을 한다.
상기 제1 발광층(340)에는 청색 호스트에 청색 형광 도펀트를 포함하는 발광 재료가 포함될 수 있고, 제2 발광층(440)에는 녹색 호스트에 그리니쉬 옐로우(greenish yellow) 도펀트와 적색 도펀트가 함께 도핑된 재료가 포함될 수 있으나, 본 발명의 실시예에 따른 제1 발광층(340) 및 제2 발광층(440)의 재료가 이에 한정되는 것은 아니다.
이때, 제2 정공수송층(430)은 에너지 준위를 제2 발광층(440)의 삼중항(triplet) 여기상태 에너지 준위보다 높게 설정한 제2 스택(ST2)을 포함하여 이루어진다.
상기 제2 발광층(440)보다 제2 정공수송층(430)의 에너지 준위가 높기 때문에, 제2 발광층(440)의 삼중항 여기자(triplet exciton)가 제2 정공수송층(430)으로 넘어가 발광 효율이 떨어지는 것을 방지할 수 있다. 즉, 제2 정공수송층(430)은 고유의 제2 발광층(440)으로부터의 정공의 수송 기능을 함과 동시에 삼중항 여기자가 넘어오는 것을 방지하는 여기자 저지층(exciton blocking layer)로 기능할 수 있다.
또한, 여기자 저지층의 기능을 위해 제1 정공수송층(330) 또한, 제1 발광층(340)의 삼중항 여기 에너지 준위보다 높은 에너지 준위로 설정될 수 있다. 그리고, 제1 전자수송층(350)도 제1 발광층(340)의 삼중항 여기 상태의 에너지 준위보다 높은 에너지 준위로 설정하며, 제2 전자수송층(450)도 제2 발광층(440)의 삼중항 여기 상태의 에너지 준위보다 높은 에너지 준위로 설정되는 것이 바람직하다.
도 3에서, n은 1~5의 정수일 수 있는데, n이 2인 경우, 제2 스택(ST2) 상에 전하생성층(CGL)과 제3 스택이 추가적으로 더 적층될 수 있다.
도 3과 같이 다층의 스택 구조 방식에 의해 발광층이 복수개 형성될 경우, 각각의 발광층에서 발광된 광의 혼합 효과에 의해 백색 광이 발광되는 유기전기발광소자를 제조할 수 있을 뿐만 아니라 다양한 색상의 광을 발광하는 유기전기발광소자를 제조할 수도 있다.
본 발명의 화학식 1에 의해 표시되는 화합물은 정공주입층(120, 320, 420), 정공수송층(130, 330, 430), 버퍼층(210), 발광보조층(220), 전자수송층(150, 350, 450), 전자주입층(160), 발광층(140, 340, 440) 또는 캡핑층(180)의 재료로 사용될 수 있으나, 바람직하게는 정공수송층(130, 330, 430), 발광보조층(220), 발광층(140, 340, 440) 및/또는 캡핑층(180)의 재료로 사용될 수 있다.
도 1 내지 도 3에 따른 유기전기소자는, 보호층(미도시) 및 봉지층(미도시)을 추가로 포함할 수 있다. 보호층은 캐핑층 상에 위치할 수 있고, 봉지층은 캐핑층 상에 위치하며, 상기 제1 전극, 제2 전극 및 유기물층을 보호하기 위하여 상기 제1 전극, 제2 전극 및 유기물층 중 하나 이상의 측면부를 덮도록 형성될 수 있다.
보호층은 봉지층이 균일하게 형성될 수 있도록 평탄화된 표면을 제공할 수 있으며, 봉지층의 제조과정에서 제1전극, 제2전극 및 유기물층을 보호하는 역할을 수행할 수 있다.
봉지층은 유기전기소자 내부로 외부의 산소 및 수분이 침투를 막아 주는 역할을 수행할 수 있다.
한편, 동일 유사한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합에 대한 연구가 필요하며, 특히 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
따라서, 본 발명에서는 화학식 1로 표시되는 화합물을 발광보조층(220), 발광층(140, 340, 440) 및/또는 캡핑층(180)의 재료로 사용함으로써, 각 유기물층 간의 에너지 레벨 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등을 최적화하여 유기전기소자의 수명 및 효율을 동시에 향상시킬 수 있었다.
본 발명의 일 실시예에 따른 유기전기 발광소자는 다양한 증착법 (deposition)을 이용하여 제조될 수 있을 것이다. PVD나 CVD 등의 증착 방법을 사용하여 제조될 수 있는데, 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극(110)을 형성하고, 그 위에 정공주입층(120, 320, 420), 정공수송층(130, 330, 430), 발광층(140, 340, 440), 전자수송층(150, 350, 450) 및 전자주입층(160)을 포함하는 유기물층을 형성한 후, 그 위에 음극(170)으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 또한, 정공수송층(130, 330, 430)과 발광층(140, 340, 440) 사이에 발광보조층(220)을, 발광층(140)과 전자수송층(150) 사이에 전자수송보조층(미도시)을 더 형성할 수도 있고 상술한 바와 같이 스택 구조로 형성할 수도 있다.
또한, 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정, 롤투롤 공정, 닥터 블레이딩 공정, 스크린 프린팅 공정, 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다. 본 발명에 따른 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 유기전기소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 발명의 일 실시예에 따른 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 단색 조명용 소자 및 퀀텀닷 디스플레이용 소자 등을 포함할 수 있다.
본 발명의 다른 실시예는 상술한 본 발명의 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 제어하는 제어부를 포함하는 전자장치를 포함할 수 있다. 이때, 전자장치는 현재 또는 장래의 유무선 통신단말일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
이하, 본 발명의 일 측면에 따른 화합물에 대하여 설명한다.
본 발명의 일 측면에 따른 화합물은 하기 화학식 1로 표시된다.
<화학식 1>
Figure PCTKR2020013167-appb-img-000007
상기 화학식 1에서,
1) Ar 1 내지 Ar 4는 서로 독립적으로 C 6~C 60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; C 3~C 60의 지방족고리와 C 6~C 60의 방향족고리의 융합고리기; C 1~C 50의 알킬기; C 2~C 20의 알켄일기; C 2~C 20의 알킨일기; C 1~C 30의 알콕실기; C 6~C 30의 아릴옥시기; 또는 이들의 조합; 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있고,
2) R 1~R 5는 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; 니트로기; 아미노기; C 6~C 60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; C 3~C 60의 지방족고리와 C 6~C 60의 방향족고리의 융합고리기; C 1~C 50의 알킬기; C 2~C 20의 알켄일기; C 2~C 20의 알킨일기; C 1~C 30의 알콕실기; C 6~C 30의 아릴옥시기; C 6~C 30의 아릴싸이오기; 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있고,
3) L 1 및 L 2는 서로 독립적으로 단일결합; C 6~C 60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; C 3~C 60의 지방족고리와 C 6~C 60의 방향족고리의 융합고리기; 2가의 지방족 탄화수소기; 또는 이들의 조합이고,
4) X 및 Y는 서로 독립적으로 NR, O, S 또는 CR'R''이고,
5) R, R' 및 R”은 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; 니트로기; 아미노기; C 6~C 60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; C 3~C 60의 지방족고리와 C 6~C 60의 방향족고리의 융합고리기; C 1~C 50의 알킬기; C 2~C 20의 알켄일기; C 2~C 20의 알킨일기; C 1~C 30의 알콕실기; C 6~C 30의 아릴옥시기; C 6~C 30의 아릴싸이오기; 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있고,
6) m은 0 또는 1의 정수이고,
7) a 및 d~e는 0~4의 정수이고; b는 0~2의 정수이고; c는 0~3의 정수이고,
8) Ar 1~Ar 4, L 1~L 2, R 1~R 5, R, R', R'' 및 이웃한 기끼리 서로 결합하여 형성한 고리는 각각 중수소; 할로겐; C 1-C 20의 알킬기 또는 C 6-C 20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C 1-C 20의 알킬싸이오기; C 1-C 20의 알콕시기; C 6-C 20의 아릴알콕시기; C6-C20의 아릴옥시기; C6-C20의 아릴싸이오기; C 1-C 20의 알킬기; C 2-C 20의 알켄일기; C 2-C 20의 알킨일기; C 6-C 20의 아릴기; 중수소로 치환 또는 비치환된 C 6-C 20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C 2-C 20의 헤테로고리기; C 3-C 20의 지방족고리기; C 7-C 20의 아릴알킬기; C 8-C 20의 아릴알켄일기; 및 이들의 조합으로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다.
상기에서, Ar 1~Ar 4, R 1~R 5, R, R' 및 R''이 아릴기인 경우, 바람직하게는 C 6~C 30의 아릴기, 더욱 바람직하게는 C 6~C 18의 아릴기, 예컨대 페닐, 바이페닐, 나프틸, 터페닐 등일 수 있다.
상기 L 1~L 2, Ar 1~Ar 4, R 1~R 5, R, R' 및 R''이 헤테로고리기인 경우, 바람직하게는 C 2~C 30의 헤테로고리기, 더욱 바람직하게는 C 2~C 18의 헤테로고리기, 예컨대 다이벤조퓨란, 다이벤조싸이오펜, 나프토벤조싸이오펜, 나프토벤조퓨란 등일 수 있다.
상기 Ar 1~Ar 4, R 1~R 5, R, R' 및 R''이 플루오렌일기인 경우, 바람직하게는 9,9-다이메틸-9H-플루오렌, 9,9-다이페닐-9H-플루오렌일기, 9,9'-스파이로바이플루오렌 등일 수 있다.
상기 L 1~L 2이 아릴렌기인 경우, 바람직하게는 C 6~C 30의 아릴렌기, 더욱 바람직하게는 C 6~C 18의 아릴렌기, 예컨대 페닐, 바이페닐, 나프틸, 터페닐 등일 수 있다.
상기 Ar 1~Ar 4, R 1~R 5, R, R' 및 R''이 알킬기인 경우, 바람직하게는 C 1~C 10의 알킬기일 수 있고, 예컨대 메틸, t-부틸 등일 수 있다.
상기 Ar 1~Ar 4, R 1~R 5, R, R' 및 R''이 알콕시기인 경우, 바람직하게는 C 1~C 20의 알콕실기, 더욱 바람직하게는 C 1~C 10의 알콕실기, 예컨대 메톡시, t-부톡시 등일 수 있다.
상기 L 1~L 2, Ar 1~Ar 4, R 1~R 5, R, R' 및 R''의 이웃한 기끼리 서로 결합하여 형성된 고리는 C 6~C 60의 방향족고리기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; 또는 C 3~C 60의 지방족고리기일 수 있으며, 예컨대, 이웃한 기끼리 서로 결합하여 방향족고리를 형성할 경우, 바람직하게는 C 6~C 20의 방향족고리, 더욱 바람직하게는 C 6~C 14의 방향족고리, 예컨대 벤젠, 나프탈렌, 페난트렌 등을 형성할 수 있다.
바람직하게는, 상기 화학식 1이 하기 화학식 1-1 내지 화학식 1-4 중 어느 하나로 표시되는 될 수 있으며, 이에 한정되지 않는다.
<화학식 1-1>
Figure PCTKR2020013167-appb-img-000008
<화학식 1-2>
Figure PCTKR2020013167-appb-img-000009
<화학식 1-3>
Figure PCTKR2020013167-appb-img-000010
<화학식 1-4>
Figure PCTKR2020013167-appb-img-000011
상기 화학식 1-1 내지 화학식 1-4에서, 상기 R 1~R 5, R, R', R”, Ar 1~Ar 4, L 1~L 2, a~e 및 Y는 상기 화학식 1에서 정의된 것과 같다.
보다 바람직하게는, 상기 화학식 1이 하기 화학식 1-5 내지 화학식 1-8 중 어느 하나로 표시되는 될 수 있으며, 이에 한정되지 않는다.
<화학식 1-5>
Figure PCTKR2020013167-appb-img-000012
<화학식 1-6>
Figure PCTKR2020013167-appb-img-000013
<화학식 1-7>
Figure PCTKR2020013167-appb-img-000014
<화학식 1-8>
Figure PCTKR2020013167-appb-img-000015
상기 화학식 1-5 내지 화학식 1-8에서, 상기 R 1~R 5, R, R', R”, Ar 1~Ar 4, L 1~L 2, 및 a~e는 상기 화학식 1에서 정의된 것과 같다.
또한 바람직하게는, 상기 화학식 1이 하기 화학식 1-9 내지 화학식 1-16 중 어느 하나로 표시되는 될 수 있으며, 이에 한정되지 않는다.
<화학식 1-9>
Figure PCTKR2020013167-appb-img-000016
<화학식 1-10>
Figure PCTKR2020013167-appb-img-000017
<화학식 1-11>
Figure PCTKR2020013167-appb-img-000018
<화학식 1-12>
Figure PCTKR2020013167-appb-img-000019
<화학식 1-13>
Figure PCTKR2020013167-appb-img-000020
<화학식 1-14>
Figure PCTKR2020013167-appb-img-000021
<화학식 1-15>
Figure PCTKR2020013167-appb-img-000022
<화학식 1-16>
Figure PCTKR2020013167-appb-img-000023
상기 화학식 1-9 내지 화학식 1-16에서, 상기 R 1~R 5, R, R', R”, Ar 1~Ar 4, L 1~L 2, 및 a~e는 상기 화학식 1에서 정의된 것과 같다.
또한 바람직하게는, 상기 Ar 1 내지 Ar 4중 적어도 하나는 하기 화학식 B-1로 표시되는 될 수 있으며, 이에 한정되지 않는다.
<화학식 B-1>
Figure PCTKR2020013167-appb-img-000024
상기 화학식 B-1에서,
1) T 및 U는 서로 독립적으로 NAr 5, O, S, CR aR b 또는 단일결합이고; 단, T와 U가 동시에 단일결합인 경우는 제외하며,
2) A 및 B환은 서로 독립적으로 C 6~C 20의 아릴기, C 4~C 20의 헤테로고리기이며,
3) 상기 R a 및 R b는 서로 독립적으로 수소; 중수소; 할로겐; C 1~C 20의 알킬기 또는 C 6~C 20의 아릴기로 치환 또는 비치환된 실란기; 시아노기; 니트로기; C 1~C 20의 알킬싸이오기; C 1~C 20의 알콕시기; C 6~C 20의 아릴옥시기; C 1~C 20의 알킬기; C 2~C 20의 알켄일기; C 2~C 20의 알킨일기; C 6~C 20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C 2~C 20의 헤테로고리기; C 3~C 20의 지방족고리기; C 7~C 20의 아릴알킬기; 및 C 8~C 20의 아릴알켄일기로 이루어진 군에서 선택되거나; 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있으며,
4) 상기 Ar 5는 C 6~C 20의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 20의 헤테로고리기; C 3~C 20의 지방족고리기; 또는 이들의 조합으로 이루어진 군에서 선택된다.
한편, 상기 화학식 1로 표시되는 화합물은 하기 P1 내지 P147 중 하나일 수 있으며, 이에 한정되지 않는다.
Figure PCTKR2020013167-appb-img-000025
Figure PCTKR2020013167-appb-img-000026
Figure PCTKR2020013167-appb-img-000027
Figure PCTKR2020013167-appb-img-000028
Figure PCTKR2020013167-appb-img-000029
Figure PCTKR2020013167-appb-img-000030
Figure PCTKR2020013167-appb-img-000031
Figure PCTKR2020013167-appb-img-000032
Figure PCTKR2020013167-appb-img-000033
Figure PCTKR2020013167-appb-img-000034
Figure PCTKR2020013167-appb-img-000035
Figure PCTKR2020013167-appb-img-000036
Figure PCTKR2020013167-appb-img-000037
Figure PCTKR2020013167-appb-img-000038
Figure PCTKR2020013167-appb-img-000039
Figure PCTKR2020013167-appb-img-000040
Figure PCTKR2020013167-appb-img-000041
Figure PCTKR2020013167-appb-img-000042
Figure PCTKR2020013167-appb-img-000043
Figure PCTKR2020013167-appb-img-000044
Figure PCTKR2020013167-appb-img-000045
Figure PCTKR2020013167-appb-img-000046
Figure PCTKR2020013167-appb-img-000047
Figure PCTKR2020013167-appb-img-000048
Figure PCTKR2020013167-appb-img-000049
본 발명의 다른 구체예로서, 본 발명은 제1 전극; 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 형성된 유기물층을 포함하는 유기전자소자를 제공하는 것이며, 상기 유기물층은 화학식 1로 표시되는 화합물을 단독 또는 혼합하여 포함한다.
본 발명의 또 다른 구체예로서, 본 발명은 제1 전극; 제2 전극; 상기 제1 전극과 제2 전극 사이에 형성된 유기물층; 및 캡핑층을 포함하는 유기전기소자를 제공하는 것이며, 상기 캡핑층은 상기 제1 전극 및 제2 전극의 양면 중에서 상기 유기물층과 접하지 않는 일면에 형성되며, 상기 유기물층 또는 캡핑층은 화학식 1로 표시되는 화합물을 단독 또는 혼합하여 포함한다.
상기 유기물층은 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나를 포함한다. 즉, 상기 유기물층에 포함된 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 또는 전자주입층 중 적어도 하나의 층이 화학식 (1)로 표시되는 화합물을 포함할 수 있다.
바람직하게는, 상기 유기물층은 상기 정공수송층, 발광보조층 및 발광층 중 적어도 하나를 포함한다. 즉, 상기 화합물은 상기 정공수송층, 발광보조층 및 발광층 중 적어도 하나에 포함될 수 있다.
상기 유기물층은 상기 양극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함한다.
바람직하게는, 상기 유기물층은 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함한다.
본 발명의 또 다른 구체예로서, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기전기소자를 포함하는 디스플레이장치와 상기 디스플레이장치를 구동하는 제어부를 포함하는 전자장치를 제공하는 것이다.
본 발명의 구체예에서, 상기 화학식 1의 화합물은 단독으로 포함되거나, 상기 화합물이 서로 다른 2종 이상의 조합으로 포함되거나, 상기 화합물이 다른 화합물과 2종 이상의 조합으로 포함될 수 있다.
이하에서는 본 발명에 따른 화학식 1로 표시되는 화합물의 합성예 및 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
<합성예>
본 발명에 따른 상기 화학식 1로 표시되는 최종화합물(final product)은 하기 반응식 1과 같이 Core 1이 Sub 1과 반응하여 합성될 수 있으며, 이에 한정되는 것은 아니다.
<반응식 1>
Figure PCTKR2020013167-appb-img-000050
상기 반응식 1에서 Hal 1 및 Hal 2 서로 독립적으로 I, Br 또는 Cl이고; G 1은 Ar 1 또는 Ar 3이고; G 2는 Ar 2 또는 Ar 4이다.
I. Core 1의 합성
반응식 1의 Core 1은 하기 반응식 2 내지 4의 반응경로에 의해 합성될 수 있으며 이에 한정된 것은 아니다.
<반응식 2>
Figure PCTKR2020013167-appb-img-000051
Figure PCTKR2020013167-appb-img-000052
<반응식 3>
Figure PCTKR2020013167-appb-img-000053
<반응식 4>
Figure PCTKR2020013167-appb-img-000054
<반응식 5>
Figure PCTKR2020013167-appb-img-000055
상기 반응식 5에서 R 6는 상기 화학식 1에서 정의된 R' 또는 R''이며,
상기 Hal 1 내지 Hal 3은 서로 독립적으로 I, Br 또는 Cl이다.
Core 1 합성예
(1) Core 1-1의 합성예
Figure PCTKR2020013167-appb-img-000056
1) Core 1-1-a의 합성
2',7'-dibromospiro[fluorene-9,9'-thioxanthene] (20 g, 39.5 mmol)을 둥근바닥 플라스크에 THF 131 mL로 녹인 후에, (4-chloro-2-(methylthio)phenyl)boronic acid (7.99 g, 39.5 mmol), Pd(PPh 3) 4 (0.91 g, 0.79 mmol), K 2CO 3 (21.83 g, 158.02 mmol), 물 44 mL을 첨가하고 80℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core 1-1-a를 16.61 g (수율: 72%)을 얻었다.
2) Core 1-1-b의 합성
둥근바닥 플라스크에 Core 1-1-a (16.61 g, 28.44 mmol)와 AcOH 94 mL를 넣은 후에, H 2O 2 (1.06 g, 31.28 mmol)을 넣고 실온에서 교반하였다. 반응이 완료되면 용매를 제거한 뒤, 1M NaOH로 중화한 다음, 에틸아세테이트로 추출 후 재결정하여 Core 1-1-b를 15.01g (수율: 88%)을 얻었다.
3) Core 1-1의 합성
Core 1-1-b(15.01 g, 36.7 mmol)를 H 2SO 4 100 ml 에 넣고 65℃에서 교반하였다. 반응이 완료되면, NaOH 수용액을 사용하여 중화한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core1-1을 14.8 g (수율: 89%)얻었다.
(2) Core 1-11
Figure PCTKR2020013167-appb-img-000057
1) Core 1-11-a의 합성
3'-bromo-6'-iodospiro[fluorene-9,9'-thioxanthene] (20 g, 36.1 mmol)을 둥근바닥 플라스크에 THF 120 mL로 녹인 후에, (3-chloro-2-nitrophenyl)boronic acid (7.27 g, 36.1 mmol), Pd(PPh 3) 4 (0.83 g, 0.72 mmol), K 2CO 3 (19.98 g, 144.59 mmol), 물 40 mL을 첨가하고 65℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core 1-11-a를 18.12 g (수율: 86%)을 얻었다.
2) Core 1-11-b의 합성
Core 1-11-a (18.12 g, 31.09 mmol), Triphenylphosphine (24.49 g, 93.26 mmol)을 o-DCB(300ml)에 넣고 220℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core 1-11-b를 12.67 g (수율: 74%)을 얻었다.
3) Core 1-11의 합성
Core 1-11-b (12.67 g, 23.00 mmol)을 둥근바닥 플라스크에 DCB 77 mL로 녹인 후에, Iodobenzene (5.16 g, 25.30 mmol), 구리 (0.15 g, 2.30 mmol), K 2CO 3 (9.54 g, 69.00 mmol), 18-crown-6 (12.16 g, 46.00 mmol)을 넣고 150℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core1-11를 9.51 g (수율: 66%)을 얻었다.
(3) Core 1-22
Figure PCTKR2020013167-appb-img-000058
1) Core 1-22-a의 합성
2'-bromo-7'-iodospiro[fluorene-9,9'-xanthene] (20 g, 37.23 mmol)을 둥근바닥 플라스크에 AcOH 124 mL로 녹인 후에, 3-chlorophenol (4.79 g, 37.23 mmol), 구리 (0.24 g, 3.72 mmol), K 2CO 3 (15.44 g, 111.69 mmol), 18-crown-6 (9.84 g, 37.23 mmol)을 넣고 환류시켰다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core1-22-a를 12.27 g (수율: 59%)을 얻었다.
2) Core 1-22의 합성
Core 1-22-a(12.27 g, 22.15 mmol)을 둥근바닥 플라스크에 AcOH 74 mL로 녹인 후에, Pd(OAc) 2 (0.10 g, 0.44 mmol), K 2CO 3 (9.18 g, 66.46 mmol)을 넣고 환류시켰다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core 1-22 7.83 g (수율: 66%)를 얻었다.
(4) Core 1-28
Figure PCTKR2020013167-appb-img-000059
1) Core 1-28-a의 합성
2-(4'-bromospiro[fluorene-9,9'-xanthen]-5'-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20 g, 37.23 mmol)을 둥근바닥 플라스크에 THF 124 mL로 녹인 후에, 1-bromo-4-chloro-2-(iodomethyl)benzene (12.93 g, 37.23 mmol), NaOH (2.98 g 47.11 mmol) 넣고 85℃에서 교반하였다. 반응이 완료되면, 용매를 제거한 뒤 CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼하여 생성물 Core1-28-a를 18.53 g (수율: 81%)을 얻었다.
2) Core 1-28-b의 합성
Core 1-28-a (18.53 g, 30.14 mmol)을 둥근바닥 플라스크에 THF 108 mL로 녹인 후에, NH 4Cl (3.22 g, 60.28 mmol), Caesium pivalate (0.42 g 1.81 mmol), Pd(OAc) 2 (0.14 g, 0.60 mmol)을 넣고 90℃에서 교반하였다. 반응이 완료되면, 용매를 제거한 뒤 CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼하여 생성물 Core 1-28-b를 12.39 g (수율: 77%)을 얻었다.
3) Core 1-28의 합성
Core 1-28-b (12.39 g, 23.21 mmol)을 둥근바닥 플라스크에 톨루엔 77 mL로 녹인 후에, MethylIodide (5.93 g, 41.78 mmol), NaH 2PO 4 (5.57 g, 46.42 mmol), Potassium bis(trimethylsilyl)amide (13.49 g 69.63 mmol)을 넣고 130℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼하여 생성물 Core 1-28을 8.86 g (수율: 68%)을 얻었다.
(5) Core 1-55
Figure PCTKR2020013167-appb-img-000060
1) Core 1-55-a의 합성
3'-bromospiro[fluorene-9,9'-xanthene] (15.3 g, 37.23 mmol)을 둥근바닥 플라스크에 AcOH 124 mL로 녹인 후에, 4-chlorophenol (4.79 g, 37.23 mmol), 구리 (0.24 g, 3.72 mmol), K 2CO 3 (15.44 g, 111.69 mmol) 및 18-crown-6 (9.84 g, 37.23 mmol)을 넣고 환류시켰다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여Core1-55-a를 12.6 g (수율: 74%)얻었다.
2) Core 1-55의 합성
Core1-55-a(10.1 g, 22.15 mmol)을 둥근바닥 플라스크에 AcOH 74 mL로 녹인 후에, Pd(OAc) 2 (0.10 g, 0.44 mmol) 및 K 2CO 3 (9.18 g, 66.46 mmol)을 넣고 환류시켰다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core-1-55를 6.4 g (수율: 63%)를 얻었다.
(6) Core 1-81
Figure PCTKR2020013167-appb-img-000061
1) Core 1-81-a의 합성
2'-bromospiro[fluorene-9,9'-thioxanthene] (15.9 g, 37.23 mmol)을 둥근바닥 플라스크에 AcOH 124 mL로 녹인 후에, 4-chlorophenol (4.79 g, 37.23 mmol), 구리 (0.24 g, 3.72 mmol), K 2CO 3 (15.44 g, 111.69 mmol) 및 18-crown-6 (9.84 g, 37.23 mmol)을 넣고 환류시켰다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core1-81-a를 12.7 g (수율: 72%)얻었다.
2) Core 1-81의 합성
Core1-81-a(10.5 g, 22.15 mmol)을 둥근바닥 플라스크에 AcOH 74 mL로 녹인 후에, Pd(OAc) 2 (0.10 g, 0.44 mmol) 및 K 2CO 3 (9.18 g, 66.46 mmol)을 넣고 환류시켰다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여Core-1-81를 7.2 g (수율: 69%)를 얻었다.
(7) Core 1-97
Figure PCTKR2020013167-appb-img-000062
1) Core 1-97-a의 합성
4'-bromospiro[fluorene-9,9'-xanthene] (14.8 g, 36.1 mmol)을 둥근바닥 플라스크에 THF 120 mL로 녹인 후에, (5-chloro-2-nitrophenyl)boronic acid (7.27 g, 36.1 mmol), Pd(PPh 3) 4 (0.83 g, 0.72 mmol), K 2CO 3 (19.98 g, 144.59 mmol) 및 물 40 mL을 첨가하고 65℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core1-97-a를 15.3 g (수율: 87%)얻었다.
2) Core 1-97-b의 합성
Core1-97-a (15.1 g, 31.09 mmol), Triphenylphosphine (24.49 g, 93.26 mmol)을 o-DCB 300ml에 넣고 220℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core1-97-b를 9.9 g (수율: 70%)얻었다.
3) Core 1-97의 합성
Core1-97 (10.5 g, 23.00 mmol)을 둥근바닥 플라스크에 DCB 77 mL로 녹인 후에, Iodobenzene (5.16 g, 25.30 mmol), 구리 (0.15 g, 2.30 mmol), K 2CO 3 (9.54 g, 69.00 mmol) 및 18-crown-6 (12.16 g, 46.00 mmol)을 넣고 150℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 Core1-97를 7.5 g (수율: 61%)얻었다.
한편, Core 1에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020013167-appb-img-000063
Figure PCTKR2020013167-appb-img-000064
Figure PCTKR2020013167-appb-img-000065
Figure PCTKR2020013167-appb-img-000066
Figure PCTKR2020013167-appb-img-000067
Figure PCTKR2020013167-appb-img-000068
Figure PCTKR2020013167-appb-img-000069
Figure PCTKR2020013167-appb-img-000070
Figure PCTKR2020013167-appb-img-000071
Figure PCTKR2020013167-appb-img-000072
아래 표 1은 Core 1에 속하는 일부 화합물의 FD-MS 값을 나타낸 것이다.
화합물 FD-MS 화합물 FD-MS
Core 1-1 m/z=567.94(C 31H 16BrClS 2=565.96) Core 1-2 m/z=551.88(C 31H 16BrClOS=549.98)
Core 1-3 m/z=627(C 37H 21BrClNS=625.03) Core 1-4 m/z=577.96(C 34H 22BrClS=576.03)
Core 1-5 m/z=567.94(C 31H 16BrClS 2=565.96) Core 1-6 m/z=551.88(C 31H 16BrClOS=549.98)
Core 1-7 m/z=627(C 37H 21BrClNS=625.03) Core 1-8 m/z=702.11(C 44H 26BrClS=700.06)
Core 1-9 m/z=567.94(C 31H 16BrClS 2=565.96) Core 1-10 m/z=551.88(C 31H 16BrClOS=549.98)
Core 1-11 m/z=627(C 37H 21BrClNS=625.03) Core 1-12 m/z=577.96(C 34H 22BrClS=576.03)
Core 1-13 m/z=567.94(C 31H 16BrClS 2=565.96) Core 1-14 m/z=551.88(C 31H 16BrClOS=549.98)
Core 1-15 m/z=627(C 37H 21BrClNS=625.03) Core 1-16 m/z=700.09(C 44H 24BrClS=698.05)
Core 1-17 m/z=551.88(C 31H 16BrClOS=549.98) Core 1-18 m/z=535.82(C 31H 16BrClO 2=534)
Core 1-19 m/z=610.94(C 37H 21BrClNO=609.05) Core 1-20 m/z=561.9(C 34H 22BrClO=560.05)
Core 1-21 m/z=551.88(C 31H 16BrClOS=549.98) Core 1-22 m/z=535.82(C 31H 16BrClO 2=534)
Core 1-23 m/z=610.94(C 37H 21BrClNO=609.05) Core 1-24 m/z=686.05(C 44H 26BrClO=684.09)
Core 1-25 m/z=551.88(C 31H 16BrClOS=549.98) Core 1-26 m/z=535.82(C 31H 16BrClO 2=534)
Core 1-27 m/z=610.94(C 37H 21BrClNO=609.05) Core 1-28 m/z=561.9(C 34H 22BrClO=560.05)
Core 1-29 m/z=551.88(C 31H 16BrClOS=549.98) Core 1-30 m/z=535.82(C 31H 16BrClO 2=534)
Core 1-31 m/z=610.94(C 37H 21BrClNO=609.05) Core 1-32 m/z=684.03(C 44H 24BrClO=682.07)
Core 1-33 m/z=627(C 37H 21BrClNS=625.03) Core 1-34 m/z=610.94(C 37H 21BrClNO=609.05)
Core 1-35 m/z=686.05(C 43H 26BrClN 2=684.1) Core 1-36 m/z=637.02(C 40H 27BrClN=635.1)
Core 1-37 m/z=627(C 37H 21BrClNS=625.03) Core 1-38 m/z=610.94(C 37H 21BrClNO=609.05)
Core 1-39 m/z=686.05(C 43H 26BrClN 2=684.1) Core 1-40 m/z=761.16(C 50H 31BrClN=759.13)
Core 1-41 m/z=627(C 37H 21BrClNS=625.03) Core 1-42 m/z=687.03(C 43H 25BrClNO=685.08)
Core 1-43 m/z=700.08(C 44H 28BrClN 2=698.11) Core 1-44 m/z=637.02(C 40H 27BrClN=635.1)
Core 1-45 m/z=703.09(C 43H 25BrClNS=701.06) Core 1-46 m/z=610.94(C 37H 21BrClNO=609.05)
Core 1-47 m/z=762.15(C 49H 30BrClN 2=760.13) Core 1-48 m/z=759.14(C 50H 29BrClN=757.12)
Core 1-49 m/z=613.61(C 38H 22Cl 2S 2=612.05) Core 1-50 m/z=689.71(C 44H 26Cl 2S 2=688.09)
Core 1-51 m/z=765.77(C 49H 26Cl 2OS 2=764.08) Core 1-52 m/z=799.77(C 53H 28Cl 2O 2S=798.12)
Core 1-53 m/z=456.09(C 31H 17ClO 2=456.93) Core 1-54 m/z=456.09(C 31H 17ClO 2=456.93)
Core 1-55 m/z=456.09(C 31H 17ClO 2=456.93) Core 1-56 m/z=456.09(C 31H 17ClO 2=456.93)
Core 1-57 m/z=472.07(C 31H 17ClOS=472.99) Core 1-58 m/z=472.07(C 31H 17ClOS=472.99)
Core 1-59 m/z=472.07(C 31H 17ClOS=472.99) Core 1-60 m/z=472.07(C 31H 17ClOS=472.99)
Core 1-61 m/z=488.05(C 31H 17ClS 2=489.05) Core 1-62 m/z=488.05(C 31H 17ClS 2=489.05)
Core 1-63 m/z=488.05(C 31H 17ClS 2=489.05) Core 1-64 m/z=488.05(C 31H 17ClS 2=489.05)
Core 1-65 m/z=456.09(C 31H 17ClO 2=456.93) Core 1-66 m/z=488.05(C 31H 17ClS 2=489.05)
Core 1-67 m/z=456.09(C 31H 17ClO 2=456.93) Core 1-68 m/z=488.05(C 31H 17ClS 2=489.05)
Core 1-69 m/z=488.05(C 31H 17ClS 2=489.05) Core 1-70 m/z=472.07(C 31H 17ClOS=472.99)
Core 1-71 m/z=472.07(C 31H 17ClOS=472.99) Core 1-72 m/z=488.05(C 31H 17ClS 2=489.05)
Core 1-73 m/z=472.07(C 31H 17ClOS=472.99) Core 1-74 m/z=488.05(C 31H 17ClS 2=489.05)
Core 1-75 m/z=472.07(C 31H 17ClOS=472.99) Core 1-76 m/z=456.09(C 31H 17ClO 2=456.93)
Core 1-77 m/z=472.07(C 31H 17ClOS=472.99) Core 1-78 m/z=488.05(C 31H 17ClS 2=489.05)
Core 1-79 m/z=472.07(C 31H 17ClOS=472.99) Core 1-80 m/z=456.93(C 31H 17ClO 2=456.09)
Core 1-81 m/z=472.07(C 31H 17ClOS=472.99) Core 1-82 m/z=488.05(C 31H 17ClS 2=489.05)
Core 1-83 m/z=531.14(C 37H 22ClNO=532.04) Core 1-84 m/z=531.14(C 37H 22ClNO=532.04)
Core 1-85 m/z=531.14(C 37H 22ClNO=532.04) Core 1-86 m/z=482.14(C 34H 23ClO=483.01)
Core 1-87 m/z=482.14(C 34H 23ClO=483.01) Core 1-88 m/z=606.18(C 44H 27ClO=607.15)
Core 1-89 m/z=547.12(C 37H 22ClNS=548.1) Core 1-90 m/z=547.12(C 37H 22ClNS=548.1)
Core 1-91 m/z=622.15(C 44H 27ClS=623.21) Core 1-92 m/z=531.14(C 37H 22ClNO=532.04)
Core 1-93 m/z=558.18(C 40H 27ClO=559.11) Core 1-94 m/z=482.14(C 34H 23ClO=483.01)
Core 1-95 m/z=606.18(C 44H 27ClO=607.15) Core 1-96 m/z=604.16(C 44H 25ClO=605.13)
Core 1-97 m/z=531.14(C 37H 22ClNO=532.04)    
II. Sub 1의 합성
상기 반응식 1의 Sub 1은 하기 반응식 6의 반응경로에 의해 합성될 수 있으나(본 출원인의 한국등록특허 제 10-1251451호 (2013.04.05일자 등록공고) 참조), 이에 한정되는 것은 아니다.
<반응식 6>
Figure PCTKR2020013167-appb-img-000073
상기 반응식 6에서 G 1은 Ar 1 또는 Ar 3로서 상기 화학식 1에서 정의된 바와 같고; G 2는 Ar 2 또는 Ar 4로서 상기 화학식 1에서 정의된 바와 같다.
Sub 1에 속하는 구체적 화합물의 합성예는 다음과 같다.
Sub 1 합성예
(1) Sub 1-2 합성예
Figure PCTKR2020013167-appb-img-000074
2-bromodibenzo[b,d]thiophene (20 g, 76.0 mmol)에 아닐린 (9.2 g, 98.8 mmol), Pd 2(dba) 3 (1.4 g, 1.5 mmol), 50% P(t-Bu) 3 (1.2 g, 3.0 mmol), NaOt-Bu (14.6 g, 152.0 mmol) 및 톨루엔 (500 ml)을 첨가하고, 80℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 생성물 Sub 1-2를 17.0 g (수율: 81%)를 얻었다.
(2) Sub 1-12 합성예
Figure PCTKR2020013167-appb-img-000075
2-bromo-9-phenyl-9H-carbazole (20 g, 62.07 mmol)에 아닐린 (7.51 g, 80.69 mmol), Pd 2(dba) 3 (1.13 g, 1.24 mmol), 50% P(t-Bu) 3 (1 g, 2.48 mmol), NaOt-Bu (11.93 g, 124.14 mmol), 톨루엔 (207 ml)을 첨가하고, 80℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 생성물 Sub 1-12를 15.73 g (수율: 76%)를 얻었다.
(3) Sub 1-18 합성예
Figure PCTKR2020013167-appb-img-000076
1-bromo-11,11-dimethyl-11H-benzo[b]fluorene (20 g, 61.88 mmol)에 아닐린 (7.49 g, 80.44 mmol), Pd 2(dba) 3 (1.13 g, 1.24mmol), 50% P(t-Bu) 3 (1 g, 2.48 mmol), NaOt-Bu (11.89 g, 123.75 mmol) 및 톨루엔 (500 ml)을 첨가하고, 80℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 생성물 Sub 1-18을 15.11 g (수율: 73%)를 얻었다.
(4) Sub 1-25 합성예
Figure PCTKR2020013167-appb-img-000077
1-chloro-4-phenyldibenzo[b,d]furan (20 g, 71.75 mmol)에 아닐린 (8.69 g, 93.28 mmol), Pd 2(dba) 3 (1.31 g, 1.44 mmol), 50% P(t-Bu) 3 (1.16 g, 2.88 mmol), NaOt-Bu (13.79 g, 143.5 mmol) 및 톨루엔 (239 ml)을 첨가하고, 80℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 생성물 Sub 1-25를 16.32 g (수율: 68%)를 얻었다.
(5) Sub 1-27 합성예
Figure PCTKR2020013167-appb-img-000078
2-bromonaphtho[2,3-b]benzofuran (20 g, 67.3 mmol)에 아닐린 (14.8 g, 87.5 mmol), Pd 2(dba) 3 (1.2 g, 1.4 mmol), 50% P(t-Bu) 3 (1.1 g, 2.70 mmol), NaOt-Bu (13.0 g, 134.6 mmol) 및 톨루엔 (450 ml)을 첨가하고, 80℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 생성물 Sub 1-27을 16.0 g (수율: 77%)를 얻었다.
한편, Sub 1에 속하는 화합물의 예시는 다음과 같으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020013167-appb-img-000079
Figure PCTKR2020013167-appb-img-000080
Figure PCTKR2020013167-appb-img-000081
Figure PCTKR2020013167-appb-img-000082
Figure PCTKR2020013167-appb-img-000083
아래 표 2는 Sub 1에 속하는 화합물의 FD-MS 값을 나타낸 것이다.
화합물 FD-MS 화합물 FD-MS
Sub 1-1 m/z=169.23(C 12H 11N=169.09) Sub 1-2 m/z=275.37(C 18H 13NS=275.08)
Sub 1-3 m/z=275.37(C 18H 13NS=275.08) Sub 1-4 m/z=275.37(C 18H 13NS=275.08)
Sub 1-5 m/z=259.31(C 18H 13NO=259.1) Sub 1-6 m/z=259.31(C 18H 13NO=259.1)
Sub 1-7 m/z=259.31(C 18H 13NO=259.1) Sub 1-8 m/z=285.39(C 21H 19N=285.15)
Sub 1-9 m/z=285.39(C 21H 19N=285.15) Sub 1-10 m/z=285.39(C 21H 19N=285.15)
Sub 1-11 m/z=334.42(C 24H 18N 2=334.15) Sub 1-12 m/z=334.42(C 24H 18N 2=334.15)
Sub 1-13 m/z=334.42(C 24H 18N 2=334.15) Sub 1-14 m/z=245.33(C 18H 15N=245.12)
Sub 1-15 m/z=245.33(C 18H 15N=245.12) Sub 1-16 m/z=219.29(C 16H 13N=219.1)
Sub 1-17 m/z=361.49(C 27H 23N=361.18) Sub 1-18 m/z=335.45(C 25H 21N=335.17)
Sub 1-19 m/z=187.22(C 12H 10FN=187.08) Sub 1-20 m/z=199.25(C 13H 13NO=199.1)
Sub 1-21 m/z=280.4(C 18H 8D 5NS=280.11) Sub 1-22 m/z=219.29(C 16H 13N=219.1)
Sub 1-23 m/z=245.33(C 18H 15N=245.12) Sub 1-24 m/z=335.45(C 25H 21N=335.17)
Sub 1-25 m/z=335.41(C 24H 17NO=335.13) Sub 1-26 m/z=325.43(C 22H 15NS=325.09)
Sub 1-27 m/z=309.37(C 22H 15NO=309.12) Sub 1-28 m/z=379.55(C 28H 29N=379.23)
Sub 1-29 m/z=303.45(C 22H 25N=303.2) Sub 1-30 m/z=379.55(C 28H 29N=379.23)
Sub 1-31 m/z=303.45(C 22H 25N=303.2) Sub 1-32 m/z=325.43(C 22H 15NS=325.09)
Sub 1-33 m/z=325.43(C 22H 15NS=325.09) Sub 1-34 m/z=351.47(C 24H 17NS=351.11)
Sub 1-35 m/z=325.43(C 22H 15NS=325.09) Sub 1-36 m/z=309.37(C 22H 15NO=309.12)
Sub 1-37 m/z=210.24(C 13H 10N 2O=210.08) Sub 1-38 m/z=309.37(C 22H 15NO=309.12)
Sub 1-39 m/z=309.37(C 22H 15NO=309.12) Sub 1-40 m/z=351.49(C 26H 25N=351.2)
Sub 1-41 m/z=351.49(C 26H 25N=351.2) Sub 1-42 m/z=302.4(C 19H 14N 2S=302.09)
Sub 1-43 m/z=275.31(C 18H 13NO 2=275.09) Sub 1-44 m/z=275.31(C 18H 13NO 2=275.09)
Sub 1-45 m/z=335.41(C 24H 17NO=335.13) Sub 1-46 m/z=335.41(C 24H 17NO=335.13)
Sub 1-47 m/z=335.41(C 24H 17NO=335.13) Sub 1-48 m/z=351.47(C 24H 17NS=351.11)
Sub 1-49 m/z=351.47(C 24H 17NS=351.11) Sub 1-50 m/z=351.47(C 24H 17NS=351.11)
Sub 1-51 m/z=351.16(C 25H 21NO=351.45)
III. 최종화합물의 합성
(1) P4 합성예
Figure PCTKR2020013167-appb-img-000084
1) Core 1-1-A의 합성
Core 1-1 (20 g, 35.21 mmol)에 Sub 1-1 (6.52 g, 35.21 mmol), Pd 2(dba) 3 (0.64 g, 0.70 mmol), 50% P(t-Bu) 3 (0.6 g, 1.40 mmol), NaOt-Bu (6.77 g, 70.4 mmol) 및 톨루엔 (117 ml)을 첨가하고, 80℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 생성물 2-chloro-N,N-diphenylspiro[benzo[4,5]thieno[3,2-b]thioxanthene-13,9'-fluoren]-10-amine를 19.64 g (수율: 85%)를 얻었다.
2) P4의 합성
Core 1-1-A (20.56g, 31.32 mmol)에 Sub 1-1 (5.64 g, 30.47 mmol), Pd 2(dba) 3 (0.55 g, 0.60 mmol), 50% P(t-Bu) 3 (0.48 g, 1.21 mmol), NaOt-Bu (5.85 g, 60.9 mmol) 및 톨루엔 (101 ml)을 첨가하고, 120℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 생성물 P4를 18.29 g (수율: 74%)를 얻었다.
(2) P19 합성예
Figure PCTKR2020013167-appb-img-000085
상기 P4 합성예와 같은 방법으로 합성하여 생성물 P19을 20.14 g (수율 85%)를 얻었다.
(3) P33 합성예
Figure PCTKR2020013167-appb-img-000086
상기 P4 합성예와 같은 방법으로 합성하여 생성물 P33을 19.14 g (수율 81%)를 얻었다.
(4) P40 합성예
Figure PCTKR2020013167-appb-img-000087
상기 P4 합성예와 같은 방법으로 합성하여 생성물 P40을 18.37 g (수율 79%)를 얻었다.
(5) P61 합성예
Figure PCTKR2020013167-appb-img-000088
상기 P4 합성예와 같은 방법으로 합성하여 생성물 P61을 16.9 g (수율 75%)를 얻었다.
(6) P64 합성예
Figure PCTKR2020013167-appb-img-000089
상기 P4 합성예와 같은 방법으로 합성하여 생성물 P64을 18.81 g (수율 81%)를 얻었다.
(7) P82 합성예
Figure PCTKR2020013167-appb-img-000090
상기 P4 합성예와 같은 방법으로 합성하여 생성물 P82을 19.56 g (수율 84%)를 얻었다.
(8) P88 합성예
Figure PCTKR2020013167-appb-img-000091
Core 1-59 (16.7 g, 35.21 mmol)에 Sub 1-1 (6.52 g, 35.21 mmol), Pd 2(dba) 3 (0.64 g, 0.70 mmol), 50% P( t-Bu) 3 (0.56 g, 1.40 mmol), NaO t-Bu (6.77 g, 70.4 mmol) 및 톨루엔 (117 ml)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면, CH 2Cl 2와 물로 추출한 후, 유기층을 MgSO 4로 건조하고 농축한 후, 생성된 화합물을 실리카겔 컬럼 및 재결정하여 생성물 P88을 17.3 g (수율: 81%)를 얻었다.
(9) P116 합성예
Figure PCTKR2020013167-appb-img-000092
P88 합성예와 같은 방법으로 합성하여 생성물 P116을 19.1 g (수율 78%)를 얻었다.
(10) P135 합성예
Figure PCTKR2020013167-appb-img-000093
P88 합성예와 같은 방법으로 합성하여 생성물 P135을 19.7 g (수율 84%)를 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 P1 내지 P147의 FD-MS 값은 하기 표 3과 같다.
화합물 FD-MS 화합물 FD-MS
P1 m/z=788.23(C 55H 36N 2S 2=789.03) P2 m/z=788.23(C 55H 36N 2S 2=789.03)
P3 m/z=788.23(C 55H 36N 2S 2=789.03) P4 m/z=788.23(C 55H 36N 2S 2=789.03)
P5 m/z=772.25(C 55H 36N 2OS=772.97) P6 m/z=772.25(C 55H 36N 2OS=772.97)
P7 m/z=772.25(C 55H 36N 2OS=772.97) P8 m/z=756.28(C 55H 36N 2O 2=756.91)
P9 m/z=756.28(C 55H 36N 2O 2=756.91) P10 m/z=772.25(C 55H 36N 2OS=772.97)
P11 m/z=756.28(C 55H 36N 2O 2=756.91) P12 m/z=772.25(C 55H 36N 2OS=772.97)
P13 m/z=756.28(C 55H 36N 2O 2=756.91) P14 m/z=772.25(C 55H 36N 2OS=772.97)
P15 m/z=772.25(C 55H 36N 2OS=772.97) P16 m/z=772.25(C 55H 36N 2OS=772.97)
P17 m/z=756.28(C 55H 36N 2O 2=756.91) P18 m/z=782.33(C 58H 42N 2O=782.99)
P19 m/z=798.31(C 58H 42N 2S=799.05) P20 m/z=831.32(C 61H 41N 3O=832.02)
P21 m/z=857.38(C 64H 47N 3=858.1) P22 m/z=847.3(C 61H 41N 3S=848.08)
P23 m/z=897.32(C 65H 43N 3S=898.14) P24 m/z=970.25(C 67H 42N 2S 3=971.27)
P25 m/z=938.3(C 67H 42N 2O 2S=939.15) P26 m/z=963.36(C 70H 49N 3S=964.24)
P27 m/z=1087.4(C 80H 53N 3S=1088.39) P28 m/z=970.25(C 67H 42N 2S 3=971.27)
P29 m/z=938.33(C 68H 46N 2OS=939.19) P30 m/z=963.36(C 70H 49N 3S=964.24)
P31 m/z=963.36(C 70H 49N 3S=964.24) P32 m/z=944.24(C 65H 40N 2S 3=945.23)
P33 m/z=862.27(C 61H 38N 2O 2S=863.05) P34 m/z=963.36(C 70H 49N 3S=964.24)
P35 m/z=1085.38(C 80H 51N 3S=1086.37) P36 m/z=848.29(C 61H 40N 2OS=849.06)
P37 m/z=987.33(C 71H 45N 3OS=988.22) P38 m/z=954.27(C 67H 42N 2OS 2=955.21)
P39 m/z=846.29(C 61H 38N 2O 3=846.99) P40 m/z=947.39(C 70H 49N 3O=948.18)
P41 m/z=1071.42(C 80H 53N 3O=1072.32) P42 m/z=954.27(C 67H 42N 2OS 2=955.21)
P43 m/z=846.29(C 61H 38N 2O 3=846.99) P44 m/z=947.39(C 70H 49N 3O=948.18)
P45 m/z=947.39(C 70H 49N 3O=948.18) P46 m/z=928.26(C 65H 40N 2OS 2=929.17)
P47 m/z=846.29(C 61H 38N 2O 3=846.99) P48 m/z=947.39(C 70H 49N 3O=948.18)
P49 m/z=1069.4(C 80H 51N 3O=1070.31) P50 m/z=1046.4(C 77H 50N 4O=1047.27)
P51 m/z=1029.32(C 73H 47N 3S 2=1030.32) P52 m/z=921.34(C 67H 43N 3O 2=922.1)
P53 m/z=1072.45(C 80H 56N 4=1073.36) P54 m/z=1146.47(C 86H 58N 4=1147.44)
P55 m/z=1029.32(C 73H 47N 3S 2=1030.32) P56 m/z=997.37(C 73H 47N 3O 2=998.2)
P57 m/z=1036.45(C 77H 56N 4=1037.32) P58 m/z=1022.43(C 76H 54N 4=1023.3)
P59 m/z=1084.37(C 77H 44D 5N 3S 2=1085.41) P60 m/z=939.33(C 67H 42FN 3O 2=940.09)
P61 m/z=1174.5(C 88H 62N 4=1175.49) P62 m/z=1174.46(C 87H 58N 4O=1175.45)
P63 m/z=878.28(C 62H 42N 2S 2=879.15) P64 m/z=954.31(C 68H 46N 2S 2=955.25)
P65 m/z=1170.33(C 83H 50N 2O 2S 2=1171.45) P66 m/z=998.37(C 71H 54N 2S 2=999.35)
P67 m/z=778.3(C 55H 42N 2OS=779.01) P68 m/z=963.34(C 68H 45N 5S=964.2)
P69 m/z=932.42(C 68H 56N 2S=933.27) P70 m/z=944.24(C 65H 40N 2S 3=945.23)
P71 m/z=928.26(C 65H 40N 2OS 2=929.17) P72 m/z=1003.31(C 71H 45N 3S 2=1004.28)
P73 m/z=1078.34(C 78H 50N 2S 2=1079.39) P74 m/z=928.26(C 65H 40N 2OS 2=929.17)
P75 m/z=912.28(C 65H 40N 2O 2S=913.11) P76 m/z=987.33(C 71H 45N 3OS=988.22)
P77 m/z=938.33(C 68H 46N 2OS=939.19) P78 m/z=954.31(C 68H 46N 2S 2=955.25)
P79 m/z=938.33(C 68H 46N 2OS=939.19) P80 m/z=1013.38(C 74H 51N 3S=1014.3)
P81 m/z=1086.4(C 81H 54N 2S=1087.4) P82 m/z=938.3(C 67H 42N 2O 2S=939.15)
P83 m/z=922.32(C 67H 42N 2O 3=923.08) P84 m/z=997.37(C 73H 47N 3O 2=998.2)
P85 m/z=948.37(C 70H 48N 2O 2=949.17) P86 m/z=954.27(C 67H 42N 2OS 2=955.21)
P87 m/z=938.3(C 67H 42N 2O 2S=939.15) P88 m/z=605.18(C 43H 27NOS=605.76)
P89 m/z=1088.38(C 80H 52N 2OS=1089.37) P90 m/z=813.24(C 56H 35N 3O 2S=813.98)
P91 m/z=813.24(C 56H 35N 3O 2S=813.98) P92 m/z=937.33(C 67H 43N 3O 3=938.1)
P93 m/z=944.29(C 66H 44N 2OS 2=945.21) P94 m/z=755.25(C 55H 33NO 3=755.87)
P95 m/z=589.2(C 43H 27NO 2=589.69) P96 m/z=589.2(C 43H 27NO 2=589.69)
P97 m/z=605.18(C 43H 27NOS=605.76) P98 m/z=761.18(C 53H 31NOS 2=761.96)
P99 m/z=615.24(C 43H 17D 10NOS=615.82) P100 m/z=714.27(C 53H 34N 2O=714.87)
P101 m/z=664.25(C 49H 32N 2O=664.81) P102 m/z=740.28(C 55H 36N 2O=740.91)
P103 m/z=615.26(C 46H 33NO=615.78) P104 m/z=767.32(C 58H 41NO=767.97)
P105 m/z=829.3(C 62H 39NO 2=830) P106 m/z=621.16(C 43H 27NS 2=621.82)
P107 m/z=863.23(C 61H 37NOS 2=864.09) P108 m/z=657.14(C 43H 25F 2NS 2=657.8)
P109 m/z=731.23(C 53H 33NOS=731.91) P110 m/z=757.24(C 55H 35NOS=757.95)
P111 m/z=681.85(C 49H 31NOS=681.21) P112 m/z=680.23(C 49H 32N 2S=680.87)
P113 m/z=846.27(C 61H 38N 2OS=847.05) P114 m/z=933.34(C 70H 47NS=934.21)
P115 m/z=755.26(C 56H 37NS=755.98) P116 m/z=695.19(C 49H 29NO 2S=695.84)
P117 m/z=589.2(C 43H 27NO 2=589.69) P118 m/z=705.27(C 52H 35NO 2=705.86)
P119 m/z=754.26(C 55H 34N 2O 2=754.89) P120 m/z=605.18(C 43H 27NOS=605.76)
P121 m/z=770.24(C 55H 34N 2OS=770.95) P122 m/z=681.21(C 49H 31NOS=681.85)
P123 m/z=605.18(C 43H 27NOS=605.76) P124 m/z=681.21(C 49H 31NOS=681.85)
P125 m/z=757.24(C 55H 35NOS=757.95) P126 m/z=665.24(C 49H 31NO 2=665.79)
P127 m/z=741.27(C 55H 35NO 2=741.89) P128 m/z=665.24(C 49H 31NO 2=665.79)
P129 m/z=679.21(C 49H 29NO 3=679.78) P130 m/z=589.2(C 43H 27NO 2=589.69)
P131 m/z=705.21(C 51H 31NOS=705.88) P132 m/z=605.18(C 43H 27NOS=605.76)
P133 m/z=711.17(C 49H 29NOS 2=711.9) P134 m/z=605.18(C 43H 27NOS=605.76)
P135 m/z=664.25(C 49H 32N 2O=664.81) P136 m/z=714.27(C 53H 34N 2O=714.87)
P137 m/z=691.29(C 52H 37NO=691.87) P138 m/z=615.26(C 46H 33NO=615.78)
P139 m/z=829.3(C 62H 39NO 2=830) P140 m/z=737.27(C 56H 35NO=737.9)
P141 m/z=715.25(C 53H 33NO 2=715.85) P142 m/z=679.21(C 49H 29NO 3=679.78)
P143 m/z=715.25(C 53H 33NO 2=715.85) P144 m/z=605.18(C 43H 27NOS=605.76)
P145 m/z=771.22(C 55H 33NO 2S=771.93) P146 m/z=605.18(C 43H 27NOS=605.76)
P147 m/z=829.31(C 61H 39N 3O=830)    
유기전기소자의 제조평가
(실시예 1) 적색 유기전기발광소자 (발광보조층)
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전계 발광소자를 제작하였다.
먼저, 유리 기판에 형성된 ITO층(양극) 상에 N 1-(naphthalen-2-yl)-N 4,N 4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N 1-phenylbenzene-1,4-diamine (이하, 2-TNATA)를 60nm 두께로 진공증착하여 정공주입층을 형성하였다.
상기 정공주입층 위에 정공수송 화합물로서 4,4-비스[N-(1-나프틸)-N-페닐아미노]비페닐 (이하, NPB로 약기함)을 60nm 두께로 진공증착하여 정공수송층을 형성하였다.
이어서, 상기 정공수송층 상에 본 발명의 화합물 P1을 20nm 두께로 진공증착하여 발광보조층을 형성하였다.
상기 발광보조층 상에 CBP[4,4'-N,N'-dicarbazole-biphenyl]를 호스트 물질로 사용하고, bis-(1-phenylisoquinolyl)iridium(Ⅲ)acetylacetonate (이하, (piq) 2Ir(acac))을 도판트 물질로 사용하여, 95:5 중량비로 도핑함으로써 상기 발광 보조층 위에 30nm 두께의 발광층을 증착하였다.
이어서, 상기 발광층 상에 (1,1'-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄(이하 BAlq로 약기함)을 5nm 두께로 진공증착하여 정공저지층을 형성하였다.
상기 정공저지층 상에 Bis(10-hydroxybenzo[h]quinolinato)beryllium (이하, BeBq2)을 40nm 두께로 진공증착하여 전자수송층을 형성하였다.
이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
(실시예 2) 내지 (실시예 17)
상기 실시예 1의 발광보조층 물질로 본 발명의 화합물 P1 대신 하기 표 4에 기재된 본 발명의 화합물을 사용한 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기전계발광소자를 제조하였다.
(비교예 1)
상기 실시예 1의 발광보조층을 형성하지 않은 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
(비교예 2) 내지 (비교예 4)
상기 실시예 1의 발광보조층 물질로 하기 비교화합물 1 내지 비교화합물 3 중 하나를 사용한 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 1> <비교화합물 2> <비교화합물 3>
Figure PCTKR2020013167-appb-img-000094
상기 실시예 1~17 및 비교예 1~4에 따라 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 2500cd/m 2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 하기 표 4는 소자제작 및 평가한 결과를 나타낸다.
화합물 구동전압(V) 전류밀도(mA/cm 2) 휘도(cd/m 2) 효율(cd/A) T(95) CIE
x y
비교예(1)   6.6 37.3 2500.0 6.7 73.3 0.65 0.32
비교예(2) 비교화합물 1 5.3 15.0 2500.0 15.1 82.5 0.66 0.34
비교예(3) 비교화합물 2 5.4 14.8 2500.0 16.4 73.8 0.65 0.33
비교예(4) 비교화합물 3 5.6 14.8 2500.0 16.9 77.2 0.64 0.33
실시예(1) P1 4.9 11.3 2500.0 22.1 98.7 0.65 0.33
실시예(2) P11 4.8 11.9 2500.0 21.0 101.7 0.64 0.34
실시예(3) P12 4.8 11.5 2500.0 21.8 103.1 0.64 0.33
실시예(4) P15 4.8 11.2 2500.0 22.4 101.8 0.65 0.34
실시예(5) P19 4.7 12.6 2500.0 19.8 90.3 0.64 0.33
실시예(6) P20 4.8 13.1 2500.0 19.1 93.1 0.65 0.32
실시예(7) P23 4.8 12.8 2500.0 19.5 94.1 0.65 0.33
실시예(8) P24 5.0 11.7 2500.0 21.3 97.0 0.65 0.32
실시예(9) P33 5.0 12.3 2500.0 20.2 96.1 0.64 0.34
실시예(10) P36 4.9 11.8 2500.0 20.6 107.8 0.64 0.34
실시예(11) P39 5.0 12.2 2500.0 21.2 95.9 0.66 0.33
실시예(12) P88 5.1 12.8 2500.0 19.6 114.3 0.65 0.33
실시예(13) P94 5.1 12.6 2500.0 19.8 112.5 0.66 0.34
실시예(14) P96 5.0 13.8 2500.0 18.2 112.0 0.65 0.34
실시예(15) P102 4.9 14.4 2500.0 17.4 103.9 0.65 0.33
실시예(16) P118 5.0 12.7 2500.0 19.6 113.6 0.64 0.34
실시예(17) P147 4.9 14.3 2500.0 17.5 104.2 0.65 0.34
상기 표 4의 결과로부터 알 수 있듯이, 본 발명의 화학식 1로 표시되는 화합물을 유기전기발광소자의 발광보조층 재료로 사용하여 적색 유기전기발광소자를 제작한 경우, 발광보조층을 사용하지 않거나, 비교화합물 1 내지 비교화합물 3을 사용한 경우에 비해 유기전기발광소자의 구동전압을 낮출 수 있을 뿐만 아니라 수명과 발광효율이 현저히 개선되는 것을 확인할 수 있다.
즉, 발광보조층이 형성되지 않은 비교예 1보다는 본 발명의 화학식 1과 기본골격이 동일한 비교화합물 1 내지 3을 사용하여 발광보조층을 형성한 비교예 2 내지 비교예 4의 소자 특성이 개선되었으며, 비교예 2 내지 비교예 4에 비해 본 발명의 화합물을 발광보조층 재료로 사용한 유기전기발광소자의 발광효율, 수명 그리고 구동전압이 현저히 개선되었다.
비교화합물 1 내지 비교화합물 3은 본 발명의 화합물과 코어 골격이 동일하나, 아민기의 치환개수 또는 아민기의 치환위치가 달라지는 차이가 있다. 앞서 설명한 차이에 따라 본 발명의 화합물은 강한 정공 주입특성을 가지게 되며, 정공수송층에서 발광보조층으로 정공 주입이 개선됨에 따라 본 발명의 화합물을 사용한 유기 발광 소자는 구동, 수명 및 효율이 개선되는 것으로 보인다.
따라서, 코어의 기본골격이 유사한 화합물일지라도, 본 발명과 같이 아민이 결합하는 위치에 따라서 정공 특성, 광효율 특성, 에너지 레벨(LUMO, HOMO, T1레벨), 정공 주입 및 이동도 특성 등과 같은 화합물의 물성이 달라지게 되고, 이로 인해 소자결과가 도출될 수 있음을 시사하고 있다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다른 화합물을 포함하여 성능을 개선시키는 방법 등 다양한 변형이 가능할 것이다.
따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내의 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
(부호의 설명)
100, 200, 300: 유기전기소자 110: 제1 전극
120: 정공주입층 130: 정공수송층
140: 발광층 150: 전자수송층
160: 전자주입층 170: 제2 전극
180: 캡핑층 210: 버퍼층
220: 발광보조층 320: 제1 정공주입층
330: 제1 정공수송층 340: 제1 발광층
350: 제1 전자수송층 360: 제1 전하생성층
361: 제2 전하생성층 420: 제2 정공주입층
430: 제2 정공수송층 440: 제2 발광층
450: 제2 전자수송층 CGL: 전하생성층
ST1: 제1 스택 ST2: 제2 스택
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.

Claims (14)

  1. 하기 화학식 1로 표시되는 화합물:
    <화학식 1>
    Figure PCTKR2020013167-appb-img-000095
    상기 화학식 1에서,
    1) Ar 1 내지 Ar 4는 서로 독립적으로 C 6~C 60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; C 3~C 60의 지방족고리와 C 6~C 60의 방향족고리의 융합고리기; C 1~C 50의 알킬기; C 2~C 20의 알켄일기; C 2~C 20의 알킨일기; C 1~C 30의 알콕실기; C 6~C 30의 아릴옥시기; 또는 이들의 조합; 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있고,
    2) R 1~R 5는 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; 니트로기; 아미노기; C 6~C 60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; C 3~C 60의 지방족고리와 C 6~C 60의 방향족고리의 융합고리기; C 1~C 50의 알킬기; C 2~C 20의 알켄일기; C 2~C 20의 알킨일기; C 1~C 30의 알콕실기; C 6~C 30의 아릴옥시기; C 6~C 30의 아릴싸이오기; 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있고,
    3) L 1 및 L 2는 서로 독립적으로 단일결합; C 6~C 60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; C 3~C 60의 지방족고리와 C 6~C 60의 방향족고리의 융합고리기; 2가의 지방족 탄화수소기; 또는 이들의 조합이고,
    4) X 및 Y는 서로 독립적으로 NR, O, S 또는 CR'R''이고,
    5) R, R' 및 R”은 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; 니트로기; 아미노기; C 6~C 60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 60의 헤테로고리기; C 3~C 60의 지방족고리와 C 6~C 60의 방향족고리의 융합고리기; C 1~C 50의 알킬기; C 2~C 20의 알켄일기; C 2~C 20의 알킨일기; C 1~C 30의 알콕실기; C 6~C 30의 아릴옥시기; C 6~C 30의 아릴싸이오기; 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있고,
    6) m은 0 또는 1의 정수이고,
    7) a 및 d~e는 0~4의 정수이고; b는 0~2의 정수이고; c는 0~3의 정수이고,
    8) Ar 1~Ar 4, L 1~L 2, R 1~R 5, R, R', R'' 및 이웃한 기끼리 서로 결합하여 형성한 고리는 각각 중수소; 할로겐; C 1-C 20의 알킬기 또는 C 6-C 20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C 1-C 20의 알킬싸이오기; C 1-C 20의 알콕시기; C 6-C 20의 아릴알콕시기; C6-C20의 아릴옥시기; C6-C20의 아릴싸이오기; C 1-C 20의 알킬기; C 2-C 20의 알켄일기; C 2-C 20의 알킨일기; C 6-C 20의 아릴기; 중수소로 치환 또는 비치환된 C 6-C 20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C 2-C 20의 헤테로고리기; C 3-C 20의 지방족고리기; C 7-C 20의 아릴알킬기; C 8-C 20의 아릴알켄일기; 및 이들의 조합으로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다.
  2. 제 1 항에 있어서, 상기 화학식 1이 하기 화학식 1-1 내지 화학식 1-4 중 어느 하나로 표시되는 것을 특징으로 하는 화합물:
    <화학식 1-1>
    Figure PCTKR2020013167-appb-img-000096
    <화학식 1-2>
    Figure PCTKR2020013167-appb-img-000097
    <화학식 1-3>
    Figure PCTKR2020013167-appb-img-000098
    <화학식 1-4>
    Figure PCTKR2020013167-appb-img-000099
    상기 화학식 1-1 내지 화학식 1-4에서, 상기 R 1~R 5, R, R', R”, Ar 1~Ar 4, L 1~L 2, a~e 및 Y는 상기 제1항의 화학식 1에서 정의된 것과 같다.
  3. 제 1 항에 있어서, 상기 화학식 1이 하기 화학식 1-5 내지 화학식 1-8 중 어느 하나로 표시되는 것을 특징으로 하는 화합물:
    <화학식 1-5>
    Figure PCTKR2020013167-appb-img-000100
    <화학식 1-6>
    Figure PCTKR2020013167-appb-img-000101
    <화학식 1-7>
    Figure PCTKR2020013167-appb-img-000102
    <화학식 1-8>
    Figure PCTKR2020013167-appb-img-000103
    상기 화학식 1-5 내지 화학식 1-8에서, 상기 R 1~R 5, R, R', R”, Ar 1~Ar 4, L 1~L 2, 및 a~e는 상기 제1항의 화학식 1에서 정의된 것과 같다.
  4. 제 1 항에 있어서, 상기 화학식 1이 하기 화학식 1-9 내지 화학식 1-16 중 어느 하나로 표시되는 것을 특징으로 하는 화합물:
    <화학식 1-9>
    Figure PCTKR2020013167-appb-img-000104
    <화학식 1-10>
    Figure PCTKR2020013167-appb-img-000105
    <화학식 1-11>
    Figure PCTKR2020013167-appb-img-000106
    <화학식 1-12>
    Figure PCTKR2020013167-appb-img-000107
    <화학식 1-13>
    Figure PCTKR2020013167-appb-img-000108
    <화학식 1-14>
    Figure PCTKR2020013167-appb-img-000109
    <화학식 1-15>
    Figure PCTKR2020013167-appb-img-000110
    <화학식 1-16>
    Figure PCTKR2020013167-appb-img-000111
    상기 화학식 1-9 내지 화학식 1-16에서, 상기 R 1~R 5, R, R', R”, Ar 1~Ar 4, L 1~L 2, 및 a~e는 상기 제1항의 화학식 1에서 정의된 것과 같다.
  5. 제 1 항에 있어서, 상기 Ar 1 내지 Ar 4중 적어도 하나는 하기 화학식 B-1로 표시되는 것을 특징으로 하는 화합물:
    <화학식 B-1>
    Figure PCTKR2020013167-appb-img-000112
    상기 화학식 B-1에서,
    1) T 및 U는 서로 독립적으로 NAr 5, O, S, CR aR b 또는 단일결합이고; 단, T와 U가 동시에 단일결합인 경우는 제외하며,
    2) A 및 B환은 서로 독립적으로 C 6~C 20의 아릴기, C 4~C 20의 헤테로고리기이며,
    3) 상기 R a 및 R b는 서로 독립적으로 수소; 중수소; 할로겐; C 1~C 20의 알킬기 또는 C 6~C 20의 아릴기로 치환 또는 비치환된 실란기; 시아노기; 니트로기; C 1~C 20의 알킬싸이오기; C 1~C 20의 알콕시기; C 6~C 20의 아릴옥시기; C 1~C 20의 알킬기; C 2~C 20의 알켄일기; C 2~C 20의 알킨일기; C 6~C 20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C 2~C 20의 헤테로고리기; C 3~C 20의 지방족고리기; C 7~C 20의 아릴알킬기; 및 C 8~C 20의 아릴알켄일기로 이루어진 군에서 선택되거나; 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있으며,
    4) 상기 Ar 5는 C 6~C 20의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C 2~C 20의 헤테로고리기; C 3~C 20의 지방족고리기; 또는 이들의 조합으로 이루어진 군에서 선택된다.
  6. 제 1 항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 P1 내지 P147 중 어느 하나인 것을 특징으로 하는 화합물:
    Figure PCTKR2020013167-appb-img-000113
    Figure PCTKR2020013167-appb-img-000114
    Figure PCTKR2020013167-appb-img-000115
    Figure PCTKR2020013167-appb-img-000116
    Figure PCTKR2020013167-appb-img-000117
    Figure PCTKR2020013167-appb-img-000118
    Figure PCTKR2020013167-appb-img-000119
    Figure PCTKR2020013167-appb-img-000120
    Figure PCTKR2020013167-appb-img-000121
    Figure PCTKR2020013167-appb-img-000122
    Figure PCTKR2020013167-appb-img-000123
    Figure PCTKR2020013167-appb-img-000124
    Figure PCTKR2020013167-appb-img-000125
    Figure PCTKR2020013167-appb-img-000126
    Figure PCTKR2020013167-appb-img-000127
    Figure PCTKR2020013167-appb-img-000128
    Figure PCTKR2020013167-appb-img-000129
    Figure PCTKR2020013167-appb-img-000130
    Figure PCTKR2020013167-appb-img-000131
    Figure PCTKR2020013167-appb-img-000132
    Figure PCTKR2020013167-appb-img-000133
    Figure PCTKR2020013167-appb-img-000134
    Figure PCTKR2020013167-appb-img-000135
    Figure PCTKR2020013167-appb-img-000136
    Figure PCTKR2020013167-appb-img-000137
  7. 제1 전극; 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 형성된 유기물층을 포함하고,
    상기 유기물층은 제1항의 화학식 1로 표시되는 화합물을 단독 또는 혼합하여 포함하는 것을 특징으로 하는 유기전기소자.
  8. 제1 전극; 제2 전극; 상기 제1 전극과 제2 전극 사이에 형성된 유기물층; 및 캡핑층을 포함하는 유기전기소자에 있어서,
    상기 캡핑층은 상기 제1 전극 및 제2 전극의 양면 중에서 상기 유기물층과 접하지 않는 일면에 형성되며,
    상기 유기물층 또는 캡핑층은 제1항의 화학식 1로 표시되는 화합물을 단독 또는 혼합하여 포함하는 것을 특징으로 하는 유기전기소자.
  9. 제 7 항 또는 제 8 항에 있어서,
    상기 유기물층은 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나를 포함하는 것을 특징으로 하는 유기전기소자.
  10. 제 9 항에 있어서,
    상기 유기물층은 상기 정공수송층, 발광보조층 및 발광층 중 적어도 하나를 포함하는 것을 특징으로 하는 유기전기소자.
  11. 제 7 항 또는 제 8 항에 있어서,
    상기 유기물층은 상기 양극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함하는 것을 특징으로 하는 유기전기소자.
  12. 제 11 항에 있어서,
    상기 유기물층은 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함하는 것을 특징으로 하는 유기전기소자.
  13. 제 7 항 또는 제 8 항의 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치.
  14. 제 13 항에 있어서,
    상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 단색 조명용 소자 및 퀀텀닷 디스플레이용 소자로 이루어진 군에서 선택되는 것을 특징으로 하는 전자장치.
PCT/KR2020/013167 2019-10-02 2020-09-28 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 WO2021066435A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0122136 2019-10-02
KR20190122136 2019-10-02
KR10-2020-0106937 2020-08-25
KR1020200106937A KR20210039932A (ko) 2019-10-02 2020-08-25 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Publications (1)

Publication Number Publication Date
WO2021066435A1 true WO2021066435A1 (ko) 2021-04-08

Family

ID=75338339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013167 WO2021066435A1 (ko) 2019-10-02 2020-09-28 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Country Status (1)

Country Link
WO (1) WO2021066435A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130078746A (ko) * 2011-12-30 2013-07-10 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20140082486A (ko) * 2012-12-24 2014-07-02 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN106467523A (zh) * 2016-07-29 2017-03-01 江苏三月光电科技有限公司 一种有机芳香化合物及其应用
KR20170134076A (ko) * 2016-05-27 2017-12-06 엘지디스플레이 주식회사 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR20190078139A (ko) * 2017-12-26 2019-07-04 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US20190348609A1 (en) * 2018-05-11 2019-11-14 Luminescence Technology Corporation Heteroaromatic compound and organic electroluminescence device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130078746A (ko) * 2011-12-30 2013-07-10 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20140082486A (ko) * 2012-12-24 2014-07-02 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20170134076A (ko) * 2016-05-27 2017-12-06 엘지디스플레이 주식회사 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
CN106467523A (zh) * 2016-07-29 2017-03-01 江苏三月光电科技有限公司 一种有机芳香化合物及其应用
KR20190078139A (ko) * 2017-12-26 2019-07-04 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US20190348609A1 (en) * 2018-05-11 2019-11-14 Luminescence Technology Corporation Heteroaromatic compound and organic electroluminescence device using the same

Similar Documents

Publication Publication Date Title
WO2020231197A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2020116816A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016167491A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016117848A1 (ko) 유기발광소자용 화합물 및 이를 포함하는 유기 발광 소자
WO2019054833A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015182872A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015194791A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020130392A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017030307A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020116822A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020106032A1 (ko) 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2016032150A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017119654A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020085797A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013022145A9 (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
WO2013108997A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2020130394A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2017135717A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019164218A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020209514A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019022435A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020122384A1 (ko) 축합환 화합물 및 이를 포함하는 유기 발광 소자
WO2023085606A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2021153931A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020045831A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871605

Country of ref document: EP

Kind code of ref document: A1