WO2021065863A1 - Non-aqueous electrolyte solution and power storage device using same - Google Patents

Non-aqueous electrolyte solution and power storage device using same Download PDF

Info

Publication number
WO2021065863A1
WO2021065863A1 PCT/JP2020/036803 JP2020036803W WO2021065863A1 WO 2021065863 A1 WO2021065863 A1 WO 2021065863A1 JP 2020036803 W JP2020036803 W JP 2020036803W WO 2021065863 A1 WO2021065863 A1 WO 2021065863A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lithium
positive electrode
carbon atoms
power storage
Prior art date
Application number
PCT/JP2020/036803
Other languages
French (fr)
Japanese (ja)
Inventor
良規 栗原
圭 島本
大希 木戸
勇介 矢三
Original Assignee
Muアイオニックソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muアイオニックソリューションズ株式会社 filed Critical Muアイオニックソリューションズ株式会社
Priority to JP2021551288A priority Critical patent/JPWO2021065863A1/ja
Publication of WO2021065863A1 publication Critical patent/WO2021065863A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a non-aqueous electrolytic solution capable of reducing initial resistance and improving the battery capacity retention rate and gas suppression effect after high temperature storage, and a power storage device using the same.
  • power storage devices particularly lithium secondary batteries
  • small electronic devices such as mobile phones and notebook computers
  • electric vehicles and power storage Since these electronic devices and electric vehicles may be used in a wide temperature range such as high temperature in midsummer and low temperature in extremely cold, the power supply used here improves electrochemical characteristics in a well-balanced manner in a wide temperature range. It is required to let.
  • environmentally friendly vehicles equipped with power storage devices consisting of power storage devices such as lithium secondary batteries and capacitors, hybrid electric vehicles ( HEV), plug-in hybrid electric vehicles (PHEV), and battery electric vehicles (BEV) are required to be widely used at an early stage.
  • lithium secondary battery Due to the long travel distances of automobiles, they can be used in a wide range of temperatures, from extremely hot tropical regions to extremely cold regions. Therefore, in particular, these in-vehicle power storage devices are required not to deteriorate their electrochemical characteristics even when used in a wide temperature range from high temperature to low temperature.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium ions, and a non-aqueous electrolytic solution composed of a lithium salt and a non-aqueous solvent.
  • Carbonates such as EC) and propylene carbonate (PC) are used.
  • the negative electrode metal compounds (single metal, metal oxide, alloy with lithium, etc.) and carbon materials capable of occluding and releasing metallic lithium and lithium ions are known, and in particular, lithium ions are occluded and released.
  • Lithium secondary batteries using carbon materials such as occlusion, artificial graphite, and natural graphite have been widely put into practical use.
  • a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode material is a decomposition product generated by reduction and decomposition of a solvent in a non-aqueous electrolytic solution on the negative electrode surface during charging. It has been found that the gas interferes with the desired electrochemical reaction of the battery, resulting in reduced cycle characteristics. Further, when the decomposition products of the non-aqueous solvent are accumulated, the lithium ions cannot be smoothly stored and released to the negative electrode, and the electrochemical characteristics when used in a wide temperature range tend to deteriorate.
  • lithium secondary batteries that use metallic lithium or its alloys, single metals such as tin or silicon, or metal oxides as the negative electrode material have a high initial capacity, but become finer during cycle use, so they are made of carbon materials. It is known that the reductive decomposition of a non-aqueous solvent occurs at an accelerated rate as compared with the negative electrode, and the battery performance such as battery capacity and cycle characteristics is significantly deteriorated. In addition, if these negative electrode materials are pulverized or the decomposition products of non-aqueous solvents are accumulated, the storage and release of lithium ions to the negative electrode cannot be performed smoothly, and the electrochemical characteristics are likely to deteriorate when used in a wide temperature range. Become.
  • the positive electrode material and the non-aqueous electrolyte solution are charged with the non-aqueous solvent in the non-aqueous electrolyte solution.
  • decomposition products and gases generated by partial oxidative decomposition of the battery inhibit the desired electrochemical reaction of the battery, which also causes deterioration of the electrochemical properties when used in a wide temperature range. I know.
  • electronic devices equipped with lithium secondary batteries are becoming more and more multifunctional, and power consumption is increasing. Therefore, the capacity of lithium secondary batteries is increasing more and more, and the volume occupied by the non-aqueous electrolyte solution in the battery is becoming smaller, such as increasing the density of electrodes and reducing the wasted space volume in the battery. .. Therefore, even a small amount of decomposition of the non-aqueous electrolyte solution tends to reduce the electrochemical characteristics when used in a wide temperature range.
  • Patent Document 1 contains one or more lithium phosphates in which a specific polar group is directly bonded to a phosphorus atom such as lithium methylmethoxycarbonylphosphonate, so that the electrochemical characteristics of a power storage device, particularly a lithium battery, can be found in a wide temperature range. It is stated that the electrochemical properties can be improved.
  • An object of the present invention is to provide a non-aqueous electrolyte solution capable of reducing initial resistance and improving the battery capacity retention rate after high temperature storage, and a power storage device using the same.
  • the present invention has been completed by finding that both the initial resistance of a lithium ion secondary battery and the battery capacity retention rate after high-temperature storage can be improved by using a positive electrode active material having a Ni atom content of 50 atomic% or more. .. Such an effect is not suggested at all in Patent Document 1.
  • the present invention provides the following (1) or (2).
  • a non-aqueous electrolyte solution used for a power storage device including a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent.
  • the positive electrode contains a positive electrode active material in which the content of Ni atoms with respect to the total amount of atoms of the transition metal element in the positive electrode active material is 50 atomic% (atomic%) or more.
  • a non-aqueous electrolytic solution for a power storage device characterized in that the content of the compound represented by the following general formula (I) or (II) is 0.001 to 2% by mass.
  • R 1 and R 2 independently have an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and 6 to 6 carbon atoms, respectively.
  • An organic group selected from the group consisting of 12 aryl groups is shown. The organic group may have a part of hydrogen atoms substituted with halogen atoms.
  • R 3 is a group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms. It is an organic group or a lithium atom selected from the above, Y represents an -NH- group or an -O- group, p represents an integer of 0 to 1, q represents an integer of 1 to 4, and 2 ⁇ p + q. ⁇ 4.
  • a part of the hydrogen atom may be substituted with a halogen atom, and in the cyclic polar group in the formula (II), a part of the hydrogen atom is a halogen atom and the number of carbon atoms is 1. It may be substituted with an alkyl group of up to 8 or a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (II-I).
  • R 3 is independently synonymous with the above. * Indicates a site that binds to a cyclic polar group.
  • a power storage device provided with a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent.
  • the positive electrode contains a positive electrode active material in which the content of Ni atoms with respect to the total amount of atoms of the transition metal element in the positive electrode active material is 50 atomic% (atomic%) or more.
  • a power storage device characterized in that the non-aqueous electrolytic solution is the non-aqueous electrolytic solution according to (1) above.
  • non-aqueous electrolyte solution capable of reducing initial resistance and improving the battery capacity retention rate after high temperature storage
  • a power storage device such as a lithium battery using the non-aqueous electrolyte solution.
  • the non-aqueous electrolyte solution of the present invention is a non-aqueous electrolyte solution used for a power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent.
  • the positive electrode contains a positive electrode active material in which the content of Ni atoms with respect to the total amount of atoms of the transition metal element in the positive electrode active material is 50 atomic% (atomic%) or more.
  • a non-aqueous electrolytic solution for a power storage device characterized in that the content of the compound represented by the general formula (I) or (II) is 0.001 to 2% by mass.
  • lithium salts have a phosphoric acid structure activated by a carbonyl group and preferentially react with a hydroxy group existing on the surface of the positive electrode active material to form a protective film.
  • the content of Ni atoms in the positive electrode active material is high, it is considered that the number of hydroxy groups at the reaction site increases, and a dense and uniform protective film having high lithium ion permeability is formed.
  • the decomposition of the non-aqueous solvent in the non-aqueous electrolyte solution is suppressed, so that the initial resistance increase is suppressed, and the battery capacity retention rate after high temperature storage can be further improved.
  • the compound contained in the non-aqueous electrolytic solution of the present invention is represented by the following general formula (I).
  • R 1 and R 2 are independently alkyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 6 carbon atoms, alkynyl groups having 3 to 6 carbon atoms, and 6 to 12 carbon atoms, respectively. Indicates an organic group selected from the group consisting of the aryl groups of the above. The organic group may have a part of hydrogen atoms substituted with halogen atoms.
  • R 1 is composed of an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • An organic group selected from the group is preferable, and an organic group selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, and an alkynyl group having 3 to 4 carbon atoms is more preferable.
  • An alkyl group having 1 to 2 is more preferable, and an alkyl group having 2 carbon atoms is further preferable.
  • a part of hydrogen atom may be replaced with a halogen atom.
  • alkyl group of R 1 include direct groups such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group and n-octyl group.
  • Branched chain alkyl groups such as chain alkyl groups, iso-propyl groups, iso-butyl groups, sec-butyl groups, tert-butyl groups, tert-amyl groups, 2-ethylhexyl groups, cyclopropyl groups, cyclobutyl groups, Cycloalkyl group such as cyclopentyl group and cyclohexyl group, fluoromethyl group, difluoromethyl group, 2-chloroethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3 -Fluoropropyl group, 3-chloropropyl group, 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,3 , 3-Pentafluoropropyl group and other alkyl
  • alkenyl group of R 1 examples include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 4-pentenyl group, a 5-hexene-1-yl group and the like.
  • alkenyl groups such as linear alkenyl group, 1-propen-2-yl group, 1-buten-2-yl group, 2-methyl-2-propen-1-yl group, 3,3-difluoro-2 -Propen-1-yl group, 4,4-difluoro-3-buten-1-yl group, 3,3-dichloro-2-propen-1-yl group, 4,4-dichloro-3-buten-1- Examples thereof include an alkenyl group in which a part of hydrogen atoms such as an yl group is replaced with a halogen atom.
  • alkynyl group of R 1 examples include linear alkynyl groups such as 2-propynyl group, 2-butynyl group, 3-butynyl group and 4-heptinyl group, 1-methyl-2-propynyl group, 1, Examples thereof include branched alkynyl groups such as 1-dimethyl-2-propynyl group, 1-methyl-3-butynyl group and 1-methyl-4-pentynyl group.
  • aryl group of R 1 examples include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 2,4-di-tert-butylphenyl group, and a 4-tert-butyl.
  • Aryl group such as phenyl group or 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 4 -Fluoro-2-trifluoromethylphenyl group, 4-fluoro-3-trifluoromethylphenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,5-difluorophenyl group, 2,4 , 6-Trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, perfluorophenyl group and other aryl groups in which some hydrogen atoms are replaced with halogen atoms.
  • R 2 is a group consisting of an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms.
  • the organic group selected from the above is preferable, and the organic group selected from the group consisting of an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 3 carbon atoms and an alkynyl group having 3 to 4 carbon atoms is more preferable, and an organic group having 1 to 4 carbon atoms is more preferable.
  • An alkyl group of 5 is more preferable, and an alkyl group having a branched chain having 3 to 4 carbon atoms is further preferable.
  • R 2 is a methyl group, an ethyl group, n- propyl group, n- butyl group, n- pentyl group, n- hexyl, n- heptyl, straight such n- octyl group
  • Branched chain alkyl groups such as chain alkyl groups, iso-propyl groups, iso-butyl groups, sec-butyl groups, tert-butyl groups, tert-amyl groups, 2-ethylhexyl groups, cyclopropyl groups, cyclobutyl groups, Cycloalkyl group such as cyclopentyl group and cyclohexyl group, fluoromethyl group, difluoromethyl group, 2-chloroethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3 -Flu
  • alkenyl group is R 2 are vinyl groups, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 4-pentenyl group, such as 5-hexene-1-yl group Linear alkenyl group, 1-propen-2-yl group, 1-buten-2-yl group, 2-methyl-2-propen-1-yl group, 3-buten-2-yl group, 3-methyl- Branched alkenyl group such as 2-butene-1-yl group, 3,3-difluoro-2-propen-1-yl group, 4,4-difluoro-3-buten-1-yl group, 3,3-dichloro Examples thereof include an alkenyl group in which a part of hydrogen atoms such as -2-propen-1-yl group and 4,4-dichloro-3-butene-1-yl group is replaced with a halogen atom.
  • R 2 is 2-propynyl group, 2-butynyl, 3-butynyl group, 4-heptynyl linear alkynyl group such as a group, 1-methyl-2-propynyl group, 1, Examples thereof include branched alkynyl groups such as 1-dimethyl-2-propynyl group, 1-methyl-3-butynyl group and 1-methyl-4-pentynyl group.
  • R 2 is a phenyl group, a 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,4-di -tert- butylphenyl group, 4-tert-butyl Aryl group such as phenyl group or 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 4 -Fluoro-2-trifluoromethylphenyl group, 4-fluoro-3-trifluoromethylphenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,5-difluorophenyl group, 2,4 , 6-Trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, perfluorophenyl group and other ary
  • a group, a tert-butyl group or a tert-amyl group is more preferable, and an iso-propyl group, an iso-butyl group, a sec-butyl group or a tert-butyl group is further preferable.
  • compounds A1 to A16, A19 to A49, A51, A57 to A61, A63 to A77 are preferable, and compounds A1 to A4, A8, A20 to A24, A25 to A28, A30 to A40, A43 to A45, A51, A57, A60 to A61, and A63 to A67 are more preferable.
  • lithium methyl methoxycarbonylphosphonate (Compound A1), lithium ethyl methoxycarbonylphosphonate (Compound A2), lithium butyl methoxycarbonylphosphonate (Compound A4), lithium butyl ethoxycarbonylphosphonate (Compound A8), lithium 2-propenyl.
  • Methoxycarbonylphosphonate (Compound A20), Lithium 2-propynyl methoxycarbonylphosphonate (Compound 21), Lithium 3-butin-2-yl methoxycarbonylphosphonate (Compound 23), Lithium 2-methyl-3-butin-2-yl methoxycarbonyl Phosphonate (Compound 24), Lithium phenyl methoxycarbonylphosphonate (Compound A25), Lithium 2,4-di-tert-butylphenyl methoxycarbonylphosphonate (Compound A28), Lithium ethyl ethoxycarbonylphosphonate (Compound A30), Lithium ethyl butoxycarbonylphosphonate (Compound A32), Lithium ethyl iso-propoxycarbonylphosphonate (Compound A35), Lithium ethyl iso-butoxycarbonylphosphonate (Compound A36), Lithium ethyl sec-Butoxycarbon
  • R 3 is a group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms. It is an organic group or a lithium atom selected from the above, Y represents an -NH- group or an -O- group, p represents an integer of 0 to 1, q represents an integer of 1 to 4, and 2 ⁇ p + q. ⁇ 4.
  • a part of the hydrogen atom may be substituted with a halogen atom, and in the cyclic polar group in the formula (II), a part of the hydrogen atom is a halogen atom and the number of carbon atoms is 1. It may be substituted with an alkyl group of up to 8 or a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (II-I).
  • R 3 is independently synonymous with the above. * Indicates a site that binds to a cyclic polar group.
  • aryl group R 3 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and 6 to 12 carbon atoms preferred examples and specific examples of the organic group selected from the group is the same as the specific examples and preferred examples of the R 1.
  • R 3 is a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a 2,2-difluoroethyl group, a 2,2,2-trifluoroethyl group, a 2-propenyl group, A 2-propynyl group, a phenyl group, or a lithium atom is preferable, and a methyl group, an ethyl group, a 2,2,2-trifluoroethyl group, a phenyl group, or a lithium atom is more preferable.
  • one or more selected from compounds g1 to 6, g8 to g12, g15 to g17, and g21 to g51 are preferable, and compounds g1 to g5, g12, g17, g23, g28 to g31, g32 to g34,
  • One or more selected from g36, g37, g39, g40 to g43, and g44 to g51 are more preferable, lithium (2,5-dioxopyrrolidine-1-yl) phosphonate (compound g1), lithium methyl (2,5).
  • the content of the compound represented by the general formula (I) or (II) contained in the non-aqueous electrolytic solution is the total amount of the non-aqueous electrolytic solution in the non-aqueous electrolytic solution. On the other hand, it is 0.001 to 2% by mass. If the content is 2% by mass or less, there is little possibility that an excessive film is formed on the electrode and the low temperature characteristics are deteriorated, and if it is 0.001% by mass or more, the film is sufficiently formed. The increase in resistance is suppressed, and the battery capacity retention rate after high temperature storage can be further improved.
  • the content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and the upper limit thereof is preferably 1.5% by mass or less, preferably 1.2% by mass or less in the non-aqueous electrolytic solution. More preferred.
  • the non-aqueous electrolyte solution of the present invention is represented by the compound represented by the general formula (I) or (II), the compound represented by the following general formula (III), and the compound represented by the following general formula (IV).
  • the battery capacity retention rate after high temperature storage can be further improved.
  • the gas suppression effect is improved.
  • R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 4 and R 5 may be bonded to each other to form a ring.
  • L represents an ethylene group or an ethenylene group
  • R 6 represents an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 2 to 3 carbon atoms.
  • R 4 and R 5 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable, and a hydrogen atom or an alkyl group has 1 to 4 carbon atoms.
  • Alkyl groups of numbers 1 to 2 are more preferable.
  • R 4 and R 5 include linear alkyl groups such as hydrogen atom, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group, or iso-.
  • Branched alkyl groups such as propyl group, iso-butyl group, sec-butyl group and tert-butyl group can be mentioned, and hydrogen atom, methyl group, ethyl group, n-propyl group or n-butyl group are preferable, and hydrogen Atomic, methyl or ethyl groups are more preferred, and hydrogen atoms are even more preferred.
  • R 4 and R 5 are bonded to each other to form a ring
  • a cyclopropyl group a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group or a cyclooctyl group, and a cyclopentyl group or a cyclohexyl.
  • Groups are more preferred.
  • R 6 examples include methyl group, ethyl group, n- propyl group, an alkyl group such as iso- propyl group, a vinyl group, 1-propenyl group, and 2-propenyl group Examples thereof include an alkenyl group, and a methyl group, a vinyl group or a 2-propenyl group is preferable.
  • compounds B1 to B3, B12, B13, B16, B17, B18, B20, B21 and B22 are preferable, and 1,3,2-dioxathiolane-2,2-dioxide (compound B1) and 4-methyl -1,3,2-dioxathiolane-2,2-dioxide (Compound B2), Tetrahydro-4H-Cyclopenta [d] [1,3,2] Dioxathiol 2,2-dioxide (Compound B16), 1,1 -Dioxide tetrahydrothiophene-3-yl methanesulfonate (Compound B18), 1,1-dioxide tetrahydrothiophene-3-yl ethenesulfonate (Compound B20), 1,1-dioxide tetrahydrothiophene-3-yl 2-propen
  • lithium salt having a phosphoric acid skeleton one or more selected from lithium difluorophosphate (LiPO 2 F 2 ) and lithium fluorophosphate (Li 2 PO 3 F) are preferably mentioned, and among them, LiPO 2 F 2 is preferable.
  • the sulfonic acid compound having a carbon-carbon triple bond include methanesulfonic acid 2-propynyl, vinyl sulfonic acid 2-propynyl, vinyl sulfonic acid 1,1-dimethyl-2-propynyl and 2-butin-1,4-diyldi.
  • methanesulfonate are preferably mentioned, and among them, one or more selected from 2-propynyl methanesulfonic acid and 2-propynyl vinyl sulfonic acid are preferable.
  • the compound represented by the general formula (III), the compound represented by the general formula (IV), the lithium salt having a phosphoric acid skeleton, and the compound contained in the non-aqueous electrolytic solution is preferably 0.001 to 10% by mass with respect to the total amount of the non-aqueous electrolytic solution. If the content is 10% by mass or less, there is little possibility that an excessive film is formed on the electrode, and if it is 0.001% by mass or more, the strength of the film is increased, so the above range is preferable.
  • the content is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 5% by mass or less in the non-aqueous electrolytic solution.
  • High temperature by combining one or more selected from the group consisting of a lithium salt having a phosphoric acid skeleton and a sulfonic acid compound having a carbon-carbon triple bond with a non-aqueous solvent, an electrolyte salt, and other additives described below.
  • the battery capacity retention rate and gas suppression effect after storage are further improved.
  • Non-aqueous solvent As the non-aqueous solvent used in the non-aqueous electrolytic solution of the present invention, one or more selected from cyclic carbonates, chain esters, lactones, ethers, and amides are preferably used. Since the electrochemical properties are synergistically improved over a wide temperature range, it is preferable that a chain ester is contained, more preferably a chain carbonate is contained, and further that both a cyclic carbonate and a chain carbonate are contained. preferable.
  • chain ester is used as a concept including a chain carbonate and a chain carboxylic acid ester.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolane-2-one (FEC), trans or Sis-4,5-difluoro-1,3-dioxolane-2-one (hereinafter, both are collectively referred to as "DFEC"), vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1.
  • 3-Dioxolane-2-one one or more, ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolane-2-one, vinylene carbonate and 4-ethynyl- One or more selected from 1,3-dioxolane-2-one (EEC) is more preferable.
  • the content of the cyclic carbonate is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and the upper limit thereof is preferably 5% by mass or more, based on the total amount of the non-aqueous electrolyte solution.
  • it is 90% by mass or less, more preferably 70% by mass or less, further preferably 50% by mass or less, still more preferably 40% by mass or less, the battery capacity retention rate after storage at a higher temperature is further increased without impairing Li ion permeability. This is preferable because the gas suppression effect is enhanced.
  • the battery capacity retention rate and the gas suppression effect after high temperature storage are enhanced. It is more preferable to contain both a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom.
  • the cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond is more preferably VC, VEC or EEC, and the cyclic carbonate having a fluorine atom is further preferably FEC or DFEC.
  • the content of the cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond unsaturated bond is preferably 0.05% by mass or more, more preferably 0.1% by mass, based on the total amount of the non-aqueous electrolyte solution. % Or more, more preferably 0.5% by mass or more, and the upper limit thereof is preferably 8% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and Li ion permeation. It is preferable because the battery capacity retention rate and the gas suppression effect after high-temperature storage are further enhanced without impairing the properties.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.05% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more, and the upper limit thereof, based on the total amount of the non-aqueous electrolyte solution. Is preferably 40% by mass or less, more preferably 30% by mass or less, further preferably 20% by mass or less, and further preferably 15% by mass or less, the battery after storage at a higher temperature without impairing Li ion permeability. It is preferable because the capacity retention rate and the gas suppression effect are enhanced.
  • Suitable combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC.
  • VEC and DFEC VEC and DFEC, VC and EEC, EC and EEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, EC and VC and EEC, EC and EEC and FEC, PC And VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC and PC and VC and FEC, or EC and PC and VC and DFEC are preferable.
  • chain ester examples include one or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate.
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • methyl butyl carbonate methyl butyl carbonate
  • ethyl propyl carbonate methyl isopropyl carbonate
  • One or more symmetrical chain carbonates selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and dibutyl carbonate, pivalic acid esters such as methyl pivalate, ethyl pivalate, and propyl pivalate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DEC dipropyl carbonate
  • chain esters a chain ester having a methyl group selected from dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate and ethyl acetate (EA) is preferable.
  • a chain carbonate having a methyl group is preferable.
  • chain carbonate it is preferable to use two or more. Further, it is more preferable that both the symmetric chain carbonate and the asymmetric chain carbonate are contained, and it is further preferable that the content of the symmetric chain carbonate is higher than that of the asymmetric chain carbonate.
  • the content of the chain ester in the non-aqueous solvent used in the non-aqueous electrolytic solution of the present invention is not particularly limited, but it is preferably used in the range of 5 to 90% by mass with respect to the total amount of the non-aqueous electrolytic solution.
  • the content is 5% by mass or more, the viscosity of the non-aqueous electrolytic solution does not become too high, more preferably 10% by mass or more, further preferably 30% by mass or more, still more preferably 50% by mass or more, and further. If it is preferably 90% by mass or less, more preferably 85% by mass or less, the electric conductivity of the non-aqueous electrolytic solution is less likely to decrease and the cycle characteristics are less likely to decrease, so the above range is preferable.
  • the ratio of the cyclic carbonate to the chain ester is preferably 10:90 to 50:50, preferably 30:70 to 40:60, from the viewpoint of improving the electrochemical properties at high temperature. Is more preferable.
  • non-aqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane, chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane.
  • cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane
  • chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane.
  • amides such as ether, dimethylformamide and sulfones such as sulfolane
  • lactones such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone and ⁇ -angelica lactone are preferably mentioned.
  • the other non-aqueous solvents mentioned above are usually mixed and used in order to achieve appropriate physical characteristics.
  • the combination is preferably a combination of a cyclic carbonate, a chain ester and a lactone, a combination of a cyclic carbonate, a chain ester and an ether, and the like, and a combination of a cyclic carbonate, a chain ester and a lactone is more preferable.
  • the lactones it is more preferable to use ⁇ -butyrolactone (GBL).
  • the content of the other non-aqueous solvent is usually preferably 1% by mass or more, more preferably 2% by mass or more, and usually 40% by mass or less, more preferably 30% by mass, based on the total amount of the non-aqueous electrolyte solution. It is mass% or less, more preferably 20 mass% or less. Within the concentration range, there is little possibility that the electrical conductivity will decrease and the high-temperature charge storage characteristics will decrease due to the decomposition of the solvent.
  • additives include the following compounds (A) to (J).
  • nitriles selected from acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, and sebaconitrile.
  • Aromatic compounds having a branched alkyl group such as cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene or 1-fluoro-4-tert-butylbenzene, or biphenyl, terphenyl (o-, m-, p).
  • -Body aromatic compounds such as fluorobenzene, methylphenyl carbonate, ethylphenyl carbonate or diphenyl carbonate.
  • (C) Selected from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenylisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylenediocyanate, 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate.
  • One or more isocyanate compounds One or more isocyanate compounds.
  • E 1,3-Propane sultone (PS), 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propensultone or 2,2-dioxide-1,2-oxathiolane- Sultone such as 4-yl acetate, cyclic sulfite such as ethylene sulfide, sulfonic acid ester such as butane-2,3-diyl dimethanesulfonate, butane-1,4-diyl dimethanesulfonate, methylenemethanedisulfonate, and
  • S O group-containing compounds (triple bond-containing compounds and triple bond-containing compounds) selected from vinyl sulfon compounds such as divinyl sulfone, 1,2-bis (vinylsulfonyl) ethane, and bis (2-vinylsulfonylethyl) ether. Does not include
  • (F) A cyclic acetal compound having an "acetal group" in the molecule, such as 1,3-dioxolane, 1,3-dioxane, and 1,3,5-trioxane.
  • G Trimethyl phosphate, tributyl phosphate, trioctyl phosphate, tris phosphate (2,2,2-trifluoroethyl), ethyl 2- (diethoxyphosphoryl) acetate and 2-propynyl 2- (diethoxyphosphoryl)
  • phosphorus-containing compounds selected from acetate (excluding lithium salts having a phosphoric acid skeleton).
  • (A) nitriles one or more selected from succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
  • aromatic compounds one or more selected from biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene and tert-amylbenzene. Is more preferable, and one or more selected from biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene and tert-amylbenzene are particularly preferable.
  • (C) isocyanate compounds one or more selected from hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate are more preferable.
  • the content of each of the compounds (A) to (C) is preferably 0.01 to 7% by mass with respect to the total amount of the non-aqueous electrolyte solution. In this range, the film is sufficiently formed without becoming too thick, the high temperature charge storage characteristic can be improved, and gas generation can be suppressed.
  • the content is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 5% by mass or less, and 3% by mass or less, based on the total amount of the non-aqueous electrolyte solution. More preferred.
  • carbon-carbon triple bond-containing compounds other than (D) sulfonic acid compounds, (E) S O group-containing compounds, (F) cyclic acetal compounds, (G) phosphorus-containing compounds, (H) cyclic acid anhydrides and (J) It is preferable that at least one selected from the cyclic phosphazene compounds is contained because the high temperature charge storage property can be improved and gas generation can be suppressed.
  • the carbon-carbon triple bond-containing compound other than the (D) sulfonic acid compound one or more selected from 2-propynyl methyl carbonate, 2-propynyl methacrylate, and di (2-propynyl) oxalate is preferable.
  • Di (2-propynyl) oxide is more preferred.
  • a cyclic or chain S O group-containing compound selected from sultone, cyclic sulfite, sulfonic acid ester, and vinyl sulfone is preferable.
  • -Dioxide-1,2-oxathiolane-4-yl acetate, methylene methanedisulfonate, and one or more selected from ethylene sulphite are preferably used.
  • chain S O group-containing compound
  • One or more selected from bis (2-vinylsulfonylethyl) ether is preferably used.
  • cyclic or chain S O group-containing compounds, 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolan-4-yl acetate. , Pentafluorophenyl methanesulfonate and one or more selected from divinyl sulfone are more preferable.
  • 1,3-dioxolane or 1,3-dioxane is preferable, and 1,3-dioxane is more preferable.
  • (G) phosphorus-containing compound ethyl 2- (diethoxyphosphoryl) acetate or 2-propynyl 2- (diethoxyphosphoryl) acetate is preferable, and 2-propynyl 2- (diethoxyphosphoryl) acetate is more preferable.
  • succinic anhydride As the (H) cyclic acid anhydride, succinic anhydride, maleic anhydride or 3-allyl succinic anhydride is preferable, and succinic anhydride or 3-allyl succinic anhydride is more preferable.
  • cyclic phosphazene compounds such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene or phenoxypentafluorocyclotriphosphazene are preferable, and methoxypentafluorocyclotriphosphazene or ethoxypentafluorocyclotriphosphazene Is more preferable. It is also preferable to add vinylene carbonate (VC) as an additive to the non-aqueous electrolytic solution for the purpose of improving the high temperature charge storage property and suppressing gas generation.
  • VC vinylene carbonate
  • the content of each of the compounds (D) to (J) and VC is preferably 0.001 to 5% by mass with respect to the total amount of the non-aqueous electrolytic solution. In this range, the film is sufficiently formed without becoming too thick, the high temperature charge storage characteristic can be further improved, and gas generation can be suppressed.
  • the content is more preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the non-aqueous electrolyte solution, and the upper limit thereof is 3% by mass or less based on the total amount of the non-aqueous electrolyte solution. Preferably, it is 2% by mass or less, more preferably.
  • the lithium salt include lithium bis (oxalat) borate [LiBOB], lithium difluoro (oxalat) borate [LiDFOB], lithium tetrafluoro (oxalat) phosphate [LiTFOP], and lithium difluorobis (oxalat) phosphate [LiDFOP].
  • Lithium salt having at least one oxalate skeleton selected from, or lithium trifluoro ((methanesulfonyl) oxy) borate [LiTFMSB], lithium pentafluoro ((methanesulfonyl) oxy) phosphate [LiPFMSP], lithium methyl sulfate [ LMS], lithium ethyl sulfate [LES], lithium 2,2,2-trifluoroethyl sulfate [LFES] and lithium salt having one or more S O groups selected from FSO 3 Li are preferably mentioned, and LiBOB is preferable. , LiDFOB, LiTFOP, LiDFOP, LiTFMSB, LMS, LES, LFES and one or more lithium salts selected from FSO 3 Li.
  • the ratio of each of the lithium salts in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 8% by mass or less with respect to the total amount of the non-aqueous electrolytic solution. Within this range, the high temperature charge storage characteristics can be further improved, and gas generation can be suppressed. It is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.4% by mass or more with respect to the total amount of the non-aqueous electrolyte solution, and the upper limit thereof is preferably the total amount of the non-aqueous electrolyte solution. It is 6% by mass or less, more preferably 3% by mass or less.
  • Electrolyte salt Preferred examples of the electrolyte salt used in the present invention include the following lithium salts.
  • Specific examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 , LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F).
  • LiPF 3 SO 3 LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C) Lithium salt containing a chain-like alkyl fluoride group such as 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ), or (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 ( SO 2 ) Lithium salts having a cyclic fluorinated alkylene chain such as 2 NLi are preferably mentioned, and at least one lithium salt selected from these is preferably mentioned, and one or more of these are preferably mentioned.
  • LiPF 6 is more preferably used.
  • Suitable combinations of these electrolyte salts include LiPF 6 , and at least one lithium salt selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 F) 2 [LiFSI] is non-existent. It is preferably contained in the water electrolyte, and a combination containing LiPF 6 and further containing LiFSI is more preferable.
  • the concentration of each of the electrolyte salts is usually 4% by mass or more, preferably 9% by mass or more, and more preferably 13% by mass or more, based on the total amount of the non-aqueous electrolyte solution.
  • the upper limit thereof is preferably 28% by mass or less, more preferably 23% by mass or less, still more preferably 20% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
  • the ratio is more preferably 0.1% by mass or more, still more preferably 0.3% by mass or more, still more preferably 0.6% by mass or more, and the upper limit thereof is preferable with respect to the total amount of the non-aqueous electrolyte solution. Is 11% by mass or less, more preferably 9% by mass or less, still more preferably 6% by mass or less.
  • non-aqueous electrolyte solution for example, the above-mentioned non-aqueous solvent is mixed, and the above-mentioned electrolyte salt and the compound represented by the general formula (I) or (II) are added to the above-mentioned non-aqueous electrolyte solution.
  • the compounds to be added to the non-aqueous solvent and the non-aqueous electrolytic solution to be used are those that have been purified in advance and contain as few impurities as possible within a range that does not significantly reduce the productivity.
  • the non-aqueous electrolyte solution of the present invention can be used for the following power storage devices, and as the non-aqueous electrolyte solution, not only a liquid one but also a gelled one can be used. Further, the non-aqueous electrolyte solution of the present invention can also be used for solid polymer electrolytes. Among them, it is preferable to use it for a power storage device (that is, for a lithium battery) that uses a lithium salt as an electrolyte salt, and it is most suitable to use it for a lithium secondary battery.
  • the power storage device of the present invention is a power storage device including the non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode and a non-aqueous solvent, and the positive electrode is all of the transition metal elements in the positive electrode active material. It contains a positive electrode active material in which the content of Ni atoms with respect to the amount of atoms is 50 atomic% or more.
  • the power storage device utilizes a function of storing and discharging lithium ions at least at the positive electrode during charging and discharging, and specific examples thereof include a lithium secondary battery.
  • the concept of the lithium secondary battery also includes a pseudo lithium secondary battery in which a positive electrode is partially mixed with activated carbon or the like to partially have a capacitor function.
  • Constituent members such as a non-aqueous electrolyte solution and a negative electrode other than the positive electrode can be used without particular limitation.
  • the positive electrode for a lithium secondary battery or the like has a Ni atom content with respect to the total atomic amount of the transition metal element in the positive electrode active material, in other words, the atomic concentration of all the transition metal elements in the positive electrode active material. It contains a positive electrode active material in which the ratio of Ni atomic concentration to the total value is 50 atomic% (atomic%) or more.
  • the positive electrode active material include a composite metal oxide of nickel and lithium containing one or more selected from the group consisting of cobalt, manganese and aluminum. These positive electrode active materials can be used alone or in combination of two or more.
  • the non-aqueous solvent is decomposed on the positive electrode surface due to the catalytic action of Ni.
  • Battery resistance tends to increase.
  • the electrochemical characteristics tend to deteriorate in a high temperature environment, but the lithium secondary battery according to the present invention is preferable because the deterioration of these electrochemical characteristics can be suppressed.
  • the content of Ni atoms to the total amount of all atoms of the transition metal element in the positive electrode active material in other words, the ratio of the atomic concentration of Ni to the total atomic concentration of all the transition metal elements in the positive electrode active material is 60 atomic.
  • the above effect becomes remarkable when a positive electrode active material exceeding% is used, which is preferable, 70 atomic% or more is more preferable, and 80 atomic% or more is further preferable.
  • LiNi 1- (x + y + z) Mn x Co y Al z O 2 (where, x + y + z ⁇ 0.5 , x ⁇ 0, y ⁇ 0, z ⁇ 0) are suitably exemplified, specifically LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2, LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like are preferably mentioned.
  • the ratio of the Ni atom content (Ni atom concentration) to the total atom amount (total transition metal concentration) (total amount) of all transition metal elements (Ni, Mn, Co) of the above-mentioned specific positive electrode active material is , 50atomic%, 60atomic%, 80atomic%, 84atomic%.
  • the amount of all transition metal elements in the positive electrode active material (total transition metal concentration) and the content of Ni atoms (Ni atom concentration) can be measured and calculated by the X-ray photoelectron spectroscopy (XPS) method. ..
  • positive electrode active material for the above-mentioned positive electrode active material, other elements such as Mg, Al, B, Ti, V, Nb, Cu, Zn, Mo, Ca, Sr, Er, Hf, W or Zr are used to improve the performance. May be appropriately substituted or added to.
  • a solid solution of LiCoO 2 , Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe), LiMn 2 O 4 or LiNi 1/2 Mn.
  • One or more selected from the acid salts may be used in combination.
  • the conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change. Examples thereof include natural graphite (scaly graphite and the like), graphite such as artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, more preferably 2 to 5% by mass.
  • the positive electrode active material is made of a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a styrene / butadiene copolymer (SBR), or acrylonitrile and butadiene. It is mixed with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), and ethylene propylene transmer, and a high boiling point solvent such as 1-methyl-2-pyrrolidone is added thereto and kneaded to make a positive electrode mixture.
  • a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a styrene / butadiene copolymer (SBR), or acrylonitrile and butadiene. It is mixed with a binder such as copolymer (NBR),
  • this positive electrode mixture is applied to an aluminum foil of a current collector, a lath plate made of stainless steel, etc., dried and pressure-molded, and then vacuumed at a temperature of about 50 ° C to 250 ° C for about 2 hours. It can be produced by heat-treating with.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 or more, More preferably, it is 3.6 g / cm 3 or more, and the upper limit is preferably 4 g / cm 3 or less.
  • a lithium metal, a lithium alloy, and a carbon material capable of occluding and releasing lithium ions [graphitized carbon and (002) plane spacing of 0.37 nm ( (Namometer) or more graphitized carbon, (002) graphite with a surface spacing of 0.34 nm or less], tin (elemental substance), tin compound, silicon (elemental substance), silicon compound, Li 4 Ti 5 O 12, etc.
  • the lithium titanate compound and the like can be used alone or in combination of two or more.
  • a highly crystalline carbon material such as artificial graphite or natural graphite in terms of the ability to occlude and release lithium ions, and the interplanar spacing (d 002 ) of the lattice plane (002) is 0.340 nm.
  • a carbon material having a graphite-type crystal structure having a graphite-type crystal structure of 0.335 to 0.337 nm it is more preferable to use a carbon material having a graphite-type crystal structure having a graphite-type crystal structure of 0.335 to 0.337 nm.
  • the ratio I (110) / I (004) of the peak intensity I (110) on the (110) plane and the peak intensity I (004) on the (004) plane of the graphite crystal is 0.01 or more, it is further from the positive electrode active material. It is preferable because it improves the metal elution amount and the charge storage characteristics, more preferably 0.05 or more, and further preferably 0.1 or more. Further, the upper limit is preferably 0.5 or less, more preferably 0.3 or less, because the crystallinity may be lowered due to excessive treatment and the discharge capacity of the battery may be lowered. Further, it is preferable that the highly crystalline carbon material (core material) is coated with a carbon material having a lower crystallinity than the core material because the high temperature charge storage characteristics are further improved.
  • the crystallinity of the coated carbon material can be confirmed by TEM.
  • a highly crystalline carbon material When a highly crystalline carbon material is used, it reacts with a non-aqueous electrolytic solution during charging and tends to deteriorate high temperature charge storage characteristics due to an increase in interfacial resistance.
  • high temperature charge storage tends to occur. The characteristics are good.
  • Examples of the metal compound capable of occluding and releasing lithium ions as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni.
  • Examples thereof include compounds containing at least one metal element such as Cu, Zn, Ag, Mg, Sr, and Ba. These metal compounds may be used in any form such as elemental substances, oxides, nitrides, sulfides, borides, alloys with lithium, etc., but any of elemental metals, metal oxides, alloys with lithium, etc. Is preferable because the capacity can be increased. Among them, those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are more preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded with a conductive agent, a binder, and a high boiling point solvent similar to those for producing the positive electrode to obtain a negative electrode mixture, and then this negative electrode mixture is applied to a copper foil or the like of a current collector. After drying and pressure molding, it can be produced by heat treatment under vacuum for about 2 hours at a temperature of about 50 ° C. to 250 ° C.
  • the density of the portion of the negative electrode excluding the current collector is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, more preferably 1.7 g / cm in order to further increase the capacity of the battery. It is 3 or more, and the upper limit is preferably 2 g / cm 3 or less.
  • a negative electrode active material for a lithium primary battery a lithium metal or a lithium alloy can be mentioned.
  • the structure of the lithium battery is not particularly limited, and a coin-type battery having a single-layer or multi-layer separator, a cylindrical battery, a square battery, a laminated battery, or the like can be applied.
  • the battery separator is not particularly limited, but a monolayer or laminated microporous film of polyolefin such as polypropylene or polyethylene, a woven fabric, a non-woven fabric, or the like can be used.
  • the lithium secondary battery in the present invention has excellent cycle characteristics even when the charge termination voltage is 4.2 V or higher, particularly 4.3 V or higher, and further, the characteristics are also good at 4.4 V or higher.
  • the discharge end voltage can usually be 2.8 V or higher, further 2.5 V or higher, but the lithium secondary battery in the present invention can be 2.0 V or higher.
  • the current value is not particularly limited, but is usually used in the range of 0.1 to 30C. Further, the lithium battery in the present invention can be charged and discharged at ⁇ 40 to 100 ° C., preferably ⁇ 10 to 80 ° C.
  • a method of providing a safety valve on the battery lid or making a notch in a member such as a battery can or a gasket can also be adopted.
  • a current cutoff mechanism that senses the internal pressure of the battery and cuts off the current can be provided on the battery lid.
  • Examples 1 to 20, Comparative Examples 1 to 4 [Manufacturing of lithium-ion secondary battery]
  • positive electrode active materials LiNi 0.5 Mn 0.3 Co 0.2 O 2 (Ni: 50 atomic%), LiNi 0.8 Mn 0.1 Co 0.1 O 2 (Ni: 80 atomic%), and LiNi 1/3 Mn 1/3 Co 1/3 O 2 (Ni: 33 atomic%) was prepared. 90% by mass of any one of the above positive electrode active materials, 3% by mass of acetylene black (conductive agent), and 3% by mass of KS-4 (registered trademark) (conductive agent) are mixed, and polyvinylidene fluoride (binding agent) is prepared in advance.
  • This negative electrode mixture paste was applied to both sides of a copper foil (current collector), dried and pressure-treated, and cut to a predetermined size to prepare a negative electrode sheet.
  • the density of the portion of the negative electrode excluding the current collector was 1.4 g / cm 3 .
  • the positive electrode sheet obtained above, the polyolefin laminated microporous film separator, and the negative electrode sheet obtained above are laminated in this order, and the non-aqueous electrolytic solutions having the compositions shown in Tables 1 to 4 are added to each of them to form a laminate type.
  • a battery was manufactured.
  • the discharge capacity retention rate after high-temperature charge storage was calculated from the values of the initial 25 ° C. discharge capacity and the 25 ° C. discharge capacity after high-temperature charge storage by the following formula.
  • the discharge capacity retention rate (%) was set to a value measured with a laminated battery provided with a non-aqueous electrolytic solution containing no compound of the general formula (I) or (II) in each positive electrode active material as 100%. Shown as a relative value of when.
  • the discharge capacity retention rate (%) is an index indicating the degree of battery capacity retention after high-temperature storage.
  • the amount of gas generated after high-temperature storage was measured by the Archimedes method.
  • the amount of gas generated was measured with a laminated battery provided with a non-aqueous electrolytic solution containing no compound of the general formula (I) or (II) in the positive electrode active material of LiNi 0.8 Mn 0.1 Co 0.1 O 2. It is shown as a relative value when the amount is 100%.
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 (Ni: 50 atomic%) or LiNi 0.8 Mn 0.1 Co 0.1 O 2 (Ni: 80 atomic%) was used as the positive electrode, and the non-aqueous electrolyte solution of the present invention was used.
  • the lithium ion secondary batteries of Examples 1 to 3 and 4 are the lithium ion secondary batteries of Comparative Examples 2 and 3 using LiNi 1/3 Mn 1/3 Co 1/3 O 2 (Ni: 33 atomic%) as the positive electrode. Compared with this, it is possible to maintain a high discharge capacity after high temperature storage while reducing the initial resistance.
  • the non-aqueous electrolytic solution of the present invention it is possible to obtain a power storage device having excellent electrochemical characteristics in a wide temperature range.
  • a non-aqueous electrolyte for power storage devices such as lithium secondary batteries installed in hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, etc.
  • power storage devices whose electrochemical characteristics do not easily deteriorate over a wide temperature range. Can be obtained.

Abstract

The present invention is a non-aqueous electrolyte solution for use in a power storage device provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent. The positive electrode includes a positive electrode active material in which the content of Ni atoms with respect to the total amount of atoms of transition metal elements in the positive electrode active material is 50 atomic% or more. The non-aqueous electrolyte solution that is for use in a power storage device is characterized in that the content of a specific compound represented by general formula (I) and including a P=O group and a carbonyl group is 0.001-2 mass%. Also provided is a power storage device. The present invention reduces initial resistance and makes it possible to improve the battery capacity retention rate after storage at high temperatures.

Description

非水電解液及びそれを用いた蓄電デバイスNon-aqueous electrolyte and storage device using it
 本発明は、初期の抵抗を低減し、高温保存後の電池容量維持率とガス抑制効果を向上できる非水電解液、及びそれを用いた蓄電デバイスに関する。 The present invention relates to a non-aqueous electrolytic solution capable of reducing initial resistance and improving the battery capacity retention rate and gas suppression effect after high temperature storage, and a power storage device using the same.
 近年、蓄電デバイス、特にリチウム二次電池は、携帯電話やノート型パソコン等の小型電子機器の電源、電気自動車用や電力貯蔵用の電源として広く使用されている。これらの電子機器や電気自動車は、真夏の高温下や極寒の低温下等広い温度範囲で使用される可能性があるため、ここで用いられる電源は、広い温度範囲でバランス良く電気化学特性を向上させることが求められている。
 特に地球温暖化防止のため、CO排出量を削減することが急務となっており、リチウム二次電池やキャパシタ等の蓄電デバイスからなる蓄電装置を搭載した環境対応車の中でも、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、バッテリー電気自動車(BEV)の早期普及が求められている。自動車は移動距離が長いため、熱帯の非常に暑い地域から極寒の地域まで幅広い温度範囲の地域で使用される可能性がある。従って、特にこれらの車載用の蓄電デバイスは、高温から低温まで幅広い温度範囲で使用しても電気化学特性が低下しないことが要求されている。
 なお、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
In recent years, power storage devices, particularly lithium secondary batteries, have been widely used as power sources for small electronic devices such as mobile phones and notebook computers, and as power sources for electric vehicles and power storage. Since these electronic devices and electric vehicles may be used in a wide temperature range such as high temperature in midsummer and low temperature in extremely cold, the power supply used here improves electrochemical characteristics in a well-balanced manner in a wide temperature range. It is required to let.
In particular, in order to prevent global warming, there is an urgent need to reduce CO 2 emissions, and among environmentally friendly vehicles equipped with power storage devices consisting of power storage devices such as lithium secondary batteries and capacitors, hybrid electric vehicles ( HEV), plug-in hybrid electric vehicles (PHEV), and battery electric vehicles (BEV) are required to be widely used at an early stage. Due to the long travel distances of automobiles, they can be used in a wide range of temperatures, from extremely hot tropical regions to extremely cold regions. Therefore, in particular, these in-vehicle power storage devices are required not to deteriorate their electrochemical characteristics even when used in a wide temperature range from high temperature to low temperature.
In this specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
 リチウム二次電池は、主にリチウムイオンを吸蔵及び放出可能な材料を含む正極及び負極、ならびに、リチウム塩と非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネートが使用されている。
 また、負極としては、金属リチウム、リチウムイオンを吸蔵及び放出可能な金属化合物(金属単体、金属酸化物、リチウムとの合金等)や炭素材料が知られており、特にリチウムイオンを吸蔵及び放出することが可能なコークス、人造黒鉛、天然黒鉛等の炭素材料を用いたリチウム二次電池が広く実用化されている。
The lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium ions, and a non-aqueous electrolytic solution composed of a lithium salt and a non-aqueous solvent. Carbonates such as EC) and propylene carbonate (PC) are used.
Further, as the negative electrode, metal compounds (single metal, metal oxide, alloy with lithium, etc.) and carbon materials capable of occluding and releasing metallic lithium and lithium ions are known, and in particular, lithium ions are occluded and released. Lithium secondary batteries using carbon materials such as occlusion, artificial graphite, and natural graphite have been widely put into practical use.
 例えば、天然黒鉛や人造黒鉛等の高結晶化した炭素材料を負極材料として用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、サイクル特性の低下を生じることが分かっている。また、非水溶媒の分解物が蓄積すると、負極へのリチウムイオンの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 更に、金属リチウムやその合金、スズ又はケイ素等の金属単体や金属酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いもののサイクル使用中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、電池容量やサイクル特性のような電池性能が大きく低下することが知られている。また、これらの負極材料の微粉化や非水溶媒の分解物が蓄積すると、負極へのリチウムイオンの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
For example, a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode material is a decomposition product generated by reduction and decomposition of a solvent in a non-aqueous electrolytic solution on the negative electrode surface during charging. It has been found that the gas interferes with the desired electrochemical reaction of the battery, resulting in reduced cycle characteristics. Further, when the decomposition products of the non-aqueous solvent are accumulated, the lithium ions cannot be smoothly stored and released to the negative electrode, and the electrochemical characteristics when used in a wide temperature range tend to deteriorate.
Furthermore, lithium secondary batteries that use metallic lithium or its alloys, single metals such as tin or silicon, or metal oxides as the negative electrode material have a high initial capacity, but become finer during cycle use, so they are made of carbon materials. It is known that the reductive decomposition of a non-aqueous solvent occurs at an accelerated rate as compared with the negative electrode, and the battery performance such as battery capacity and cycle characteristics is significantly deteriorated. In addition, if these negative electrode materials are pulverized or the decomposition products of non-aqueous solvents are accumulated, the storage and release of lithium ions to the negative electrode cannot be performed smoothly, and the electrochemical characteristics are likely to deteriorate when used in a wide temperature range. Become.
 一方、正極として、例えばLiCoO、LiMn、LiNiO、LiFePO等を用いたリチウム二次電池は、非水電解液中の非水溶媒が充電状態で正極材料と非水電解液との界面において、局部的に一部酸化分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、やはり広い温度範囲で使用した場合における電気化学特性の低下を生じることが分かっている。特に、正極活物質中の全遷移金属元素の原子濃度の合計値に対するNiの原子濃度の割合が、50atomic%以上である正極活物質を使用した場合にNiの触媒作用により正極表面での非水溶媒の分解が起き、電池の抵抗が増加しやすい傾向にある。 On the other hand, in a lithium secondary battery using, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 or the like as the positive electrode, the positive electrode material and the non-aqueous electrolyte solution are charged with the non-aqueous solvent in the non-aqueous electrolyte solution. At the interface of the battery, decomposition products and gases generated by partial oxidative decomposition of the battery inhibit the desired electrochemical reaction of the battery, which also causes deterioration of the electrochemical properties when used in a wide temperature range. I know. In particular, when a positive electrode active material in which the ratio of the atomic concentration of Ni to the total atomic concentration of all transition metal elements in the positive electrode active material is 50 atomic% or more is used, the non-water on the positive electrode surface due to the catalytic action of Ni. Degradation of the solvent tends to occur and the resistance of the battery tends to increase.
 以上のように、正極上や負極上で非水電解液が分解するときの分解物やガスにより、リチウムイオンの移動が阻害されたり、電池が膨れたりすることで電池性能が低下していた。そのような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、広い温度範囲で使用した場合における電気化学特性が低下しやすい状況にある。
 特許文献1には、リチウムメチルメトキシカルボニルホスホネート等のリン原子に特定の極性基が直接結合したリン酸リチウムを一種以上含有することで、広い温度範囲で蓄電デバイスの電気化学特性、特にリチウム電池の電気化学特性を改善できることが記載されている。
As described above, the decomposition products and gases when the non-aqueous electrolyte solution decomposes on the positive electrode and the negative electrode hinder the movement of lithium ions and cause the battery to swell, resulting in deterioration of battery performance. In spite of such a situation, electronic devices equipped with lithium secondary batteries are becoming more and more multifunctional, and power consumption is increasing. Therefore, the capacity of lithium secondary batteries is increasing more and more, and the volume occupied by the non-aqueous electrolyte solution in the battery is becoming smaller, such as increasing the density of electrodes and reducing the wasted space volume in the battery. .. Therefore, even a small amount of decomposition of the non-aqueous electrolyte solution tends to reduce the electrochemical characteristics when used in a wide temperature range.
Patent Document 1 contains one or more lithium phosphates in which a specific polar group is directly bonded to a phosphorus atom such as lithium methylmethoxycarbonylphosphonate, so that the electrochemical characteristics of a power storage device, particularly a lithium battery, can be found in a wide temperature range. It is stated that the electrochemical properties can be improved.
特開2016-066404号JP-A-2016-066404
 本発明は、初期の抵抗を低減し、高温保存後の電池容量維持率を向上できる非水電解液、及びそれを用いた蓄電デバイスを提供することを目的とする。 An object of the present invention is to provide a non-aqueous electrolyte solution capable of reducing initial resistance and improving the battery capacity retention rate after high temperature storage, and a power storage device using the same.
 本発明者らは、前記特許文献1の非水電解液の性能について詳細に検討した結果、正極としてLiNi1/3Mn1/3Co1/32を用いた場合、高温保存後の低温放電特性は向上するものの、初期抵抗を低減しつつ高温保存後の電池容量維持率を両立させるという課題に対しては不十分であった。
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液において、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量が50atomic%以上である正極活物質を用いることにより、リチウムイオン二次電池の初期抵抗と高温保存後の電池容量維持率の両方を改善できることを見出し、本発明を完成した。このような効果については、特許文献1には全く示唆されていない。
As a result of detailed examination of the performance of the non-aqueous electrolyte solution of Patent Document 1, the present inventors, when LiNi 1/3 Mn 1/3 Co 1/3 O 2 is used as the positive electrode, the low temperature after high temperature storage. Although the discharge characteristics are improved, it is insufficient for the problem of achieving both the battery capacity retention rate after high temperature storage while reducing the initial resistance.
Therefore, the present inventors have conducted intensive studies to solve the above problems, and in a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, the amount of all atoms of the transition metal element in the positive electrode active material. The present invention has been completed by finding that both the initial resistance of a lithium ion secondary battery and the battery capacity retention rate after high-temperature storage can be improved by using a positive electrode active material having a Ni atom content of 50 atomic% or more. .. Such an effect is not suggested at all in Patent Document 1.
 すなわち、本発明は、下記の(1)又は(2)を提供するものである。 That is, the present invention provides the following (1) or (2).
(1)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスに用いられる非水電解液であって、
 該正極が、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量が50atomic%(原子%)以上である正極活物質を含み、
 下記一般式(I)又は(II)で表される化合物の含有量が0.001~2質量%であることを特徴とする、蓄電デバイス用非水電解液。
(1) A non-aqueous electrolyte solution used for a power storage device including a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent.
The positive electrode contains a positive electrode active material in which the content of Ni atoms with respect to the total amount of atoms of the transition metal element in the positive electrode active material is 50 atomic% (atomic%) or more.
A non-aqueous electrolytic solution for a power storage device, characterized in that the content of the compound represented by the following general formula (I) or (II) is 0.001 to 2% by mass.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(I)中、R及びRは、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる有機基を示す。前記有機基は、水素原子の一部がハロゲン原子で置換されていてもよい。) In formula (I), R 1 and R 2 independently have an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and 6 to 6 carbon atoms, respectively. An organic group selected from the group consisting of 12 aryl groups is shown. The organic group may have a part of hydrogen atoms substituted with halogen atoms.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(II)中、Rは、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる有機基、又はリチウム原子であり、Yは-NH-基又は-O-基を示し、pは、0~1の整数を示し、qは1~4の整数を示し、2≦p+q≦4である。前記有機基は、水素原子の一部がハロゲン原子で置換されていてもよく、式(II)中の環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-I)で表される置換基で置換されていてもよい。) In formula (II), R 3 is a group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms. It is an organic group or a lithium atom selected from the above, Y represents an -NH- group or an -O- group, p represents an integer of 0 to 1, q represents an integer of 1 to 4, and 2 ≦ p + q. ≦ 4. In the organic group, a part of the hydrogen atom may be substituted with a halogen atom, and in the cyclic polar group in the formula (II), a part of the hydrogen atom is a halogen atom and the number of carbon atoms is 1. It may be substituted with an alkyl group of up to 8 or a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (II-I).)
Figure JPOXMLDOC01-appb-C000008

(式中、Rはそれぞれ独立に前記と同義である。*は、環状の極性基に結合する部位を示す。)
Figure JPOXMLDOC01-appb-C000008

(In the formula, R 3 is independently synonymous with the above. * Indicates a site that binds to a cyclic polar group.)
(2)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、
 該正極が、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量が50atomic%(原子%)以上である正極活物質を含み、
 該非水電解液が前記(1)に記載の非水電解液であることを特徴とする、蓄電デバイス。
(2) A power storage device provided with a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent.
The positive electrode contains a positive electrode active material in which the content of Ni atoms with respect to the total amount of atoms of the transition metal element in the positive electrode active material is 50 atomic% (atomic%) or more.
A power storage device, characterized in that the non-aqueous electrolytic solution is the non-aqueous electrolytic solution according to (1) above.
 本発明によれば、初期の抵抗を低減し、高温保存後の電池容量維持率を向上できる非水電解液、及びそれを用いたリチウム電池等の蓄電デバイスを提供することができる。 According to the present invention, it is possible to provide a non-aqueous electrolyte solution capable of reducing initial resistance and improving the battery capacity retention rate after high temperature storage, and a power storage device such as a lithium battery using the non-aqueous electrolyte solution.
〔非水電解液〕
 本発明の非水電解液は、正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスに用いられる非水電解液であって、
 該正極が、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量が50atomic%(原子%)以上である正極活物質を含み、
 前記一般式(I)又は(II)で表される化合物の含有量が0.001~2質量%であることを特徴とする、蓄電デバイス用非水電解液である。
[Non-aqueous electrolyte]
The non-aqueous electrolyte solution of the present invention is a non-aqueous electrolyte solution used for a power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent.
The positive electrode contains a positive electrode active material in which the content of Ni atoms with respect to the total amount of atoms of the transition metal element in the positive electrode active material is 50 atomic% (atomic%) or more.
A non-aqueous electrolytic solution for a power storage device, characterized in that the content of the compound represented by the general formula (I) or (II) is 0.001 to 2% by mass.
 本発明の非水電解液が、初期の抵抗を低減し、高温保存後の電池容量維持率を改善できる理由は必ずしも明らかではないが、以下のように考えられる。
 本発明で使用される一般式(I)又は(II)で表される化合物は、P=O基のリン原子とカルボニル基(C=O基)の炭素原子が直接結合する部位を有するリチウム塩、又はP=O基のリン原子とカルボニル基(C=O基)を有する環状の極性基が直接結合する部位を有するリチウム塩である。これらのリチウム塩は、リン酸構造がカルボニル基により活性化されており、正極活物質の表面に存在するヒドロキシ基と優先的に反応して保護被膜を形成する。この際、正極活物質中のNi原子の含有率が高いため、反応部位でのヒドロキシ基が多くなり、リチウムイオン透過性の高い緻密で均一な保護被膜が形成されると考えられる。その結果、非水電解液中の非水溶媒の分解が抑制されることで初期の抵抗上昇が抑制され、更に高温保存後の電池容量維持率を改善できると考えられる。
The reason why the non-aqueous electrolyte solution of the present invention can reduce the initial resistance and improve the battery capacity retention rate after high temperature storage is not always clear, but it is considered as follows.
The compound represented by the general formula (I) or (II) used in the present invention is a lithium salt having a site in which a phosphorus atom of a P = O group and a carbon atom of a carbonyl group (C = O group) are directly bonded. , Or a lithium salt having a site where a phosphorus atom of a P = O group and a cyclic polar group having a carbonyl group (C = O group) are directly bonded. These lithium salts have a phosphoric acid structure activated by a carbonyl group and preferentially react with a hydroxy group existing on the surface of the positive electrode active material to form a protective film. At this time, since the content of Ni atoms in the positive electrode active material is high, it is considered that the number of hydroxy groups at the reaction site increases, and a dense and uniform protective film having high lithium ion permeability is formed. As a result, it is considered that the decomposition of the non-aqueous solvent in the non-aqueous electrolyte solution is suppressed, so that the initial resistance increase is suppressed, and the battery capacity retention rate after high temperature storage can be further improved.
 本発明の非水電解液に含まれる化合物は、下記一般式(I)で表される。 The compound contained in the non-aqueous electrolytic solution of the present invention is represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(I)中、R及びRはそれぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる有機基を示す。前記有機基は、水素原子の一部がハロゲン原子で置換されていてもよい。) (In the formula (I), R 1 and R 2 are independently alkyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 6 carbon atoms, alkynyl groups having 3 to 6 carbon atoms, and 6 to 12 carbon atoms, respectively. Indicates an organic group selected from the group consisting of the aryl groups of the above. The organic group may have a part of hydrogen atoms substituted with halogen atoms.)
 前記一般式(I)において、Rは、炭素数1~6のアルキル基、炭素数3~4のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~10のアリール基からなる群より選ばれる有機基が好ましく、炭素数1~4のアルキル基、炭素数2~3のアルケニル基、及び炭素数3~4のアルキニル基からなる群より選ばれる有機基がより好ましく、炭素数1~2のアルキル基が更に好ましく、炭素数2のアルキル基が更に好ましい。なお、前記有機基は、水素原子の一部がハロゲン原子で置換されていてもよい。 In the general formula (I), R 1 is composed of an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 10 carbon atoms. An organic group selected from the group is preferable, and an organic group selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, and an alkynyl group having 3 to 4 carbon atoms is more preferable. An alkyl group having 1 to 2 is more preferable, and an alkyl group having 2 carbon atoms is further preferable. In the organic group, a part of hydrogen atom may be replaced with a halogen atom.
 Rであるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等の直鎖のアルキル基、iso-プロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、tert-アミル基、2-エチルヘキシル基等の分枝鎖のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フルオロメチル基、ジフルオロメチル基、2-クロロエチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等の水素原子の一部がハロゲン原子で置換されたアルキル基が挙げられる。 Specific examples of the alkyl group of R 1 include direct groups such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group and n-octyl group. Branched chain alkyl groups such as chain alkyl groups, iso-propyl groups, iso-butyl groups, sec-butyl groups, tert-butyl groups, tert-amyl groups, 2-ethylhexyl groups, cyclopropyl groups, cyclobutyl groups, Cycloalkyl group such as cyclopentyl group and cyclohexyl group, fluoromethyl group, difluoromethyl group, 2-chloroethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3 -Fluoropropyl group, 3-chloropropyl group, 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,3 , 3-Pentafluoropropyl group and other alkyl groups in which part of the hydrogen atom is replaced with a halogen atom.
 Rであるアルケニル基の具体例としては、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセン-1-イル基等の直鎖のアルケニル基、1-プロペン-2-イル基、1-ブテン-2-イル基、2-メチル-2-プロペン-1-イル基等の分岐のアルケニル基、3,3-ジフルオロ-2-プロペン-1-イル基、4,4-ジフルオロ-3-ブテン-1-イル基、3,3-ジクロロ-2-プロペン-1-イル基、4,4-ジクロロ-3-ブテン-1-イル基等の水素原子の一部がハロゲン原子で置換されたアルケニル基が挙げられる。
 Rであるアルキニル基の具体例としては、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ヘプチニル基等の直鎖のアルキニル基、1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基、1-メチル-3-ブチニル基、1-メチル-4-ペンチニル基等の分岐のアルキニル基が挙げられる。
Specific examples of the alkenyl group of R 1 include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 4-pentenyl group, a 5-hexene-1-yl group and the like. Branched alkenyl groups such as linear alkenyl group, 1-propen-2-yl group, 1-buten-2-yl group, 2-methyl-2-propen-1-yl group, 3,3-difluoro-2 -Propen-1-yl group, 4,4-difluoro-3-buten-1-yl group, 3,3-dichloro-2-propen-1-yl group, 4,4-dichloro-3-buten-1- Examples thereof include an alkenyl group in which a part of hydrogen atoms such as an yl group is replaced with a halogen atom.
Specific examples of the alkynyl group of R 1 include linear alkynyl groups such as 2-propynyl group, 2-butynyl group, 3-butynyl group and 4-heptinyl group, 1-methyl-2-propynyl group, 1, Examples thereof include branched alkynyl groups such as 1-dimethyl-2-propynyl group, 1-methyl-3-butynyl group and 1-methyl-4-pentynyl group.
 Rであるアリール基の具体例としては、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,4-ジ-tert-ブチルフェニル基、4-tert-ブチルフェニル基等のアリール基又は2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、パーフルオロフェニル基等の水素原子の一部がハロゲン原子で置換されたアリール基が挙げられる。
 これらの中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ビニル基、2-プロペニル基、又は2-プロピニル基が好ましく、メチル基又はエチル基がより好ましく、エチル基が更に好ましい。
Specific examples of the aryl group of R 1 include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 2,4-di-tert-butylphenyl group, and a 4-tert-butyl. Aryl group such as phenyl group or 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 4 -Fluoro-2-trifluoromethylphenyl group, 4-fluoro-3-trifluoromethylphenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,5-difluorophenyl group, 2,4 , 6-Trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, perfluorophenyl group and other aryl groups in which some hydrogen atoms are replaced with halogen atoms.
Among these, methyl group, ethyl group, n-propyl group, n-butyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, iso-propyl group, iso-butyl group, sec -Butyl group, tert-butyl group, vinyl group, 2-propenyl group, or 2-propynyl group is preferable, methyl group or ethyl group is more preferable, and ethyl group is further preferable.
 前記一般式(I)において、Rは、炭素数1~6のアルキル基、炭素数3~4のアルケニル基、炭素数3~6のアルキニル基及び炭素数6~10のアリール基からなる群より選ばれる有機基が好ましく、炭素数1~5のアルキル基、炭素数2~3のアルケニル基及び炭素数3~4のアルキニル基からなる群より選ばれる有機基がより好ましく、炭素数1~5のアルキル基が更に好ましく、炭素数3~4の分枝鎖を有するアルキル基が更に好ましい。 In the general formula (I), R 2 is a group consisting of an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an alkynyl group having 3 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms. The organic group selected from the above is preferable, and the organic group selected from the group consisting of an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 3 carbon atoms and an alkynyl group having 3 to 4 carbon atoms is more preferable, and an organic group having 1 to 4 carbon atoms is more preferable. An alkyl group of 5 is more preferable, and an alkyl group having a branched chain having 3 to 4 carbon atoms is further preferable.
 Rであるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等の直鎖のアルキル基、iso-プロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、tert-アミル基、2-エチルヘキシル基等の分枝鎖のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フルオロメチル基、ジフルオロメチル基、2-クロロエチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等の水素原子の一部がハロゲン原子で置換されたアルキル基が挙げられる。 Specific examples of the alkyl group is R 2 is a methyl group, an ethyl group, n- propyl group, n- butyl group, n- pentyl group, n- hexyl, n- heptyl, straight such n- octyl group Branched chain alkyl groups such as chain alkyl groups, iso-propyl groups, iso-butyl groups, sec-butyl groups, tert-butyl groups, tert-amyl groups, 2-ethylhexyl groups, cyclopropyl groups, cyclobutyl groups, Cycloalkyl group such as cyclopentyl group and cyclohexyl group, fluoromethyl group, difluoromethyl group, 2-chloroethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3 -Fluoropropyl group, 3-chloropropyl group, 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,3 , 3-Pentafluoropropyl group and other alkyl groups in which part of the hydrogen atom is replaced with a halogen atom.
 Rであるアルケニル基の具体例としては、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセン-1-イル基等の直鎖のアルケニル基、1-プロペン-2-イル基、1-ブテン-2-イル基、2-メチル-2-プロペン-1-イル基、3-ブテン-2-イル基、3-メチル-2-ブテン-1-イル基等の分岐のアルケニル基、3,3-ジフルオロ-2-プロペン-1-イル基、4,4-ジフルオロ-3-ブテン-1-イル基、3,3-ジクロロ-2-プロペン-1-イル基、4,4-ジクロロ-3-ブテン-1-イル基等の水素原子の一部がハロゲン原子で置換されたアルケニル基が挙げられる。
 Rであるアルキニル基の具体例としては、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ヘプチニル基等の直鎖のアルキニル基、1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基、1-メチル-3-ブチニル基、1-メチル-4-ペンチニル基等の分岐のアルキニル基が挙げられる。
Specific examples of the alkenyl group is R 2 are vinyl groups, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 4-pentenyl group, such as 5-hexene-1-yl group Linear alkenyl group, 1-propen-2-yl group, 1-buten-2-yl group, 2-methyl-2-propen-1-yl group, 3-buten-2-yl group, 3-methyl- Branched alkenyl group such as 2-butene-1-yl group, 3,3-difluoro-2-propen-1-yl group, 4,4-difluoro-3-buten-1-yl group, 3,3-dichloro Examples thereof include an alkenyl group in which a part of hydrogen atoms such as -2-propen-1-yl group and 4,4-dichloro-3-butene-1-yl group is replaced with a halogen atom.
Specific examples of the alkynyl group is R 2 is 2-propynyl group, 2-butynyl, 3-butynyl group, 4-heptynyl linear alkynyl group such as a group, 1-methyl-2-propynyl group, 1, Examples thereof include branched alkynyl groups such as 1-dimethyl-2-propynyl group, 1-methyl-3-butynyl group and 1-methyl-4-pentynyl group.
 Rであるアリール基の具体例としては、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,4-ジ-tert-ブチルフェニル基、4-tert-ブチルフェニル基等のアリール基又は2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、パーフルオロフェニル基等の水素原子の一部がハロゲン原子で置換されたアリール基が挙げられる。
 これらの中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、iso-プロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、tert-アミル基、2-プロペニル基又は2-プロピニル基が好ましく、メチル基、エチル基、iso-プロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基又はtert-アミル基がより好ましく、iso-プロピル基、iso-ブチル基、sec-ブチル基又はtert-ブチル基が更に好ましい。
Specific examples of the aryl group is R 2 is a phenyl group, a 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,4-di -tert- butylphenyl group, 4-tert-butyl Aryl group such as phenyl group or 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 4 -Fluoro-2-trifluoromethylphenyl group, 4-fluoro-3-trifluoromethylphenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,5-difluorophenyl group, 2,4 , 6-Trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, perfluorophenyl group and other aryl groups in which some hydrogen atoms are replaced with halogen atoms.
Among these, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, iso-propyl group, iso -Butyl group, sec-butyl group, tert-butyl group, tert-amyl group, 2-propenyl group or 2-propynyl group are preferable, and methyl group, ethyl group, iso-propyl group, iso-butyl group and sec-butyl group are preferable. A group, a tert-butyl group or a tert-amyl group is more preferable, and an iso-propyl group, an iso-butyl group, a sec-butyl group or a tert-butyl group is further preferable.
 前記一般式(I)で表される化合物としては、具体的に以下の化合物が好適に挙げられる。 Specific preferred examples of the compound represented by the general formula (I) include the following compounds.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記好適例の中でも、化合物A1~A16、A19~A49、A51、A57~A61、A63~A77が好ましく、化合物A1~A4、A8、A20~A24、A25~A28、A30~A40、A43~A45、A51、A57、A60~A61、A63~A67がより好ましい。 Among the above preferred examples, compounds A1 to A16, A19 to A49, A51, A57 to A61, A63 to A77 are preferable, and compounds A1 to A4, A8, A20 to A24, A25 to A28, A30 to A40, A43 to A45, A51, A57, A60 to A61, and A63 to A67 are more preferable.
 また、これらの中でも、リチウム メチル メトキシカルボニルホスホネート(化合物A1)、リチウム エチル メトキシカルボニルホスホネート(化合物A2)、リチウム ブチル メトキシカルボニルホスホネート(化合物A4)、リチウム ブチル エトキシカルボニルホスホネート(化合物A8)、リチウム 2-プロペニル メトキシカルボニルホスホネート(化合物A20)、リチウム 2-プロピニル メトキシカルボニルホスホネート(化合物21)、リチウム 3-ブチン-2-イル メトキシカルボニルホスホネート(化合物23)、リチウム 2-メチル-3-ブチン-2-イル メトキシカルボニルホスホネート(化合物24)、リチウム フェニル メトキシカルボニルホスホネート(化合物A25)、リチウム 2,4-ジ-tert-ブチルフェニル メトキシカルボニルホスホネート(化合物A28)、リチウム エチル エトキシカルボニルホスホネート(化合物A30)、リチウム エチル ブトキシカルボニルホスホネート(化合物A32)、リチウム エチル iso-プロポキシカルボニルホスホネート(化合物A35)、リチウム エチル iso-ブトキシカルボニルホスホネート(化合物A36)、リチウム エチル sec-ブトキシカルボニルホスホネート(化合物A37)、リチウム エチル tert-ブトキシカルボニルホスホネート(化合物A38)、リチウム エチル 2,2-ジフルオロエトキシカルボニルホスホネート(化合物A44)、リチウム エチル 2,2,2-トリフルオロエトキシカルボニルホスホネート(化合物A45)、リチウム エチル 2-プロペニルオキシカルボニルホスホネート(化合物A51)、リチウム エチル 2-プロピニルオキシカルボニルホスホネート(化合物A57)、リチウム エチル 3-ブチン-2-イルオキシカルボニルホスホネート(化合物A60)、リチウム エチル 2-メチル-3-ブチン-2-イルオキシカルボニルホスホネート(化合物A61)、リチウム エチル フェニルオキシカルボニルホスホネート(化合物A63)、リチウム エチル 4-tert-ブチルフェニルオキシカルボニルホスホネート(化合物A66)又はリチウム フェニル 4-tert-ブチルフェニルオキシカルボニルホスホネート(化合物A77)が更に好ましく、リチウム エチル メトキシカルボニルホスホネート(化合物A2)、リチウム エチル エトキシカルボニルホスホネート(化合物A30)、リチウム エチル iso-プロポキシカルボニルホスホネート(化合物A35)、リチウム エチル iso-ブトキシカルボニルホスホネート(化合物A36)、リチウム エチル sec-ブトキシカルボニルホスホネート(化合物A37)、及びリチウム エチル tert-ブトキシカルボニルホスホネート(化合物A38)からなる群より選ばれる1種以上が更に好ましい。 Among these, lithium methyl methoxycarbonylphosphonate (Compound A1), lithium ethyl methoxycarbonylphosphonate (Compound A2), lithium butyl methoxycarbonylphosphonate (Compound A4), lithium butyl ethoxycarbonylphosphonate (Compound A8), lithium 2-propenyl. Methoxycarbonylphosphonate (Compound A20), Lithium 2-propynyl methoxycarbonylphosphonate (Compound 21), Lithium 3-butin-2-yl methoxycarbonylphosphonate (Compound 23), Lithium 2-methyl-3-butin-2-yl methoxycarbonyl Phosphonate (Compound 24), Lithium phenyl methoxycarbonylphosphonate (Compound A25), Lithium 2,4-di-tert-butylphenyl methoxycarbonylphosphonate (Compound A28), Lithium ethyl ethoxycarbonylphosphonate (Compound A30), Lithium ethyl butoxycarbonylphosphonate (Compound A32), Lithium ethyl iso-propoxycarbonylphosphonate (Compound A35), Lithium ethyl iso-butoxycarbonylphosphonate (Compound A36), Lithium ethyl sec-Butoxycarbonylphosphonate (Compound A37), Lithium ethyl tert-butoxycarbonylphosphonate (Compound A37) A38), Lithium ethyl 2,2-difluoroethoxycarbonylphosphonate (Compound A44), Lithium ethyl 2,2,2-trifluoroethoxycarbonylphosphonate (Compound A45), Lithium ethyl 2-propenyloxycarbonylphosphonate (Compound A51), Lithium Ethyl 2-propynyloxycarbonylphosphonate (Compound A57), Lithium ethyl 3-butin-2-yloxycarbonylphosphonate (Compound A60), Lithium ethyl 2-methyl-3-butin-2-yloxycarbonylphosphonate (Compound A61), Lithium ethyl phenyloxycarbonylphosphonate (Compound A63), lithium ethyl 4-tert-butylphenyloxycarbonylphosphonate (Compound A66) or lithium phenyl 4-tert-butylphenyloxycarbonylphosphonate (Compound A77) are more preferred, and lithium ethyl methoxy. Carbonylphosphonate (Compound A2), lithium ethyl ethoxycarbonylphosphonate (Compound A30), lithium ethyl iso-propoxycarbonylphosphonate (Compound A35), lithium ethyl iso-butoxycarbonylphosphonate (Compound A36), lithium ethyl sec-butoxycarbonylphosphonate (Compound A36) More preferably, one or more selected from the group consisting of A37) and lithium ethyl tert-butoxycarbonylphosphonate (Compound A38).
 本発明の非水電解液に含まれる他の化合物は、下記一般式(II)で表される。 Other compounds contained in the non-aqueous electrolytic solution of the present invention are represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(II)中、Rは、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる有機基、又はリチウム原子であり、Yは-NH-基又は-O-基を示し、pは、0~1の整数を示し、qは1~4の整数を示し、2≦p+q≦4である。前記有機基は、水素原子の一部がハロゲン原子で置換されていてもよく、式(II)中の環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-I)で表される置換基で置換されていてもよい。) In formula (II), R 3 is a group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms. It is an organic group or a lithium atom selected from the above, Y represents an -NH- group or an -O- group, p represents an integer of 0 to 1, q represents an integer of 1 to 4, and 2 ≦ p + q. ≦ 4. In the organic group, a part of the hydrogen atom may be substituted with a halogen atom, and in the cyclic polar group in the formula (II), a part of the hydrogen atom is a halogen atom and the number of carbon atoms is 1. It may be substituted with an alkyl group of up to 8 or a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (II-I).)
Figure JPOXMLDOC01-appb-C000014

(式中、Rはそれぞれ独立に前記と同義である。*は、環状の極性基に結合する部位を示す。)
Figure JPOXMLDOC01-appb-C000014

(In the formula, R 3 is independently synonymous with the above. * Indicates a site that binds to a cyclic polar group.)
 前記一般式(II)において、Rである炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる有機基の具体例と好適例は、前記Rの具体例と好適例と同じである。より具体的には、Rは、メチル基、エチル基、n-プロピル基、n-ブチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-プロペニル基、2-プロピニル基、フェニル基、又はリチウム原子が好ましく、メチル基、エチル基、2,2,2-トリフルオロエチル基、フェニル基、又はリチウム原子がより好ましい。 In the general formula (II), consisting of aryl group R 3 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and 6 to 12 carbon atoms preferred examples and specific examples of the organic group selected from the group is the same as the specific examples and preferred examples of the R 1. More specifically, R 3 is a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a 2,2-difluoroethyl group, a 2,2,2-trifluoroethyl group, a 2-propenyl group, A 2-propynyl group, a phenyl group, or a lithium atom is preferable, and a methyl group, an ethyl group, a 2,2,2-trifluoroethyl group, a phenyl group, or a lithium atom is more preferable.
 前記一般式(II)で表される化合物としては、具体的に以下の化合物が好適に挙げられる。 Specific examples of the compound represented by the general formula (II) include the following compounds.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記好適例の中でも化合物g1~6、g8~g12、g15~g17、及びg21~g51から選ばれる1種以上が好ましく、化合物g1~g5、g12、g17、g23、g28~g31、g32~g34、g36、g37、g39、g40~g43、及びg44~g51から選ばれる1種以上がより好ましく、リチウム(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g1)、リチウム メチル(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g2)、リチウム エチル(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g3)、リチウム 2,2,2-トリフルオロエチル(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g12)、リチウム フェニル(2,5-ジオキソピロリジン-1-イル)ホスホネート(化合物g23)、及びリチウム エチル(3-メチル-2,5-ジオキソイミダゾリジン-1-イル)ホスホネート(化合物g34)からなる群より選ばれる1種以上が更に好ましい。 Among the above preferred examples, one or more selected from compounds g1 to 6, g8 to g12, g15 to g17, and g21 to g51 are preferable, and compounds g1 to g5, g12, g17, g23, g28 to g31, g32 to g34, One or more selected from g36, g37, g39, g40 to g43, and g44 to g51 are more preferable, lithium (2,5-dioxopyrrolidine-1-yl) phosphonate (compound g1), lithium methyl (2,5). -Dioxopyrrolidine-1-yl) phosphonate (compound g2), lithium ethyl (2,5-dioxopyrrolidine-1-yl) phosphonate (compound g3), lithium 2,2,2-trifluoroethyl (2,5) -Dioxopyrrolidine-1-yl) phosphonate (Compound g12), lithium phenyl (2,5-dioxopyrrolidine-1-yl) phosphonate (Compound g23), and lithium ethyl (3-methyl-2,5-dioxo) More preferably, one or more selected from the group consisting of imidazolidine-1-yl) phosphonate (Compound g34).
 本発明の非水電解液において、非水電解液に含有される前記一般式(I)又は(II)で表される化合物の含有量は、非水電解液中に、非水電解液全量に対して、0.001~2質量%である。該含有量が2質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、初期の抵抗上昇が抑制され、更に高温保存後の電池容量維持率を改善できる。該含有量は、非水電解液中で0.05質量%以上が好ましく、0.1質量%以上がより好ましく、その上限は、1.5質量%以下が好ましく、1.2質量%以下がより好ましい。 In the non-aqueous electrolytic solution of the present invention, the content of the compound represented by the general formula (I) or (II) contained in the non-aqueous electrolytic solution is the total amount of the non-aqueous electrolytic solution in the non-aqueous electrolytic solution. On the other hand, it is 0.001 to 2% by mass. If the content is 2% by mass or less, there is little possibility that an excessive film is formed on the electrode and the low temperature characteristics are deteriorated, and if it is 0.001% by mass or more, the film is sufficiently formed. The increase in resistance is suppressed, and the battery capacity retention rate after high temperature storage can be further improved. The content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and the upper limit thereof is preferably 1.5% by mass or less, preferably 1.2% by mass or less in the non-aqueous electrolytic solution. More preferred.
 本発明の非水電解液は、前記一般式(I)又は(II)で表される化合物に加え、更に下記一般式(III)で表される化合物、下記一般式(IV)で表される化合物、リン酸骨格を有するリチウム塩、及び炭素-炭素三重結合を有するスルホン酸化合物からなる群より選ばれる1種以上を含有することにより、更に高温保存後の電池容量維持率を向上させることができ、加えてガス抑制効果も改善される。 The non-aqueous electrolyte solution of the present invention is represented by the compound represented by the general formula (I) or (II), the compound represented by the following general formula (III), and the compound represented by the following general formula (IV). By containing one or more selected from the group consisting of a compound, a lithium salt having a phosphoric acid skeleton, and a sulfonic acid compound having a carbon-carbon triple bond, the battery capacity retention rate after high temperature storage can be further improved. In addition, the gas suppression effect is improved.
Figure JPOXMLDOC01-appb-C000020

(式(III)中、R及びRは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し、RとRは互いに結合し環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000020

(In formula (III), R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 4 and R 5 may be bonded to each other to form a ring. )
Figure JPOXMLDOC01-appb-C000021

(式(IV)中、Lは、エチレン基又はエテニレン基を示し、Rは、炭素数1~3のアルキル基又は炭素数2~3のアルケニル基を示す。)
Figure JPOXMLDOC01-appb-C000021

(In formula (IV), L represents an ethylene group or an ethenylene group, and R 6 represents an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 2 to 3 carbon atoms.)
 前記一般式(III)において、R及びRはそれぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し、水素原子又は炭素数1~4のアルキル基が好ましく、水素原子又は炭素数1~2のアルキル基がより好ましい。 In the general formula (III), R 4 and R 5 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable, and a hydrogen atom or an alkyl group has 1 to 4 carbon atoms. Alkyl groups of numbers 1 to 2 are more preferable.
 前記R及びRの具体例としては、水素原子、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基又はiso-プロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基等の分枝のアルキル基が挙げられ、水素原子、メチル基、エチル基、n-プロピル基又はn-ブチル基が好ましく、水素原子、メチル基又はエチル基がより好ましく、水素原子が更に好ましい。 Specific examples of R 4 and R 5 include linear alkyl groups such as hydrogen atom, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group, or iso-. Branched alkyl groups such as propyl group, iso-butyl group, sec-butyl group and tert-butyl group can be mentioned, and hydrogen atom, methyl group, ethyl group, n-propyl group or n-butyl group are preferable, and hydrogen Atomic, methyl or ethyl groups are more preferred, and hydrogen atoms are even more preferred.
 また、R及びRが互いに結合し環を形成する場合の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基又はシクロオクチル基が挙げられ、シクロペンチル基又はシクロヘキシル基がより好ましい。 Specific examples of the case where R 4 and R 5 are bonded to each other to form a ring include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group or a cyclooctyl group, and a cyclopentyl group or a cyclohexyl. Groups are more preferred.
 前記一般式(IV)において、Rの具体例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基等のアルキル基、ビニル基、1-プロペニル基、2-プロペニル基等のアルケニル基が挙げられ、メチル基、ビニル基又は2-プロペニル基が好ましい。 Wherein In the formula (IV), specific examples of R 6 include methyl group, ethyl group, n- propyl group, an alkyl group such as iso- propyl group, a vinyl group, 1-propenyl group, and 2-propenyl group Examples thereof include an alkenyl group, and a methyl group, a vinyl group or a 2-propenyl group is preferable.
 前記一般式(III)又は(IV)で表される化合物としては、具体的に以下の化合物が好適に挙げられる。 Specific examples of the compound represented by the general formula (III) or (IV) include the following compounds.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記好適例の中でも、化合物B1~B3、B12、B13、B16、B17、B18、B20、B21、B22が好ましく、1,3,2-ジオキサチオラン-2,2-ジオキシド(化合物B1)、4-メチル-1,3,2-ジオキサチオラン-2,2-ジオキシド(化合物B2)、テトラヒドロ-4H-シクロペンタ[d][1,3,2]ジオキサチオール2,2-ジオキシド(化合物B16)、1,1-ジオキシドテトラヒドロチオフェン-3-イル メタンスルホネート(化合物B18)、1,1-ジオキシドテトラヒドロチオフェン-3-イル エテンスルホネート(化合物B20)、1,1-ジオキシドテトラヒドロチオフェン-3-イル 2-プロペン-1-スルホネート(化合物B21)、及び1,1-ジオキシド-2,3-ジヒドロチオフェン-3-イル メタンスルホネート(化合物B22)からなる群より選ばれる1種以上がより好ましく、1,3,2-ジオキサチオラン-2,2-ジオキシド(化合物B1)、1,1-ジオキシドテトラヒドロチオフェン-3-イル メタンスルホネート(化合物B18)、1,1-ジオキシドテトラヒドロチオフェン-3-イル エテンスルホネート(化合物B20)、及び1,1-ジオキシド-2,3-ジヒドロチオフェン-3-イル メタンスルホネート(化合物B22)からなる群より選ばれる1種以上が更に好ましい。 Among the above preferred examples, compounds B1 to B3, B12, B13, B16, B17, B18, B20, B21 and B22 are preferable, and 1,3,2-dioxathiolane-2,2-dioxide (compound B1) and 4-methyl -1,3,2-dioxathiolane-2,2-dioxide (Compound B2), Tetrahydro-4H-Cyclopenta [d] [1,3,2] Dioxathiol 2,2-dioxide (Compound B16), 1,1 -Dioxide tetrahydrothiophene-3-yl methanesulfonate (Compound B18), 1,1-dioxide tetrahydrothiophene-3-yl ethenesulfonate (Compound B20), 1,1-dioxide tetrahydrothiophene-3-yl 2-propen One or more selected from the group consisting of -1-sulfonate (Compound B21) and 1,1-dioxide-2,3-dihydrothiophene-3-yl methanesulfonate (Compound B22) is more preferable, 1,3,2. -Dioxathiolane-2,2-dioxide (Compound B1), 1,1-dioxide tetrahydrothiophene-3-yl methanesulfonate (Compound B18), 1,1-dioxide tetrahydrothiophene-3-yl ethensulfonate (Compound B20) , And 1,1-dioxide-2,3-dihydrothiophene-3-yl methanesulfonate (Compound B22) are more preferably one or more selected from the group.
 リン酸骨格を有するリチウム塩としては、ジフルオロリン酸リチウム(LiPO)、及びフルオロリン酸リチウム(LiPOF)から選ばれる一種以上が好適に挙げられ、中でもLiPOが好ましい。
 炭素-炭素三重結合を有するスルホン酸化合物としては、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、ビニルスルホン酸1,1-ジメチル-2-プロピニル及び2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる一種以上が好適に挙げられ、中でもメタンスルホン酸 2-プロピニル、及びビニルスルホン酸 2-プロピニルから選ばれる一種以上が好ましい。
As the lithium salt having a phosphoric acid skeleton, one or more selected from lithium difluorophosphate (LiPO 2 F 2 ) and lithium fluorophosphate (Li 2 PO 3 F) are preferably mentioned, and among them, LiPO 2 F 2 is preferable. preferable.
Examples of the sulfonic acid compound having a carbon-carbon triple bond include methanesulfonic acid 2-propynyl, vinyl sulfonic acid 2-propynyl, vinyl sulfonic acid 1,1-dimethyl-2-propynyl and 2-butin-1,4-diyldi. One or more selected from methanesulfonate are preferably mentioned, and among them, one or more selected from 2-propynyl methanesulfonic acid and 2-propynyl vinyl sulfonic acid are preferable.
 本発明の非水電解液において、非水電解液に含有される前記一般式(III)で表される化合物、前記一般式(IV)で表される化合物、リン酸骨格を有するリチウム塩、及び炭素-炭素三重結合を有するスルホン酸化合物からなる群より選ばれる1種以上のそれぞれの化合物の含有量は、非水電解液全量に対して、0.001~10質量%であることが好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成されるおそれが少なく、また0.001質量%以上であれば被膜の強度が高まるので上記範囲であることが好ましい。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下がより好ましい。 In the non-aqueous electrolytic solution of the present invention, the compound represented by the general formula (III), the compound represented by the general formula (IV), the lithium salt having a phosphoric acid skeleton, and the compound contained in the non-aqueous electrolytic solution. The content of each of one or more compounds selected from the group consisting of sulfonic acid compounds having a carbon-carbon triple bond is preferably 0.001 to 10% by mass with respect to the total amount of the non-aqueous electrolytic solution. If the content is 10% by mass or less, there is little possibility that an excessive film is formed on the electrode, and if it is 0.001% by mass or more, the strength of the film is increased, so the above range is preferable. The content is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 5% by mass or less in the non-aqueous electrolytic solution.
 本発明の非水電解液において、前記一般式(I)又は(II)で表される化合物と、前記一般式(III)で表される化合物、前記一般式(IV)で表される化合物、リン酸骨格を有するリチウム塩、及び炭素-炭素三重結合を有するスルホン酸化合物からなる群より選ばれる1種以上を以下に述べる非水溶媒、電解質塩、更にその他の添加剤と組み合わせることにより、高温保存後の電池容量維持率とガス抑制効果がより向上する。 In the non-aqueous electrolyte solution of the present invention, the compound represented by the general formula (I) or (II), the compound represented by the general formula (III), and the compound represented by the general formula (IV). High temperature by combining one or more selected from the group consisting of a lithium salt having a phosphoric acid skeleton and a sulfonic acid compound having a carbon-carbon triple bond with a non-aqueous solvent, an electrolyte salt, and other additives described below. The battery capacity retention rate and gas suppression effect after storage are further improved.
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、及びアミドから選ばれる1種又は2種以上が好適に挙げられる。広い温度範囲で電気化学特性が相乗的に向上するため、鎖状エステルが含まれることが好ましく、鎖状カーボネートが含まれることがより好ましく、環状カーボネートと鎖状カーボネートの両方が含まれることが更に好ましい。
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
[Non-aqueous solvent]
As the non-aqueous solvent used in the non-aqueous electrolytic solution of the present invention, one or more selected from cyclic carbonates, chain esters, lactones, ethers, and amides are preferably used. Since the electrochemical properties are synergistically improved over a wide temperature range, it is preferable that a chain ester is contained, more preferably a chain carbonate is contained, and further that both a cyclic carbonate and a chain carbonate are contained. preferable.
The term "chain ester" is used as a concept including a chain carbonate and a chain carboxylic acid ester.
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランスもしくはシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上が挙げられ、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上がより好適である。 Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolane-2-one (FEC), trans or Sis-4,5-difluoro-1,3-dioxolane-2-one (hereinafter, both are collectively referred to as "DFEC"), vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1. , 3-Dioxolane-2-one (EEC), one or more, ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolane-2-one, vinylene carbonate and 4-ethynyl- One or more selected from 1,3-dioxolane-2-one (EEC) is more preferable.
 前記環状カーボネートの含有量は、非水電解液全量に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、また、その上限は、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下、更に好ましくは40質量%以下であると、Liイオン透過性を損なうことなく一段と高温保存後の電池容量維持率とガス抑制効果が高まるので好ましい。 The content of the cyclic carbonate is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and the upper limit thereof is preferably 5% by mass or more, based on the total amount of the non-aqueous electrolyte solution. When it is 90% by mass or less, more preferably 70% by mass or less, further preferably 50% by mass or less, still more preferably 40% by mass or less, the battery capacity retention rate after storage at a higher temperature is further increased without impairing Li ion permeability. This is preferable because the gas suppression effect is enhanced.
 また、前記炭素-炭素二重結合又は炭素-炭素三重結合の不飽和結合、又はフッ素原子を有する環状カーボネートのうち少なくとも1種を使用すると高温保存後の電池容量維持率とガス抑制効果が高まるので好ましく、炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を含む環状カーボネートと、フッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC、又はEECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC又はDFECが更に好ましい。 Further, if at least one of the carbon-carbon double bond, the unsaturated bond of the carbon-carbon triple bond, or the cyclic carbonate having a fluorine atom is used, the battery capacity retention rate and the gas suppression effect after high temperature storage are enhanced. It is more preferable to contain both a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom. The cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond is more preferably VC, VEC or EEC, and the cyclic carbonate having a fluorine atom is further preferably FEC or DFEC.
 炭素-炭素二重結合又は炭素-炭素三重結合の不飽和結合を有する環状カーボネートの含有量は、非水電解液全量に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上であり、また、その上限は、好ましくは8質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下であると、Liイオン透過性を損なうことなく一段と高温保存後の電池容量維持率とガス抑制効果が高まるので好ましい。 The content of the cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond unsaturated bond is preferably 0.05% by mass or more, more preferably 0.1% by mass, based on the total amount of the non-aqueous electrolyte solution. % Or more, more preferably 0.5% by mass or more, and the upper limit thereof is preferably 8% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and Li ion permeation. It is preferable because the battery capacity retention rate and the gas suppression effect after high-temperature storage are further enhanced without impairing the properties.
 フッ素原子を有する環状カーボネートの含有量は、非水電解液全量に対して好ましくは0.05質量%以上、より好ましくは1質量%以上、更に好ましくは3質量%以上であり、また、その上限は、好ましくは40質量%以下、より好ましくは30質量%以下、更に20質量%以下であり、更に好ましくは15質量%以下であると、Liイオン透過性を損なうことなく一段と高温保存後の電池容量維持率とガス抑制効果が高まるので好ましい。 The content of the cyclic carbonate having a fluorine atom is preferably 0.05% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more, and the upper limit thereof, based on the total amount of the non-aqueous electrolyte solution. Is preferably 40% by mass or less, more preferably 30% by mass or less, further preferably 20% by mass or less, and further preferably 15% by mass or less, the battery after storage at a higher temperature without impairing Li ion permeability. It is preferable because the capacity retention rate and the gas suppression effect are enhanced.
 これらの溶媒は一種類で使用してもよく、また二種類以上を組み合わせて使用した場合は、広い温度範囲での電気化学特性の改善効果が更に向上するので好ましく、3種類以上を組み合わせて使用することが特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、VCとEEC、ECとEEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、又はECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、又はECとPCとVCとFEC等の組合せがより好ましい。 One type of these solvents may be used, and when two or more types are used in combination, the effect of improving the electrochemical properties in a wide temperature range is further improved, so that it is preferable to use three or more types in combination. It is particularly preferable to do so. Suitable combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC. , VEC and DFEC, VC and EEC, EC and EEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, EC and VC and EEC, EC and EEC and FEC, PC And VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC and PC and VC and FEC, or EC and PC and VC and DFEC are preferable. Of the above combinations, EC and VC, EC and FEC, PC and FEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and EEC, EC and EEC and FEC, PC and A combination of VC and FEC, or EC and PC and VC and FEC is more preferable.
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる1種又は2種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる1種又は2種以上の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酢酸メチル、及び酢酸エチル(EA)から選ばれる1種又は2種以上の鎖状カルボン酸エステルが好適に挙げられる。 Examples of the chain ester include one or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate. One or more symmetrical chain carbonates selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and dibutyl carbonate, pivalic acid esters such as methyl pivalate, ethyl pivalate, and propyl pivalate. , One or more chain carboxylic acid esters selected from methyl propionate, ethyl propionate, propyl propionate, methyl acetate, and ethyl acetate (EA) are preferred.
 前記鎖状エステルの中でも、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチル(EA)から選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。 Among the chain esters, a chain ester having a methyl group selected from dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate and ethyl acetate (EA) is preferable. In particular, a chain carbonate having a methyl group is preferable.
 また、鎖状カーボネートを用いる場合には、2種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。 When using chain carbonate, it is preferable to use two or more. Further, it is more preferable that both the symmetric chain carbonate and the asymmetric chain carbonate are contained, and it is further preferable that the content of the symmetric chain carbonate is higher than that of the asymmetric chain carbonate.
 本発明の非水電解液に用いる非水溶媒における鎖状エステルの含有量は、特に制限されないが、非水電解液全量に対して、5~90質量%の範囲で用いるのが好ましい。該含有量が5質量%以上であれば非水電解液の粘度が高くなりすぎず、より好ましくは10質量%以上、更に好ましくは30質量%以上、更に好ましくは50質量%以上であり、また、好ましくは90質量%以下、より好ましくは85質量%以下であれば非水電解液の電気伝導度が低下してサイクル特性が低下するおそれが少ないので上記範囲であることが好ましい。 The content of the chain ester in the non-aqueous solvent used in the non-aqueous electrolytic solution of the present invention is not particularly limited, but it is preferably used in the range of 5 to 90% by mass with respect to the total amount of the non-aqueous electrolytic solution. When the content is 5% by mass or more, the viscosity of the non-aqueous electrolytic solution does not become too high, more preferably 10% by mass or more, further preferably 30% by mass or more, still more preferably 50% by mass or more, and further. If it is preferably 90% by mass or less, more preferably 85% by mass or less, the electric conductivity of the non-aqueous electrolytic solution is less likely to decrease and the cycle characteristics are less likely to decrease, so the above range is preferable.
 環状カーボネートと鎖状エステルの割合は、高温下での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(質量比)が10:90~50:50が好ましく、30:70~40:60がより好ましい。 The ratio of the cyclic carbonate to the chain ester is preferably 10:90 to 50:50, preferably 30:70 to 40:60, from the viewpoint of improving the electrochemical properties at high temperature. Is more preferable.
 その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン及び1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド及びスルホラン等のスルホン、並びにγ-ブチロラクトン(GBL)、γ-バレロラクトン及びα-アンゲリカラクトン等のラクトンから選ばれる1種又は2種以上が好適に挙げられる。 Other non-aqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane, chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane. One or more selected from amides such as ether, dimethylformamide and sulfones such as sulfolane, and lactones such as γ-butyrolactone (GBL), γ-valerolactone and α-angelica lactone are preferably mentioned.
 上記その他の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状エステルとラクトンとの組合せ又は環状カーボネートと鎖状エステルとエーテルとの組合せ等が好適に挙げられ、環状カーボネートと鎖状エステルとラクトンとの組合せがより好ましく、ラクトンの中でもγ-ブチロラクトン(GBL)を用いると更に好ましい。 The other non-aqueous solvents mentioned above are usually mixed and used in order to achieve appropriate physical characteristics. The combination is preferably a combination of a cyclic carbonate, a chain ester and a lactone, a combination of a cyclic carbonate, a chain ester and an ether, and the like, and a combination of a cyclic carbonate, a chain ester and a lactone is more preferable. Among the lactones, it is more preferable to use γ-butyrolactone (GBL).
 その他の非水溶媒の含有量は、非水電解液全量に対して、通常1質量%以上が好ましく、より好ましくは2質量%以上であり、また通常40質量%以下が好ましく、より好ましくは30質量%以下、更に好ましくは20質量%以下である。当該濃度範囲中であれば電気伝導度が低下することや、溶媒の分解による高温充電保存特性が低下するおそれが少ない。 The content of the other non-aqueous solvent is usually preferably 1% by mass or more, more preferably 2% by mass or more, and usually 40% by mass or less, more preferably 30% by mass, based on the total amount of the non-aqueous electrolyte solution. It is mass% or less, more preferably 20 mass% or less. Within the concentration range, there is little possibility that the electrical conductivity will decrease and the high-temperature charge storage characteristics will decrease due to the decomposition of the solvent.
 一段と高温充電保存特性を向上させ、ガス発生を抑制する目的で、非水電解液中にさらにその他の添加剤を加えることが好ましい。
 その他の添加剤の具体例としては、以下の(A)~(J)の化合物が挙げられる。
It is preferable to add other additives to the non-aqueous electrolytic solution for the purpose of further improving the high temperature charge storage characteristics and suppressing gas generation.
Specific examples of other additives include the following compounds (A) to (J).
 (A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリルから選ばれる1種又は2種以上のニトリル。 (A) One or more nitriles selected from acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, and sebaconitrile.
 (B)シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼンもしくは1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物又はビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、メチルフェニルカーボネート、エチルフェニルカーボネートもしくはジフェニルカーボネート等の芳香族化合物。 (B) Aromatic compounds having a branched alkyl group such as cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene or 1-fluoro-4-tert-butylbenzene, or biphenyl, terphenyl (o-, m-, p). -Body), aromatic compounds such as fluorobenzene, methylphenyl carbonate, ethylphenyl carbonate or diphenyl carbonate.
 (C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート及び2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上のイソシアネート化合物。 (C) Selected from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenylisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylenediocyanate, 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate. One or more isocyanate compounds.
 (D)2-プロピニル メチル カーボネート、酢酸 2-プロピニル、ギ酸 2-プロピニル、メタクリル酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート及び2-ブチン-1,4-ジイル ジホルメートから選ばれる1種又は2種以上のスルホン酸化合物以外の炭素-炭素三重結合含有化合物。 (D) 2-propynyl methyl carbonate, 2-propynyl acetate, 2-propynyl formate, 2-propynyl methacrylate, 2-propynyl 2- (methanesulfonyloxy) propionate, di (2-propynyl) oxalate and 2-butin- A carbon-carbon triple bond-containing compound other than one or more sulfonic acid compounds selected from 1,4-diyl diformate.
 (E)1,3-プロパンスルトン(PS)、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトンもしくは2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート等のスルトン、エチレンサルファイト等の環状サルファイト、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、メチレンメタンジスルホネート等のスルホン酸エステル、及びジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、ビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物から選ばれる1種又は2種以上のS=O基含有化合物(三重結合含有化合物及び前記一般式のいずれかで表される特定の化合物は含まない)。 (E) 1,3-Propane sultone (PS), 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propensultone or 2,2-dioxide-1,2-oxathiolane- Sultone such as 4-yl acetate, cyclic sulfite such as ethylene sulfide, sulfonic acid ester such as butane-2,3-diyl dimethanesulfonate, butane-1,4-diyl dimethanesulfonate, methylenemethanedisulfonate, and One or more S = O group-containing compounds (triple bond-containing compounds and triple bond-containing compounds) selected from vinyl sulfon compounds such as divinyl sulfone, 1,2-bis (vinylsulfonyl) ethane, and bis (2-vinylsulfonylethyl) ether. Does not include specific compounds represented by any of the above general formulas).
 (F)1,3-ジオキソラン、1,3-ジオキサン、1,3,5-トリオキサン等の分子内に「アセタール基」を有する環状アセタール化合物。 (F) A cyclic acetal compound having an "acetal group" in the molecule, such as 1,3-dioxolane, 1,3-dioxane, and 1,3,5-trioxane.
 (G)リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、エチル 2-(ジエトキシホスホリル)アセテート及び2-プロピニル 2-(ジエトキシホスホリル)アセテートから選ばれる1種又は2種以上のリン含有化合物(リン酸骨格を有するリチウム塩は含まない)。 (G) Trimethyl phosphate, tributyl phosphate, trioctyl phosphate, tris phosphate (2,2,2-trifluoroethyl), ethyl 2- (diethoxyphosphoryl) acetate and 2-propynyl 2- (diethoxyphosphoryl) One or more phosphorus-containing compounds selected from acetate (excluding lithium salts having a phosphoric acid skeleton).
 (H)無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、3-スルホ-プロピオン酸無水物等の分子内に「C(=O)-O-C(=O)基」または「S(=O)-O-C(=O)基」を有する環状酸無水物。 (H) Chain carboxylic acid anhydrides such as acetic anhydride and propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, 3-sulfo-propionic anhydride Cyclic acid anhydride having "C (= O) -OC (= O) group" or "S (= O) 2- OC (= O) group" in the molecule such as.
 (J)メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン又はエトキシヘプタフルオロシクロテトラホスファゼン等の分子内に「N=P-N基」を有する環状ホスファゼン化合物。 (J) Cyclic phosphazene compound having an "N = PN group" in the molecule such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene or ethoxyheptafluorocyclotetraphosphazene.
 上記の中でも、(A)ニトリル、(B)芳香族化合物及び(C)イソシアネート化合物から選ばれる少なくとも1種以上を含むと一段と高温での電気化学特性が向上するので好ましい。 Among the above, it is preferable to include at least one selected from (A) nitrile, (B) aromatic compound and (C) isocyanate compound because the electrochemical properties at high temperature are further improved.
 (A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルから選ばれる1種又は2種以上がより好ましい。 Among the (A) nitriles, one or more selected from succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
 (B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン及びtert-アミルベンゼンから選ばれる1種又は2種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン及びtert-アミルベンゼンから選ばれる1種又は2種以上が特に好ましい。 (B) Among aromatic compounds, one or more selected from biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene and tert-amylbenzene. Is more preferable, and one or more selected from biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene and tert-amylbenzene are particularly preferable.
 (C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート及び2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上がより好ましい。 Among the (C) isocyanate compounds, one or more selected from hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate are more preferable.
 前記(A)~(C)のそれぞれの化合物の含有量は、非水電解液全量に対して0.01~7質量%であることが好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、高温充電保存特性を向上させることができ、ガス発生を抑制できる。該含有量は、非水電解液全量に対して0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。 The content of each of the compounds (A) to (C) is preferably 0.01 to 7% by mass with respect to the total amount of the non-aqueous electrolyte solution. In this range, the film is sufficiently formed without becoming too thick, the high temperature charge storage characteristic can be improved, and gas generation can be suppressed. The content is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 5% by mass or less, and 3% by mass or less, based on the total amount of the non-aqueous electrolyte solution. More preferred.
 また、(D)スルホン酸化合物以外の炭素-炭素三重結合含有化合物、(E)S=O基含有化合物、(F)環状アセタール化合物、(G)リン含有化合物、(H)環状酸無水物及び(J)環状ホスファゼン化合物から選ばれる少なくとも1種以上を含むと高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。 In addition, carbon-carbon triple bond-containing compounds other than (D) sulfonic acid compounds, (E) S = O group-containing compounds, (F) cyclic acetal compounds, (G) phosphorus-containing compounds, (H) cyclic acid anhydrides and (J) It is preferable that at least one selected from the cyclic phosphazene compounds is contained because the high temperature charge storage property can be improved and gas generation can be suppressed.
 (D)スルホン酸化合物以外の炭素-炭素三重結合含有化合物としては、2-プロピニル メチル カーボネート、メタクリル酸 2-プロピニル、及びジ(2-プロピニル)オギザレートから選ばれる1種又は2種以上が好ましく、ジ(2-プロピニル)オギザレートがより好ましい。 As the carbon-carbon triple bond-containing compound other than the (D) sulfonic acid compound, one or more selected from 2-propynyl methyl carbonate, 2-propynyl methacrylate, and di (2-propynyl) oxalate is preferable. Di (2-propynyl) oxide is more preferred.
 (E)S=O基含有化合物としては、スルトン、環状サルファイト、スルホン酸エステル、及びビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物が好ましい。 As the (E) S = O group-containing compound, a cyclic or chain S = O group-containing compound selected from sultone, cyclic sulfite, sulfonic acid ester, and vinyl sulfone is preferable.
 前記環状のS=O基含有化合物としては、1,3-プロパンスルトン(PS)、1,3-ブタンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、メチレン メタンジスルホネート及びエチレンサルファイトから選ばれる1種又は2種以上が好適に挙げられる。
 また、鎖状のS=O基含有化合物としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホン及びビス(2-ビニルスルホニルエチル)エーテルから選ばれる1種又は2種以上が好適に挙げられる。
Examples of the cyclic S = O group-containing compound include 1,3-propane sultone (PS), 1,3-butane sultone, 1,4-butane sultone, 2,4-butane sultone, 1,3-propensultone, and 2,2. -Dioxide-1,2-oxathiolane-4-yl acetate, methylene methanedisulfonate, and one or more selected from ethylene sulphite are preferably used.
Examples of the chain S = O group-containing compound include butane-2,3-diyldimethanesulfonate, butane-1,4-diyldimethanesulfonate, dimethylmethanedisulfonate, pentafluorophenylmethanesulfonate, divinylsulfone and the like. One or more selected from bis (2-vinylsulfonylethyl) ether is preferably used.
 前記環状又は鎖状のS=O基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、ペンタフルオロフェニル メタンスルホネート及びジビニルスルホンから選ばれる1種又は2種以上が更に好ましい。 Among the cyclic or chain S = O group-containing compounds, 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolan-4-yl acetate. , Pentafluorophenyl methanesulfonate and one or more selected from divinyl sulfone are more preferable.
 (F)環状アセタール化合物としては、1,3-ジオキソラン又は1,3-ジオキサンが好ましく、1,3-ジオキサンが更に好ましい。 As the (F) cyclic acetal compound, 1,3-dioxolane or 1,3-dioxane is preferable, and 1,3-dioxane is more preferable.
 (G)リン含有化合物としては、エチル 2-(ジエトキシホスホリル)アセテート又は2-プロピニル 2-(ジエトキシホスホリル)アセテートが好ましく、2-プロピニル 2-(ジエトキシホスホリル)アセテートが更に好ましい。 As the (G) phosphorus-containing compound, ethyl 2- (diethoxyphosphoryl) acetate or 2-propynyl 2- (diethoxyphosphoryl) acetate is preferable, and 2-propynyl 2- (diethoxyphosphoryl) acetate is more preferable.
 (H)環状酸無水物としては、無水コハク酸、無水マレイン酸又は3-アリル無水コハク酸が好ましく、無水コハク酸又は3-アリル無水コハク酸が更に好ましい。 As the (H) cyclic acid anhydride, succinic anhydride, maleic anhydride or 3-allyl succinic anhydride is preferable, and succinic anhydride or 3-allyl succinic anhydride is more preferable.
 (J)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン又はフェノキシペンタフルオロシクロトリホスファゼン等の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン又はエトキシペンタフルオロシクロトリホスファゼンが更に好ましい。
 また、高温充電保存特性を向上させ、ガス発生を抑制する目的で、非水電解液中にビニレンカーボネート(VC)を添加剤として加えることも好ましい。
As the cyclic phosphazene compound (J), cyclic phosphazene compounds such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene or phenoxypentafluorocyclotriphosphazene are preferable, and methoxypentafluorocyclotriphosphazene or ethoxypentafluorocyclotriphosphazene Is more preferable.
It is also preferable to add vinylene carbonate (VC) as an additive to the non-aqueous electrolytic solution for the purpose of improving the high temperature charge storage property and suppressing gas generation.
 前記(D)~(J)の化合物及びVCのそれぞれの含有量は、非水電解液全量に対して0.001~5質量%であることが好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と高温充電保存特性を向上させることができ、ガス発生を抑制できる。該含有量は、非水電解液全量に対して0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、非水電解液全量に対して3質量%以下が好ましく、2質量%以下がより好ましい。 The content of each of the compounds (D) to (J) and VC is preferably 0.001 to 5% by mass with respect to the total amount of the non-aqueous electrolytic solution. In this range, the film is sufficiently formed without becoming too thick, the high temperature charge storage characteristic can be further improved, and gas generation can be suppressed. The content is more preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the non-aqueous electrolyte solution, and the upper limit thereof is 3% by mass or less based on the total amount of the non-aqueous electrolyte solution. Preferably, it is 2% by mass or less, more preferably.
 また、一段と高温での電気化学特性を向上させる目的で、非水電解液中にさらに、シュウ酸骨格を有するリチウム塩、及びS=O基を有するリチウム塩の中から選ばれる1種以上のリチウム塩を含むことが好ましい。
 前記リチウム塩の具体例としては、リチウム ビス(オキサラト)ボレート〔LiBOB〕、リチウム ジフルオロ(オキサラト)ボレート〔LiDFOB〕、リチウム テトラフルオロ(オキサラト)ホスフェート〔LiTFOP〕及びリチウム ジフルオロビス(オキサラト)ホスフェート〔LiDFOP〕から選ばれる少なくとも1種のシュウ酸骨格を有するリチウム塩、又はリチウム トリフルオロ((メタンスルホニル)オキシ)ボレート〔LiTFMSB〕、リチウム ペンタフルオロ((メタンスルホニル)オキシ)ホスフェート〔LiPFMSP〕、リチウム メチルサルフェート〔LMS〕、リチウムエチルサルフェート〔LES〕、リチウム 2,2,2-トリフルオロエチルサルフェート〔LFES〕及びFSOLiから選ばれる1種以上のS=O基を有するリチウム塩が好適に挙げられ、LiBOB、LiDFOB、LiTFOP、LiDFOP、LiTFMSB、LMS、LES、LFES及びFSOLiから選ばれる1種以上のリチウム塩を含むことがより好ましい。
Further, for the purpose of further improving the electrochemical properties at high temperatures, one or more lithium salts selected from a lithium salt having a oxalic acid skeleton and a lithium salt having an S = O group are further added to the non-aqueous electrolytic solution. It preferably contains salt.
Specific examples of the lithium salt include lithium bis (oxalat) borate [LiBOB], lithium difluoro (oxalat) borate [LiDFOB], lithium tetrafluoro (oxalat) phosphate [LiTFOP], and lithium difluorobis (oxalat) phosphate [LiDFOP]. Lithium salt having at least one oxalate skeleton selected from, or lithium trifluoro ((methanesulfonyl) oxy) borate [LiTFMSB], lithium pentafluoro ((methanesulfonyl) oxy) phosphate [LiPFMSP], lithium methyl sulfate [ LMS], lithium ethyl sulfate [LES], lithium 2,2,2-trifluoroethyl sulfate [LFES] and lithium salt having one or more S = O groups selected from FSO 3 Li are preferably mentioned, and LiBOB is preferable. , LiDFOB, LiTFOP, LiDFOP, LiTFMSB, LMS, LES, LFES and one or more lithium salts selected from FSO 3 Li.
 前記リチウム塩が非水電解液中に占めるそれぞれの割合は、非水電解液全量に対して0.01質量%以上8質量%以下である場合が好ましい。この範囲にあると一段と高温充電保存特性を向上させることができ、ガス発生を抑制できる。好ましくは非水電解液全量に対して0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.4質量%以上であり、その上限は、好ましくは非水電解液全量に対して6質量%以下、より好ましくは3質量%以下である。 The ratio of each of the lithium salts in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 8% by mass or less with respect to the total amount of the non-aqueous electrolytic solution. Within this range, the high temperature charge storage characteristics can be further improved, and gas generation can be suppressed. It is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.4% by mass or more with respect to the total amount of the non-aqueous electrolyte solution, and the upper limit thereof is preferably the total amount of the non-aqueous electrolyte solution. It is 6% by mass or less, more preferably 3% by mass or less.
(電解質塩)
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
 前記リチウム塩の具体例としては、LiPF、LiBF、LiClO等の無機リチウム塩、LiN(SOF)〔LiFSI〕、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C7、LiPF(iso-C)等の鎖状のフッ化アルキル基を含有するリチウム塩、又は(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を有するリチウム塩等が好適に挙げられ、これらの中から選ばれる少なくとも1種のリチウム塩が好適に挙げられ、これらの1種又は2種以上を混合して使用することができる。
 これらの中でも、LiPF、LiBF、LiN(SOCF、LiN(SO及びLiN(SOF)〔LiFSI〕から選ばれる1種又は2種以上が好ましく、LiPFを用いることがより好ましい。
 これらの電解質塩の好適な組み合わせとしては、LiPFを含み、更にLiBF、LiN(SOCF及びLiN(SOF)〔LiFSI〕から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましく、LiPFを含み更にLiFSIを含む組み合わせがより好ましい。
(Electrolyte salt)
Preferred examples of the electrolyte salt used in the present invention include the following lithium salts.
Specific examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 , LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F). 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C) Lithium salt containing a chain-like alkyl fluoride group such as 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ), or (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 ( SO 2 ) Lithium salts having a cyclic fluorinated alkylene chain such as 2 NLi are preferably mentioned, and at least one lithium salt selected from these is preferably mentioned, and one or more of these are preferably mentioned. Can be mixed and used.
Among these, one or more selected from LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 F) 2 [LiFSI] Preferably, LiPF 6 is more preferably used.
Suitable combinations of these electrolyte salts include LiPF 6 , and at least one lithium salt selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 F) 2 [LiFSI] is non-existent. It is preferably contained in the water electrolyte, and a combination containing LiPF 6 and further containing LiFSI is more preferable.
 電解質塩のそれぞれの濃度は、前記の非水電解液全量に対して、通常4質量%以上であり、9質量%以上が好ましく、13質量%以上がより好ましい。またその上限は、非水電解液全量に対して28質量%以下が好ましく、23質量%以下がより好ましく、20質量%以下が更に好ましい。
 LiPF以外のリチウム塩が非水電解液全量に占めるそれぞれの割合は、0.01質量%以上であると、高温充電保存特性を向上させると共に、ガス発生の抑制効果も高まる。また、非水電解液全量に対して20質量%以下であると高温充電保存特性が低下する懸念が少ないので好ましい。前記割合は、非水電解液全量に対して、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上、更に好ましくは0.6質量%以上であり、その上限は、好ましくは11質量%以下、より好ましくは9質量%以下、更に好ましくは6質量%以下である。
The concentration of each of the electrolyte salts is usually 4% by mass or more, preferably 9% by mass or more, and more preferably 13% by mass or more, based on the total amount of the non-aqueous electrolyte solution. The upper limit thereof is preferably 28% by mass or less, more preferably 23% by mass or less, still more preferably 20% by mass or less, based on the total amount of the non-aqueous electrolyte solution.
When the ratio of each lithium salt other than LiPF 6 to the total amount of the non-aqueous electrolyte solution is 0.01% by mass or more, the high temperature charge storage characteristic is improved and the gas generation suppressing effect is also enhanced. Further, when it is 20% by mass or less with respect to the total amount of the non-aqueous electrolytic solution, there is little concern that the high temperature charge storage characteristic is deteriorated, which is preferable. The ratio is more preferably 0.1% by mass or more, still more preferably 0.3% by mass or more, still more preferably 0.6% by mass or more, and the upper limit thereof is preferable with respect to the total amount of the non-aqueous electrolyte solution. Is 11% by mass or less, more preferably 9% by mass or less, still more preferably 6% by mass or less.
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して前記一般式(I)又は(II)で表される化合物を添加し、更に前記一般式(III)で表される化合物、前記一般式(IV)で表される化合物、リン酸骨格を有するリチウム塩、及び炭素-炭素三重結合を有するスルホン酸化合物からなる群より選ばれる1種以上を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
[Manufacturing of non-aqueous electrolyte solution]
In the non-aqueous electrolyte solution of the present invention, for example, the above-mentioned non-aqueous solvent is mixed, and the above-mentioned electrolyte salt and the compound represented by the general formula (I) or (II) are added to the above-mentioned non-aqueous electrolyte solution. A group consisting of the compound represented by the general formula (III), the compound represented by the general formula (IV), the lithium salt having a phosphoric acid skeleton, and the sulfonic acid compound having a carbon-carbon triple bond. It can be obtained by adding one or more selected from the above.
At this time, it is preferable that the compounds to be added to the non-aqueous solvent and the non-aqueous electrolytic solution to be used are those that have been purified in advance and contain as few impurities as possible within a range that does not significantly reduce the productivity.
 本発明の非水電解液は、下記の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する蓄電デバイス用(即ち、リチウム電池用)として用いることが好ましく、リチウム二次電池用として用いることが最も適している。 The non-aqueous electrolyte solution of the present invention can be used for the following power storage devices, and as the non-aqueous electrolyte solution, not only a liquid one but also a gelled one can be used. Further, the non-aqueous electrolyte solution of the present invention can also be used for solid polymer electrolytes. Among them, it is preferable to use it for a power storage device (that is, for a lithium battery) that uses a lithium salt as an electrolyte salt, and it is most suitable to use it for a lithium secondary battery.
〔蓄電デバイス〕
 本発明の蓄電デバイスは、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液を備えた蓄電デバイスであって、該正極が、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量が50atomic%以上である正極活物質を含む。
 該蓄電デバイスは、少なくとも正極において充放電時にリチウムイオンを吸蔵・放出する機能を利用したものであり、具体的にはリチウム二次電池が挙げられる。該リチウム二次電池の概念には、正極に活性炭等を一部混合し部分的にキャパシタの機能を持たせた疑似的なリチウム二次電池も含む。
 非水電解液と正極以外の負極等の構成部材は特に制限なく使用できる。
[Power storage device]
The power storage device of the present invention is a power storage device including the non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode and a non-aqueous solvent, and the positive electrode is all of the transition metal elements in the positive electrode active material. It contains a positive electrode active material in which the content of Ni atoms with respect to the amount of atoms is 50 atomic% or more.
The power storage device utilizes a function of storing and discharging lithium ions at least at the positive electrode during charging and discharging, and specific examples thereof include a lithium secondary battery. The concept of the lithium secondary battery also includes a pseudo lithium secondary battery in which a positive electrode is partially mixed with activated carbon or the like to partially have a capacitor function.
Constituent members such as a non-aqueous electrolyte solution and a negative electrode other than the positive electrode can be used without particular limitation.
 本発明に係るリチウム二次電池用等の正極は、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量、換言すると、正極活物質中の全遷移金属元素の原子濃度の合計値に対するNi原子濃度の割合が、50atomic%(原子%)以上である正極活物質を含む。
 該正極活物質としては、例えば、ニッケルと、コバルト、マンガン及びアルミニウムからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が挙げられる。これらの正極活物質は、1種単独で又は2種以上を組み合わせて用いることができる。
The positive electrode for a lithium secondary battery or the like according to the present invention has a Ni atom content with respect to the total atomic amount of the transition metal element in the positive electrode active material, in other words, the atomic concentration of all the transition metal elements in the positive electrode active material. It contains a positive electrode active material in which the ratio of Ni atomic concentration to the total value is 50 atomic% (atomic%) or more.
Examples of the positive electrode active material include a composite metal oxide of nickel and lithium containing one or more selected from the group consisting of cobalt, manganese and aluminum. These positive electrode active materials can be used alone or in combination of two or more.
 正極活物質中の全遷移金属元素の原子濃度の合計値に対するNiの原子濃度の割合が50atomic%以上の正極活物質を使用すると、Niの触媒作用により正極表面での非水溶媒の分解が起き、電池の抵抗が増加しやすい傾向にある。特に高温環境下での電気化学特性が低下しやすい傾向にあるが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができるので好ましい。
 特に、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量、換言すると、正極活物質中の全遷移金属元素の原子濃度の合計値に対するNiの原子濃度の割合が、60atomic%を超える正極活物質を用いた場合に上記効果が顕著になるので好ましく、70atomic%以上がより好ましく、80atomic%以上が更に好ましい。例えば、LiNi1-(x+y+z)MnxCoyAlz2(但し、x+y+z<0.5、x≧0、y≧0、z≧0)が好適に挙げられ、具体的には、LiNi0.5Mn0.3Co0.22、LiNi0.6Mn0.2Co0.22、LiNi0.8Mn0.1Co0.12、LiNi0.8Co0.15Al0.052等が好適に挙げられる。なお、上記具体的な正極活物質の全遷移金属元素(Ni、Mn、Co)の全原子の量(全遷移金属濃度)(合計量)に対するNi原子の含有量(Ni原子濃度)の割合は、50atomic%、60atomic%、80atomic%、84atomic%である。
 なお、正極活物質中の遷移金属元素の全原子の量(全遷移金属濃度)及びNi原子の含有量(Ni原子濃度)は、X線光電子分光(XPS)法により測定、算出することができる。
When a positive electrode active material in which the ratio of the atomic concentration of Ni to the total atomic concentration of all transition metal elements in the positive electrode active material is 50 atomic% or more is used, the non-aqueous solvent is decomposed on the positive electrode surface due to the catalytic action of Ni. , Battery resistance tends to increase. In particular, the electrochemical characteristics tend to deteriorate in a high temperature environment, but the lithium secondary battery according to the present invention is preferable because the deterioration of these electrochemical characteristics can be suppressed.
In particular, the content of Ni atoms to the total amount of all atoms of the transition metal element in the positive electrode active material, in other words, the ratio of the atomic concentration of Ni to the total atomic concentration of all the transition metal elements in the positive electrode active material is 60 atomic. The above effect becomes remarkable when a positive electrode active material exceeding% is used, which is preferable, 70 atomic% or more is more preferable, and 80 atomic% or more is further preferable. For example, LiNi 1- (x + y + z) Mn x Co y Al z O 2 ( where, x + y + z <0.5 , x ≧ 0, y ≧ 0, z ≧ 0) are suitably exemplified, specifically LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2, LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like are preferably mentioned. The ratio of the Ni atom content (Ni atom concentration) to the total atom amount (total transition metal concentration) (total amount) of all transition metal elements (Ni, Mn, Co) of the above-mentioned specific positive electrode active material is , 50atomic%, 60atomic%, 80atomic%, 84atomic%.
The amount of all transition metal elements in the positive electrode active material (total transition metal concentration) and the content of Ni atoms (Ni atom concentration) can be measured and calculated by the X-ray photoelectron spectroscopy (XPS) method. ..
 また、前記の正極活物質に対して、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、Er、Hf、W又はZr等の他の元素を性能改善のために適宜置換もしくは添加してもよい。
 また、前記正極活物質の他に、LiCoO、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、LiMn又はLiNi1/2Mn3/24等のマンガン含有のスピネル型結晶構造を有するリチウム複合金属酸化物、LiFePO、LiMn1-xFexPO4(0<x<1)、LiCoPO等のリチウム含有オリビン型リン酸塩から選ばれる1種以上を併用してもよい。
Further, for the above-mentioned positive electrode active material, other elements such as Mg, Al, B, Ti, V, Nb, Cu, Zn, Mo, Ca, Sr, Er, Hf, W or Zr are used to improve the performance. May be appropriately substituted or added to.
In addition to the positive electrode active material, a solid solution of LiCoO 2 , Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe), LiMn 2 O 4 or LiNi 1/2 Mn. lithium mixed metal oxide having a spinel-type crystal structure of the manganese-containing, such as 3/2 O 4, LiFePO 4, LiMn 1-x Fe x PO 4 (0 <x <1), lithium-containing olivine-type phosphate such as LiCoPO 4 One or more selected from the acid salts may be used in combination.
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、2~5質量%がより好ましい。 The conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change. Examples thereof include natural graphite (scaly graphite and the like), graphite such as artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphite and carbon black may be appropriately mixed and used. The amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, more preferably 2 to 5% by mass.
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で、2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池の容量をさらに高めるため、好ましくは2g/cm以上、より好ましくは、3g/cm以上、更に好ましくは、3.6g/cm以上であり、上限は、4g/cm以下が好ましい。
For the positive electrode, the positive electrode active material is made of a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a styrene / butadiene copolymer (SBR), or acrylonitrile and butadiene. It is mixed with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), and ethylene propylene dienter polymer, and a high boiling point solvent such as 1-methyl-2-pyrrolidone is added thereto and kneaded to make a positive electrode mixture. After that, this positive electrode mixture is applied to an aluminum foil of a current collector, a lath plate made of stainless steel, etc., dried and pressure-molded, and then vacuumed at a temperature of about 50 ° C to 250 ° C for about 2 hours. It can be produced by heat-treating with.
The density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 or more, More preferably, it is 3.6 g / cm 3 or more, and the upper limit is preferably 4 g / cm 3 or less.
 リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、及びリチウムイオンを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm(ナノメータ)以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、LiTi12等のチタン酸リチウム化合物等を1種単独又は2種以上を組み合わせて用いることができる。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することが好ましく、格子面(002)の面間隔(d002)が0.340nm以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することがより好ましい。
As the negative electrode active material for a lithium secondary battery, a lithium metal, a lithium alloy, and a carbon material capable of occluding and releasing lithium ions [graphitized carbon and (002) plane spacing of 0.37 nm ( (Namometer) or more graphitized carbon, (002) graphite with a surface spacing of 0.34 nm or less], tin (elemental substance), tin compound, silicon (elemental substance), silicon compound, Li 4 Ti 5 O 12, etc. The lithium titanate compound and the like can be used alone or in combination of two or more.
Among these, it is preferable to use a highly crystalline carbon material such as artificial graphite or natural graphite in terms of the ability to occlude and release lithium ions, and the interplanar spacing (d 002 ) of the lattice plane (002) is 0.340 nm. Hereinafter, it is more preferable to use a carbon material having a graphite-type crystal structure having a graphite-type crystal structure of 0.335 to 0.337 nm.
 複数の扁平状の黒鉛質微粒子が互いに非平行に集合或いは結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と正極活物質からの金属溶出量の改善と、充電保存特性が向上するので好ましく、0.05以上がより好ましく、0.1以上が更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、高温充電保存特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって高温充電保存特性を低下させる傾向があるが、本発明に係るリチウム二次電池では高温充電保存特性が良好となる。
Mechanical actions such as compressive force, frictional force, and shearing force are repeatedly applied to artificial graphite particles having a massive structure in which a plurality of flat graphite fine particles are aggregated or bonded to each other in a non-parallel manner, for example, scaly natural graphite particles. It can be obtained from the X-ray diffraction measurement of the negative electrode sheet when the density of the portion of the negative electrode excluding the current collector is pressure-molded to a density of 1.5 g / cm 3 or more by using the spheroidized graphite particles. When the ratio I (110) / I (004) of the peak intensity I (110) on the (110) plane and the peak intensity I (004) on the (004) plane of the graphite crystal is 0.01 or more, it is further from the positive electrode active material. It is preferable because it improves the metal elution amount and the charge storage characteristics, more preferably 0.05 or more, and further preferably 0.1 or more. Further, the upper limit is preferably 0.5 or less, more preferably 0.3 or less, because the crystallinity may be lowered due to excessive treatment and the discharge capacity of the battery may be lowered.
Further, it is preferable that the highly crystalline carbon material (core material) is coated with a carbon material having a lower crystallinity than the core material because the high temperature charge storage characteristics are further improved. The crystallinity of the coated carbon material can be confirmed by TEM.
When a highly crystalline carbon material is used, it reacts with a non-aqueous electrolytic solution during charging and tends to deteriorate high temperature charge storage characteristics due to an increase in interfacial resistance. However, in the lithium secondary battery according to the present invention, high temperature charge storage tends to occur. The characteristics are good.
 また、負極活物質としてのリチウムイオンを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、酸化物、窒化物、硫化物、硼化物、リチウム等との合金等、何れの形態で用いてもよいが、金属単体、金属酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池を高容量化できるのでより好ましい。 Examples of the metal compound capable of occluding and releasing lithium ions as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni. Examples thereof include compounds containing at least one metal element such as Cu, Zn, Ag, Mg, Sr, and Ba. These metal compounds may be used in any form such as elemental substances, oxides, nitrides, sulfides, borides, alloys with lithium, etc., but any of elemental metals, metal oxides, alloys with lithium, etc. Is preferable because the capacity can be increased. Among them, those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are more preferable because the capacity of the battery can be increased.
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm以上であり、電池の容量を更に高めるため、好ましくは1.5g/cm以上、より好ましくは1.7g/cm以上であり、上限は、2g/cm以下が好ましい。
The negative electrode is kneaded with a conductive agent, a binder, and a high boiling point solvent similar to those for producing the positive electrode to obtain a negative electrode mixture, and then this negative electrode mixture is applied to a copper foil or the like of a current collector. After drying and pressure molding, it can be produced by heat treatment under vacuum for about 2 hours at a temperature of about 50 ° C. to 250 ° C.
The density of the portion of the negative electrode excluding the current collector is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, more preferably 1.7 g / cm in order to further increase the capacity of the battery. It is 3 or more, and the upper limit is preferably 2 g / cm 3 or less.
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。 Further, as a negative electrode active material for a lithium primary battery, a lithium metal or a lithium alloy can be mentioned.
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
 電池用セパレータとしては、特に制限はされないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
The structure of the lithium battery is not particularly limited, and a coin-type battery having a single-layer or multi-layer separator, a cylindrical battery, a square battery, a laminated battery, or the like can be applied.
The battery separator is not particularly limited, but a monolayer or laminated microporous film of polyolefin such as polypropylene or polyethylene, a woven fabric, a non-woven fabric, or the like can be used.
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にもサイクル特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本願発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。 The lithium secondary battery in the present invention has excellent cycle characteristics even when the charge termination voltage is 4.2 V or higher, particularly 4.3 V or higher, and further, the characteristics are also good at 4.4 V or higher. The discharge end voltage can usually be 2.8 V or higher, further 2.5 V or higher, but the lithium secondary battery in the present invention can be 2.0 V or higher. The current value is not particularly limited, but is usually used in the range of 0.1 to 30C. Further, the lithium battery in the present invention can be charged and discharged at −40 to 100 ° C., preferably −10 to 80 ° C.
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。 In the present invention, as a countermeasure against an increase in the internal pressure of the lithium battery, a method of providing a safety valve on the battery lid or making a notch in a member such as a battery can or a gasket can also be adopted. Further, as a safety measure for preventing overcharging, a current cutoff mechanism that senses the internal pressure of the battery and cuts off the current can be provided on the battery lid.
実施例1~20、比較例1~4
〔リチウムイオン二次電池の作製〕
 正極活物質として、LiNi0.5Mn0.3Co0.22(Ni:50atomic%)、LiNi0.8Mn0.1Co0.12(Ni:80atomic%)、及びLiNi1/3Mn1/3Co1/32(Ni:33atomic%)を用意した。
 上記の正極活物質のいずれか1種90質量%、アセチレンブラック(導電剤)3質量%、KS-4(登録商標)(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)4質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の両面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、矩形の正極シートを作製した。正極の集電体を除く部分の密度は2.5g/cmであった。
 また、黒鉛(負極活物質)98質量%と、カルボキシメチルセルロース(増粘剤)1質量%と、ブタジエンの共重合体(結着剤)1質量%を水に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の両面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製した。負極の集電体を除く部分の密度は1.4g/cmであった。
 上記で得られた正極シート、ポリオレフィンの積層微多孔性フィルム製セパレータ、上記で得られた負極シートの順に積層し、表1~4に記載の組成の非水電解液をそれぞれ加えて、ラミネート型電池を作製した。
Examples 1 to 20, Comparative Examples 1 to 4
[Manufacturing of lithium-ion secondary battery]
As positive electrode active materials, LiNi 0.5 Mn 0.3 Co 0.2 O 2 (Ni: 50 atomic%), LiNi 0.8 Mn 0.1 Co 0.1 O 2 (Ni: 80 atomic%), and LiNi 1/3 Mn 1/3 Co 1/3 O 2 (Ni: 33 atomic%) was prepared.
90% by mass of any one of the above positive electrode active materials, 3% by mass of acetylene black (conductive agent), and 3% by mass of KS-4 (registered trademark) (conductive agent) are mixed, and polyvinylidene fluoride (binding agent) is prepared in advance. ) 4% by mass was added to the solution dissolved in 1-methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to both sides of an aluminum foil (current collector), dried and pressure-treated, and cut into a predetermined size to prepare a rectangular positive electrode sheet. The density of the portion of the positive electrode excluding the current collector was 2.5 g / cm 3 .
Further, 98% by mass of graphite (negative electrode active material), 1% by mass of carboxymethyl cellulose (thickener), and 1% by mass of a copolymer of butadiene (binder) are added to water and mixed to form a negative electrode mixture paste. Was prepared. This negative electrode mixture paste was applied to both sides of a copper foil (current collector), dried and pressure-treated, and cut to a predetermined size to prepare a negative electrode sheet. The density of the portion of the negative electrode excluding the current collector was 1.4 g / cm 3 .
The positive electrode sheet obtained above, the polyolefin laminated microporous film separator, and the negative electrode sheet obtained above are laminated in this order, and the non-aqueous electrolytic solutions having the compositions shown in Tables 1 to 4 are added to each of them to form a laminate type. A battery was manufactured.
 なお、表1~4に示す各実施例、比較例においては、非水電解液全体に対する、上記一般式(I)~(IV)で表される化合物、リン酸骨格を有するリチウム塩、及び炭素-炭素三重結合を有するスルホン酸化合物を、それぞれの含有量が、表1~4に示す量となるように、表1~4の「電解質塩の組成 非水溶媒の組成 (溶媒の体積比)」の欄に記載された組成の電解液に対して、添加、混合することで、各実施例、比較例に係る非水電解液を調製した。
 得られたリチウムイオン二次電池の電池特性を、下記方法により評価した。結果を表1~4に示す。
In each of the Examples and Comparative Examples shown in Tables 1 to 4, the compounds represented by the above general formulas (I) to (IV), the lithium salt having a phosphoric acid skeleton, and carbon were used for the entire non-aqueous electrolyte solution. -The composition of the electrolyte salt and the composition of the non-aqueous solvent (volume ratio of the solvent) of Tables 1 to 4 so that the content of each of the sulfonic acid compounds having a carbon triple bond is the amount shown in Tables 1 to 4. The non-aqueous electrolyte solution according to each Example and Comparative Example was prepared by adding and mixing the electrolytic solution having the composition described in the column of "".
The battery characteristics of the obtained lithium ion secondary battery were evaluated by the following method. The results are shown in Tables 1 to 4.
〔高温充電保存後特性の評価〕
(1)初期の放電容量、初期の交流抵抗
 上記の方法で作製したラミネート型電池を用いて、25℃の恒温槽中、0.2Cの定電流及び定電圧で、終止電圧4.2Vまで7時間充電し、0.2Cの定電流下終止電圧2.75Vまで放電して、初期の25℃の放電容量を求めた。
 交流抵抗については、前記放電後に初期の放電容量の50%の容量を0.2Cで充電し、0℃の恒温槽中で100mHzの交流インピーダンスの実部の抵抗値を測定し、それぞれの正極活物質において、一般式(I)又は(II)の化合物を含有していない非水電解液を備えたラミネート型電池で測定した値を100%としたときの相対値で示す。
[Evaluation of characteristics after high temperature charge storage]
(1) Initial discharge capacity, initial AC resistance Using the laminated battery produced by the above method, in a constant temperature bath at 25 ° C., with a constant current and constant voltage of 0.2C, the final voltage is up to 4.2V 7 It was charged for an hour and discharged to a final voltage of 2.75 V under a constant current of 0.2 C to determine the initial discharge capacity at 25 ° C.
Regarding the AC resistance, after the discharge, 50% of the initial discharge capacity is charged at 0.2C, and the resistance value of the actual part of the AC impedance of 100 MHz is measured in a constant temperature bath at 0 ° C., and the positive electrode activity of each is measured. It is shown as a relative value when the value measured by a laminated battery provided with a non-aqueous electrolytic solution containing no compound of the general formula (I) or (II) in the substance is taken as 100%.
(2)高温充電保存後の放電容量
 次に、上記(1)のラミネート型電池を25℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.2Vまで7時間充電し、60℃に恒温槽の温度を上げ、4.2Vに保持した状態で20日間保存を行った。その後、25℃の恒温槽に入れ、一旦0.2Cの定電流下、終止電圧2.75Vまで放電した。
 更にその後、初期の放電容量の測定と同様にして、高温充電保存後の25℃の放電容量を求めた。
(2) Discharge capacity after high-temperature charge storage Next, the laminated battery of (1) above is charged in a constant temperature bath at 25 ° C. with a constant current and constant voltage of 1C to a final voltage of 4.2 V for 7 hours to reach 60 ° C. The temperature of the constant temperature bath was raised to 4.2 V, and the mixture was stored for 20 days. Then, it was placed in a constant temperature bath at 25 ° C. and once discharged to a final voltage of 2.75 V under a constant current of 0.2 C.
After that, the discharge capacity at 25 ° C. after high-temperature charge storage was determined in the same manner as in the initial measurement of the discharge capacity.
<高温充電保存後の放電容量維持率>
 高温充電保存後の放電容量維持率を、初期の25℃放電容量及び高温充電保存後の25℃放電容量の値から、下記式により求めた。
 放電容量維持率(%)は、それぞれの正極活物質において一般式(I)又は(II)の化合物を含有していない非水電解液を備えたラミネート型電池で測定した値を100%としたときの相対値で示す。
 高温充電保存後の25℃放電容量維持率(%)=(高温充電保存後の25℃の放電容量/初期の25℃の放電容量)×100
 放電容量維持率(%)は、高温保存後の電池容量維持の程度を示す指標となる。
<Discharge capacity retention rate after high temperature charge storage>
The discharge capacity retention rate after high-temperature charge storage was calculated from the values of the initial 25 ° C. discharge capacity and the 25 ° C. discharge capacity after high-temperature charge storage by the following formula.
The discharge capacity retention rate (%) was set to a value measured with a laminated battery provided with a non-aqueous electrolytic solution containing no compound of the general formula (I) or (II) in each positive electrode active material as 100%. Shown as a relative value of when.
25 ° C discharge capacity retention rate (%) after high-temperature charge storage = (25 ° C discharge capacity after high-temperature charge storage / initial 25 ° C discharge capacity) x 100
The discharge capacity retention rate (%) is an index indicating the degree of battery capacity retention after high-temperature storage.
<高温充電保存後のガス発生量>
 高温保存後のガス発生量はアルキメデス法により測定した。
 ガス発生量は、LiNi0.8Mn0.1Co0.12の正極活物質において、一般式(I)又は(II)の化合物を含有していない非水電解液を備えたラミネート型電池で測定したガス発生量を100%としたときの相対値で示す。
<Gas generation amount after high temperature charge storage>
The amount of gas generated after high-temperature storage was measured by the Archimedes method.
The amount of gas generated was measured with a laminated battery provided with a non-aqueous electrolytic solution containing no compound of the general formula (I) or (II) in the positive electrode active material of LiNi 0.8 Mn 0.1 Co 0.1 O 2. It is shown as a relative value when the amount is 100%.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 上記表1において、正極としてLiNi0.5Mn0.3Co0.22(Ni:50atomic%)又はLiNi0.8Mn0.1Co0.12(Ni:80atomic%)を用い、本発明の非水電解液を用いた実施例1~3及び4のリチウムイオン二次電池は、正極としてLiNi1/3Mn1/3Co1/32(Ni:33atomic%)を用いた比較例2及び3のリチウムイオン二次電池と比べ、初期抵抗を低減しつつ高温保存後に高い放電容量を維持することができている。
 上記表2~4において、正極としてLiNi0.8Mn0.1Co0.12(Ni:80atomic%)を用い、本発明の非水電解液を用いた実施例5~20では、添加剤として一般式(I)又は(II)の化合物を用いていない比較例1、及び一般式(III)の化合物のみを用いた比較例4と比べ、高温保存後に高い放電容量を維持したまま、発生ガス量を大幅に抑制することができている。これらの結果から本発明の非水電解液は高温保存における電池容量維持率の向上と、初期抵抗及びガス発生の抑制をバランス良く達成できているといえる。
In Table 1 above, LiNi 0.5 Mn 0.3 Co 0.2 O 2 (Ni: 50 atomic%) or LiNi 0.8 Mn 0.1 Co 0.1 O 2 (Ni: 80 atomic%) was used as the positive electrode, and the non-aqueous electrolyte solution of the present invention was used. The lithium ion secondary batteries of Examples 1 to 3 and 4 are the lithium ion secondary batteries of Comparative Examples 2 and 3 using LiNi 1/3 Mn 1/3 Co 1/3 O 2 (Ni: 33 atomic%) as the positive electrode. Compared with this, it is possible to maintain a high discharge capacity after high temperature storage while reducing the initial resistance.
In Tables 2 to 4 above, LiNi 0.8 Mn 0.1 Co 0.1 O 2 (Ni: 80 atomic%) was used as the positive electrode, and in Examples 5 to 20 using the non-aqueous electrolyte solution of the present invention, the general formula (I) was used as the additive. ) Or Comparative Example 1 in which the compound of (II) is not used, and Comparative Example 4 in which only the compound of the general formula (III) is used, the amount of generated gas is significantly increased while maintaining a high discharge capacity after high temperature storage. It can be suppressed. From these results, it can be said that the non-aqueous electrolytic solution of the present invention can achieve the improvement of the battery capacity retention rate in high temperature storage and the suppression of initial resistance and gas generation in a well-balanced manner.
 本発明の非水電解液を使用すれば、広い温度範囲における電気化学特性に優れた蓄電デバイスを得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車等に搭載されるリチウム二次電池等の蓄電デバイス用の非水電解液として使用すると、広い温度範囲で電気化学特性が低下しにくい蓄電デバイスを得ることができる。 By using the non-aqueous electrolytic solution of the present invention, it is possible to obtain a power storage device having excellent electrochemical characteristics in a wide temperature range. In particular, when used as a non-aqueous electrolyte for power storage devices such as lithium secondary batteries installed in hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, etc., power storage devices whose electrochemical characteristics do not easily deteriorate over a wide temperature range. Can be obtained.

Claims (10)

  1.  正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスに用いられる非水電解液であって、
     該正極が、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量が50atomic%以上である正極活物質を含み、
     下記一般式(I)又は(II)で表される化合物の含有量が0.001~2質量%であることを特徴とする、蓄電デバイス用非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    (式(I)中、R及びRは、それぞれ独立に、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる有機基を示す。前記有機基は、水素原子の一部がハロゲン原子で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000002

    (式(II)中、Rは、炭素数1~8のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、及び炭素数6~12のアリール基からなる群より選ばれる有機基、又はリチウム原子であり、Yは-NH-基又は-O-基を示し、pは、0~1の整数を示し、qは1~4の整数を示し、2≦p+q≦4である。前記有機基は、水素原子の一部がハロゲン原子で置換されていてもよく、式(II)中の環状の極性基は、水素原子の一部がハロゲン原子、炭素数1~8のアルキル基、炭素数1~8のハロアルキル基、又は下記一般式(II-I)で表される置換基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000003

    (式中、Rはそれぞれ独立に前記と同義である。*は、環状の極性基に結合する部位を示す。)
    A non-aqueous electrolyte solution used for a power storage device including a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent.
    The positive electrode contains a positive electrode active material in which the content of Ni atoms with respect to the total number of atoms of the transition metal element in the positive electrode active material is 50 atomic% or more.
    A non-aqueous electrolytic solution for a power storage device, characterized in that the content of the compound represented by the following general formula (I) or (II) is 0.001 to 2% by mass.
    Figure JPOXMLDOC01-appb-C000001

    In formula (I), R 1 and R 2 independently have an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and 6 to 6 carbon atoms, respectively. An organic group selected from the group consisting of 12 aryl groups is shown. The organic group may have a part of hydrogen atoms substituted with halogen atoms.)
    Figure JPOXMLDOC01-appb-C000002

    In formula (II), R 3 is a group consisting of an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms. It is an organic group or a lithium atom selected from the above, Y represents an -NH- group or an -O- group, p represents an integer of 0 to 1, q represents an integer of 1 to 4, and 2 ≦ p + q. ≦ 4. In the organic group, a part of the hydrogen atom may be substituted with a halogen atom, and in the cyclic polar group in the formula (II), a part of the hydrogen atom is a halogen atom and the number of carbon atoms is 1. It may be substituted with an alkyl group of up to 8 or a haloalkyl group having 1 to 8 carbon atoms, or a substituent represented by the following general formula (II-I).)
    Figure JPOXMLDOC01-appb-C000003

    (In the formula, R 3 is independently synonymous with the above. * Indicates a site that binds to a cyclic polar group.)
  2.  非水電解液が、更に下記一般式(III)で表される化合物、下記一般式(IV)で表される化合物、リン酸骨格を有するリチウム塩、及び炭素-炭素三重結合を有するスルホン酸化合物からなる群より選ばれる1種以上を0.001~10質量%含有する、請求項1に記載の蓄電デバイス用非水電解液。
    Figure JPOXMLDOC01-appb-C000004

    (式(III)中、R及びRは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し、RとRは互いに結合し環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000005

    (式(IV)中、Lは、エチレン基又はエテニレン基を示し、Rは、炭素数1~3のアルキル基又は炭素数2~3のアルケニル基を示す。)
    The non-aqueous electrolyte solution further comprises a compound represented by the following general formula (III), a compound represented by the following general formula (IV), a lithium salt having a phosphoric acid skeleton, and a sulfonic acid compound having a carbon-carbon triple bond. The non-aqueous electrolytic solution for a power storage device according to claim 1, which contains 0.001 to 10% by mass of one or more selected from the group consisting of.
    Figure JPOXMLDOC01-appb-C000004

    (In formula (III), R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 4 and R 5 may be bonded to each other to form a ring. )
    Figure JPOXMLDOC01-appb-C000005

    (In formula (IV), L represents an ethylene group or an ethenylene group, and R 6 represents an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 2 to 3 carbon atoms.)
  3.  非水電解液が、LiN(SOF)を0.1~20質量%含有する、請求項1又は2に記載の蓄電デバイス用非水電解液。 The non-aqueous electrolytic solution for a power storage device according to claim 1 or 2, wherein the non-aqueous electrolytic solution contains 0.1 to 20% by mass of LiN (SO 2 F) 2.
  4.  一般式(I)におけるRが炭素数3~4の分枝鎖のアルキル基である、請求項1~3のいずれか1項に記載の蓄電デバイス用非水電解液。 The non-aqueous electrolytic solution for a power storage device according to any one of claims 1 to 3, wherein R 2 in the general formula (I) is an alkyl group of a branched chain having 3 to 4 carbon atoms.
  5.  一般式(I)で示される化合物が、リチウム エチル メトキシカルボニルホスホネート、リチウム エチル エトキシカルボニルホスホネート、リチウム エチル iso-プロポキシカルボニルホスホネート、リチウム エチル iso-ブトキシカルボニルホスホネート、リチウム エチル sec-ブトキシカルボニルホスホネート、及びリチウム エチル tert-ブトキシカルボニルホスホネートからなる群より選ばれる1種以上である、請求項1~4のいずれか1項に記載の蓄電デバイス用非水電解液。 The compounds represented by the general formula (I) are lithium ethyl methoxycarbonylphosphonate, lithium ethyl ethoxycarbonylphosphonate, lithium ethyl iso-propoxycarbonylphosphonate, lithium ethyl iso-butoxycarbonylphosphonate, lithium ethyl sec-butoxycarbonylphosphonate, and lithium ethyl. The non-aqueous electrolyte solution for a power storage device according to any one of claims 1 to 4, which is one or more selected from the group consisting of tert-butoxycarbonylphosphonate.
  6.  一般式(II)で表される化合物が、リチウム(2,5-ジオキソピロリジン-1-イル)ホスホネート、リチウム メチル(2,5-ジオキソピロリジン-1-イル)ホスホネート、リチウム エチル(2,5-ジオキソピロリジン-1-イル)ホスホネート、リチウム 2,2,2-トリフルオロエチル(2,5-ジオキソピロリジン-1-イル)ホスホネート、リチウム フェニル(2,5-ジオキソピロリジン-1-イル)ホスホネート、及びリチウム エチル(3-メチル-2,5-ジオキソイミダゾリジン-1-イル)ホスホネートからなる群より選ばれる1種以上である、請求項1~5のいずれか1項に記載の蓄電デバイス用非水電解液。 The compounds represented by the general formula (II) are lithium (2,5-dioxopyrrolidine-1-yl) phosphonate, lithium methyl (2,5-dioxopyrrolidine-1-yl) phosphonate, and lithium ethyl (2,). 5-Dioxopyrrolidine-1-yl) phosphonate, lithium 2,2,2-trifluoroethyl (2,5-dioxopyrrolidine-1-yl) phosphonate, lithium phenyl (2,5-dioxopyrrolidine-1-yl) Ill) Phosphate, and lithium ethyl (3-methyl-2,5-dioxoimidazolidine-1-yl) phosphonate, which is one or more selected from the group, according to any one of claims 1 to 5. Non-aqueous electrolyte for power storage devices.
  7.  一般式(III)又は(IV)で表される化合物が、1,3,2-ジオキサチオラン-2,2-ジオキシド、4-メチル-1,3,2-ジオキサチオラン-2,2-ジオキシド、テトラヒドロ-4H-シクロペンタ[d][1,3,2]ジオキサチオール2,2-ジオキシド、1,1-ジオキシドテトラヒドロチオフェン-3-イル メタンスルホネート、1,1-ジオキシドテトラヒドロチオフェン-3-イル エテンスルホネート、1,1-ジオキシドテトラヒドロチオフェン-3-イル 2-プロペン-1-スルホネート、及び1,1-ジオキシド-2,3-ジヒドロチオフェン-3-イル メタンスルホネートからなる群より選ばれる1種以上である、請求項2~6のいずれか1項に記載の蓄電デバイス用非水電解液。 The compounds represented by the general formula (III) or (IV) are 1,3,2-dioxathiolane-2,2-dioxide, 4-methyl-1,3,2-dioxathiolane-2,2-dioxide, tetrahydro-. 4H-Cyclopenta [d] [1,3,2] dioxathiol 2,2-dioxide, 1,1-dioxide tetrahydrothiophene-3-yl methanesulfonate, 1,1-dioxide tetrahydrothiophene-3-yl ethene One or more selected from the group consisting of sulfonate, 1,1-dioxide tetrahydrothiophene-3-yl 2-propen-1-sulfonate, and 1,1-dioxide-2,3-dihydrothiophene-3-yl methanesulfonate. The non-aqueous electrolyte solution for a power storage device according to any one of claims 2 to 6.
  8.  リン酸骨格を有するリチウム塩が、ジフルオロリン酸リチウム、及びフルオロリン酸リチウムから選ばれる一種以上である、請求項2~7のいずれか1項に記載の蓄電デバイス用非水電解液。 The non-aqueous electrolyte solution for a power storage device according to any one of claims 2 to 7, wherein the lithium salt having a phosphoric acid skeleton is one or more selected from lithium difluorophosphate and lithium fluorophosphate.
  9.  炭素-炭素三重結合を有するスルホン酸化合物が、メタンスルホン酸 2-プロピニル、及びビニルスルホン酸 2-プロピニルから選ばれる一種以上である、請求項2~8のいずれか1項に記載の蓄電デバイス用非水電解液。 The storage device according to any one of claims 2 to 8, wherein the sulfonic acid compound having a carbon-carbon triple bond is at least one selected from 2-propynyl methanesulfonic acid and 2-propynyl vinyl sulfonic acid. Non-aqueous electrolyte.
  10.  正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、
     該正極が、正極活物質中の遷移金属元素の全原子の量に対するNi原子の含有量が50atomic%以上である正極活物質を含み、
     該非水電解液が請求項1~9のいずれか1項に記載の非水電解液であることを特徴とする、蓄電デバイス。

     
    A power storage device including a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent.
    The positive electrode contains a positive electrode active material in which the content of Ni atoms with respect to the total number of atoms of the transition metal element in the positive electrode active material is 50 atomic% or more.
    A power storage device, wherein the non-aqueous electrolytic solution is the non-aqueous electrolytic solution according to any one of claims 1 to 9.

PCT/JP2020/036803 2019-09-30 2020-09-29 Non-aqueous electrolyte solution and power storage device using same WO2021065863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551288A JPWO2021065863A1 (en) 2019-09-30 2020-09-29

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-180638 2019-09-30
JP2019180638 2019-09-30
JP2020010482 2020-01-27
JP2020-010482 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021065863A1 true WO2021065863A1 (en) 2021-04-08

Family

ID=75336963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036803 WO2021065863A1 (en) 2019-09-30 2020-09-29 Non-aqueous electrolyte solution and power storage device using same

Country Status (2)

Country Link
JP (1) JPWO2021065863A1 (en)
WO (1) WO2021065863A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000519A (en) * 2022-07-21 2022-09-02 湖北亿纬动力有限公司 Lithium ion battery electrolyte, preparation method thereof and lithium ion battery containing lithium ion battery electrolyte
WO2023015444A1 (en) * 2021-08-10 2023-02-16 宁德时代新能源科技股份有限公司 Lithium-ion secondary battery, battery module, battery pack, and electrical device
JP7448723B2 (en) 2021-07-14 2024-03-12 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319430A (en) * 2001-04-23 2002-10-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary cell
WO2016031316A1 (en) * 2014-08-25 2016-03-03 宇部興産株式会社 Non-aqueous liquid electrolyte, electricity storage device using same, and phosphorus compound used therein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319430A (en) * 2001-04-23 2002-10-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary cell
WO2016031316A1 (en) * 2014-08-25 2016-03-03 宇部興産株式会社 Non-aqueous liquid electrolyte, electricity storage device using same, and phosphorus compound used therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448723B2 (en) 2021-07-14 2024-03-12 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
WO2023015444A1 (en) * 2021-08-10 2023-02-16 宁德时代新能源科技股份有限公司 Lithium-ion secondary battery, battery module, battery pack, and electrical device
CN115000519A (en) * 2022-07-21 2022-09-02 湖北亿纬动力有限公司 Lithium ion battery electrolyte, preparation method thereof and lithium ion battery containing lithium ion battery electrolyte

Also Published As

Publication number Publication date
JPWO2021065863A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP6866183B2 (en) Non-aqueous electrolyte and storage device using it
EP3012896B1 (en) Nonaqueous electrolyte solution, electricity storage device using same, and biphenyl group-containing carbonate compound used in same
JP6222106B2 (en) Non-aqueous electrolyte and power storage device using the same
JP6866067B2 (en) Non-aqueous electrolyte and storage device using it
JPWO2014030684A1 (en) Non-aqueous electrolyte and power storage device using the same
KR20140082978A (en) Non-aqueous electrolyte solution and electricity-storage device using same
KR20140116154A (en) Non-aqueous electrolyte and electrical storage device using same
JP6773041B2 (en) Non-aqueous electrolyte and storage device using it
JP7201943B2 (en) Electrolyte, electrochemical device, lithium ion secondary battery, module and compound
WO2013024717A1 (en) Nonaqueous electrolyte solution and electrochemical element using same
JP6229453B2 (en) Non-aqueous electrolyte and power storage device using the same
WO2021065863A1 (en) Non-aqueous electrolyte solution and power storage device using same
JP5822070B2 (en) Non-aqueous electrolyte and power storage device using the same
JP2019102451A (en) Electrolyte solution for nonaqueous electrolyte battery and nonaqueous electrolyte battery using the same
WO2019016903A1 (en) Nonaqueous electrolytic solution and electricity storage device using same
JP7019598B2 (en) Non-aqueous electrolyte and storage device using it
JP7344874B2 (en) Non-aqueous electrolyte and power storage device using it
JP2019207890A (en) Non-aqueous electrolyte and power storage device using the same
JP7082613B2 (en) Non-aqueous electrolyte and storage device using it
JP6015673B2 (en) Non-aqueous electrolyte and power storage device using the same
JP7051422B2 (en) Non-aqueous electrolyte and storage device using it
JP5704277B1 (en) Non-aqueous electrolyte and power storage device using the same
JP2019164937A (en) Nonaqueous electrolyte and electrical storage device using the same
WO2022025241A1 (en) Non-aqueous electrolyte solution and power storage device using same
JP7051512B2 (en) Cations for non-aqueous electrolytes, non-aqueous electrolytes, storage devices using them, and phosphonium salts used for them.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872857

Country of ref document: EP

Kind code of ref document: A1