WO2021064794A1 - Compression cooling mechanism, molding jig and shaping method - Google Patents

Compression cooling mechanism, molding jig and shaping method Download PDF

Info

Publication number
WO2021064794A1
WO2021064794A1 PCT/JP2019/038517 JP2019038517W WO2021064794A1 WO 2021064794 A1 WO2021064794 A1 WO 2021064794A1 JP 2019038517 W JP2019038517 W JP 2019038517W WO 2021064794 A1 WO2021064794 A1 WO 2021064794A1
Authority
WO
WIPO (PCT)
Prior art keywords
jig
composite material
thermoplastic composite
molding
cooling mechanism
Prior art date
Application number
PCT/JP2019/038517
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 可児
了太 尾▲崎▼
哲行 益子
友浩 村井
早耶奈 安達
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2019/038517 priority Critical patent/WO2021064794A1/en
Publication of WO2021064794A1 publication Critical patent/WO2021064794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing

Definitions

  • the present disclosure relates to a pressure cooling mechanism, a molding jig, and a shaping method.
  • Patent Document 1 US Patent Application Publication No. 2018/034053
  • thermoplastic composite materials In fields such as aircraft parts and building materials, there is an increasing need for high-speed molding technology for long parts using, for example, thermoplastic composite materials.
  • thermoplastic composite material When shaping the thermoplastic composite material, it is conceivable to perform pressure cooling by continuous press working. However, in the press method, it is necessary to hold the die in a predetermined position until cooling is completed, during which the thermoplastic composite cannot be moved. Therefore, it may not be possible to sufficiently meet the needs for high-speed molding technology.
  • the circulating endless belt itself as a mold and sandwich the thermoplastic composite material between the two belts.
  • the mold requires a certain height dimension (that is, the belt needs a certain thickness)
  • the belt will break due to a difference in circumference between the inside and outside of the belt at the folded part. is there. Therefore, the method of using the endless belt itself as a mold is not realistic.
  • the present disclosure has been made in view of such circumstances, and provides a pressurizing cooling mechanism, a molding jig, and a shaping method capable of continuously pressurizing and cooling the thermoplastic composite material while moving the thermoplastic composite material.
  • the purpose is a pressurizing cooling mechanism, a molding jig, and a shaping method capable of continuously pressurizing and cooling the thermoplastic composite material while moving the thermoplastic composite material.
  • the pressure-cooling mechanism of the composite material component pressurizes and cools the heated thermoplastic composite material moving in a predetermined direction with a molding jig to obtain a desired shape and a predetermined length. It is a pressure-cooling mechanism that shapes the thermoplastic composite material part of the above, and the molding jig has a first jig and a second jig having the predetermined length, and the first jig.
  • the second jig is formed when the thermoplastic composite material is sandwiched and opposed to each other in a direction orthogonal to the moving direction in a predetermined section along the moving direction of the thermoplastic composite material.
  • the gap is formed into the desired shape, and the first jig and the second jig move in the moving direction at the same speed as the moving speed of the thermoplastic composite material in the predetermined section.
  • the heated thermoplastic composite material moving in a predetermined direction is pressurized and cooled by a molding jig to obtain a thermoplastic composite material having a desired shape and a predetermined length.
  • a shaping method for shaping a part the molding jig has a first jig and a second jig having the predetermined length, and the first jig and the second jig.
  • the thermoplastic composite material is sandwiched and opposed to each other in a direction orthogonal to the moving direction, and the gap formed when facing each other has the desired shape.
  • the first jig and the second jig include a pressurizing and cooling step in which the first jig and the second jig move in the moving direction at the same speed as the moving speed of the thermoplastic composite material in the predetermined section.
  • thermoplastic composite material can be continuously pressure-cooled while being moved.
  • the pressure cooling mechanism 1 pressurizes and cools the thermoplastic composite material 50, which is heated by the forming unit 60 and formed into a desired shape or a shape similar to the desired shape, by the molding jig 5. It is shaped into a finished part (thermoplastic composite part 52) having a desired shape.
  • the thermoplastic composite material 50 is, for example, a laminate of a fiber base material in which the fiber directions are aligned in one direction and a reinforcing fiber sheet composed of a resin impregnated in the fiber base material. Any fiber such as carbon fiber or glass fiber is used as the fiber base material.
  • FIG. 1 shows each step in pressurizing and cooling the thermoplastic composite material 50 using the pressurizing and cooling mechanism 1.
  • the pressure cooling mechanism 1 pressurizes and cools the thermoplastic composite material 50, which moves from the left side to the right side of the paper surface at a predetermined speed, by the molding jig 5.
  • the molding jig 5 has a first jig 10 and a second jig 20 facing each other with the thermoplastic composite material 50 sandwiched therein.
  • the first jig 10 and the second jig 20 face each other in a direction orthogonal to the moving direction of the thermoplastic composite material 50 (in the case of the figure, the vertical direction).
  • thermoplastic composite material component 52 As shown in FIGS. 2 and 3, when the thermoplastic composite material 50 is sandwiched and pressurized and cooled, the shape of the thermoplastic composite material component 52 (desired) is formed between the first jig 10 and the second jig 20. A gap 40 corresponding to the shape of the above) is formed. In the figure, in order to shape a long thermoplastic composite component 52 having a hat-shaped cross-sectional shape, a gap 40 having the same hat-shaped cross-sectional shape is formed. As a result, the thermoplastic composite material 50 sandwiched between the first jig 10 and the second jig 20 is formed into the thermoplastic composite material component 52 having a desired shape.
  • the first jig 10 and the second jig 20 have a predetermined length dimension in the moving direction of the thermoplastic composite material 50. This dimension corresponds to the length dimension of the thermoplastic composite component 52 (the portion cross-hatched in the figure). Thereby, one thermoplastic composite material component 52 can be shaped by one molding jig 5.
  • the thermoplastic composite material 50 moves at a predetermined speed between the first jig 10 and the second jig 20 separated from each other with a sufficient distance for entering.
  • the thermoplastic composite material 50 enters.
  • the thermoplastic composite material 50 is heated by the forming portion 60 on the upstream side in the moving direction and is preformed so as to have a desired shape or a shape similar to the desired shape.
  • thermoplastic composite material 50 when the thermoplastic composite material 50 has entered the length dimension of the first jig 10 and the second jig 20 or more, the first jig 10 and the second jig 20 come into contact with each other.
  • the thermoplastic composite material 50 is sandwiched by moving so as to approach each other. As a result, the thermoplastic composite material 50 is pressurized and cooling is started.
  • the first jig 10 and the second jig 20 are preferably made of a material having excellent heat resistance and a large heat capacity (for example, a metal such as stainless steel). This is because the heated thermoplastic composite material 50 can be efficiently cooled.
  • thermoplastic composite material 50 can be cooled more efficiently.
  • the first jig 10 and the second jig 20 move the thermoplastic composite material 50 in a state of sandwiching the thermoplastic composite material 50 (that is, in a pressure-cooled state). It moves in the same direction and at the same speed for a predetermined section (pressurized cooling step). As a result, the thermoplastic composite material 50 can be continuously pressurized and cooled while being moved in a predetermined section.
  • step D of FIG. 1 when the thermoplastic composite material 50 is sufficiently pressurized and cooled, the first jig 10 and the second jig 20 move so as to be separated from each other. As a result, the pressurized cooling is completed, and the thermoplastic composite material 50 is formed into the thermoplastic composite material component 52 having a desired shape and a predetermined length dimension.
  • first jig 10 and the second jig 20 After the first jig 10 and the second jig 20 are separated from each other, they move in the direction opposite to the moving direction of the thermoplastic composite material 50 and return to the position shown in step A of FIG. While returning to the position shown in step A, the first jig 10 and the second jig 20 heated by the thermoplastic composite material 50 are cooled.
  • the first jig 10 and the second jig 20 do not necessarily have to return to the positions shown in step A of FIG. 1, and may return to positions different from the positions shown in step A. ..
  • the timing at which the first jig 10 and the second jig 20 approach each other that is, the timing at which pressure cooling is disclosed, and the timing at which the first jig 10 and the second jig 20 separate from each other, that is, addition.
  • the timing at which pressure cooling is completed is controlled by a control unit 100 (not shown), for example, as follows.
  • the control unit 100 pressurizes based on the pressurization / cooling time determined in advance according to the specifications of the pressurization / cooling mechanism 1, the shapes of the thermoplastic composite material 50 and the thermoplastic composite material component 52, physical properties and other external factors. Control cooling.
  • thermoplastic composite material 50 sandwiched between the first jig 10 and the second jig 20 is provided, and the control unit 100 sets the temperature of the sandwiched thermoplastic composite material 50 in advance. Pressurized cooling may be completed when the temperature drops to the set temperature.
  • it may be a combination of time-based pressurization / cooling control and temperature-based pressurization / cooling control.
  • the control unit 100 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. Then, as an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.
  • the program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • thermoplastic composite material 50 is continuously pressurized and cooled while being moved, and the thermoplastic composite material component 52 is continuously shaped.
  • thermoplastic composite material 50 there may be a plurality of molding jigs 5 having the first jig 10 and the second jig 20.
  • the plurality of molding jigs 5 alternately cool the thermoplastic composite material 50
  • the other molding jig 5 is immediately after one molding jig 5 (immediately after the downstream side in the moving direction).
  • the moving thermoplastic composite material 50 can be pressurized and cooled without gaps.
  • a sufficient cooling time is provided for the first jig 10 and the second jig 20 which have been heated by the thermoplastic composite material 50. Can be secured.
  • first jig 10 and the second jig 20 may be configured as follows. As shown in FIGS. 4 and 5, the first jig 10 will be described as an example.
  • the first jig 10 has a base tool portion 12 and a molding mold portion 14 attached to the base tool portion 12. doing.
  • the base tool portion 12 is a member having a predetermined length dimension, and can hold the molding mold portion 14.
  • the base tool portion 12 is a common component regardless of the shape of the thermoplastic composite material component 52, regardless of the shape of the thermoplastic composite material component 52.
  • the molding die portion 14 is a portion that substantially acts as a molding die, and its shape differs depending on the shape of the thermoplastic composite material part 52 to be shaped (see FIG. 5). Specifically, the molding die portion 14 has a shape of a gap 40 formed when the thermoplastic composite material 50 is sandwiched and opposed to each other together with the molding member of the other party, depending on the shape of the thermoplastic composite material component 52 to be shaped. Configured differently.
  • a plurality of types of molding mold portions 14 having different shapes are prepared in advance, and by appropriately exchanging them, a plurality of types of thermoplastic composite material parts 52 can be efficiently shaped by using the same pressure cooling mechanism 1. can do. Further, by stocking a plurality of molding mold portions 14 of the same type, maintenance of the other molding mold portions 14 can be performed while one molding mold portion 14 is being used.
  • the maintainability of the first jig 10 and the productivity of the thermoplastic composite material component 52 can be improved. Can be done.
  • the molding die portion 14 may be divided into a plurality of blocks along the length direction of the base tool portion 12 (the left-right direction on the paper surface in the drawing). At this time, the length direction is along the moving direction of the thermoplastic composite material 50. In this case, the molding die portion 14 is used as follows.
  • the molding die portion 14 can be repaired by partially replacing the block.
  • the molding mold portion 14 of the first jig 10 has been described above, the molding mold portion of the second jig 20 has the same configuration.
  • the forming jig 5 has a first jig 10 and a second jig 20 having a predetermined length of the thermoplastic composite material component 52, and the first jig 10 and the second jig 20
  • the second jig 20 faces the thermoplastic composite material 50 with the thermoplastic composite material 50 sandwiched in a direction orthogonal to the moving direction in a predetermined section along the moving direction of the thermoplastic composite material 50, and a gap 40 formed when the second jig 20 faces the moving direction. Is the desired shape.
  • thermoplastic composite material 50 sandwiched between the first jig 10 and the second jig 20 in a predetermined section is pressurized and cooled in the formed gap 40 to be shaped into a desired shape and is thermoplastic. It becomes a composite material component 52.
  • first jig 10 and the second jig 20 in the predetermined section move in the moving direction at the same speed as the thermoplastic composite material 50.
  • the thermoplastic composite material 50 can be continuously pressurized and cooled while being moved.
  • the first jig 10 and the second jig 20 are forcibly cooled, and the thermoplastic composite is heated more efficiently.
  • the material 50 can be pressurized and cooled.
  • a guide (guide member) 70 may be provided between the outlet of the forming portion 60 (outlet of the forming portion 61) and the position of the molding jig 5 for starting the pressurizing cooling.
  • the guide 70 is a member that guides the thermoplastic composite material 50 coming out of the forming portion outlet 61 so as to enter an appropriate position of the molding jig 5.
  • the guide 70 is configured to enter the recess formed inside the thermoplastic composite material 50 formed into a hat shape by the forming portion 60.
  • the cross section of the guide 70 expands from the upstream side to the downstream side along the moving direction of the thermoplastic composite material 50, and at least the most downstream portion of the guide 70 is formed on the thermoplastic composite material 50.
  • the shape corresponds to the recessed portion.
  • thermoplastic composite material 50 having a Z-shaped cross-sectional shape if a recess is formed inside by the side wall of the thermoplastic composite material 50, the recess is formed.
  • the guide 70 according to the shape can be inserted.
  • the pressurizing / cooling mechanism, molding jig, and shaping method of the present embodiment described above are grasped as follows, for example.
  • the pressure-cooling mechanism (1) pressurizes and cools a heated thermoplastic composite material (50) moving in a predetermined direction with a molding jig (5) to obtain a desired shape and shape.
  • the first jig (10) and the second jig (20) have a second jig (20) and the second jig (20) in a predetermined section along the moving direction of the thermoplastic composite material (50).
  • thermoplastic composite material (50) is sandwiched and opposed to each other in a direction orthogonal to the moving direction, and the gap (40) formed when the thermoplastic composite material (50) is opposed to each other has the desired shape.
  • the second jig (20) moves in the moving direction at the same speed as the moving speed of the thermoplastic composite material (50) in the predetermined section.
  • the forming jig (5) is the first jig (10) and the second jig having a predetermined length of the thermoplastic composite material part (52).
  • the first jig (10) and the second jig (20) have (20) and heat in a direction orthogonal to the moving direction in a predetermined section along the moving direction of the thermoplastic composite material (50).
  • the plastic composite material (50) is sandwiched between them, and the gap (40) formed when they face each other has a desired shape.
  • thermoplastic composite material (50) sandwiched between the first jig (10) and the second jig (20) in the predetermined section is pressurized and cooled in the formed gap (40), which is desired. It is shaped into the shape of the thermoplastic composite material part (52).
  • thermoplastic composite material (50) can be continuously pressurized and cooled while being moved.
  • the first jig (10) and the second jig (20) are preferably made of a material having excellent heat resistance and a large heat capacity (for example, a metal such as stainless steel). As a result, the thermoplastic composite material (50) can be efficiently cooled.
  • the first jig (10) and the second jig (20) each have a predetermined length of the base tool portion (12). ), And a molding die portion (14) attached to the base tool portion (12) and sandwiching the thermoplastic composite material (50).
  • the molding die portion (14) that substantially acts as a molding die for shaping into a desired shape can be attached and detached. Therefore, maintainability and productivity can be improved.
  • the molding mold portion (14) is divided in the length direction of the base tool portion (12).
  • the shape of the gap (40) can be partially changed. Moreover, the dimension of the gap (40) in the length direction can be easily changed.
  • the heated thermoplastic composite material (50) is formed with a recess in the shape of the cross section viewed from the moving direction, and the heat is generated.
  • the plastic composite material (50) is provided with a guide member (70) installed on the upstream side of the predetermined section in the moving direction and enters the recess, and the guide member (70) is provided from the upstream side along the moving direction. It expands toward the downstream side, and the shape of the downstream side corresponds to the shape of the recessed portion.
  • the heated thermoplastic composite material has a recess formed in the shape of the cross section viewed from the moving direction, and the moving direction of the thermoplastic composite material (50).
  • the guide member (70) is installed on the upstream side of the predetermined section in the above section and is provided with a guide member (70) that enters the recessed portion.
  • the guide member (70) expands from the upstream side to the downstream side along the moving direction and has a shape on the downstream side. It corresponds to the shape of the recess.
  • the thermoplastic composite material (50) is guided to a fixed position by the guide member (70).
  • the "fixed position” referred to here is a position where the thermoplastic composite material (50) can appropriately enter the molding jig (5). That is, the guide member (70) is a member for preventing the axial center deviation in the moving direction of the thermoplastic composite material (50).
  • the pressurized cooling mechanism (1) includes a cooling mechanism for cooling the first jig (10) and / or the second jig (20).
  • the first jig (10) and / or the second jig (20) is forcibly cooled and the thermoplastic composite material is heated more efficiently. (50) can be pressurized and cooled.
  • thermoplastic composite material (50) is provided by the first jig (10) and the second jig (20) for a preset time.
  • a control unit (100) is provided which separates the first jig (10) and the second jig (20) from the thermoplastic composite material (50).
  • the first jig (10) and the second jig (20) that have finished pressurizing and cooling are, for example, a thermoplastic composite material (50) in order to pressurize and cool the heated thermoplastic composite material (50) again. ) Is moved to the position where it is sandwiched.
  • the pressurization / cooling time (that is, a preset time) may be determined according to the specifications of the apparatus, or depends on the shape, physical properties, and other external factors of the thermoplastic composite material (50). It may be decided as appropriate.
  • the thermoplastic composite material (1) is provided by the first jig (10) and the second jig (20) until the temperature drops to a preset temperature.
  • a control unit (100) is provided which sandwiches the 50) and then separates the first jig (10) and the second jig (20) from the thermoplastic composite material (50).
  • the first jig (10) and the second jig (20) that have finished pressurizing and cooling are, for example, a thermoplastic composite material (50) in order to pressurize and cool the heated thermoplastic composite material (50) again. ) Is moved to the position where it is sandwiched.
  • the temperature of the thermoplastic composite material (50) is immediately measured by, for example, a temperature sensor attached to the first jig (10) and / or the second jig (20).
  • the molding jig (5) is a thermoplastic composite material component (52) having a desired shape and a predetermined length of a heated thermoplastic composite material (50) moving in a predetermined direction. ), which sandwiches the base tool portion (12) having the predetermined length and the thermoplastic composite material (50) attached to the base tool portion (12). It has a molding mold portion (14), and the molding mold portion (14) is divided in the length direction of the base tool portion (12).
  • the molding jig according to this aspect, only the molding mold portion (14) that substantially acts as a molding mold for shaping into a desired shape can be attached to and detached from the base tool portion (12). .. Therefore, maintainability and productivity can be improved. Further, the molding die portion (14) is divided in the length direction of the base tool portion (12). Thereby, the shape of the gap (40) can be partially changed. Moreover, the dimension of the gap (40) in the length direction can be easily changed.
  • the heated thermoplastic composite material (50) moving in a predetermined direction is pressurized and cooled by a molding jig (5) to have a desired shape and a predetermined length.
  • a shaping method of the pressure cooling mechanism (1) that shapes the thermoplastic composite material part (52), and the molding jig (5) is the first jig (5) having the predetermined length.
  • It has a second jig (10) and a second jig (10), and the first jig (10) and the second jig (10) have a predetermined section along the moving direction of the thermoplastic composite material (50).
  • thermoplastic composite material (50) is sandwiched and opposed to each other in a direction orthogonal to the moving direction, and the gap (40) formed when the thermoplastic composite material (50) is opposed to each other has the desired shape.
  • the second jig (20) include a pressure cooling step in which the thermoplastic composite material (50) moves in the moving direction at the same speed as the moving speed of the thermoplastic composite material (50) in the predetermined section.
  • the first jig (10) and the second jig (20) are the base tool portion (12) having the predetermined length and the base tool portion (12), respectively.
  • Molding jig 10 1st jig 12 Base tool part 14 Molding mold part 20 2nd jig 40 Gap 50 Thermoplastic composite material 52 Thermoplastic composite material part 60 Forming part 61 Forming part outlet 70 Guide ( Guide member) 100 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Provided are: a compression cooling mechanism capable of continuously compressing and cooling while moving a thermoplastic composite material; a molding jig; and a shaping method. A compression cooling mechanism (1) for compressing and cooling, by using a molding jig (5), a heated thermoplastic composite material (50) which is moving in a prescribed direction, and shaping the same into a thermoplastic composite component (52) having a prescribed shape and prescribed length, wherein: the molding jig (5) has a first jig (10) and a second jig (20) which have a prescribed length; the first jig (10) and the second jig (20) face one another, with the thermoplastic composite material (50) interposed therebetween, in a direction which is perpendicular to the movement direction in a prescribed interval along the direction of movement of the thermoplastic composite material (50), in a manner such that the gap (40) formed therebetween when facing one another is a desired shape; and the first jig (10) and the second jig (20) move in the movement direction at the same speed as the movement speed of the thermoplastic composite material (50) while in said prescribed interval.

Description

加圧冷却機構、成形治具及び賦形方法Pressurized cooling mechanism, molding jig and shaping method
 本開示は、加圧冷却機構、成形治具及び賦形方法に関する。 The present disclosure relates to a pressure cooling mechanism, a molding jig, and a shaping method.
 近年、熱可塑性複合材等の複合材の高速成形技術へのニーズが高まっている。複合材の成形方法としては、例えば特許文献1(米国特許出願公開第2018/0304503号明細書)に開示されているものがある。 In recent years, there has been an increasing need for high-speed molding technology for composite materials such as thermoplastic composite materials. As a method for molding a composite material, for example, there is one disclosed in Patent Document 1 (US Patent Application Publication No. 2018/034053).
米国特許出願公開第2018/0304503号明細書U.S. Patent Application Publication No. 2018/034053
 航空機部品、建築資材などの分野においても、例えば熱可塑性複合材を使用した長尺部品の高速成形技術へのニーズが高まっている。 In fields such as aircraft parts and building materials, there is an increasing need for high-speed molding technology for long parts using, for example, thermoplastic composite materials.
 熱可塑性複合材を賦形するにあたり、加圧冷却を連続的なプレス加工で行うことが考えられる。しかしながら、プレス方式では、冷却が完了するまで所定位置で金型を保持する必要があり、この間は熱可塑性複合材を移動させれらない。このため、高速成形技術へのニーズに十分に対応できない可能性がある。 When shaping the thermoplastic composite material, it is conceivable to perform pressure cooling by continuous press working. However, in the press method, it is necessary to hold the die in a predetermined position until cooling is completed, during which the thermoplastic composite cannot be moved. Therefore, it may not be possible to sufficiently meet the needs for high-speed molding technology.
 このような課題を解消するために、循環する無端ベルトそのものを型として、2つのベルトによって熱可塑性複合材を挟み込むことが考えられる。しかし、型にある程度の高さ寸法が必要な場合(すなわち、ベルトにある程度の厚みが必要な場合)、折り返し部においてベルトの内側と外側とで周長差が生じてベルトが破断する可能性がある。このため、無端ベルトそのものを型とする方法は現実的ではない。 In order to solve such a problem, it is conceivable to use the circulating endless belt itself as a mold and sandwich the thermoplastic composite material between the two belts. However, if the mold requires a certain height dimension (that is, the belt needs a certain thickness), there is a possibility that the belt will break due to a difference in circumference between the inside and outside of the belt at the folded part. is there. Therefore, the method of using the endless belt itself as a mold is not realistic.
 本開示はこのような事情に鑑みてなされたものであって、熱可塑性複合材を移動させたまま連続的に加圧冷却できる加圧冷却機構、成形治具及び賦形方法を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and provides a pressurizing cooling mechanism, a molding jig, and a shaping method capable of continuously pressurizing and cooling the thermoplastic composite material while moving the thermoplastic composite material. The purpose.
 上記課題を解決するために、本開示の加圧冷却機構、成形治具及び賦形方法は以下の手段を採用する。
 すなわち、本開示の一態様に係る複合材部品の加圧冷却機構は、所定方向に移動している加熱された熱可塑性複合材を成形治具によって加圧冷却して所望の形状かつ所定長さの熱可塑性複合材部品に賦形する加圧冷却機構であって、前記成形治具は、前記所定長さとされている第1治具と第2治具とを有し、前記第1治具及び前記第2治具は、前記熱可塑性複合材の移動方向に沿った所定区間において前記移動方向と直交する方向にて前記熱可塑性複合材を挟み込んで対向するとともに、対向したときに形成される隙間が前記所望の形状とされ、前記第1治具及び前記第2治具は、前記所定区間において前記熱可塑性複合材の移動速度と同速度で前記移動方向に移動する。
In order to solve the above problems, the following means are adopted for the pressure cooling mechanism, the molding jig and the shaping method of the present disclosure.
That is, the pressure-cooling mechanism of the composite material component according to one aspect of the present disclosure pressurizes and cools the heated thermoplastic composite material moving in a predetermined direction with a molding jig to obtain a desired shape and a predetermined length. It is a pressure-cooling mechanism that shapes the thermoplastic composite material part of the above, and the molding jig has a first jig and a second jig having the predetermined length, and the first jig. And the second jig is formed when the thermoplastic composite material is sandwiched and opposed to each other in a direction orthogonal to the moving direction in a predetermined section along the moving direction of the thermoplastic composite material. The gap is formed into the desired shape, and the first jig and the second jig move in the moving direction at the same speed as the moving speed of the thermoplastic composite material in the predetermined section.
 また、本開示の一態様に係る賦形方法は、所定方向に移動している加熱された熱可塑性複合材を成形治具によって加圧冷却して所望の形状かつ所定長さの熱可塑性複合材部品に賦形する賦形方法であって、前記成形治具は、前記所定長さとされている第1治具と第2治具とを有し、前記第1治具及び前記第2治具は、前記熱可塑性複合材の移動方向に沿った所定区間において前記移動方向と直交する方向にて前記熱可塑性複合材を挟み込んで対向するとともに、対向したときに形成される隙間が前記所望の形状とされ、前記第1治具及び前記第2治具が、前記所定区間において前記熱可塑性複合材の移動速度と同速度で前記移動方向に移動する加圧冷却工程を含む。 Further, in the shaping method according to one aspect of the present disclosure, the heated thermoplastic composite material moving in a predetermined direction is pressurized and cooled by a molding jig to obtain a thermoplastic composite material having a desired shape and a predetermined length. A shaping method for shaping a part, the molding jig has a first jig and a second jig having the predetermined length, and the first jig and the second jig. In a predetermined section along the moving direction of the thermoplastic composite material, the thermoplastic composite material is sandwiched and opposed to each other in a direction orthogonal to the moving direction, and the gap formed when facing each other has the desired shape. The first jig and the second jig include a pressurizing and cooling step in which the first jig and the second jig move in the moving direction at the same speed as the moving speed of the thermoplastic composite material in the predetermined section.
 本開示に係る加圧冷却機構、成形治具及び賦形方法によれば、熱可塑性複合材を移動させたまま連続的に加圧冷却することができる。 According to the pressure cooling mechanism, the molding jig, and the shaping method according to the present disclosure, the thermoplastic composite material can be continuously pressure-cooled while being moved.
本開示の一実施形態に係る加圧冷却機構を使用した熱可塑性複合材の加圧冷却における各工程を示した図である。It is a figure which showed each process in the pressure-cooling of a thermoplastic composite material using the pressure-cooling mechanism which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る成形治具及び成形治具によって形成された隙間を示した横断面図である。It is sectional drawing which showed the molding jig which concerns on one Embodiment of this disclosure, and the gap formed by the molding jig. 本開示の一実施形態に係る成形治具及び成形治具に挟み込まれた熱可塑性複合材部品(熱可塑性複合材)を示した横断面図である。It is sectional drawing which showed the molding jig which concerns on one Embodiment of this disclosure, and the thermoplastic composite material component (thermoplastic composite material) sandwiched between the molding jigs. 本開示の一実施形態に係る第1治具を示した図である。It is a figure which showed the 1st jig which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る第1治具において縦断面形状が異なる第1治具を示した図である。It is a figure which showed the 1st jig which has a different vertical cross-sectional shape in the 1st jig which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る分割された成形型部を示した図である。It is a figure which showed the divided molding part which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る分割された成形型部を示した図である。It is a figure which showed the divided molding part which concerns on one Embodiment of this disclosure. ガイドが設置された本開示の一実施形態に係る加圧冷却機構を示した図である。It is a figure which showed the pressurizing cooling mechanism which concerns on one Embodiment of this disclosure which a guide was installed. 図8に示すガイドの概略構成図を示した斜視図である。It is a perspective view which showed the schematic block diagram of the guide shown in FIG. 本開示の一実施形態に係る熱可塑性複合材及びそれに対応したガイドの他の例を示した図である。It is a figure which showed the thermoplastic composite material which concerns on one Embodiment of this disclosure, and other examples of the guide corresponding thereto.
 以下、本開示の一実施形態に係る加圧冷却機構、成形治具及び賦形方法について、図を参照して説明する。 Hereinafter, the pressure cooling mechanism, the molding jig, and the shaping method according to the embodiment of the present disclosure will be described with reference to the drawings.
 まず、加圧冷却機構1の概要について説明する。 First, the outline of the pressurized cooling mechanism 1 will be described.
 加圧冷却機構1は、フォーミング部60にて加熱され所望の形状あるいは所望の形状に類似した形状となるように成形された熱可塑性複合材50を、成形治具5によって加圧冷却することで所望の形状の完成部品(熱可塑性複合材部品52)に賦形するものである。 The pressure cooling mechanism 1 pressurizes and cools the thermoplastic composite material 50, which is heated by the forming unit 60 and formed into a desired shape or a shape similar to the desired shape, by the molding jig 5. It is shaped into a finished part (thermoplastic composite part 52) having a desired shape.
 熱可塑性複合材50は、例えば、繊維方向が一方向に揃えられた繊維基材及び繊維基材に含侵された樹脂によって構成される強化繊維シートの積層体とさる。繊維基材には、炭素繊維、ガラス繊維等の任意の繊維が用いられる。 The thermoplastic composite material 50 is, for example, a laminate of a fiber base material in which the fiber directions are aligned in one direction and a reinforcing fiber sheet composed of a resin impregnated in the fiber base material. Any fiber such as carbon fiber or glass fiber is used as the fiber base material.
 図1には、加圧冷却機構1を使用した熱可塑性複合材50の加圧冷却における各工程が示されている。 FIG. 1 shows each step in pressurizing and cooling the thermoplastic composite material 50 using the pressurizing and cooling mechanism 1.
 加圧冷却機構1は、紙面左側から右側に向かって所定速度で移動する熱可塑性複合材50を成形治具5によって加圧冷却する。 The pressure cooling mechanism 1 pressurizes and cools the thermoplastic composite material 50, which moves from the left side to the right side of the paper surface at a predetermined speed, by the molding jig 5.
 図1から図3に示すように、成形治具5は、熱可塑性複合材50を挟み込んで対向する第1治具10と第2治具20とを有している。第1治具10と第2治具20とは、熱可塑性複合材50の移動方向と直交する方向(同図の場合、上下方向)にて対向している。 As shown in FIGS. 1 to 3, the molding jig 5 has a first jig 10 and a second jig 20 facing each other with the thermoplastic composite material 50 sandwiched therein. The first jig 10 and the second jig 20 face each other in a direction orthogonal to the moving direction of the thermoplastic composite material 50 (in the case of the figure, the vertical direction).
 図2及び図3に示すように、熱可塑性複合材50を挟み込んで加圧冷却するとき、第1治具10と第2治具20との間には熱可塑性複合材部品52の形状(所望の形状)に対応した隙間40が形成される。同図においては、横断面形状がハット型とされた長尺の熱可塑性複合材部品52を賦形するために、同じハット型の横断面形状とされた隙間40が形成されている。これによって、第1治具10と第2治具20とに挟み込まれた熱可塑性複合材50が所望の形状の熱可塑性複合材部品52に賦形される。 As shown in FIGS. 2 and 3, when the thermoplastic composite material 50 is sandwiched and pressurized and cooled, the shape of the thermoplastic composite material component 52 (desired) is formed between the first jig 10 and the second jig 20. A gap 40 corresponding to the shape of the above) is formed. In the figure, in order to shape a long thermoplastic composite component 52 having a hat-shaped cross-sectional shape, a gap 40 having the same hat-shaped cross-sectional shape is formed. As a result, the thermoplastic composite material 50 sandwiched between the first jig 10 and the second jig 20 is formed into the thermoplastic composite material component 52 having a desired shape.
 図1に示すように、第1治具10及び第2治具20は、熱可塑性複合材50の移動方向において、所定の長さ寸法を有している。この寸法は、熱可塑性複合材部品52(同図においてクロスハッチングされている部分)の長さ寸法に対応している。これによって、1つの成形治具5で1つの熱可塑性複合材部品52を賦形することができる。 As shown in FIG. 1, the first jig 10 and the second jig 20 have a predetermined length dimension in the moving direction of the thermoplastic composite material 50. This dimension corresponds to the length dimension of the thermoplastic composite component 52 (the portion cross-hatched in the figure). Thereby, one thermoplastic composite material component 52 can be shaped by one molding jig 5.
 次に、加圧冷却機構1を使用した熱可塑性複合材50の加圧冷却における各工程について説明する。 Next, each step in the pressure cooling of the thermoplastic composite material 50 using the pressure cooling mechanism 1 will be described.
 図1の工程Aに示すように、熱可塑性複合材50が進入するに十分な間隔を持って互いに離間された第1治具10と第2治具20との間に、所定速度で移動する熱可塑性複合材50が進入する。このとき、熱可塑性複合材50は、移動方向の上流側にあるフォーミング部60にて加熱され所望の形状あるいは所望の形状に類似した形状となるように予め成形されている。 As shown in step A of FIG. 1, the thermoplastic composite material 50 moves at a predetermined speed between the first jig 10 and the second jig 20 separated from each other with a sufficient distance for entering. The thermoplastic composite material 50 enters. At this time, the thermoplastic composite material 50 is heated by the forming portion 60 on the upstream side in the moving direction and is preformed so as to have a desired shape or a shape similar to the desired shape.
 図1の工程Bに示すように、熱可塑性複合材50が第1治具10及び第2治具20の長さ寸法以上進入したところで、第1治具10と第2治具20とは互いに接近するように移動して熱可塑性複合材50を挟み込む。これによって、熱可塑性複合材50が加圧されるとともに冷却が開始される。 As shown in step B of FIG. 1, when the thermoplastic composite material 50 has entered the length dimension of the first jig 10 and the second jig 20 or more, the first jig 10 and the second jig 20 come into contact with each other. The thermoplastic composite material 50 is sandwiched by moving so as to approach each other. As a result, the thermoplastic composite material 50 is pressurized and cooling is started.
 第1治具10及び第2治具20は、耐熱性に優れ熱容量の大きい材料(例えばステンレス等の金属)とされることが好ましい。これによって、加熱された熱可塑性複合材50を効率的に冷却することができるからである。 The first jig 10 and the second jig 20 are preferably made of a material having excellent heat resistance and a large heat capacity (for example, a metal such as stainless steel). This is because the heated thermoplastic composite material 50 can be efficiently cooled.
 また、第1治具10及び第2治具20を冷却する冷却機構(図示せず)を備えてもよく、この場合、より効率的に熱可塑性複合材50を冷却することができる。 Further, a cooling mechanism (not shown) for cooling the first jig 10 and the second jig 20 may be provided, and in this case, the thermoplastic composite material 50 can be cooled more efficiently.
 図1の工程Cに示すように、第1治具10及び第2治具20は、熱可塑性複合材50を挟み込んだ状態(すなわち加圧冷却した状態)で、熱可塑性複合材50の移動と同方向に、かつ、同速度で所定区間だけ移動する(加圧冷却工程)。これによって、所定区間において熱可塑性複合材50を移動させたまま連続的に加圧冷却することができる。 As shown in step C of FIG. 1, the first jig 10 and the second jig 20 move the thermoplastic composite material 50 in a state of sandwiching the thermoplastic composite material 50 (that is, in a pressure-cooled state). It moves in the same direction and at the same speed for a predetermined section (pressurized cooling step). As a result, the thermoplastic composite material 50 can be continuously pressurized and cooled while being moved in a predetermined section.
 図1の工程Dに示すように、熱可塑性複合材50が十分に加圧冷却されたとき、第1治具10と第2治具20とは互いに離間するように移動する。これによって、加圧冷却が終了して、熱可塑性複合材50が所望の形状かつ所定の長さ寸法の熱可塑性複合材部品52に賦形されることとなる。 As shown in step D of FIG. 1, when the thermoplastic composite material 50 is sufficiently pressurized and cooled, the first jig 10 and the second jig 20 move so as to be separated from each other. As a result, the pressurized cooling is completed, and the thermoplastic composite material 50 is formed into the thermoplastic composite material component 52 having a desired shape and a predetermined length dimension.
 第1治具10と第2治具20とは、互いに離間した後、熱可塑性複合材50の移動方向とは反対方向に移動して図1の工程Aに示された位置に戻る。工程Aに示された位置に戻っている間に、熱可塑性複合材50によって昇温された第1治具10及び第2治具20は冷却される。
 なお、第1治具10と第2治具20とは、必ずしも図1の工程Aに示された位置に戻らなくてもよく、工程Aに示された位置とは異なる位置に戻ってもよい。
After the first jig 10 and the second jig 20 are separated from each other, they move in the direction opposite to the moving direction of the thermoplastic composite material 50 and return to the position shown in step A of FIG. While returning to the position shown in step A, the first jig 10 and the second jig 20 heated by the thermoplastic composite material 50 are cooled.
The first jig 10 and the second jig 20 do not necessarily have to return to the positions shown in step A of FIG. 1, and may return to positions different from the positions shown in step A. ..
 第1治具10と第2治具20とが互いに接近するタイミング、すなわち加圧冷却が開示されるタイミング、及び、第1治具10と第2治具20とが互いに離間するタイミング、すなわち加圧冷却が完了するタイミングは、図示しない制御部100によって例えば次のように制御される。 The timing at which the first jig 10 and the second jig 20 approach each other, that is, the timing at which pressure cooling is disclosed, and the timing at which the first jig 10 and the second jig 20 separate from each other, that is, addition. The timing at which pressure cooling is completed is controlled by a control unit 100 (not shown), for example, as follows.
 制御部100は、加圧冷却機構1の仕様、熱可塑性複合材50及び熱可塑性複合材部品52の形状、物性その他の外的要因に応じて予め決定された加圧冷却時間に基づいて加圧冷却を制御する。 The control unit 100 pressurizes based on the pressurization / cooling time determined in advance according to the specifications of the pressurization / cooling mechanism 1, the shapes of the thermoplastic composite material 50 and the thermoplastic composite material component 52, physical properties and other external factors. Control cooling.
 また、第1治具10と第2治具20とに挟み込まれた熱可塑性複合材50の温度を測定可能なセンサを設け、制御部100は、挟み込まれた熱可塑性複合材50の温度が予め設定された温度まで下がったときに加圧冷却を完了してもよい。 Further, a sensor capable of measuring the temperature of the thermoplastic composite material 50 sandwiched between the first jig 10 and the second jig 20 is provided, and the control unit 100 sets the temperature of the sandwiched thermoplastic composite material 50 in advance. Pressurized cooling may be completed when the temperature drops to the set temperature.
 また、時間に基づいた加圧冷却の制御と温度に基づいた加圧冷却の制御との組合せであってもよい。 Further, it may be a combination of time-based pressurization / cooling control and temperature-based pressurization / cooling control.
 制御部100は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The control unit 100 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. Then, as an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
 図1の工程Aから工程Dを繰り返すことで、熱可塑性複合材50を移動させたまま連続的に加圧冷却して熱可塑性複合材部品52を連続的に賦形する。 By repeating steps A to D in FIG. 1, the thermoplastic composite material 50 is continuously pressurized and cooled while being moved, and the thermoplastic composite material component 52 is continuously shaped.
 なお、第1治具10と第2治具20とを有する成形治具5は複数あってもよい。この場合、複数の成形治具5が交互に熱可塑性複合材50を冷却することとなるので、一の成形治具5の直後(移動方向において下流側の直後)に他の成形治具5を配置することができる。これによって、移動する熱可塑性複合材50を隙間なく加圧冷却することができる。また、図1の工程Aに示された位置まで戻るための時間を確保できるので、熱可塑性複合材50によって昇温した第1治具10及び第2治具20に対して十分な冷却時間を確保することができる。 Note that there may be a plurality of molding jigs 5 having the first jig 10 and the second jig 20. In this case, since the plurality of molding jigs 5 alternately cool the thermoplastic composite material 50, the other molding jig 5 is immediately after one molding jig 5 (immediately after the downstream side in the moving direction). Can be placed. As a result, the moving thermoplastic composite material 50 can be pressurized and cooled without gaps. Further, since the time for returning to the position shown in the step A of FIG. 1 can be secured, a sufficient cooling time is provided for the first jig 10 and the second jig 20 which have been heated by the thermoplastic composite material 50. Can be secured.
 また、第1治具10及び第2治具20は、次のよう構成されてもよい。
 図4及び図5に示すように、第1治具10を例にして説明すると、第1治具10は、ベースツール部12と、ベースツール部12に取り付けられた成形型部14とを有している。
Further, the first jig 10 and the second jig 20 may be configured as follows.
As shown in FIGS. 4 and 5, the first jig 10 will be described as an example. The first jig 10 has a base tool portion 12 and a molding mold portion 14 attached to the base tool portion 12. doing.
 ベースツール部12は、所定の長さ寸法とされた部材とされ、成形型部14を保持することができる。ベースツール部12は、熱可塑性複合材部品52の形状に依らず、どのような熱可塑性複合材部品52の形状であっても共通の部品とされる。 The base tool portion 12 is a member having a predetermined length dimension, and can hold the molding mold portion 14. The base tool portion 12 is a common component regardless of the shape of the thermoplastic composite material component 52, regardless of the shape of the thermoplastic composite material component 52.
 成形型部14は、実質的に成形型として作用する部分であって、賦形したい熱可塑性複合材部品52の形状に依ってその形状が異なる(図5参照)。詳細には、成形型部14は、賦形したい熱可塑性複合材部品52の形状に依って、相手方の成形部材とともに熱可塑性複合材50を挟み込んで対向したときに形成される隙間40の形状が異なるように構成される。 The molding die portion 14 is a portion that substantially acts as a molding die, and its shape differs depending on the shape of the thermoplastic composite material part 52 to be shaped (see FIG. 5). Specifically, the molding die portion 14 has a shape of a gap 40 formed when the thermoplastic composite material 50 is sandwiched and opposed to each other together with the molding member of the other party, depending on the shape of the thermoplastic composite material component 52 to be shaped. Configured differently.
 成形型部14は、形状の異なる複数種類が予め用意されており、それらを適宜交換することによって同一の加圧冷却機構1を用いて効率的に複数種類の熱可塑性複合材部品52を賦形することができる。また、同種類の成形型部14を複数ストックしておくことで、一の成形型部14を使用している間に他の成形型部14のメンテナンスを実施することができる。 A plurality of types of molding mold portions 14 having different shapes are prepared in advance, and by appropriately exchanging them, a plurality of types of thermoplastic composite material parts 52 can be efficiently shaped by using the same pressure cooling mechanism 1. can do. Further, by stocking a plurality of molding mold portions 14 of the same type, maintenance of the other molding mold portions 14 can be performed while one molding mold portion 14 is being used.
 このように、第1治具10をベースツール部12と成形型部14とに分けて構成することによって、第1治具10のメンテナンス性や熱可塑性複合材部品52の生産性を向上させることができる。 In this way, by separately configuring the first jig 10 into the base tool portion 12 and the molding mold portion 14, the maintainability of the first jig 10 and the productivity of the thermoplastic composite material component 52 can be improved. Can be done.
 なお、図6及び図7に示すように、成形型部14は、ベースツール部12の長さ方向(図において紙面左右方向)に沿って複数のブロックに分割されてもよい。このとき、長さ方向は、熱可塑性複合材50の移動方向に沿う。この場合、成形型部14は次のように使用される。 As shown in FIGS. 6 and 7, the molding die portion 14 may be divided into a plurality of blocks along the length direction of the base tool portion 12 (the left-right direction on the paper surface in the drawing). At this time, the length direction is along the moving direction of the thermoplastic composite material 50. In this case, the molding die portion 14 is used as follows.
 例えば、成形型部14を、図4の点線で示された縦断面形状から図5の点線で示された縦断面形状に変更したい場合、図6及び図7に示すように、断面形状に変更が生じた部分のブロックのみを交換することで断面形状の変更が可能となる。これによって、簡便に断面形状の変更をすることができる。また、ブロックの数によって長さ方向における隙間40の寸法を容易に変更することができる。 For example, when it is desired to change the molding die portion 14 from the vertical cross-sectional shape shown by the dotted line in FIG. 4 to the vertical cross-sectional shape shown by the dotted line in FIG. 5, change to the cross-sectional shape as shown in FIGS. 6 and 7. It is possible to change the cross-sectional shape by exchanging only the block of the part where the above occurs. Thereby, the cross-sectional shape can be easily changed. Further, the dimension of the gap 40 in the length direction can be easily changed depending on the number of blocks.
 また、仮に成形型部14が部分的に破損した場合であっても、ブロックの部分的な交換によって成形型部14を修復することができる。 Further, even if the molding die portion 14 is partially damaged, the molding die portion 14 can be repaired by partially replacing the block.
 以上、第1治具10の成形型部14について説明したが、第2治具20の成形型部についても同様の構成とされる。 Although the molding mold portion 14 of the first jig 10 has been described above, the molding mold portion of the second jig 20 has the same configuration.
 本実施形態によれば、以下の効果を奏する。
 加圧冷却機構1によれば、成形治具5は、熱可塑性複合材部品52の所定長さとされている第1治具10と第2治具20とを有し、第1治具10及び第2治具20は、熱可塑性複合材50の移動方向に沿った所定区間において移動方向と直交する方向にて熱可塑性複合材50を挟み込んで対向するとともに、対向したときに形成される隙間40が所望の形状とされている。これによって、所定区間にて第1治具10及び第2治具20に挟み込まれた熱可塑性複合材50は、形成された隙間40内で加圧冷却されて所望の形状に賦形され熱可塑性複合材部品52となる。
According to this embodiment, the following effects are obtained.
According to the pressure cooling mechanism 1, the forming jig 5 has a first jig 10 and a second jig 20 having a predetermined length of the thermoplastic composite material component 52, and the first jig 10 and the second jig 20 The second jig 20 faces the thermoplastic composite material 50 with the thermoplastic composite material 50 sandwiched in a direction orthogonal to the moving direction in a predetermined section along the moving direction of the thermoplastic composite material 50, and a gap 40 formed when the second jig 20 faces the moving direction. Is the desired shape. As a result, the thermoplastic composite material 50 sandwiched between the first jig 10 and the second jig 20 in a predetermined section is pressurized and cooled in the formed gap 40 to be shaped into a desired shape and is thermoplastic. It becomes a composite material component 52.
 また、所定区間における第1治具10及び第2治具20は、熱可塑性複合材50と同速度で移動方向に移動する。これによって、熱可塑性複合材50を移動させたまま連続的に加圧冷却することができる。 Further, the first jig 10 and the second jig 20 in the predetermined section move in the moving direction at the same speed as the thermoplastic composite material 50. As a result, the thermoplastic composite material 50 can be continuously pressurized and cooled while being moved.
 第1治具10及び第2治具20を冷却する冷却機構を備えている場合、第1治具10及び第2治具20が強制的に冷却され、より効率的に加熱された熱可塑性複合材50を加圧冷却することができる。 When a cooling mechanism for cooling the first jig 10 and the second jig 20 is provided, the first jig 10 and the second jig 20 are forcibly cooled, and the thermoplastic composite is heated more efficiently. The material 50 can be pressurized and cooled.
〔変形例〕
 図8に示すように、フォーミング部60の出口(フォーミング部出口61)から加圧冷却を開始する成形治具5の位置までの間にガイド(ガイド部材)70を設けてもよい。
[Modification example]
As shown in FIG. 8, a guide (guide member) 70 may be provided between the outlet of the forming portion 60 (outlet of the forming portion 61) and the position of the molding jig 5 for starting the pressurizing cooling.
 ガイド70は、フォーミング部出口61から出てきた熱可塑性複合材50を成形治具5の適切な位置に進入させるように案内する部材である。 The guide 70 is a member that guides the thermoplastic composite material 50 coming out of the forming portion outlet 61 so as to enter an appropriate position of the molding jig 5.
 図9に示すように、ガイド70は、フォーミング部60によってハット型に成形された熱可塑性複合材50の内側に形成された窪みに入り込むように構成されている。このとき、ガイド70は、熱可塑性複合材50の移動方向に沿って上流側から下流側に向けて断面が拡大しており、少なくともガイド70の最下流の部分は、熱可塑性複合材50に形成された窪み部に対応する形状となる。これによって、フォーミング部出口61側において熱可塑性複合材50を確実にガイド70に導くとともに、成形治具5側において適切な位置合わせすることができる。 As shown in FIG. 9, the guide 70 is configured to enter the recess formed inside the thermoplastic composite material 50 formed into a hat shape by the forming portion 60. At this time, the cross section of the guide 70 expands from the upstream side to the downstream side along the moving direction of the thermoplastic composite material 50, and at least the most downstream portion of the guide 70 is formed on the thermoplastic composite material 50. The shape corresponds to the recessed portion. As a result, the thermoplastic composite material 50 can be reliably guided to the guide 70 on the forming portion outlet 61 side, and can be appropriately aligned on the molding jig 5 side.
 なお、図10に示すように、例えば横断面形状がZ型に成形された熱可塑性複合材50の場合であっても、熱可塑性複合材50の側壁によって内側に窪みが形成されていればその形状に応じたガイド70を入り込ませることができる。 As shown in FIG. 10, for example, even in the case of the thermoplastic composite material 50 having a Z-shaped cross-sectional shape, if a recess is formed inside by the side wall of the thermoplastic composite material 50, the recess is formed. The guide 70 according to the shape can be inserted.
 以上の通り説明した本実施形態の加圧冷却機構、成形治具及び賦形方法は、例えば以下のように把握される。 The pressurizing / cooling mechanism, molding jig, and shaping method of the present embodiment described above are grasped as follows, for example.
 本開示の一態様に係る加圧冷却機構(1)は、所定方向に移動している加熱された熱可塑性複合材(50)を成形治具(5)によって加圧冷却して所望の形状かつ所定長さの熱可塑性複合材部品(52)に賦形する加圧冷却機構(1)であって、前記成形治具(5)は、前記所定長さとされている第1治具(10)と第2治具(20)とを有し、前記第1治具(10)及び前記第2治具(20)は、前記熱可塑性複合材(50)の移動方向に沿った所定区間において前記移動方向と直交する方向にて前記熱可塑性複合材(50)を挟み込んで対向するとともに、対向したときに形成される隙間(40)が前記所望の形状とされ、前記第1治具(10)及び前記第2治具(20)は、前記所定区間において前記熱可塑性複合材(50)の移動速度と同速度で前記移動方向に移動する。 The pressure-cooling mechanism (1) according to one aspect of the present disclosure pressurizes and cools a heated thermoplastic composite material (50) moving in a predetermined direction with a molding jig (5) to obtain a desired shape and shape. A pressurizing and cooling mechanism (1) formed on a thermoplastic composite component (52) having a predetermined length, wherein the molding jig (5) is a first jig (10) having the predetermined length. The first jig (10) and the second jig (20) have a second jig (20) and the second jig (20) in a predetermined section along the moving direction of the thermoplastic composite material (50). The thermoplastic composite material (50) is sandwiched and opposed to each other in a direction orthogonal to the moving direction, and the gap (40) formed when the thermoplastic composite material (50) is opposed to each other has the desired shape. The second jig (20) moves in the moving direction at the same speed as the moving speed of the thermoplastic composite material (50) in the predetermined section.
 本態様に係る加圧冷却機構(1)によれば、成形治具(5)は、熱可塑性複合材部品(52)の所定長さとされている第1治具(10)と第2治具(20)とを有し、第1治具(10)及び第2治具(20)は、熱可塑性複合材(50)の移動方向に沿った所定区間において移動方向と直交する方向にて熱可塑性複合材(50)を挟み込んで対向するとともに、対向したときに形成される隙間(40)が所望の形状とされている。これによって、所定区間にて第1治具(10)及び第2治具(20)に挟み込まれた熱可塑性複合材(50)は、形成された隙間(40)内で加圧冷却されて所望の形状に賦形され熱可塑性複合材部品(52)となる。 According to the pressure cooling mechanism (1) according to this aspect, the forming jig (5) is the first jig (10) and the second jig having a predetermined length of the thermoplastic composite material part (52). The first jig (10) and the second jig (20) have (20) and heat in a direction orthogonal to the moving direction in a predetermined section along the moving direction of the thermoplastic composite material (50). The plastic composite material (50) is sandwiched between them, and the gap (40) formed when they face each other has a desired shape. As a result, the thermoplastic composite material (50) sandwiched between the first jig (10) and the second jig (20) in the predetermined section is pressurized and cooled in the formed gap (40), which is desired. It is shaped into the shape of the thermoplastic composite material part (52).
 また、所定区間における第1治具(10)及び第2治具(20)は、熱可塑性複合材(50)と同速度で移動方向に移動する。これによって、熱可塑性複合材(50)を移動させたまま連続的に加圧冷却することができる。 Further, the first jig (10) and the second jig (20) in the predetermined section move in the moving direction at the same speed as the thermoplastic composite material (50). As a result, the thermoplastic composite material (50) can be continuously pressurized and cooled while being moved.
 なお、第1治具(10)及び第2治具(20)は、耐熱性に優れ熱容量の大きい材料(例えばステンレス等の金属)とされることが好ましい。これによって、効率的に熱可塑性複合材(50)の冷却を行うことができる。 The first jig (10) and the second jig (20) are preferably made of a material having excellent heat resistance and a large heat capacity (for example, a metal such as stainless steel). As a result, the thermoplastic composite material (50) can be efficiently cooled.
 また、本開示の一態様に係る加圧冷却機構(1)において、前記第1治具(10)及び前記第2治具(20)は、それぞれ前記所定長さとされているベースツール部(12)と、該ベースツール部(12)に取り付けられ前記熱可塑性複合材(50)を挟み込む成形型部(14)とを有している。 Further, in the pressure cooling mechanism (1) according to one aspect of the present disclosure, the first jig (10) and the second jig (20) each have a predetermined length of the base tool portion (12). ), And a molding die portion (14) attached to the base tool portion (12) and sandwiching the thermoplastic composite material (50).
 本態様に係る加圧冷却機構(1)によれば、所望の形状に賦形するための成形型として実質的に作用する成形型部(14)のみを脱着することができる。このため、メンテナンス性や生産性の向上を図ることができる。 According to the pressure cooling mechanism (1) according to this aspect, only the molding die portion (14) that substantially acts as a molding die for shaping into a desired shape can be attached and detached. Therefore, maintainability and productivity can be improved.
 また、本開示の一態様に係る加圧冷却機構(1)において、前記成形型部(14)は、前記ベースツール部(12)の長さ方向に分割されている。 Further, in the pressure cooling mechanism (1) according to one aspect of the present disclosure, the molding mold portion (14) is divided in the length direction of the base tool portion (12).
 態様に係る加圧冷却機構(1)によれば、隙間(40)の形状を部分的に変更することができる。また、長さ方向における隙間(40)の寸法を容易に変更することができる。 According to the pressurized cooling mechanism (1) according to the embodiment, the shape of the gap (40) can be partially changed. Moreover, the dimension of the gap (40) in the length direction can be easily changed.
 また、本開示の一態様に係る加圧冷却機構(1)において、加熱された前記熱可塑性複合材(50)には、前記移動方向から見た断面の形状に窪み部が形成され、前記熱可塑性複合材(50)の前記移動方向における前記所定区間の上流側に設置され前記窪み部内に入り込むガイド部材(70)を備え、該ガイド部材(70)は、前記移動方向に沿って上流側から下流側に向けて拡大するとともに、下流側の形状が前記窪み部の形状に対応している。 Further, in the pressure cooling mechanism (1) according to one aspect of the present disclosure, the heated thermoplastic composite material (50) is formed with a recess in the shape of the cross section viewed from the moving direction, and the heat is generated. The plastic composite material (50) is provided with a guide member (70) installed on the upstream side of the predetermined section in the moving direction and enters the recess, and the guide member (70) is provided from the upstream side along the moving direction. It expands toward the downstream side, and the shape of the downstream side corresponds to the shape of the recessed portion.
 本態様に係る加圧冷却機構(1)によれば、加熱された熱可塑性複合材には、移動方向から見た断面の形状に窪み部が形成され、熱可塑性複合材(50)の移動方向における所定区間の上流側に設置され窪み部内に入り込むガイド部材(70)を備え、ガイド部材(70)は、移動方向に沿って上流側から下流側に向けて拡大するとともに、下流側の形状が窪み部の形状に対応している。これによって、熱可塑性複合材(50)がガイド部材(70)によって定位置に案内される。ここで言う「定位置」とは、熱可塑性複合材(50)が適切に成形治具(5)に進入できるような位置である。すなわち、ガイド部材(70)は、熱可塑性複合材(50)の移動方向における軸芯ブレを防止するための部材である。 According to the pressurized cooling mechanism (1) according to this aspect, the heated thermoplastic composite material has a recess formed in the shape of the cross section viewed from the moving direction, and the moving direction of the thermoplastic composite material (50). The guide member (70) is installed on the upstream side of the predetermined section in the above section and is provided with a guide member (70) that enters the recessed portion. The guide member (70) expands from the upstream side to the downstream side along the moving direction and has a shape on the downstream side. It corresponds to the shape of the recess. As a result, the thermoplastic composite material (50) is guided to a fixed position by the guide member (70). The "fixed position" referred to here is a position where the thermoplastic composite material (50) can appropriately enter the molding jig (5). That is, the guide member (70) is a member for preventing the axial center deviation in the moving direction of the thermoplastic composite material (50).
 また、本開示の一態様に係る加圧冷却機構(1)は、前記第1治具(10)及び/又は前記第2治具(20)を冷却する冷却機構を備えている。 Further, the pressurized cooling mechanism (1) according to one aspect of the present disclosure includes a cooling mechanism for cooling the first jig (10) and / or the second jig (20).
 本態様に係る加圧冷却機構(1)によれば、第1治具(10)及び/又は第2治具(20)が強制的に冷却され、より効率的に加熱された熱可塑性複合材(50)を加圧冷却することができる。 According to the pressurized cooling mechanism (1) according to this aspect, the first jig (10) and / or the second jig (20) is forcibly cooled and the thermoplastic composite material is heated more efficiently. (50) can be pressurized and cooled.
 また、本開示の一態様に係る加圧冷却機構(1)は、予め設定された時間だけ前記第1治具(10)及び前記第2治具(20)によって前記熱可塑性複合材(50)を挟み込み、その後、前記第1治具(10)及び前記第2治具(20)を前記熱可塑性複合材(50)から離間させる制御部(100)を備えている。 Further, in the pressure cooling mechanism (1) according to one aspect of the present disclosure, the thermoplastic composite material (50) is provided by the first jig (10) and the second jig (20) for a preset time. A control unit (100) is provided which separates the first jig (10) and the second jig (20) from the thermoplastic composite material (50).
 本態様に係る加圧冷却機構(1)によれば、加圧冷却の完了と同時に第1治具(10)及び第2治具(20)を賦形後の熱可塑性複合材(50)(熱可塑性複合材部品(52))から離間させて加圧冷却を終了させることができる。加圧冷却を終えた第1治具(10)及び第2治具(20)は、例えば、加熱された熱可塑性複合材(50)を再び加圧冷却するために、熱可塑性複合材(50)を挟み込む位置に移動される。なお、加圧冷却の時間(すなわち、予め設定された時間)は、装置の仕様に応じて決定されてもよいし、熱可塑性複合材(50)の形状、物性その他の外的要因に応じて適宜決定されてもよい。 According to the pressure cooling mechanism (1) according to this aspect, the thermoplastic composite material (50) (50) after shaping the first jig (10) and the second jig (20) at the same time as the completion of the pressure cooling. Pressurized cooling can be terminated at a distance from the thermoplastic composite component (52)). The first jig (10) and the second jig (20) that have finished pressurizing and cooling are, for example, a thermoplastic composite material (50) in order to pressurize and cool the heated thermoplastic composite material (50) again. ) Is moved to the position where it is sandwiched. The pressurization / cooling time (that is, a preset time) may be determined according to the specifications of the apparatus, or depends on the shape, physical properties, and other external factors of the thermoplastic composite material (50). It may be decided as appropriate.
 また、本開示の一態様に係る加圧冷却機構(1)は、予め設定された温度に下がるまで前記第1治具(10)及び前記第2治具(20)によって前記熱可塑性複合材(50)を挟み込み、その後、前記第1治具(10)及び前記第2治具(20)を前記熱可塑性複合材(50)から離間させる制御部(100)を備えている。 Further, in the pressure cooling mechanism (1) according to one aspect of the present disclosure, the thermoplastic composite material (1) is provided by the first jig (10) and the second jig (20) until the temperature drops to a preset temperature. A control unit (100) is provided which sandwiches the 50) and then separates the first jig (10) and the second jig (20) from the thermoplastic composite material (50).
 本態様に係る加圧冷却機構(1)によれば、加圧冷却の完了と同時に第1治具(10)及び第2治具(20)を賦形後の熱可塑性複合材(50)(熱可塑性複合材部品(52))から離間させて加圧冷却を終了させることができる。加圧冷却を終えた第1治具(10)及び第2治具(20)は、例えば、加熱された熱可塑性複合材(50)を再び加圧冷却するために、熱可塑性複合材(50)を挟み込む位置に移動される。なお、熱可塑性複合材(50)の温度は、例えば、第1治具(10)及び/又は第2治具(20)に取り付けられた温度センサによって即時的に測定される。 According to the pressure cooling mechanism (1) according to this aspect, the thermoplastic composite material (50) (50) after shaping the first jig (10) and the second jig (20) at the same time as the completion of the pressure cooling. Pressurized cooling can be terminated at a distance from the thermoplastic composite component (52)). The first jig (10) and the second jig (20) that have finished pressurizing and cooling are, for example, a thermoplastic composite material (50) in order to pressurize and cool the heated thermoplastic composite material (50) again. ) Is moved to the position where it is sandwiched. The temperature of the thermoplastic composite material (50) is immediately measured by, for example, a temperature sensor attached to the first jig (10) and / or the second jig (20).
 また、本開示の一態様に係る成形治具(5)は、所定方向に移動している加熱された熱可塑性複合材(50)を所望の形状かつ所定長さの熱可塑性複合材部品(52)に賦形する成形治具(5)であって、前記所定長さとされているベースツール部(12)と、該ベースツール部(12)に取り付けられ前記熱可塑性複合材(50)を挟み込む成形型部(14)とを有し、前記成形型部(14)は、前記ベースツール部(12)の長さ方向に分割されている。 Further, the molding jig (5) according to one aspect of the present disclosure is a thermoplastic composite material component (52) having a desired shape and a predetermined length of a heated thermoplastic composite material (50) moving in a predetermined direction. ), Which sandwiches the base tool portion (12) having the predetermined length and the thermoplastic composite material (50) attached to the base tool portion (12). It has a molding mold portion (14), and the molding mold portion (14) is divided in the length direction of the base tool portion (12).
 本態様に係る成形治具によれば、所望の形状に賦形するための成形型として実質的に作用する成形型部(14)のみをベースツール部(12)に対して脱着することができる。このため、メンテナンス性や生産性の向上を図ることができる。また、成形型部(14)は、前記ベースツール部(12)の長さ方向に分割されている。これによって、隙間(40)の形状を部分的に変更することができる。また、長さ方向における隙間(40)の寸法を容易に変更することができる。 According to the molding jig according to this aspect, only the molding mold portion (14) that substantially acts as a molding mold for shaping into a desired shape can be attached to and detached from the base tool portion (12). .. Therefore, maintainability and productivity can be improved. Further, the molding die portion (14) is divided in the length direction of the base tool portion (12). Thereby, the shape of the gap (40) can be partially changed. Moreover, the dimension of the gap (40) in the length direction can be easily changed.
 また、本開示の一態様に係る賦形方法は、所定方向に移動している加熱された熱可塑性複合材(50)を成形治具(5)によって加圧冷却して所望の形状かつ所定長さの熱可塑性複合材部品(52)に賦形する加圧冷却機構(1)の賦形方法であって、前記成形治具(5)は、前記所定長さとされている第1治具(10)と第2治具(10)とを有し、前記第1治具(10)及び前記第2治具(10)は、前記熱可塑性複合材(50)の移動方向に沿った所定区間において前記移動方向と直交する方向にて前記熱可塑性複合材(50)を挟み込んで対向するとともに、対向したときに形成される隙間(40)が前記所望の形状とされ、前記第1治具(10)及び前記第2治具(20)が、前記所定区間において前記熱可塑性複合材(50)の移動速度と同速度で前記移動方向に移動する加圧冷却工程を含む。 Further, in the shaping method according to one aspect of the present disclosure, the heated thermoplastic composite material (50) moving in a predetermined direction is pressurized and cooled by a molding jig (5) to have a desired shape and a predetermined length. It is a shaping method of the pressure cooling mechanism (1) that shapes the thermoplastic composite material part (52), and the molding jig (5) is the first jig (5) having the predetermined length. It has a second jig (10) and a second jig (10), and the first jig (10) and the second jig (10) have a predetermined section along the moving direction of the thermoplastic composite material (50). In the above-mentioned first jig (50), the thermoplastic composite material (50) is sandwiched and opposed to each other in a direction orthogonal to the moving direction, and the gap (40) formed when the thermoplastic composite material (50) is opposed to each other has the desired shape. 10) and the second jig (20) include a pressure cooling step in which the thermoplastic composite material (50) moves in the moving direction at the same speed as the moving speed of the thermoplastic composite material (50) in the predetermined section.
 また、本開示の一態様に係る賦形方法において、前記第1治具(10)及び前記第2治具(20)は、それぞれ前記所定長さとされているベースツール部(12)と、該ベースツール部(12)に取り付けられ前記熱可塑性複合材(50)を挟み込む成形型部(14)とを有し、前記第1治具(10)が有する前記成形型部(14)及び/又は前記第2治具(20)が有する前記成形型部(14)を他の成形型部と交換する交換工程を含む。 Further, in the shaping method according to one aspect of the present disclosure, the first jig (10) and the second jig (20) are the base tool portion (12) having the predetermined length and the base tool portion (12), respectively. The molding mold portion (14) and / or the molding mold portion (14) of the first jig (10) having a molding mold portion (14) attached to the base tool portion (12) and sandwiching the thermoplastic composite material (50). It includes a replacement step of replacing the molding mold portion (14) of the second jig (20) with another molding mold portion.
1 加圧冷却機構
5 成形治具
10 第1治具
12 ベースツール部
14 成形型部
20 第2治具
40 隙間
50 熱可塑性複合材
52 熱可塑性複合材部品
60 フォーミング部
61 フォーミング部出口
70 ガイド(ガイド部材)
100 制御部
1 Pressurized cooling mechanism 5 Molding jig 10 1st jig 12 Base tool part 14 Molding mold part 20 2nd jig 40 Gap 50 Thermoplastic composite material 52 Thermoplastic composite material part 60 Forming part 61 Forming part outlet 70 Guide ( Guide member)
100 Control unit

Claims (10)

  1.  所定方向に移動している加熱された熱可塑性複合材を成形治具によって加圧冷却して所望の形状かつ所定長さの熱可塑性複合材部品に賦形する加圧冷却機構であって、
     前記成形治具は、前記所定長さとされている第1治具と第2治具とを有し、
     前記第1治具及び前記第2治具は、前記熱可塑性複合材の移動方向に沿った所定区間において前記移動方向と直交する方向にて前記熱可塑性複合材を挟み込んで対向するとともに、対向したときに形成される隙間が前記所望の形状とされ、
     前記第1治具及び前記第2治具は、前記所定区間において前記熱可塑性複合材の移動速度と同速度で前記移動方向に移動する加圧冷却機構。
    A pressure-cooling mechanism that pressurizes and cools a heated thermoplastic composite material moving in a predetermined direction with a molding jig to shape a thermoplastic composite material component having a desired shape and a predetermined length.
    The molding jig has a first jig and a second jig having the predetermined length.
    The first jig and the second jig face each other with the thermoplastic composite material sandwiched in a direction orthogonal to the moving direction in a predetermined section along the moving direction of the thermoplastic composite material. The gap that is sometimes formed has the desired shape,
    The first jig and the second jig are pressure cooling mechanisms that move in the moving direction at the same speed as the moving speed of the thermoplastic composite material in the predetermined section.
  2.  前記第1治具及び前記第2治具は、それぞれ前記所定長さとされているベースツール部と、該ベースツール部に取り付けられ前記熱可塑性複合材を挟み込む成形型部とを有している請求項1に記載の加圧冷却機構。 The first jig and the second jig each have a base tool portion having a predetermined length and a molding mold portion attached to the base tool portion and sandwiching the thermoplastic composite material. Item 1. The pressurized cooling mechanism according to item 1.
  3.  前記成形型部は、前記ベースツール部の長さ方向に分割されている請求項2に記載の加圧冷却機構。 The pressure cooling mechanism according to claim 2, wherein the molding die portion is divided in the length direction of the base tool portion.
  4.  加熱された前記熱可塑性複合材には、前記移動方向から見た断面の形状に窪み部が形成され、
     前記熱可塑性複合材の前記移動方向における前記所定区間の上流側に設置され前記窪み部内に入り込むガイド部材を備え、
     該ガイド部材は、前記移動方向に沿って上流側から下流側に向けて拡大するとともに、下流側の形状が前記窪み部の形状に対応している請求項1から3のいずれかに記載の加圧冷却機構。
    The heated thermoplastic composite material has a recess formed in the shape of the cross section seen from the moving direction.
    A guide member installed on the upstream side of the predetermined section in the moving direction of the thermoplastic composite material and entering the recessed portion is provided.
    The addition according to any one of claims 1 to 3, wherein the guide member expands from the upstream side to the downstream side along the moving direction, and the shape of the downstream side corresponds to the shape of the recessed portion. Pressure cooling mechanism.
  5.  前記第1治具及び/又は前記第2治具を冷却する冷却機構を備えている請求項1から4のいずれかに記載の加圧冷却機構。 The pressurized cooling mechanism according to any one of claims 1 to 4, further comprising a cooling mechanism for cooling the first jig and / or the second jig.
  6.  予め設定された時間だけ前記第1治具及び前記第2治具によって前記熱可塑性複合材を挟み込み、その後、前記第1治具及び前記第2治具を前記熱可塑性複合材から離間させる制御部を備えている請求項1から5のいずれかに記載の加圧冷却機構。 A control unit that sandwiches the thermoplastic composite material between the first jig and the second jig for a preset time, and then separates the first jig and the second jig from the thermoplastic composite material. The pressurized cooling mechanism according to any one of claims 1 to 5.
  7.  予め設定された温度に下がるまで前記第1治具及び前記第2治具によって前記熱可塑性複合材を挟み込み、その後、前記第1治具及び前記第2治具を前記熱可塑性複合材から離間させる制御部を備えている請求項1から5のいずれかに記載の加圧冷却機構。 The thermoplastic composite is sandwiched between the first jig and the second jig until the temperature drops to a preset temperature, and then the first jig and the second jig are separated from the thermoplastic composite. The pressurized cooling mechanism according to any one of claims 1 to 5, further comprising a control unit.
  8.  所定方向に移動している加熱された熱可塑性複合材を所望の形状かつ所定長さの熱可塑性複合材部品に賦形する成形治具であって、
     前記所定長さとされているベースツール部と、該ベースツール部に取り付けられ前記熱可塑性複合材を挟み込む成形型部とを有し、
     前記成形型部は、前記ベースツール部の長さ方向に分割されている成形治具。
    A molding jig that shapes a heated thermoplastic composite material moving in a predetermined direction into a thermoplastic composite material component having a desired shape and a predetermined length.
    It has a base tool portion having a predetermined length and a molding mold portion attached to the base tool portion and sandwiching the thermoplastic composite material.
    The molding die portion is a molding jig divided in the length direction of the base tool portion.
  9.  所定方向に移動している加熱された熱可塑性複合材を成形治具によって加圧冷却して所望の形状かつ所定長さの熱可塑性複合材部品に賦形する賦形方法であって、
     前記成形治具は、前記所定長さとされている第1治具と第2治具とを有し、
     前記第1治具及び前記第2治具は、前記熱可塑性複合材の移動方向に沿った所定区間において前記移動方向と直交する方向にて前記熱可塑性複合材を挟み込んで対向するとともに、対向したときに形成される隙間が前記所望の形状とされ、
     前記第1治具及び前記第2治具が、前記所定区間において前記熱可塑性複合材の移動速度と同速度で前記移動方向に移動する加圧冷却工程を含む賦形方法。
    A shaping method in which a heated thermoplastic composite material moving in a predetermined direction is pressurized and cooled by a molding jig to form a thermoplastic composite material part having a desired shape and a predetermined length.
    The molding jig has a first jig and a second jig having the predetermined length.
    The first jig and the second jig face each other with the thermoplastic composite material sandwiched in a direction orthogonal to the moving direction in a predetermined section along the moving direction of the thermoplastic composite material. The gap that is sometimes formed has the desired shape,
    A shaping method including a pressurizing and cooling step in which the first jig and the second jig move in the moving direction at the same speed as the moving speed of the thermoplastic composite material in the predetermined section.
  10.  前記第1治具及び前記第2治具は、それぞれ前記所定長さとされているベースツール部と、該ベースツール部に取り付けられ前記熱可塑性複合材を挟み込む成形型部とを有し、
     前記第1治具が有する前記成形型部及び/又は前記第2治具が有する前記成形型部を他の成形型部と交換する交換工程を含む請求項9に記載の賦形方法。
    The first jig and the second jig each have a base tool portion having a predetermined length and a molding mold portion attached to the base tool portion and sandwiching the thermoplastic composite material.
    The shaping method according to claim 9, further comprising a replacement step of exchanging the molding mold portion of the first jig and / or the molding mold portion of the second jig with another molding mold portion.
PCT/JP2019/038517 2019-09-30 2019-09-30 Compression cooling mechanism, molding jig and shaping method WO2021064794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038517 WO2021064794A1 (en) 2019-09-30 2019-09-30 Compression cooling mechanism, molding jig and shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038517 WO2021064794A1 (en) 2019-09-30 2019-09-30 Compression cooling mechanism, molding jig and shaping method

Publications (1)

Publication Number Publication Date
WO2021064794A1 true WO2021064794A1 (en) 2021-04-08

Family

ID=75337805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038517 WO2021064794A1 (en) 2019-09-30 2019-09-30 Compression cooling mechanism, molding jig and shaping method

Country Status (1)

Country Link
WO (1) WO2021064794A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458517A (en) * 1987-08-29 1989-03-06 Toyoda Gosei Kk Method and apparatus for preparing cloth-containing rubber sheet
JPH01285315A (en) * 1988-05-13 1989-11-16 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and apparatus for continuously shaping fiber reinforced resin molded product
WO2007102573A1 (en) * 2006-03-08 2007-09-13 Toray Industries, Inc. Process, and apparatus, for producing reinforcing fiber molding
JP2012213946A (en) * 2011-04-01 2012-11-08 Toray Ind Inc Molding manufacturing method and molding
JP2017500231A (en) * 2013-12-19 2017-01-05 エアバス オペレーションズ ゲゼルシャフト ミット ベシュレンクテル ハフツングAirbus Operations GmbH Apparatus and method for continuously producing parts from fiber reinforced composite material, and mold set

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458517A (en) * 1987-08-29 1989-03-06 Toyoda Gosei Kk Method and apparatus for preparing cloth-containing rubber sheet
JPH01285315A (en) * 1988-05-13 1989-11-16 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and apparatus for continuously shaping fiber reinforced resin molded product
WO2007102573A1 (en) * 2006-03-08 2007-09-13 Toray Industries, Inc. Process, and apparatus, for producing reinforcing fiber molding
JP2012213946A (en) * 2011-04-01 2012-11-08 Toray Ind Inc Molding manufacturing method and molding
JP2017500231A (en) * 2013-12-19 2017-01-05 エアバス オペレーションズ ゲゼルシャフト ミット ベシュレンクテル ハフツングAirbus Operations GmbH Apparatus and method for continuously producing parts from fiber reinforced composite material, and mold set

Similar Documents

Publication Publication Date Title
JP6820152B2 (en) Methods and equipment for producing partially cured articles
KR101630584B1 (en) Manufacturing method for article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
JP5826243B2 (en) Press molding die and press molding method using the same
EP3024627B1 (en) Mould arrangement and method for compression moulding fiber reinforced preforms
KR101317414B1 (en) Mold for hot stamping strip masking
JP6543791B2 (en) Method of manufacturing resin molded body and press molding apparatus
CN101594983A (en) Be used for the method for continuous compression molding and effectively utilize the mould of material
WO2013061480A1 (en) Hot press molding method, article molded by hot press molding, and mold for hot pressing
EP2186627B1 (en) Method for continuously forming composite material shape member having varied cross-sectional shape
WO2021064794A1 (en) Compression cooling mechanism, molding jig and shaping method
US5237846A (en) Method and apparatus for forming metal roll-formed parts
JP5602370B2 (en) Manufacturing method of unit laminated rubber for seismic isolation structure
WO2021064808A1 (en) Pressurized cooling mechanism and shaping method
JP4798139B2 (en) Forging apparatus and forging method
JP5890654B2 (en) Press forming method
CN114867589B (en) Method for manufacturing mould box and plate body product for stamping machine
CN114390971B (en) Method for producing molded parts from fiber composite materials
WO2016175108A1 (en) Optical product molding apparatus and manufacturing method
WO2016167337A1 (en) Device for molding optical product, and method for manufacturing optical product
KR101862108B1 (en) Prepreg Composites Manufacturing Assembly and Manufacturing Method
JPH01316252A (en) Forming method for optical element
WO2012090302A1 (en) Press-molding device
JP4936120B2 (en) Preform shaping mandrel and method for producing preform using the same
JP2019171740A (en) Apparatus for manufacturing fiber-reinforced molded body and method for manufacturing fiber-reinforced molded product
JP2021146654A (en) Molding method of molding resin molded article containing twisted part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP