WO2021062939A1 - 隔膜的光学检测方法 - Google Patents

隔膜的光学检测方法 Download PDF

Info

Publication number
WO2021062939A1
WO2021062939A1 PCT/CN2019/122620 CN2019122620W WO2021062939A1 WO 2021062939 A1 WO2021062939 A1 WO 2021062939A1 CN 2019122620 W CN2019122620 W CN 2019122620W WO 2021062939 A1 WO2021062939 A1 WO 2021062939A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
light source
light
image
detected
Prior art date
Application number
PCT/CN2019/122620
Other languages
English (en)
French (fr)
Inventor
马达
张延凯
Original Assignee
苏州精濑光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州精濑光电有限公司 filed Critical 苏州精濑光电有限公司
Publication of WO2021062939A1 publication Critical patent/WO2021062939A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8809Adjustment for highlighting flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8835Adjustable illumination, e.g. software adjustable screen

Definitions

  • This application relates to the technical field of processing and production of lithium batteries, for example, to a method for optical detection of diaphragms.
  • Lithium-ion batteries are composed of a positive electrode, a negative electrode, a diaphragm (transparent film), and an electrolyte.
  • the positive and negative electrodes are immersed in the electrolyte.
  • the lithium ions move between the positive and negative electrodes using the electrolyte as a medium to realize the charge and discharge of the battery.
  • a separator is required to separate the positive and negative electrodes.
  • the diaphragm is a specially formed polymer film with a microporous structure that allows lithium ions to pass freely, but electrons cannot pass.
  • the performance of diaphragm directly determines the interface structure and internal resistance of the battery, and directly affects the electrical performance of the battery.
  • the diaphragm In the production process of the diaphragm, due to the production environment, the materials and equipment of the sputtering target, and human factors, the diaphragm has defects. Therefore, the diaphragm needs to be tested before it is put into use.
  • Manual inspection is mainly based on visual observation. This method of visual inspection has a lot of errors and misjudgments. It can’t accurately determine the flaws in time and is time-consuming and laborious.
  • Automatic optical inspection uses a line scan camera and a backlight to collect data. The appearance image of the diaphragm is analyzed by the image processing equipment to find out whether there are defects, and the automatic optical inspection is efficient and accurate.
  • the related automatic optical inspection uses a single backlight source, which cannot detect the holes on the diaphragm and the detection of oil defects. Because the oil stains and holes are illuminated by a single backlight source, the images presented under the camera are the same and cannot be distinguished. Holes, oil stains.
  • the present application provides an optical detection method for a diaphragm, which can detect defects such as holes and oil stains on the diaphragm.
  • a method for optical detection of diaphragm includes the following steps:
  • the optical detection mechanism for the diaphragm includes an image acquisition device and a detection light source.
  • the detection light source is located directly under the diaphragm to be detected and includes a first light source and a second light source.
  • the image acquisition device is located above the diaphragm to be detected;
  • S2 sequentially drive the first light source and the second light source to respectively emit first light and second light to the diaphragm to be detected, and the first light and the second light irradiate the to-be-detected The same position of the diaphragm;
  • S3 Drive the image acquisition device to acquire the first image and the second image of the diaphragm to be detected when the first light is irradiated and when the second light is irradiated, respectively;
  • the step S2 includes the steps:
  • the first light is perpendicular to the diaphragm to be detected; in the step S23, the angle between the second light and the first light is 5° to 45°.
  • the time interval for sequentially driving the first light source and the second light source is 20 microseconds to 50 microseconds.
  • the duration of the first light emitted by the first light source is greater than 20 microseconds; the duration of the second light emitted by the second light source is greater than 20 microseconds.
  • the image acquisition device includes two sets of camera mechanisms that are arranged collinearly and whose line scan radiation ranges intersect; the step S3 includes the steps:
  • S31 Drive two groups of camera mechanisms to simultaneously acquire the first image
  • S32 Drive two groups of camera mechanisms to simultaneously acquire the second image.
  • step S5 if it is determined in step S4 that the diaphragm to be inspected has a defect, then the type of the defect is determined.
  • the step S4 also includes the steps:
  • S42 Split the odd and even lines of the combined image, and obtain the first full image illuminated by the first light source with a line height of N and the second image illuminated by the second light source.
  • the line height of the image is the second full image of N; where N is a positive integer.
  • the step S4 further includes a step S43: judging whether the diaphragm to be inspected has a defect according to the first entire image and/or the second entire image.
  • step S5 compare whether there is a difference between the defect at the same position in the first entire image and the second entire image to determine the type of the defect.
  • the optical detection method of the diaphragm provided by the present application is by providing a first light source and a second light source, and using an image acquisition device to take an image of the diaphragm under the illumination of the first light source, and to take an image of the diaphragm under the illumination of the second light source. Compare the two sets of images taken at the same location, and identify holes and oil defects based on the differences in the images.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of the optical detection mechanism of the diaphragm related to the present application
  • Figure 2 is an enlarged view of A in Figure 1;
  • Fig. 3 is a side view of the optical detection mechanism of the diaphragm according to the present application.
  • connection shall be interpreted broadly, for example, they may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components.
  • connection shall be interpreted broadly, for example, they may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it only means that the first feature is higher in level than the second feature.
  • the "below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the optical detection method of the diaphragm of the present application is realized by relying on the optical detection mechanism of the diaphragm.
  • the optical detection mechanism of the diaphragm is shown in FIGS. 1 to 3 and includes a holder 100, an image acquisition device 200 disposed on the holder 100, and a detection light source 300.
  • the bracket 100 is a gantry structure, which can pass the diaphragm 400 to be detected;
  • the detection light source 300 is located directly under the diaphragm 400 to be detected, and includes a first light source 303 and a second light source 304, a first light source 303 and a second light source 304 is configured to sequentially emit a first light and a second light to the diaphragm 400 to be inspected, and the first light and the second light irradiate the same position of the diaphragm 400 to be inspected;
  • the image acquisition device 200 is located on the diaphragm 400 to be inspected Above the image acquisition device 200, the image acquisition device 200 is configured to respectively capture the appearance image of the diaphragm 400 to be inspected when the first light source 303 and the second light source 304 sequentially emit the first light and the second light to the diaphragm 400 to be inspected.
  • the detection light source 300 is disposed under the diaphragm 400 to be detected as a backlight source
  • the first light source 303 and the second light source 304 are set, and the image acquisition device 200 is used to capture images of the diaphragm 400 under the irradiation of the first light source 303 and the diaphragm 400 under the irradiation of the second light source 304.
  • the two sets of images taken from the position are compared, and the holes and oil defects are identified according to the difference of the images.
  • the angle range between the first light emitted by the first light source 303 and the second light emitted by the second light source 304 is 5°. To 45°, and the direction of the first light is perpendicular to the diaphragm 400 to be detected.
  • the angle between the first light and the second light is in the range of 5° to 15°, which is an optional embodiment angle of this application.
  • the angle between the first light and the second light can also be 1°, 2 °, 3°, 4°, 50°, 55° and other angles can be set according to actual conditions.
  • the time interval for the first light source 303 and the second light source 304 to emit light in sequence is 20 microseconds to 50 microseconds, and the first light source 303 The duration of each light emission is greater than 20 microseconds.
  • the time interval is the interval between when the first light source 303 is turned off and when the second light source 304 is turned on, so as to prevent the second light source 304 from causing light interference to the first light source 303.
  • the specific interval time can be 25 microseconds, 30 microseconds, 35 microseconds, 40 microseconds, or 45 microseconds.
  • the interval time can also be less than 20 microseconds or greater than 50 microseconds.
  • the actual interval time depends on the camera, It depends on the hardware conditions such as the diaphragm 400, and is not limited to this.
  • the first light source 303 emits light for more than 20 microseconds each time, and specifically can be 25 microseconds, 30 microseconds, or 35 microseconds.
  • the duration of each light emission of the first light source 303 can also be less than 20 microseconds.
  • the actual duration also depends on the hardware conditions such as the camera and the diaphragm, and is not limited thereto.
  • the duration of each light emission of the second light source 304 is greater than 20 microseconds.
  • the image acquisition device 200 in the present application includes two sets of camera mechanisms 210 arranged collinearly, and the line scan radiation ranges of the two sets of camera mechanisms 210 can cross.
  • Two sets of camera mechanisms 210 are provided to comprehensively take pictures of the diaphragm 400 to be inspected at the detection position.
  • the diaphragm 400 to be inspected can be taken more comprehensively. Avoid missed detection due to partial failure.
  • the way in which the line scan radiation ranges of the two groups of camera mechanisms 210 are crossed can be achieved by translating the camera mechanism 210, that is, adjusting the distance between the two groups of camera mechanisms 210.
  • the shooting angle of the camera mechanism 210 can be adjusted. By adjusting the shooting angle, it can be adapted to take pictures of diaphragms 400 of different widths and angles, which is suitable for different production lines and has high applicability.
  • the camera mechanism 210 includes a fixing frame 211 and a line scan camera 212.
  • the fixing frame 211 includes a first support 2111 connected to the support 100, a second support 2112 rotatably connected to the first support 211, and a third support 2113 rotatably connected to the second support 2112, and a line scan camera 212 is rotatably connected with the third support 2113.
  • the second support 2112 can rotate relative to the first support 2111 about the first axis (X direction in FIG. 2); the third support 2113 can rotate relative to the second support 2112 about the second axis (Y direction in FIG.
  • the line scan camera 212 can rotate about the third axis (Z direction in FIG. 2) relative to the third support 2113, and the third axis is perpendicular to the second axis and the first axis. In this way, the line scan camera 212 can realize rotation in three directions, so that it can be adapted to take pictures of diaphragms 400 of different widths and angles, and has high applicability.
  • the illumination angle of the first light source 303 and/or the second light source 304 can be adjusted.
  • the illumination angle of the detection light source 300 it can be adapted to take pictures of diaphragms 400 of different widths and angles, which is suitable for different production lines and has high applicability.
  • a support base 301 is connected to both ends of the first light source 303 and the second light source 304, and the support base 301 is rotatably connected to a support frame 302, and the support frame 302 is fixed to the bracket 100.
  • the installation structure can realize the rotation of the detection light source 300, thereby adjusting the illumination angle of the detection light source 300.
  • the present application is provided with an arc groove that limits its rotation angle on the support base 301, and a stop post slidingly fitted with the arc groove is provided on the support frame 302. .
  • the arc-shaped groove is used to limit the rotation angle of the support base 301, and the structure is simple, which can prevent the detection of excessive rotation of the light source 300 from affecting the lighting effect.
  • the distance between the detection light source 300 and the diaphragm 400 to be detected can be adjusted.
  • it is adapted to illuminate different diaphragms 400 to be detected to ensure the best light effect.
  • the distance between the detection light source 300 and the diaphragm 400 to be detected can be adjusted by setting a vertical strip groove in the support frame 302 to move the support base 301 along the strip groove.
  • the detection light source 300 in the present application is an LED linear light source.
  • the LED linear light source has the advantages of high uniformity and high brightness, so that the image collected by the line scan camera 212 is clearer, and the detection effect is further improved.
  • S2 Drive the first light source 303 and the second light source 304 to respectively emit the first light and the second light to the diaphragm 400 to be detected, and the first light and the second light irradiate the same position of the diaphragm 400 to be detected.
  • Step S2 includes steps:
  • S21 Drive the first light source 303 to emit the first light to the diaphragm 400 to be detected, and the first light is perpendicular to the diaphragm 400 to be detected;
  • the time interval for sequentially driving the first light source 303 and the second light source 304 is 20 microseconds to 50 microseconds, the first light source 303 emits the first light for longer than 20 microseconds, and the second light source 304 emits the second light.
  • the duration is greater than 20 microseconds.
  • S3 Drive the image acquisition device 200 to acquire the first image and the second image of the diaphragm 400 to be detected when the first light is irradiated and the second light is irradiated, respectively.
  • Step S3 includes steps:
  • S32 Drive two sets of camera mechanisms 210 to acquire a second image at the same time.
  • Step S4 includes steps:
  • S42 Split the odd and even lines of the combined image, and obtain the first full image with the line height of N of the first image illuminated by the first light source 303 and the second image with the line height of N illuminated by the second light source 304 respectively.
  • S43 Determine whether the diaphragm 400 to be inspected has a defect according to the first entire image and/or the second entire image.
  • step S5 If it is determined in step S4 that the diaphragm 400 to be inspected has a defect, the type of the defect is determined. That is, compare whether there is a difference between the defect at the same position in the first entire image and the second entire image to determine the type of the defect.
  • the encoder can be used to output pulse signals to the counter card, the counter card modulates the pulse signal, and outputs the trigger signal to the light source controller.
  • the light source controller simultaneously outputs the trigger signal to the first light source 303 through the internal frequency division.
  • the second light source 304 and the two sets of camera mechanisms 210 set the working time and extension time of the first light source 303 and the second light source 304 through the PC.
  • the optical detection method of the diaphragm of the present application takes an image of the diaphragm 400 when the first light source 303 is on, and takes an image of the diaphragm 400 when the second light source 304 is on, and compares the pictures taken twice. In other words, it can be analyzed whether the diaphragm 400 has defects and the types of defects, and the detection accuracy is high.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种隔膜(400)的光学检测方法,包括以下步骤:S1:提供一种隔膜(400)的光学检测机构,隔膜(400)的光学检测机构包括图像获取装置(200)及检测光源(300),检测光源(300)位于待检测的隔膜(400)的正下方,包括第一光源(303)和第二光源(304),图像获取装置(200)位于待检测的隔膜(400)的上方;S2:依次驱动第一光源(303)和第二光源(304)分别向待检测的隔膜(400)发射第一光线和第二光线,且第一光线与第二光线照射于待检测的隔膜(400)的相同位置;S3:驱动图像获取装置(200)分别获取第一光线照射时及第二光线照射时待检测的隔膜(400)的第一图像和第二图像;S4:根据第一图像与第二图像,判断待检测的隔膜(400)是否存在缺陷。

Description

隔膜的光学检测方法
本申请要求在2019年09月30日提交中国专利局、申请号为201910944415.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂电池的加工生产技术领域,例如涉及一种隔膜的光学检测方法。
背景技术
随着手机、平板电脑、电动汽车等产业的发展,锂离子电池也获得了广泛的应用。锂离子电池由正极、负极、隔膜(透明膜)、电解液组成,正负极浸润在电解液中,锂离子以电解液为介质在正负极之间运动,实现电池的充放电。为避免正负极通过电解液发生短路,需要用隔膜将正负极分隔。隔膜是一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。
隔膜作为锂离子电池的核心材料,它性能的好坏直接决定电池的界面结构、内阻,直接影响电池的电性能。隔膜在生产过程中,由于生产环境、溅射靶材的材料及设备、人为等原因,导致隔膜存在瑕疵。因此,在投入使用之前,需要对隔膜进行检测。
针对这些瑕疵的检测,目前主要有人工和自动光学检测两种。人工检测主要是靠肉眼观察,这种全凭肉眼检测的方式存在很大误差跟误判,不能及时准确地判断出瑕疵,费时费力;自动光学检测是通过线扫相机加背光源的方式,采集隔膜的外观图像,由图像处理设备进行分析,得出是否存在瑕疵,自动光学检测高效准确。
相关的自动光学检测采用的是单一背光源,无法检测出隔膜上的孔洞、油污缺陷的检测,因为油污、孔洞在单一背光源的照射下,在相机下呈现的图像是相同的,无法区别出孔洞、油污。
发明内容
本申请提供一种隔膜的光学检测方法,能够检测出隔膜上的孔洞、油污等缺陷。
一种隔膜的光学检测方法,包括以下步骤:
S1:提供一种隔膜的光学检测机构,所述隔膜的光学检测机构包括图像获取装置及检测光源,所述检测光源位于待检测的隔膜的正下方,包括第一光源和第二光源,所述图像获取装置位于所述待检测的隔膜的上方;
S2:依次驱动所述第一光源和所述第二光源分别向所述待检测的隔膜发射第一光线和第二光线,且所述第一光线与所述第二光线照射于所述待检测的隔膜的相同位置;
S3:驱动所述图像获取装置分别获取所述第一光线照射时及所述第二光线照射时所述待检测的隔膜的第一图像和第二图像;
S4:根据所述第一图像与所述第二图像,判断所述待检测的隔膜是否存在缺陷。
所述步骤S2包含步骤:
S21:驱动所述第一光源向所述待检测的隔膜发出第一光线;
S22:关闭所述第一光源;
S23:驱动所述第二光源向所述待检测的隔膜发出第二光线;
S24:关闭所述第二光源。
所述步骤S21中,所述第一光线垂直所述待检测的隔膜;所述步骤S23中,所述第二光线与所述第一光线的夹角为5°至45°。
所述步骤S2中,依次驱动所述第一光源和所述第二光源的时间间隔为20微秒至50微秒。
所述第一光源发出第一光线的持续时间大于20微秒;所述第二光源发出第二光线的持续时间大于20微秒。
所述图像获取装置包括共线设置且线扫辐射范围交叉的两组相机机构;所述步骤S3包含步骤:
S31:驱动两组相机机构同时获取所述第一图像;
S32:驱动两组相机机构同时获取所述第二图像。
还包含步骤S5:若所述步骤S4中判定所述待检测的隔膜存在缺陷,则判断所述缺陷的类型。
所述步骤S4还包含步骤:
S41:循环N次所述步骤S2和所述步骤S3,获得行高为2N的组合图像;
S42:拆分所述组合图像的奇偶行,分别获得所述第一光源照射下的所述第一图像的行高为N的第一整图及所述第二光源照射下的所述第二图像的行高为N的第二整图;其中N为正整数。
所述步骤S4还包含步骤S43:根据所述第一整图及/或所述第二整图,判断所述待检测的隔膜是否存在缺陷。
所述步骤S5中:对比所述第一整图与所述第二整图中相同位置的缺陷是否存在差异,以判断缺陷的类型。
本申请提供的一种隔膜的光学检测方法通过设置第一光源与第二光源,并利用图像获取装置在第一光源的照射下对隔膜取像、在第二光源的照射下对隔膜取像,对同一位置取的两组图像进行比对,根据图像的差别,识别出孔洞、油污的缺陷。
附图说明
图1是本申请涉及的隔膜的光学检测机构的立体结构示意图;
图2是图1中A处的放大图;
图3是本申请涉及的隔膜的光学检测机构的侧视图。
图中:100-支架,200-图像获取装置,210-相机机构,211-固定架,2111-第一支座,2112-第二支座,2113-第三支座,212-线扫相机,300-检测光源,301-支撑座,302-支撑架,303-第一光源,304-第二光源,400-隔膜。
具体实施方式
下面将结合附图对本申请实施例的技术方案作进一步的详细描述。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅 仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请的隔膜的光学检测方法依托隔膜的光学检测机构实现,该隔膜的光学检测机构如图1至3所示,包括支架100及设置于支架100的图像获取装置200、检测光源300。其中,支架100为龙门架结构,能够供待检测的隔膜400通过;检测光源300位于待检测的隔膜400的正下方,包括第一光源303和第二光源304,第一光源303与第二光源304被配置为可依次向待检测的隔膜400发出第一光线和第二光线,且第一光线与第二光线照射于待检测的隔膜400的相同位置;图像获取装置200位于待检测的隔膜400的上方,图像获取装置200被配置分别采集第一光源303与第二光源304依次向待检测的隔膜400发出第一光线与第二光线时待检测的隔膜400的外观图像。将检测光源300设置于待检测的隔膜400的下方作为背光源,通过光照透射待检测的隔膜400。
本申请通过设置第一光源303与第二光源304,并利用图像获取装置200在第一光源303的照射下对隔膜400取像、在第二光源304的照射下对隔膜400取像,对同一位置取的两组图像进行比对,根据图像的差别,识别出孔洞、油污的缺陷。
于一实施例中,对于第一光源303与第二光源304的具体关系,需使得第一光源303发出的第一光线与第二光源304发出的第二光线的照射的夹角范围为5°至45°,且第一光线的方向垂直待检测的隔膜400。第一光线与第二光线的照射的夹角范围为5°至15°为本申请的可选实施例角度,当然,第一光线与第二光线之间的夹角也可为1°、2°、3°、4°以及50°、55°等其他角度,可根据实际情况进行设置。
对于第一光源303与第二光源304的发光时机与发光时长的设置,本申请中,第一光源303与第二光源304依次发光的时间间隔为20微秒至50微秒,第一光源303每次发光持续时间为大于20微秒。时间间隔即第一光源303关闭后至第二光源304打开时的间隔时间,以避免第二光源304对第一光源303造成光照干涉。例如,具体的间隔时间可为25微秒、30微秒、35微秒、40微秒、45微秒,当然间隔时间也可以是小于20微秒或大于50微秒,实际间隔时间视 相机、隔膜400等硬件条件而定,不以此为限。为了确保图像获取装置200完整地采集到第一光线照射隔膜400时的隔膜400图像,第一光源303每次发光持续时间为大于20微秒,具体可为25微秒、30微秒、35微秒等,当然第一光源303每次发光持续时间为也可以小于20微秒,实际持续时间同样视相机、隔膜等硬件条件而定,不以此为限。同样的,第二光源304每次发光持续时间为大于20微秒。
本申请中的图像获取装置200包括共线设置的两组相机机构210,且两组相机机构210的线扫辐射范围能够交叉。设置两组相机机构210,可全面地对位于检测位置的待检测隔膜400进行拍照,而且,通过使两组相机机构210的线扫辐射范围交叉,更能全面地对待检测的隔膜400进行拍照,避免局部拍摄不到,产生漏检。实现两组相机机构210的线扫辐射范围交叉的方式,可通过平移相机机构210实现,即,调整两组相机机构210之间的间距即可。
本申请中,相机机构210的拍摄角度能够调节。通过调节拍摄角度,能够适应对不同的宽度与角度的隔膜400进行拍照,适用于不同的生产线,适用性较高。
相机机构210包括固定架211及线扫相机212。其中,固定架211包括与支架100连接的第一支座2111、与第一支座211转动连接的第二支座2112及与第二支座2112转动连接的第三支座2113,线扫相机212与第三支座2113转动连接。第二支座2112能够绕第一轴线(图2中X方向)相对第一支座2111转动;第三支座2113能够绕第二轴线(图2中Y方向)相对第二支座2112转动,且第二轴线垂直于第一轴线;线扫相机212能够绕第三轴线(图2中Z向)相对第三支座2113转动,且第三轴线垂直于第二轴线和第一轴线。如此,线扫相机212可实现三个方向的旋转,从而能适应对不同宽度与角度的隔膜400进行拍照,适用性较高。
另外,为了使第一光线与第二光线的照射的夹角在5°至45°之间可调节,本申请中,第一光源303和/或第二光源304的光照角度能够调节。通过调节检测光源300的光照角度,能够适应对不同的宽度与角度的隔膜400进行拍照,适用于不同的生产线,适用性较高。
对于检测光源300的调节结构,本申请在第一光源303与第二光源304的 两端均连接有支撑座301,支撑座301转动连接有支撑架302,支撑架302固定于支架100。该安装结构可实现检测光源300的转动,从而调节检测光源300的光照角度。
为了使检测光源300在合适的范围内对待检测的隔膜400进行光照,本申请在支撑座301上设有限定其转动角度的弧形槽、在支撑架302设置与弧形槽滑动配合的挡柱。利用弧形槽限制支撑座301的转动角度,结构简单,可避免检测光源300转动过度而影响光照效果。
另外,本申请中,检测光源300相对待检测的隔膜400的距离能够调节。通过调节检测光源300与待检测的隔膜400之间的距离,以便适应对不同的待检测的隔膜400进行光照,确保光照效果最佳。可通过在支撑架302设置竖向的条形槽,使支撑座301沿条形槽移动,即可调节检测光源300相对待检测的隔膜400的距离。
本申请中的检测光源300为LED线性光源,LED线性光源具有高均匀性、高亮度的优点,使得线扫相机212采集的图像更清晰,进一步提升检测效果。
利用上述的隔膜的光学检测机构对隔膜400进行检测时,包括以下步骤:
S1:提供上述的隔膜的光学检测机构。
S2:依次驱动第一光源303和第二光源304分别向待检测的隔膜400发射第一光线和第二光线,且第一光线与第二光线照射于待检测的隔膜400的相同位置。
步骤S2包含步骤:
S21:驱动第一光源303向待检测的隔膜400发出第一光线,且第一光线垂直待检测的隔膜400;
S22:关闭第一光源303;
S23:驱动第二光源304向待检测的隔膜400发出第二光线,且第二光线与第一光线的夹角为5°至45°;
S24:关闭第二光源304。
其中,依次驱动第一光源303和第二光源304的时间间隔为20微秒至50 微秒,第一光源303发出第一光线的持续时间大于20微秒,第二光源304发出第二光线的持续时间大于20微秒。
S3:驱动图像获取装置200分别获取第一光线照射时及第二光线照射时待检测的隔膜400的第一图像和第二图像。
步骤S3包含步骤:
S31:驱动两组相机机构210同时获取第一图像;
S32:驱动两组相机机构210同时获取第二图像。
S4:根据第一图像与第二图像,判断待检测的隔膜400是否存在缺陷。
步骤S4包含步骤:
S41:循环N次步骤S2和步骤S3,获得行高为2N的组合图像;
S42:拆分组合图像的奇偶行,分别获得第一光源303照射下的第一图像的行高为N的第一整图及第二光源304照射下的第二图像的行高为N的第二整图;其中N为正整数;
S43:根据第一整图及/或第二整图,判断待检测的隔膜400是否存在缺陷。
S5:若步骤S4中判定待检测的隔膜400存在缺陷,则判断缺陷的类型。即,对比第一整图与第二整图中相同位置的缺陷是否存在差异,以判断缺陷的类型。
对于光源与相机的驱动,可利用编码器输出脉冲信号到计数卡,计数卡调制脉冲信号,输出触发信号到光源控制器,光源控制器通过内部分频,将触发信号同时输出给第一光源303、第二光源304和两组相机机构210,通过PC设定第一光源303和第二光源304的工作时间与延长时间。
综上,本申请的隔膜的光学检测方法在第一光源303点亮时对隔膜400取像,在第二光源304点亮时对隔膜400取像,将两次取像的图片进行比对,即可分析出隔膜400是否存在缺陷以及缺陷的类型,检测精度较高。

Claims (10)

  1. 一种隔膜的光学检测方法,包括以下步骤:
    S1:提供一种隔膜的光学检测机构,所述隔膜的光学检测机构包括图像获取装置(200)及检测光源(300),所述检测光源(300)位于待检测的隔膜(400)的正下方,包括第一光源(303)和第二光源(304),所述图像获取装置(200)位于所述待检测的隔膜(400)的上方;
    S2:依次驱动所述第一光源(303)和所述第二光源(304)分别向所述待检测的隔膜(400)发射第一光线和第二光线,且所述第一光线与所述第二光线照射于所述待检测的隔膜(400)的相同位置;
    S3:驱动所述图像获取装置(200)分别获取所述第一光线照射时及所述第二光线照射时所述待检测的隔膜(400)的第一图像和第二图像;
    S4:根据所述第一图像与所述第二图像,判断所述待检测的隔膜(400)是否存在缺陷。
  2. 根据权利要求1所述的隔膜的光学检测方法,其中,所述步骤S2包含步骤:
    S21:驱动所述第一光源(303)向所述待检测的隔膜(400)发出第一光线;
    S22:关闭所述第一光源(303);
    S23:驱动所述第二光源(304)向所述待检测的隔膜(400)发出第二光线;
    S24:关闭所述第二光源(304)。
  3. 根据权利要求2所述的隔膜的光学检测方法,其中,所述步骤S21中,所述第一光线垂直所述待检测的隔膜(400);所述步骤S23中,所述第二光线与所述第一光线的夹角为5°至45°。
  4. 根据权利要求1所述的隔膜的光学检测方法,其中,所述步骤S2中,依次驱动所述第一光源(303)和所述第二光源(304)的时间间隔为20微秒至50微秒。
  5. 根据权利要求1所述的隔膜的光学检测方法,其中,所述第一光源(303)发出第一光线的持续时间大于20微秒;所述第二光源(304)发出第二光线的持续时间大于20微秒。
  6. 根据权利要求1所述的隔膜的光学检测方法,其中,所述图像获取装置(200)包括共线设置且线扫辐射范围交叉的两组相机机构(210);所述步骤S3包含步骤:
    S31:驱动两组相机机构(210)同时获取所述第一图像;
    S32:驱动两组相机机构(210)同时获取所述第二图像。
  7. 根据权利要求1所述的隔膜的光学检测方法,还包含步骤S5:若所述步骤S4中判定所述待检测的隔膜(400)存在缺陷,则判断所述缺陷的类型。
  8. 根据权利要求7所述的隔膜的光学检测方法,其中,所述步骤S4还包含步骤:
    S41:循环N次所述步骤S2和所述步骤S3,获得行高为2N的组合图像;
    S42:拆分所述组合图像的奇偶行,分别获得所述第一光源(303)照射下的所述第一图像的行高为N的第一整图及所述第二光源(304)照射下的所述第二图像的行高为N的第二整图;其中N为正整数。
  9. 根据权利要求8所述的隔膜的光学检测方法,其中,所述步骤S4还包含步骤S43:根据所述第一整图及/或所述第二整图,判断所述待检测的隔膜(400)是否存在缺陷。
  10. 根据权利要求9所述的隔膜的光学检测方法,其中,所述步骤S5中:对比所述第一整图与所述第二整图中相同位置的缺陷是否存在差异,以判断缺陷的类型。
PCT/CN2019/122620 2019-09-30 2019-12-03 隔膜的光学检测方法 WO2021062939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910944415.7 2019-09-30
CN201910944415.7A CN110609040B (zh) 2019-09-30 2019-09-30 一种隔膜的光学检测方法

Publications (1)

Publication Number Publication Date
WO2021062939A1 true WO2021062939A1 (zh) 2021-04-08

Family

ID=68894016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122620 WO2021062939A1 (zh) 2019-09-30 2019-12-03 隔膜的光学检测方法

Country Status (2)

Country Link
CN (1) CN110609040B (zh)
WO (1) WO2021062939A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109358A (zh) * 2021-04-15 2021-07-13 宁波九纵智能科技有限公司 一种单入射角的待检测产品通用检测装置、方法及***
CN113701015A (zh) * 2021-09-01 2021-11-26 西安中科西光航天科技有限公司 一种可多自由调整的水下双目交汇测量装置
CN116818785B (zh) * 2023-08-30 2023-12-01 杭州百子尖科技股份有限公司 一种基于机器视觉的缺陷检测方法、***及介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658201B (zh) * 2019-09-30 2021-06-22 苏州精濑光电有限公司 一种隔膜的光学检测机构
CN111899238A (zh) * 2020-07-27 2020-11-06 苏州精濑光电有限公司 一种双光源图像的缺陷检测方法、装置、介质及电子设备
CN113686891A (zh) * 2021-08-19 2021-11-23 太仓中科信息技术研究院 印刷薄膜缺陷检测装置
CN114113137B (zh) * 2021-11-10 2024-06-25 佛山科学技术学院 一种薄膜材料的缺陷检测***及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105848B2 (en) * 2002-04-15 2006-09-12 Wintriss Engineering Corporation Dual level out-of-focus light source for amplification of defects on a surface
CN101606094A (zh) * 2007-02-16 2009-12-16 3M创新有限公司 用于通过照明膜进行自动检测的方法和装置
WO2013041216A1 (de) * 2011-09-20 2013-03-28 Schott Ag Beleuchtungsvorrichtung, inspektionsvorrichtung und inspektionsverfahren für die optische prüfung eines objekts
CN107328786A (zh) * 2017-08-21 2017-11-07 中导光电设备股份有限公司 一种膜表面缺陷检测装置及其检测方法
CN209432714U (zh) * 2018-11-13 2019-09-24 康代影像科技(苏州)有限公司 一种用于缺陷检测的***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100683A1 (en) * 2007-02-16 2008-08-21 3M Innovative Properties Company Method and apparatus for illuminating material for automated inspection
HUP0900142A2 (en) * 2009-03-06 2010-10-28 3Dhistech Kft Method and arrangement for dark-field and bright-field digitalization of sample with or without visible dyestuft in transmitted light
CN207215722U (zh) * 2017-08-21 2018-04-10 中导光电设备股份有限公司 一种膜表面缺陷检测装置
CN108931530A (zh) * 2018-07-09 2018-12-04 杭州利珀科技有限公司 一种pvdf膜的检测***
CN109089013A (zh) * 2018-09-21 2018-12-25 中兴新通讯有限公司 一种多光源检测图像获取方法以及机器视觉检测***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105848B2 (en) * 2002-04-15 2006-09-12 Wintriss Engineering Corporation Dual level out-of-focus light source for amplification of defects on a surface
CN101606094A (zh) * 2007-02-16 2009-12-16 3M创新有限公司 用于通过照明膜进行自动检测的方法和装置
WO2013041216A1 (de) * 2011-09-20 2013-03-28 Schott Ag Beleuchtungsvorrichtung, inspektionsvorrichtung und inspektionsverfahren für die optische prüfung eines objekts
CN107328786A (zh) * 2017-08-21 2017-11-07 中导光电设备股份有限公司 一种膜表面缺陷检测装置及其检测方法
CN209432714U (zh) * 2018-11-13 2019-09-24 康代影像科技(苏州)有限公司 一种用于缺陷检测的***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109358A (zh) * 2021-04-15 2021-07-13 宁波九纵智能科技有限公司 一种单入射角的待检测产品通用检测装置、方法及***
CN113701015A (zh) * 2021-09-01 2021-11-26 西安中科西光航天科技有限公司 一种可多自由调整的水下双目交汇测量装置
CN116818785B (zh) * 2023-08-30 2023-12-01 杭州百子尖科技股份有限公司 一种基于机器视觉的缺陷检测方法、***及介质

Also Published As

Publication number Publication date
CN110609040B (zh) 2022-01-07
CN110609040A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2021062939A1 (zh) 隔膜的光学检测方法
WO2021062938A1 (zh) 一种隔膜的光学检测机构
TWI518404B (zh) 液晶面板檢查裝置
TWI773032B (zh) 一種拱形照明裝置、具有其之成像系統及成像方法
WO2015014041A1 (zh) 检测***
CN107702793A (zh) 一种光斑光分布的测试***和测试方法
CN103630332A (zh) 背光源亮度均匀性测量装置及测量方法
TW201441604A (zh) 外觀瑕疵檢測系統及方法
CN104330419A (zh) 菲林检测方法及装置
KR101030450B1 (ko) 원통형 이차 전지 상하면 메탈 검사 장치
CN112666595B (zh) 质子束流的测量装置和方法
KR102145960B1 (ko) 실링 검사 장치 및 방법
CN101408520A (zh) 一种判别内外层瑕疵的检测方法与***
JP4354941B2 (ja) バックライトユニットのビジョン及び輝度検出システム
CN109682576A (zh) 光源光斑检测方法及检测装置
CN111610197A (zh) 一种缺陷检测装置及缺陷检测方法
CN103439812A (zh) 液晶玻璃基板45°角检查法
JP5885477B2 (ja) 積層基板の検査装置および検査方法
KR20230022725A (ko) 머신비전용 조명모듈 검사장치 및 이를 이용한 머신비전용 조명모듈 검사방법
CN210221850U (zh) 一种测试锂电池隔膜针孔的装置
CN104157229B (zh) 一种阵列基板的检测方法和设备
CN102608132B (zh) 多类型玻璃瑕疵检测装置及检测方法
CN110987966A (zh) 曲面基板的检测方法及检测***
CN219737320U (zh) 一种镀膜盖板检测装置
CN103517630A (zh) 部件检查装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947970

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19947970

Country of ref document: EP

Kind code of ref document: A1