WO2021062856A1 - Handling uplink channel and carrier switching gap collisions - Google Patents

Handling uplink channel and carrier switching gap collisions Download PDF

Info

Publication number
WO2021062856A1
WO2021062856A1 PCT/CN2019/109787 CN2019109787W WO2021062856A1 WO 2021062856 A1 WO2021062856 A1 WO 2021062856A1 CN 2019109787 W CN2019109787 W CN 2019109787W WO 2021062856 A1 WO2021062856 A1 WO 2021062856A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
dmrs
time
transmission
uplink
Prior art date
Application number
PCT/CN2019/109787
Other languages
French (fr)
Inventor
Chenxi HAO
Bo Chen
Chao Wei
Hao Xu
Yu Zhang
Wanshi Chen
Peter Gaal
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/109787 priority Critical patent/WO2021062856A1/en
Publication of WO2021062856A1 publication Critical patent/WO2021062856A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria

Definitions

  • This disclosure relates generally to wireless communications, and more particularly to handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers.
  • RF radio frequency
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (such as bandwidth, transmit power, etc. ) .
  • multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • New Radio (such as 5G NR) is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • the method generally includes identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and adapting the at least one of the first and second UL transmission based at least on part on the determination.
  • UL uplink
  • RF radio frequency
  • the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink shared channel (PUSCH) ; and the adapting the at least one of the first and second UL transmissions includes at least one of rate-matching the PUSCH around the RF retuning time, puncturing the PUSCH, or dropping the PUSCH.
  • PUSCH physical uplink shared channel
  • the adapting the at least one of the first and second UL transmissions includes rate-matching the PUSCH around the RF retuning time and where rate-matching the PUSCH around the RF retuning time includes: counting a number of resource elements (REs) allocated to the PUSCH that do not overlap with the RF retuning time; determining a transport block size (TBS) for the PUSCH based on the number of REs; and channel coding the PUSCH, to the REs that do not overlap with the RF retuning time, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH.
  • REs resource elements
  • TBS transport block size
  • MCS modulation and coding scheme
  • the adapting the at least one of the first and second UL transmissions further includes: deciding whether to rate-match the PUSCH around the RF retuning time, puncture the PUSCH, or drop the PUSCH based at least in part on at least one of a channel type of the first uplink transmission or the second uplink transmission, a timing threshold related to the PUSCH, a length of the RF retuning time, or a portion of the PUSCH that overlaps the RF retuning time.
  • the decision is based on the timing threshold, and the timing threshold is based on at least one of a configuration received from a network entity or a processing time of the at least one of the first or second uplink transmissions.
  • the decision when one of the first and second uplink transmissions includes a transmission on reserved transmission resources, a periodic transmission, or a semi-persistently scheduled transmission, then the decision includes deciding to rate-match the PUSCH around the RF retuning time.
  • the decision when a timing of the PUSCH is greater than or equal to the timing threshold, the decision includes deciding to rate-match the PUSCH around the RF retuning time; and when the timing of the PUSCH is less than the timing threshold, the decision includes deciding to puncture the PUSCH.
  • the timing is between at least one of: the PUSCH and a physical downlink control channel (PDCCH) scheduling a physical downlink shared channel (PDSCH) to be acknowledged in the other uplink transmission; the PUSCH and a PDCCH triggering an aperiodic sounding reference signal (A-SRS) to be transmitted in the other uplink transmission; and the PUSCH and a PDCCH carrying downlink control information (DCI) scheduling another PUSCH to be transmitted in the other uplink transmission.
  • PDCCH physical downlink control channel
  • A-SRS aperiodic sounding reference signal
  • DCI downlink control information
  • the decision when the portion of the PUSCH that overlaps the RF retuning time is greater than a threshold portion, then the decision includes deciding to drop the PUSCH.
  • the adapting the at least one of the first and second UL transmissions includes puncturing the PUSCH and where puncturing the PUSCH includes puncturing the PUSCH on resource elements (REs) allocated to the PUSCH that overlap with the RF retuning time.
  • REs resource elements
  • the adapting the at least one of the first and second UL transmissions includes puncturing the PUSCH and where puncturing the PUSCH includes: counting a number of resource elements (REs) allocated to the PUSCH; determining a transport block size (TBS) for the PUSCH based on the number of REs; channel coding the PUSCH, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH, to generate coded bits; and mapping portions of the coded bits to the REs allocated to the PUSCH that do not overlap with the RF retuning time.
  • REs resource elements
  • TBS transport block size
  • MCS modulation and coding scheme
  • the at least one of the first uplink transmission or the second uplink transmission includes a demodulation reference signal (DMRS) ; and the adapting the at least one of the first and second UL transmissions includes at least one of shifting the DMRS in time or puncturing the DMRS.
  • DMRS demodulation reference signal
  • the adapting the at least one of the first and second UL transmissions includes shifting the DMRS in time and where shifting the DMRS in time includes determining a new time domain location for the DMRS based on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time.
  • the adapting the at least one of the first and second UL transmissions includes puncturing the DMRS and where puncturing the DMRS includes dropping the DMRS.
  • the adapting the at least one of the first and second UL transmissions further includes: determining whether to shift the DMRS in time or puncture the DMRS based at least in part on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time, where when the duration is greater than a threshold duration, the determination whether to shift the DMRS in time or puncture the DMRS is to shift the DMRS in time; and when the duration is less than or equal to the threshold duration, the determination whether to shift the DMRS in time or puncture the DMRS is to puncture the DMRS.
  • the DMRS includes front-loaded DMRS and additional DMRS associated with an uplink channel.
  • the adapting the at least one of the first and second UL transmissions includes shifting the DMRS in time, where shifting the DMRS in time includes determining a new time domain location for the DMRS based on a time domain location allocated to the DMRS prior to the shifting the DMRS in time.
  • the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink control channel (PUCCH) ; and the adapting the at least one of the first and second UL transmissions includes at least one of: calculating a frequency domain allocation for the PUCCH based on a recalculated time domain allocation for the PUCCH; or omitting a portion of a payload of the PUCCH, based on a recalculated time domain allocation for the PUCCH.
  • PUCCH physical uplink control channel
  • the method generally includes identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and adapting reception of the at least one of the first and second UL transmission based at least on part on the determination.
  • RF radio frequency
  • the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink shared channel (PUSCH) ; and the adapting reception of the at least one of the first and second UL transmissions includes at least one of receiving the PUSCH rate-matched around the RF retuning time, receiving the PUSCH that is punctured, or determining the PUSCH is dropped by the UE.
  • PUSCH physical uplink shared channel
  • the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink shared channel (PUSCH) ; and the adapting reception of the at least one of the first and second UL transmissions includes at least one of receiving the PUSCH rate-matched around the RF retuning time, receiving the PUSCH that is punctured, or determining the PUSCH is dropped by the UE.
  • PUSCH physical uplink shared channel
  • the adapting reception of the at least one of the first and second UL transmissions includes receiving the PUSCH rate-matched around the RF retuning time and where receiving the PUSCH rate-matched around the RF retuning time includes: counting a number of resource elements (REs) allocated to the PUSCH that do not overlap with the RF retuning time; determining a transport block size (TBS) for the PUSCH based on the number of REs; and receiving the PUSCH channel coded to the REs that do not overlap with the RF retuning time, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH.
  • REs resource elements
  • TBS transport block size
  • the adapting reception of the at least one of the first and second UL transmissions further includes: deciding whether to receive the PUSCH rate-matched around the RF retuning time, receive the PUSCH that is punctured, or determine the PUSCH is dropped based at least in part on at least one of a channel type of the first uplink transmission or the second uplink transmission, a timing threshold related to the PUSCH, a length of the RF retuning time, or a portion of the PUSCH that overlaps the RF retuning time.
  • the decision is based on the timing threshold, and the timing threshold is based on at least one of a configuration transmitted to the UE by the BS or a processing time for the UE of the at least one of the first or second uplink transmissions.
  • the decision when one of the first and second uplink transmissions includes a transmission on reserved transmission resources, a periodic transmission, or a semi-persistently scheduled transmission, then the decision includes deciding to receive the PUSCH rate-matched around the RF retuning time.
  • the decision when a timing of the PUSCH is greater than or equal to the timing threshold, the decision includes deciding to receive the PUSCH rate-matched around the RF retuning time; and when the timing of the PUSCH is less than the timing threshold, the decision includes deciding to receive the PUSCH that is punctured.
  • the timing is between at least one of: the PUSCH and a physical downlink control channel (PDCCH) scheduling a physical downlink shared channel (PDSCH) to be acknowledged in the other uplink transmission; the PUSCH and a PDCCH triggering an aperiodic sounding reference signal (A-SRS) to be transmitted in the other uplink transmission; and the PUSCH and a PDCCH carrying downlink control information (DCI) scheduling another PUSCH to be transmitted in the other uplink transmission.
  • PDCCH physical downlink control channel
  • A-SRS aperiodic sounding reference signal
  • DCI downlink control information
  • the decision when the portion of the PUSCH that overlaps the RF retuning time is greater than a threshold portion, then the decision includes determining the PUSCH is dropped.
  • the adapting reception of the at least one of the first and second UL transmissions includes receiving the PUSCH that is punctured, where the PUSCH is punctured on resource elements (REs) allocated to the PUSCH that overlap with the RF retuning time.
  • REs resource elements
  • the adapting reception of the at least one of the first and second UL transmissions includes receiving the PUSCH that is punctured and where receiving the PUSCH that is punctured includes: counting a number of resource elements (REs) allocated to the PUSCH; determining a transport block size (TBS) for the PUSCH based on the number of REs; determining a channel coding the PUSCH, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH; and receiving the coded bits of the PUSCH mapped to the REs allocated to the PUSCH that do not overlap with the RF retuning time.
  • REs resource elements
  • TBS transport block size
  • MCS modulation and coding scheme
  • the at least one of the first uplink transmission or the second uplink transmission includes a demodulation reference signal (DMRS) ; and the adapting reception the at least one of the first and second UL transmissions includes receiving the at least one of the first and second UL transmissions based on at least one of determining the DMRS are shifted in time or determining the DMRS are punctured.
  • DMRS demodulation reference signal
  • the adapting reception of the at least one of the first and second UL transmissions includes determining the DMRS are shifted in time and where determining the DMRS are shifted in time includes determining a new time domain location for the DMRS based on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time.
  • the adapting reception of the at least one of the first and second UL transmissions includes determining the DMRS are punctured and where receiving the at least one of the first and second UL transmissions includes receiving the at least one of the first and second UL transmissions based on other DMRS.
  • the adapting reception of the at least one of the first and second UL transmissions further includes: determining whether the DMRS are shifted in time or the DMRS are punctured based at least in part on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time, where when the duration is greater than a threshold duration, the determination whether the DMRS are shifted in time or the DMRS are punctured is that the DMRS are shifted in time; and when the duration is less than or equal to the threshold duration, the determination whether the DMRS are shifted in time or the DMRS are punctured is that the DMRS are punctured.
  • the DMRS includes front-loaded DMRS and additional DMRS associated with an uplink channel.
  • the adapting reception of the at least one of the first and second UL transmissions includes determining the DMRS are shifted in time, and determining the DMRS are shifted in time includes determining a new time domain location for the DMRS based on a time domain location allocated to the DMRS prior to the DMRS being shifted in time.
  • the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink control channel (PUCCH) ; and the adapting reception of the at least one of the first and second UL transmissions includes at least one of: receiving the at least one of the first and second UL transmissions based on a calculated frequency domain allocation for the PUCCH based on a recalculated time domain allocation for the PUCCH; or receiving the PUCCH that omits a portion of a payload of the PUCCH, based on a recalculated time domain allocation for the PUCCH.
  • PUCCH physical uplink control channel
  • FIG. 1 Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications, including a processing system configured to perform any one of the above described methods, and a memory coupled with the processing system.
  • Another innovative aspect of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications, including instructions that, when executed by a processing system of a device, cause the processing system to perform operations including any one of the above described methods.
  • FIG. 1 shows a system diagram of an example network.
  • FIG. 2 shows a block diagram of the example devices shown in the example network of FIG. 1.
  • FIG. 3A shows an example transmission timeline of an example device operating on multiple carriers without retuning.
  • FIG. 3B shows an example transmission timeline of an example device performing carrier aggregation based uplink enhancement.
  • FIG. 4A shows an example transmission timeline of a UE operating with a time-division duplexing carrier and a supplementary uplink (SUL) carrier.
  • SUL supplementary uplink
  • FIG. 4B shows an example transmission timeline of a UE operating with time-division duplexing carrier and a frequency-division duplexing carrier.
  • FIG. 5 shows example operations by components of an example device for handling uplink channel and RF retuning time collisions.
  • FIG. 6A shows an example transmission timeline of a device scheduled to transmit configured grant transmissions during an RF retuning time of the device.
  • FIG. 6B shows an example transmission timeline of a device scheduled to transmit transmissions with slot aggregation during an RF retuning time of the device.
  • FIG. 7 shows example transmission resource allocations for uplink transmissions by a device (such as a UE) during an RF retuning time of the device.
  • FIG. 8 shows a flow diagram of example operations for handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers.
  • RF radio frequency
  • FIG. 9 shows a flow diagram of example operations for handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers.
  • RF radio frequency
  • FIGs. 10A and 10B show example transmission resource allocations for uplink transmissions by a device during an RF retuning time of the device.
  • FIGs. 11A, 11B and 11C show example transmission resource allocations for uplink transmissions by a device during an RF retuning time of the device.
  • FIG. 12 shows an example communications device configured to transmit with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 13 shows an example communications device configured to operate with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the other device.
  • the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving RF signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used
  • a user equipment may have two or more transmitters or transmit chains, collectively referred to herein as transmitters.
  • the UE may be capable of transmitting on sets of frequencies in widely separated carriers, such as a 2.1 gigahertz (GHz) carrier and a 3.5 GHz carrier.
  • GHz gigahertz
  • a transmitter typically cannot transmit simultaneously on widely separated carriers, but the UE may change the carrier on which the transmitter transmits.
  • a transmitter typically is unable to transmit on any carrier during the period that the transmitter is changing between carriers, and this period is referred herein to as a carrier switching gap, radio frequency (RF) retuning gap, or retuning gap.
  • RF radio frequency
  • a UE may be scheduled to transmit an uplink transmission on time resources that overlap with an RF retuning time used for radio frequency retuning between two carriers, and the UE may take action to handle the collision. For example, a UE may be scheduled to transmit an uplink transmission on a first carrier with two transmitters on time resources that overlap with a gap period used for radio frequency retuning of one of the transmitters from a second carrier to the first carrier.
  • the UE may be scheduled to transmit an uplink transmission that collides with an RF retuning time used for radio frequency retuning of one of the transmitters of the UE.
  • the UE may handle the collision by rate-matching the transmission around the RF retuning time, puncturing resource elements (REs) of the uplink transmission that overlap with the RF retuning time, or dropping the uplink transmission.
  • Rate-matching the uplink transmission or puncturing REs of the uplink transmission may enable the UE to transmit the uplink transmission as scheduled while utilizing transmission resources that would otherwise go unused.
  • NR new radio
  • LTE long term evolution
  • NR new radio
  • UL uplink
  • an NR cell operating on a 3.5 GHz band suffers approximately 9 dB of coverage loss compared to an LTE cell operating on a 2.1 GHz band.
  • CA carrier aggregation
  • a high frequency (such as 3.5 GHz) carrier and a low frequency (such as 2.1 GHz) carrier simultaneously has a limitation in that UEs supporting carrier aggregation are more complex, and a UE with two transmitters can use one transmitter in the high (such as 3.5 GHz) band and one transmitter in the low (such as 2.1 GHz) band. If the UE stops using carrier aggregation, then the UE can use both transmitters on the high frequency carrier. If the UE uses both transmitters on the high frequency carrier, then the UE typically suffers a coverage loss, as described above.
  • a UE which switches a transmitter from a low (such as 2.1 GHz) band to a high (such as 3.5 GHz) band in a time-division multiplexing (TDM) manner may use two transmitters on the high band and one transmitter in the low band.
  • TDM time-division multiplexing
  • Such a UE may have improved coverage at cell edges due to being scheduled on the low band (i.e., the UE does not suffer the coverage loss during the times that the one transmitter is operating on the low band) and be able to exploit the wider NR bandwidths on the high band (i.e., the UE exploits the wider NR bandwidths during the times that the two transmitters are operating on the high band) when the UE is near a cell-center.
  • a UE implementing the described subject matter may use transmission resources that would otherwise go unused, and thus the UE may avoid wasting transmission resources. For example, when a UE is scheduled to transmit a transmission that overlaps with a gap period for radio frequency retuning of a first transmitter of the UE, the UE can transmit the scheduled transmission by rate-matching the transmission around the gap period or puncturing REs of the transmission that overlap the gap period, rather than the UE dropping all such uplink transmissions. Thus, the UE may achieve a higher data throughput rate than a UE that does not rate-match around the gap period or puncture REs of the transmission that overlap the gap period.
  • the UE may achieve higher data throughput rates on both a high band (such as a 3.5 GHz band) and a low band (such as a 2.1 GHz band) .
  • the UE also may cause demodulation reference signals (DMRS) associated with uplink transmissions to be shifted in time or punctured, so that the UE transmits sufficient DMRS for a receiver to demodulate the uplink transmissions.
  • DMRS demodulation reference signals
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT also may be referred to as a radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • a 5G NR RAT network may be deployed.
  • FIG. 1 shows a system diagram of an example network 100.
  • the wireless communication network 100 may be an NR system (such as a 5G NR network) .
  • the wireless communication network 100 may include a number of base stations (BSs) 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities.
  • a BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110.
  • the BSs 110 may be interconnected to one another or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (such as a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network.
  • backhaul interfaces such as a direct physical connection, a wireless connection, a virtual network, or the like
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple cells.
  • the BSs 110 communicate with user equipment (UEs) 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100.
  • the UEs 120 (such as 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
  • the BSs 110 and UEs 120 may be configured to handle uplink channel and RF retuning time collisions.
  • the BS 110a includes a handle UL channel and RF retuning time collision manager 112.
  • the handle UL channel and RF retuning time collision manager 112 may be configured to identify a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; to determine at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and to adapt reception of the at least one of the first and second UL transmission based at least on part on the determination.
  • the UE 120a includes a handle UL channel and RF retuning time collision manager 122.
  • the handle UL channel and RF retuning time collision manager 122 may be configured to identify a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; to determine at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and to adapt the at least one of the first and second UL transmission based at least on part on the determination.
  • UL uplink
  • RF radio frequency
  • Wireless communication network 100 also may include relay stations (such as relay station 110r) , also referred to as relays or the like, that receive a transmission of data or other information from an upstream station (such as a BS 110a or a UE 120r) and send a transmission of the data or other information to a downstream station (such as a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • relay stations such as relay station 110r
  • relays or the like that receive a transmission of data or other information from an upstream station (such as a BS 110a or a UE 120r) and send a transmission of the data or other information to a downstream station (such as a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • a network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 also may communicate with one another (such as directly or indirectly) via wireless or wireline backhaul.
  • FIG. 2 shows a block diagram 200 of the example devices shown in the example network of FIG. 1.
  • the block diagram 200 illustrates example components of BS 110a and UE 120a (such as in the wireless communication network 100 of FIG. 1) .
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 220 may process (such as encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 also may generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (such as precoding) on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t.
  • Each modulator 232 may process a respective output symbol stream (such as for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (such as convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
  • the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively.
  • Each demodulator 254 may condition (such as filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (such as for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (such as demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (such as for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (such as for the physical uplink control channel (PUCCH) from the controller/processor 280.
  • the transmit processor 264 also may generate reference symbols for a reference signal (such as for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators in transceivers 254a-254r (such as for SC-FDM, etc. ) , and transmitted to the BS 110a.
  • the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the memories 242 and 282 may store data and program codes for BS 110a and UE 120a, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink or uplink.
  • the controller/processor 280 or other processors and modules at the UE 120a may perform or direct the execution of processes for the techniques described herein.
  • the controller/processor 240 of the BS 110a has a handle UL channel and RF retuning time collision 241 that may be configured for identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and adapting reception of the at least one of the first and second UL transmission based at least on part on the determination, according to aspects described herein.
  • RF radio frequency
  • the controller/processor 280 of the UE 120a has a handle UL channel and RF retuning time collision manager 241 that may be configured for identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and adapting the at least one of the first and second UL transmission based at least on part on the determination, according to aspects described herein.
  • RF radio frequency
  • FIG. 3A shows an example transmission timeline 300 of an example device operating on multiple carriers without retuning.
  • the example transmission timeline 300 is for a UE operating with traditional carrier aggregation supporting a 3.5 GHz carrier and a 2.1 GHz carrier simultaneously.
  • the TDD timeline for the 3.5 GHz carrier is shown at 310.
  • the UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ”
  • the 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ”
  • the UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U.
  • the FDD DL carrier timeline is shown at 320, and the FDD UL carrier timeline is shown at 330. Time periods when the UE may transmit uplink transmissions on each of the 3.5 GHz NR TDD carrier and the FDD UL carrier are illustrated by shading in the rectangles of the timelines 310 and 330.
  • a UE which switches a transmitter from a low (such as 2.1 GHz) band to a high (such as 3.5 GHz) band in a time-division multiplexing (TDM) manner may use two transmitters on the high band and one transmitter in the low band.
  • TDM time-division multiplexing
  • Such a UE may have improved coverage at cell edges due to being scheduled on the low band and be able to exploit the wider NR bandwidths on the high band when the UE is near a cell-center.
  • FIG. 3B shows an example transmission timeline 350 of an example device performing carrier aggregation based uplink enhancement.
  • the example transmission timeline 350 is for a UE operating in a TDM manner on a 3.5 GHz TDD carrier, a 2.1 GHz FDD DL carrier, and a 2.1 GHz FDD UL carrier.
  • the TDD timeline for the 3.5 GHz carrier is shown at 360.
  • the UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ”
  • the 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S.
  • the UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ”
  • SRS sounding reference signals
  • the UE may transmit uplink transmissions with two transmitters on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ”
  • the 2.1 GHz FDD DL carrier transmission timeline is shown at 370.
  • the 2.1 GHz FDD UL carrier transmission timeline is shown at 380. Slots when UL or DL NR transmissions for the UE may occur on each of the carriers are illustrated by shading in the rectangles of the timelines 360, 370, and 380. Unshaded rectangles represent slots when neither UL nor DL transmissions for the UE occur on the corresponding carrier.
  • time-division multiplexing uplink carriers two techniques for time-division multiplexing uplink carriers are described.
  • One technique for time-division multiplexing uplink carriers is through use of a supplementary UL (SUL) carrier, which is supported in NR Release 15 (Rel-15) communications standards.
  • Another technique for time-division multiplexing uplink carriers is through time-division multiplexed carrier aggregation (CA) .
  • SUL supplementary UL
  • CA time-division multiplexed carrier aggregation
  • a UE when a UE is configured to use a high (such as 3.5 GHz) frequency band as a SUL carrier, then the UE may be configured to operate with two UL carriers (i.e., one UL carrier and one SUL carrier) and one DL carrier.
  • the UE may be assumed to operate on one UL carrier at a time, and can be scheduled for an UL NR transmission on any UL carrier in an arbitrary slot.
  • FIG. 4A shows an example transmission timeline 400 of a UE operating with a time-division duplexing carrier and a supplementary uplink (SUL) carrier.
  • the example transmission timeline 400 is for a UE operating with time-division duplexing (TDD) on a 3.5 GHz carrier with an NR SUL carrier.
  • the TDD timeline for the 3.5 GHz carrier is shown at 410.
  • the UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ”
  • the 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S.
  • the UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ”
  • SRS sounding reference signals
  • the UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ”
  • the NR SUL carrier timeline is shown at 420. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the timelines 410 and 420.
  • a UE with two transmitters operating on a 3.5 GHz NR TDD carrier and an NR SUL carrier may use one transmitter on the 3.5 GHz NR TDD carrier and the other transmitter on the NR SUL carrier with approximately 0 microsecond ( ⁇ s) switching time between the UL carriers.
  • the same UE may use two transmitters on the 3.5 GHz NR TDD carrier and one transmitter on the NR SUL carrier with a non-zero switching time between the two carriers, such as approximately 35, 70, or 140 ⁇ s.
  • the same UE may switch from a first operation using two transmitters on the 3.5 GHz NR TDD carrier to a second operation using one transmitter on the 3.5 GHz NR TDD carrier and one transmitter on the NR SUL carrier simultaneously, with a non-zero switching time between the two operations, such as approximately 35, 70, or 140 ⁇ s.
  • a non-zero switching time between the two operations such as approximately 35, 70, or 140 ⁇ s.
  • the configuration of the SUL carrier may not be used when the two carriers (i.e., the NR TDD carrier and the SUL carrier) are co-sited, i.e., the two carriers are from one base station.
  • the UE When a UE is configured to perform time-division multiplexed (TDMed) carrier aggregation, then the UE may be configured to operate with two UL carriers (such as one NR TDD carrier one FDD UL carrier) and two DL carriers (such as one NR TDD carrier and one FDD DL carrier) .
  • the UE may be assumed to operate on one UL carrier at a time in, for example, a semi-static pattern or a dynamic pattern.
  • FIG. 4B shows an example transmission timeline 450 of a UE operating with a time-division duplexing carrier and a frequency-division duplexing carrier.
  • the example transmission timeline 450 is for a UE operating with time-division multiplexed carrier aggregation on a 3.5 GHz NR TDD carrier with a frequency-division duplex (FDD) UL carrier and an FDD DL carrier.
  • the TDD timeline for the 3.5 GHz carrier is shown at 460.
  • the UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ”
  • the 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S.
  • the UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ”
  • SRS sounding reference signals
  • the UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ”
  • the FDD UL carrier timeline is shown at 470
  • the FDD DL carrier timeline is shown at 480. Time periods when the UE may transmit uplink transmissions on each of the 3.5 GHz NR TDD carrier and the FDD UL carrier are illustrated by shading in the rectangles of the timelines 460 and 470.
  • a UE with two transmitters operating on a 3.5 GHz NR TDD carrier with a frequency-division duplex (FDD) UL carrier and an FDD DL carrier may use two transmitters on the 3.5 GHz NR TDD carrier and one transmitter on the FDD UL carrier with a non-zero switching time between the two carriers, such as approximately 35, 70, or 140 ⁇ s.
  • FDD frequency-division duplex
  • the configuration of the NR TDD carrier with the FDD UL carrier and the FDD DL carrier may be used when the carriers are co-sited and when the carriers are not co-sited.
  • a UE may have better power control as compared to being configured with an NR TDD carrier and a SUL carrier, because of the configuration of the UE with the two DL carriers.
  • the UE also may utilize multiple timing advance (TA) processes, because each DL carrier can support a TA process.
  • TA timing advance
  • a UE may use a carrier switching gap for radio frequency (RF) retuning by the UE from a high (such as 3.5 GHz) frequency band to another frequency band for uplink transmissions.
  • RF radio frequency
  • a UE has 2 transmit (TX) chains.
  • TX transmit
  • the UE may use both TX chains.
  • the UE uses one TX chain.
  • the UE is switching from transmitting on the high band to transmitting on the low band, (at least) one TX chain retunes from the high band to the low band.
  • FIG. 5 shows example operations 500 by components of an example device for handling uplink channel and RF retuning time collisions.
  • the example operations 500 illustrate components of an example UE (such as UE 120a, shown in FIGs. 1 and 2) retuning a transmission chain from high frequency band to a low frequency band.
  • a first transmit chain 512 is linked with a first high-band antenna 520 and available to make uplink transmissions on the high frequency band.
  • a second transmit chain 514 is linked with a second high-band antenna 522 and available to make uplink transmissions on the high frequency band.
  • the UE uses a carrier switching gap to switch the second transmit chain 514 from the high frequency band to the low frequency band.
  • the first transmit chain 512 is linked to the first high-band antenna 520, but the second transmit chain 514 is linked with a low-band antenna 524.
  • a set of candidate values for lengths of a RF retuning time may include approximately 0 ⁇ s, 35 ⁇ s, 70 ⁇ s, 140 ⁇ s, 200 ⁇ s, 300 ⁇ s, and 900 ⁇ s.
  • UE or a BS may determine whether time for an RF retuning time is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on channel priority of channels transmitted in the uplink slot (s) on the high-frequency band and channel priority of channels transmitted in the uplink slot (s) on the low-frequency band.
  • a UE may be configured such that priority for a contention-free random access (CFRA) is higher than priority for a physical uplink control channel (PUCCH) , which is higher than priority for an aperiodic sounding reference signal (A-SRS) , which is higher than priority for a physical uplink shared channel (PUSCH) , which is higher than priority for periodic sounding reference signals (P-SRS) or semi-persistently scheduled sounding reference signals (SP-SRS) .
  • CFRA contention-free random access
  • PUCCH physical uplink control channel
  • A-SRS aperiodic sounding reference signal
  • PUSCH physical uplink shared channel
  • SP-SRS semi-persistently scheduled sounding reference signals
  • the UE may be scheduled to transmit a PUSCH in an uplink slot (s) on a low-frequency band and an aperiodic SRS (A-SRS) in adjacent uplink slot (s) on a high-frequency band, and the UE may determine to take time for a retuning gap from the uplink slot (s) on the low-frequency band, because the A-SRS has a higher priority than the PUSCH.
  • A-SRS aperiodic SRS
  • a BS (such as a gNB) may schedule a UE to transmit a PUSCH in an UL slot (s) on a high-frequency band (PUSCH) and to transmit a PUCCH in an adjacent UL slot (s) on a low-frequency band, and the BS may determine that time for an RF retuning time for the UE will be taken on the high-frequency band, because the PUCCH has a higher priority than the PUSCH.
  • PUSCH high-frequency band
  • PUCCH adjacent UL slot
  • a UE or a BS may determine whether time for an RF retuning time is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on scheduled bandwidth of the high-frequency band and the low-frequency band. For example, a UE may be scheduled with a high-frequency band with a 20 MHz bandwidth and a low-frequency band with a 10 MHz bandwidth, and the UE may determine to take time for an RF retuning time on the low-frequency band because the 10 MHz bandwidth of the low-frequency band is smaller than the 20 MHz bandwidth of the high-frequency band.
  • a UE or a BS may determine whether time for an RF retuning time is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on power headroom (PHR) of the UE on the low-frequency band and the high-frequency band.
  • PHR power headroom
  • a UE may have a PHR of -10 dBm on a high-frequency band a PHR of 0 dBm on a low-frequency band, and the UE may determine to take time for an RF retuning time on the high-frequency band because the PHR on the high-frequency band is lower than the PHR on the low-frequency band.
  • the UE when UL receives a configured grant to transmit a PUSCH, the UE may transmit the PUSCH periodically during a set of transmission occasions.
  • the resource allocation for the PUSCH is the same in each transmission occasion, and some transmission occasions overlap with an RF retuning time of the UE while other transmission occasions do not overlap with an RF retuning time.
  • a PUSCH when a UE is configured to transmit with slot-aggregation, a PUSCH, whether in response to a configured grant to the UE or a dynamic grant to the UE, is transmitted by the UE repeatedly in consecutive slots, and the resource allocation for the PUSCH is the same for all of the aggregated slots.
  • Some of the aggregated slots may not be overlapped with an RF retuning time while other aggregated slots are overlapped with an RF retuning gap.
  • some of the PUSCHs transmitted by the UE in the aggregated slots may overlap with the RF retuning time, while other PUSCHs by the UE in the aggregated slots do not overlap with the RF retuning time.
  • FIG. 6A shows an example transmission timeline 600 of a device scheduled to transmit configured grant transmissions during an RF retuning time of the device.
  • the example transmission timeline 600 is for a UE configured with a TDD carrier with a bandwidth and an FDD UL carrier with a narrower bandwidth than the TDD carrier.
  • the timeline for the TDD carrier is shown at 610.
  • the UE may receive downlink transmissions on the TDD carrier in downlink slots symbolized by boxes containing a “D. ”
  • the TDD carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ”
  • the UE may start transmitting an uplink signal at the end of each special slot, as shown by the rectangles containing “U” at the end of each special slot.
  • the UE may transmit uplink transmissions on the TDD carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U” on timeline 610.
  • the FDD UL carrier timeline is shown at 620. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the timelines 610 and 620.
  • RF Retuning times on the FDD UL carrier are shown at 612, 614, 622, 624, and 626.
  • the UE receives a grant that configures the UE to transmit PUSCHs at 630 and 632. As illustrated, the configured grant (CG) PUSCH at 632 overlaps with the RF retuning gap at 626, while the CG PUSCH at 630 does not overlap with an RF retuning gap.
  • CG configured grant
  • FIG. 6B shows an example transmission timeline 650 of a device scheduled to transmit transmissions with slot aggregation during an RF retuning time of the device.
  • the example transmission timeline 650 is for a UE configured with a TDD carrier with a bandwidth and an FDD UL carrier with a narrower bandwidth than the TDD carrier.
  • the timeline for the TDD carrier is shown at 660.
  • the UE may receive downlink transmissions on the TDD carrier in downlink slots symbolized by boxes containing a “D. ”
  • the TDD carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S.
  • the UE may start transmitting an uplink signal at the end of each special slot, as shown by the rectangles containing “U” at the end of each special slot.
  • the UE may transmit uplink transmissions on the TDD carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U” on timeline 660.
  • the FDD UL carrier timeline is shown at 670. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the timelines 660 and 670.
  • RF Retuning times on the FDD UL carrier are shown at 662, 664, 672, 674, and 676.
  • the UE determines to transmit a PUSCH using slot aggregation and transmits the PUSCH in consecutive slots at 680 and 682. As illustrated, the PUSCH at 682 overlaps with the RF retuning gap at 672, while the PUSCH at 680 does not overlap with an RF retuning gap.
  • a transmitting device may determine that at least one of a first UL transmission (such as a PUCCH or a PUSCH) on a first carrier or a second UL transmission on a second carrier overlap with an RF retuning time and adapt the at least one of the first or second UL transmission, based on the determination that the at least one of the first or second UL overlaps with the RF retuning time.
  • a first UL transmission such as a PUCCH or a PUSCH
  • a receiving device may determine that at least one of a first UL transmission (such as a PUCCH or a PUSCH) on a first carrier from a transmitting device or a second UL transmission on a second carrier from the transmitting device overlap with an RF retuning time of the transmitting device, and the receiving device may adapt reception of the at least one of the first or second UL transmission, based on the determination that the at least one of the first or second UL overlaps with the RF retuning time.
  • a first UL transmission such as a PUCCH or a PUSCH
  • demodulation reference signals (DMRS) associated with PUSCHs or PUCCHs may overlap with an RF retuning time.
  • a PUSCH may overlap with an RF retuning time due to being scheduled in a slot due to a configured grant or due to being transmitted repeatedly with slot aggregation.
  • a transmitting device such as a UE may adapt the uplink transmission and the DMRS associated with the UL transmission, based on determining the DMRS overlap with the RF retuning time.
  • demodulation reference signals (DMRS) associated with PUSCHs or PUCCHs may overlap with an RF retuning time.
  • a PUSCH may overlap with an RF retuning time due to being scheduled in a slot due to a configured grant or due to being transmitted repeatedly with slot aggregation.
  • a receiving device such as a BS may adapt reception of the uplink transmission and the DMRS associated with the UL transmission, based on determining the DMRS overlap with the RF retuning time.
  • FIG. 7 shows example transmission resource allocations 700, 720, 740, and 760 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device.
  • a device such as a UE
  • time is shown on a horizontal axis
  • frequency is shown on a vertical axis.
  • resource elements (REs) conveying DMRS are symbolized by shaded squares
  • REs conveying data (such as application data or control information) are symbolized by white squares.
  • REs within the RF retuning time are symbolized by cross-hatched squares.
  • the example transmission resource allocation 700 is for a PUCCH of format 1 with a length (len) of ten.
  • PUCCH format 1 REs are allocated to DMRS in every other symbol and occupy the entire symbol in the same bandwidth as the PUCCH.
  • the first two resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 702 and 704.
  • the first DMRS associated with the PUCCH overlaps with the RF retuning time at 702.
  • the example transmission resource allocation 720 is for a PUCCH of format 2 with a length (len) of two.
  • the PUCCH length is no larger than two symbols, and REs are allocated to DMRS are frequency division multiplexed with REs of the PUCCH, such that the second, sixth, and tenth RE of each resource block are allocated to the DMRS.
  • the first resource element in time overlaps with an RF retuning time, as symbolized by the cross-hatched REs at 722.
  • DMRS associated with the PUCCH during the RE at 722 overlap with the RF retuning time at 722.
  • the example transmission resource allocation 740 is for a PUCCH of format 3 with a length (len) of ten.
  • REs are allocated to DMRS based on the length of the PUCCH. As illustrated, in a PUCCH of format 3 with length of ten, REs are allocated to DMRS in the third symbol and the third-to-last symbol and occupy the entire symbol in the same bandwidth as the PUCCH.
  • the first four resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 742, 744, 746, and 748.
  • the first DMRS associated with the PUCCH overlaps with the RF retuning time at 746.
  • the example transmission resource allocation 760 is for a PUSCH with a length (len) of ten.
  • a PUSCH has front-loaded DMRS (that is, DMRS in the first one or two symbols of the PUSCH) , .
  • a PUSCH may have associated DMRS that are not front-loaded.
  • the number and positions in time of DMRS for a PUSCH may be configured by a base station serving the UE. If a BS configures PUSCHs to have one associated front-loaded DMRS, then one, two, or three additional DMRS may be configured for the PUSCH by the BS. If a BS configures PUSCHs to have two associated front-loaded DMRS, then two consecutive DMRS symbols may be configured as additional DMRS for the PUSCH by the BS.
  • the first two resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 762 and 764.
  • the first DMRS and second DMRS associated with the PUSCH overlap with the RF retuning time at 762 and 764.
  • PUCCH format 4 (not shown) , REs are allocated to DMRS in a manner similar to PUCCHs of format 3 (that is, based on the length of the PUCCH) , but the PUCCHs are transmitted in a multi-user multiplexing manner using orthogonal cover codes (OCCs) , with different UEs transmitting PUCCHs using different OCCs.
  • OCCs orthogonal cover codes
  • FIG. 8 shows a flow diagram of example operations 800 for handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers.
  • Operations 800 may be performed, for example, by a UE, such as UE 120a shown in FIGs. 1 and 2.
  • a UE such as UE 120a shown in FIGs. 1 and 2.
  • the UE identifies a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier.
  • UL uplink
  • the UE determines at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier.
  • RF radio frequency
  • the UE adapts the at least one of the first and second UL transmission based at least on part on the determination.
  • FIG. 9 shows a flow diagram of example operations 900 for handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers.
  • Operations 900 may be performed, for example, by a BS, such as BS 110a 120 shown in FIGs. 1 and 2.
  • Operations 900 may be complementary to operations 700 described above..
  • the BS identifies a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE.
  • UL uplink
  • UE user equipment
  • the BS determines at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE.
  • RF radio frequency
  • the BS adapts reception of the at least one of the first and second UL transmission based at least on part on the determination.
  • an uplink transmission such as a PUSCH
  • a device such as a UE
  • the device may rate-match the uplink transmission around the RF retuning time, puncture the uplink transmission, or drop (i.e., not transmit) the uplink transmission.
  • a device rate-matching an uplink transmission (such as a PUSCH) around an RF retuning time may count a number of resource elements (REs) allocated to the uplink transmission that do not overlap or collide with the RF retuning time; determine a transport block size (TBS) for the uplink transmission based on the number of REs; and channel code the uplink transmission, to the REs that do not overlap with the RF retuning time, based on the TBS and a modulation and coding scheme (MCS) for the uplink transmission.
  • REs resource elements
  • TBS transport block size
  • MCS modulation and coding scheme
  • a device puncturing an uplink transmission (such as a PUSCH) with respect to an RF retuning time may count a number of resource elements (REs) allocated to the uplink transmission, regardless of the RF retuning time; determine a transport block size (TBS) for the uplink transmission based on the number of REs; channel code the uplink transmission, based on the TBS and a modulation and coding scheme (MCS) for the uplink transmission, to generate coded bits; and map portions of the coded bits to the REs allocated to the uplink transmission that do not overlap with the RF retuning time.
  • TBS transport block size
  • MCS modulation and coding scheme
  • a device dropping an uplink transmission that partially or completely overlaps with an RF retuning time may not transmit a signal on the transmission resources allocated to the uplink transmission.
  • a device such as a UE determining at least one of a first uplink transmission on a first carrier or a second uplink transmission on a second carrier overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier (such as the UE in block 804 of FIG.
  • RF radio frequency
  • the RF retuning time may decide whether to rate-match the uplink transmission around the RF retuning time, puncture the uplink transmission, or drop the uplink transmission based at least in part on at least one of a channel type of the first uplink transmission or the second uplink transmission, a timing threshold related to the uplink transmission overlapping with the RF retuning time, a length of the RF retuning time, or a portion of the uplink transmission overlapping with the RF retuning time that overlaps the RF retuning time.
  • a device scheduled to transmit a PUSCH on a first carrier and a PUCCH conveying a periodic channel state information report (P-CSI) or a semi-persistently scheduled channel state information report (SP-CSI) on a second carrier, with an RF retuning time between the PUSCH and the PUCCH may determine to rate-match the PUSCH around the RF retuning time, and the PUCCH being periodic or semi-persistent and scheduled in advance gives the UE sufficient time to rate-match the PUSCH around the RF retuning time before transmitting the PUSCH.
  • P-CSI periodic channel state information report
  • SP-CSI semi-persistently scheduled channel state information report
  • a device scheduled to transmit a PUSCH on a first carrier and a PUCCH with a hybrid automatic retransmission request acknowledgment (HARQ-ACK) or scheduling request (SR) without a P-CSI or SP CSI on a second carrier, with an RF retuning time between the PUSCH and the PUCCH may determine whether to rate-match the PUSCH around the RF retuning time or puncture the PUSCH based on a timing or duration between a PDCCH, which schedules the PDSCH being acknowledged in the PUCCH, and the PUSCH.
  • HARQ-ACK hybrid automatic retransmission request acknowledgment
  • SR scheduling request
  • the device may determine to rate-match the PUSCH around the RF retuning time.
  • the device may determine to puncture the PUSCH.
  • the timing threshold (T thr ) may be configured to a UE (such as by a network entity) , determined based on a device capability (such as a processing speed of the device) or fixed, such as being set equal to N 2 , the PUSCH preparation time for the device.
  • a device scheduled to transmit a PUSCH on a first carrier and a A-SRS on a second carrier, with an RF retuning time between the PUSCH and the A-SRS may determine whether to rate-match the PUSCH around the RF retuning time or puncture the PUSCH based on a timing or duration between a PDCCH triggering the A-SRS and the PUSCH.
  • a timing threshold T thr
  • the device may determine to rate-match the PUSCH around the RF retuning time.
  • the timing is less than the timing threshold (T thr )
  • the device may determine to puncture the PUSCH.
  • the timing threshold (T thr ) may be configured to a UE (such as by a network entity) , determined based on a device capability (such as a processing speed of the device) or fixed, such as being set equal to N 2 , the PUSCH preparation time for the device.
  • a device scheduled to transmit a PUSCH on a first carrier and a contention-free random access (CFRA) on a second carrier, with an RF retuning time between the PUSCH and the CFRA may determine to rate-match the PUSCH around the RF retuning time, based on the PUSCH having a lower priority than the CFRA and the CFRA being transmitted on transmission resources reserved for CFRA, and thus the UE has sufficient time to rate-match the PUSCH around the RF retuning time before transmitting the PUSCH.
  • CFRA contention-free random access
  • a device scheduled to transmit a dynamic PUSCH on a first carrier and a configured grant (CG) PUSCH on a second carrier, with an RF retuning time between the dynamic PUSCH and the CG PUSCH may determine to rate-match the dynamic PUSCH around the RF retuning time, as the UE may have sufficient time to rate-match the dynamic PUSCH around the RF retuning time before transmitting the dynamic PUSCH.
  • CG configured grant
  • a device scheduled to transmit a dynamic PUSCH on a first carrier and a configured grant (CG) PUSCH on a second carrier, with an RF retuning time between the dynamic PUSCH and the CG PUSCH may determine to rate-match the CG PUSCH around the RF retuning time, when a duration or timing between the PDCCH scheduling the dynamic PUSCH and the CG PUSCH occasion is greater than or equal to a timing threshold, T thr . If the timing is less than the timing threshold, T thr , then the device may determine to puncture the CG PUSCH.
  • the timing threshold (T thr ) may be configured on a UE (such as by a network entity) , determined based on a device capability (such as a processing speed of the device) or fixed, such as being set equal to N 2 , the PUSCH preparation time for the device.
  • a device scheduled to transmit a first dynamic PUSCH on a first carrier and a second dynamic PUSCH on a second carrier may determine to rate-match the lower-priority dynamic PUSCH when a duration or timing between the last downlink control information (DCI) of the two DCIs scheduling the two dynamic PUSCHs and the first PUSCH is greater than or equal a timing threshold, T thr . When the timing is less than the timing threshold, then the device may determine to puncture the lower-priority dynamic PUSCH.
  • DCI downlink control information
  • the timing threshold (T thr ) may be configured on a UE (such as by a network entity) , determined based on a device capability (such as a processing speed of the device) or fixed, such as being set equal to N 2 , the PUSCH preparation time for the device.
  • a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to drop the PUSCH when the RF retuning time is larger than a threshold portion of the PUSCH or when a number of symbols available to convey the PUSCH, after rate-matching or puncturing the PUSCH and after shifting DMRS associated with the PUSCH, is less than a threshold number of symbols.
  • a device (such as a UE) transmitting a PUCCH may determine the frequency span of the PUCCH based on a time domain allocation of the PUCCH and a configured coding rate for the PUCCH.
  • the device may compute a minimum number of RBs that satisfy the configured coding rate of the PUCCH (that is, a number of RBs sufficient to convey all of the data of the PUCCH using the configured coding rate) , based on the time domain location of the PUCCH.
  • the UE may recalculate the time domain allocation that does not overlap with the RF retuning time, and, based on the recalculated time domain allocation, calculate the frequency span for the PUCCH, that is, the minimum of number RBs that satisfy the configured coding rate (i.e., a number of RBs sufficient to convey all of the data of the PUCCH using the configured coding rate during the recalculated time domain allocation) .
  • a BS receiving a PUCCH from a device that overlaps with an RF retuning time of the device may also recalculate the time domain allocation that does not overlap with the RF retuning time, and, based on the recalculated time domain allocation, calculate the frequency span for the PUCCH, that is, the minimum of number RBs that satisfy the configured coding rate (i.e., a number of RBs sufficient to convey all of the data of the PUCCH using the configured coding rate during the recalculated time domain allocation) .
  • the BS may then adapt reception of the PUCCH based on the calculated frequency span or minimum number of RBs.
  • a device may transmit a PUCCH carrying CSI (and which may also include HARQ-ACK or a SR) , and the device may determine the PUCCH cannot carry the entire payload within a maximum number of RBs within the configured time domain allocation. That is, with the configured time domain allocation, the payload of the PUCCH cannot be encoded within the maximum number of RBs at the target coding rate. The device may then omit one or more CSI reports from the payload such that the payload can satisfy the target coding rate.
  • a BS receiving a PUCCH from which one or more CSI reports have been omitted may also recalculate a time domain allocation for the PUCCH based on the number of symbols for the PUCCH that do not overlap with the RF retuning time and then determine what the device omitted, based on the new time domain allocation.
  • a device (such as a UE) acknowledging (ACKing) a semi-persistently scheduled PDSCH may select a PUCCH resource with the smallest indices that satisfies the coding rate for the PUCCH. If one of the PUCCH resources overlaps with an RF retuning time, then the device may consider the actual time domain allocations of the PUCCH that do not overlap with the RF retuning time when determining whether that PUCCH resource can convey the PUCCH while satisfying the coding rate.
  • a device scheduled to transmit an uplink transmission with associated DMRS that overlaps with an RF retuning time of the device may puncture the DMRS or shift the DMRS in time.
  • FIG. 10A shows example transmission resource allocations 1000 and 1010 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device.
  • a device such as a UE
  • time is shown on a horizontal axis
  • frequency is shown on a vertical axis.
  • resource elements (REs) conveying DMRS are symbolized by shaded squares
  • REs conveying data are symbolized by white squares.
  • REs within the RF retuning time are symbolized by cross-hatched squares.
  • the example transmission resource allocation 1000 is for a PUCCH of format 1 with a length (len) of ten.
  • the first two resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 1002 and 1004.
  • the first DMRS associated with the PUCCH overlaps with the RF retuning time at 1002.
  • a device scheduled to transmit a PUCCH of format 1 that overlaps with an RF retuning time may determine, based on the format of the PUCCH, to puncture DMRS of the PUCCH that overlap with the RF retuning time, as shown in the example transmission resource allocation 1010 at 1012.
  • a device scheduled to transmit a PUCCH of format 1 that overlaps with an RF retuning time including an odd number of symbols may determine, based on the format of the PUCCH, to shift DMRS, which do not overlap with the RF retuning time, in time, such that the DMRS occur in odd-numbered symbols and a first symbol of the PUCCH after the RF retuning time includes a DMRS.
  • FIG. 10B shows example transmission resource allocations 1000 and 1010 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device.
  • a device such as a UE
  • time is shown on a horizontal axis
  • frequency is shown on a vertical axis.
  • resource elements (REs) conveying DMRS are symbolized by shaded squares
  • REs conveying data are symbolized by white squares.
  • REs within the RF retuning time are symbolized by cross-hatched squares.
  • the example transmission resource allocation 1050 is for a PUCCH of format 2 with a length (len) of two.
  • the first resource element in time overlaps with an RF retuning time, as symbolized by the cross-hatched REs at 1052.
  • DMRS associated with the PUCCH during the RE at 1052 overlap with the RF retuning time at 1052.
  • a device scheduled to transmit a PUCCH of format 2 that overlaps with an RF retuning time may determine, based on the format of the PUCCH, to puncture DMRS of the PUCCH that overlap with the RF retuning time, as shown in the example transmission resource allocation 1060 at 1062.
  • FIG. 11A shows example transmission resource allocations 1100 and 1110 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device.
  • a device such as a UE
  • time is shown on a horizontal axis
  • frequency is shown on a vertical axis.
  • resource elements (REs) conveying DMRS are symbolized by shaded squares
  • REs conveying data are symbolized by white squares.
  • REs within the RF retuning time are symbolized by cross-hatched squares.
  • the example transmission resource allocation 1100 is for a PUCCH of format 3 with a length (len) of ten.
  • the first four resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 1102, 1104, 1106, and 1108.
  • the first DMRS associated with the PUCCH overlaps with the RF retuning time at 1106.
  • a device scheduled to transmit a PUCCH of format 3 that overlaps with an RF retuning time may determine, based on the format of the PUCCH, to shift one or more DMRS associated with the PUCCH that overlap with the RF retuning time, as shown in the example transmission resource allocation 1110 at 1112.
  • the device may determine a remaining number of symbols allocated to the PUCCH that do not overlap with the RF retuning time, then determine new time domain locations for DMRS associated with the PUCCH based on the remaining number of symbols, and then shift the DMRS to the new time domain locations.
  • a device scheduled to transmit a PUCCH of format 4 that overlaps with an RF retuning time may determine, based on the format of the PUCCH, to puncture one or more DMRS associated with the PUCCH that overlap with the RF retuning time, similar to the example transmission resource allocation 1100, with the punctured DMRS shown at 1106.
  • PUCCHs of format 4 are for multiuser multiplexed PUCCHs
  • shifting a DMRS associated with a format 4 PUCCH may cause interference to PUCCHs transmitted by another UE transmitting another format 4 PUCCH at the same time.
  • a device scheduled to transmit a PUCCH of format 4 that overlaps with an RF retuning time may shift the DMRS to a new time domain location.
  • a BS receiving, from a UE, a PUCCH of format 4 that overlaps with an RF retuning time of the UE may attempt blind decoding on the PUCCH, as the transmitting UE may or may not have shifted DMRS associated with the PUCCH to a new time domain location.
  • FIG. 11B shows example transmission resource allocations 1130 and 1140 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device.
  • a device such as a UE
  • time is shown on a horizontal axis
  • frequency is shown on a vertical axis.
  • resource elements (REs) conveying DMRS are symbolized by shaded squares
  • REs conveying data are symbolized by white squares.
  • REs within the RF retuning time are symbolized by cross-hatched squares.
  • the example transmission resource allocation 1130 is for a PUSCH with a length (len) of ten.
  • the first two resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 1132 and 1134.
  • the first DMRS and second DMRS associated with the PUSCH overlap with the RF retuning time at 1132 and 1134.
  • a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to shift one or more DMRS associated with the PUSCH that overlap with the RF retuning time so that the device transmits the PUSCH with associated DMRS while not transmitting in the RF retuning time, as shown in the example transmission resource allocation 1140 at 1142 and 1144.
  • a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine times to which to shift one or more DMRS associated with the PUSCH based on the times allocated to the DMRS without considering the RF retuning time.
  • a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to shift one or more front-loaded DMRS associated with the PUSCH (that is, DMRS transmitted at the beginning of the PUSCH, such as the DMRS at 1132 and 1134) that overlap with the RF retuning time to the beginning symbol (s) of the PUSCH that do not overlap with the RF retuning time, as shown in the example transmission resource allocation 1140 at 1142 and 1144, so that the device transmits the PUSCH with front-loaded DMRS while not transmitting in the RF retuning time.
  • other DMRS associated with the PUSCH may be shifted in time or dropped (as shown in FIG. 11C) , depending on how many symbols are available for the PUSCH after eliminating the symbols overlapping with the RF retuning time.
  • a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to shift DMRS that are not front-loaded to other positions determined based on a number of symbols from the end of the PUSCH to the DMRS being shifted.
  • the device may shift a DMRS in the last position 1138 of the PUSCH before eliminating symbols overlapping with the RF retuning time to a last position 1148 of the PUSCH after the symbols overlapping with the RF retuning time are eliminated.
  • the device may shift a DMRS in the second-to-last position 1136 of the PUSCH before eliminating symbols overlapping with the RF retuning time to a second-to-last position 1146 of the PUSCH after the symbols overlapping with the RF retuning time are eliminated.
  • FIG. 11C shows example transmission resource allocations 1150 and 1160 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device.
  • a device such as a UE
  • time is shown on a horizontal axis
  • frequency is shown on a vertical axis.
  • resource elements (REs) conveying DMRS are symbolized by shaded squares
  • REs conveying data are symbolized by white squares.
  • REs within the RF retuning time are symbolized by cross-hatched squares.
  • the example transmission resource allocation 1150 is for a PUSCH with a length (len) of ten.
  • the first four resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 1152, 1154, 1156, and 1158.
  • the first DMRS and second DMRS associated with the PUSCH overlap with the RF retuning time at 1152 and 1154.
  • a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to puncture some DMRS and shift one or more other DMRS associated with the PUSCH that overlap with the RF retuning time so that the device transmits the PUSCH with some associated DMRS while not transmitting in the RF retuning time, as shown in the example transmission resource allocation 1160 at 1162 and 1164.
  • a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine whether to shift a DMRS or puncture DMRS based on a number of symbols available for the PUSCH after eliminating symbols which overlap with the RF retuning time. In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine times to which to shift one or more DMRS associated with the PUSCH based on the times allocated to the DMRS without considering the RF retuning time.
  • a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to shift one or more front-loaded DMRS (that is, DMRS transmitted at the beginning of the PUSCH, such as the DMRS at 1152 and 1154) associated with the PUSCH that overlap with the RF retuning time to the beginning symbol (s) of the PUSCH that do not overlap with the RF retuning time, as shown in the example transmission resource allocation 1160 at 1162 and 1164 so that the device transmits the PUSCH with front-loaded DMRS while not transmitting in the RF retuning time.
  • DMRS that is, DMRS transmitted at the beginning of the PUSCH, such as the DMRS at 1152 and 1154
  • other DMRS associated with the PUSCH may be shifted in time (as shown in FIG. 11B) or dropped, depending on how many symbols are available for the PUSCH after eliminating the symbols overlapping with the RF retuning time.
  • the device may drop a DMRS in the last position 1159 of the PUSCH.
  • the device may drop a DMRS in the second-to-last position 1157 of the PUSCH.
  • a device may determine whether to puncture DMRS, shift DMRS in time, or both based on a number of symbols allocated to an uplink transmission (such as a PUSCH) that do not overlap with an RF retuning time.
  • a BS (such as a gNB) may be configured to not schedule UL multi-user transmissions for one a UE, if a PUSCH by the UE would overlap with an RF retuning time, so as to prevent DMRS shifting by one UE from interfering with another UL transmission by one of the other UEs performing the multi-user transmission.
  • FIG. 12 shows an example communications device 1200 configured to transmit with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example communications device 1200 includes various components (such as corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 8.
  • the communications device 1200 includes a processing system 1202 coupled to a transceiver 1208.
  • the transceiver 1208 is configured to transmit and receive signals for the communications device 1200 via one or more antennas 1210, such as the various signals as described herein.
  • the processing system 1202 may be configured to perform processing functions for the communications device 1200, including processing signals received or to be transmitted by the communications device 1200.
  • the processing system 1202 includes a processor 1204 coupled to a computer-readable medium/memory 1212 via a bus 1206.
  • the computer-readable medium/memory 1212 is configured to store instructions (such as computer-executable code) that when executed by the processor 1204, cause the processor 1204 to perform the operations illustrated in FIG. 8, or other operations for performing the various techniques discussed herein for a user equipment (UE) to transmit with a transmitter during a carrier switching gap of another transmitter of the UE.
  • instructions such as computer-executable code
  • computer-readable medium/memory 1212 stores code 1214 for identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; code 1216 for determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and code 1218 for adapting the at least one of the first and second UL transmission based at least on part on the determination.
  • the processor 1204 has circuitry configured to implement the code stored in the computer-readable medium/memory 1212.
  • the processor 1204 includes circuitry 1220 for identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; circuitry 1224 for determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and circuitry 1226 for adapting the at least one of the first and second UL transmission based at least on part on the determination.
  • RF radio frequency
  • FIG. 13 shows an example communications device 1300 configured to operate with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the other device.
  • the example communications device 1300 includes various components (such as corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 9.
  • the communications device 1300 includes a processing system 1302 coupled to a transceiver 1308.
  • the transceiver 1308 is configured to transmit and receive signals for the communications device 1300 via antennas 1310, such as the various signals as described herein.
  • the processing system 1302 may be configured to perform processing functions for the communications device 1300, including processing signals received or to be transmitted by the communications device 1300.
  • the processing system 1302 includes a processor 1304 coupled to a computer-readable medium/memory 1312 via a bus 1306.
  • the computer-readable medium/memory 1312 is configured to store instructions (such as computer-executable code) that when executed by the processor 1304, cause the processor 1304 to perform the operations illustrated in FIG. 9, or other operations for performing the various techniques discussed herein for a user equipment (UE) to transmit with a transmitter during a carrier switching gap of another transmitter of the UE.
  • instructions such as computer-executable code
  • computer-readable medium/memory 1312 stores code 1314 for identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; code 1316 for determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and code 1318 for adapting reception of the at least one of the first and second UL transmission based at least on part on the determination.
  • the processor 1304 has circuitry configured to implement the code stored in the computer-readable medium/memory 1312.
  • the processor 1304 includes circuitry 1320 for identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; circuitry 1324 for determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and circuitry 1326 for adapting reception of the at least one of the first and second UL transmission based at least on part on the determination.
  • RF radio frequency
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes and methods may be performed by circuitry that is specific to a given function.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware or software component (s) or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another.
  • a storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides methods, apparatuses, wireless nodes and computer-readable mediums for wireless communications. In one aspect, a user equipment (UE) may be scheduled to transmit an uplink transmission on time resources that overlap with a radio frequency (RF) retuning time used for RF retuning between two carriers. The UE may be implemented to rate-match the transmission around the RF retuning time, puncture resource elements (REs) of the uplink transmission that overlap with the RF retuning time, or drop the uplink transmission. Rate-matching the uplink transmission or puncturing REs of the uplink transmission may enable the UE to transmit the uplink transmission as scheduled while utilizing transmission resources that would otherwise go unused.

Description

HANDLING UPLINK CHANNEL AND CARRIER SWITCHING GAP COLLISIONS TECHNICAL FIELD
This disclosure relates generally to wireless communications, and more particularly to handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (such as bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New Radio (such as 5G NR) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The methods, apparatuses, computer-readable mediums and wireless nodes of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communications by a user equipment (UE) . The method generally includes identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and adapting the at least one of the first and second UL transmission based at least on part on the determination.
In some implementations of the method, the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink shared channel (PUSCH) ; and the adapting the at least one of the first and second UL transmissions includes at least one of rate-matching the PUSCH around the RF retuning time, puncturing the PUSCH, or dropping the PUSCH.
In some implementations of the method, the adapting the at least one of the first and second UL transmissions includes rate-matching the PUSCH around the RF retuning time and where rate-matching the PUSCH around the RF retuning time includes: counting a number of resource elements (REs) allocated to the PUSCH that do not overlap with the RF retuning time; determining a transport block size (TBS) for the PUSCH based on the number of REs; and channel coding the PUSCH, to the REs that do not overlap with the RF retuning time, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH.
In some implementations of the method, the adapting the at least one of the first and second UL transmissions further includes: deciding whether to rate-match the PUSCH around the RF retuning time, puncture the PUSCH, or drop the PUSCH based at least in part on at least one of a channel type of the first uplink transmission or the second uplink transmission, a timing threshold related to the PUSCH, a length of the RF retuning time, or a portion of the PUSCH that overlaps the RF retuning time.
In some implementations of the method, the decision is based on the timing threshold, and the timing threshold is based on at least one of a configuration received from a network entity or a processing time of the at least one of the first or second uplink transmissions.
In some implementations of the method, when one of the first and second uplink transmissions includes a transmission on reserved transmission resources, a periodic transmission, or a semi-persistently scheduled transmission, then the decision includes deciding to rate-match the PUSCH around the RF retuning time.
In some implementations of the method, when a timing of the PUSCH is greater than or equal to the timing threshold, the decision includes deciding to rate-match the PUSCH around the RF retuning time; and when the timing of the PUSCH is less than the timing threshold, the decision includes deciding to puncture the PUSCH.
In some implementations of the method, the timing is between at least one of: the PUSCH and a physical downlink control channel (PDCCH) scheduling a physical downlink shared channel (PDSCH) to be acknowledged in the other uplink transmission; the PUSCH and a PDCCH triggering an aperiodic sounding reference signal (A-SRS) to be transmitted in the other uplink transmission; and the PUSCH and a PDCCH carrying downlink control information (DCI) scheduling another PUSCH to be transmitted in the other uplink transmission.
In some implementations of the method, when the portion of the PUSCH that overlaps the RF retuning time is greater than a threshold portion, then the decision includes deciding to drop the PUSCH.
In some implementations of the method, the adapting the at least one of the first and second UL transmissions includes puncturing the PUSCH and where puncturing  the PUSCH includes puncturing the PUSCH on resource elements (REs) allocated to the PUSCH that overlap with the RF retuning time.
In some implementations of the method, the adapting the at least one of the first and second UL transmissions includes puncturing the PUSCH and where puncturing the PUSCH includes: counting a number of resource elements (REs) allocated to the PUSCH; determining a transport block size (TBS) for the PUSCH based on the number of REs; channel coding the PUSCH, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH, to generate coded bits; and mapping portions of the coded bits to the REs allocated to the PUSCH that do not overlap with the RF retuning time.
In some implementations of the method, the at least one of the first uplink transmission or the second uplink transmission includes a demodulation reference signal (DMRS) ; and the adapting the at least one of the first and second UL transmissions includes at least one of shifting the DMRS in time or puncturing the DMRS.
In some implementations of the method, the adapting the at least one of the first and second UL transmissions includes shifting the DMRS in time and where shifting the DMRS in time includes determining a new time domain location for the DMRS based on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time.
In some implementations of the method, the adapting the at least one of the first and second UL transmissions includes puncturing the DMRS and where puncturing the DMRS includes dropping the DMRS.
In some implementations of the method, the adapting the at least one of the first and second UL transmissions further includes: determining whether to shift the DMRS in time or puncture the DMRS based at least in part on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time, where when the duration is greater than a threshold duration, the determination whether to shift the DMRS in time or puncture the DMRS is to shift the DMRS in time; and when the duration is less than or equal to the threshold duration, the determination whether to shift the DMRS in time or puncture the DMRS is to puncture the DMRS.
In some implementations of the method, the DMRS includes front-loaded DMRS and additional DMRS associated with an uplink channel.
In some implementations of the method, the adapting the at least one of the first and second UL transmissions includes shifting the DMRS in time, where shifting the DMRS in time includes determining a new time domain location for the DMRS based on a time domain location allocated to the DMRS prior to the shifting the DMRS in time.
In some implementations of the method, the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink control channel (PUCCH) ; and the adapting the at least one of the first and second UL transmissions includes at least one of: calculating a frequency domain allocation for the PUCCH based on a recalculated time domain allocation for the PUCCH; or omitting a portion of a payload of the PUCCH, based on a recalculated time domain allocation for the PUCCH.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communications by a base station (BS) . The method generally includes identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and adapting reception of the at least one of the first and second UL transmission based at least on part on the determination. In some implementations of the method, the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink shared channel (PUSCH) ; and the adapting reception of the at least one of the first and second UL transmissions includes at least one of receiving the PUSCH rate-matched around the RF retuning time, receiving the PUSCH that is punctured, or determining the PUSCH is dropped by the UE.
In some implementations of the method, the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink shared channel (PUSCH) ; and the adapting reception of the at least one of the first and second UL transmissions includes at least one of receiving the PUSCH rate-matched around the RF retuning time, receiving the PUSCH that is punctured, or determining the PUSCH is dropped by the UE.
In some implementations of the method, the adapting reception of the at least one of the first and second UL transmissions includes receiving the PUSCH rate-matched around the RF retuning time and where receiving the PUSCH rate-matched around the RF retuning time includes: counting a number of resource elements (REs) allocated to the PUSCH that do not overlap with the RF retuning time; determining a transport block size (TBS) for the PUSCH based on the number of REs; and receiving the PUSCH channel coded to the REs that do not overlap with the RF retuning time, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH.
In some implementations of the method, the adapting reception of the at least one of the first and second UL transmissions further includes: deciding whether to receive the PUSCH rate-matched around the RF retuning time, receive the PUSCH that is punctured, or determine the PUSCH is dropped based at least in part on at least one of a channel type of the first uplink transmission or the second uplink transmission, a timing threshold related to the PUSCH, a length of the RF retuning time, or a portion of the PUSCH that overlaps the RF retuning time.
In some implementations of the method, the decision is based on the timing threshold, and the timing threshold is based on at least one of a configuration transmitted to the UE by the BS or a processing time for the UE of the at least one of the first or second uplink transmissions.
In some implementations of the method, when one of the first and second uplink transmissions includes a transmission on reserved transmission resources, a periodic transmission, or a semi-persistently scheduled transmission, then the decision includes deciding to receive the PUSCH rate-matched around the RF retuning time.
In some implementations of the method, when a timing of the PUSCH is greater than or equal to the timing threshold, the decision includes deciding to receive the PUSCH rate-matched around the RF retuning time; and when the timing of the PUSCH is less than the timing threshold, the decision includes deciding to receive the PUSCH that is punctured.
In some implementations of the method, the timing is between at least one of: the PUSCH and a physical downlink control channel (PDCCH) scheduling a physical downlink shared channel (PDSCH) to be acknowledged in the other uplink transmission;  the PUSCH and a PDCCH triggering an aperiodic sounding reference signal (A-SRS) to be transmitted in the other uplink transmission; and the PUSCH and a PDCCH carrying downlink control information (DCI) scheduling another PUSCH to be transmitted in the other uplink transmission.
In some implementations of the method, when the portion of the PUSCH that overlaps the RF retuning time is greater than a threshold portion, then the decision includes determining the PUSCH is dropped.
In some implementations of the method, the adapting reception of the at least one of the first and second UL transmissions includes receiving the PUSCH that is punctured, where the PUSCH is punctured on resource elements (REs) allocated to the PUSCH that overlap with the RF retuning time.
In some implementations of the method, the adapting reception of the at least one of the first and second UL transmissions includes receiving the PUSCH that is punctured and where receiving the PUSCH that is punctured includes: counting a number of resource elements (REs) allocated to the PUSCH; determining a transport block size (TBS) for the PUSCH based on the number of REs; determining a channel coding the PUSCH, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH; and receiving the coded bits of the PUSCH mapped to the REs allocated to the PUSCH that do not overlap with the RF retuning time.
In some implementations of the method, the at least one of the first uplink transmission or the second uplink transmission includes a demodulation reference signal (DMRS) ; and the adapting reception the at least one of the first and second UL transmissions includes receiving the at least one of the first and second UL transmissions based on at least one of determining the DMRS are shifted in time or determining the DMRS are punctured.
In some implementations of the method, the adapting reception of the at least one of the first and second UL transmissions includes determining the DMRS are shifted in time and where determining the DMRS are shifted in time includes determining a new time domain location for the DMRS based on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time.
In some implementations of the method, the adapting reception of the at least one of the first and second UL transmissions includes determining the DMRS are punctured and where receiving the at least one of the first and second UL transmissions includes receiving the at least one of the first and second UL transmissions based on other DMRS.
In some implementations of the method, the adapting reception of the at least one of the first and second UL transmissions further includes: determining whether the DMRS are shifted in time or the DMRS are punctured based at least in part on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time, where when the duration is greater than a threshold duration, the determination whether the DMRS are shifted in time or the DMRS are punctured is that the DMRS are shifted in time; and when the duration is less than or equal to the threshold duration, the determination whether the DMRS are shifted in time or the DMRS are punctured is that the DMRS are punctured.
In some implementations of the method, the DMRS includes front-loaded DMRS and additional DMRS associated with an uplink channel.
In some implementations of the method, the adapting reception of the at least one of the first and second UL transmissions includes determining the DMRS are shifted in time, and determining the DMRS are shifted in time includes determining a new time domain location for the DMRS based on a time domain location allocated to the DMRS prior to the DMRS being shifted in time.
In some implementations of the method, the at least one of the first uplink transmission or the second uplink transmission includes a physical uplink control channel (PUCCH) ; and the adapting reception of the at least one of the first and second UL transmissions includes at least one of: receiving the at least one of the first and second UL transmissions based on a calculated frequency domain allocation for the PUCCH based on a recalculated time domain allocation for the PUCCH; or receiving the PUCCH that omits a portion of a payload of the PUCCH, based on a recalculated time domain allocation for the PUCCH.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications, including a processing  system configured to perform any one of the above described methods, and a memory coupled with the processing system.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications, including means for performing any one of the above described methods.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications, including instructions that, when executed by a processing system of a device, cause the processing system to perform operations including any one of the above described methods.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a system diagram of an example network.
FIG. 2 shows a block diagram of the example devices shown in the example network of FIG. 1.
FIG. 3A shows an example transmission timeline of an example device operating on multiple carriers without retuning.
FIG. 3B shows an example transmission timeline of an example device performing carrier aggregation based uplink enhancement.
FIG. 4A shows an example transmission timeline of a UE operating with a time-division duplexing carrier and a supplementary uplink (SUL) carrier.
FIG. 4B shows an example transmission timeline of a UE operating with time-division duplexing carrier and a frequency-division duplexing carrier.
FIG. 5 shows example operations by components of an example device for handling uplink channel and RF retuning time collisions.
FIG. 6A shows an example transmission timeline of a device scheduled to transmit configured grant transmissions during an RF retuning time of the device.
FIG. 6B shows an example transmission timeline of a device scheduled to transmit transmissions with slot aggregation during an RF retuning time of the device.
FIG. 7 shows example transmission resource allocations for uplink transmissions by a device (such as a UE) during an RF retuning time of the device.
FIG. 8 shows a flow diagram of example operations for handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers.
FIG. 9 shows a flow diagram of example operations for handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers.
FIGs. 10A and 10B show example transmission resource allocations for uplink transmissions by a device during an RF retuning time of the device.
FIGs. 11A, 11B and 11C show example transmission resource allocations for uplink transmissions by a device during an RF retuning time of the device.
FIG. 12 shows an example communications device configured to transmit with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 13 shows an example communications device configured to operate with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the other device.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. Some of the examples in this disclosure are based on wireless and wired local area network (LAN) communication according to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 wireless standards, the IEEE 802.3 Ethernet standards, and the IEEE 1901 Powerline communication (PLC) standards. However, the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving RF signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the 
Figure PCTCN2019109787-appb-000001
standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used to communicate within a wireless, cellular or internet of things (IOT) network, such as a system utilizing 3G, 4G or 5G, or further implementations thereof, technology.
A user equipment (UE) may have two or more transmitters or transmit chains, collectively referred to herein as transmitters. The UE may be capable of transmitting on sets of frequencies in widely separated carriers, such as a 2.1 gigahertz (GHz) carrier and a 3.5 GHz carrier. A transmitter typically cannot transmit simultaneously on widely separated carriers, but the UE may change the carrier on which the transmitter transmits. A transmitter typically is unable to transmit on any carrier during the period that the transmitter is changing between carriers, and this period is referred herein to as a carrier switching gap, radio frequency (RF) retuning gap, or retuning gap.
The occurrence of time resources for a transmission overlapping with a gap period or RF retuning time used for radio frequency retuning may be referred to as a  collision between the transmission and the RF retuning time. In some implementations, a UE may be scheduled to transmit an uplink transmission on time resources that overlap with an RF retuning time used for radio frequency retuning between two carriers, and the UE may take action to handle the collision. For example, a UE may be scheduled to transmit an uplink transmission on a first carrier with two transmitters on time resources that overlap with a gap period used for radio frequency retuning of one of the transmitters from a second carrier to the first carrier. That is, the UE may be scheduled to transmit an uplink transmission that collides with an RF retuning time used for radio frequency retuning of one of the transmitters of the UE. The UE may handle the collision by rate-matching the transmission around the RF retuning time, puncturing resource elements (REs) of the uplink transmission that overlap with the RF retuning time, or dropping the uplink transmission. Rate-matching the uplink transmission or puncturing REs of the uplink transmission may enable the UE to transmit the uplink transmission as scheduled while utilizing transmission resources that would otherwise go unused.
Compared to long term evolution (LTE) communications systems, new radio (NR) communications systems frequently have shorter range coverage for uplink (UL) transmissions, due to the NR UL transmissions being on a higher frequency than LTE UL transmissions. For example, an NR cell operating on a 3.5 GHz band suffers approximately 9 dB of coverage loss compared to an LTE cell operating on a 2.1 GHz band.
Traditional carrier aggregation (CA) supporting a high frequency (such as 3.5 GHz) carrier and a low frequency (such as 2.1 GHz) carrier simultaneously has a limitation in that UEs supporting carrier aggregation are more complex, and a UE with two transmitters can use one transmitter in the high (such as 3.5 GHz) band and one transmitter in the low (such as 2.1 GHz) band. If the UE stops using carrier aggregation, then the UE can use both transmitters on the high frequency carrier. If the UE uses both transmitters on the high frequency carrier, then the UE typically suffers a coverage loss, as described above.
A UE which switches a transmitter from a low (such as 2.1 GHz) band to a high (such as 3.5 GHz) band in a time-division multiplexing (TDM) manner may use two transmitters on the high band and one transmitter in the low band. Such a UE may have improved coverage at cell edges due to being scheduled on the low band (i.e., the UE does  not suffer the coverage loss during the times that the one transmitter is operating on the low band) and be able to exploit the wider NR bandwidths on the high band (i.e., the UE exploits the wider NR bandwidths during the times that the two transmitters are operating on the high band) when the UE is near a cell-center.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. A UE implementing the described subject matter may use transmission resources that would otherwise go unused, and thus the UE may avoid wasting transmission resources. For example, when a UE is scheduled to transmit a transmission that overlaps with a gap period for radio frequency retuning of a first transmitter of the UE, the UE can transmit the scheduled transmission by rate-matching the transmission around the gap period or puncturing REs of the transmission that overlap the gap period, rather than the UE dropping all such uplink transmissions. Thus, the UE may achieve a higher data throughput rate than a UE that does not rate-match around the gap period or puncture REs of the transmission that overlap the gap period. The UE may achieve higher data throughput rates on both a high band (such as a 3.5 GHz band) and a low band (such as a 2.1 GHz band) . The UE also may cause demodulation reference signals (DMRS) associated with uplink transmissions to be shifted in time or punctured, so that the UE transmits sufficient DMRS for a receiver to demodulate the uplink transmissions.
The following description provides examples of transmitting with a transmitter during a carrier switching gap of another transmitter of a UE in communication systems, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth  herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT also may be referred to as a radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, a 5G NR RAT network may be deployed.
FIG. 1 shows a system diagram of an example network 100. One or more aspects of the subject matter described in this disclosure can be implemented in the example network 100. For example, the wireless communication network 100 may be an NR system (such as a 5G NR network) .
As illustrated in FIG. 1, the wireless communication network 100 may include a number of base stations (BSs) 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities. A BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110. In some examples, the BSs 110 may be interconnected to one another or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (such as a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple cells. The BSs 110 communicate with user equipment (UEs) 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100. The UEs 120 (such  as 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
According to certain aspects, the BSs 110 and UEs 120 may be configured to handle uplink channel and RF retuning time collisions. As shown in FIG. 1, the BS 110a includes a handle UL channel and RF retuning time collision manager 112. The handle UL channel and RF retuning time collision manager 112 may be configured to identify a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; to determine at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and to adapt reception of the at least one of the first and second UL transmission based at least on part on the determination. As shown in FIG. 1, the UE 120a includes a handle UL channel and RF retuning time collision manager 122. The handle UL channel and RF retuning time collision manager 122 may be configured to identify a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; to determine at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and to adapt the at least one of the first and second UL transmission based at least on part on the determination.
Wireless communication network 100 also may include relay stations (such as relay station 110r) , also referred to as relays or the like, that receive a transmission of data or other information from an upstream station (such as a BS 110a or a UE 120r) and send a transmission of the data or other information to a downstream station (such as a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 also may communicate with one another (such as directly or indirectly) via wireless or wireline backhaul.
FIG. 2 shows a block diagram 200 of the example devices shown in the example network of FIG. 1. The block diagram 200 illustrates example components of BS 110a and UE 120a (such as in the wireless communication network 100 of FIG. 1) .
At the BS 110a, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 220 may process (such as encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 also may generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (such as precoding) on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t. Each modulator 232 may process a respective output symbol stream (such as for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (such as convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
At the UE 120a, the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively. Each demodulator 254 may condition (such as filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (such as for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (such as demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at UE 120a, a transmit processor 264 may receive and process data (such as for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (such as for the physical uplink control channel (PUCCH) from the controller/processor 280. The transmit processor 264 also may generate reference symbols for a reference signal (such as for the sounding reference signal (SRS) ) . The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators in transceivers 254a-254r (such as for SC-FDM, etc. ) , and transmitted to the BS 110a. At the BS 110a, the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The  memories  242 and 282 may store data and program codes for BS 110a and UE 120a, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink or uplink.
The controller/processor 280 or other processors and modules at the UE 120a may perform or direct the execution of processes for the techniques described herein. For example, as shown in FIG. 2, the controller/processor 240 of the BS 110a has a handle UL channel and RF retuning time collision 241 that may be configured for identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and adapting reception of the at least one of the first and second UL transmission based at least on part on the determination, according to aspects described herein. As shown in FIG. 2, the controller/processor 280 of the UE 120a has a handle UL channel and RF retuning time collision manager 241 that may be configured for identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; determining at least one of the first uplink transmission or the second uplink transmission  overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and adapting the at least one of the first and second UL transmission based at least on part on the determination, according to aspects described herein. Although shown at the Controller/Processor, other components of the UE 120a and BS 110a may be used performing the operations described herein.
As previously mentioned, traditional carrier aggregation supporting a 3.5 GHz carrier and a 2.1 GHz carrier simultaneously has a limitation in that UEs supporting carrier aggregation are more complex, and a UE with two transmitters can only use one transmitter in the high (such as 3.5 GHz) band and one transmitter in the low (such as 2.1 GHz) band.
FIG. 3A shows an example transmission timeline 300 of an example device operating on multiple carriers without retuning. The example transmission timeline 300 is for a UE operating with traditional carrier aggregation supporting a 3.5 GHz carrier and a 2.1 GHz carrier simultaneously. The TDD timeline for the 3.5 GHz carrier is shown at 310. The UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ” The 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ” The FDD DL carrier timeline is shown at 320, and the FDD UL carrier timeline is shown at 330. Time periods when the UE may transmit uplink transmissions on each of the 3.5 GHz NR TDD carrier and the FDD UL carrier are illustrated by shading in the rectangles of the  timelines  310 and 330.
A UE which switches a transmitter from a low (such as 2.1 GHz) band to a high (such as 3.5 GHz) band in a time-division multiplexing (TDM) manner may use two transmitters on the high band and one transmitter in the low band. Such a UE may have improved coverage at cell edges due to being scheduled on the low band and be able to exploit the wider NR bandwidths on the high band when the UE is near a cell-center.
FIG. 3B shows an example transmission timeline 350 of an example device performing carrier aggregation based uplink enhancement. The example transmission timeline 350 is for a UE operating in a TDM manner on a 3.5 GHz TDD carrier, a 2.1  GHz FDD DL carrier, and a 2.1 GHz FDD UL carrier. The TDD timeline for the 3.5 GHz carrier is shown at 360. The UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ” The 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ” The UE may transmit uplink transmissions with two transmitters on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ” The 2.1 GHz FDD DL carrier transmission timeline is shown at 370. The 2.1 GHz FDD UL carrier transmission timeline is shown at 380. Slots when UL or DL NR transmissions for the UE may occur on each of the carriers are illustrated by shading in the rectangles of the  timelines  360, 370, and 380. Unshaded rectangles represent slots when neither UL nor DL transmissions for the UE occur on the corresponding carrier.
According to aspects of the present disclosure, two techniques for time-division multiplexing uplink carriers are described. One technique for time-division multiplexing uplink carriers is through use of a supplementary UL (SUL) carrier, which is supported in NR Release 15 (Rel-15) communications standards. Another technique for time-division multiplexing uplink carriers is through time-division multiplexed carrier aggregation (CA) .
In aspects of the present disclosure, when a UE is configured to use a high (such as 3.5 GHz) frequency band as a SUL carrier, then the UE may be configured to operate with two UL carriers (i.e., one UL carrier and one SUL carrier) and one DL carrier. The UE may be assumed to operate on one UL carrier at a time, and can be scheduled for an UL NR transmission on any UL carrier in an arbitrary slot.
FIG. 4A shows an example transmission timeline 400 of a UE operating with a time-division duplexing carrier and a supplementary uplink (SUL) carrier. The example transmission timeline 400 is for a UE operating with time-division duplexing (TDD) on a 3.5 GHz carrier with an NR SUL carrier. The TDD timeline for the 3.5 GHz carrier is shown at 410. The UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ” The 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized  by boxes containing an “S. ” The UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ” The UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ” The NR SUL carrier timeline is shown at 420. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the  timelines  410 and 420.
In some implementations, a UE with two transmitters operating on a 3.5 GHz NR TDD carrier and an NR SUL carrier (i.e., per the timeline illustrated in FIG. 4A) may use one transmitter on the 3.5 GHz NR TDD carrier and the other transmitter on the NR SUL carrier with approximately 0 microsecond (μs) switching time between the UL carriers. The same UE may use two transmitters on the 3.5 GHz NR TDD carrier and one transmitter on the NR SUL carrier with a non-zero switching time between the two carriers, such as approximately 35, 70, or 140 μs. The same UE may switch from a first operation using two transmitters on the 3.5 GHz NR TDD carrier to a second operation using one transmitter on the 3.5 GHz NR TDD carrier and one transmitter on the NR SUL carrier simultaneously, with a non-zero switching time between the two operations, such as approximately 35, 70, or 140 μs. It should be noted that the configuration of the SUL carrier may not be used when the two carriers (i.e., the NR TDD carrier and the SUL carrier) are co-sited, i.e., the two carriers are from one base station.
When a UE is configured to perform time-division multiplexed (TDMed) carrier aggregation, then the UE may be configured to operate with two UL carriers (such as one NR TDD carrier one FDD UL carrier) and two DL carriers (such as one NR TDD carrier and one FDD DL carrier) . The UE may be assumed to operate on one UL carrier at a time in, for example, a semi-static pattern or a dynamic pattern.
FIG. 4B shows an example transmission timeline 450 of a UE operating with a time-division duplexing carrier and a frequency-division duplexing carrier. The example transmission timeline 450 is for a UE operating with time-division multiplexed carrier aggregation on a 3.5 GHz NR TDD carrier with a frequency-division duplex (FDD) UL carrier and an FDD DL carrier. The TDD timeline for the 3.5 GHz carrier is shown at 460. The UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ” The 3.5 GHz carrier is configured to switch  from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ” The UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ” The FDD UL carrier timeline is shown at 470, and the FDD DL carrier timeline is shown at 480. Time periods when the UE may transmit uplink transmissions on each of the 3.5 GHz NR TDD carrier and the FDD UL carrier are illustrated by shading in the rectangles of the  timelines  460 and 470.
In some implementations, a UE with two transmitters operating on a 3.5 GHz NR TDD carrier with a frequency-division duplex (FDD) UL carrier and an FDD DL carrier (i.e., per the timeline illustrated in FIG. 4B) may use two transmitters on the 3.5 GHz NR TDD carrier and one transmitter on the FDD UL carrier with a non-zero switching time between the two carriers, such as approximately 35, 70, or 140 μs. It should be noted that the configuration of the NR TDD carrier with the FDD UL carrier and the FDD DL carrier may be used when the carriers are co-sited and when the carriers are not co-sited. In addition, a UE may have better power control as compared to being configured with an NR TDD carrier and a SUL carrier, because of the configuration of the UE with the two DL carriers. The UE also may utilize multiple timing advance (TA) processes, because each DL carrier can support a TA process.
In some implementations, a UE may use a carrier switching gap for radio frequency (RF) retuning by the UE from a high (such as 3.5 GHz) frequency band to another frequency band for uplink transmissions. For example, a UE has 2 transmit (TX) chains. When the UE is transmitting on a high band configured with TDD, the UE may use both TX chains. When the UE is transmitting on a low band with FDD, the UE uses one TX chain. Thus, when the UE is switching from transmitting on the high band to transmitting on the low band, (at least) one TX chain retunes from the high band to the low band.
FIG. 5 shows example operations 500 by components of an example device for handling uplink channel and RF retuning time collisions. The example operations 500 illustrate components of an example UE (such as UE 120a, shown in FIGs. 1 and 2) retuning a transmission chain from high frequency band to a low frequency band. At time 502, a first transmit chain 512 is linked with a first high-band antenna 520 and available  to make uplink transmissions on the high frequency band. Also, at time 502, a second transmit chain 514 is linked with a second high-band antenna 522 and available to make uplink transmissions on the high frequency band. At time 504, the UE uses a carrier switching gap to switch the second transmit chain 514 from the high frequency band to the low frequency band. Thus, at time 506, the first transmit chain 512 is linked to the first high-band antenna 520, but the second transmit chain 514 is linked with a low-band antenna 524.
In some implementations, a set of candidate values for lengths of a RF retuning time may include approximately 0 μs, 35 μs, 70 μs, 140 μs, 200 μs, 300 μs, and 900 μs.
In some implementations, UE or a BS may determine whether time for an RF retuning time is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on channel priority of channels transmitted in the uplink slot (s) on the high-frequency band and channel priority of channels transmitted in the uplink slot (s) on the low-frequency band. For example, a UE may be configured such that priority for a contention-free random access (CFRA) is higher than priority for a physical uplink control channel (PUCCH) , which is higher than priority for an aperiodic sounding reference signal (A-SRS) , which is higher than priority for a physical uplink shared channel (PUSCH) , which is higher than priority for periodic sounding reference signals (P-SRS) or semi-persistently scheduled sounding reference signals (SP-SRS) . The UE may be scheduled to transmit a PUSCH in an uplink slot (s) on a low-frequency band and an aperiodic SRS (A-SRS) in adjacent uplink slot (s) on a high-frequency band, and the UE may determine to take time for a retuning gap from the uplink slot (s) on the low-frequency band, because the A-SRS has a higher priority than the PUSCH. In another example, a BS (such as a gNB) may schedule a UE to transmit a PUSCH in an UL slot (s) on a high-frequency band (PUSCH) and to transmit a PUCCH in an adjacent UL slot (s) on a low-frequency band, and the BS may determine that time for an RF retuning time for the UE will be taken on the high-frequency band, because the PUCCH has a higher priority than the PUSCH.
In some implementations, a UE or a BS may determine whether time for an RF retuning time is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on scheduled bandwidth of the high-frequency band and the low-frequency band. For example, a UE may be scheduled with a high-frequency band  with a 20 MHz bandwidth and a low-frequency band with a 10 MHz bandwidth, and the UE may determine to take time for an RF retuning time on the low-frequency band because the 10 MHz bandwidth of the low-frequency band is smaller than the 20 MHz bandwidth of the high-frequency band.
In some implementations, a UE or a BS may determine whether time for an RF retuning time is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on power headroom (PHR) of the UE on the low-frequency band and the high-frequency band. For example, a UE may have a PHR of -10 dBm on a high-frequency band a PHR of 0 dBm on a low-frequency band, and the UE may determine to take time for an RF retuning time on the high-frequency band because the PHR on the high-frequency band is lower than the PHR on the low-frequency band.
In some implementations, when UL receives a configured grant to transmit a PUSCH, the UE may transmit the PUSCH periodically during a set of transmission occasions. The resource allocation for the PUSCH is the same in each transmission occasion, and some transmission occasions overlap with an RF retuning time of the UE while other transmission occasions do not overlap with an RF retuning time. Thus, some of the PUSCHs the UE transmits overlap with an RF retuning time, and some of the PUSCHs do not overlap with an RF retuning time.
In some implementations, when a UE is configured to transmit with slot-aggregation, a PUSCH, whether in response to a configured grant to the UE or a dynamic grant to the UE, is transmitted by the UE repeatedly in consecutive slots, and the resource allocation for the PUSCH is the same for all of the aggregated slots. Some of the aggregated slots may not be overlapped with an RF retuning time while other aggregated slots are overlapped with an RF retuning gap. Thus, some of the PUSCHs transmitted by the UE in the aggregated slots may overlap with the RF retuning time, while other PUSCHs by the UE in the aggregated slots do not overlap with the RF retuning time.
FIG. 6A shows an example transmission timeline 600 of a device scheduled to transmit configured grant transmissions during an RF retuning time of the device. The example transmission timeline 600 is for a UE configured with a TDD carrier with a bandwidth and an FDD UL carrier with a narrower bandwidth than the TDD carrier. The timeline for the TDD carrier is shown at 610. The UE may receive downlink  transmissions on the TDD carrier in downlink slots symbolized by boxes containing a “D. ” The TDD carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may start transmitting an uplink signal at the end of each special slot, as shown by the rectangles containing “U” at the end of each special slot. The UE may transmit uplink transmissions on the TDD carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U” on timeline 610. The FDD UL carrier timeline is shown at 620. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the  timelines  610 and 620. RF Retuning times on the FDD UL carrier are shown at 612, 614, 622, 624, and 626. The UE receives a grant that configures the UE to transmit PUSCHs at 630 and 632. As illustrated, the configured grant (CG) PUSCH at 632 overlaps with the RF retuning gap at 626, while the CG PUSCH at 630 does not overlap with an RF retuning gap.
FIG. 6B shows an example transmission timeline 650 of a device scheduled to transmit transmissions with slot aggregation during an RF retuning time of the device. The example transmission timeline 650 is for a UE configured with a TDD carrier with a bandwidth and an FDD UL carrier with a narrower bandwidth than the TDD carrier. The timeline for the TDD carrier is shown at 660. The UE may receive downlink transmissions on the TDD carrier in downlink slots symbolized by boxes containing a “D. ” The TDD carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may start transmitting an uplink signal at the end of each special slot, as shown by the rectangles containing “U” at the end of each special slot. The UE may transmit uplink transmissions on the TDD carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U” on timeline 660. The FDD UL carrier timeline is shown at 670. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the  timelines  660 and 670. RF Retuning times on the FDD UL carrier are shown at 662, 664, 672, 674, and 676. The UE determines to transmit a PUSCH using slot aggregation and transmits the PUSCH in consecutive slots at 680 and 682. As illustrated, the PUSCH at 682 overlaps with the RF retuning gap at 672, while the PUSCH at 680 does not overlap with an RF retuning gap.
In some implementations, a transmitting device (such as a UE) may determine that at least one of a first UL transmission (such as a PUCCH or a PUSCH) on a first carrier or a second UL transmission on a second carrier overlap with an RF retuning time and adapt the at least one of the first or second UL transmission, based on the determination that the at least one of the first or second UL overlaps with the RF retuning time.
In some implementations, a receiving device (such as a BS) may determine that at least one of a first UL transmission (such as a PUCCH or a PUSCH) on a first carrier from a transmitting device or a second UL transmission on a second carrier from the transmitting device overlap with an RF retuning time of the transmitting device, and the receiving device may adapt reception of the at least one of the first or second UL transmission, based on the determination that the at least one of the first or second UL overlaps with the RF retuning time.
In some implementations, demodulation reference signals (DMRS) associated with PUSCHs or PUCCHs may overlap with an RF retuning time. As illustrated above in FIGs. 6A and 6B, a PUSCH may overlap with an RF retuning time due to being scheduled in a slot due to a configured grant or due to being transmitted repeatedly with slot aggregation. In some cases, a transmitting device (such as a UE) may adapt the uplink transmission and the DMRS associated with the UL transmission, based on determining the DMRS overlap with the RF retuning time.
In some implementations, demodulation reference signals (DMRS) associated with PUSCHs or PUCCHs may overlap with an RF retuning time. As illustrated above in FIGs. 6A and 6B, a PUSCH may overlap with an RF retuning time due to being scheduled in a slot due to a configured grant or due to being transmitted repeatedly with slot aggregation. In some cases, a receiving device (such as a BS) may adapt reception of the uplink transmission and the DMRS associated with the UL transmission, based on determining the DMRS overlap with the RF retuning time.
FIG. 7 shows example  transmission resource allocations  700, 720, 740, and 760 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device. In each of the example  transmission resource allocations  700, 720, 740, and 760, time is shown on a horizontal axis, and frequency is shown on a vertical axis. Also,  in each of the example  transmission resource allocations  700, 720, 740, and 760, resource elements (REs) conveying DMRS are symbolized by shaded squares, while REs conveying data (such as application data or control information) are symbolized by white squares. REs within the RF retuning time are symbolized by cross-hatched squares. The example transmission resource allocation 700 is for a PUCCH of format 1 with a length (len) of ten. As illustrated, in PUCCH format 1, REs are allocated to DMRS in every other symbol and occupy the entire symbol in the same bandwidth as the PUCCH. In the example transmission resource allocation 700, the first two resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 702 and 704. Thus, the first DMRS associated with the PUCCH overlaps with the RF retuning time at 702. The example transmission resource allocation 720 is for a PUCCH of format 2 with a length (len) of two. As illustrated, in PUCCH format 2, the PUCCH length is no larger than two symbols, and REs are allocated to DMRS are frequency division multiplexed with REs of the PUCCH, such that the second, sixth, and tenth RE of each resource block are allocated to the DMRS. In the example transmission resource allocation 720, the first resource element in time overlaps with an RF retuning time, as symbolized by the cross-hatched REs at 722. Thus, DMRS associated with the PUCCH during the RE at 722 overlap with the RF retuning time at 722. The example transmission resource allocation 740 is for a PUCCH of format 3 with a length (len) of ten. In PUCCH format 3, REs are allocated to DMRS based on the length of the PUCCH. As illustrated, in a PUCCH of format 3 with length of ten, REs are allocated to DMRS in the third symbol and the third-to-last symbol and occupy the entire symbol in the same bandwidth as the PUCCH. In the example transmission resource allocation 740, the first four resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 742, 744, 746, and 748. Thus, the first DMRS associated with the PUCCH overlaps with the RF retuning time at 746. The example transmission resource allocation 760 is for a PUSCH with a length (len) of ten. Typically, a PUSCH has front-loaded DMRS (that is, DMRS in the first one or two symbols of the PUSCH) , . As illustrated at 766 and 768, a PUSCH may have associated DMRS that are not front-loaded. The number and positions in time of DMRS for a PUSCH may be configured by a base station serving the UE. If a BS configures PUSCHs to have one associated front-loaded DMRS, then one, two, or three additional DMRS may be configured for the PUSCH by the BS. If a BS configures PUSCHs to have two associated front-loaded DMRS, then two consecutive DMRS symbols may be configured as additional DMRS for the PUSCH by  the BS. In the example transmission resource allocation 760, the first two resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 762 and 764. Thus, the first DMRS and second DMRS associated with the PUSCH overlap with the RF retuning time at 762 and 764. In PUCCH format 4 (not shown) , REs are allocated to DMRS in a manner similar to PUCCHs of format 3 (that is, based on the length of the PUCCH) , but the PUCCHs are transmitted in a multi-user multiplexing manner using orthogonal cover codes (OCCs) , with different UEs transmitting PUCCHs using different OCCs.
FIG. 8 shows a flow diagram of example operations 800 for handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers. Operations 800 may be performed, for example, by a UE, such as UE 120a shown in FIGs. 1 and 2.
At block 802, the UE identifies a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier.
At block 804, the UE determines at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier.
At block 806, the UE adapts the at least one of the first and second UL transmission based at least on part on the determination.
FIG. 9 shows a flow diagram of example operations 900 for handling collisions where time resources for an uplink transmission overlap with a gap period used for radio frequency (RF) retuning between two carriers. Operations 900 may be performed, for example, by a BS, such as BS 110a 120 shown in FIGs. 1 and 2. Operations 900 may be complementary to operations 700 described above..
At block 902, the BS identifies a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE.
At block 904, the BS determines at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE.
At block 906, the BS adapts reception of the at least one of the first and second UL transmission based at least on part on the determination.
In some implementations, when an uplink transmission, such as a PUSCH, is scheduled to be transmitted by a device (such as a UE) overlaps or collides with an RF retuning time of the device, the device may rate-match the uplink transmission around the RF retuning time, puncture the uplink transmission, or drop (i.e., not transmit) the uplink transmission.
In some implementations, a device rate-matching an uplink transmission (such as a PUSCH) around an RF retuning time may count a number of resource elements (REs) allocated to the uplink transmission that do not overlap or collide with the RF retuning time; determine a transport block size (TBS) for the uplink transmission based on the number of REs; and channel code the uplink transmission, to the REs that do not overlap with the RF retuning time, based on the TBS and a modulation and coding scheme (MCS) for the uplink transmission.
In some implementations, a device puncturing an uplink transmission (such as a PUSCH) with respect to an RF retuning time may count a number of resource elements (REs) allocated to the uplink transmission, regardless of the RF retuning time; determine a transport block size (TBS) for the uplink transmission based on the number of REs; channel code the uplink transmission, based on the TBS and a modulation and coding scheme (MCS) for the uplink transmission, to generate coded bits; and map portions of the coded bits to the REs allocated to the uplink transmission that do not overlap with the RF retuning time.
In some implementations, a device dropping an uplink transmission that partially or completely overlaps with an RF retuning time may not transmit a signal on the transmission resources allocated to the uplink transmission.
In some implementations, a device (such as a UE) determining at least one of a first uplink transmission on a first carrier or a second uplink transmission on a second carrier overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier (such as the UE in block 804 of FIG. 8) may decide whether to rate-match the uplink transmission around the RF retuning time, puncture the uplink transmission, or drop the uplink transmission based at least in part on at least one of a  channel type of the first uplink transmission or the second uplink transmission, a timing threshold related to the uplink transmission overlapping with the RF retuning time, a length of the RF retuning time, or a portion of the uplink transmission overlapping with the RF retuning time that overlaps the RF retuning time.
In some implementations, a device scheduled to transmit a PUSCH on a first carrier and a PUCCH conveying a periodic channel state information report (P-CSI) or a semi-persistently scheduled channel state information report (SP-CSI) on a second carrier, with an RF retuning time between the PUSCH and the PUCCH, may determine to rate-match the PUSCH around the RF retuning time, and the PUCCH being periodic or semi-persistent and scheduled in advance gives the UE sufficient time to rate-match the PUSCH around the RF retuning time before transmitting the PUSCH.
In some implementations, a device scheduled to transmit a PUSCH on a first carrier and a PUCCH with a hybrid automatic retransmission request acknowledgment (HARQ-ACK) or scheduling request (SR) without a P-CSI or SP CSI on a second carrier, with an RF retuning time between the PUSCH and the PUCCH may determine whether to rate-match the PUSCH around the RF retuning time or puncture the PUSCH based on a timing or duration between a PDCCH, which schedules the PDSCH being acknowledged in the PUCCH, and the PUSCH. When the timing is greater than or equal to a timing threshold (T thr) , the device may determine to rate-match the PUSCH around the RF retuning time. When the timing is less than the timing threshold (T thr) , the device may determine to puncture the PUSCH.
In some implementations, the timing threshold (T thr) may be configured to a UE (such as by a network entity) , determined based on a device capability (such as a processing speed of the device) or fixed, such as being set equal to N 2, the PUSCH preparation time for the device.
In some implementations, a device scheduled to transmit a PUSCH on a first carrier and a A-SRS on a second carrier, with an RF retuning time between the PUSCH and the A-SRS, may determine whether to rate-match the PUSCH around the RF retuning time or puncture the PUSCH based on a timing or duration between a PDCCH triggering the A-SRS and the PUSCH. When the timing between the PDCCH triggering the A-SRS and the PUSCH is greater than or equal to a timing threshold (T thr) , the device may  determine to rate-match the PUSCH around the RF retuning time. When the timing is less than the timing threshold (T thr) , the device may determine to puncture the PUSCH.
As above, the timing threshold (T thr) may be configured to a UE (such as by a network entity) , determined based on a device capability (such as a processing speed of the device) or fixed, such as being set equal to N 2, the PUSCH preparation time for the device.
In some implementations, a device scheduled to transmit a PUSCH on a first carrier and a contention-free random access (CFRA) on a second carrier, with an RF retuning time between the PUSCH and the CFRA, may determine to rate-match the PUSCH around the RF retuning time, based on the PUSCH having a lower priority than the CFRA and the CFRA being transmitted on transmission resources reserved for CFRA, and thus the UE has sufficient time to rate-match the PUSCH around the RF retuning time before transmitting the PUSCH.
In some implementations, a device scheduled to transmit a dynamic PUSCH on a first carrier and a configured grant (CG) PUSCH on a second carrier, with an RF retuning time between the dynamic PUSCH and the CG PUSCH, may determine to rate-match the dynamic PUSCH around the RF retuning time, as the UE may have sufficient time to rate-match the dynamic PUSCH around the RF retuning time before transmitting the dynamic PUSCH.
In some implementations, a device scheduled to transmit a dynamic PUSCH on a first carrier and a configured grant (CG) PUSCH on a second carrier, with an RF retuning time between the dynamic PUSCH and the CG PUSCH, may determine to rate-match the CG PUSCH around the RF retuning time, when a duration or timing between the PDCCH scheduling the dynamic PUSCH and the CG PUSCH occasion is greater than or equal to a timing threshold, T thr. If the timing is less than the timing threshold, T thr, then the device may determine to puncture the CG PUSCH.
As above, the timing threshold (T thr) may be configured on a UE (such as by a network entity) , determined based on a device capability (such as a processing speed of the device) or fixed, such as being set equal to N 2, the PUSCH preparation time for the device.
In some implementations, a device scheduled to transmit a first dynamic PUSCH on a first carrier and a second dynamic PUSCH on a second carrier may determine to rate-match the lower-priority dynamic PUSCH when a duration or timing between the last downlink control information (DCI) of the two DCIs scheduling the two dynamic PUSCHs and the first PUSCH is greater than or equal a timing threshold, T thr. When the timing is less than the timing threshold, then the device may determine to puncture the lower-priority dynamic PUSCH.
As above, the timing threshold (T thr) may be configured on a UE (such as by a network entity) , determined based on a device capability (such as a processing speed of the device) or fixed, such as being set equal to N 2, the PUSCH preparation time for the device.
In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to drop the PUSCH when the RF retuning time is larger than a threshold portion of the PUSCH or when a number of symbols available to convey the PUSCH, after rate-matching or puncturing the PUSCH and after shifting DMRS associated with the PUSCH, is less than a threshold number of symbols.
In some implementations, a device (such as a UE) transmitting a PUCCH may determine the frequency span of the PUCCH based on a time domain allocation of the PUCCH and a configured coding rate for the PUCCH. The device may compute a minimum number of RBs that satisfy the configured coding rate of the PUCCH (that is, a number of RBs sufficient to convey all of the data of the PUCCH using the configured coding rate) , based on the time domain location of the PUCCH. When the time domain resource allocation of the PUCCH overlaps with an RF retuning time, the UE may recalculate the time domain allocation that does not overlap with the RF retuning time, and, based on the recalculated time domain allocation, calculate the frequency span for the PUCCH, that is, the minimum of number RBs that satisfy the configured coding rate (i.e., a number of RBs sufficient to convey all of the data of the PUCCH using the configured coding rate during the recalculated time domain allocation) . A BS receiving a PUCCH from a device that overlaps with an RF retuning time of the device may also recalculate the time domain allocation that does not overlap with the RF retuning time, and, based on the recalculated time domain allocation, calculate the frequency span for  the PUCCH, that is, the minimum of number RBs that satisfy the configured coding rate (i.e., a number of RBs sufficient to convey all of the data of the PUCCH using the configured coding rate during the recalculated time domain allocation) . The BS may then adapt reception of the PUCCH based on the calculated frequency span or minimum number of RBs.
In some implementations, a device (such as a UE) may transmit a PUCCH carrying CSI (and which may also include HARQ-ACK or a SR) , and the device may determine the PUCCH cannot carry the entire payload within a maximum number of RBs within the configured time domain allocation. That is, with the configured time domain allocation, the payload of the PUCCH cannot be encoded within the maximum number of RBs at the target coding rate. The device may then omit one or more CSI reports from the payload such that the payload can satisfy the target coding rate. A BS receiving a PUCCH from which one or more CSI reports have been omitted may also recalculate a time domain allocation for the PUCCH based on the number of symbols for the PUCCH that do not overlap with the RF retuning time and then determine what the device omitted, based on the new time domain allocation.
In some implementations, a device (such as a UE) acknowledging (ACKing) a semi-persistently scheduled PDSCH may select a PUCCH resource with the smallest indices that satisfies the coding rate for the PUCCH. If one of the PUCCH resources overlaps with an RF retuning time, then the device may consider the actual time domain allocations of the PUCCH that do not overlap with the RF retuning time when determining whether that PUCCH resource can convey the PUCCH while satisfying the coding rate.
In some implementations, a device scheduled to transmit an uplink transmission with associated DMRS that overlaps with an RF retuning time of the device (i.e., as shown in FIG. 7) may puncture the DMRS or shift the DMRS in time.
FIG. 10A shows example  transmission resource allocations  1000 and 1010 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device. In each of the example  transmission resource allocations  1000 and 1010, time is shown on a horizontal axis, and frequency is shown on a vertical axis. Also, in each of the example  transmission resource allocations  1000 and 1010, resource elements (REs) conveying DMRS are symbolized by shaded squares, while REs conveying data (such as  application data) are symbolized by white squares. REs within the RF retuning time are symbolized by cross-hatched squares. The example transmission resource allocation 1000 is for a PUCCH of format 1 with a length (len) of ten. In the example transmission resource allocation 1000, the first two resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 1002 and 1004. Thus, the first DMRS associated with the PUCCH overlaps with the RF retuning time at 1002. In some implementations, a device scheduled to transmit a PUCCH of format 1 that overlaps with an RF retuning time may determine, based on the format of the PUCCH, to puncture DMRS of the PUCCH that overlap with the RF retuning time, as shown in the example transmission resource allocation 1010 at 1012. In some implementations, a device scheduled to transmit a PUCCH of format 1 that overlaps with an RF retuning time including an odd number of symbols (such as one symbol or three symbols) may determine, based on the format of the PUCCH, to shift DMRS, which do not overlap with the RF retuning time, in time, such that the DMRS occur in odd-numbered symbols and a first symbol of the PUCCH after the RF retuning time includes a DMRS.
FIG. 10B shows example  transmission resource allocations  1000 and 1010 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device. In each of the example  transmission resource allocations  1000 and 1010, time is shown on a horizontal axis, and frequency is shown on a vertical axis. Also, in each of the example  transmission resource allocations  1000 and 1010, resource elements (REs) conveying DMRS are symbolized by shaded squares, while REs conveying data (such as application data) are symbolized by white squares. REs within the RF retuning time are symbolized by cross-hatched squares. The example transmission resource allocation 1050 is for a PUCCH of format 2 with a length (len) of two. In the example transmission resource allocation 1050, the first resource element in time overlaps with an RF retuning time, as symbolized by the cross-hatched REs at 1052. Thus, DMRS associated with the PUCCH during the RE at 1052 overlap with the RF retuning time at 1052. In some implementations, a device scheduled to transmit a PUCCH of format 2 that overlaps with an RF retuning time may determine, based on the format of the PUCCH, to puncture DMRS of the PUCCH that overlap with the RF retuning time, as shown in the example transmission resource allocation 1060 at 1062.
FIG. 11A shows example  transmission resource allocations  1100 and 1110 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device. In each of the example  transmission resource allocations  1100 and 1110, time is shown on a horizontal axis, and frequency is shown on a vertical axis. Also, in each of the example  transmission resource allocations  1100 and 1110, resource elements (REs) conveying DMRS are symbolized by shaded squares, while REs conveying data (such as application data) are symbolized by white squares. REs within the RF retuning time are symbolized by cross-hatched squares. The example transmission resource allocation 1100 is for a PUCCH of format 3 with a length (len) of ten. In the example transmission resource allocation 1100, the first four resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 1102, 1104, 1106, and 1108. Thus, the first DMRS associated with the PUCCH overlaps with the RF retuning time at 1106. In some implementations, a device scheduled to transmit a PUCCH of format 3 that overlaps with an RF retuning time may determine, based on the format of the PUCCH, to shift one or more DMRS associated with the PUCCH that overlap with the RF retuning time, as shown in the example transmission resource allocation 1110 at 1112.
In some implementations, the device may determine a remaining number of symbols allocated to the PUCCH that do not overlap with the RF retuning time, then determine new time domain locations for DMRS associated with the PUCCH based on the remaining number of symbols, and then shift the DMRS to the new time domain locations. In some implementations, a device scheduled to transmit a PUCCH of format 4 that overlaps with an RF retuning time may determine, based on the format of the PUCCH, to puncture one or more DMRS associated with the PUCCH that overlap with the RF retuning time, similar to the example transmission resource allocation 1100, with the punctured DMRS shown at 1106. Because PUCCHs of format 4 are for multiuser multiplexed PUCCHs, shifting a DMRS associated with a format 4 PUCCH may cause interference to PUCCHs transmitted by another UE transmitting another format 4 PUCCH at the same time. In some implementations, a device scheduled to transmit a PUCCH of format 4 that overlaps with an RF retuning time may shift the DMRS to a new time domain location. In some implementations, a BS receiving, from a UE, a PUCCH of format 4 that overlaps with an RF retuning time of the UE may attempt blind decoding on the PUCCH, as the transmitting UE may or may not have shifted DMRS associated with the PUCCH to a new time domain location.
FIG. 11B shows example  transmission resource allocations  1130 and 1140 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device. In each of the example  transmission resource allocations  1130 and 1140, time is shown on a horizontal axis, and frequency is shown on a vertical axis. Also, in each of the example  transmission resource allocations  1130 and 1140, resource elements (REs) conveying DMRS are symbolized by shaded squares, while REs conveying data (such as application data) are symbolized by white squares. REs within the RF retuning time are symbolized by cross-hatched squares. The example transmission resource allocation 1130 is for a PUSCH with a length (len) of ten. In the example transmission resource allocation 1130, the first two resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 1132 and 1134. Thus, the first DMRS and second DMRS associated with the PUSCH overlap with the RF retuning time at 1132 and 1134. In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to shift one or more DMRS associated with the PUSCH that overlap with the RF retuning time so that the device transmits the PUSCH with associated DMRS while not transmitting in the RF retuning time, as shown in the example transmission resource allocation 1140 at 1142 and 1144.
In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine times to which to shift one or more DMRS associated with the PUSCH based on the times allocated to the DMRS without considering the RF retuning time. In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to shift one or more front-loaded DMRS associated with the PUSCH (that is, DMRS transmitted at the beginning of the PUSCH, such as the DMRS at 1132 and 1134) that overlap with the RF retuning time to the beginning symbol (s) of the PUSCH that do not overlap with the RF retuning time, as shown in the example transmission resource allocation 1140 at 1142 and 1144, so that the device transmits the PUSCH with front-loaded DMRS while not transmitting in the RF retuning time. In some implementations, other DMRS associated with the PUSCH, such as those at 1136 and 1138, may be shifted in time or dropped (as shown in FIG. 11C) , depending on how many symbols are available for the PUSCH after eliminating the symbols overlapping with the RF retuning time. In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to shift DMRS that are not front-loaded to other positions determined based on  a number of symbols from the end of the PUSCH to the DMRS being shifted. Thus, the device may shift a DMRS in the last position 1138 of the PUSCH before eliminating symbols overlapping with the RF retuning time to a last position 1148 of the PUSCH after the symbols overlapping with the RF retuning time are eliminated. Similarly, the device may shift a DMRS in the second-to-last position 1136 of the PUSCH before eliminating symbols overlapping with the RF retuning time to a second-to-last position 1146 of the PUSCH after the symbols overlapping with the RF retuning time are eliminated.
FIG. 11C shows example  transmission resource allocations  1150 and 1160 for uplink transmissions by a device (such as a UE) during an RF retuning time of the device. In each of the example  transmission resource allocations  1150 and 1160, time is shown on a horizontal axis, and frequency is shown on a vertical axis. Also, in each of the example  transmission resource allocations  1150 and 1160, resource elements (REs) conveying DMRS are symbolized by shaded squares, while REs conveying data (such as application data) are symbolized by white squares. REs within the RF retuning time are symbolized by cross-hatched squares. The example transmission resource allocation 1150 is for a PUSCH with a length (len) of ten. In the example transmission resource allocation 1150, the first four resource elements in time overlap with an RF retuning time, as symbolized by the cross-hatched REs at 1152, 1154, 1156, and 1158. Thus, the first DMRS and second DMRS associated with the PUSCH overlap with the RF retuning time at 1152 and 1154. In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to puncture some DMRS and shift one or more other DMRS associated with the PUSCH that overlap with the RF retuning time so that the device transmits the PUSCH with some associated DMRS while not transmitting in the RF retuning time, as shown in the example transmission resource allocation 1160 at 1162 and 1164.
In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine whether to shift a DMRS or puncture DMRS based on a number of symbols available for the PUSCH after eliminating symbols which overlap with the RF retuning time. In some implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine times to which to shift one or more DMRS associated with the PUSCH based on the times allocated to the DMRS without considering the RF retuning time. In some  implementations, a device scheduled to transmit a PUSCH that overlaps with an RF retuning time may determine to shift one or more front-loaded DMRS (that is, DMRS transmitted at the beginning of the PUSCH, such as the DMRS at 1152 and 1154) associated with the PUSCH that overlap with the RF retuning time to the beginning symbol (s) of the PUSCH that do not overlap with the RF retuning time, as shown in the example transmission resource allocation 1160 at 1162 and 1164 so that the device transmits the PUSCH with front-loaded DMRS while not transmitting in the RF retuning time. In some implementations, other DMRS associated with the PUSCH, such as those at 1156 and 1158, may be shifted in time (as shown in FIG. 11B) or dropped, depending on how many symbols are available for the PUSCH after eliminating the symbols overlapping with the RF retuning time. Thus, the device may drop a DMRS in the last position 1159 of the PUSCH. Similarly, the device may drop a DMRS in the second-to-last position 1157 of the PUSCH.
In some implementations, a device (such as a UE) may determine whether to puncture DMRS, shift DMRS in time, or both based on a number of symbols allocated to an uplink transmission (such as a PUSCH) that do not overlap with an RF retuning time.
In some implementations, a BS (such as a gNB) may be configured to not schedule UL multi-user transmissions for one a UE, if a PUSCH by the UE would overlap with an RF retuning time, so as to prevent DMRS shifting by one UE from interfering with another UL transmission by one of the other UEs performing the multi-user transmission.
FIG. 12 shows an example communications device 1200 configured to transmit with a transmitter during a carrier switching gap of another transmitter of the device. The example communications device 1200 includes various components (such as corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 8. The communications device 1200 includes a processing system 1202 coupled to a transceiver 1208. The transceiver 1208 is configured to transmit and receive signals for the communications device 1200 via one or more antennas 1210, such as the various signals as described herein. The processing system 1202 may be configured to perform processing functions for the communications device 1200, including processing signals received or to be transmitted by the communications device 1200.
The processing system 1202 includes a processor 1204 coupled to a computer-readable medium/memory 1212 via a bus 1206. In certain aspects, the computer-readable medium/memory 1212 is configured to store instructions (such as computer-executable code) that when executed by the processor 1204, cause the processor 1204 to perform the operations illustrated in FIG. 8, or other operations for performing the various techniques discussed herein for a user equipment (UE) to transmit with a transmitter during a carrier switching gap of another transmitter of the UE. In certain aspects, computer-readable medium/memory 1212 stores code 1214 for identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; code 1216 for determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and code 1218 for adapting the at least one of the first and second UL transmission based at least on part on the determination. In certain aspects, the processor 1204 has circuitry configured to implement the code stored in the computer-readable medium/memory 1212. The processor 1204 includes circuitry 1220 for identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier; circuitry 1224 for determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and circuitry 1226 for adapting the at least one of the first and second UL transmission based at least on part on the determination.
FIG. 13 shows an example communications device 1300 configured to operate with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the other device. The example communications device 1300 includes various components (such as corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 9. The communications device 1300 includes a processing system 1302 coupled to a transceiver 1308. The transceiver 1308 is configured to transmit and receive signals for the communications device 1300 via antennas 1310, such as the various signals as described herein. The processing system 1302 may be configured to perform processing functions for the communications device 1300, including processing signals received or to be transmitted by the communications device 1300.
The processing system 1302 includes a processor 1304 coupled to a computer-readable medium/memory 1312 via a bus 1306. In certain aspects, the computer-readable medium/memory 1312 is configured to store instructions (such as computer-executable code) that when executed by the processor 1304, cause the processor 1304 to perform the operations illustrated in FIG. 9, or other operations for performing the various techniques discussed herein for a user equipment (UE) to transmit with a transmitter during a carrier switching gap of another transmitter of the UE. In certain aspects, computer-readable medium/memory 1312 stores code 1314 for identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; code 1316 for determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and code 1318 for adapting reception of the at least one of the first and second UL transmission based at least on part on the determination. In certain aspects, the processor 1304 has circuitry configured to implement the code stored in the computer-readable medium/memory 1312. The processor 1304 includes circuitry 1320 for identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE; circuitry 1324 for determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and circuitry 1326 for adapting reception of the at least one of the first and second UL transmission based at least on part on the determination.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in  hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes and methods may be performed by circuitry that is specific to a given function.
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware or software component (s) or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable medium. Computer-readable  media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection can be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of any device as implemented.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the  claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (42)

  1. A method for wireless communications performed by a user equipment (UE) , comprising:
    identifying a first uplink (UL) transmission on a first carrier and a second UL transmission on a second carrier;
    determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier; and
    adapting the at least one of the first and second UL transmission based at least on part on the determination.
  2. The method of claim 1, wherein:
    the at least one of the first uplink transmission or the second uplink transmission comprises a physical uplink shared channel (PUSCH) ; and
    the adapting the at least one of the first and second UL transmissions comprises at least one of rate-matching the PUSCH around the RF retuning time, puncturing the PUSCH, or dropping the PUSCH.
  3. The method of claim 2, wherein the adapting the at least one of the first and second UL transmissions comprises rate-matching the PUSCH around the RF retuning time and wherein rate-matching the PUSCH around the RF retuning time comprises:
    counting a number of resource elements (REs) allocated to the PUSCH that do not overlap with the RF retuning time;
    determining a transport block size (TBS) for the PUSCH based on the number of REs; and
    channel coding the PUSCH, to the REs that do not overlap with the RF retuning time, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH.
  4. The method of claim 2, wherein the adapting the at least one of the first and second UL transmissions further comprises:
    deciding whether to rate-match the PUSCH around the RF retuning time, puncture the PUSCH, or drop the PUSCH based at least in part on at least one of a channel type of the first uplink transmission or the second uplink transmission, a timing threshold related to the PUSCH, a length of the RF retuning time, or a portion of the PUSCH that overlaps the RF retuning time.
  5. The method of claim 4, wherein the decision is based on the timing threshold, and the timing threshold is based on at least one of a configuration received from a network entity or a processing time of the at least one of the first or second uplink transmissions.
  6. The method of claim 4, wherein when one of the first and second uplink transmissions comprises a transmission on reserved transmission resources, a periodic transmission, or a semi-persistently scheduled transmission, then the decision comprises deciding to rate-match the PUSCH around the RF retuning time.
  7. The method of claim 4, wherein:
    when a timing of the PUSCH is greater than or equal to the timing threshold, the decision comprises deciding to rate-match the PUSCH around the RF retuning time; and
    when the timing of the PUSCH is less than the timing threshold, the decision comprises deciding to puncture the PUSCH.
  8. The method of claim 7, wherein the timing is between at least one of:
    the PUSCH and a physical downlink control channel (PDCCH) scheduling a physical downlink shared channel (PDSCH) to be acknowledged in the other uplink transmission;
    the PUSCH and a PDCCH triggering an aperiodic sounding reference signal (A-SRS) to be transmitted in the other uplink transmission; and
    the PUSCH and a PDCCH carrying downlink control information (DCI) scheduling another PUSCH to be transmitted in the other uplink transmission.
  9. The method of claim 4, wherein when the portion of the PUSCH that overlaps the RF retuning time is greater than a threshold portion, then the decision comprises deciding to drop the PUSCH.
  10. The method of claim 2, wherein the adapting the at least one of the first and second UL transmissions comprises puncturing the PUSCH and wherein puncturing the PUSCH comprises puncturing the PUSCH on resource elements (REs) allocated to the PUSCH that overlap with the RF retuning time.
  11. The method of claim 2, wherein the adapting the at least one of the first and second UL transmissions comprises puncturing the PUSCH and wherein puncturing the PUSCH comprises:
    counting a number of resource elements (REs) allocated to the PUSCH;
    determining a transport block size (TBS) for the PUSCH based on the number of REs;
    channel coding the PUSCH, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH, to generate coded bits; and
    mapping portions of the coded bits to the REs allocated to the PUSCH that do not overlap with the RF retuning time.
  12. The method of claim 1, wherein:
    the at least one of the first uplink transmission or the second uplink transmission comprises a demodulation reference signal (DMRS) ; and
    the adapting the at least one of the first and second UL transmissions comprises at least one of shifting the DMRS in time or puncturing the DMRS.
  13. The method of claim 12, wherein the adapting the at least one of the first and second UL transmissions comprises shifting the DMRS in time and wherein shifting the DMRS in time comprises determining a new time domain location for the DMRS based on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time.
  14. The method of claim 12, wherein the adapting the at least one of the first and second UL transmissions comprises puncturing the DMRS and wherein puncturing the DMRS comprises dropping the DMRS.
  15. The method of claim 12, wherein the adapting the at least one of the first and second UL transmissions further comprises:
    determining whether to shift the DMRS in time or puncture the DMRS based at least in part on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time, wherein:
    when the duration is greater than a threshold duration, the determination whether to shift the DMRS in time or puncture the DMRS is to shift the DMRS in time; and
    when the duration is less than or equal to the threshold duration, the determination whether to shift the DMRS in time or puncture the DMRS is to puncture the DMRS.
  16. The method of claim 12, wherein the DMRS comprises front-loaded DMRS and additional DMRS associated with an uplink channel.
  17. The method of claim 12, wherein the adapting the at least one of the first and second UL transmissions comprises shifting the DMRS in time and wherein shifting the DMRS in time comprises determining a new time domain location for the DMRS based on a time domain location allocated to the DMRS prior to the shifting the DMRS in time.
  18. The method of claim 1, wherein:
    the at least one of the first uplink transmission or the second uplink transmission comprises a physical uplink control channel (PUCCH) ; and
    the adapting the at least one of the first and second UL transmissions comprises at least one of:
    calculating a frequency domain allocation for the PUCCH based on a recalculated time domain allocation for the PUCCH; or
    omitting a portion of a payload of the PUCCH, based on a recalculated time domain allocation for the PUCCH.
  19. A method for wireless communications performed by a base station (BS) , comprising:
    identifying a first uplink (UL) transmission on a first carrier by a user equipment (UE) and a second UL transmission on a second carrier by the UE;
    determining at least one of the first uplink transmission or the second uplink transmission overlaps with a radio frequency (RF) retuning time between the first carrier and the second carrier for the UE; and
    adapting reception of the at least one of the first and second UL transmission based at least on part on the determination.
  20. The method of claim 19, wherein:
    the at least one of the first uplink transmission or the second uplink transmission comprises a physical uplink shared channel (PUSCH) ; and
    the adapting reception of the at least one of the first and second UL transmissions comprises at least one of receiving the PUSCH rate-matched around the RF retuning time, receiving the PUSCH that is punctured, or determining the PUSCH is dropped by the UE.
  21. The method of claim 20, wherein the adapting reception of the at least one of the first and second UL transmissions comprises receiving the PUSCH rate-matched around the RF retuning time and wherein receiving the PUSCH rate-matched around the RF retuning time comprises:
    counting a number of resource elements (REs) allocated to the PUSCH that do not overlap with the RF retuning time;
    determining a transport block size (TBS) for the PUSCH based on the number of REs; and
    receiving the PUSCH channel coded to the REs that do not overlap with the RF retuning time, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH.
  22. The method of claim 20, wherein the adapting reception of the at least one of the first and second UL transmissions further comprises:
    deciding whether to receive the PUSCH rate-matched around the RF retuning time, receive the PUSCH that is punctured, or determine the PUSCH is dropped based at least in part on at least one of a channel type of the first uplink transmission or the  second uplink transmission, a timing threshold related to the PUSCH, a length of the RF retuning time, or a portion of the PUSCH that overlaps the RF retuning time.
  23. The method of claim 22, wherein the decision is based on the timing threshold, and the timing threshold is based on at least one of a configuration transmitted to the UE by the BS or a processing time for the UE of the at least one of the first or second uplink transmissions.
  24. The method of claim 22, wherein when one of the first and second uplink transmissions comprises a transmission on reserved transmission resources, a periodic transmission, or a semi-persistently scheduled transmission, then the decision comprises deciding to receive the PUSCH rate-matched around the RF retuning time.
  25. The method of claim 22, wherein:
    when a timing of the PUSCH is greater than or equal to the timing threshold, the decision comprises deciding to receive the PUSCH rate-matched around the RF retuning time; and
    when the timing of the PUSCH is less than the timing threshold, the decision comprises deciding to receive the PUSCH that is punctured.
  26. The method of claim 25, wherein the timing is between at least one of:
    the PUSCH and a physical downlink control channel (PDCCH) scheduling a physical downlink shared channel (PDSCH) to be acknowledged in the other uplink transmission;
    the PUSCH and a PDCCH triggering an aperiodic sounding reference signal (A-SRS) to be transmitted in the other uplink transmission; and
    the PUSCH and a PDCCH carrying downlink control information (DCI) scheduling another PUSCH to be transmitted in the other uplink transmission.
  27. The method of claim 22, wherein when the portion of the PUSCH that overlaps the RF retuning time is greater than a threshold portion, then the decision comprises determining the PUSCH is dropped.
  28. The method of claim 20, wherein the adapting reception of the at least one of the first and second UL transmissions comprises receiving the PUSCH that is punctured, wherein the PUSCH is punctured on resource elements (REs) allocated to the PUSCH that overlap with the RF retuning time.
  29. The method of claim 20, wherein the adapting reception of the at least one of the first and second UL transmissions comprises receiving the PUSCH that is punctured and wherein receiving the PUSCH that is punctured comprises:
    counting a number of resource elements (REs) allocated to the PUSCH;
    determining a transport block size (TBS) for the PUSCH based on the number of REs;
    determining a channel coding the PUSCH, based on the TBS and a modulation and coding scheme (MCS) for the PUSCH; and
    receiving the coded bits of the PUSCH mapped to the REs allocated to the PUSCH that do not overlap with the RF retuning time.
  30. The method of claim 19, wherein:
    the at least one of the first uplink transmission or the second uplink transmission comprises a demodulation reference signal (DMRS) ; and
    the adapting reception the at least one of the first and second UL transmissions comprises receiving the at least one of the first and second UL transmissions based on at least one of determining the DMRS are shifted in time or determining the DMRS are punctured.
  31. The method of claim 30, wherein the adapting reception of the at least one of the first and second UL transmissions comprises determining the DMRS are shifted in time and wherein determining the DMRS are shifted in time comprises determining a new time domain location for the DMRS based on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time.
  32. The method of claim 30, wherein the adapting reception of the at least one of the first and second UL transmissions comprises determining the DMRS are punctured and wherein receiving the at least one of the first and second UL transmissions comprises  receiving the at least one of the first and second UL transmissions based on other DMRS.
  33. The method of claim 30, wherein the adapting reception of the at least one of the first and second UL transmissions further comprises:
    determining whether the DMRS are shifted in time or the DMRS are punctured based at least in part on a duration of an uplink channel associated with the DMRS that does not overlap the RF retuning time, wherein:
    when the duration is greater than a threshold duration, the determination whether the DMRS are shifted in time or the DMRS are punctured is that the DMRS are shifted in time; and
    when the duration is less than or equal to the threshold duration, the determination whether the DMRS are shifted in time or the DMRS are punctured is that the DMRS are punctured.
  34. The method of claim 30, wherein the DMRS comprises front-loaded DMRS and additional DMRS associated with an uplink channel.
  35. The method of claim 30, wherein the adapting reception of the at least one of the first and second UL transmissions comprises determining the DMRS are shifted in time and wherein determining the DMRS are shifted in time comprises determining a new time domain location for the DMRS based on a time domain location allocated to the DMRS prior to the DMRS being shifted in time.
  36. The method of claim 19, wherein:
    the at least one of the first uplink transmission or the second uplink transmission comprises a physical uplink control channel (PUCCH) ; and
    the adapting reception of the at least one of the first and second UL transmissions comprises at least one of:
    receiving the at least one of the first and second UL transmissions based on a calculated frequency domain allocation for the PUCCH based on a recalculated time domain allocation for the PUCCH; or
    receiving the PUCCH that omits a portion of a payload of the PUCCH, based on a recalculated time domain allocation for the PUCCH.
  37. An apparatus for wireless communications, comprising a processing system configured to perform any one of the methods of claims 1-18, and a memory coupled with the processing system.
  38. An apparatus for wireless communications, comprising a processing system configured to perform any one of the methods of claims 19-36, and a memory coupled with the processing system.
  39. An apparatus for wireless communications, comprising means for performing any one of the methods of claims 1-18.
  40. An apparatus for wireless communications, comprising means for performing any one of the methods of claims 19-36.
  41. A computer-readable medium for wireless communications, including instructions that, when executed by a processing system of a user equipment, cause the processing system to perform operations including any one of the methods of claims 1-18.
  42. A computer-readable medium for wireless communications, including instructions that, when executed by a processing system of a user equipment, cause the processing system to perform operations including any one of the methods of claims 19-36.
PCT/CN2019/109787 2019-10-01 2019-10-01 Handling uplink channel and carrier switching gap collisions WO2021062856A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109787 WO2021062856A1 (en) 2019-10-01 2019-10-01 Handling uplink channel and carrier switching gap collisions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109787 WO2021062856A1 (en) 2019-10-01 2019-10-01 Handling uplink channel and carrier switching gap collisions

Publications (1)

Publication Number Publication Date
WO2021062856A1 true WO2021062856A1 (en) 2021-04-08

Family

ID=75337721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109787 WO2021062856A1 (en) 2019-10-01 2019-10-01 Handling uplink channel and carrier switching gap collisions

Country Status (1)

Country Link
WO (1) WO2021062856A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883315A4 (en) * 2018-11-19 2022-01-26 Huawei Technologies Co., Ltd. Method for switching between uplinks, communication apparatus, and communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120218954A1 (en) * 2011-02-25 2012-08-30 Qualcomm Incorporated Multi-carrier operations with fast frequency hopping
US20160381490A1 (en) * 2015-06-25 2016-12-29 Qualcomm Incorporated Retuning for enhanced machine type communication
US20170208590A1 (en) * 2015-05-08 2017-07-20 Lg Electronics Inc. Method for receiving or transmitting uplink signal in wireless communication system and apparatus therefor
CN109891810A (en) * 2016-11-04 2019-06-14 高通股份有限公司 To the power control and triggering of the detection reference signal on multiple component carriers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120218954A1 (en) * 2011-02-25 2012-08-30 Qualcomm Incorporated Multi-carrier operations with fast frequency hopping
US20170208590A1 (en) * 2015-05-08 2017-07-20 Lg Electronics Inc. Method for receiving or transmitting uplink signal in wireless communication system and apparatus therefor
US20160381490A1 (en) * 2015-06-25 2016-12-29 Qualcomm Incorporated Retuning for enhanced machine type communication
CN109891810A (en) * 2016-11-04 2019-06-14 高通股份有限公司 To the power control and triggering of the detection reference signal on multiple component carriers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining details on collision handling", 3GPP DRAFT; R1-1611128, vol. RAN WG1, 5 November 2016 (2016-11-05), Reno, USA, pages 1 - 3, XP051189701 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883315A4 (en) * 2018-11-19 2022-01-26 Huawei Technologies Co., Ltd. Method for switching between uplinks, communication apparatus, and communication system

Similar Documents

Publication Publication Date Title
US11088798B2 (en) Ultra-low latency LTE reference signal transmission
TWI814809B (en) Selectively multiplexing physical uplink shared channel (pusch) and physical uplink control channel (pucch) communications
CN109792352B (en) PRACH and/or SRS handover enhancements
EP3494742B1 (en) Co-existence of reliable low latency and other services in a wireless network
US9955462B2 (en) Ultra-low latency LTE control data communication
EP3050355B1 (en) Techniques for configuring an adaptive frame structure for wireless communications using unlicensed radio frequency spectrum
US9668167B2 (en) Transport block size limitation for enhanced control channel operation in LTE
KR101710103B1 (en) Improved acknowledgement/ negative acknowledgement feedback for tdd
KR101602242B1 (en) STRUCTURE OF ENHANCED PHYSICAL DOWNLINK CONTROL CHANNEL (e-PDCCH) IN LONG TERM EVOLUTION (LTE)
KR101454678B1 (en) Resource mapping for multicarrier operation
CN111052654B (en) Techniques and apparatus for HARQ-ACK timeline indication and HARQ-ACK multiplexing and bundling in new radios
US20160095137A1 (en) Ultra-low latency lte uplink frame structure
CN111357225B (en) Channel state information and hybrid automatic repeat request feedback resource allocation in5G
WO2011139748A1 (en) Sharing control channel resources
CN112703796B (en) Scheduling physical uplink control channel for ACK-NACK feedback in multi-transmission/reception point incoherent joint transmission
WO2021056232A1 (en) Single transmitter transmission during a carrier switching gap of another transmitter
US11678373B2 (en) Multiplexing channel state information reports in multiple transmit-receive point (TRP) scenarios
WO2021046833A1 (en) Physical uplink control channel transmission for time division multiplexed uplink carriers
WO2021062856A1 (en) Handling uplink channel and carrier switching gap collisions
WO2021047293A1 (en) Semi-static slot configuration for time division multiplexed uplink carriers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947680

Country of ref document: EP

Kind code of ref document: A1