WO2021062764A1 - 终端的定时提前量ta处理的方法和装置 - Google Patents

终端的定时提前量ta处理的方法和装置 Download PDF

Info

Publication number
WO2021062764A1
WO2021062764A1 PCT/CN2019/109687 CN2019109687W WO2021062764A1 WO 2021062764 A1 WO2021062764 A1 WO 2021062764A1 CN 2019109687 W CN2019109687 W CN 2019109687W WO 2021062764 A1 WO2021062764 A1 WO 2021062764A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
terminal
signal quality
beams
preset threshold
Prior art date
Application number
PCT/CN2019/109687
Other languages
English (en)
French (fr)
Inventor
酉春华
黄曲芳
徐小英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109687 priority Critical patent/WO2021062764A1/zh
Priority to CN202311136200.5A priority patent/CN117320141A/zh
Priority to CN201980099857.4A priority patent/CN114287164B/zh
Priority to EP19947914.8A priority patent/EP4027736B1/en
Publication of WO2021062764A1 publication Critical patent/WO2021062764A1/zh
Priority to US17/709,158 priority patent/US20220225254A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for processing a terminal's timing advance TA.
  • different terminals can use orthogonal multiple access on time-frequency resources, so that the uplink transmissions of different terminals from the same cell do not interfere with each other.
  • the network equipment In order to achieve the orthogonality of uplink transmission, the network equipment requires signals from different terminals with different frequency domain resources from the same sub-frame to arrive at the network equipment at substantially the same time. For example, only when a network device receives uplink data sent by different terminals within the range of a cyclic prefix (CP), can it decode correctly. In other words, uplink synchronization requires that the time for signals from different terminals in the same subframe to reach the network device falls within the CP.
  • LTE long term evolution
  • new radio new radio
  • TA uplink timing advance
  • the network device appropriately controls the time offset (ie, TA) of the uplink transmission of each terminal, so as to control the time when the uplink signals from different terminals arrive at the network device. For example, for a terminal that is far from the network device, due to a large transmission delay, it needs to send uplink data more time in advance than a terminal that is closer to the network device.
  • TA time offset
  • the terminal judges whether the current TA is valid by judging whether the terminal has changed the serving cell.
  • the accuracy requirements for TA are getting higher and higher. How to more accurately judge whether the current TA is effective to reduce the interference between uplink transmissions is an urgent solution.
  • the present application provides a method and device for data transmission, which can accurately determine whether the TA is effective, thereby reducing interference between uplink transmissions.
  • a data transmission method includes: acquiring a corresponding relationship between a first TA and a beam or a transceiving point TRP; determining the beam or TRP corresponding to the first TA according to the corresponding relationship; and according to the beam or The signal quality of the TRP determines whether the first TA fails.
  • the terminal obtains the correspondence between the first TA and the beam, and can determine the beam corresponding to the first TA according to the correspondence, and then determines whether the first TA fails according to the beam corresponding to the first TA. That is to say, in the embodiment of the present application, the terminal can determine whether the first TA is invalid through a finer granularity, which in turn helps to trigger the selection of a more appropriate TA. Therefore, the embodiments of the present application can further reduce the interference between uplink transmissions compared to the traditional solution.
  • the determining whether the first TA is invalid includes: determining that the first TA is invalid when the terminal moves out of the range of the beam or TRP corresponding to the first TA.
  • Each beam has a certain coverage, for example, it can cover a certain geographic area. If the terminal moves out of the coverage of one beam, the first TA may fail. In other words, the terminal can determine that the first TA is invalid by moving the terminal out of the beam coverage corresponding to the first TA, thereby reducing interference between uplink transmissions.
  • the method further includes: in a case where the signal quality of the beam corresponding to the first TA is less than or equal to a preset threshold, determining that the terminal moves out of the coverage range of the beam corresponding to the first TA, The first TA corresponds to at least one beam; or when the number of beams with signal quality greater than or equal to a preset threshold in the multiple beams corresponding to the first TA is less than or equal to N, it is determined that the terminal moves out of the first TA Corresponding beam coverage, where N is a positive integer; or when the number of beams with signal quality less than or equal to the preset threshold in the multiple beams corresponding to the first TA is greater than the number of beams, it is determined that the terminal moves out of the The coverage range of the beam corresponding to the first TA, where L is a positive integer; or the average value of the first S signal qualities sorted from high to low among the multiple beams corresponding to the first TA is less than or equal to the preset In the case
  • the terminal determines to move out of the coverage range of the beam corresponding to the first TA. That is to say, S signal quality with high signal quality is selected from the signal quality of the multiple beams, and then compared with a preset threshold, so as to determine whether the terminal moves out of the beam coverage range corresponding to the first TA, that is, A method for determining whether a terminal has moved out of the coverage area of the beam corresponding to the first TA, and then the failure of the first TA can be determined by moving the terminal out of the coverage area of the beam corresponding to the first TA, thereby reducing the number of uplink transmissions. Interference between.
  • the method further includes: in a case where the signal quality of the beam associated with the TRP corresponding to the first TA is less than or equal to a preset threshold, determining that the terminal moves out of the TRP coverage corresponding to the first TA
  • the TRP associated beam is at least one beam; or when the signal quality of the multiple beams associated with the TRP corresponding to the first TA is greater than or equal to the preset threshold and the number of beams is less than or equal to N, determine the The terminal moves out of the coverage area of the TRP corresponding to the first TA, where N is an integer; or the number of beams with signal quality less than or equal to the preset threshold in the multiple beams associated with the TRP corresponding to the first TA is greater than or If it is equal to L, it is determined that the terminal moves out of the coverage range of the TRP corresponding to the first TA, where L is a positive integer; or the higher signal quality among the multiple beams associated with the TRP corresponding to the first TA When the average value of
  • the terminal determines to move out of the TRP coverage corresponding to the first TA. Range. That is, S signal qualities with high signal quality are selected from the signal qualities of the multiple beams.
  • the signal quality of the multiple beams can be sorted from high to low, the first S signal qualities are selected, and then compared with a preset threshold, so as to determine whether the terminal moves out of the beam coverage range corresponding to the first TA , That is, a method for determining whether the terminal has moved out of the TRP coverage area corresponding to the first TA is provided, and the terminal can be moved out of the TRP coverage area corresponding to the first TA to determine that the first TA is invalid. Reduce interference between uplink transmissions.
  • the determining whether the TA fails includes: the amount of change in signal quality of the multiple beams corresponding to the first TA or the multiple beams associated with the TRP corresponding to the first TA is greater than a first preset In the case of the threshold value, it is determined that the first TA is invalid; or in the case that the signal quality of other beams is greater than the signal quality of the beam corresponding to the first TA or the beam associated with the TRP corresponding to the first TA, the first TA is determined TA is invalid; or in the case that the signal quality of other beams is greater than or equal to the second preset threshold, it is determined that the first TA is invalid.
  • the terminal moves faster and the location updates faster, which may cause the first TA to be inaccurate (that is, the first TA).
  • TA is invalid). Therefore, if the terminal detects that the change in signal quality exceeds the preset threshold, it can be considered that the first TA is invalid. This in turn helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the method further includes: the signal quality of the first beam and the signal of the second beam among the multiple beams corresponding to the first TA or the TRP corresponding to the first TA In the case where the variation of the quality difference is greater than or equal to the first preset threshold, it is determined that the variation of the signal quality of the beam corresponding to the first TA is greater than the first preset threshold; or the multiple corresponding to the first TA is determined If the signal quality change amount of the first beam among multiple beams associated with the TRP corresponding to the first TA is greater than or equal to the first preset threshold, determine the signal quality change of the beam corresponding to the first TA The amount is greater than the first preset threshold.
  • the first TA corresponds to multiple beams
  • the variation of the signal quality of the multiple beams may specifically be the variation of the difference of the signal quality of any two beams in the multiple beams. That is to say, in the case that the change in signal quality of any two beams is greater than the first preset threshold, the terminal may consider that the change in signal quality of the multiple beams corresponding to the first TA is greater than the first preset. Set a threshold, and then consider that the first TA is invalid. This helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the terminal may consider that the change in signal quality of the multiple beams corresponding to the first TA is greater than the first preset. Set a threshold, and then consider that the first TA is invalid. This helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • acquiring the correspondence between TA and beam or TRP includes acquiring the correspondence from a network device.
  • the terminal can directly receive the corresponding relationship from the network device, which improves the flexibility of the network device to configure the corresponding relationship.
  • the acquiring the correspondence relationship from the network device includes: receiving indication information from the network device, the indication information being used to indicate a beam list corresponding to the first TA, the beam list including an identifier of at least one beam , Or used to indicate the TRP corresponding to the first TA, and the TRP is associated with at least one beam.
  • the terminal can indirectly obtain the corresponding relationship between the first TA and the beam according to the instruction information, avoiding the direct transmission of the corresponding relationship occupying large resources and saving resource overhead.
  • the identifier of the beam includes a beam index, a synchronization signal block SSB index, or a channel state information reference signal CSI-RS identifier.
  • the method further includes: in the case where the first TA fails, initiating random access, and sending cause information to the network device during the random access process, and the reason information is used to indicate the initiation of the Reasons for random access.
  • the reason information can be carried in the random access request, so that the network device can configure a new TA for the terminal according to the reason information, so that the terminal can obtain a more suitable TA, thereby further reducing interference between uplink transmissions.
  • the reason includes TA failure or clearing of configured authorized resources.
  • the initiating random access includes: sending a random access request; receiving a response message of the random access request, the response message includes the second TA, and the response message includes indication information, the indication information Indicate the beam or TRP corresponding to the second TA, or the TRP or beam where the response message is located is the beam or TRP corresponding to the second TA; use the second TA for uplink transmission.
  • the network device When the network device configures the second TA for the terminal, it will also add the beam corresponding to the second TA to the beam list, so that the terminal can subsequently determine the beam corresponding to the second TA according to the beam list, and then can determine the second TA. Whether TA is invalid, reduce the interference between subsequent uplink transmissions.
  • the method further includes: receiving a broadcast message, the broadcast message including multiple beam lists or multiple TRP information, and the indication information is used to indicate one beam list or multiple beam lists in the multiple beam lists.
  • the broadcast message including multiple beam lists or multiple TRP information
  • the indication information is used to indicate one beam list or multiple beam lists in the multiple beam lists.
  • TRP One of TRP.
  • the indication information may be one beam list in the multiple beam lists. That is, the network device may identify the beam list in advance through a broadcast message, and then directly indicate the beam identifier through the indication information, so that the terminal can learn the beam corresponding to the second TA.
  • the method further includes: in a case where the first TA fails, releasing the configuration authorized resource corresponding to the first TA.
  • the terminal may also release the authorized configuration resources of the beam corresponding to the first TA. In this way, waste of resources can be avoided and resource utilization can be improved.
  • a method for processing a timing advance TA of a terminal includes: determining a corresponding relationship between a first TA and a beam or a transceiving point TRP; and sending the corresponding relationship.
  • the network device determines the corresponding relationship between the first TA and the beam and sends it to the terminal, so that the terminal can determine the beam corresponding to the first TA according to the corresponding relationship, and then determine whether the first TA is the first TA according to the beam corresponding to the first TA Invalidate. That is to say, in the embodiment of the present application, the terminal can determine whether the first TA is invalid through a finer granularity, which in turn helps to trigger the selection of a more appropriate TA. Therefore, the embodiments of the present application can further reduce the interference between uplink transmissions compared to the traditional solution.
  • the method further includes: sending instruction information, the instruction information is used to indicate a beam list corresponding to the first TA, the beam list includes at least one beam identifier, or is used to indicate the first TA Corresponding TRP, the TRP is associated with at least one beam.
  • the terminal can indirectly obtain the corresponding relationship between the first TA and the beam according to the instruction information, avoiding the direct transmission of the corresponding relationship occupying large resources and saving resource overhead.
  • the identifier of the beam includes a beam index, a synchronization signal block SSB index, or a channel state information reference signal CSI-RS identifier.
  • the method further includes: during the random access process of the terminal, receiving reason information, where the reason information is used to indicate the reason for initiating the random access.
  • the reason information can be carried in the random access request, so that the network device can configure a new TA for the terminal according to the reason information, so that the terminal can obtain a more suitable TA, thereby further reducing interference between uplink transmissions.
  • the reason includes the failure of the first TA or the removal of configuration authorized resources.
  • the method further includes: receiving a random access request; sending a response message of the random access request, the response message includes the second TA, and the response message includes indication information, the indication information indicates The beam or TRP corresponding to the second TA, or the TRP or beam where the response message is located is the beam or TRP corresponding to the second TA.
  • the network device When the network device configures the second TA for the terminal, it will also add the beam corresponding to the second TA to the beam list, so that the terminal can subsequently determine the beam corresponding to the second TA according to the beam list, and then can determine the second TA. Whether TA is invalid, reduce the interference between subsequent uplink transmissions.
  • the method further includes: sending a broadcast message, the broadcast message including multiple beam lists or multiple TRP information, and the indication information is used to indicate one beam list or multiple beam lists among the multiple beam lists.
  • the broadcast message including multiple beam lists or multiple TRP information
  • the indication information is used to indicate one beam list or multiple beam lists among the multiple beam lists.
  • TRP One of TRP.
  • the indication information may be one beam list in the multiple beam lists. That is, the network device may identify the beam list in advance through a broadcast message, and then directly indicate the beam identifier through the indication information, so that the terminal can learn the beam corresponding to the second TA.
  • a device for processing the timing advance TA of a terminal may be a terminal or a chip for the terminal, such as a chip that can be set in the terminal.
  • the device has the function of realizing the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module.
  • the ground may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute the instructions stored in the storage module or from other instructions, so that the device executes the above-mentioned first aspect and various possible implementation modes of communication methods.
  • the device can be a terminal.
  • the chip when the device is a chip, the chip includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the foregoing and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above The first aspect, as well as any possible implementation of the method of program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for processing the timing advance TA of a terminal may be a network device or a chip for a network device, such as a chip that can be set in a network device.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module. Specifically, it may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the above-mentioned second aspect or any one of the methods thereof.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example. The processing module can execute instructions so that the chip in the network device executes the second aspect described above and any possible implemented communication method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • the method of the second aspect is an integrated circuit for program execution.
  • an apparatus including a module for implementing the method described in the first aspect and any possible implementation manners thereof.
  • a device including a module for implementing the method described in the second aspect and any possible implementation manners thereof.
  • a device including a processor, configured to call a program stored in a memory to execute the method described in the first aspect and any possible implementation manners thereof.
  • an apparatus including a processor, configured to call a program stored in a memory to execute the method described in the second aspect and any possible implementation manners thereof.
  • a device including: a processor and an interface circuit, the processor is configured to communicate with other devices through the interface circuit, and execute the first aspect of the claim, and any possible implementation manners thereof The described method.
  • a device including: a processor and an interface circuit, the processor is configured to communicate with other devices through the interface circuit, and execute the second aspect of the claim, and any possible implementation manners thereof The described method.
  • a terminal including any one of the fifth aspect, the seventh aspect, or the ninth aspect, and the device described in any possible implementation manner thereof.
  • a twelfth aspect provides a network device, including any one of the sixth aspect, the eighth aspect, or the tenth aspect, and the device described in any possible implementation manners thereof.
  • a computer storage medium stores instructions, and when the instructions are executed, the method as described in the first aspect of the claim and any possible implementation manners thereof is implemented .
  • a computer storage medium stores instructions, and when the instructions are executed, the method described in the second aspect of the claim and any possible implementation manners thereof are implemented .
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the first aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the second aspect and any possible implementations thereof.
  • a computer program product containing instructions which, when running on a processor, causes a computer to execute the method in the first aspect or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a processor, causes a computer to execute the method in the second aspect described above, or any possible implementation manner thereof.
  • a communication system in a nineteenth aspect, includes a device capable of implementing the methods and various possible designs of the above-mentioned first aspect, and the above-mentioned device capable of implementing the various methods and various possible designs of the above-mentioned second aspect. The function of the device.
  • the terminal obtains the corresponding relationship between the first TA and the beam, and can determine the beam corresponding to the first TA according to the corresponding relationship, and then determines whether the first TA fails according to the beam corresponding to the first TA . That is to say, in the embodiment of the present application, the terminal can determine whether the first TA is invalid through a finer granularity, which in turn helps to trigger the selection of a more appropriate TA. Therefore, the embodiments of the present application can further reduce the interference between uplink transmissions compared to the traditional solution.
  • Figure 1 is a schematic diagram of a communication system of the present application
  • Figure 2 is a schematic diagram of a specific communication architecture of the present application.
  • FIG. 3 is a schematic diagram of another specific communication architecture of the present application.
  • Fig. 4 is a schematic diagram of a signal transmission method of a conventional scheme
  • FIG. 5 is a schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a signal transmission method according to a specific embodiment of the present application.
  • FIG. 7 is a schematic diagram of a signal transmission method according to another specific embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a signal transmission apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a signal transmission apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a signal transmission apparatus according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a signal transmission apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a signal transmission apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a signal transmission apparatus according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a signal transmission apparatus according to another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a signal transmission apparatus according to another embodiment of the present application.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • 5G fifth generation
  • NR new radio
  • the terminal in the embodiments of the present application may refer to a device with a wireless transceiver function, which may be called a terminal (terminal), user equipment (UE), mobile station (MS), and mobile terminal (mobile terminal).
  • MT mobile terminal
  • vehicle-mounted terminal remote station, remote terminal, etc.
  • the specific form of the terminal can be mobile phone (mobile phone), cellular phone, cordless phone, session initiation protocol (SIP) phone, wearable device tablet computer (pad), desktop computer, notebook computer, all-in-one machine, vehicle terminal , Wireless local loop (WLL) station, personal digital assistant (PDA), etc.
  • the terminal can be used in the following scenarios: virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control (industrial control), unmanned driving (self-driving), remote medical surgery, smart grid (smart grid), transportation safety (transportation safety), smart city (smart city), smart home (smart home), etc.
  • the terminal can be fixed or mobile. It should be noted that the terminal may support at least one wireless communication technology, such as LTE, NR, and wideband code division multiple access (WCDMA).
  • WCDMA wideband code division multiple access
  • the network device in the embodiment of the present application may be a device that provides a wireless communication function for a terminal, and may also be referred to as a radio access network (RAN) device.
  • Network equipment includes but is not limited to: next generation node B (gNB) in 5G, evolved node B (evolved node B, eNB), baseband unit (BBU), transmitting and receiving point, TRP), transmitting point (TP), relay station, access point, etc.
  • the network equipment may also be a wireless controller, a centralized unit (CU), a distributed unit (DU), etc. in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can support at least one wireless communication technology, such as LTE, NR, WCDMA, and so on.
  • the gNB may include centralized units CU and DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal or a network device, or a functional module in the terminal or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • network devices and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of wireless access network equipment and terminals.
  • the beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can include one or more antenna ports for transmitting data channels, control channels, and sounding signals.
  • a transmit beam can refer to the distribution of signal strength formed in different directions in space after a signal is emitted by an antenna.
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It is understandable that one or more antenna ports forming a beam can also be regarded as an antenna port set. The embodiment of the beam in the agreement can still be a spatial filter.
  • Beamforming technology (beamforming):
  • Beamforming technology can achieve higher antenna array gain by oriented in a specific direction in space.
  • Analog beamforming can be achieved through radio frequency.
  • a radio frequency link RF chain
  • Fig. 1 is a schematic diagram of a communication system of the present application.
  • the communication system in FIG. 1 may include at least one terminal (for example, the terminal 10, the terminal 20, the terminal 30, the terminal 40, the terminal 50, and the terminal 60) and a network device 70.
  • the network device 70 is used to provide communication services for the terminal and access the core network.
  • the terminal can access the network by searching for synchronization signals, broadcast signals, etc. sent by the network device 70, so as to communicate with the network.
  • the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60 in FIG. 1 can perform uplink and downlink transmissions with the network device 70.
  • the network device 70 may send downlink signals to the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60, and may also receive the uplink signal sent by the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60.
  • the terminal 40, the terminal 50, and the terminal 60 can also be regarded as a communication system, and the terminal 60 can send signals to the terminal 40 and the terminal 50, and can also receive signals sent by the terminal 40 and the terminal 50.
  • the embodiments of the present application can be applied to downlink signal transmission, can also be applied to uplink signal transmission, and can also be applied to device-to-device (D2D) signal transmission.
  • D2D device-to-device
  • the sending device is a network device
  • the corresponding receiving device is a terminal.
  • the sending device is a terminal, and the corresponding receiving device is a network device.
  • D2D signal transmission the sending device is a terminal, and the corresponding receiving device is also a terminal.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • the embodiments of the present application may be applied to a communication system including one or more network devices, and may also be applied to a communication system including one or more terminals, which is not limited in the present application.
  • One of the network devices can send data or control signaling to one or more terminals.
  • Multiple network devices can also send data or control signaling to one or more terminals at the same time.
  • the communication between the network equipment and the terminal and between the terminal and the terminal can be carried out through the licensed spectrum, or through the unlicensed spectrum, or through the licensed spectrum and the free spectrum at the same time.
  • Authorize spectrum for communication Communication between network devices and terminals and between terminals and terminals can be through the frequency spectrum below 6G, or through the frequency spectrum above 6G, and the frequency spectrum below 6G and above 6G can also be used for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal.
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • the network architecture includes CN equipment and RAN equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, or integrated into the baseband device, or partly remotely.
  • the RAN equipment eNB
  • the RAN equipment includes a baseband device and a radio frequency device, where the radio frequency device can be arranged remotely relative to the baseband device, for example, a remote radio unit (RRU) is arranged remotely relative to the BBU.
  • RRU remote radio unit
  • control plane protocol layer structure can include the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, and the media interface. Access control (media access control, MAC) layer and physical layer and other protocol layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the user plane protocol layer structure can include the functions of the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer can also include a service data adaptation protocol (SDAP) layer .
  • SDAP service data adaptation protocol
  • the RAN device can include a centralized unit (CU) and a distributed unit (DU), Multiple DUs can be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay. The functions that need to meet the delay requirement for processing time are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • control plane (CP) and the user plane (UP) of the CU can also be separated and divided into different entities for implementation. They are the control plane CU entity (CU-CP entity). ) And the user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal through the DU, or the signaling generated by the terminal can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation and transparently transmit to the terminal or CU without analyzing the signaling. If the following embodiments involve the transmission of such signaling between the DU and the terminal, at this time, the sending or receiving of the signaling by the DU includes this scenario.
  • RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal, or converted from received PHY layer signaling. Under this architecture, the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency.
  • the CU is divided into network equipment on the RAN side.
  • the CU can also be divided into network equipment on the CN side, which is not limited here.
  • the devices in the following embodiments of the present application may be located in a terminal or a network device according to their realized functions.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • Figure 4 shows a schematic diagram of a four-step random access type random access process in a traditional scheme.
  • the terminal selects a suitable cell and completes camping, it can initiate random access.
  • the UE sends a message 1 (message 1, abbreviated as msg 1) to the network device, and the message 1 is also a random access preamble.
  • the network device After detecting the random access preamble, the network device returns a response message, that is, message 2 (message 2), to the UE.
  • message 2 contains the uplink resources allocated by the network equipment for the UE.
  • the UE After receiving the message 2, the UE sends the message 3 on the uplink resource indicated by the message 2. If the network device can correctly decode message 3 (message 3), it returns message 4 (message 4) to the UE, and message 4 is used to notify the UE that the competition is successful. After the above 4 steps, the random access procedure is successful.
  • FIG. 5 shows a schematic diagram of a two-step random access type random access process in a traditional scheme.
  • the UE carries the random access preamble and data (that is, preamble and data) in the message A at the same time.
  • the data part is used for contention resolution, such as radio resource control (Radio Resource Control, RRC) messages.
  • RRC Radio Resource Control
  • the network device successfully decodes message 1 and returns message B to the UE.
  • Message B includes both the response to the random access preamble and the response to the data.
  • the response to the random access preamble is also a random access response (RAR).
  • RAR random access response
  • the response to data is usually an RRC message.
  • the two responses can be sent at the same time or one after the other.
  • the UE can decode the two parts of the response independently. After receiving the message 2, the UE learns that the random access is successful. If there is a conflict between UEs, the network device may not be able to successfully decode the data in message A, and the network device does not send message 2 to the UE at this time. After sending the message 1, the UE waits for a time window. If the message 2 is not received, it is considered that the random access has failed.
  • the terminal judges whether the current TA is valid by judging whether the terminal has changed the serving cell.
  • the accuracy requirements for TA are getting higher and higher, and how to more accurately judge whether the current TA is effective to reduce interference between uplink transmissions is an urgent solution.
  • FIG. 6 shows a schematic flowchart of a TA processing method of a terminal according to an embodiment of the present application.
  • the execution subject of the embodiments of the present application may be a terminal or a network device, and may also be a chip in the terminal or a chip in the network device.
  • the following embodiments take a terminal or a network device as an example for description, but the application is not limited to this.
  • the terminal acquires the correspondence between the first TA and the beam.
  • the first TA in the correspondence relationship may correspond to multiple beams, or may correspond to one beam, which is not limited in this application.
  • the multiple beams may be beams associated with the same TRP, or beams associated with different TRPs, which is not limited in this application.
  • the multiple beams corresponding to the first TA may be downlink beams.
  • step 401 may specifically be that the terminal stores the correspondence relationship in a storage area in advance, and when the correspondence relationship is needed, reads the correspondence relationship from the storage area.
  • step 401 may specifically be that the terminal obtains the corresponding relationship from the network device.
  • the terminal may directly receive the corresponding relationship from the network device.
  • the network device sends the corresponding relationship to the terminal.
  • the terminal may receive indication information from the network device, where the indication information is used to indicate a beam list corresponding to the first TA, and the beam list includes an identifier of at least one beam. That is, the terminal can indirectly acquire the correspondence between the first TA and the beam according to the instruction information.
  • the indication information may only include the corresponding relationship between the first TA and the beam, or may include the corresponding relationship between multiple TAs and beams.
  • the first TA in the embodiment of the present application can be used to judge.
  • the embodiment of the present application only uses the first TA as an example for description. , But this application is not limited to this.
  • the identifier of the beam may be at least one of a beam index, a synchronization signal block (synchronization signal block, SSB) index, or a channel status information reference signal (channel status information reference signal, CSI-RS) identifier.
  • a beam index synchronization signal block (synchronization signal block, SSB) index
  • a channel status information reference signal channel status information reference signal, CSI-RS
  • the beam can be identified by the beam index, so that different beams can be identified.
  • One SSB corresponds to one SSB index, one SSB is sent through one beam, and different SSBs are sent through different beams, so that the SSB can be identified according to a certain SSB index, and the beam corresponding to each SSB can be identified.
  • One CSI-RS corresponds to one CSI-RS index, one CSI-RS is transmitted through one beam, and different CSI-RS is transmitted through different beams, so that the CSI-RS can be identified according to a certain CSI-RS index, and then Identify the beam corresponding to each CSI-RS.
  • the terminal determines the beam corresponding to the first TA according to the corresponding relationship.
  • the terminal determines whether the first TA fails according to the beam corresponding to the first TA.
  • the terminal acquires the correspondence between the first TA and the beam, and can determine the beam corresponding to the first TA according to the correspondence, and then determines whether the first TA fails according to the beam corresponding to the first TA. That is to say, in the embodiment of the present application, the terminal can determine whether the first TA is invalid through a finer granularity, which in turn helps to trigger the selection of a more appropriate TA. Therefore, the embodiments of the present application can further reduce the interference between uplink transmissions compared to the traditional solution.
  • step 403 may also be that the terminal determines whether the first TA is valid according to the beam corresponding to the first TA.
  • step 403 may specifically be that the terminal determines that the first TA is invalid when the terminal moves out of the coverage range of the beam corresponding to the first TA.
  • each beam has a certain coverage area, for example, it can cover a certain geographic area. If the terminal moves out of the coverage of one beam, the first TA may fail. In other words, the terminal can determine the failure of the first TA by moving the terminal out of the beam coverage corresponding to the first TA, thereby reducing interference between uplink transmissions.
  • the terminal may determine to move out of the coverage area of the beam corresponding to the first TA, and the first TA corresponds to at least one beam .
  • the terminal may determine that it has moved out of the coverage range of the beam corresponding to the first TA. In this way, the terminal can determine whether it has moved out of the coverage area of the beam corresponding to the first TA based on the relationship between the signal quality of the beam corresponding to the first TA and the preset threshold, and when moving out of the coverage area of the beam corresponding to the first TA Determining the failure of the first TA helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the terminal may determine that the signal quality of each beam transmission signal in the multiple beams is less than the preset threshold, or all are equal to the preset threshold, or When part is less than the preset threshold and part is equal to the preset threshold, it is considered that it has moved out of the coverage area of the beam corresponding to the first TA; or the terminal may determine the highest signal quality among the signal quality of the multiple beams When it is less than or equal to the preset threshold, it is considered that it has moved out of the coverage of the beam corresponding to the first TA; or the terminal may determine that the average value of the signal quality of some or all of the multiple beams is less than If it is equal to or equal to the preset threshold, it is considered that it has moved out of the beam coverage area corresponding to the first TA.
  • the first TA corresponds to p beams
  • the terminal can calculate the average value of the signal quality of q beams in the p beams, and determine the relationship between the average value and the preset threshold, and then determine whether the terminal moves out of the The beam coverage corresponding to the first TA.
  • q ⁇ p, p, q are all positive integers.
  • the q beams may be beams with the best signal quality among the p beams, or the q beams may be beams with signal quality greater than a preset condition, which is not limited in this application.
  • the signal quality involved in this application can be through reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), or physical downlink control channel (physical downlink control channel).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • RSRQ physical downlink control channel
  • BLER block error rate
  • the preset threshold may be configured by the network device, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • the terminal determines that the terminal moves out of the beam coverage area corresponding to the first TA when the number of beams whose signal quality is greater than or equal to a preset threshold is less than or equal to N in the multiple beams corresponding to the first TA. Range, where N is a positive integer. Or the terminal determines that the terminal moves out of the coverage range of the beam corresponding to the first TA when the number of beams whose signal quality is greater than or equal to the preset threshold in the multiple beams corresponding to the first TA is greater than L, where L Is a positive integer.
  • the terminal determines that it moves out of the beam corresponding to the first TA Covered area. Or if the terminal determines that it moves out of the coverage range of the beam corresponding to the first TA if the number of the signal quality of the transmission signal in the multiple beams corresponding to the first TA is less than the preset threshold and is greater than L.
  • L and N are both positive integers, and may be the same or different.
  • the terminal can determine whether it has moved out of the coverage area of the beam corresponding to the first TA based on the number of signal quality of the beam corresponding to the first TA that exceeds the preset threshold, and when moving out of the coverage area of the beam corresponding to the first TA Determining the failure of the first TA helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the terminal moves out of the beam coverage range corresponding to the first TA.
  • the terminal has moved out of the coverage range of the beams corresponding to the first TA; or if the signal quality is less than the preset threshold.
  • the number of threshold beams is set to 3 it is considered that the terminal moves out of the coverage range of the beam corresponding to the first TA.
  • the preset threshold, the value of L, and the value of N may be configured by the network device, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • the terminal may determine that the terminal moves out of the first TA when the average value of the first S signal qualities sorted from high to low in the multiple beams corresponding to the first TA is less than or equal to a preset threshold.
  • the terminal determines to move out of the beam coverage corresponding to the first TA Range. That is, S signal qualities with high signal quality are selected from the signal qualities of the multiple beams.
  • the signal qualities of the multiple beams are sorted from low to high, and S signal qualities are selected.
  • the first S signal quality may be the signal quality of S beams, or may be greater than the signal quality of S beams.
  • the preset threshold value and the value of S may be configured by the network device respectively, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • step 403 may specifically be that the terminal determines that the first TA is invalid when the amount of change in the signal quality of the multiple beams corresponding to the first TA is greater than a first preset threshold.
  • the terminal detects that the change in signal quality exceeds the preset threshold, it can be considered that the first TA is invalid. This in turn helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the amount of change may be due to the amount of change over time.
  • the first preset threshold may be configured by the network device, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • the amount of change in the signal quality of the multiple beams corresponding to the first TA may specifically be the difference between the signal quality of the first beam and the signal quality of the second beam among the multiple beams corresponding to the first TA. The amount of change.
  • the first TA corresponds to multiple beams
  • the variation of the signal quality of the multiple beams may specifically be the variation of the difference of the signal quality of any two beams in the multiple beams. That is to say, in the case that the change in signal quality of any two beams is greater than the first preset threshold, the terminal may consider that the change in signal quality of the multiple beams corresponding to the first TA is greater than the first preset. Set a threshold, and then consider that the first TA is invalid. This helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the first beam or the second beam may be a preset reference beam, or may be selected by the terminal itself, or may be instructed by a network device, which is not limited in this application.
  • the change in signal quality of the multiple beams corresponding to the first TA may specifically be the change in signal quality of at least one of the multiple beams corresponding to the first TA.
  • the terminal may consider that the change in the signal quality of the multiple beams corresponding to the first TA is greater than the first TA.
  • a preset threshold and then consider that the first TA is invalid.
  • the terminal may consider that the change in signal quality of the multiple beams corresponding to the first TA is greater than the first TA.
  • a preset threshold and then consider that the first TA is invalid. This helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • step 403 may specifically be that the terminal determines that the signal quality of other beams is greater than the signal quality of the beam corresponding to the first TA, and determines that the first TA is invalid.
  • the terminal can consider that the first TA is invalid, which in turn helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • step 403 may specifically be that the terminal determines that the first TA is invalid when the terminal determines that the signal quality of other beams is greater than or equal to the second preset threshold.
  • the setting of the second preset threshold is generally greater than the average value of the signal quality of the multiple beams corresponding to the first TA. This helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the second preset threshold may be configured by the network device, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • the terminal may initiate random access to request a new first TA.
  • the random access process may be as shown in Figure 4 or Figure 5 above.
  • the terminal may also release the authorized configuration resources of the beam corresponding to the first TA. In this way, waste of resources can be avoided and resource utilization can be improved.
  • the configured authorized resources may include frequency domain resources and modulation and coding schemes.
  • the configured authorized resource may be configured by the network device through RRC signaling, or activated through downlink control information (DCI).
  • DCI downlink control information
  • the terminal may stop the timing of the first TA timer (TA timing) corresponding to the first TA.
  • the terminal may send a small amount of data to the network device.
  • the terminal initiating the random access process may specifically be to send a random access request and receive a response message accompanying the access request in response to the network device.
  • the response message includes the second TA, and the terminal passes the second TA. Perform uplink transmission.
  • the terminal can use the new TA for uplink transmission, thereby reducing interference between uplink transmissions.
  • the random access request may be message 1 or message 3 shown in FIG. 4, or may be in message A shown in FIG. 4.
  • the second TA may be carried in message 4 in the random access mode shown in FIG. 4, or carried in message B in the random access mode shown in FIG. 5.
  • the response message of the random access request may also be used to indicate the beam corresponding to the second TA.
  • the network device may also configure the beam corresponding to the second TA.
  • the network device may directly indicate the beam corresponding to the second TA through the response message, or may be an indirect indication.
  • the response message includes indication information, and the indication information directly indicates the beam corresponding to the second TA.
  • the terminal uses the beam in which the response message is located as the beam corresponding to the second TA.
  • the network device when the network device configures the second TA for the terminal, it will also add the beam corresponding to the second TA to the beam list, so that the terminal can subsequently determine the beam corresponding to the second TA according to the beam list, and then can Determine whether the second TA is invalid, and reduce interference between subsequent uplink transmissions.
  • the network device may also send a broadcast message to the terminal before sending the instruction information.
  • the broadcast message includes multiple beam lists, and each beam list in the multiple beam lists includes at least one beam identifier.
  • the terminal receives the broadcast message from the network device.
  • the indication information may be one beam list in the multiple beam lists. That is, the network device may identify the beam list in advance through a broadcast message, and then directly indicate the beam identifier through the indication information, so that the terminal can learn the beam corresponding to the second TA.
  • the terminal may send cause information to the network device, where the cause information is used to indicate the cause of the random access initiation.
  • the above reason information can be in the above random access request, so that the network device can configure a new TA for the terminal according to the reason information, so that the terminal can obtain a more suitable TA, thereby further reducing interference between uplink transmissions .
  • the reason includes TA failure or clearing of configured authorized resources (grant free).
  • the removal of the configured authorized resource may be caused by TA failure.
  • FIG. 7 shows a schematic flowchart of a TA processing method of a terminal according to another embodiment of the present application.
  • the terminal obtains the correspondence between TA and TRP.
  • the first TA in the correspondence relationship may correspond to multiple TRPs, or may correspond to one TRP, which is not limited in this application.
  • step 501 may specifically be that the terminal stores the correspondence relationship in a storage area in advance, and when the correspondence relationship is needed, reads the correspondence relationship from the storage area.
  • step 501 may specifically be that the terminal obtains the corresponding relationship from the network device.
  • the terminal may directly receive the corresponding relationship from the network device.
  • the network device sends the corresponding relationship to the terminal.
  • the terminal may receive indication information from the network device, where the indication information is used to indicate a beam list corresponding to the first TA, and the beam list includes an identifier of at least one beam.
  • the beam list has an association relationship with the TRP.
  • the terminal can indirectly acquire the correspondence between the first TA and the TRP according to the instruction information. For example, the terminal determines the TRP associated with at least one beam identifier included in the beam list according to the beam identifier in the beam list, or the terminal determines the associated TRP according to the identifier of the beam list.
  • the indication information may only include the corresponding relationship between the first TA and the TRP, or may include the corresponding relationship between multiple TAs and the TRP.
  • the first TA in the embodiment of the present application can be used to judge.
  • the embodiment of the present application only uses the first TA as an example for description. , But this application is not limited to this.
  • the terminal determines the TRP corresponding to the first TA according to the corresponding relationship.
  • the terminal determines whether the first TA is invalid according to the TRP corresponding to the first TA.
  • the terminal obtains the correspondence between the first TA and the TRP, and can determine the TRP corresponding to the first TA according to the correspondence, so that the terminal can determine whether the first TA is invalid according to the TRP corresponding to the first TA . That is to say, in the embodiment of the present application, the terminal can determine whether the first TA is invalid through a finer granularity, which in turn helps to trigger the selection of a more appropriate TA. Therefore, the embodiments of the present application can further reduce the interference between uplink transmissions compared to the traditional solution.
  • step 503 may also be that the terminal determines whether the first TA is valid according to the TRP corresponding to the first TA.
  • step 503 may specifically be that the terminal determines whether the first TA is invalid according to the beam associated with the TRP corresponding to the first TA.
  • step 503 may specifically be that the terminal determines that the first TA is invalid when the terminal moves out of the coverage area of the TRP corresponding to the first TA.
  • each TRP may have a certain coverage area, for example, may cover a certain geographic location area. If the terminal moves out of the coverage of a TRP, the first TA may fail. In other words, the terminal can determine that the first TA is invalid by moving the terminal out of the TRP coverage area corresponding to the first TA, thereby reducing interference between uplink transmissions.
  • the terminal may determine to move out of the TRP coverage area corresponding to the first TA, and the TRP-associated beam Is at least one.
  • the terminal may determine that it has moved out of the coverage area corresponding to the first TA. In this way, the terminal can determine whether it has moved out of the TRP coverage area corresponding to the first TA through the relationship between the signal quality of the beam associated with the TRP corresponding to the first TA and the preset threshold, and move out of the TRP coverage area corresponding to the first TA. It is determined that the first TA is invalid, which in turn helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the terminal may determine that the signal quality of the signals transmitted in the multiple beams is all less than the preset threshold, or all are equal to the preset threshold, or partly less than the preset threshold. If the threshold is partially equal to the preset threshold, it is considered that it has moved out of the TRP coverage area corresponding to the first TA; or the terminal may determine that the highest signal quality of the multiple beams is less than or equal to the preset. When the threshold is set, it is considered that it has moved out of the range covered by the TRP corresponding to the first TA; or the terminal may determine that the average value of the signal quality of the multiple beams is less than or equal to the preset threshold. I moved out of the range covered by the TRP corresponding to the first TA.
  • the preset threshold may be configured by the network device, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • the signal quality involved in this application can be based on reference signal receiving power (RSRP), reference signal receiving quality (RSRQ) or physical downlink control channel (physical downlink control channel).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • RSRQ physical downlink control channel
  • BLER block error rate
  • the terminal determines that the terminal moves out of the first TA when the signal quality of the multiple TRP-associated beams corresponding to the first TA is greater than or equal to a preset threshold and the number of TRP-associated beams is less than or equal to N.
  • the TRP coverage range corresponding to TA where N is a positive integer.
  • the terminal determines that the terminal moves out of the coverage range of the TRP corresponding to the first TA when the signal quality of the multiple TRP-associated beams corresponding to the first TA is greater than or equal to the preset threshold and the number of beams is greater than L.
  • L is a positive integer.
  • the terminal is in the multiple TRP-associated beams corresponding to the first TA, and the number of beams whose signal quality is greater than or equal to the preset threshold is less than or equal to N, it is determined to move out of the first TA. Corresponding TRP coverage. Or if the terminal determines that it moves out of the coverage area of the TRP corresponding to the first TA when the signal quality of the transmission signal is less than the preset threshold and the number of beams associated with the multiple TRPs corresponding to the first TA is greater than L.
  • L and N are both positive integers, and may be the same or different.
  • the terminal can determine whether it has moved out of the TRP coverage area corresponding to the first TA based on the number of beams whose signal quality associated with the TRP corresponding to the first TA exceeds the preset threshold, and move out of the TRP coverage area corresponding to the first TA. It is determined that the first TA is invalid, which in turn helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the terminal has moved out of the TRP coverage area corresponding to the first TA; or if the signal quality is When the number of beams less than the preset threshold is 4, it is considered that the terminal has moved out of the coverage range of the TRP corresponding to the first TA.
  • the terminal has moved out of the TRP coverage area corresponding to the first TA; or if the signal When the number of beams whose quality is less than the preset threshold is 3, it is considered that the terminal has moved out of the range covered by the TRP corresponding to the first TA.
  • the preset threshold, the value of L, and the value of N may be configured by the network device, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • the terminal may determine that the terminal moves when the average value of the first S signal qualities sorted from high to low in the multiple TRP-associated beams corresponding to the first TA is less than or equal to a preset threshold.
  • the TRP coverage area corresponding to the first TA is shown.
  • the terminal determines to move out of the first TA.
  • the scope of TRP coverage That is, S signal qualities with high signal quality are selected from the signal qualities of the multiple beams. For example, the signal quality of the multiple beams can be sorted from high to low, and the top S signal qualities are selected. Or the signal qualities of the multiple beams are sorted from low to high, and S signal qualities are selected.
  • the first S signal quality may be the signal quality of S beams, or may be greater than the signal quality of S beams.
  • the preset threshold value and the value of S may be configured by the network device respectively, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • step 503 may specifically be that the terminal determines that the first TA is invalid when the amount of change in the signal quality of the multiple beams associated with the TRP corresponding to the first TA is greater than a first preset threshold.
  • the terminal moves faster and the location updates faster, which may cause the first TA to be inaccurate (that is, the first TA).
  • One TA fails). Therefore, if the terminal detects that the change in signal quality exceeds the preset threshold, it can be considered that the first TA is invalid. This in turn helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the amount of change may be due to the amount of change over time.
  • the first preset threshold may be configured by the network device, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • the amount of change in the signal quality of the multiple beams associated with the TRP corresponding to the first TA may specifically be the signal quality and the TRP of the first beam associated with the TRP among the multiple beams associated with the TRP corresponding to the first TA.
  • the amount of change in the difference in the signal quality of the associated second beam may specifically be the signal quality and the TRP of the first beam associated with the TRP among the multiple beams associated with the TRP corresponding to the first TA.
  • the first TA corresponds to the multiple beams associated with the TRP
  • the amount of change in the signal quality of the multiple beams associated with the TRP may specifically be the difference between the signal quality of any two beams among the multiple beams associated with the TRP.
  • the amount of change that is to say, in the case where the amount of change in signal quality of any two beams associated with the TRP is greater than the first preset threshold, the terminal can consider the change in signal quality of multiple beams associated with the TRP corresponding to the first TA If the amount is greater than the first preset threshold, the first TA is considered to be invalid. This helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the change in signal quality of the multiple beams associated with the TRP corresponding to the first TA may specifically be the change in signal quality of at least one of the multiple beams associated with the TRP corresponding to the first TA.
  • the terminal may consider the change in signal quality of the multiple beams associated with the TRP corresponding to the first TA If it is greater than the first preset threshold, the first TA is considered to be invalid. For example, in the case where the amount of change in the signal quality of the beam associated with any TRP among the multiple beams is greater than the first preset threshold, the terminal may consider the signal quality of the multiple beams associated with the TRP corresponding to the first TA The amount of change of is greater than the first preset threshold, and the first TA is considered to be invalid. This helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • step 503 may specifically be that the terminal determines that the signal quality of other TRP-associated beams is greater than the signal quality of the TRP-associated beams corresponding to the first TA, and then determines that the first TA is invalid. .
  • the signal quality of other TRP-associated beams is greater than the maximum signal quality of all or part of the multiple beams associated with the TRP corresponding to the first TA, it is considered that there are signals of other TRP-associated beams.
  • the quality is greater than the signal quality of the beam associated with the TRP corresponding to the first TA.
  • the signal quality of other TRP-associated beams is greater than the mean value of the signal quality in all or part of the multiple beams associated with the TRP corresponding to the first TA, then it is considered that the signal quality of other TRP-associated beams is greater than the first TA.
  • the signal quality of the beam associated with the TRP corresponding to the TA In this way, the terminal can consider that the first TA is invalid, which in turn helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • step 503 may specifically be that when the terminal determines that the signal quality of other TRP-associated beams is greater than or equal to the second preset threshold, it is determined that the first TA is invalid.
  • the first TA is considered to be invalid.
  • the setting of the second preset threshold is usually greater than the mean value of the signal quality of multiple beams associated with the TRP corresponding to the first TA. This helps trigger the terminal to select a more appropriate TA, and further reduces interference between uplink transmissions.
  • the second preset threshold may be configured by the network device, or may be pre-appointed by the terminal and the network device, which is not limited in this application.
  • the terminal may initiate random access to request a new first TA.
  • the random access process may be as shown in Figure 4 or Figure 5 above.
  • the terminal may also release authorized configuration resources of the beam associated with the TRP corresponding to the first TA. In this way, waste of resources can be avoided and resource utilization can be improved.
  • the configured authorized resources may include time-frequency resources and modulation and coding schemes.
  • the configured authorized resource may be configured by the network device through RRC signaling, or activated through downlink control information (DCI).
  • DCI downlink control information
  • the terminal may stop the timing of the first TA timer (TA timing) corresponding to the first TA.
  • the terminal may send a small amount of data to the network device.
  • the terminal initiating the random access process may specifically be to send a random access request and receive a response message accompanying the access request in response to the network device.
  • the response message includes the second TA, and the terminal passes the second TA. Perform uplink transmission.
  • the terminal can use the new TA for uplink transmission, thereby reducing interference between uplink transmissions.
  • the random access request may be message 1 or message 3 shown in FIG. 4, or may be in message A shown in FIG. 4.
  • the second TA may be carried in message 4 in the random access mode shown in FIG. 4, or carried in message B in the random access mode shown in FIG. 5.
  • the response message of the random access request may also be used to indicate the beam associated with the TRP corresponding to the second TA.
  • the network device may also configure the TRP-associated beam corresponding to the second TA.
  • the network device may directly indicate the beam associated with the TRP corresponding to the second TA through the response message, or may be an indirect indication.
  • the response message includes indication information, and the indication information directly indicates the beam associated with the TRP corresponding to the second TA.
  • the terminal uses the beam associated with the TRP where the response message is located as the beam associated with the TRP corresponding to the second TA.
  • the network device when the network device configures the second TA for the terminal, it will also add the TRP-associated beam corresponding to the second TA to the TRP-associated beam list, so that the terminal can subsequently determine the TRP-associated beam list according to the TRP-associated beam list.
  • the beam associated with the TRP corresponding to the second TA can then determine whether the second TA fails, and reduce interference between subsequent uplink transmissions.
  • the network device may also send a broadcast message to the terminal before sending the instruction information.
  • the broadcast message includes multiple TRP-associated beam lists, and each TRP-associated beam in the multiple TRP-associated beam lists The list includes at least one TRP associated beam identification.
  • the terminal receives the broadcast message from the network device.
  • the indication information may be a beam list associated with one TRP in the beam lists associated with the plurality of TRPs. That is, the network device can identify the TRP-associated beam list in advance through a broadcast message, and then directly indicate the TRP-associated beam identifier through the indication information, so that the terminal can learn the TRP-associated beam corresponding to the second TA.
  • the beam indicated by the beam identifier included in the beam list may be a beam corresponding to a TRP.
  • the terminal may send cause information to the network device, where the cause information is used to indicate the cause of the random access initiation.
  • the above reason information can be in the above random access request, so that the network device can configure a new TA for the terminal according to the reason information, so that the terminal can obtain a more suitable TA, thereby further reducing interference between uplink transmissions .
  • the reason includes TA failure or clearing of configured authorized resources (grant free).
  • the removal of the configured authorized resource may be caused by TA failure.
  • the methods and operations implemented by the terminal can also be implemented by components (such as chips or circuits) that can be used in the terminal, and the methods and operations implemented by the network device can also be implemented by the terminal.
  • the components (such as chips or circuits) of network devices are implemented.
  • each network element such as a terminal or a network device, includes a hardware structure and/or software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal or the network device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 8 shows a schematic block diagram of an apparatus 800 for processing a terminal timing advance TA according to an embodiment of the present application.
  • the apparatus 800 may correspond to each terminal or chip in the terminal shown in FIG. 1, and the terminal or chip in the terminal in the embodiment shown in FIG. 6, and may have the method shown in FIG. 6 Any function of the terminal.
  • the device 800 includes a transceiver module 810 and a processing module 820.
  • the transceiver module 810 is configured to obtain the corresponding relationship between the first TA and the beam or the transceiver point TRP;
  • the processing module 820 is configured to determine the beam or TRP corresponding to the first TA according to the corresponding relationship
  • the processing module 820 is further configured to determine whether the first TA fails according to the signal quality of the beam or TRP.
  • the processing module 820 is specifically configured to determine that the first TA fails when the terminal moves out of the range of the beam or TRP corresponding to the first TA.
  • the processing module 820 is further configured to determine that the terminal moves out of the beam coverage corresponding to the first TA when the signal quality of the beam corresponding to the first TA is less than or equal to a preset threshold.
  • the first TA corresponds to at least one beam; or when the number of beams with signal quality greater than or equal to a preset threshold in the multiple beams corresponding to the first TA is less than or equal to N, it is determined that the terminal moves The beam coverage range corresponding to the first TA, where N is a positive integer; or when the number of beams whose signal quality is less than or equal to a preset threshold in the multiple beams corresponding to the first TA is greater than , Determining that the terminal moves out of the coverage range of the beam corresponding to the first TA, where L is a positive integer; or the first S in the multiple beams corresponding to the first TA in descending order of signal quality When the average value of each signal quality is less than or equal to a preset threshold, it is determined that the terminal moves out
  • the processing module 820 is further configured to: in the case that the signal quality of the beam associated with the TRP corresponding to the first TA is less than or equal to a preset threshold, determine that the terminal moves out of the corresponding first TA.
  • the TRP coverage range of the TRP, the beam associated with the TRP is at least one beam; or the number of beams whose signal quality is greater than or equal to a preset threshold in the multiple beams associated with the TRP corresponding to the first TA is less than or equal to N
  • N is an integer
  • the signal quality in the multiple beams associated with the TRP corresponding to the first TA is less than or equal to the preset
  • the number of threshold beams is greater than or equal to L, it is determined that the terminal moves out of the TRP coverage range corresponding to the first TA, where L is a positive integer; or the TRP corresponding to the first TA is associated If the average value
  • the processing module 820 is specifically configured to: the amount of change in the signal quality of the multiple beams corresponding to the first TA or the multiple beams associated with the TRP corresponding to the first TA is greater than a first preset threshold In the case of determining that the first TA is invalid; or in the case that the signal quality of other beams is greater than the signal quality of the beam corresponding to the first TA or the beam associated with the TRP corresponding to the first TA, determining all The first TA is invalid; or in a case where the signal quality of other beams is greater than or equal to a second preset threshold, it is determined that the first TA is invalid.
  • the processing module 820 is further configured to: the signal quality of the first beam and the second beam in the multiple beams corresponding to the first TA or the multiple beams associated with the TRP corresponding to the first TA In the case where the change in the signal quality difference of the signal quality is greater than or equal to the first preset threshold, it is determined that the change in the signal quality of the beam corresponding to the first TA is greater than the first preset threshold; or In the case that the multiple beams corresponding to the first TA or the multiple beams associated with the TRP corresponding to the first TA, the change in signal quality of the first beam is greater than or equal to the first preset threshold, determining the first The amount of change in the signal quality of the beam corresponding to the TA is greater than the first preset threshold.
  • the transceiver module 810 is specifically configured to:
  • the transceiver module 810 is specifically configured to:
  • the beam list includes an identifier of at least one beam, or is used to indicate a TRP corresponding to the first TA,
  • the TRP is associated with at least one beam.
  • the identifier of the beam includes a beam index, a synchronization signal block SSB index, or a channel state information reference signal CSI-RS identifier.
  • the transceiver module 810 is also configured to initiate random access when the first TA fails, and send cause information to the network device during the random access process, and the cause information is used to indicate the initiation of the random access.
  • Reason for access is also configured to initiate random access when the first TA fails, and send cause information to the network device during the random access process, and the cause information is used to indicate the initiation of the random access.
  • the reason includes TA failure or configuration authorized resource removal.
  • the transceiver module 810 is specifically configured to:
  • the response message includes a second TA
  • the response message includes indication information
  • the indication information indicates the beam or TRP corresponding to the second TA, or the TRP or the TRP where the response message is located
  • the beam is the beam or TRP corresponding to the second TA;
  • the processing module 820 is also configured to use the second TA to perform uplink transmission.
  • the transceiver module 810 is further configured to receive a broadcast message, the broadcast message including multiple beam lists or multiple TRP information, and the indication information is used to indicate one beam list or multiple TRPs in the multiple beam lists In one.
  • the processing module 820 is further configured to release the configuration authorization resource corresponding to the first TA when the first TA fails.
  • transceiver module 810 and processing module 820 For a more detailed description of the foregoing transceiver module 810 and processing module 820, reference may be made to the related description in the foregoing method embodiment, which is not described herein again.
  • FIG. 9 shows an apparatus 900 for processing a timing advance TA of a terminal according to an embodiment of the present application.
  • the apparatus 900 may be the terminal described in FIG. 1.
  • the device can adopt the hardware architecture shown in FIG. 9.
  • the device may include a processor 910 and a transceiver 930.
  • the device may further include a memory 940.
  • the processor 910, the transceiver 930, and the memory 840 communicate with each other through an internal connection path.
  • the relevant functions implemented by the processing module 820 in FIG. 8 may be implemented by the processor 810, and the relevant functions implemented by the transceiver module 810 may be implemented by the processor 910 controlling the transceiver 930.
  • the processor 910 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit implementing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to control the terminal's timing advance TA processing device (such as base station, terminal, or chip, etc.), execute software programs, and process The data of the software program.
  • the processor 910 may include one or more processors, for example, include one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 930 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 940 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory erasable read only memory
  • CD-ROM compact disc
  • the memory 940 is used to store program codes and data of the terminal, and may be a separate device or integrated in the processor 910.
  • the processor 910 is configured to control the transceiver to perform information transmission with the terminal.
  • the processor 910 is configured to control the transceiver to perform information transmission with the terminal.
  • the apparatus 900 may further include an output device and an input device.
  • the output device communicates with the processor 910, and can display information in a variety of ways.
  • the output device can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 910 and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 9 only shows the simplified design of the device for processing the timing advance TA of the terminal.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement this application are within the protection scope of this application. within.
  • the device 900 may be a chip, for example, a communication chip that can be used in a terminal to implement related functions of the processor 910 in the terminal.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal or a circuit.
  • the device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 10 shows a schematic block diagram of an apparatus 1000 for processing a terminal timing advance TA according to an embodiment of the present application.
  • the apparatus 1000 may correspond to the network device or the chip in the network device shown in FIG. 1, or the network device or the chip in the network device in the embodiment shown in FIG. 6, and may have the functions of the network device in the method. Any function.
  • the device 1000 includes a processing module 1010 and a transceiver module 1020.
  • the processing module 1010 is used to determine the correspondence between the first TA and the beam or the transceiver point TRP;
  • the transceiver module 1020 is used to send the corresponding relationship.
  • the transceiver module 1020 is further configured to send instruction information, the instruction information is used to indicate a beam list corresponding to the first TA, the beam list includes at least one beam identifier, or is used to indicate that the first TA corresponds to TRP, the TRP is associated with at least one beam.
  • the identifier of the beam includes a beam index, a synchronization signal block SSB index, or a channel state information reference signal CSI-RS identifier.
  • the transceiver module 1020 is further configured to receive reason information during the random access process of the terminal, where the reason information is used to indicate the reason for initiating the random access.
  • the reason includes the failure of the first TA or the removal of configuration authorized resources.
  • the transceiver module 1020 is further configured to: receive a random access request; send a response message to the random access request, the response message includes the second TA, and the response message includes indication information, the indication information indicates the The beam or TRP corresponding to the second TA, or the TRP or beam where the response message is located is the beam or TRP corresponding to the second TA.
  • the transceiver module 1020 is further configured to send a broadcast message, the broadcast message includes multiple beam lists or multiple TRP information, and the indication information is used to indicate one beam list or multiple TRPs in the multiple beam lists In one.
  • FIG. 11 shows an apparatus 1100 for processing a terminal timing advance TA provided in an embodiment of the present application.
  • the apparatus 1100 may be the network device described in FIG. 1.
  • the device can adopt the hardware architecture shown in FIG. 11.
  • the device may include a processor 1110 and a transceiver 1130.
  • the device may also include a memory 1130.
  • the processor 1110, the transceiver 1130, and the memory 1130 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 1010 in FIG. 10 may be implemented by the processor 1110, and the related functions implemented by the transceiver module 1020 may be implemented by the processor 1110 controlling the transceiver 1130.
  • the processor 1110 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit implementing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to control the terminal's timing advance TA processing device (such as base station, terminal, or chip, etc.), execute software programs, and process The data of the software program.
  • the processor 1110 may include one or more processors, for example, include one or more central processing units (CPU).
  • processors for example, include one or more central processing units (CPU).
  • CPU central processing units
  • the processor may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 1130 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1130 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • CD-ROM compact disc
  • the memory 1130 is used to store related instructions and data.
  • the memory 1130 is used to store program codes and data of the terminal, and may be a separate device or integrated in the processor 1110.
  • the processor 1110 is configured to control the transceiver to perform information transmission with the terminal.
  • the processor 1110 is configured to control the transceiver to perform information transmission with the terminal.
  • the apparatus 1100 may further include an output device and an input device.
  • the output device communicates with the processor 1110 and can display information in a variety of ways.
  • the output device can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 1110 and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 11 only shows the simplified design of the device for processing the timing advance TA of the terminal.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement this application are within the protection scope of this application. within.
  • the device 1100 may be a chip, for example, a communication chip that can be used in a terminal to implement related functions of the processor 1110 in the terminal.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal or a circuit.
  • the device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 12 shows a simplified schematic diagram of the structure of the terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 12. In actual end products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal, and the processor with the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1210 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1210 as the sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1210 is used to perform the sending and receiving operations on the terminal side in the foregoing method embodiment, and the processing unit 1220 is used to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the processing unit 1220 is configured to execute the processing steps 401 to 403 on the terminal side in FIG. 6.
  • the transceiving unit 1210 is configured to perform transceiving operations, and/or the transceiving unit 1210 is further configured to perform other transceiving steps on the terminal side in the embodiment of the present application.
  • the chip When the device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the device shown in FIG. 13 can also be referred to.
  • the device can perform functions similar to the processor 910 in FIG. 9.
  • the device includes a processor 1301, a data sending processor 1303, and a data receiving processor 1305.
  • the processing module 820 in the embodiment shown in FIG. 8 may be the processor 1301 in FIG. 13 and complete corresponding functions.
  • the transceiver module 810 in the embodiment shown in FIG. 8 may be the sending data processor 1303 and the receiving data processor 1305 in FIG. 13.
  • the channel encoder and the channel decoder are shown in FIG. 13, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1400 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1403 and an interface 1404.
  • the processor 1403 completes the function of the aforementioned processing module 820
  • the interface 1404 completes the function of the aforementioned transceiver module 810.
  • the modulation subsystem includes a memory 1406, a processor 1403, and a program stored in the memory and capable of running on the processor, and the processor implements the method described in the embodiment when the program is executed.
  • the memory 1406 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1400, as long as the memory 1406 can be connected to the The processor 1403 is fine.
  • the network device may be as shown in FIG. 15.
  • the device 150 is a base station.
  • the base station can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 150 may include one or more DU 1501 and one or more CU 1502.
  • CU1502 can communicate with the next-generation core network (NG core, NC).
  • the DU 1501 may include at least one antenna 15011, at least one radio frequency unit 15013, at least one processor 15013, and at least one memory 15014.
  • the DU 1501 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1502 may include at least one processor 15022 and at least one memory 15021.
  • CU1502 and DU1501 can communicate through interfaces, where the control plane interface can be Fs-C, such as F1-C, and the user plane interface can be Fs-U, such as F1-U.
  • the CU 1502 part is mainly used for baseband processing, control of base stations, and so on.
  • the DU 1501 and CU 1502 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 1502 is the control center of the base station, which may also be referred to as a processing unit, and is mainly used to complete baseband processing functions.
  • the CU 1502 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the baseband processing on the CU and DU can be divided according to the protocol layer of the wireless network, for example, the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP, For example, functions such as the radio link control (RLC) layer and the medium access control (MAC) layer are set in the DU.
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (radio link control, RLC), MAC, and physical functions.
  • the function of the (physical, PHY) layer is the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP.
  • functions such as the radio link control (RLC) layer and the medium access control (MAC) layer are set in the DU.
  • RRC radio resource control
  • packet data convergence protocol packet data convergence protocol
  • MAC medium access control
  • the base station 150 may include one or more radio frequency units (RU), one or more DUs, and one or more CUs.
  • the DU may include at least one processor 15013 and at least one memory 15014
  • the RU may include at least one antenna 15011 and at least one radio frequency unit 15012
  • the CU may include at least one processor 15022 and at least one memory 15021.
  • the CU1502 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can respectively support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 15021 and the processor 15022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU1501 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can separately support wireless access networks with different access standards (such as LTE network, 5G network or other network).
  • the memory 15014 and the processor 15013 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种终端的定时提前量TA处理的方法和装置。终端获取该第一TA和波束的对应关系,并根据该对应关系能够确定出该第一TA对应的波束,进而根据该第一TA对应的波束,确定该第一TA是否失效。也就是说,本申请实施例中,终端可以通过更精细的粒度来判断第一TA是否失效,进而有助于触发选择更加合适的TA。因此,本申请实施例相对于传统方案能够更进一步减少上行传输之间的干扰。

Description

终端的定时提前量TA处理的方法和装置 技术领域
本申请涉及通信领域,更具体地,涉及一种终端的定时提前量TA处理的方法和装置。
背景技术
无线电波的传输是存在时延的,例如,网络设备与终端的距离越近,传输时延越短,相应地,网络设备与终端的距离越远,传输时延越长。在上行传输中,不同终端可以在时频资源上正交多址接入(orthogonal multiple access),从而实现来自同一个小区的不同终端的上行传输之间互不干扰。
为了实现上行传输的正交性,网络设备要求来自同一子帧,但不同频域资源的不同终端的信号到达网络设备的时间基本上是对齐的。例如,网络设备只有在循环前缀(cyclic prefix,CP)范围内接收到不同终端发送的上行数据,才能够正确的解码。也就是说,上行同步要求来自同一个子帧的不同终端的信号到达网络设备的时间落在CP之内。为了保证网络设备侧的时间同步,长期演进(long term evolution,LTE)和新无线(new radio,NR)中引入了上行(uplink)定时提前(timing advance,TA)的机制。具体地,网络设备通过适当地控制每个终端的上行传输的时间偏移(即TA),以实现控制来自不同终端的上行信号到达网络设备的时间。例如,对于离网络设备较远的终端,由于存在较大的传输延迟,相对于离网络设备较近的终端需要提前更多的时间发送上行数据。
传统方案中,在终端频繁移动的情况下,终端通过判断终端是否更换了服务小区,来判断当前的TA是否有效。但是,在NR中,对TA的精度要求越来越高,如何更精准的判断当前的TA是否有效,以减少上行传输之间的干扰,亟待解决。
发明内容
本申请提供一种数据传输的方法和装置,能够实现精准的判断TA是否有效,从而能够减少上行传输之间的干扰。
第一方面,提供了一种数据传输的方法,该方法包括:获取第一TA和波束或收发点TRP的对应关系;根据该对应关系确定该第一TA对应的波束或TRP;根据该波束或TRP的信号质量,确定该第一TA是否失效。
终端获取该第一TA和波束的对应关系,并根据该对应关系能够确定出该第一TA对应的波束,进而根据该第一TA对应的波束,确定该第一TA是否失效。也就是说,本申请实施例中,终端可以通过更精细的粒度来判断第一TA是否失效,进而有助于触发选择更加合适的TA。因此,本申请实施例相对于传统方案能够更进一步减少上行传输之间的干扰。
在一些可能的实现方式中,该确定该第一TA是否失效包括:在该终端移动出该第一TA对应的波束或TRP的范围的情况下,确定该第一TA失效。
每个波束有一定的覆盖范围,例如,可以覆盖一定的地理位置区域。若终端从一个波束的覆盖范围移出,则该第一TA可能失效。也就是说,终端可以通过该终端移动出该第一TA对应的波束覆盖范围来实现判断该第一TA失效,从而能够减少上行传输之间的干扰。
在一些可能的实现方式中,该方法还包括:在该第一TA对应的波束的信号质量小于或等于预设阈值的情况下,确定该终端移动出该第一TA对应的波束覆盖的范围,该第一TA对应至少一个波束;或在该第一TA对应的多个波束中的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定该终端移动出该第一TA对应的波束覆盖的范围,其中,N为正整数;或在该第一TA对应的多个波束中的信号质量小于或等于预设阈值的波束的数量大于的情况下,确定该终端移动出该第一TA对应的波束覆盖的范围,其中,L为正整数;或在该第一TA对应的多个波束中按信号质量从高到低排序的前S个信号质量的均值小于或等于预设阈值的情况下,确定该终端移动出该第一TA对应的波束覆盖的范围,其中,S为正整数。
若该第一TA对应的多个波束的信号质量中信号质量较高的S个信号质量的均值小于或等于预设阈值的情况下,终端确定移动出该第一TA对应的波束覆盖的范围。也就是说,从该多个波束的信号质量挑选信号质量高的S个信号质量再与预设阈值进行比较,从而实现了确定终端是否移动出第一TA对应的波束覆盖的范围,即提供了一种确定终端是否移动出第一TA对应的波束覆盖的范围的方法,进而可以通过该终端移动出该第一TA对应的波束覆盖范围来实现判断该第一TA失效,从而能够减少上行传输之间的干扰。
在一些可能的实现方式中,该方法还包括:在该第一TA对应的TRP关联的波束的信号质量小于或等于预设阈值的情况下,确定该终端移动出该第一TA对应的TRP覆盖的范围,该TRP关联的波束为至少一个波束;或在该第一TA对应的TRP关联的多个波束中的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定该终端移动出该第一TA对应的TRP覆盖的范围,其中,N为整数;或在该第一TA对应的TRP关联的多个波束中的信号质量小于或等于预设阈值的波束的数量大于或等于L的情况下,确定该终端移动出该第一TA对应的TRP覆盖的范围,其中,L为正整数;或在该第一TA对应的TRP关联的多个波束中的按信号质量从高到低排序的前S个波束的信号质量的均值小于或等于预设阈值的情况下,确定该终端移动出该第一TA对应的TRP覆盖的范围,其中,S为正整数。
若该第一TA对应的TRP关联的多个波束的信号质量中信号质量较高的S个信号质量的均值小于或等于预设阈值的情况下,终端确定移动出该第一TA对应的TRP覆盖的范围。也就是说,从该多个波束的信号质量挑选信号质量高的S个信号质量。例如,该多个波束的信号质量可以按从高到低进行排序,选前S个信号质量,再与预设阈值进行比较,从而实现了确定终端是否移动出第一TA对应的波束覆盖的范围,即提供了一种确定终端是否移动出第一TA对应的TRP覆盖的范围的方法,进而可以通过该终端移动出该第一TA对应的TRP覆盖范围来实现判断该第一TA失效,从而能够减少上行传输之间的干扰。
在一些可能的实现方式中,该确定该TA是否失效包括:在该第一TA对应的多个波束或该第一TA对应的TRP关联的多个波束的信号质量的变化量大于第一预设阈值的情况下,确定该第一TA失效;或在存在其它波束的信号质量大于该第一TA对应的波束或该 第一TA对应的TRP关联的波束的信号质量的情况下,确定该第一TA失效;或在存在其它波束的信号质量大于或等于第二预设阈值的情况下,确定该第一TA失效。
若该第一TA对应的波束或TRP关联多个波束的信号质量的变化量大于第一预设阈值,即终端移动较快,位置更新较快,可能会导致第一TA不准确(即第一TA失效)。因此,若终端在检测到信号质量的变化量超过预设阈值的情况下,可以认为该第一TA失效。进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
在一些可能的实现方式中,该方法还包括:在该第一TA对应的多个波束或该第一TA对应的TRP关联的多个波束中的第一波束的信号质量与第二波束的信号质量的差值的变化量大于或等于该第一预设阈值的情况下,确定该第一TA对应的波束的信号质量的变化量大于该第一预设阈值;或该第一TA对应的多个波束或该第一TA对应的TRP关联的多个波束中第一波束的信号质量变化量大于或等于该第一预设阈值的情况下,确定该第一TA对应的波束的信号质量的变化量大于该第一预设阈值。
该第一TA对应多个波束,该多个波束的信号质量的变化量具体可以是该多个波束中任意两个波束的信号质量的差值的变化量。也就是说,在该任意两个波束的信号质量的变化量大于该第一预设阈值的情况下,终端可以认为该第一TA对应的多个波束的信号质量的变化量大于该第一预设阈值,进而认为该第一TA失效。这样有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
在该多个波束中的任意一个波束的信号质量的变化量大于该第一预设阈值的情况下,终端可以认为该第一TA对应的多个波束的信号质量的变化量大于该第一预设阈值,进而认为该第一TA失效。这样有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
在一些可能的实现方式中,该获取TA和波束或TRP的对应关系包括:从网络设备获取该对应关系。
终端可以从网络设备直接接收该对应关系,提高了网络设备配置该对应关系的灵活性。
在一些可能的实现方式中,该从网络设备获取该对应关系包括:从该网络设备接收指示信息,该指示信息用于指示该第一TA对应的波束列表,该波束列表包括至少一个波束的标识,或者用于指示该第一TA对应的TRP,该TRP关联至少一个波束。
终端可以根据指示信息间接的获取该第一TA与波束的对应关系,避免了直接发送对应关系占用较大的资源,节省了资源开销。
在一些可能的实现方式中,该波束的标识包括波束索引,同步信号块SSB索引或信道状态信息参考信号CSI-RS标识。
在一些可能的实现方式中,该方法还包括:在该第一TA失效的情况下,发起随机接入,且在随机接入过程中向网络设备发送原因信息,该原因信息用于指示发起该随机接入的原因。
原因信息可以携带在随机接入请求中,这样网络设备可以根据该原因信息,为终端配置新的TA,这样使得终端能够获取更加合适的TA,从而更进一步减少上行传输之间的干扰。
在一些可能的实现方式中,该原因包括TA失效或配置授权资源清除。
在一些可能的实现方式中,该发起随机接入包括:发送随机接入请求;接收该随机接入请求的响应消息,该响应消息包括第二TA,且该响应消息包括指示信息,该指示信息指示与该第二TA对应的波束或TRP,或者,该响应消息所在的TRP或者波束为所第二TA对应的波束或TRP;利用该第二TA进行上行传输。
网络设备在为终端配置第二TA的情况下,也会将第二TA对应的波束添加到波束列表中,这样终端后续能够根据波束列表判断该第二TA对应的波束,进而能够判断该第二TA是否失效,减少后续上行传输之间的干扰。
在一些可能的实现方式中,该方法还包括:接收广播消息,该广播消息包括多个波束列表或多个TRP信息,该指示信息用于指示该多个波束列表中的一个波束列表或多个TRP中一个。
指示信息可以是该多个波束列表中的一个波束列表。也就是说,网络设备可以通过广播消息提前对波束列表进行标识,之后通过指示信息直接指示波束标识,进而使得终端能够获知该第二TA对应的波束。
在一些可能的实现方式中,该方法还包括:在该第一TA失效的情况下,释放该第一TA对应的配置授权资源。
终端在第一TA失效的情况下,还可以释放该第一TA对应的波束的授权配置资源。这样可以避免资源浪费,提高资源利用率。
第二方面,提供了一种终端的定时提前量TA处理的方法,该方法包括:确定第一TA和波束或收发点TRP的对应关系;发送该对应关系。
网络设备确定第一TA和波束的对应关系,并发送给终端,使得终端根据该对应关系能够确定出该第一TA对应的波束,进而根据该第一TA对应的波束,确定该第一TA是否失效。也就是说,本申请实施例中,终端可以通过更精细的粒度来判断第一TA是否失效,进而有助于触发选择更加合适的TA。因此,本申请实施例相对于传统方案能够更进一步减少上行传输之间的干扰。
在一些可能的实现方式中,该方法还包括:发送指示信息,该指示信息用于指示该第一TA对应的波束列表,该波束列表包括至少一个波束的标识,或者用于指示该第一TA对应的TRP,该TRP关联至少一个波束。
终端可以根据指示信息间接的获取该第一TA与波束的对应关系,避免了直接发送对应关系占用较大的资源,节省了资源开销。
在一些可能的实现方式中,该波束的标识包括波束索引,同步信号块SSB索引或信道状态信息参考信号CSI-RS标识。
在一些可能的实现方式中,该方法还包括:在该终端的随机接入过程中,接收原因信息,该原因信息用于指示发起该随机接入的原因。
原因信息可以携带在随机接入请求中,这样网络设备可以根据该原因信息,为终端配置新的TA,这样使得终端能够获取更加合适的TA,从而更进一步减少上行传输之间的干扰。
在一些可能的实现方式中,该原因包括第一TA失效或配置授权资源清除。
在一些可能的实现方式中,该方法还包括:接收随机接入请求;发送该随机接入请求的响应消息,该响应消息包括第二TA,且该响应消息包括指示信息,该指示信息指示 与该第二TA对应的波束或TRP,或者,该响应消息所在的TRP或者波束为所第二TA对应的波束或TRP。
网络设备在为终端配置第二TA的情况下,也会将第二TA对应的波束添加到波束列表中,这样终端后续能够根据波束列表判断该第二TA对应的波束,进而能够判断该第二TA是否失效,减少后续上行传输之间的干扰。
在一些可能的实现方式中,该方法还包括:发送广播消息,该广播消息包括多个波束列表或多个TRP信息,该指示信息用于指示该多个波束列表中的一个波束列表或多个TRP中一个。
指示信息可以是该多个波束列表中的一个波束列表。也就是说,网络设备可以通过广播消息提前对波束列表进行标识,之后通过指示信息直接指示波束标识,进而使得终端能够获知该第二TA对应的波束。
第三方面,提供了一种终端的定时提前量TA处理的装置,该装置可以是终端,或是用于终端的芯片,比如可被设置于终端内的芯片。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:处理模块和收发模块,该收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为终端。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:处理模块和收发模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面,以及任意可能的实现的方法的程序执行的集成电路。
第四方面,提供了一种终端的定时提前量TA处理的装置,该装置可以是网络设备,或是用于网络设备的芯片,比如可被设置于网络设备内的芯片。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该网络设备内的芯片执行上述第二方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第二方面的方法的程序执行的集成电路。
第五方面,提供了一种装置,包括用于实现如第一方面,及其任意可能的实现方式中的所述的方法的模块。
第六方面,提供了一种装置,包括用于实现如第二方面,及其任意可能的实现方式中的所述的方法的模块。
第七方面,提供了一种装置,包括处理器,用于调用存储器中存储的程序,以执行如第一方面,及其任意可能的实现方式中的所述的方法。
第八方面,提供了一种装置,包括处理器,用于调用存储器中存储的程序,以执行如第二方面,及其任意可能的实现方式中的所述的方法。
第九方面,提供了一种装置,包括:处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行如权利要求第一方面,及其任意可能的实现方式中的所述的方法。
第十方面,提供了一种装置,包括:处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行如权利要求第二方面,及其任意可能的实现方式中的所述的方法。
第十一方面,提供了一种终端,包括该第五方面、第七方面或第九方面中任一项,及其任意可能的实现方式中的所述的装置。
第十二方面,提供了一种网络设备,包括该第六方面所、第八方面或第十方面中任一项,及其任意可能的实现方式中的所述的装置。
第十三方面,提供了一种计算机存储介质,所述计算机存储介质存储有指令,当所述指令运行时,实现如权利要求第一方面,及其任意可能的实现方式中的所述的方法。
第十四方面,提供了一种计算机存储介质,所述计算机存储介质存储有指令,当所述指令运行时,实现如权利要求第二方面,及其任意可能的实现方式中的所述的方法。
第十五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面,及其任意可能的实现方式中的方法的指令。
第十六方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,及其任意可能的实现方式中的方法的指令。
第十七方面,提供了一种包含指令的计算机程序产品,其在处理器上运行时,使得计算机执行上述第一方面,或其任意可能的实现方式中的方法。
第十八方面,提供了一种包含指令的计算机程序产品,其在处理器上运行时,使得计算机执行上述第二方面,或其任意可能的实现方式中的方法。
第十九方面,提供了一种通信***,该通信***包括具有实现上述第一方面的各方法及各种可能设计的功能的装置和上述具有实现上述第二方面的各方法及各种可能设计的功能的装置。
基于上述技术方案,终端获取该第一TA和波束的对应关系,并根据该对应关系能够确定出该第一TA对应的波束,进而根据该第一TA对应的波束,确定该第一TA是否失效。也就是说,本申请实施例中,终端可以通过更精细的粒度来判断第一TA是否失效,进而有助于触发选择更加合适的TA。因此,本申请实施例相对于传统方案能够更进一步减少上行传输之间的干扰。
附图说明
图1是本申请的一个通信***的示意图;
图2是本申请一个具体的通信架构的示意图;
图3是本申请另一个具体的通信架构的示意图;
图4是传统方案的信号传输的方法的示意图;
图5是本申请实施例的信号传输的方法的示意性流程图;
图6是本申请一个具体实施例的信号传输的方法的示意图;
图7是本申请另一个具体实施例的信号传输的方法的示意图;
图8是本申请一个实施例的信号传输的装置的示意性框图;
图9是本申请一个实施例的信号传输的装置的示意性结构图;
图10是本申请另一个实施例的信号传输的装置的示意性框图;
图11是本申请一个实施例的信号传输的装置的示意性结构图;
图12是本申请一个实施例的信号传输的装置的示意性结构图;
图13是本申请另一个实施例的信号传输的装置的示意性结构图;
图14是本申请另一个实施例的信号传输的装置的示意性结构图;
图15是本申请另一个实施例的信号传输的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:长期演进(long term
evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)***或新无线(new radio,NR)以及未来的移动通信***等。
本申请实施例中的终端可以指一种具有无线收发功能的设备,可以称为终端 (terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、车载终端、远方站、远程终端等。终端具体的形态可以是手机(mobile phone)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、可穿戴设备平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等。终端可以应用于如下场景:虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程手术(remote medical surgery)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)、智慧家庭(smart home)等。终端可以是固定的或者移动的。需要说明的是,终端可以支持至少一种无线通信技术,例如LTE、NR、宽带码分多址(wideband code division multiple access,WCDMA)等。
本申请实施例中的网络设备可以是一种为终端提供无线通信功能的设备,也可称之为无线接入网(radio access network,RAN)设备等。网络设备包括但不限于:5G中的下一代基站(next generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、中继站、接入点等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、分布单元(distributed unit,DU)等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR、WCDMA等。
在一些部署中,gNB可以包括集中式单元CU和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方 法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或网络设备,或者,是终端或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
可以理解的是,网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端的应用场景不做限定。
为了便于理解本申请的技术方案,首先对本申请涉及的术语作简单介绍。
波束(beam):
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还是可以空域滤波器(spatial filter)。
波束成型技术(beamforming):
波束成型技术可以通过在空间上朝向特定的方向来实现更高的天线阵列增益。模拟波束成型,可以通过射频实现。例如,一个射频链路(RF chain)通过移相器来调整相位,从而控制模拟波束方向的改变。因此,一个RF chain在同一时刻只能打出一个模拟波束。
图1是是本申请的一个通信***的示意图。图1中的通信***可以包括至少一个终端(例如终端10、终端20、终端30、终端40、终端50和终端60)和网络设备70。网络设备70用于为终端提供通信服务并接入核心网,终端可以通过搜索网络设备70发送的同步信号、广播信号等接入网络,从而进行与网络的通信。图1中的终端10、终端20、终端30、终端40和终端60可以与网络设备70进行上下行传输。例如,网络设备70可以向终端10、终端20、终端30、终端40和终端60发送下行信号,也可以接收终端10、终端20、终端30、终端40和终端60发送的上行信号。
此外,终端40、终端50和终端60也可以看作一个通信***,终端60可以向终端40和终端50发送信号,也可以接收终端40和终端50发送的信号。也就是说,本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是网络设备,对应 的接收设备是终端。对于上行信号传输,发送设备是终端,对应的接收设备是网络设备。对于D2D的信号传输,发送设备是终端,对应的接收设备也是终端。本申请的实施例对信号的传输方向不做限定。
需要说明的是,本申请实施例可以应用于包括一个或多个网络设备的通信***中,也可以应用于包括一个或多个终端的通信***中,本申请对此不进行限定。其中一个网络设备可以向一个或多个终端发送数据或控制信令。多个网络设备也可以同时向一个或多个终端发送数据或控制信令。
还需要说明的是,网络设备和终端之间以及终端和终端之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端之间以及终端和终端之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对网络设备和终端之间所使用的频谱资源不做限定。
图2为本申请实施例提供的一种网络架构的示意图。该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,LTE通信***中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。RAN设备和终端之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
这些协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
请继续参考图3,相对于图2所示的架构,还可以将CU的控制面(CP)和用户面(UP) 分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端或CU。以下实施例中如果涉及这种信令在DU和终端之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
在以上实施例中CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
为了便于理解本申请的技术方案,首先对本申请涉及的相关技术作简单介绍。
图4示出了传统方案中四步随机接入类型的随机接入过程的示意图。终端选择合适的小区完成驻留之后,就可以发起随机接入。如图4所示,UE向网络设备发送消息1(message 1,简记作msg 1),消息1也即随机接入前导码(preamble)。网络设备检测到随机接入前导码之后,向UE返回响应消息,也即消息2(message 2)。消息2中包含网络设备为UE分配的上行资源。UE接收到消息2之后,在消息2指示的上行资源上发送消息3。如果网络设备能够正确解码消息3(message 3),则向UE返回消息4(message 4),消息4用于通知UE竞争成功。经过上述4个步骤,随机接入流程成功。
图5示出了传统方案中两步随机接入类型的随机接入过程的示意图。在两步随机接入过程中,UE在消息A中同时携带随机接入前导码和数据(也即,preamble和data)。数据部分用于做竞争解决的,例如是无线资源控制(radio resource control,RRC)消息。如果UE之间没有冲突,网络设备成功解码消息1后向UE返回消息B。消息B中同时包括针对随机接入前导码的响应和针对数据的响应。其中,针对随机接入前导码的响应也即随机接入响应(random access response,RAR)。针对数据的响应通常是RRC消息。这两部响应可以同时发送,也可以先后发送。UE对这两部分响应可以是独立解码的。UE收到消息2后获知随机接入成功。如果UE之间有冲突,网络设备可能无法成功解出消息A中的数据,此时网络设备不向UE发送消息2。UE在发出消息1之后,等待一个时间窗,如果没有接收到消息2,认为随机接入失败。
传统方案中,在终端频繁移动的情况下,终端通过判断终端是否更换了服务小区,来判断当前的TA是否有效。但是,在NR中,对TA的精度要求越来越高,如何更精准的判断当前的TA是否有效,以减少上行传输之间的干扰,亟待解决。
图6示出了本申请一个实施例的终端的TA处理的方法的示意性流程图。
本申请实施例的执行主体可以是终端或网络设备,也可以是终端内的芯片或网络设备内的芯片。为方便描述,下述实施例以终端或网络设备为例进行说明,但本申请并不限于此。
401,终端获取第一TA和波束的对应关系。
具体地,该对应关系中该第一TA可以对应多个波束,也可以是对应一个波束,本申请对此不进行限定。
需要说明的是,在第一TA对应多个波束时,该多个波束可以是同一个TRP关联的波束,也可以是不同TRP关联的波束,本申请对此不进行限定。
可以理解的是,该第一TA对应的多个波束可以是下行波束。
在一种实现方式中,步骤401具体可以是终端预先在存储区域中存储该对应关系,在需要该对应关系时,从存储区域中读取该对应关系。
在另一种实现方式中,步骤401具体可以是终端从网络设备获取该对应关系。
可选地,终端可以从网络设备直接接收该对应关系。相应地,网络设备向终端发送该对应关系。
可选地,终端可以从网络设备接收指示信息,该指示信息用于指示该第一TA对应的波束列表,该波束列表包括至少一个波束的标识。也就是说,终端可以根据指示信息间接的获取该第一TA与波束的对应关系。
可以理解的是,该指示信息可以只包括该第一TA和波束的对应关系,也可以是包括多个TA各自与波束的对应关系。其中,终端在判断该多个TA中的每个TA是否失效都可以采用本申请实施例中的第一TA的方式进行判断,为方便描述,本申请实施例只以第一TA为例进行说明,但本申请并不限于此。
可选地,波束的标识可以是波束索引、同步信号块(synchronization signal block,SSB)索引或信道状态信息参考信号(channel status information reference signal,CSI-RS)标识中的至少一项。
具体地,可以通过波束索引对波束进行标识,从而能够识别不同的波束。一个SSB对应一个SSB索引,一个SSB通过一个波束进行发送,不同的SSB通过不同的波束进行发送,从而根据某一个SSB索引可以识别出SSB,进而能够识别出每个SSB对应的波束。一个CSI-RS对应一个CSI-RS索引,一个CSI-RS通过一个波束进行发送,不同的CSI-RS通过不同的波束进行发送,从而根据某一个CSI-RS索引可以识别出CSI-RS,进而能够识别出每个CSI-RS对应的波束。
402,该终端根据该对应关系确定该第一TA对应的波束。
403,该终端根据该第一TA对应的波束,确定该第一TA是否失效。
具体地,终端获取该第一TA和波束的对应关系,并根据该对应关系能够确定出该第一TA对应的波束,进而根据该第一TA对应的波束,确定该第一TA是否失效。也就是说,本申请实施例中,终端可以通过更精细的粒度来判断第一TA是否失效,进而有助于触发选择更加合适的TA。因此,本申请实施例相对于传统方案能够更进一步减少上行传输之间的干扰。
可以理解的是,步骤403也可以是终端根据第一TA对应的波束,确定该第一TA是否有效。
在一个实施例中,步骤403具体可以是该终端在移动出该第一TA对应的波束覆盖的范围的情况下,确定该第一TA失效。
具体地,每个波束有一定的覆盖范围,例如,可以覆盖一定的地理位置区域。若终端从一个波束的覆盖范围移出,则该第一TA可能失效。也就是说,终端可以通过该终端移 动出该第一TA对应的波束覆盖范围来实现判断该第一TA失效,从而能够减少上行传输之间的干扰。
可选地,终端在确定该第一TA对应的波束的信号质量小于或等于预设阈值的情况下,可以确定移动出该第一TA对应的波束覆盖的范围,该第一TA对应至少一个波束。
具体地,该第一TA对应的波束可以是一个,也可以是多个。若终端在该第一TA对应的波束传输信号的信号质量小于或等于预设阈值,则终端可以确定自己移动出了该第一TA对应的波束覆盖的范围。这样终端可以通过第一TA对应的波束的信号质量与预设阈值的关系确定自己是否移动出该第一TA对应的波束覆盖的范围,并在移动出该第一TA对应的波束覆盖的范围时确定第一TA失效,进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
其中,在第一TA对应的波束为多个波束的情况下,终端可以确定在该多个波束中每个波束传输信号的信号质量都小于该预设阈值,或者都等于该预设阈值,或者部分小于该预设阈值,部分等于该预设阈值的情况下,认为自己移动出了该第一TA对应的波束覆盖的范围;或者终端可以在确定该多个波束的信号质量中的最高信号质量小于或等于该预设阈值时的情况下,认为自己移动出了该第一TA对应的波束覆盖的范围;或者终端可以在确定该多个波束中的部分或全部波束的信号质量的平均值小于或等于预设阈值的情况下,认为自己移动出了该第一TA对应的波束覆盖的范围。
例如,第一TA对应p个波束,终端可以计算该p个波束中的q个波束的信号质量的平均值,并判断该平均值与预设阈值的大小关系,进而确定该终端是否移动出该第一TA对应的波束覆盖范围。其中,q<p,p,q均为正整数。
可以理解的是,该q个波束可以该p个波束中信号质量最好的波束,或者该q个波束为信号质量大于预设条件的波束,本申请对此不进行限定。
可以理解的是,本申请涉及到的信号质量可以是通过参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)或物理下行控制信道(physical downlink control channel,PDCCH)误块率(block error rate,BLER)表示,本申请对此不进行限定。
可以理解的是,该预设阈值可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
可选地,终端在该第一TA对应的多个波束中的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定该终端移动出该第一TA对应的波束覆盖的范围,其中,N为正整数。或者终端在该第一TA对应的多个波束中的信号质量大于或等于预设阈值的波束数目大于L的情况下,确定该终端移动出该第一TA对应的波束覆盖的范围,其中,L为正整数。
具体地,若终端在该第一TA对应的多个波束中,传输信号的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定自己移动出该第一TA对应的波束覆盖的范围。或者若终端在该第一TA对应的多个波束中,传输信号的信号质量小于预设阈值的数目大于L的情况下,确定自己移动出该第一TA对应的波束覆盖的范围。其中,L和N均为正整数,且可以相同,也可以不同。这样终端可以通过第一TA对应的波束的信号质量超过预设阈值的数目确定自己是否移动出该第一TA对应的波束覆盖的范围,并在移动 出该第一TA对应的波束覆盖的范围时确定第一TA失效,进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
例如,第一TA对应的波束为6个,若信号质量大于预设阈值的波束数目为2个时,则认为终端移动出该第一TA对应的波束覆盖的范围;或者若信号质量小于预设阈值的波束数目为4个时,则认为终端移动出该第一TA对应的波束覆盖的范围。
再例如,第一TA对应的波束为6个,若信号质量大于预设阈值的波束数目为3个时,则认为终端移动出该第一TA对应的波束覆盖的范围;或者若信号质量小于预设阈值的波束数目为3个时,则认为终端移动出该第一TA对应的波束覆盖的范围。
可以理解的是,该预设阈值、L的取值以及N的取值分别可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
可选地,终端可以在该第一TA对应的多个波束中按信号质量从高到低排序的前S个信号质量的均值小于或等于预设阈值的情况下,确定该终端移动出该第一TA对应的波束覆盖的范围。
具体地,若该第一TA对应的多个波束的信号质量中信号质量较高的S个信号质量的均值小于或等于预设阈值的情况下,终端确定移动出该第一TA对应的波束覆盖的范围。也就是说,从该多个波束的信号质量挑选信号质量高的S个信号质量。例如,该多个波束的信号质量可以按从高到低进行排序RSRP1、RSRP3、RSRP4、RSRP2,其中RSRP1>RSRP3>RSRP4>RSRP2,选前S=2个信号质量,即RSRP1、RSRP3。或者该多个波束的信号质量从低到高进行排序,选后S个信号质量。
可以理解的是,该多个波束中不同波束的信号质量可以相同,也可以不同。因此,前S个信号质量可以是S个波束的信号质量,也可以是大于S个波束的信号质量。
可以理解的是,该预设阈值和S的取值分别可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
在另一个实施例中,步骤403具体可以是该终端在该第一TA对应的多个波束的信号质量的变化量大于第一预设阈值的情况下,确定所述第一TA失效。
具体地,若该第一TA对应的多个波束的信号质量的变化量大于第一预设阈值,即终端移动较快,位置更新较快,可能会导致第一TA不准确(即第一TA失效)。因此,若终端在检测到信号质量的变化量超过预设阈值的情况下,可以认为该第一TA失效。进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
可以理解的是,该变化量可以由于随时间的变化量。
还可以理解的是,该第一预设阈值可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
可选地,该第一TA对应的多个波束的信号质量的变化量具体可以是该第一TA对应的多个波束中的第一波束的信号质量和第二波束的信号质量的差值的变化量。
具体地,该第一TA对应多个波束,该多个波束的信号质量的变化量具体可以是该多个波束中任意两个波束的信号质量的差值的变化量。也就是说,在该任意两个波束的信号质量的变化量大于该第一预设阈值的情况下,终端可以认为该第一TA对应的多个波束的信号质量的变化量大于该第一预设阈值,进而认为该第一TA失效。这样有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
还可以理解的是,该第一波束或该第二波束可以是预设的参考波束,也可以是终端自己选择的,还可以是网络设备指示的,本申请对此不进行限定。
可选地,该第一TA对应的多个波束的信号质量的变化量具体可以是该第一TA对应的多个波束中的至少一个波束的信号质量变化量。
具体地,在该多个波束中的部分波束的信号质量的变化量大于该第一预设阈值的情况下,终端可以认为该第一TA对应的多个波束的信号质量的变化量大于该第一预设阈值,进而认为该第一TA失效。例如,在该多个波束中的任意一个波束的信号质量的变化量大于该第一预设阈值的情况下,终端可以认为该第一TA对应的多个波束的信号质量的变化量大于该第一预设阈值,进而认为该第一TA失效。这样有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
在又一个实施例中,步骤403具体可以是该终端确定存在其它波束的信号质量大于所述第一TA对应的波束的信号质量的情况下,确定所述第一TA失效。
具体地,若存在其他波束的信号质量大于该第一TA对应的多个波束中的全部或部分波束中的信号质量的最大值,则认为存在其他波束的信号质量大于该第一TA对应的波束的信号质量。或者存在其他波束的信号质量大于该第一TA对应的多个波束的全部或部分波束中的信号质量的均值,则认为存在其他波束的信号质量大于该第一TA对应的波束的信号质量。这样终端可以认为该第一TA失效,进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
在又一个实施例中,步骤403具体可以是该终端确定存在其它波束的信号质量大于或等于第二预设阈值的情况下,确定所述第一TA失效。
具体地,若存在其他波束的信号质量大于或等于第二预设阈值,则认为该第一TA失效。其中,该第二预设阈值的设定通常大于该第一TA对应的多个波束的信号质量的均值。这样有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
可以理解的是,该第二预设阈值可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
在步骤403之后,若终端确定该第一TA失效,则终端可以发起随机接入,以请求新的第一TA。具体地,随机接入过程可以如上述图4或图5所示。
可选地,终端在第一TA失效的情况下,还可以释放该第一TA对应的波束的授权配置资源。这样可以避免资源浪费,提高资源利用率。
具体地,该配置授权资源可以包括频域资源,调制编码方案。
可以理解的是,该配置授权资源可以是网络设备通过RRC信令配置的,还可以是通过下行控制信息(downlink control information,DCI)激活的。
可以理解的是,终端可以停止该第一TA对应的第一TA定时器(TA timing)的计时。
还可以理解的是,在上述随机接入过程中,终端可以向网络设备发送少量的数据。
可选地,终端发起随机接入过程具体可以是发送随机接入请求,并接收到网络设备响应的该随接入请求的响应消息,该响应消息包括该第二TA,终端通过该第二TA进行上行传输。这样终端能够采用新的TA进行上行传输,从而减少上行传输之间的干扰。
具体地,该随机接入请求可以是图4所示的消息1或消息3,或者可以是在图4所示的消息A中。第二TA可以携带在图4所示随机接入方式中的消息4中,或者携带在图5 所示的随机接入方式中的消息B中。
可选地,该随机接入请求的响应消息还可以用于指示该第二TA对应的波束。
具体地,网络设备在为终端配置一个新的TA(例如,第二TA)时,还可以配置该第二TA对应的波束。具体地,网络设备可以通过该响应消息直接指示该第二TA对应的波束,也可以是间接指示。例如,该响应消息包括指示信息,该指示信息直接指示该第二TA对应的波束。或者终端将该响应消息所在的波束作为该第二TA对应的波束。也就是说,网络设备在为终端配置第二TA的情况下,也会将第二TA对应的波束添加到波束列表中,这样终端后续能够根据波束列表判断该第二TA对应的波束,进而能够判断该第二TA是否失效,减少后续上行传输之间的干扰。
可选地,网络设备也可以在发送该指示信息之前,向终端发送广播消息,该广播消息中包括多个波束列表,该多个波束列表中的每个波束列表包括至少一个波束标识。相应地,终端从网络设备接收该广播消息。
具体地,指示信息可以是该多个波束列表中的一个波束列表。也就是说,网络设备可以通过广播消息提前对波束列表进行标识,之后通过指示信息直接指示波束标识,进而使得终端能够获知该第二TA对应的波束。
可选地,在上述随机接入过程中,终端可以向网络设备发送原因信息,该原因信息用于指示该随机接入发起的原因。
具体地,上述原因信息可以上述随机接入请求中,这样网络设备可以根据该原因信息,为终端配置新的TA,这样使得终端能够获取更加合适的TA,从而更进一步减少上行传输之间的干扰。
可选地,该原因包括TA失效或配置授权资源(grant free)清除。
可以理解的是,该配置授权资源的清除可以是由于TA失效造成的。
图7示出了本申请另一个实施例的终端的TA处理的方法的示意性流程图。
可以理解的是,图7所示的实施例中的与图6所示的实施例中的相同术语,在不作特别说明的情况下,表示的含义相同,为避免重复,在此不进行赘述。
501,终端获取TA和TRP的对应关系。
具体地,该对应关系中该第一TA可以对应多个TRP,也可以是对应一个TRP,本申请对此不进行限定。
在一种实现方式中,步骤501具体可以是终端预先在存储区域中存储该对应关系,在需要该对应关系时,从存储区域中读取该对应关系。
在另一种实现方式中,步骤501具体可以是终端从网络设备获取该对应关系。
可选地,终端可以从网络设备直接接收该对应关系。相应地,网络设备向终端发送该对应关系。
可选地,终端可以从网络设备接收指示信息,该指示信息用于指示该第一TA对应的波束列表,该波束列表包括至少一个波束的标识。而波束列表与TRP具有关联关系。也就是说,终端可以根据指示信息间接的获取该第一TA与TRP的对应关系。例如,终端根据波束列表中的波束标识确定该波束列表包括的至少一个波束标识关联的TRP,或者终端根据波束列表的标识确定关联的TRP。
可以理解的是,该指示信息可以只包括该第一TA和TRP的对应关系,也可以是包括 多个TA各自与TRP的对应关系。其中,终端在判断该多个TA中的每个TA是否失效都可以采用本申请实施例中的第一TA的方式进行判断,为方便描述,本申请实施例只以第一TA为例进行说明,但本申请并不限于此。
502,该终端根据该对应关系确定该第一TA对应的TRP。
503,该终端根据该第一TA对应的TRP,确定该第一TA是否失效。
具体地,终端获取该第一TA和TRP的对应关系,并根据该对应关系能够确定出该第一TA对应的TRP,这样终端可以根据该第一TA对应的TRP,确定该第一TA是否失效。也就是说,本申请实施例中,终端可以通过更精细的粒度来判断第一TA是否失效,进而有助于触发选择更加合适的TA。因此,本申请实施例相对于传统方案能够更进一步减少上行传输之间的干扰。
可以理解的是,步骤503也可以是终端根据第一TA对应的TRP,确定该第一TA是否有效。
可选地,步骤503具体可以是该终端根据该第一TA对应的TRP关联的波束,确定该第一TA是否失效。
在一个实施例中,步骤503具体可以是该终端在移动出该第一TA对应的TRP覆盖的范围的情况下,确定该第一TA失效。
具体地,每个TRP可以有一定的覆盖区域,例如,可以覆盖一定的地理位置区域。若终端从一个TRP覆盖范围内移出,则该第一TA可能失效。也就是说,终端可以通过该终端移动出该第一TA对应的TRP覆盖范围来实现判断该第一TA失效,从而能够减少上行传输之间的干扰。
可选地,终端在确定该第一TA对应的TRP关联的波束的信号质量小于或等于预设阈值的情况下,可以确定移动出该第一TA对应的TRP覆盖的范围,该TRP关联的波束为至少一个。
具体地,TRP关联的波束可以是一个,也可以是多个。若终端在该第一TA对应的TRP关联的波束传输信号的信号质量小于或等于预设阈值,则终端可以确定自己移动出了该第一TA对应的覆盖的范围。这样终端可以通过第一TA对应的TRP关联的波束的信号质量与预设阈值的关系确定自己是否移动出该第一TA对应的TRP覆盖的范围,并在移动出该第一TA对应的TRP覆盖的范围时确定第一TA失效,进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
其中,在该TRP关联的波束为多个波束的情况下,终端可以确定在该多个波束传输信号的信号质量都小于该预设阈值,或者都等于该预设阈值,或者部分小于该预设阈值,部分等于该预设阈值的情况下,认为自己移动出了该第一TA对应的TRP覆盖的范围;或者终端可以在确定该多个波束的信号质量中的最高信号质量小于或等于该预设阈值时的情况下,认为自己移动出了该第一TA对应的TRP覆盖的范围;或者终端可以在确定该多个波束的信号质量的平均值小于或等于该预设阈值的情况下,认为自己移动出了该第一TA对应的TRP覆盖的范围。
可以理解的是,该预设阈值可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
可以理解的是,本申请涉及到的信号质量可以是通过参考信号接收功率(reference  signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)或物理下行控制信道(physical downlink control channel,PDCCH)误块率(block error rate,BLER)表示,本申请对此不进行限定。
可选地,终端在该第一TA对应的多个TRP关联的波束中的信号质量大于或等于预设阈值的TRP关联的波束数目小于或等于N的情况下,确定该终端移动出该第一TA对应的TRP覆盖的范围,其中,N为正整数。或者终端在该第一TA对应的多个TRP关联的波束中的信号质量大于或等于预设阈值的波束数目大于L的情况下,确定该终端移动出该第一TA对应的TRP覆盖的范围,其中,L为正整数。
具体地,若终端在该第一TA对应的多个TRP关联的波束中,传输信号的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定自己移动出该第一TA对应的TRP覆盖的范围。或者若终端在该第一TA对应的多个TRP关联的波束中,传输信号的信号质量小于预设阈值的数目大于L的情况下,确定自己移动出该第一TA对应的TRP覆盖的范围。其中,L和N均为正整数,且可以相同,也可以不同。这样终端可以通过第一TA对应的TRP关联的波束的信号质量超过预设阈值的数目确定自己是否移动出该第一TA对应的TRP覆盖的范围,并在移动出该第一TA对应的TRP覆盖的范围时确定第一TA失效,进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
例如,第一TA对应的TRP关联的波束为6个,若信号质量大于预设阈值的波束数目为2个时,则认为终端移动出该第一TA对应的TRP覆盖的范围;或者若信号质量小于预设阈值的波束数目为4个时,则认为终端移动出该第一TA对应的TRP覆盖的范围。
再例如,第一TA对应的TRP关联的波束为6个,若信号质量大于预设阈值的波束数目为3个时,则认为终端移动出该第一TA对应的TRP覆盖的范围;或者若信号质量小于预设阈值的波束数目为3个时,则认为终端移动出该第一TA对应的TRP覆盖的范围。
可以理解的是,该预设阈值、L的取值以及N的取值分别可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
可选地,终端可以在该第一TA对应的多个TRP关联的波束中按信号质量从高到低排序的前S个信号质量的均值小于或等于预设阈值的情况下,确定该终端移动出该第一TA对应的TRP覆盖的范围。
具体地,若该第一TA对应的TRP关联的多个波束的信号质量中信号质量较高的S个信号质量的均值小于或等于预设阈值的情况下,终端确定移动出该第一TA对应的TRP覆盖的范围。也就是说,从该多个波束的信号质量挑选信号质量高的S个信号质量。例如,该多个波束的信号质量可以按从高到低进行排序,选前S个信号质量。或者该多个波束的信号质量从低到高进行排序,选后S个信号质量。
可以理解的是,该多个波束中不同波束的信号质量可以相同,也可以不同。因此,前S个信号质量可以是S个波束的信号质量,也可以是大于S个波束的信号质量。
可以理解的是,该预设阈值和S的取值分别可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
在另一个实施例中,步骤503具体可以是该终端在该第一TA对应的TRP关联的多个波束的信号质量的变化量大于第一预设阈值的情况下,确定所述第一TA失效。
具体地,若该第一TA对应的TRP关联多个波束的信号质量的变化量大于第一预设阈 值,即终端移动较快,位置更新较快,可能会导致第一TA不准确(即第一TA失效)。因此,若终端在检测到信号质量的变化量超过预设阈值的情况下,可以认为该第一TA失效。进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
可以理解的是,该变化量可以由于随时间的变化量。
还可以理解的是,该第一预设阈值可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
可选地,该第一TA对应的TRP关联的多个波束的信号质量的变化量具体可以是该第一TA对应的TRP关联的多个波束中的TRP关联的第一波束的信号质量和TRP关联的第二波束的信号质量的差值的变化量。
具体地,该第一TA对应TRP关联的多个波束,该TRP关联的多个波束的信号质量的变化量具体可以是该TRP关联的多个波束中任意两个波束的信号质量的差值的变化量。也就是说,在该TRP关联的任意两个波束的信号质量的变化量大于该第一预设阈值的情况下,终端可以认为该第一TA对应的TRP关联的多个波束的信号质量的变化量大于该第一预设阈值,进而认为该第一TA失效。这样有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
可选地,该第一TA对应的TRP关联的多个波束的信号质量的变化量具体可以是该第一TA对应的TRP关联的多个波束中的至少一个波束的信号质量变化量。
具体地,在该多个波束中的部分波束的信号质量的变化量大于该第一预设阈值的情况下,终端可以认为该第一TA对应的TRP关联的多个波束的信号质量的变化量大于该第一预设阈值,进而认为该第一TA失效。例如,在该多个波束中的任意一个TRP关联的波束的信号质量的变化量大于该第一预设阈值的情况下,终端可以认为该第一TA对应的TRP关联的多个波束的信号质量的变化量大于该第一预设阈值,进而认为该第一TA失效。这样有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
在又一个实施例中,步骤503具体可以是该终端确定存在其它TRP关联的波束的信号质量大于所述第一TA对应的TRP关联的波束的信号质量的情况下,确定所述第一TA失效。
具体地,若存在其他TRP关联的波束的信号质量大于该第一TA对应的TRP关联的多个波束中的全部或部分波束中的信号质量的最大值,则认为存在其他TRP关联的波束的信号质量大于该第一TA对应的TRP关联的波束的信号质量。或者存在其他TRP关联的波束的信号质量大于该第一TA对应的TRP关联的多个波束的全部或部分波束中的信号质量的均值,则认为存在其他TRP关联的波束的信号质量大于该第一TA对应的TRP关联的波束的信号质量。这样终端可以认为该第一TA失效,进而有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
在又一个实施例中,步骤503具体可以是该终端确定存在其它TRP关联的波束的信号质量大于或等于第二预设阈值的情况下,确定所述第一TA失效。
具体地,若存在其他TRP关联的波束的信号质量大于或等于第二预设阈值,则认为该第一TA失效。其中,该第二预设阈值的设定通常大于该第一TA对应的TRP关联多个的波束的信号质量的均值。这样有助于触发终端选择更加合适的TA,更进一步减少上行传输之间的干扰。
可以理解的是,该第二预设阈值可以是网络设备配置的,也可以是终端和网络设备预先约定的,本申请对此不进行限定。
在步骤503之后,若终端确定该第一TA失效,则终端可以发起随机接入,以请求新的第一TA。具体地,随机接入过程可以如上述图4或图5所示。
可选地,终端在第一TA失效的情况下,还可以释放该第一TA对应的TRP关联的波束的授权配置资源。这样可以避免资源浪费,提高资源利用率。
具体地,该配置授权资源可以包括时频资源,调制编码方案。
可以理解的是,该配置授权资源可以是网络设备通过RRC信令配置的,还可以是通过下行控制信息(downlink control information,DCI)激活的。
可以理解的是,终端可以停止该第一TA对应的第一TA定时器(TA timing)的计时。
还可以理解的是,在上述随机接入过程中,终端可以向网络设备发送少量的数据。
可选地,终端发起随机接入过程具体可以是发送随机接入请求,并接收到网络设备响应的该随接入请求的响应消息,该响应消息包括该第二TA,终端通过该第二TA进行上行传输。这样终端能够采用新的TA进行上行传输,从而减少上行传输之间的干扰。
具体地,该随机接入请求可以是图4所示的消息1或消息3,或者可以是在图4所示的消息A中。第二TA可以携带在图4所示随机接入方式中的消息4中,或者携带在图5所示的随机接入方式中的消息B中。
可选地,该随机接入请求的响应消息还可以用于指示该第二TA对应的TRP关联的波束。
具体地,网络设备在为终端配置一个新的TA(例如,第二TA)时,还可以配置该第二TA对应的TRP关联的波束。具体地,网络设备可以通过该响应消息直接指示该第二TA对应的TRP关联的波束,也可以是间接指示。例如,该响应消息包括指示信息,该指示信息直接指示该第二TA对应的TRP关联的波束。或者终端将该响应消息所在的TRP关联的波束作为该第二TA对应的TRP关联的波束。也就是说,网络设备在为终端配置第二TA的情况下,也会将第二TA对应的TRP关联的波束添加到TRP关联的波束列表中,这样终端后续能够根据TRP关联的波束列表判断该第二TA对应的TRP关联的波束,进而能够判断该第二TA是否失效,减少后续上行传输之间的干扰。
可选地,网络设备也可以在发送该指示信息之前,向终端发送广播消息,该广播消息中包括多个TRP关联的波束列表,该多个TRP关联的波束列表中的每个TRP关联的波束列表包括至少一个TRP关联的波束标识。相应地,终端从网络设备接收该广播消息。
具体地,指示信息可以是该多个TRP关联的波束列表中的一个TRP关联的波束列表。也就是说,网络设备可以通过广播消息提前对TRP关联的波束列表进行标识,之后通过指示信息直接指示TRP关联的波束标识,进而使得终端能够获知该第二TA对应的TRP关联的波束。
可以理解的是,该波束列表包括的波束标识指示的波束可以是一个TRP对应的波束。
可选地,在上述随机接入过程中,终端可以向网络设备发送原因信息,该原因信息用于指示该随机接入发起的原因。
具体地,上述原因信息可以上述随机接入请求中,这样网络设备可以根据该原因信息,为终端配置新的TA,这样使得终端能够获取更加合适的TA,从而更进一步减少上行传输 之间的干扰。
可选地,该原因包括TA失效或配置授权资源(grant free)清除。
可以理解的是,该配置授权资源的清除可以是由于TA失效造成的。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端实现的方法和操作,也可以由可用于终端的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端或者网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端或者网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图6至图7详细说明了本申请实施例提供的方法。以下,结合图8至图15详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图8示出了本申请实施例的终端的定时提前量TA处理的装置800的示意性框图。
应理解,该装置800可以对应于图1所示的各个终端或终端内的芯片,以及图6所示的实施例中的终端或终端内的芯片,可以具有图6所示的方法实施例中的终端的任意功能。该装置800,包括收发模块810和处理模块820。
该收发模块810,用于获取第一TA和波束或收发点TRP的对应关系;
该处理模块820,用于根据所述对应关系确定所述第一TA对应的波束或TRP;
该处理模块820,还用于根据所述波束或TRP的信号质量,确定所述第一TA是否失效。
可选地,所述处理模块820具体用于:在所述终端移动出所述第一TA对应的波束或TRP的范围的情况下,确定所述第一TA失效。
可选地,所述处理模块820还用于在所述第一TA对应的波束的信号质量小于或等于预设阈值的情况下,确定所述终端移动出所述第一TA对应的波束覆盖的范围,所述第一TA对应至少一个波束;或在所述第一TA对应的多个波束中的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定所述终端移动出所述第一TA对应的波束覆盖的范围,其中,N为正整数;或在所述第一TA对应的多个波束中的信号质量小于或等于预设阈值的波束的数量大于的情况下,确定所述终端移动出所述第一TA对应的波束覆盖的范围,其中,L为正整数;或在所述第一TA对应的多个波束中按信号质量从高到低排序的前S个信号质量的均值小于或等于预设阈值的情况下,确定所述终端移动出所述第一TA对应的波束覆盖的范围,其中,S为正整数。
可选地,所述处理模块820还用于:在所述第一TA对应的TRP关联的波束的信号质量小于或等于预设阈值的情况下,确定所述终端移动出所述第一TA对应的TRP覆盖的范围,所述TRP关联的波束为至少一个波束;或在所述第一TA对应的TRP关联的多个波束中的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定所述终端移动出所述第一TA对应的TRP覆盖的范围,其中,N为整数;或在所述第一TA对应的TRP关联的多个波束中的信号质量小于或等于预设阈值的波束的数量大于或等于L的情况下,确定所述终端移动出所述第一TA对应的TRP覆盖的范围,其中,L为正整数;或在所述第一TA对应的TRP关联的多个波束中的按信号质量从高到低排序的前S个波束的信号质量的均值小于或等于预设阈值的情况下,确定所述终端移动出所述第一TA对应的TRP覆盖的范围,其中,S为正整数。
可选地,所述处理模块820具体用于:在所述第一TA对应的多个波束或所述第一TA对应的TRP关联的多个波束的信号质量的变化量大于第一预设阈值的情况下,确定所述第一TA失效;或在存在其它波束的信号质量大于所述第一TA对应的波束或所述第一TA对应的TRP关联的波束的信号质量的情况下,确定所述第一TA失效;或在存在其它波束的信号质量大于或等于第二预设阈值的情况下,确定所述第一TA失效。
可选地,所述处理模块820还用于:在所述第一TA对应的多个波束或所述第一TA对应的TRP关联的多个波束中的第一波束的信号质量与第二波束的信号质量的差值的变化量大于或等于所述第一预设阈值的情况下,确定所述第一TA对应的波束的信号质量的变化量大于所述第一预设阈值;或所述第一TA对应的多个波束或所述第一TA对应的TRP关联的多个波束中第一波束的信号质量变化量大于或等于所述第一预设阈值的情况下,确定所述第一TA对应的波束的信号质量的变化量大于所述第一预设阈值。
可选地,所述收发模块810具体用于:
从网络设备获取所述对应关系。
可选地,所述收发模块810具体用于:
从所述网络设备接收指示信息,所述指示信息用于指示所述第一TA对应的波束列表,所述波束列表包括至少一个波束的标识,或者用于指示所述第一TA对应的TRP,所述TRP关联至少一个波束。
可选地,该波束的标识包括波束索引,同步信号块SSB索引或信道状态信息参考信号CSI-RS标识。
可选地,该收发模块810,还用于在该第一TA失效的情况下,发起随机接入,且在 随机接入过程中向网络设备发送原因信息,该原因信息用于指示发起该随机接入的原因。
可选地,该原因包括TA失效或配置授权资源清除。
可选地,该收发模块810具体用于:
发送随机接入请求;
接收该随机接入请求的响应消息,该响应消息包括第二TA,且该响应消息包括指示信息,该指示信息指示与该第二TA对应的波束或TRP,或者,该响应消息所在的TRP或者波束为所第二TA对应的波束或TRP;
该处理模块820,还用于利用该第二TA进行上行传输。
可选地,该收发模块810还用于,接收广播消息,该广播消息包括多个波束列表或多个TRP信息,该指示信息用于指示该多个波束列表中的一个波束列表或多个TRP中一个。
可选地,该处理模块820,还用于在该第一TA失效的情况下,释放该第一TA对应的配置授权资源。
关于上述收发模块810和处理模块820更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
图9示出了本申请实施例提供的终端的定时提前量TA处理的装置900,该装置900可以为图1中所述的终端。该装置可以采用如图9所示的硬件架构。该装置可以包括处理器910和收发器930,可选地,该装置还可以包括存储器940,该处理器910、收发器930和存储器840通过内部连接通路互相通信。图8中的处理模块820所实现的相关功能可以由处理器810来实现,收发模块810所实现的相关功能可以由处理器910控制收发器930来实现。
可选地,处理器910可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对终端的定时提前量TA处理的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器910可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器930用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器940包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器940用于存储相关指令及数据。
存储器940用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器910中。
具体地,所述处理器910用于控制收发器与终端进行信息传输。具体可参见方法实施 例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置900还可以包括输出设备和输入设备。输出设备和处理器910通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器910通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图9仅仅示出了终端的定时提前量TA处理的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置900可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器910的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
图10示出了本申请实施例的终端的定时提前量TA处理的装置1000的示意性框图。
应理解,该装置1000可以对应于图1所示的网络设备或网络设备内的芯片,或者图6所示的实施例中的网络设备或网络设备内的芯片,可以具有方法中的网络设备的任意功能。该装置1000,包括处理模块1010和收发模块1020。
该处理模块1010,用于确定第一TA和波束或收发点TRP的对应关系;
该收发模块1020,用于发送该对应关系。
可选地,该收发模块1020,还用于发送指示信息,该指示信息用于指示该第一TA对应的波束列表,该波束列表包括至少一个波束的标识,或者用于指示该第一TA对应的TRP,该TRP关联至少一个波束。
可选地,该波束的标识包括波束索引,同步信号块SSB索引或信道状态信息参考信号CSI-RS标识。
可选地,该收发模块1020,还用于在该终端的随机接入过程中,接收原因信息,该原因信息用于指示发起该随机接入的原因。
可选地,该原因包括第一TA失效或配置授权资源清除。
可选地,该收发模块1020还用于:接收随机接入请求;发送该随机接入请求的响应消息,该响应消息包括第二TA,且该响应消息包括指示信息,该指示信息指示与该第二TA对应的波束或TRP,或者,该响应消息所在的TRP或者波束为所第二TA对应的波束或TRP。
可选地,该收发模块1020,还用于发送广播消息,该广播消息包括多个波束列表或多个TRP信息,该指示信息用于指示该多个波束列表中的一个波束列表或多个TRP中一个。
图11示出了本申请实施例提供的终端的定时提前量TA处理的装置1100,该装置1100 可以为图1中所述的网络设备。该装置可以采用如图11所示的硬件架构。该装置可以包括处理器1110和收发器1130,可选地,该装置还可以包括存储器1130,该处理器1110、收发器1130和存储器1130通过内部连接通路互相通信。图10中的处理模块1010所实现的相关功能可以由处理器1110来实现,收发模块1020所实现的相关功能可以由处理器1110控制收发器1130来实现。
可选地,处理器1110可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对终端的定时提前量TA处理的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1110可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1130用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1130包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器1130用于存储相关指令及数据。
存储器1130用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器1110中。
具体地,所述处理器1110用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1100还可以包括输出设备和输入设备。输出设备和处理器1110通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器1110通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图11仅仅示出了终端的定时提前量TA处理的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置1100可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器1110的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
可选地,本实施例中的装置为终端时,图12示出了一种简化的终端的结构示意图。便于理解和图示方便,图12中,终端以手机作为例子。如图12所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图12所示,终端包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1220用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1220用于执行图6中终端侧的处理步骤401-403。收发单元1210,用于执行收发操作,和/或收发单元1210还用于执行本申请实施例中终端侧的其他收发步骤。
当该装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该装置为终端时,还可以参照图13所示的设备。作为一个例子,该设备可以完成类似于图9中处理器910的功能。在图13中,该设备包括处理器1301,发送数据处理器1303,接收数据处理器1305。上述图8所示的实施例中的处理模块820可以是图13中的该处理器1301,并完成相应的功能。上述图8所示的实施例中的收发模块810可以是图13中的发送数据处理器1303和接收数据处理器1305。虽然图13中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图14示出本实施例的另一种形式。处理装置1400中包括调制子***、中央处理子***、周边子***等模块。本实施例中的通信设备可以作为其中的调制子***。具体的,该调制子***可以包括处理器1403,接口1404。其中处理器1403完成上述处理模块820的功能,接口1404完成上述收发模块810的功能。作为另一种变形,该调制子***包括存储器1406、处理器1403及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现实施例所述方法。需要注意的是,所述存储器1406可以是非易失性的,也可以是易失性的,其位置可以位于调制子***内部,也可以位于处理装置1400中,只要该存储器1406可以连接到所述处理器1403即可。
本实施例中的装置为网络设备时,该网络设备可以如图15所示,例如,该装置150为基站。该基站可应用于如图1所示的***中,执行上述方法实施例中网络设备的功能。基站150可包括一个或多个DU 1501和一个或多个CU 1502。CU1502可以与下一代核心网(NG core,NC)通信。所述DU 1501可以包括至少一个天线15011,至少一个射频单元15013,至少一个处理器15013和至少一个存储器15014。所述DU 1501部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1502可以包括至少一个处理器15022和至少一个存储器15021。CU1502和DU1501之间可以通过接口进行通信,其中,控制面(control plane)接口可以为Fs-C,比如F1-C,用户面(user plane)接口可以为Fs-U,比如F1-U。
所述CU 1502部分主要用于进行基带处理,对基站进行控制等。所述DU 1501与CU1502可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1502为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1502可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质接入控制(medium access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、MAC和物理(physical,PHY)层的功能。
此外,可选的,基站150可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器15013和至少一个存储器15014,RU可以包括至少一个天线15011和至少一个射频单元15012,CU可以包括至少一个处理器15022和至少一个存储器15021。
在一个实例中,所述CU1502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器15021和处理器15022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1501可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器15014 和处理器15013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/ 或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的 间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种终端的定时提前量TA处理的方法,其特征在于,包括:
    获取第一TA和波束或收发点TRP的对应关系;
    根据所述对应关系确定所述第一TA对应的波束或TRP;
    根据所述波束或TRP的信号质量,确定所述第一TA是否失效。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述第一TA是否失效包括:
    在所述终端移动出所述第一TA对应的波束或TRP的范围的情况下,确定所述第一TA失效。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述第一TA对应的波束的信号质量小于或等于预设阈值的情况下,确定所述终端移动出所述第一TA对应的波束覆盖的范围,所述第一TA对应至少一个波束;或
    在所述第一TA对应的多个波束中的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定所述终端移动出所述第一TA对应的波束覆盖的范围,其中,N为正整数;或
    在所述第一TA对应的多个波束中的信号质量小于或等于预设阈值的波束的数量大于的情况下,确定所述终端移动出所述第一TA对应的波束覆盖的范围,其中,L为正整数;或
    在所述第一TA对应的多个波束中按信号质量从高到低排序的前S个信号质量的均值小于或等于预设阈值的情况下,确定所述终端移动出所述第一TA对应的波束覆盖的范围,其中,S为正整数。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述第一TA对应的TRP关联的波束的信号质量小于或等于预设阈值的情况下,确定所述终端移动出所述第一TA对应的TRP覆盖的范围,所述TRP关联的波束为至少一个波束;或
    在所述第一TA对应的TRP关联的多个波束中的信号质量大于或等于预设阈值的波束数目小于或等于N的情况下,确定所述终端移动出所述第一TA对应的TRP覆盖的范围,其中,N为整数;或
    在所述第一TA对应的TRP关联的多个波束中的信号质量小于或等于预设阈值的波束的数量大于或等于L的情况下,确定所述终端移动出所述第一TA对应的TRP覆盖的范围,其中,L为正整数;或
    在所述第一TA对应的TRP关联的多个波束中的按信号质量从高到低排序的前S个波束的信号质量的均值小于或等于预设阈值的情况下,确定所述终端移动出所述第一TA对应的TRP覆盖的范围,其中,S为正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述确定所述TA是否失效包括:
    在所述第一TA对应的多个波束或所述第一TA对应的TRP关联的多个波束的信号质量的变化量大于第一预设阈值的情况下,确定所述第一TA失效;或
    在存在其它波束的信号质量大于所述第一TA对应的波束或所述第一TA对应的TRP 关联的波束的信号质量的情况下,确定所述第一TA失效;或
    在存在其它波束的信号质量大于或等于第二预设阈值的情况下,确定所述第一TA失效。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在所述第一TA对应的多个波束或所述第一TA对应的TRP关联的多个波束中的第一波束的信号质量与第二波束的信号质量的差值的变化量大于或等于所述第一预设阈值的情况下,确定所述第一TA对应的波束的信号质量的变化量大于所述第一预设阈值;或
    所述第一TA对应的多个波束或所述第一TA对应的TRP关联的多个波束中第一波束的信号质量变化量大于或等于所述第一预设阈值的情况下,确定所述第一TA对应的波束的信号质量的变化量大于所述第一预设阈值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述获取TA和波束或TRP的对应关系,包括:
    从网络设备获取所述对应关系。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述从网络设备获取所述对应关系包括:
    从所述网络设备接收指示信息,所述指示信息用于指示所述第一TA对应的波束列表,所述波束列表包括至少一个波束的标识,或者用于指示所述第一TA对应的TRP,所述TRP关联至少一个波束。
  9. 根据权利要求8所述的方法,其特征在于,所述波束的标识包括波束索引,同步信号块SSB索引或信道状态信息参考信号CSI-RS标识。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一TA失效的情况下,发起随机接入,且在随机接入过程中向网络设备发送原因信息,所述原因信息用于指示发起所述随机接入的原因。
  11. 根据权利要求10所述的方法,其特征在于,所述原因包括TA失效或配置授权资源清除。
  12. 根据权利要求10或11或所述的方法,其特征在于,所述发起随机接入包括:
    发送随机接入请求;
    接收所述随机接入请求的响应消息,所述响应消息包括第二TA,且所述响应消息包括指示信息,所述指示信息指示与所述第二TA对应的波束或TRP,或者,所述响应消息所在的TRP或者波束为所第二TA对应的波束或TRP;
    利用所述第二TA进行上行传输。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收广播消息,所述广播消息包括多个波束列表或多个TRP信息,所述指示信息用于指示所述多个波束列表中的一个波束列表或多个TRP中一个。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一TA失效的情况下,释放所述第一TA对应的配置授权资源。
  15. 一种终端的定时提前量TA处理的方法,其特征在于,包括:
    确定第一TA和波束或收发点TRP的对应关系;
    发送所述对应关系。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息用于指示所述第一TA对应的波束列表,所述波束列表包括至少一个波束的标识,或者用于指示所述第一TA对应的TRP,所述TRP关联至少一个波束。
  17. 根据权利要求15或16所述的方法,其特征在于,所述波束的标识包括波束索引,同步信号块SSB索引或信道状态信息参考信号CSI-RS标识。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    在所述终端的随机接入过程中,接收原因信息,所述原因信息用于指示发起所述随机接入的原因。
  19. 根据权利要求18所述的方法,其特征在于,所述原因包括第一TA失效或配置授权资源清除。
  20. 根据权利要求18或19所述的方法,其特征在于,所述方法还包括:
    接收随机接入请求;
    发送所述随机接入请求的响应消息,所述响应消息包括第二TA,且所述响应消息包括指示信息,所述指示信息指示与所述第二TA对应的波束或TRP,或者,所述响应消息所在的TRP或者波束为所第二TA对应的波束或TRP。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    发送广播消息,所述广播消息包括多个波束列表或多个TRP信息,所述指示信息用于指示所述多个波束列表中的一个波束列表或多个TRP中一个。
  22. 一种装置,其特征在于,包括用于实现如1至14中任一项所述方法的模块。
  23. 一种装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求1至14中任一项所述的方法。
  24. 一种装置,包括:处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行如权利要求1至14中任一项所述的方法。
  25. 一种装置,其特征在于,包括用于实现如权利要求15至21中任一项所述方法的模块。
  26. 一种装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求15至21中任一项所述的方法。
  27. 一种装置,包括:处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行如权利要求15至21中任一项所述的方法。
  28. 一种终端,其特征在于,包括如权利要求22至24任一项所述的装置。
  29. 一种网络设备,其特征在于,包括如权利要求25至27任一项所述的装置。
  30. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有指令,当所述指令运行时,实现如权利要求1至14中任一项或15至21中任一项所述的方法。
  31. 一种计算机程序产品,当其在处理器上运行时,使得处理器执行权利要求1至14中任一项或15至21中任一项所述的方法。
PCT/CN2019/109687 2019-09-30 2019-09-30 终端的定时提前量ta处理的方法和装置 WO2021062764A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/109687 WO2021062764A1 (zh) 2019-09-30 2019-09-30 终端的定时提前量ta处理的方法和装置
CN202311136200.5A CN117320141A (zh) 2019-09-30 2019-09-30 终端的定时提前量ta处理的方法和装置
CN201980099857.4A CN114287164B (zh) 2019-09-30 2019-09-30 终端的定时提前量ta处理的方法和装置
EP19947914.8A EP4027736B1 (en) 2019-09-30 2019-09-30 Timing advance (ta) processing method and device for terminal
US17/709,158 US20220225254A1 (en) 2019-09-30 2022-03-30 Method for processing timing advance ta of terminal, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109687 WO2021062764A1 (zh) 2019-09-30 2019-09-30 终端的定时提前量ta处理的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/709,158 Continuation US20220225254A1 (en) 2019-09-30 2022-03-30 Method for processing timing advance ta of terminal, and apparatus

Publications (1)

Publication Number Publication Date
WO2021062764A1 true WO2021062764A1 (zh) 2021-04-08

Family

ID=75337696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109687 WO2021062764A1 (zh) 2019-09-30 2019-09-30 终端的定时提前量ta处理的方法和装置

Country Status (4)

Country Link
US (1) US20220225254A1 (zh)
EP (1) EP4027736B1 (zh)
CN (2) CN114287164B (zh)
WO (1) WO2021062764A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169401A1 (zh) * 2022-03-07 2023-09-14 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023212915A1 (en) * 2022-05-06 2023-11-09 Lenovo (Beijing) Limited Methods and apparatuses for handling different ta in multiple trps operation
CN117641384A (zh) * 2022-08-11 2024-03-01 华为技术有限公司 通信方法及相关装置
CN117119576A (zh) * 2023-03-29 2023-11-24 荣耀终端有限公司 针对时间提前量ta的处理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024325A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 无线通信方法和装置
US20180198665A1 (en) * 2017-01-06 2018-07-12 Asustek Computer Inc. Method and apparatus for handling ul timing asynchronism in a wireless communication system
CN108377491A (zh) * 2016-11-11 2018-08-07 华为技术有限公司 一种上行信号的响应方法及装置
CN108702635A (zh) * 2016-02-04 2018-10-23 株式会社Ntt都科摩 用户装置以及随机接入方法
CN109417765A (zh) * 2016-07-29 2019-03-01 英特尔Ip公司 用于波束形成***的定时提前量
WO2019086125A1 (en) * 2017-11-03 2019-05-09 Huawei Technologies Co., Ltd. Management of timing advance values

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171284A1 (en) * 2016-03-30 2017-10-05 Lg Electronics Inc. Method for determining transmission timing in v2x ue
US11202272B2 (en) * 2017-11-17 2021-12-14 Qualcomm Incorporated Beam-specific timing advance groups
WO2019138284A1 (en) * 2018-01-11 2019-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Contention based random access for beam failure recovery
WO2021006681A1 (en) * 2019-07-09 2021-01-14 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving beam failure recovery request for secondary cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702635A (zh) * 2016-02-04 2018-10-23 株式会社Ntt都科摩 用户装置以及随机接入方法
CN109417765A (zh) * 2016-07-29 2019-03-01 英特尔Ip公司 用于波束形成***的定时提前量
CN108024325A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 无线通信方法和装置
CN108377491A (zh) * 2016-11-11 2018-08-07 华为技术有限公司 一种上行信号的响应方法及装置
US20180198665A1 (en) * 2017-01-06 2018-07-12 Asustek Computer Inc. Method and apparatus for handling ul timing asynchronism in a wireless communication system
WO2019086125A1 (en) * 2017-11-03 2019-05-09 Huawei Technologies Co., Ltd. Management of timing advance values

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussions on NR UL multi-panel/multi-TRP", 3GPP DRAFT; R1-1713579 UL MULTI TRP PANEL_V0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czechia; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051316379 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169401A1 (zh) * 2022-03-07 2023-09-14 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质

Also Published As

Publication number Publication date
CN114287164B (zh) 2023-09-22
EP4027736B1 (en) 2024-05-29
CN117320141A (zh) 2023-12-29
EP4027736A1 (en) 2022-07-13
CN114287164A (zh) 2022-04-05
EP4027736A4 (en) 2022-09-28
US20220225254A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
CN110475374B (zh) 一种通信方法和通信装置
WO2021062764A1 (zh) 终端的定时提前量ta处理的方法和装置
WO2020164613A1 (zh) 中继通信的方法和装置
US20210266947A1 (en) Wireless communication method and device
WO2020216341A1 (zh) 随机接入方法和通信装置
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
WO2020238617A1 (zh) 确定小区激活时延的方法和装置
US20230171771A1 (en) Apparatus and method of wireless communication
WO2020221349A1 (zh) 波束失败上报的方法和装置
WO2021179305A1 (zh) 用于上行传输的方法和装置
US20230247618A1 (en) Communication method and apparatus
WO2021134626A1 (zh) 传输同步信号块的方法和装置
CN110831020A (zh) 检测dci的方法、配置pdcch的方法和通信装置
WO2021027896A1 (zh) 通信方法和通信装置
US20230262751A1 (en) Communication method and apparatus
JPWO2020031358A1 (ja) ユーザ装置及び送信方法
US20240098766A1 (en) Data sending method, data receiving method, resource indication method, apparatus, and system
JP7450752B2 (ja) ランダムアクセス信号を送信するための方法および装置
EP3902354A1 (en) Data transmission method and communication apparatus
WO2021082985A1 (zh) 接入网络设备的方法和装置
CN114503649A (zh) 通信方法和通信装置
WO2022253150A1 (zh) 数据传输方法及装置
WO2020221040A1 (zh) 通信方法和通信装置
WO2021159398A1 (zh) 波束失败恢复的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947914

Country of ref document: EP

Effective date: 20220407