WO2021062717A1 - 一种缓冲区状态报告传输方法及装置 - Google Patents

一种缓冲区状态报告传输方法及装置 Download PDF

Info

Publication number
WO2021062717A1
WO2021062717A1 PCT/CN2019/109620 CN2019109620W WO2021062717A1 WO 2021062717 A1 WO2021062717 A1 WO 2021062717A1 CN 2019109620 W CN2019109620 W CN 2019109620W WO 2021062717 A1 WO2021062717 A1 WO 2021062717A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab node
node
iab
bsr
mac
Prior art date
Application number
PCT/CN2019/109620
Other languages
English (en)
French (fr)
Inventor
卓义斌
史玉龙
朱元萍
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980100560.5A priority Critical patent/CN114424621A/zh
Priority to PCT/CN2019/109620 priority patent/WO2021062717A1/zh
Publication of WO2021062717A1 publication Critical patent/WO2021062717A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a method and device for transmitting a buffer status report.
  • the terminal-side device In long term evolution (LTE) systems and other communication systems, if the terminal-side device has uplink data to send, the terminal-side device first sends a buffer state report (BSR) to the base station, and the BSR can indicate the terminal The size of the buffer data to be sent by the side device, so that the base station can allocate uplink resources for the terminal side device according to the size of the buffer data indicated by the BSR.
  • BSR buffer state report
  • the existing BSR reporting mechanism uses Logical Channel Group (LCG) as a unit to report.
  • the buffer data size of each logical channel group includes the total size of buffer data on all logical channels (Logical Channel, LCH) corresponding to this LCG.
  • the integrated access and backhaul (IAB) network is introduced, and the access in the IAB network
  • Both the access link and the backhaul link use wireless transmission schemes to avoid fiber deployment, thereby reducing deployment costs and improving deployment flexibility.
  • the IAB network it includes IAB node (IAB node) and IAB host (IAB donor).
  • the terminal-side device can access the IAB node, and the service data of the terminal-side device can be connected to the IAB host by one or more IAB nodes through a wireless backhaul link for transmission. Since the IAB network supports multi-hop and multi-connection networking, there may be multiple transmission paths between the terminal-side device and the IAB host.
  • IAB nodes are included. During the transmission of the uplink data packet, the previous node needs to send the BSR to the next hop node to apply for uplink resources.
  • an IAB node receives the BSR, it is determined that its corresponding child node will send uplink data to the IAB node, and the uplink data needs to be further sent to the parent node of the IAB node, so that the IAB node is receiving the child node.
  • the node sends the BSR it can send the BSR to its parent node in advance for the uplink data that will reach the IAB node.
  • the uplink data When the uplink data reaches the IAB node, it can speed up the acquisition of uplink resources to achieve rapid transmission to the parent node of the IAB node. Reduce the transmission delay of uplink data.
  • the IAB node before the IAB node obtains the uplink data, it is not sure which parent node the uplink data will be sent to, and thus cannot determine to which parent node the BSR should be sent in advance. If the uplink data is sent to multiple parent nodes to apply for uplink resources at the same time, resources may be wasted; if the BSR is not sent to the parent node in advance, the uplink data transmission delay will be relatively large. For example, as shown in FIG.
  • IAB node 1 the next hop node of IAB node 1 is IAB node 2, and the next hop nodes of IAB node 2 are IAB node 3 and IAB node 4.
  • IAB node 1 receives an uplink data packet, it sends a BSR to IAB node 2, but before receiving the uplink data packet, IAB node 2 cannot determine whether the next hop node of the uplink data packet sent by IAB node 1 is IAB node 3 or IAB Node 4, only when receiving the uplink data packet sent by IAB node 1, can it determine the next hop node according to the routing information carried in the uplink data packet and send the BSR to the next hop node.
  • the purpose of the embodiments of the present application is to provide a buffer status report transmission method and device to solve the problem of how to send the buffer status report.
  • an embodiment of the present application provides a buffer status report transmission method, including:
  • the first access backhaul integrated IAB node determines the second IAB node; the second IAB node is the parent node of the first IAB node; the first IAB node sends the first buffer to the second IAB node Zone status report BSR; the first BSR is used to indicate the amount of uplink data, the first BSR is carried in the first BSR media access control MAC control element CE, and the first BSR MAC CE is used to determine the first BSR Three IAB nodes, or the MAC subheader corresponding to the first BSR MAC CE is used to determine the third IAB node, the third IAB node is the parent node of the second IAB node, and the third IAB node Is the next hop node for the second IAB node to transmit the uplink data.
  • the first IAB node indicates to the second IAB node the next hop node when the uplink data is at the second IAB node through the first BSR, so that when the second IAB node receives the first BSR, it can report to the second IAB node.
  • the next hop node of the second IAB node sends the second BSR, instead of sending the second BSR until the uplink data is acquired as in the prior art, thereby improving the uplink data transmission efficiency and reducing the uplink data transmission delay.
  • the MAC subheader corresponding to the first BSR MAC CE includes first indication information; the first indication information is used to indicate the third IAB node.
  • the first indication information includes at least one bit used to determine the third IAB node.
  • the at least one bit is a logical channel identifier LCID field.
  • the first BSR MAC CE includes at least one LCG domain, and any LCG domain in the at least one LCG domain corresponds to M buffer size domains; wherein, the M The buffer size field j in the buffer size field corresponds to the parent node j of the second IAB node, and the buffer size field j indicates what the second IAB node sends to the parent node j of the second IAB node.
  • the first BSR MAC CE includes an M group of LCG identification index fields, a group of LCG identification index fields in the M group of LCG identification index fields, and the M of the second IAB node
  • M is the number of parent nodes of the second IAB node.
  • the method before the first IAB node sends the first buffer status report BSR to the second IAB node, the method further includes: the first IAB node obtains the second IAB Routing configuration information from the node to the parent node of the second IAB node; the first IAB node determines the third IAB node according to the routing configuration information.
  • the first BSR MAC CE includes the BAP address of the IAB host of the first IAB node, and the BAP address is used to determine the third IAB node.
  • the first BSR MAC CE further includes a routing path identifier, and the routing path identifier is used to determine the third IAB node.
  • an embodiment of the present application provides a buffer status report transmission method, including: a second access backhaul integrated IAB node receives a first buffer status report BSR from a first IAB node; the first BSR uses In order to indicate the amount of uplink data, the first BSR is carried in the first BSR media access control MAC control element CE, and the first BSR MAC CE is used to determine the third IAB node, or the first BSR MAC
  • the MAC subheader corresponding to the CE is used to determine the third IAB node, the third IAB node is the parent node of the second IAB node, and the third IAB node transmits the uplink for the second IAB node The next hop node of the data; the second IAB node sends a second BSR to the third IAB node.
  • the MAC subheader of the first BSR MAC CE includes first indication information; the first indication information is used to indicate the third IAB node.
  • the first indication information includes at least one bit used to determine the third IAB node.
  • the at least one bit is a logical channel identifier LCID field.
  • the first BSR MAC CE includes at least one LCG domain, and any LCG domain in the at least one LCG domain corresponds to M buffer size domains; wherein, the M The buffer size field j in the buffer size field corresponds to the parent node j of the second IAB node, and the buffer size field j indicates what the second IAB node sends to the parent node j of the second IAB node.
  • the first BSR MAC CE includes an M group of LCG identification index fields, a group of LCG identification index fields in the M group of LCG identification index fields, and the M of the second IAB node
  • M is the number of parent nodes of the second IAB node.
  • the first BSR MAC CE includes the BAP address of the IAB host of the first IAB node, and the BAP address is used to determine the third IAB node.
  • the first BSR MAC CE further includes a routing path identifier, and the routing path identifier is used to determine the third IAB node.
  • the present application also provides a communication device having any method provided in the first aspect or the second aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform the corresponding function of the first IAB node or the second IAB node in the method shown above.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and a device such as the first IAB node or the second IAB node.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform the corresponding functions in the foregoing method examples.
  • a processing unit and a communication unit can perform the corresponding functions in the foregoing method examples.
  • these units can perform the corresponding functions in the foregoing method examples.
  • the present application provides a communication device, including: a processor and a memory; the memory is used to store computer execution instructions, and when the device is running, the processor executes the computer execution instructions stored in the memory to enable the The device executes the methods described in the above aspects.
  • the present application provides a communication device, including: including units or means for performing each step of the above-mentioned aspects.
  • the present application provides a communication device, including a processor and a communication interface, where the processor is configured to communicate with other devices through the communication interface and execute the methods described in the foregoing aspects.
  • the processor includes one or more.
  • the present application provides a communication device, including a processor, configured to be connected to at least one memory, and configured to call a program stored in the at least one memory to execute the methods described in the foregoing aspects.
  • the at least one memory may be located inside the device or outside the device.
  • the processor includes one or more.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • this application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • the present application also provides a chip system, including a processor, configured to execute the methods described in the foregoing aspects.
  • the present application also provides a chip system, including: the first IAB node and the second IAB node provided above.
  • FIG. 1 is a schematic diagram of an IAB network in the prior art
  • Fig. 2 is a schematic diagram of a communication system suitable for an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for transmitting a buffer status report according to an embodiment of the application
  • Figure 4 is a schematic diagram of the format of a MAC subheader
  • FIG. 5 is a schematic diagram of the format of a first BSR MAC CE provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another format of the first BSR MAC CE provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another format of the first BSR MAC CE provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another format of the first BSR MAC CE provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • eLTE evolved long term evolution
  • future communication systems and other communication systems.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • eLTE evolved long term evolution
  • future communication systems and other communication systems.
  • the terminal-side device is a device with a wireless transceiver function or a chip that can be installed in the device.
  • the device with wireless transceiver function may also be called user equipment (UE), access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, user terminal, user agent Or user device.
  • UE user equipment
  • the terminal-side devices in the embodiments of this application may be mobile phones, tablet computers (Pad), computers with wireless transceiver functions, virtual reality (VR) terminals, and augmented reality (augmented reality) terminals.
  • the network side device may be a wireless access device under various standards, such as an evolved Node B (eNB), a radio network controller (RNC), or a Node B (Node B).
  • B, NB base station controller
  • BSC base transceiver station
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit baseband unit, BBU
  • It can also be the gNB or transmission point (TRP or TP) in the 5G (NR) system, one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or it can also be a gNB or The network node of the transmission point, such as a baseband unit (BBU), or a DU or CU under
  • BBU base
  • a node that supports integrated access and backhaul is called an IAB node, and the IAB node may also be called a relay node (RN).
  • IAB nodes For the convenience of description, all are called IAB nodes below.
  • the IAB node can provide wireless access services for the terminal-side device, and the service data or control information of the terminal-side device is connected to the IAB donor (IAB donor) by the IAB node through a wireless backhaul link for transmission.
  • the IAB node may include at least one mobile terminal (MT) unit and at least one distributed unit (DU). In the embodiment of the present application, only the IAB node includes an MT unit and a DU as an example for description.
  • the MT unit in the IAB node implements the IAB as a terminal to communicate with the parent node of the IAB node and the IAB host node.
  • the DU in the IAB node provides access services for its attached terminal side devices or other IAB nodes, and can also communicate with the IAB host node based on the F1 interface.
  • the MT in the IAB node may also be referred to as the MT functional entity in the IAB node
  • the DU in the IAB node may also be referred to as the DU functional entity in the IAB node.
  • the MT in the IAB node and the MT functional entity in the IAB node are all referred to as "IAB node MT", and the DU in the IAB node and the DU functional entity in the IAB node are all referred to as "IAB node DU”.
  • the IAB host can be an access network element with a complete base station function, or it can be an access network in the form of a separate centralized unit (CU) and distributed unit (DU) Network element.
  • the IAB host CU may also have a separate control plane (CP) and user plane (UP) form.
  • CP control plane
  • UP user plane
  • an IAB host CU is composed of one CU-CP and one or more CU-UPs. This embodiment of the application does not limit this.
  • the CU in the IAB host may also be referred to as the CU functional entity in the IAB host, and the DU in the IAB host may also be referred to as the DU functional entity in the IAB host.
  • the CU in the IAB host and the CU functional entity in the IAB host are referred to as IAB host CU for short
  • the DU in the IAB host and the DU functional entity in the IAB host are referred to as IAB host DU for short.
  • the last hop node of a node refers to the last node in the path containing the node that received the data packet before the node.
  • IAB node 1 is the previous hop node of IAB node 2; for downlink transmission, IAB node 2 is the previous hop node of IAB node 1.
  • the next hop node of a node refers to the first node in the path containing the node that receives the data packet after the node.
  • IAB node 3 or IAB node 4 is the next hop node of IAB node 2; for downlink transmission, IAB node 2 is the downlink of IAB node 3 or IAB node 4.
  • One-hop node for uplink transmission, IAB node 3 or IAB node 4 is the next hop node of IAB node 2; for downlink transmission, IAB node 2 is the downlink of IAB node 3 or IAB node 4.
  • Each IAB node will provide wireless access service and/or wireless backhaul service to the IAB node as a parent node.
  • each IAB node can be regarded as a child node of its parent node.
  • the child node may also be referred to as a lower-level node, and the parent node may also be referred to as an upper-level node.
  • the IAB node 3 and the IAB node 4 are the parent nodes of the IAB node 2; the IAB node 2 is the child node of the IAB node 3, and the IAB node 2 is also the child node of the IAB node 4.
  • Routing path identification In the IAB network, the uplink data of the terminal-side device can be transmitted back to the final IAB host through different transmission paths. In order to distinguish different transmission paths, a different routing path identifier can be assigned to each transmission path, and a section of the transmission path from the terminal side device to the IAB host can be identified through the routing path identifier.
  • the F1 interface involved in the embodiment of this application is the interface between the IAB node DU and the IAB host or the IAB host CU.
  • the F1 interface can also be called F1* interface and other names.
  • the embodiment of this application Can be collectively referred to as F1 interface, but the name is not limited.
  • the F1 interface may also be an interface between functional entities within a device.
  • the F1 interface may be the interface between the DU in the base station and the CU in the base station. .
  • the F1 interface supports user plane protocols and control plane protocols.
  • the user plane protocol layer of the F1 interface includes the general packet radio service (General Packet Radio Service, GPRS) tunneling protocol user plane (GPRS Tunnelling Protocol User Plane, GTP-U) layer, the user datagram protocol (user datagram protocol, UDP) layer and internet protocol (IP) layer.
  • the user plane protocol layer of the F1 interface further includes a PDCP layer and/or an IP security (IP Security, referred to as IPsec) layer.
  • IP Security IP Security
  • control plane protocol layer of the F1 interface includes an F1 application layer protocol (F1 application protocol, F1AP) layer, a stream control transport protocol (stream control transport protocol, SCTP) layer, and an IP layer.
  • F1 application protocol F1 application protocol
  • SCTP stream control transport protocol
  • IP layer an IP layer.
  • control plane protocol layer of the F1 interface further includes one or more of a PDCP layer, an IPsec layer, and a datagram transport layer security (DTLS) layer.
  • PDCP Packet Control Protocol
  • IPsec IP Security
  • DTLS datagram transport layer security
  • first”, “second”, “third”, etc. may be added in front of terms to describe various messages and information, such as first configuration information and second configuration information.
  • the third configuration information, these "first”, “second”, “third”, etc. are only used to distinguish messages, information, etc. from each other, and do not mean that they are limited.
  • FIG. 2 shows a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
  • the communication system includes an IAB host, IAB nodes 1 to 4 and at least one terminal side device.
  • the terminal side device connected to the IAB node 1 is shown in FIG. 2.
  • the embodiments of the present application do not limit the number of IAB hosts, IAB nodes, and terminal-side devices in the communication system.
  • the IAB network shown in FIG. 2 supports multi-hop networking. For example, between the IAB node 1 and the IAB host shown in FIG. 2, there are multiple intermediate IAB nodes. In other possible networking scenarios, the IAB node 1 can also be directly connected to the IAB host without other intermediate IAB nodes.
  • the IAB network shown in Figure 2 not only supports multi-hop networking, but also multi-connection networking.
  • each IAB node treats its neighboring node providing backhaul services as a parent node, and accordingly, each IAB node can be regarded as a child node of its parent node.
  • the parent node of the IAB node 3 is the IAB host, and the IAB host regards the IAB node 3 as a child node.
  • the parent nodes of IAB node 2 are IAB node 3 and IAB node 4.
  • Some scenarios in the embodiments of this application are illustrated by taking the scenario of IAB in a wireless communication network as an example. It should be noted that the solutions in the embodiments of this application can also be applied to other wireless communication networks, and the corresponding names can also be other wireless communication networks. Replace the name of the corresponding function in the communication network.
  • FIG. 3 it is a schematic flowchart of a method for transmitting a buffer status report according to an embodiment of this application.
  • the method includes:
  • Step 301 The first IAB node determines the second IAB node.
  • the second IAB node is the parent node of the first IAB node.
  • the first IAB node can be connected to multiple parent nodes.
  • the first IAB node transmits uplink data, from all the parent nodes of the first node, select a parent node as the next parent node to transmit the uplink data. Jump node, the selected parent node is called the second IAB node.
  • the first IAB node may determine the second IAB node in multiple ways, which is not limited in the embodiment of this application. For example, in a possible implementation manner, after the first IAB node obtains the uplink data, the Method, according to the BAP address in the BAP header corresponding to the received uplink data, from the pre-configured routing configuration information, determine the node ID corresponding to the BAP address, so that the IAB node corresponding to the node ID is used as the second IAB node .
  • the first IAB node obtains the uplink data, according to the method in the traditional technology, according to the BAP address in the BAP header corresponding to the received uplink data and the routing path identifier corresponding to the uplink data, From the pre-configured routing configuration information, the node identifier corresponding to the BAP address and the routing path identifier is determined, so that the IAB node corresponding to the node identifier is used as the second IAB node.
  • the first IAB node may obtain the BSR from the child node of the first IAB node, and the BSR of the child node of the first IAB node may be used to indicate the second IAB node.
  • the first BSR The description of, I won’t repeat it here.
  • Step 302 The first IAB node sends the first BSR to the second IAB node.
  • the first BSR is used to indicate the amount of uplink data. It should be noted that the amount of uplink data indicated by the first BSR may refer to the amount of uplink data that the first IAB node will send to the second IAB node, and further, it may be the amount of uplink data that has been cached in the first IAB node. The amount of upstream data.
  • the first BSR is carried in a first BSR medium access control (medium access control, MAC) control element (CE), and the first BSR MAC CE is used to determine a third IAB node, or the first BSR
  • the MAC subheader corresponding to a BSR MAC CE is used to determine the third IAB node, the third IAB node is the parent node of the second IAB node, and the third IAB node transmits for the second IAB node The next hop node of the uplink data.
  • the first IAB node may determine the third IAB node, and indicate the third IAB node through the MAC subheader corresponding to the first BSR MAC CE or the first BSR MAC CE, and then report to the second IAB node.
  • the IAB node sends the first BSR MAC CE including the first BSR, so that the second IAB node determines the third IAB node according to the MAC subheader corresponding to the first BSR MAC CE or the first BSR MAC CE.
  • How the first IAB node specifically determines the third IAB node is not limited in this embodiment of the application.
  • the first IAB node may obtain routing configuration information from the second IAB node to the parent node of the second IAB node; for example, the first IAB node may obtain the routing configuration information through an IAB host.
  • the first IAB node may determine the third IAB node from the routing configuration information from the second IAB node to the parent node of the second IAB node according to the BAP address corresponding to the uplink data to be sent to the second IAB node. Or the first IAB node may determine the first IAB node from the routing configuration information from the second IAB node to the parent node of the second IAB node according to the BAP address and routing path information corresponding to the uplink data to be sent to the second IAB node Three IAB nodes.
  • Step 303 The second IAB node receives the first BSR from the first IAB node.
  • Step 304 The second IAB node sends the second BSR to the third IAB node.
  • the second BSR is used to indicate the amount of uplink data.
  • the data volume of the uplink data indicated by the second BSR may refer to the data of the uplink data that the second IAB node will send to the third IAB node but the second IAB node has not yet received from the first IAB node the amount.
  • the data amount of uplink data indicated by the second BSR may be equal to the data amount of uplink data indicated by the first BSR, or may be greater or smaller than the data amount of uplink data indicated by the first BSR, which is not limited in this embodiment of the application.
  • the format of the second BSR may follow the format specified in the prior art, and the format of the second BSR may also be the same as the format of the first BSR, which is not limited in the embodiment of the present application.
  • the first IAB node indicates to the second IAB node the next hop node when the uplink data is at the second IAB node through the first BSR, so that when the second IAB node receives the first BSR, it can
  • the second BSR is sent to the next hop node of the second IAB node, instead of sending the second BSR until the uplink data is obtained as in the prior art, thereby improving the uplink data transmission efficiency and reducing the uplink data transmission delay.
  • the first BSR MAC CE or the MAC subheader corresponding to the first BSR MAC CE may be implemented in multiple ways, which will be described separately below.
  • the BSR is sent through a MAC control element (CE) in a medium access control (MAC) protocol data unit (protocol data unit, PDU).
  • MAC medium access control
  • PDU protocol data unit
  • One MAC PDU includes at least one MAC sub (sub) PDU, where one MAC sub PDU includes at least a MAC sub-header, and may also include content such as a MAC control element (CE).
  • the MAC CE in the MAC sub PDU is used to carry the BSR, the MAC CE can be referred to as the BSR MAC CE.
  • the format of the MAC subheader can be referred to as shown in FIG. 4.
  • R represents a reserved field
  • logical channel identification (logical channel identify, LCID) represents an LCID field, used to indicate the LCID corresponding to MAC SDU or MAC CE
  • L represents an L field, used to indicate MAC SDU or MAC
  • CE number of bytes
  • F represents the F field, which is used to indicate the length of the L field.
  • the first BSR is carried in the first BSR MAC CE, and the MAC subheader corresponding to the first BSR MAC CE may include first indication information, and the first indication information is used to indicate The third IAB node.
  • the first indication information may include at least one bit, and when the at least one bit included in the first indication information is a different state value, it may correspond to different parent nodes of the second IAB node.
  • the state value of at least one bit included in the first indication information is the state value corresponding to the third IAB node.
  • At least one bit included in the first indication information is a bit corresponding to the LCID field in the MAC subheader. Different LCIDs correspond to different parent nodes of the second IAB node.
  • the state value of at least one bit included in the first indication information is the value of the LCID corresponding to the third IAB node .
  • At least one bit included in the first indication information is a bit corresponding to a reserved field in the MAC subheader.
  • the second IAB node includes two parent nodes, the third IAB node and the fourth IAB node; when the value of the reserved field is 1, the first indication information is used to indicate the third IAB node; the value of the reserved field is 0 At this time, the first indication information is used to indicate the fourth IAB node, and other situations will not be repeated.
  • At least one bit included in the first indication information is a bit of a newly added field in the MAC subheader.
  • multiple newly added bits in the MAC subheader correspond to different parent nodes of multiple second IAB nodes respectively, and when the first indication information is used to indicate the third IAB node, among the multiple bits and The value of the bit corresponding to the third IAB node is 1, and the value of other bits is 0.
  • the format of the first BSR MAC CE can be adjusted accordingly.
  • the LCG field of the BSR MAC CE corresponds to at most one buffer size field.
  • any LCG field in the first BSR MAC CE corresponds to M buffer size fields, and the M
  • the buffer size field j in the buffer size field corresponds to the parent node j of the second IAB node, and the buffer size field j indicates what the second IAB node sends to the parent node j of the second IAB node.
  • Data amount; j 1, 2...M; M is the number of parent nodes of the second IAB node, and M is an integer greater than or equal to 2.
  • the correspondence between M buffer size domains and M parent nodes may be the IAB host configuration. Or it can be pre-defined by the protocol. For example, when the IAB node is dual-connected, it can be defined that any LCG field corresponds to the first buffer size field corresponding to the parent node or the parent node where the main cell is located, and the second buffer size The domain corresponds to the secondary parent node or the parent node where the secondary cell is located.
  • the first BSR MAC CE may include at least one LCG domain, and the specific number of LCG domains included is determined according to actual conditions, and details are not described herein again.
  • the LCG field may refer to the LCG identification field or the LCG identification index field, which is specifically determined according to the format adopted by the first BSR MAC CE.
  • the LCG identifier field is used to indicate the LCG identifier
  • the LCG identifier index field is used to indicate the index value of the LCG identifier.
  • the second IAB node is IAB node 2, which includes two parent nodes, namely IAB node 3 and IAB node 4.
  • the LCG domain may refer to the LCG identification domain.
  • one LCG identification field corresponds to two buffer size fields.
  • IAB node 3 corresponds to IAB node 4 and the other corresponds to IAB node 4, which are used to indicate The data volume of the uplink data sent to the IAB node 3 and the IAB node 4 through the IAB node 2 in the IAB node 1 respectively.
  • the LCG identification field 1 corresponds to the buffer size field 1-1 and the buffer size field 1-2
  • the buffer size field 1-1 can correspond to the IAB node 3
  • the buffer size field 1-2 can be IAB node 4 corresponds.
  • the buffer size field 2-1 may correspond to the IAB node 3
  • the buffer size field 2-2 may correspond to the IAB node 4, and other cases can be deduced by analogy, and will not be repeated.
  • the value of the buffer size fields corresponding to 1 to M-1 among the M buffer size fields can be 0 or other preset values.
  • the IAB node 2 receives the first BSR of the IAB node 1, for the LCG identification domain 1, if all the uplink data in the LCG identification domain 1 is sent to the IAB node 3 through the IAB node 2, and no uplink data is sent to the IAB For node 4, the value of the buffer size 1-2 corresponding to the LCG identification domain 1 can be 0 or other preset values.
  • the second IAB node is IAB node 2, which includes two parent nodes, namely IAB node 3 and IAB node 4.
  • the LCG field may refer to the LCG identification index field.
  • any LCG identification index field of the air interface corresponding to IAB node 1 and IAB node 2 in Figure 6 one of the two corresponding buffer size fields corresponds to IAB node 3 and the other corresponds to IAB node 4, which are respectively used for Indicates the data volume of the uplink data sent to the IAB node 3 and the IAB node 4 through the IAB node 2 in the IAB node 1 respectively.
  • the buffer size field 1-1 corresponding to the LCG identification index field 1 may correspond to the IAB node 3
  • the buffer size field 1-2 corresponding to the LCG identification index field 1 may correspond to the IAB node 4.
  • the buffer size field 2-1 may correspond to the IAB node 3
  • the buffer size field 2-2 may correspond to the IAB node 4, and other cases can be deduced by analogy, and will not be repeated.
  • each LCG identification index field is displayed.
  • the LCG identification index field does not correspond to any buffer size field.
  • the value of the buffer size fields corresponding to 1 to M-1 among the M buffer size fields can be 0 or other preset values.
  • the IAB node 2 receives the first BSR of the IAB node 1, for the LCG identification index field 1, if all the uplink data in the LCG identification index field 1 is sent to the IAB node 3 through the IAB node 2, and no uplink data is sent To the IAB node 4, the value of the buffer size 1-2 corresponding to the LCG identifier index field 1 can be 0 or other preset values.
  • the first IAB node can simultaneously indicate to the second node the data volume of uplink data sent to multiple parent nodes of the second node through one BSR MAC CE. size.
  • the first BSR MAC CE may include M groups of LCG identification index fields, each group of LCG identification index fields includes K LCG identification index fields, K is an integer greater than 0, for example, K may be equal to 8 or 16, etc.; A group of LCG identification index fields in the M group of LCG identification index fields corresponds to one of the M parent nodes of the second IAB node, and M is the number of parent nodes of the second IAB node.
  • the correspondence between the M group LCG identification index domain and the M parent nodes may be an IAB host configuration. Or it can be pre-defined by the protocol. For example, when the IAB node is dual-connected, it can be defined that the first group of LCG identification index fields correspond to the primary parent node or the parent node where the primary cell is located, and the second set of LCG identification index fields correspond to the secondary parent node. Or corresponding to the parent node where the secondary cell is located.
  • any LCG identification index field in any group of LCG identification index fields in the M group of LCG identification index fields corresponds to at most one buffer size field.
  • the second IAB node is IAB node 2, which includes two parent nodes, namely IAB node 3 and IAB node 4, and the first BSR sent by the first node to the second node is as follows
  • the first BSR MAC CE in Figure 7 includes two sets of LCG index identification fields, corresponding to IAB node 3 and IAB node 4 respectively.
  • each LCG identification index field corresponds to at most one buffer size field.
  • the LCG identification index field when the value of the LCG identification index field is 1, it means that the LCG indicated by the LCG identification index field has uplink data to be transmitted, and the LCG identification index field may correspond to 1 buffer size field; when the LCG identification index field When the value of is 0, it means that the LCG indicated by the LCG identifier index field does not have uplink data to be transmitted, and can correspond to 0 buffer size fields.
  • each LCG identification index field is shown.
  • the LCG indicated by an LCG identification index field does not have uplink data to be transmitted, the LCG identification index The field does not correspond to any buffer size field.
  • the first IAB node can simultaneously indicate to the second node the data amount of uplink data sent to multiple parent nodes of the second node through one BSR MAC CE.
  • the first IAB node may first determine the third IAB node before sending the first BSR. In the fourth implementation manner, the first IAB node may not need to determine the third IAB node before sending the first BSR.
  • an IAB node when it obtains uplink data, it can determine the next hop node of the uplink data from the routing configuration information according to the BAP address in the BAP layer header corresponding to the uplink data. It should be noted that there may be multiple next-hop nodes determined by the BAP address. Because the uplink data is transmitted to the IAB host corresponding to the BAP address, there may be multiple routing paths, and different routing paths include different IAB nodes.
  • the first routing path can be IAB node 1 to IAB node 2, IAB node 2 to IAB node 3, and IAB node 3 to IAB host;
  • One routing path may be IAB node 1 to IAB node 4, IAB node 4 to IAB node 5, and IAB node 5 to IAB host.
  • the IAB node 1 can use the IAB node 2 as the next hop node or the IAB node 4 as the next hop node according to the BAP address of the IAB host.
  • the next hop node of the uplink data may be further determined by the routing path identifier.
  • the routing path identifier of the first routing path is routing path identifier 1
  • the routing path identifier of the second routing path is routing path identifier 2.
  • the IAB node 1 determines the BAP address, it also determines that the routing path identifier is the routing path identifier 1, and the IAB node uses the IAB node 2 as the next hop node.
  • the first BSR MAC CE sent by the first IAB node carries the BAP address of the IAB host of the first IAB node, and the second IAB node can thus determine the BAP address according to the BAP address. How to determine the third IAB node will not be repeated here.
  • the BAP address of the IAB host may be the BAP address of the IAB host CU or the BAP address of the IAB host DU.
  • the format of the first BSR MAC CE may be as shown in FIG. 8. Compared with the prior art, a BAP identification field is newly added in FIG. 8 to carry the BAP address.
  • the first BSR MAC CE may also include a routing path identifier, so that the second IAB node can determine the third IAB node according to the BAP address and the routing path identifier.
  • the format of the first BSR MAC CE may be as shown in Figure 8, where the BAP identification field is used to carry the BAP address and routing path identification.
  • the first IAB node may send the first BSR to the second IAB node using the foregoing implementation manner, or may use the BSR MAC CE format in the prior art to send the first BSR to the second IAB node.
  • the first IAB node uses the existing BSR MAC CE or the above-mentioned enhanced BSR MAC CE can be configured through the IAB host or the IAB host CU.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices, and the methods and operations implemented by network devices can also be Can be used for network equipment components (such as chips or circuits) to achieve.
  • each network element described above includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the present invention.
  • the device 900 may exist in the form of software or hardware.
  • the apparatus 900 may include: a processing unit 901 and a communication unit 902.
  • the communication unit 902 may include a receiving unit and a sending unit.
  • the processing unit 901 is used to control and manage the actions of the device 900.
  • the communication unit 902 is used to support communication between the device 900 and other network entities.
  • the processing unit 901 is configured to determine a second IAB node; the second IAB node is the parent node of the first IAB node;
  • the communication unit 902 is configured to send a first buffer status report BSR to the second IAB node; the first BSR is used to indicate the amount of uplink data, and the first BSR is carried in the first BSR media access control
  • the first BSR MAC CE is used to determine the third IAB node, or the MAC subheader corresponding to the first BSR MAC CE is used to determine the third IAB node, the third IAB node Is the parent node of the second IAB node, and the third IAB node is the next hop node for the second IAB node to transmit the uplink data.
  • the MAC subheader corresponding to the first BSR MAC CE includes first indication information
  • the first indication information is used to indicate the third IAB node.
  • the first indication information includes at least one bit used to determine the third IAB node.
  • the at least one bit is a logical channel identifier LCID field.
  • the first BSR MAC CE includes at least one LCG domain, and any LCG domain in the at least one LCG domain corresponds to M buffer size domains; wherein, the M The buffer size field j in the buffer size field corresponds to the parent node j of the second IAB node, and the buffer size field j indicates what the second IAB node sends to the parent node j of the second IAB node.
  • the first BSR MAC CE includes an M group of LCG identification index fields, a group of LCG identification index fields in the M group of LCG identification index fields, and the M of the second IAB node
  • M is the number of parent nodes of the second IAB node.
  • the communication unit is further configured to obtain routing configuration information from the second IAB node to the parent node of the second IAB node;
  • the processing unit is further configured to determine the third IAB node according to the routing configuration information.
  • the first BSR MAC CE includes the BAP address of the IAB host of the first IAB node, and the BAP address is used to determine the third IAB node.
  • the first BSR MAC CE further includes a routing path identifier, and the routing path identifier is used to determine the third IAB node.
  • the communication unit 902 is configured to receive a first buffer status report BSR from a first IAB node; the first BSR is used to indicate the amount of uplink data, and the first BSR is carried in the first BSR media access control MAC control
  • the first BSR MAC CE is used to determine the third IAB node, or the MAC subheader corresponding to the first BSR MAC CE is used to determine the third IAB node, and the third IAB node is The parent node of the second IAB node, where the third IAB node is a next hop node for the second IAB node to transmit the uplink data;
  • the processing unit 901 is configured to determine the third IAB node
  • the communication unit 902 is configured to send a second BSR to the third IAB node.
  • the MAC subheader of the first BSR MAC CE includes first indication information
  • the first indication information is used to indicate the third IAB node.
  • the first indication information includes at least one bit used to determine the third IAB node.
  • the at least one bit is a logical channel identifier LCID field.
  • the first BSR MAC CE includes at least one LCG domain, and any LCG domain in the at least one LCG domain corresponds to M buffer size domains; wherein, the M The buffer size field j in the buffer size field corresponds to the parent node j of the second IAB node, and the buffer size field j indicates what the second IAB node sends to the parent node j of the second IAB node.
  • the first BSR MAC CE includes an M group of LCG identification index fields, a group of LCG identification index fields in the M group of LCG identification index fields, and the M of the second IAB node
  • M is the number of parent nodes of the second IAB node.
  • the first BSR MAC CE includes the BAP address of the IAB host of the first IAB node, and the BAP address is used to determine the third IAB node.
  • the first BSR MAC CE further includes a routing path identifier, and the routing path identifier is used to determine the third IAB node.
  • FIG. 10 shows an apparatus 1000 provided by an embodiment of this application, and the apparatus shown in FIG. 10 may be a hardware circuit implementation of the apparatus shown in FIG. 9.
  • the communication device can be adapted to perform the function of the first core network element in the above method embodiment in the flowchart shown above.
  • FIG. 10 only shows the main components of the communication device.
  • the apparatus 1000 shown in FIG. 10 includes at least one processor 1001, for example, a general-purpose central processing unit (CPU), a general-purpose processor, a digital signal processing (digital signal processing, DSP), and an application specific integrated circuit (application specific integrated circuit). integrated circuits, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of DSP and microprocessor, and so on.
  • the device 1000 may also include at least one memory 1002 for storing program instructions and/or data.
  • the memory 1002 is coupled with the processor 1001.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1001 may operate in cooperation with the memory 1002.
  • the processor 1001 may execute program instructions stored in the memory 1002. At least one of the at least one memory may be included in the processor.
  • the apparatus 1000 may further include a communication interface 1003 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1000 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the device 1000 may further include a communication line 1004.
  • the communication interface 1003, the processor 1001, and the memory 1002 may be connected to each other through a communication line 1004;
  • the communication line 1004 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture). , Referred to as EISA) bus and so on.
  • the communication line 1004 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1001 is configured to determine a second IAB node; the second IAB node is the parent node of the first IAB node;
  • the communication interface 1003 is configured to send a first buffer status report BSR to the second IAB node; the first BSR is used to indicate the amount of uplink data, and the first BSR is carried in the first BSR media access control
  • the first BSR MAC CE is used to determine the third IAB node, or the MAC subheader corresponding to the first BSR MAC CE is used to determine the third IAB node, the third IAB node Is the parent node of the second IAB node, and the third IAB node is the next hop node for the second IAB node to transmit the uplink data.
  • the MAC subheader corresponding to the first BSR MAC CE includes first indication information
  • the first indication information is used to indicate the third IAB node.
  • the first indication information includes at least one bit used to determine the third IAB node.
  • the at least one bit is a logical channel identifier LCID field.
  • the first BSR MAC CE includes at least one LCG domain, and any LCG domain in the at least one LCG domain corresponds to M buffer size domains; wherein, the M The buffer size field j in the buffer size field corresponds to the parent node j of the second IAB node, and the buffer size field j indicates what the second IAB node sends to the parent node j of the second IAB node.
  • the first BSR MAC CE includes an M group of LCG identification index fields, a group of LCG identification index fields in the M group of LCG identification index fields, and the M of the second IAB node
  • M is the number of parent nodes of the second IAB node.
  • the communication interface 1003 is also used to obtain routing configuration information from the second IAB node to the parent node of the second IAB node;
  • the processor 1001 is further configured to determine the third IAB node according to the routing configuration information.
  • the first BSR MAC CE includes the BAP address of the IAB host of the first IAB node, and the BAP address is used to determine the third IAB node.
  • the first BSR MAC CE further includes a routing path identifier, and the routing path identifier is used to determine the third IAB node.
  • the communication interface 1003 is configured to receive a first buffer status report BSR from a first IAB node; the first BSR is used to indicate the amount of uplink data, and the first BSR is carried in the first BSR media access control MAC control
  • the first BSR MAC CE is used to determine the third IAB node, or the MAC subheader corresponding to the first BSR MAC CE is used to determine the third IAB node, and the third IAB node is The parent node of the second IAB node, where the third IAB node is a next hop node for the second IAB node to transmit the uplink data;
  • the processor 1001 is configured to determine the third IAB node
  • the communication interface 1003 is used to send a second BSR to the third IAB node.
  • the MAC subheader of the first BSR MAC CE includes first indication information
  • the first indication information is used to indicate the third IAB node.
  • the first indication information includes at least one bit used to determine the third IAB node.
  • the at least one bit is a logical channel identifier LCID field.
  • the first BSR MAC CE includes at least one LCG domain, and any LCG domain in the at least one LCG domain corresponds to M buffer size domains; wherein, the M The buffer size field j in the buffer size field corresponds to the parent node j of the second IAB node, and the buffer size field j indicates what the second IAB node sends to the parent node j of the second IAB node.
  • the first BSR MAC CE includes an M group of LCG identification index fields, a group of LCG identification index fields in the M group of LCG identification index fields, and the M of the second IAB node
  • M is the number of parent nodes of the second IAB node.
  • the first BSR MAC CE includes the BAP address of the IAB host of the first IAB node, and the BAP address is used to determine the third IAB node.
  • the first BSR MAC CE further includes a routing path identifier, and the routing path identifier is used to determine the third IAB node.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种缓冲区状态报告传输方法及装置,其中方法包括:第一接入回传一体化IAB节点确定第二IAB节点;所述第二IAB节点为所述第一IAB节点的父节点;所述第一IAB节点向所述第二IAB节点发送第一BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR MAC CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点。

Description

一种缓冲区状态报告传输方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种缓冲区状态报告传输方法及装置。
背景技术
在长期演进(long term evolution,LTE)***等通信***中,如果终端侧设备有上行数据需要发送,终端侧设备先向基站发送缓冲区状态报告(buffer state reporting,BSR),BSR可以指示出终端侧设备要发送的缓存数据大小,基站从而可以根据BSR指示的缓存数据大小,为终端侧设备分配上行资源。现有BSR上报机制是以逻辑信道组(Logical Channel Group,LCG)为单位上报的。其中,每个逻辑信道组的缓存数据大小包括了此LCG对应的所有的逻辑信道(Logical Channel,LCH)上的缓存数据的总大小。
在第五代移动通信***(5th-generation,5G),即新无线(new radio,NR)***中引入了接入回传一体化(integrated access and backhaul,IAB)网络,IAB网络中的接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,避免光纤部署,从而降低部署成本,提高部署灵活性。在IAB网络中,包括IAB节点(IAB node)和IAB宿主(IAB donor)。终端侧设备可以接入IAB节点,终端侧设备的业务数据可以由一个或多个IAB节点通过无线回传链路连接到IAB宿主传输。由于IAB网络支持多跳和多连接组网,在终端侧设备和IAB宿主之间可能存在多条传输路径,如果在一条传输路径上,包含多个IAB节点。上行数据包的传输过程中,前一个节点需要向下一跳节点发送BSR,以申请上行资源。当一个IAB节点接收到BSR时,确定其对应的子节点将向该IAB节点发送上行数据,且该上行数据还需要进一步的向该IAB节点的父节点进行发送,从而该IAB节点在收到子节点发送的BSR时可以为将要到达IAB节点的上行数据提前向其父节点发送BSR,待该上行数据达到IAB节点时,可以加快获取上行资源从而实现快速的向该IAB节点的父节点进行发送,降低上行数据的传输时延。但是该IAB节点在获取上行数据前,并不确定该上行数据将向哪个父节点进行发送,从而也无法确定该向哪个父节点提前发送BSR。若为该上行数据同时向多个父节点发送BSR申请上行资源,则可能会导致资源浪费;若不向父节点提前发送BSR,则导致上行数据传输时延较大。举例来说,如图1所示,IAB节点1的下一跳节点为IAB节点2,IAB节点2的下一跳节点为IAB节点3和IAB节点4。当IAB节点1接收到上行数据包时,向IAB节点2发送BSR,但是在接收到上行数据包之前IAB节点2不能确定IAB节点1发送的上行数据包的下一跳节点是IAB节点3还是IAB节点4,只有在接收到IAB节点1发送的上行数据包时,才能根据上行数据包中携带的路由信息确定下一跳节点并向下一跳节点发送BSR。
发明内容
本申请实施方式的目的在于提供一种缓冲区状态报告传输方法及装置,用以解决如何发送缓冲区状态报告的问题。
第一方面,本申请实施例提供一种缓冲区状态报告传输方法,包括:
第一接入回传一体化IAB节点确定第二IAB节点;所述第二IAB节点为所述第一IAB 节点的父节点;所述第一IAB节点向所述第二IAB节点发送第一缓冲区状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点。
上述方法中,第一IAB节点通过第一BSR向第二IAB节点指示上行数据在第二IAB节点时的下一跳节点,从而可以使得第二IAB节点在接收到第一BSR时,就可以向第二IAB节点的下一跳节点发送第二BSR,而不是像现有技术中那样,等到获取了上行数据才发送第二BSR,从而可以提高上行数据传输效率,降低上行数据传输时延。
在一种可能的实现方法中,所述第一BSR MAC CE对应的MAC子头包括第一指示信息;所述第一指示信息用于指示所述第三IAB节点。
在一种可能的实现方法中,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
在一种可能的实现方法中,所述至少一个比特位为逻辑信道标识LCID域。
在一种可能的实现方法中,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
在一种可能的实现方法中,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
在一种可能的实现方法中,所述第一IAB节点向所述第二IAB节点发送第一缓冲区状态报告BSR之前,所述方法还包括:所述第一IAB节点获取所述第二IAB节点到所述第二IAB节点的父节点的路由配置信息;所述第一IAB节点根据所述路由配置信息确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
第二方面,本申请实施例提供一种缓冲区状态报告传输方法,包括:第二接入回传一体化IAB节点接收来自第一IAB节点的第一缓存状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点;所述第二IAB节点向所述第三IAB节点发送第二BSR。
在一种可能的实现方法中,所述第一BSR MAC CE的MAC子头包括第一指示信息;所述第一指示信息用于指示所述第三IAB节点。
在一种可能的实现方法中,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
在一种可能的实现方法中,所述至少一个比特位为逻辑信道标识LCID域。
在一种可能的实现方法中,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
在一种可能的实现方法中,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
在一种可能的实现方法中,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
第三方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面或第二方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中第一IAB节点或第二IAB节点的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与第一IAB节点或第二IAB节点等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面或第二方面提供的方法中的描述,此处不做赘述。
第四方面,本申请提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述各方面所述的方法。
第五方面,本申请提供一种通信装置,包括:包括用于执行上述各方面的各个步骤的单元或手段(means)。
第六方面,本申请提供一种通信装置,包括处理器和通信接口,所述处理器用于通过通信接口与其它装置通信,并执行上述各方面所述的方法。该处理器包括一个或多个。
第七方面,本申请提供一种通信装置,包括处理器,用于与至少一个存储器相连,用于调用所述至少一个存储器中存储的程序,以执行上述各方面所述的方法。该至少一个存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第八方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储 有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第九方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十方面,本申请还提供一种芯片***,包括:处理器,用于执行上述各方面所述的方法。
第十一方面,本申请还提供一种芯片***,包括:上面提供的第一IAB节点以及第二IAB节点。
附图说明
图1为现有技术中的一种IAB网络示意图;
图2为适用于本申请实施例的通信***示意图;
图3为本申请实施例提供的一种缓冲区状态报告传输方法流程示意图;
图4为一种MAC子头的格式示意图;
图5为本申请实施例提供的一种第一BSR MAC CE的格式示意图;
图6为本申请实施例提供的另一种第一BSR MAC CE的格式示意图;
图7为本申请实施例提供的另一种第一BSR MAC CE的格式示意图;
图8为本申请实施例提供的另一种第一BSR MAC CE的格式示意图;
图9为本申请实施例提供的一种通信装置结构示意图;
图10为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以应用于各种移动通信***,例如:新无线(new radio,NR)***、长期演进(long term evolution,LTE)***、先进的长期演进(advanced long term evolution,LTE-A)***、演进的长期演进(evolved long term evolution,eLTE)***、未来通信***等其它通信***,具体的,在此不做限制。
在本申请实施例中,终端侧设备,为具有无线收发功能的设备或可设置于该设备的芯片。其中,所述具有无线收发功能的设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、用户代理或用户装置。在实际应用中,本申请的实施例中的终端侧设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述具有无线收发功能的设备及可设置于该设备中的芯片统称为终端侧设备。
在本申请实施例中,网络侧设备可以为各种制式下无线接入设备,例如演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)或节点B(Node  B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G(NR)***中的gNB或传输点(TRP或TP),5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或在集中式-分布式(central unit-distributed,CU-DU)架构下的DU或者CU等。
本申请实施例中,将支持一体化的接入和回传的节点称为IAB节点,该IAB节点又可以称为中继节点(relay node,RN),为了描述方便,以下均称为IAB节点。IAB节点可以为终端侧设备提供无线接入服务,该终端侧设备的业务数据或控制信息由IAB节点通过无线回传链路连接到IAB宿主(IAB donor)进行传输。IAB节点可以包括至少一个移动终端(mobile terminal,MT)单元以及至少一个分布式单元(distributed unit,DU),本申请实施例中仅以IAB节点包括一个MT单元和DU为例进行描述。IAB节点中的MT单元实现所述IAB作为终端来与IAB节点的父节点及IAB宿主节点进行通信。IAB节点中的DU,为其下附着的终端侧设备或者其他IAB节点提供接入服务,也可以与IAB宿主节点基于F1接口进行通信。其中,IAB节点中的MT,也可以称为IAB节点中的MT功能实体,IAB节点中的DU,也可以称为IAB节点中的DU功能实体。为描述方便,IAB节点中的MT以及IAB节点中的MT功能实体均简称为“IAB节点MT”,IAB节点中的DU以及IAB节点中的DU功能实体均简称为“IAB节点DU”。
本申请实施例中,IAB宿主可以是一个具有完整基站功能的接入网网元,也可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离形态的接入网网元。其中,IAB宿主CU还有可能是控制面(control plane,CP)和用户面(user plane,UP)分离的形态,例如,一个IAB宿主CU由一个CU-CP和一个或多个CU-UP组成,本申请实施例对此不作限定。
IAB宿主中的CU,也可以称为IAB宿主中的CU功能实体,IAB宿主中的DU,也可以称为IAB宿主中的DU功能实体。为便于表述,本申请实施例中,将IAB宿主中的CU以及IAB宿主中的CU功能实体简称为IAB宿主CU,将IAB宿主中的DU以及IAB宿主中的DU功能实体简称为IAB宿主DU。
本申请实施例中,可能用到一些技术术语,例如节点的上一跳节点、节点的下一跳节点、父节点和子节点等,下面先对这些技术术语进行解释。
节点的上一跳节点:是指在包含该节点的路径中的、在该节点之前最后一个接收到数据包的节点。举例来说,结合后面的图2所示,对于上行传输,IAB节点1为IAB节点2的上一跳节点;对于下行传输,IAB节点2为IAB节点1的上一跳节点。
节点的下一跳节点:是指在包含该节点的路径中的、在该节点之后第一个接收到数据包的节点。举例来说,结合后面的图2所示,对于上行传输,IAB节点3或IAB节点4为IAB节点2的下一跳节点;对于下行传输,IAB节点2为IAB节点3或IAB节点4的下一跳节点。
父节点与子节点:每个IAB节点将为该IAB节点提供无线接入服务和/或无线回传服 务的节点视为父节点(parent node)。相应地,每个IAB节点可视为其父节点的子节点(child node)。可替换地,子节点也可以称为下级节点,父节点也可以称为上级节点。举例来说,结合后面的图2所示,IAB节点3以及IAB节点4为IAB节点2的父节点;IAB节点2为IAB节点3的子节点,同时IAB节点2也是IAB节点4的子节点。
路由路径标识:IAB网络中,终端侧设备的上行数据,可以通过不同的传输路径回传至最终的IAB宿主。为了区分不同的传输路径,可以为每个传输路径分配不同的路由路径标识,通过路由路径标识从而可以标识一段从终端侧设备至IAB宿主之间的传输路径。
F1接口:本申请实施例涉及的F1接口,为在IAB节点DU与IAB宿主或IAB宿主CU之间的接口,F1接口也可以被称为F1*接口等名称,为了描述方便,本申请实施例中,可统一称为F1接口,但对名称并不做限定。
需要说明的是,F1接口,还可能为一个设备内部的功能实体之间的接口,例如对于包括DU和CU的基站,F1接口可以为该基站内的DU与该基站内的CU之间的接口。
本申请实施例中,F1接口支持用户面协议和控制面协议。示例性的,F1接口的用户面协议层包括通用分组无线服务(General Packet Radio Service,GPRS)隧道协议用户面(GPRS Tunnelling Protocol User Plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层以及互联网协议(internet protocol,IP)层。可选的,F1接口的用户面协议层还包括PDCP层和/或IP安全(IP Security,简称IPsec)层。
示例性的,F1接口的控制面协议层包括F1应用层协议(F1application protocol,F1AP)层、流控传输协议(stream control transport protocol,SCTP)层以及IP层。可选的,F1接口的控制面协议层还包括PDCP层、IPsec层和数据报文传输层安全(datagram transport layer security,简称DTLS)层中的一个或多个。
同时,应当理解,尽管在本申请实施例中可能在术语前面增加“第一”、“第二”、“第三”等描述各种消息和信息等,例如第一配置信息、第二配置信息、第三配置信息,这些“第一”、“第二”、“第三”等仅用来将消息、信息等彼此区分开,并不代表对其做限定。
为便于理解本申请实施例,首先以图2中示出的通信***为例详细说明适用于本申请实施例的通信***示意图。图2示出了适用于本申请实施例的通信方法的通信***的示意图。如图2所示,该通信***包括IAB宿主、IAB节点1至IAB节点4以及至少一个终端侧设备,为了描述方便,图2中只示出了与IAB节点1连接的终端侧设备。本申请的实施例对该通信***中的IAB宿主、IAB节点和终端侧设备的数量不做限定。
图2所示的IAB网络支持多跳组网,例如在图2所示的IAB节点1和IAB宿主之间,有多个中间IAB节点。在其他可能的组网场景中,IAB节点1也可以直接与IAB宿主相连,无需其他中间IAB节点。
图2所示的IAB网络不仅支持多跳组网,还可以支持多连接组网。在由IAB节点服务的终端侧设备和IAB宿主之间,可以存在至少一条由多段链路组成的传输路径。在IAB节点和IAB宿主之间,也可以存在一条或者多条传输路径,每条传输路径上可以有一个或者多个IAB节点。在一条传输路径上,每个IAB节点将为其提供回传服务的邻节点视为父节点,相应地,每个IAB节点可视为其父节点的子节点。例如,在图2所示的场景中,IAB节点3的父节点为IAB宿主,IAB宿主将IAB节点3视为子节点。IAB节点2的父节点为IAB节点3和IAB节点4。
本申请实施例中部分场景以无线通信网络中IAB的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
结合前面的描述,如图3所示,为本申请实施例提供的一种缓冲区状态报告传输方法流程示意图。参见图3,该方法包括:
步骤301:第一IAB节点确定第二IAB节点。
其中,所述第二IAB节点为所述第一IAB节点的父节点。
需要说明的是,第一IAB节点可以与多个父节点相连接,当第一IAB节点传输上行数据时,从第一节点的所有父节点中,选择一个父节点作为传输该上行数据的下一跳节点,选择出的父节点称为第二IAB节点。
第一IAB节点可以根据多种方式确定第二IAB节点,本申请实施例对此并不限定,例如,一种可能的实现方式中,第一IAB节点获取到上行数据之后,按照传统技术中的方法,根据接收到的上行数据对应的BAP包头中的BAP地址,从预先配置的路由配置信息中,确定与该BAP地址对应的节点标识,从而将该节点标识对应的IAB节点作为第二IAB节点。
另一种可能的实现方式中,第一IAB节点获取到上行数据之后,按照传统技术中的方法,根据接收到的上行数据对应的BAP包头中的BAP地址以及该上行数据对应的路由路径标识,从预先配置的路由配置信息中,确定与该BAP地址以及路由路径标识对应的节点标识,从而将该节点标识对应的IAB节点作为第二IAB节点。
另一种可能的实现方式中,第一IAB节点可以获取来自第一IAB节点的子节点的BSR,第一IAB节点的子节点的BSR可以用于指示第二IAB节点,具体可以参考第一BSR的描述,在此不再赘述。
步骤302:第一IAB节点向所述第二IAB节点发送第一BSR。
其中,所述第一BSR用于指示上行数据的数据量。需要说明的是,第一BSR指示的上行数据的数据量可以是指,第一IAB节点将要向第二IAB节点发送的上行数据的数据量,进一步的,可以是已经缓存在第一IAB节点的上行数据的数据量。
所述第一BSR携带在第一BSR媒体接入控制(medium access control,MAC)控制元素(control element,CE)中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点。
需要说明的是,本申请实施例中,第一IAB节点可以确定第三IAB节点,并通过第一BSR MAC CE或者第一BSR MAC CE对应的MAC子头指示第三IAB节点,然后向第二IAB节点发送包括第一BSR的第一BSR MAC CE,使得第二IAB节点根据第一BSR MAC CE或者第一BSR MAC CE对应的MAC子头确定第三IAB节点。第一IAB节点具体如何确定第三IAB节点,本申请实施例对此并不限定。
举例来说,第一IAB节点可以获取所述第二IAB节点到所述第二IAB节点的父节点的路由配置信息;例如,第一IAB节点可以通过IAB宿主获取所述路由配置信息。
第一IAB节点可以根据将向第二IAB节点发送的上行数据对应的BAP地址,从所述 第二IAB节点到所述第二IAB节点的父节点的路由配置信息中确定第三IAB节点。或者第一IAB节点可以根据将向第二IAB节点发送的上行数据对应的BAP地址和路由路径信息,从所述第二IAB节点到所述第二IAB节点的父节点的路由配置信息中确定第三IAB节点。
步骤303:第二IAB节点接收来自第一IAB节点的第一BSR。
步骤304:第二IAB节点向第三IAB节点发送第二BSR。
其中,所述第二BSR用于指示上行数据的数据量。需要说明的是,第二BSR指示的上行数据的数据量可以是指,第二IAB节点将要向第三IAB节点发送的但第二IAB节点还未从第一IAB节点接收到的上行数据的数据量。第二BSR指示的上行数据的数据量,可以等于第一BSR指示的上行数据的数据量,也可以大于或小于第一BSR指示的上行数据的数据量,本申请实施例并不限定。
示例性的,第二BSR的格式可以按照现有技术中规定的格式,第二BSR的格式还可以与第一BSR的格式相同,本申请实施例对此并不限定。
通过上面的方法,第一IAB节点通过第一BSR向第二IAB节点指示上行数据在第二IAB节点时的下一跳节点,从而可以使得第二IAB节点在接收到第一BSR时,就可以向第二IAB节点的下一跳节点发送第二BSR,而不是像现有技术中那样,等到获取了上行数据才发送第二BSR,从而可以提高上行数据传输效率,降低上行数据传输时延。
本申请实施例中,可以通过多种方式实现第一BSR MAC CE或者第一BSR MAC CE对应的MAC子头,下面分别进行描述。
实现方式一:
本申请实施例中,BSR是通过媒体接入控制(medium access control,MAC)协议数据单元(protocol data unit,PDU)中的MAC控制元素(control element,CE)发送的。一个MAC PDU包括至少一个MAC子(sub)PDU,其中,一个MAC sub PDU至少包括MAC子头,还可以包括MAC控制元素(control element,CE)等内容。当MAC sub PDU中的MAC CE用于携带BSR时,可以将该MAC CE称为BSR MAC CE。
其中,MAC子头的格式可以参考图4所示。图4中,R表示保留(reserved)域;逻辑信道标识(logical channel identify,LCID)表示LCID域,用于指示MAC SDU或MAC CE对应的LCID;L表示L域,用于指示MAC SDU或MAC CE的大小(字节数);F表示F域,用于指示L域的长度。
结合上面的描述,本申请实施例中,第一BSR携带在第一BSR MAC CE中,第一BSR MAC CE对应的MAC子头中可以包括第一指示信息,所述第一指示信息用于指示所述第三IAB节点。
示例性的,第一指示信息可以包括至少一个比特位,当第一指示信息包括的至少一个比特位为不同状态值时,可以对应第二IAB节点的不同父节点。当第一指示信息用于指示第三IAB节点时,第一指示信息包括的至少一个比特位的状态值为第三IAB节点对应的状态值。
举例来说,一种可能的实现方式中,第一指示信息包括的至少一个比特位为MAC子头中的LCID域对应的比特位。不同LCID对应第二IAB节点的不同父节点,当第一指示信息用于指示第三IAB节点时,第一指示信息包括的至少一个比特位的状态值为第三IAB 节点对应的LCID的取值。
再举例来说,另一种可能的实现方式中,第一指示信息包括的至少一个比特位为MAC子头中的保留域对应的比特位。例如,第二IAB节点包括两个父节点,第三IAB节点和第四IAB节点;保留域的取值为1时,第一指示信息用于指示第三IAB节点;保留域的取值为0时,第一指示信息用于指示第四IAB节点,其它情况不再赘述。
再举例来说,又一种可能的实现方式中,第一指示信息包括的至少一个比特位为MAC子头中新增字段的比特位。例如,MAC子头中新增多个比特位分别与多个第二IAB节点的不同父节点一一对应,当第一指示信息用于指示第三IAB节点时,所述多个比特位中与第三IAB节点对应的比特位取值为1,其他比特位取值为0。
实现方式二:
当通过第一BSR MAC CE指示第三IAB节点时,可以对第一BSR MAC CE的格式进行相应调整。现有技术中,BSR MAC CE的LCG域最多与一个缓冲区大小域对应,而本申请实施例中,第一BSR MAC CE中的任一LCG域对应M个缓冲区大小域,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;j=1,2…M;M为所述第二IAB节点的父节点的数量,M为大于或等于2的整数。
需要说明的是,对于任一个LCG域,M个缓冲区大小域与M个父节点的对应关系可以是IAB宿主配置。或可以是由协议预定义,例如当IAB节点为双连接时,可以定义任一个LCG域对应第一个缓冲区大小域与主父节点或主小区所在的父节点相对应,第二个缓冲区大小域与辅父节点或辅小区所在的父节点相对应。
第一BSR MAC CE可以包括至少一个LCG域,具体包括的LCG域的数量,根据实际情况确定,在此不再赘述。
需要说明的是,在该实现方式下,LCG域可以是指LCG标识域,也可以是指LCG标识索引域,具体根据第一BSR MAC CE采用的格式确定。其中,LCG标识域用于指示LCG标识,LCG标识索引域用于指示LCG标识的索引值。
举例来说,以图2为例,第二IAB节点为IAB节点2,其包括2个父节点,分别为IAB节点3和IAB节点4,第一BSR MAC CE采用如图5所示的格式时,LCG域可以是指LCG标识域。图5中,一个LCG标识域对应2个缓冲区大小域。针对图5中IAB节点1与IAB节点2所对应空口的任一LCG标识域,对应的2个缓冲区大小域中,一个与IAB节点3对应,另一个与IAB节点4对应,分别用于表示IAB节点1中经过IAB节点2分别发往IAB节点3和IAB节点4的上行数据的数据量。例如,图5中,LCG标识域1对应缓冲区大小域1-1以及缓冲区大小域1-2,缓冲区大小域1-1可以与IAB节点3对应,缓冲区大小域1-2可以与IAB节点4对应。对于LCG标识域2,缓冲区大小域2-1可以与IAB节点3对应,缓冲区大小域2-2可以与IAB节点4对应,其它情况可以以此类推,不再赘述。
需要说明的是,对于任一个LCG标识域,其对应M个缓冲区大小域中的1至M-1个缓冲区大小域的取值可以为0或其他预设值。例如当IAB节点2接收到IAB节点1的第一BSR时,对于LCG标识域1,若LCG标识域1中的所有上行数据经过IAB节点2均发往IAB节点3,而无上行数据发往IAB节点4,则LCG标识域1对应的缓冲区大小1-2的取值可以为0,或为其他预设值。
举例来说,以图2为例,第二IAB节点为IAB节点2,其包括2个父节点,分别为IAB节点3和IAB节点4,第一BSR MAC CE采用如图6所示的格式时,LCG域可以是指LCG标识索引域。针对图6中IAB节点1与IAB节点2所对应空口的任一LCG标识索引域,对应的2个缓冲区大小域中,一个与IAB节点3对应,另一个与IAB节点4对应,分别用于表示IAB节点1中经过IAB节点2分别发往IAB节点3和IAB节点4的上行数据的数据量。例如,图6中,LCG标识索引域1对应的缓冲区大小域1-1可以与IAB节点3对应,LCG标识索引域1对应的缓冲区大小域1-2可以与IAB节点4对应。对于LCG标识域2,缓冲区大小域2-1可以与IAB节点3对应,缓冲区大小域2-2可以与IAB节点4对应,其它情况可以以此类推,不再赘述。
图6中,当LCG标识索引域的取值为1时,表示该LCG标识索引域指示的LCG存在将要传输的上行数据,该LCG标识索引域可以对应2个缓冲区大小域;当LCG标识索引域的取值为0时,表示该LCG标识索引域指示的LCG不存在将要传输的上行数据,可以对应0个缓冲区大小域。
需要说明的是,图6中,为了示意方便,将每个LCG标识索引域对应的缓冲区大小域都展示出来了,实际上,当一个LCG标识索引域指示的LCG不存在将要传输的上行数据,该LCG标识索引域不对应任何缓冲区大小域。
需要说明的是,对于任一个LCG标识索引域,其对应M个缓冲区大小域中的1至M-1个缓冲区大小域的取值可以为0或其他预设值。例如当IAB节点2接收到IAB节点1的第一BSR时,对于LCG标识索引域1,若LCG标识索引域1中的所有上行数据经过IAB节点2均发往IAB节点3,而无上行数据发往IAB节点4,则LCG标识索引域1对应的缓冲区大小1-2的取值可以为0,或为其他预设值。
需要说明的是,图5,6所示的格式中,通过在一个BSR MAC CE内,第一IAB节点可以同时向第二节点指示发往第二节点的多个父节点的上行数据的数据量大小。
实现方式三:
和实现方式二类似,当通过第一BSR MAC CE指示第三IAB节点时,可以对第一BSR MAC CE的格式进行相应调整。实现方式三中,第一BSR MAC CE可以包括M组LCG标识索引域,每一组LCG标识索引域包括K个LCG标识索引域,K为大于0的整数,例如K可以等于8或16等;所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
需要说明的是,M组LCG标识索引域与M个父节点的对应关系可以是IAB宿主配置。或可以是由协议预定义,例如当IAB节点为双连接时,可以定义第一组LCG标识索引域与主父节点或主小区所在的父节点相对应,第二组LCG标识索引域与辅父节点或辅小区所在的父节点相对应。
需要说明的是,M组LCG标识索引域中的任一组LCG标识索引域中的任一LCG标识索引域,最多对应一个缓冲区大小域。
举例来说,以图2为例,第二IAB节点为IAB节点2,其包括2个父节点,分别为IAB节点3和IAB节点4,第一节点向第二节点发送的第一BSR采用如图7所示的第一BSR MAC CE格式。图7中,以K等于8为例,图7中第一BSR MAC CE包括两组LCG索引标识域,分别对应IAB节点3和IAB节点4。针对图7中的任一LCG标识索引域,每个 LCG标识索引域最多对应的1个缓冲区大小域。具体的,当LCG标识索引域的取值为1时,表示该LCG标识索引域指示的LCG存在将要传输的上行数据,该LCG标识索引域可以对应1个缓冲区大小域;当LCG标识索引域的取值为0时,表示该LCG标识索引域指示的LCG不存在将要传输的上行数据,可以对应0个缓冲区大小域。
图7中,为了示意方便,将每个LCG标识索引域对应的缓冲区大小域都展示出来了,实际上,当一个LCG标识索引域指示的LCG不存在将要传输的上行数据,该LCG标识索引域不对应任何缓冲区大小域。
需要说明的是,图7所示的格式中,通过在一个BSR MAC CE内,第一IAB节点可以同时向第二节点指示发往第二节点的多个父节点的上行数据的数据量大小。
实现方式四:
前面的实现方式中,第一IAB节点在发送第一BSR之前,可以先确定第三IAB节点。在实现方式四中,第一IAB节点在发送第一BSR之前,可以不用确定第三IAB节点。
现有技术中,IAB节点获取上行数据时,可以根据上行数据对应的BAP层头中的BAP地址,从路由配置信息中确定该上行数据的下一跳节点。需要说明的是,通过BAP地址确定的下一跳节点可能有多个,因为上行数据传输至该BAP地址对应的IAB宿主,可能存在多个路由路径,不同路由路径包括的IAB节点不同。
举例来说,IAB节点1至IAB宿主之间存在两个路由路径,第一个路由路径可以为IAB节点1至IAB节点2,IAB节点2至IAB节点3,IAB节点3至IAB宿主;第二个路由路径可以为IAB节点1至IAB节点4,IAB节点4至IAB节点5,IAB节点5至IAB宿主。
那么,IAB节点1根据IAB宿主的BAP地址,可以将IAB节点2作为下一跳节点,也可以将IAB节点4作为下一跳节点。
可选的,还可以进一步通过路由路径标识确定上行数据的下一跳节点。结合上面的例子,第一个路由路径的路由路径标识为路由路径标识1,第二个路由路径的路由路径标识为路由路径标识2。当IAB节点1确定BAP地址时,还确定出路由路径标识为路由路径标识1,则IAB节点将IAB节点2作为下一跳节点。
结合上面的描述,在实现方式四,第一IAB节点在发送的第一BSR MAC CE中,携带第一IAB节点的IAB宿主的BAP地址,第二IAB节点从而可以根据所述BAP地址确定所述第三IAB节点,具体如何确定,在此不再赘述。
其中,需要说明的是,IAB宿主的BAP地址,可以IAB宿主CU的BAP地址,或者是IAB宿主DU的BAP地址。
当第一BSR MAC CE中携带第一IAB节点的IAB宿主的BAP地址时,第一BSR MAC CE的格式可以如图8所示。相比于现有技术,图8中新增了BAP标识域,用于携带BAP地址。
进一步可选的,第一BSR MAC CE中还可以包括路由路径标识,第二IAB节点从而可以根据所述BAP地址以及路由路径标识确定所述第三IAB节点。第一BSR MAC CE的格式可以如图8所示,其中BAP标识域用于携带BAP地址与路由路径标识。
需要说明的是,第一IAB节点可以使用上述实现方式向第二IAB节点发送第一BSR,也可以使用现有技术中的BSR MAC CE格式向第二IAB节点发送第一BSR。其中第一IAB节点使用现有BSR MAC CE还是上述增强的BSR MAC CE可以通过IAB宿主或者IAB宿 主CU进行配置。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
如图9所示,为本申请所涉及的通信装置的一种可能的示例性框图,该装置900可以以软件或硬件的形式存在。装置900可以包括:处理单元901和通信单元902。作为一种实现方式,该通信单元902可以包括接收单元和发送单元。处理单元901用于对装置900的动作进行控制管理。通信单元902用于支持装置900与其他网络实体的通信。
该装置900用于实现上述方法实施例第一IAB节点的功能时:
处理单元901,用于确定第二IAB节点;所述第二IAB节点为所述第一IAB节点的父节点;
通信单元902,用于向所述第二IAB节点发送第一缓冲区状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点。
在一种可能的实现方法中,所述第一BSR MAC CE对应的MAC子头包括第一指示信息;
所述第一指示信息用于指示所述第三IAB节点。
在一种可能的实现方法中,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
在一种可能的实现方法中,所述至少一个比特位为逻辑信道标识LCID域。
在一种可能的实现方法中,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
在一种可能的实现方法中,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
在一种可能的实现方法中,所述通信单元,还用于获取所述第二IAB节点到所述第二 IAB节点的父节点的路由配置信息;
所述处理单元,还用于根据所述路由配置信息确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
该装置900用于实现上述方法实施例中第二IAB节点的功能时:
通信单元902,用于接收来自第一IAB节点的第一缓存状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点;
处理单元901,用于确定第三IAB节点;
所述通信单元902,用于向所述第三IAB节点发送第二BSR。
在一种可能的实现方法中,所述第一BSR MAC CE的MAC子头包括第一指示信息;
所述第一指示信息用于指示所述第三IAB节点。
在一种可能的实现方法中,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
在一种可能的实现方法中,所述至少一个比特位为逻辑信道标识LCID域。
在一种可能的实现方法中,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
在一种可能的实现方法中,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
在一种可能的实现方法中,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
如图10所示为本申请实施例提供的装置1000,图10所示的装置可以为图9所示的装置的一种硬件电路的实现方式。该通信装置可适用于上面所示出的流程图中,执行上述方法实施例中第一核心网网元的功能。为了便于说明,图10仅示出了该通信装置的主要部件。
图10所示的装置1000包括至少一个处理器1001,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field  programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。
装置1000还可以包括至少一个存储器1002,用于存储程序指令和/或数据。存储器1002和处理器1001耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1001可能和存储器1002协同操作。处理器1001可能执行存储器1002中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置1000还可以包括通信接口1003,用于通过传输介质和其它设备进行通信,从而用于装置1000中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。
装置1000还可以包括通信线路1004。其中,通信接口1003、处理器1001以及存储器1002可以通过通信线路1004相互连接;通信线路1004可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1004可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该装置1000用于实现上述方法实施例第一IAB节点的功能时:
处理器1001,用于确定第二IAB节点;所述第二IAB节点为所述第一IAB节点的父节点;
通信接口1003,用于向所述第二IAB节点发送第一缓冲区状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点。
在一种可能的实现方法中,所述第一BSR MAC CE对应的MAC子头包括第一指示信息;
所述第一指示信息用于指示所述第三IAB节点。
在一种可能的实现方法中,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
在一种可能的实现方法中,所述至少一个比特位为逻辑信道标识LCID域。
在一种可能的实现方法中,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
在一种可能的实现方法中,所述第一BSR MAC CE包括M组LCG标识索引域,所述 M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
在一种可能的实现方法中,所述通信接口1003,还用于获取所述第二IAB节点到所述第二IAB节点的父节点的路由配置信息;
所述处理器1001,还用于根据所述路由配置信息确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
该装置1000用于实现上述方法实施例中第二IAB节点的功能时:
通信接口1003,用于接收来自第一IAB节点的第一缓存状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点;
处理器1001,用于确定第三IAB节点;
所述通信接口1003,用于向所述第三IAB节点发送第二BSR。
在一种可能的实现方法中,所述第一BSR MAC CE的MAC子头包括第一指示信息;
所述第一指示信息用于指示所述第三IAB节点。
在一种可能的实现方法中,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
在一种可能的实现方法中,所述至少一个比特位为逻辑信道标识LCID域。
在一种可能的实现方法中,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
在一种可能的实现方法中,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
在一种可能的实现方法中,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
在一种可能的实现方法中,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种缓冲区状态报告传输方法,其特征在于,包括:
    第一接入回传一体化IAB节点确定第二IAB节点;所述第二IAB节点为所述第一IAB节点的父节点;
    所述第一IAB节点向所述第二IAB节点发送第一缓冲区状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点。
  2. 根据权利要求1所述的方法,其特征在于,所述第一BSR MAC CE对应的MAC子头包括第一指示信息;
    所述第一指示信息用于指示所述第三IAB节点。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个比特位为逻辑信道标识LCID域。
  5. 根据权利要求1所述的方法,其特征在于,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
  6. 根据权利要求1所述的方法,其特征在于,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述第一IAB节点向所述第二IAB节点发送第一缓冲区状态报告BSR之前,所述方法还包括:
    所述第一IAB节点获取所述第二IAB节点到所述第二IAB节点的父节点的路由配置信息;
    所述第一IAB节点根据所述路由配置信息确定所述第三IAB节点。
  8. 根据权利要求1所述的方法,其特征在于,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
  9. 根据权利要求7所述的方法,其特征在于,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
  10. 一种缓冲区状态报告传输方法,其特征在于,包括:
    第二接入回传一体化IAB节点接收来自第一IAB节点的第一缓存状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节 点;
    所述第二IAB节点向所述第三IAB节点发送第二BSR。
  11. 根据权利要求10所述的方法,其特征在于,所述第一BSR MAC CE的MAC子头包括第一指示信息;
    所述第一指示信息用于指示所述第三IAB节点。
  12. 根据权利要求11所述的方法,其特征在于,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
  13. 根据权利要求12所述的方法,其特征在于,所述至少一个比特位为逻辑信道标识LCID域。
  14. 根据权利要求10所述的方法,其特征在于,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
  15. 根据权利要求10所述的方法,其特征在于,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
  16. 根据权利要求10所述的方法,其特征在于,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
  17. 根据权利要求16所述的方法,其特征在于,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
  18. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第二IAB节点;所述第二IAB节点为所述第一IAB节点的父节点;
    通信单元,用于向所述第二IAB节点发送第一缓冲区状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点。
  19. 根据权利要求18所述的装置,其特征在于,所述第一BSR MAC CE对应的MAC子头包括第一指示信息;
    所述第一指示信息用于指示所述第三IAB节点。
  20. 根据权利要求18所述的装置,其特征在于,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
  21. 根据权利要求20所述的装置,其特征在于,所述至少一个比特位为逻辑信道标识LCID域。
  22. 根据权利要求18所述的装置,其特征在于,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所 述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
  23. 根据权利要求18所述的装置,其特征在于,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
  24. 根据权利要求18至23任一所述的装置,其特征在于,所述通信单元,还用于获取所述第二IAB节点到所述第二IAB节点的父节点的路由配置信息;
    所述处理单元,还用于根据所述路由配置信息确定所述第三IAB节点。
  25. 根据权利要求18所述的装置,其特征在于,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
  26. 根据权利要求25所述的装置,其特征在于,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
  27. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自第一IAB节点的第一缓存状态报告BSR;所述第一BSR用于指示上行数据的数据量,所述第一BSR携带在第一BSR媒体接入控制MAC控制元素CE中,所述第一BSR MAC CE用于确定第三IAB节点,或者所述第一BSR MAC CE对应的MAC子头用于确定所述第三IAB节点,所述第三IAB节点为所述第二IAB节点的父节点,所述第三IAB节点为所述第二IAB节点传输所述上行数据的下一跳节点;
    处理单元,用于确定第三IAB节点;
    所述通信单元,用于向所述第三IAB节点发送第二BSR。
  28. 根据权利要求27所述的装置,其特征在于,所述第一BSR MAC CE的MAC子头包括第一指示信息;
    所述第一指示信息用于指示所述第三IAB节点。
  29. 根据权利要求28所述的装置,其特征在于,所述第一指示信息包括用于确定所述第三IAB节点的至少一个比特位。
  30. 根据权利要求29所述的装置,其特征在于,所述至少一个比特位为逻辑信道标识LCID域。
  31. 根据权利要求27所述的装置,其特征在于,所述第一BSR MAC CE包括至少一个LCG域,和,所述至少一个LCG域中的任一LCG域对应M个缓冲区大小域;其中,所述M个缓冲区大小域中的缓冲区大小域j,与所述第二IAB节点的父节点j对应,缓冲区大小域j指示所述第二IAB节点向所述第二IAB节点的父节点j发送的数据量;M为所述第二IAB节点的父节点的数量;j=1,2…M;M为大于或等于2的整数。
  32. 根据权利要求27所述的装置,其特征在于,所述第一BSR MAC CE包括M组LCG标识索引域,所述M组LCG标识索引域中的一组LCG标识索引域,与所述第二IAB节点的M个父节点中的一个父节点对应,M为所述第二IAB节点的父节点的数量。
  33. 根据权利要求27所述的装置,其特征在于,所述第一BSR MAC CE包括所述第一IAB节点的IAB宿主的BAP地址,所述BAP地址用于确定所述第三IAB节点。
  34. 根据权利要求33所述的装置,其特征在于,所述第一BSR MAC CE还包括路由路径标识,所述路由路径标识用于确定所述第三IAB节点。
  35. 一种通信装置,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得, 所述处理器用于执行如权利要求1至17中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,包括计算机可读指令,当通信装置读取并执行所述计算机可读指令时,使得所述通信装置执行如权利要求1至17中任一项所述的方法。
  37. 一种计算机程序产品,其特征在于,包括计算机可读指令,当通信装置读取并执行所述计算机可读指令,使得所述通信装置执行如权利要求1至17中任一项所述的方法。
PCT/CN2019/109620 2019-09-30 2019-09-30 一种缓冲区状态报告传输方法及装置 WO2021062717A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980100560.5A CN114424621A (zh) 2019-09-30 2019-09-30 一种缓冲区状态报告传输方法及装置
PCT/CN2019/109620 WO2021062717A1 (zh) 2019-09-30 2019-09-30 一种缓冲区状态报告传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109620 WO2021062717A1 (zh) 2019-09-30 2019-09-30 一种缓冲区状态报告传输方法及装置

Publications (1)

Publication Number Publication Date
WO2021062717A1 true WO2021062717A1 (zh) 2021-04-08

Family

ID=75336654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109620 WO2021062717A1 (zh) 2019-09-30 2019-09-30 一种缓冲区状态报告传输方法及装置

Country Status (2)

Country Link
CN (1) CN114424621A (zh)
WO (1) WO2021062717A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113760582A (zh) * 2021-09-09 2021-12-07 北京京东振世信息技术有限公司 一种单据申报方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109964419A (zh) * 2016-09-29 2019-07-02 At&T知识产权一部有限合伙公司 集成的接入和回程(iab)无线网络的初始接入和无线电资源管理
WO2019139735A1 (en) * 2018-01-11 2019-07-18 At & T Intellectual Property I, L.P. Radio link control layer based relaying for integrated access and backhaul transmissions in wireless networks
US20190223078A1 (en) * 2018-03-28 2019-07-18 Alexander Sirotkin Next generation node-b (gnb) for integrated access and backhaul (iab) relay in new radio (nr) networks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191216B (zh) * 2013-03-15 2019-03-08 华为技术有限公司 用于多流聚合的缓冲区状态报告的***和方法
CN108990165B (zh) * 2017-05-31 2023-11-24 株式会社Kt 下一代移动通信的用于处理缓冲状态报告的方法和装置
CN109041110B (zh) * 2017-06-09 2020-06-26 维沃移动通信有限公司 一种bsr传输方法、相关设备和***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109964419A (zh) * 2016-09-29 2019-07-02 At&T知识产权一部有限合伙公司 集成的接入和回程(iab)无线网络的初始接入和无线电资源管理
WO2019139735A1 (en) * 2018-01-11 2019-07-18 At & T Intellectual Property I, L.P. Radio link control layer based relaying for integrated access and backhaul transmissions in wireless networks
US20190223078A1 (en) * 2018-03-28 2019-07-18 Alexander Sirotkin Next generation node-b (gnb) for integrated access and backhaul (iab) relay in new radio (nr) networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC., LG UPLUS: "BSR MAC CE format for pre-BSR", 3GPP DRAFT; R2-1911339 BSR MAC CE FORMAT FOR PRE-BSR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051769096 *
SAMSUNG: "Egress link identification", 3GPP DRAFT; R2-1910186 EGRESS LINK IDENTIFICATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 15 August 2019 (2019-08-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051767967 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113760582A (zh) * 2021-09-09 2021-12-07 北京京东振世信息技术有限公司 一种单据申报方法和装置
CN113760582B (zh) * 2021-09-09 2024-05-24 北京京东振世信息技术有限公司 一种单据申报方法和装置

Also Published As

Publication number Publication date
CN114424621A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US11968633B2 (en) Relay communication method and apparatus
JP7440562B2 (ja) 情報伝送方法及び装置
US11140729B2 (en) Relay transmission method and device
WO2020164615A1 (zh) 一种通信方法及相关设备
WO2020192783A1 (zh) 一种无线承载的配置方法、装置及***
WO2020164523A1 (zh) 一种无线回传链路的控制方法及装置
WO2020199829A1 (zh) 一种缓冲区状态报告传输方法及装置
US10848975B2 (en) System and method of providing UE capability for support of security protection on bearers
EP3846529B1 (en) Data transmission method and device
WO2020098747A1 (zh) 传输路径的配置方法及装置
WO2021088666A1 (zh) 数据传输方法和装置
WO2021062803A1 (zh) 一种数据包传输方法及装置
WO2020164178A1 (zh) 一种数据传输方法及装置
WO2020156211A1 (zh) 数据发送方法及终端设备
WO2022205234A1 (zh) 一种通信方法及装置
WO2021036910A1 (zh) 数据传输方法及装置
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
JP2023517081A (ja) 通信方法および装置
WO2020088255A1 (zh) 一种无线回传处理方法及通信装置
WO2021062717A1 (zh) 一种缓冲区状态报告传输方法及装置
WO2023125310A1 (zh) 一种通信方法及通信装置
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2022242749A1 (zh) 数据传输方法、通信装置、计算机可读存储介质和芯片
WO2022188035A1 (zh) 一种通信方法及装置
WO2022104689A1 (zh) 一种小区频域带宽切换的方法、相关装置以及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947604

Country of ref document: EP

Kind code of ref document: A1