WO2021062665A1 - ***信息的传输方法和通信装置 - Google Patents

***信息的传输方法和通信装置 Download PDF

Info

Publication number
WO2021062665A1
WO2021062665A1 PCT/CN2019/109530 CN2019109530W WO2021062665A1 WO 2021062665 A1 WO2021062665 A1 WO 2021062665A1 CN 2019109530 W CN2019109530 W CN 2019109530W WO 2021062665 A1 WO2021062665 A1 WO 2021062665A1
Authority
WO
WIPO (PCT)
Prior art keywords
sib1
pdcch
parameter
resource set
control resource
Prior art date
Application number
PCT/CN2019/109530
Other languages
English (en)
French (fr)
Inventor
余雅威
李超君
郑娟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109530 priority Critical patent/WO2021062665A1/zh
Priority to CN201980100137.5A priority patent/CN114342520A/zh
Publication of WO2021062665A1 publication Critical patent/WO2021062665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the synchronization signal block or synchronization (synchronization sigal, SS)/physical broadcast channel block (physical broadcast channel block, PBCH block) is a signal structure.
  • PBCH contains the most basic system information such as system frame number, timing information within the frame, and so on.
  • the successful reception of the synchronization signal block by the terminal equipment is a prerequisite for its access to the cell.
  • the terminal device completes the cell search and synchronization process by correctly receiving the master information block (master information block, MIB) carried in the PBCH. Specifically, by receiving the MIB, the terminal device obtains the configuration information required to interpret the system information block Type 1 (SIB1) message included in the MIB.
  • the configuration information may include the control resource set corresponding to SIB1 (control resource set, Coreset) and search space (search space, SS), etc.
  • SIB1 is obtained according to the configuration information corresponding to SIB1.
  • SIB1 may include configuration information required for terminal equipment to access the system, and terminal equipment may implement system access, cell selection, and uplink synchronization according to SIB1.
  • the current new radio (new radio, NR) system has launched a discussion about simple capability terminal equipment to access the NR system.
  • Simple-capable terminal equipment supporting smaller bandwidth, fewer antennas, lower energy consumption, lower cost, etc.
  • a method for transmitting system information is provided.
  • the execution subject of the method can be either a terminal device or a chip applied to the terminal device.
  • the terminal device may be a simple-capable terminal device (or a first device).
  • the method includes: obtaining a parameter indicating the position of a demodulation reference signal DMRS of a type A physical downlink shared channel PDSCH in the first MIB, and the parameter is used to obtain a first system information block SIB1, and the first SIB1 includes a first device The access configuration information; according to the parameter, the first SIB1 is obtained.
  • the MIB transmission method provided in the first aspect redefines the content indicated by the field (parameter) of the parameter for the DMRS position of the demodulation reference signal DMRS of Type A PDSCH in the MIB.
  • the field may be DMRS-TypeA in the MIB.
  • -Position field This field is defined for simple-capable terminal devices to obtain the corresponding SIB1, so that simple-capable terminal devices can obtain SIB1, so that they can access the system sequentially and quickly and achieve uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the access configuration information of the first device may be the configuration information of the first device accessing the system, and the access configuration information may be understood as data transmission between the first device and the network device The necessary system information required.
  • the access configuration information may include: RACH configuration information, cell camping and selection configuration information, access service initiation configuration information, scheduling information of other system messages, and so on.
  • the parameter is used to indicate the control resource set corresponding to the first SIB1; acquiring the first SIB1 according to the parameter includes:
  • the physical downlink control channel PDCCH is detected on the control resource set corresponding to the first SIB1 indicated by the parameter, and the PDCCH is used to schedule the physical downlink shared channel PDSCH that carries the first SIB1.
  • the parameter for the DMRS position of the demodulation reference signal of type A PDSCH is used to indicate the control resource set corresponding to the first SIB1, so that the terminal device can obtain the first SIB1, so as to improve the accuracy of the terminal device in obtaining the first SIB1. Rate, easy to achieve.
  • the first information may include one or more of MCS, the number of HARQ processes, NDI, and RV fields.
  • the terminal device does not need to read one or more of the MCS field, HARQ process number field, NDI field, and RV field in the DCI, and directly adopts a predefined value or a value configured through higher layer signaling.
  • the data in the PDSCH is acquired according to the downlink control information DCI carried by the first PDCCH The first SIB1.
  • the first PDCCH is the PDCCH in the control resource set corresponding to the first SIB1
  • the first PDCCH is scrambled using the first wireless network temporary identifier RNTI
  • the second PDCCH is the PDCCH in the control resource set corresponding to the second SIB1
  • the second PDCCH is scrambled using a second RNTI
  • the first PDCCH is different from the second PDCCH
  • the first RNTI is different from the second RNTI.
  • the first RNTI may be the first U-RNTI, or the first RNTI may be the first C-RNTI.
  • the second RNTI may be a second U-RNTI or a second C-RNTI. The first U-RNTI and the second U-RNTI are different, and the first C-RNTI and the second C-RNTI are different.
  • the parameter is used to indicate that the first SIB1 is received at a first time-frequency position, where the first time-frequency position is predefined or configured through higher layer signaling.
  • the terminal can directly receive the first SIB1 on the PDSCH according to the indicated time-frequency resource location. The accuracy and efficiency of acquiring the first SIB1 by the first terminal device can be improved, and implementation is facilitated.
  • the parameter is used to indicate the first physical broadcast channel PBCH corresponding to the first SIB1, and acquiring the first SIB1 according to the parameter includes: acquiring the first PBCH according to the first PBCH One SIB1, the time-frequency resource location of the first PBCH is predefined or configured through higher layer signaling.
  • the terminal can directly indicate the first PBCH according to the parameters used for the demodulation reference signal DMRS position of the type A PDSCH, and obtain the first PBCH from the first PBCH.
  • the configuration information is further obtained for the first SIB1, so that the terminal equipment can access the system sequentially and quickly, and realize uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the parameter is used to indicate whether there is an update for the first SIB1.
  • acquiring the first SIB1 according to the parameter includes: determining that the previous SIB1 is the first SIB1 according to the parameter , The previous SIB1 is the SIB1 acquired last time by the first device.
  • the first terminal device may directly determine the previously acquired SIB1 as the first SIB1.
  • the terminal device does not need to perform various steps and processes of acquiring the first SIB1 according to the first SIB1 configuration information included in the first MIB currently received.
  • the complexity of obtaining the first SIB1 by the terminal device can be reduced, and the power consumption of the terminal device can be reduced.
  • acquiring the first SIB1 according to the parameter includes: according to the configuration of the first SIB1 indicated in the first MIB Information to obtain the first SIB1.
  • the time domain symbol position of the first DMRS carrying the PDSCH of the first SIB1 is the location of the PDSCH The 4th time domain symbol in the time unit.
  • the predefined can be understood as defined by the protocol.
  • the signaling configuration can be understood as configured by high-level or physical layer signaling.
  • High-level signaling may include, for example, radio resource control (radio resource control, RRC), medium access control (medium access control, MAC) control element (CE), and radio link control (radio link control, RLC).
  • RRC radio resource control
  • MAC medium access control
  • CE control element
  • RLC radio link control
  • the physical layer signaling may include, for example, downlink control information (DCI), signaling transmitted through a downlink physical layer channel, and the like.
  • the physical downlink channel may be, for example, PDCCH or PDSCH.
  • the parameter (field) used for the position of the demodulation reference signal DMRS of Type A PDSCH is the Dmrs-TypeA-Position parameter (field).
  • a method for system information transmission is provided.
  • the execution subject of the method can be either a network device or a chip applied to the network device.
  • the method includes: determining a first master information block MIB, the first MIB including a parameter used to indicate a position of a demodulation reference signal DMRS of a type A physical downlink shared channel PDSCH, and the parameter is used to indicate a first system information block SIB1.
  • the first SIB1 includes access configuration information of the first device. Send the first MIB.
  • the MIB transmission method provided in the second aspect redefines the content indicated by the field (parameter) of the parameter of the DMRS position of the demodulation reference signal DMRS of Type A PDSCH in the MIB.
  • the field may be DMRS-TypeA in the MIB.
  • -Position field This field is defined for simple-capable terminal devices to obtain the corresponding SIB1, so that simple-capable terminal devices can obtain SIB1, so that they can access the system sequentially and quickly and achieve uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the parameter is used to indicate the control resource set corresponding to the first SIB1.
  • the parameter used for the position of the demodulation reference signal DMRS of the type A PDSCH indicates the control resource set corresponding to the first SIB1, which can improve the accuracy of obtaining the first SIB1 by the terminal device and facilitate implementation.
  • control resource set corresponding to the first SIB1 is the same as or different from the control resource set corresponding to the second SIB1, wherein the first MIB includes a first parameter, and the first parameter It is used to indicate the control resource set corresponding to the second SIB1, and the second SIB1 includes the access configuration information of the second device.
  • the control resource set corresponding to the first SIB1 when the control resource set corresponding to the first SIB1 is the same as the control resource set corresponding to the second SIB1, the downlink control carried by the PDCCH in the control resource set corresponding to the first SIB1
  • the first information in the information DCI is predefined or configured through higher layer signaling.
  • the indicated information or values of certain fields (parameters) in the DCI are configured through predefined or high-level signaling.
  • the first information may include one or more of MCS, the number of HARQ processes, NDI, and RV fields.
  • the terminal device does not need to read one or more of the MCS field, HARQ process number field, NDI field, and RV field in the DCI, and directly adopts a predefined value or a value configured through higher layer signaling.
  • the first PDCCH uses the first RNTI for scrambling
  • the second PDCCH uses the first RNTI.
  • Two RNTI scrambling where the first PDCCH is the PDCCH in the control resource set corresponding to the first SIB1
  • the second PDCCH is the PDCCH in the control resource set corresponding to the second SIB1
  • the first PDCCH and the second PDCCH Different, the first RNTI is different from the second RNTI.
  • the parameter is used to indicate that the first SIB1 is located at the first time-frequency position.
  • the first time-frequency position is predefined or configured through high-layer signaling.
  • the terminal can directly receive the first SIB1 on the PDSCH according to the indicated time-frequency resource location. The accuracy and efficiency of acquiring the first SIB1 by the first terminal device can be improved, and implementation is facilitated.
  • the parameter is used to indicate the first physical broadcast channel PBCH corresponding to the first SIB1, and the time-frequency resource location of the first PBCH is predefined or configured through higher layer signaling.
  • the terminal can directly indicate the first PBCH according to the parameters used for the demodulation reference signal DMRS position of the type A PDSCH, and obtain the first PBCH from the first PBCH.
  • the configuration information is further obtained for the first SIB1, so that the terminal equipment can access the system sequentially and quickly, and realize uplink synchronization and cell selection.
  • the medium terminal equipment with simple ability can communicate normally, and the communication efficiency can be improved.
  • the parameter is used to indicate whether there is an update for the first SIB1.
  • the terminal device can directly determine the SIB1 obtained previously as the first SIB1. SIB1.
  • the terminal device does not need to perform various steps and processes of acquiring the first SIB1 according to the first SIB1 configuration information included in the first MIB currently received. The complexity of obtaining the first SIB1 by the terminal device can be reduced, and the power consumption of the terminal device can be reduced.
  • the time domain symbol position of the first DMRS carrying the PDSCH of the first SIB1 is the location of the PDSCH The 4th time domain symbol in the time unit.
  • the parameter (field) used for the position of the demodulation reference signal DMRS of Type A PDSCH is the Dmrs-TypeA-Position parameter (field).
  • a communication device which includes a unit for executing the steps in the above first aspect or any possible implementation of the first aspect.
  • a communication device in a fourth aspect, includes a unit for executing each step in the above second aspect or any possible implementation manner of the second aspect.
  • a communication device in a sixth aspect, includes at least one processor and a memory, and the at least one processor is configured to execute the above second aspect or any possible implementation of the second aspect.
  • a communication device which includes at least one processor and an interface circuit, and the at least one processor is configured to execute the above first aspect or the method in any possible implementation manner of the first aspect.
  • a terminal device is provided, and the terminal device may be a simple-capable terminal device.
  • the terminal device includes the communication device provided in the foregoing third aspect, or the terminal device includes the communication device provided in the foregoing fifth aspect, or the terminal device includes the communication device provided in the foregoing seventh aspect.
  • a network device in a tenth aspect, includes the communication device provided in the foregoing fourth aspect, or the terminal device includes the communication device provided in the foregoing sixth aspect, or the terminal device includes the foregoing eighth aspect ⁇ Communication device.
  • a computer program product includes a computer program.
  • the computer program is executed by a processor, the computer program is used to execute the method in the first aspect or any possible implementation of the first aspect , Or execute the method in the second aspect or any possible implementation of the second aspect.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed, it is used to execute the first aspect or any possible implementation manner of the first aspect Or execute the method in the second aspect or any possible implementation of the second aspect.
  • a communication system in a thirteenth aspect, includes the aforementioned simple terminal device and network device.
  • the communication system may also include terminal devices with normal capabilities.
  • this field can be the field of the DMRS-TypeA-Position in the MIB, which is used to indicate the terminal access of a simple-capable terminal device NR system and get SIB1.
  • This enables simple-capable terminal devices to acquire SIB1 and access the system sequentially and quickly, so as to achieve uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • Figure 1 is a schematic diagram of a possible structure of a synchronization signal block.
  • Fig. 3 is a schematic interaction diagram of an example of a method for transmitting system information provided by an embodiment of the present application.
  • Fig. 4 is a schematic interaction diagram of another example of a method for transmitting system information provided by an embodiment of the present application.
  • FIG. 5 is a schematic interaction diagram of another example of a method for transmitting system information according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of another example of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 5NR New Radio
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • Synchronization signal block or synchronization is a signal structure suitable for 5G and subsequent communication systems.
  • Figure 1 is a schematic diagram of a possible structure of a synchronization signal block.
  • the synchronization signal block includes a primary synchronization signal (Primary Synchronization Sigal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and a physical broadcast channel (Physical Broadcast Channel, PBCH).
  • PSS and SSS The main function of PSS and SSS is to help user equipment identify and synchronize with the cell, while PBCH contains the most basic system information such as system frame number, intra-frame timing information, etc.
  • PBCH contains the most basic system information such as system frame number, intra-frame timing information, etc.
  • the user equipment successfully receives the synchronization signal block is a prerequisite for its access to the cell.
  • the terminal device After the terminal device is turned on, it needs to access a cell by performing a cell search (random access procedure). Mainly involves the following process:
  • the secondary synchronization signal can also be used for wireless resource management related measurements and wireless link detection related measurements.
  • terminal equipment needs to go through the following process to perform normal interpretation of multiple system information:
  • DMRS modulation and demodulation reference signal
  • the DCI may include: time-frequency resources corresponding to PDSCH, data modulation mode corresponding to PDSCH transmission information, data transmission block size (Transmission Block Size, TBS), power configuration, etc.
  • TBS Transmission Block Size
  • SI System Information
  • Table 1 is a schematic table of multiple bits (fields) and function descriptions carried by the MIB.
  • NR has launched a discussion on the access of simple-capable terminal equipment to the NR system.
  • simple-capable terminal equipment in massive machine type communication (mMTC)
  • mMTC massive machine type communication
  • Simple capability terminal equipment can also be called NR-Light terminal equipment. Therefore, NR-Light terminal equipment and traditional enhanced mobile broadband (eMBB) terminal equipment and ultra-reliable low-latency communication (URLLC) terminal equipment are in terms of access capability, supported bandwidth, etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • typeA is one of the PDSCH mapping types.
  • the PDSCH mapping type can include typeA and typeB.
  • these types can be distinguished by DMRS types.
  • the PDSCH performs time-frequency resource mapping, it is necessary to consider the starting position S of the mapping and the length L of the continuous physical resource block PRB (which can also be understood as the number of continuous PRBs).
  • the value range of S, the value range of L, and the value range of the sum of S and L are different. There is no specific limitation here, and reference may be made to the explanation of the prior art or the possible definition of the future communication system.
  • typeA and typeB only represent two different types.
  • typeA can be called the first type
  • typeB can be called the second type.
  • Different PDSCH mapping types can be distinguished as the standard. Alternatively, it can also be used for Distinguish other possible PDSCH types.
  • terminal devices that access the NR system need to read the MIB information indication carried in the PBCH, perform correct interpretation of the SIB1 related PDCCH on the corresponding Coreset and search space, and finally obtain SIB1.
  • the process of accessing the system and obtaining SIB1 is different from that of traditional eMBB and URLLC terminal devices.
  • a simple-capable terminal device supports a smaller number of blind checks and a smaller bandwidth. It is necessary to design special configuration information related to obtaining SIB1 (or also called SIB1 scheduling information) for simple-capable terminal devices, so that simple-capable terminal devices can also sequentially and quickly access the system and obtain SIB1.
  • this application provides a MIB transmission method for the master information block by releasing/re-interpreting the field (parameter) of the DMRS position of the Type A PDSCH in the MIB.
  • the field may be the DMRS in the MIB.
  • -The TypeA-Position field is used to instruct simple-capable terminal devices to access the NR system and obtain SIB1. This enables simple-capable terminal devices to quickly acquire SIB1 and access the system to achieve uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the communication system shown in FIG. 2 may also include more network nodes, such as terminal equipment or network equipment, and the network equipment or terminal equipment included in the communication system shown in FIG. 2 may be the aforementioned various forms of networks. Equipment or terminal equipment.
  • the embodiments of the present application are not shown one by one in the figure.
  • FIG. 3 is a schematic interaction diagram of a MIB transmission method 200 according to an embodiment of the application.
  • the method 200 can be applied to the scenario shown in FIG. 2, of course. It can also be applied in other communication scenarios, and the embodiment of the present application does not limit it here.
  • the method is described by taking the first terminal device and the network device as the execution subject of the execution method as an example.
  • the execution subject of the execution method may also be a chip, a chip system, or a processor applied to the first terminal device and the network device.
  • the first terminal device may be a simple-capable terminal device.
  • the method 200 shown in FIG. 3 may include S210 to S240. Each step in the method 200 will be described in detail below with reference to FIG. 3.
  • the network device determines a first MIB, the first MIB includes a parameter indicating the position of the demodulation reference signal DMRS of type A PDSCH, and the parameter indicating the position of the demodulation reference signal DMRS of type A PDSCH is used for the first terminal device Acquire a first system information block SIB1, where the first SIB1 includes the access configuration information of the first terminal device.
  • the first device may be a simple-capable terminal device.
  • a terminal device with a simple capability represented by the first terminal device will be used as an example for description.
  • the expressions of "first device” and "first terminal device” can be interchanged.
  • the type A PDSCH in this application may also be referred to as the first type PDSCH, and the PDSCH performs resource mapping in the first type of mapping manner.
  • the first terminal device acquires a parameter indicating the position of the demodulation reference signal DMRS of the type A physical downlink shared channel PDSCH in the first MIB, and the parameter indicating the position of the demodulation reference signal DMRS of the type A PDSCH is used in the first MIB.
  • the terminal device obtains the first system information block SIB1, and the first SIB1 includes the access configuration information of the first terminal device.
  • the network device in the process of cell access and selection, the network device will determine (also can be understood as generating, that is, the network device will inevitably determine or generate the first MIB before sending the first MIB).
  • the first MIB may be carried in the first PBCH sent by the network device.
  • the first MIB includes parameters for indicating the position of the demodulation reference signal DMRS of type A PDSCH.
  • the parameter used to indicate the position of the demodulation reference signal DMRS of Type A PDSCH may be the Dmrs-TypeA-Position field included in the first MIB.
  • the information included in the first MIB you can refer to the content shown in Table 1. For brevity, details are not repeated here.
  • the parameters (fields) used to indicate the position of the demodulation reference signal DMRS of Type A PDSCH are described by taking the Dmrs-TypeA-Position field as an example. It should be understood that the implementation of this application In an example, the parameter used to indicate the position of the demodulation reference signal DMRS of type A PDSCH may also be other fields (parameters) included in the first MIB or newly added fields (parameters) of the first MIB, as long as the field (parameter) is used Just indicate the position of the demodulation reference signal DMRS of type A PDSCH, which is not limited in this application.
  • the field (parameter) used by the first terminal device to obtain the first SIB1 may not be a parameter (field) indicating the position of the demodulation reference signal DMRS of type A PDSCH, but other fields (parameters) of the first MIB. Obtain the first SIB1 from the first terminal device. This application is not restricted here.
  • the PDSCH mapping type mainly determines the time domain symbol position of the DMRS of the PDSCH.
  • the Dmrs-TypeA-Position field is mainly used to indicate the position of the first DMRS of the PDSCH in the time unit (for example, time slot) where the PDSCH is located when the PDSCH mapping type A is used.
  • Dmrs-TypeA-Position may indicate that the position of the first DMRS is in the third or fourth time domain symbol of the slot in which the PDSCH is located.
  • the time domain symbol position of the first DMRS of the PDSCH (or also referred to as the PDSCH carrying the first SIB1) corresponding to the first terminal device is located in the time unit (for example, time slot) where the PDSCH is located.
  • the fourth time domain symbol That is, when the mapping type of the PDSCH corresponding to the first terminal device is type A, the position of the preamble DMRS symbol is the fourth time domain symbol.
  • the Dmrs-TypeA-Position field in the first MIB is used by the first terminal device to obtain the first SIB1, and the first SIB1 includes the access configuration information of the first terminal device.
  • the network device sends the first MIB to the first terminal device. Specifically, after the network device determines the first MIB, it will send the first MIB to the first terminal device through the first PBCH (or the first SSB). That is, the first MIB is carried in the first PBCH.
  • the network device sends the first PBCH (or the first SSB) to the first terminal device, and the first MIB is carried in the first PBCH (or the first SSB).
  • the first terminal device obtains the first MIB in the first PBCH by receiving the first PBCH.
  • the first terminal device reads the Dmrs-TypeA-Position field in the first MIB. Among them, the Dmrs-TypeA-Position field is used by the first terminal device to obtain the first SIB1.
  • the first SIB1 corresponds to the first terminal device, and the first SIB1 includes access configuration information of the first terminal device.
  • the first SIB1 can be used for simple-capable terminal equipment to perform system access, cell selection, and uplink synchronization.
  • the first SIB1 may include one or more of the following information:
  • Cell selection parameters necessary information for the first terminal device to determine whether the signal of the cell meets the cell camping condition
  • Access control parameters necessary information for the first terminal device to determine whether a certain type of access service is allowed to initiate;
  • the system message of the first terminal device requests configuration information
  • Some other information of the first terminal device such as whether to support IP-based voice transmission (Voice over Internet Protocol, VoIP) services, etc.
  • VoIP Voice over Internet Protocol
  • the first terminal device obtains the Dmrs-TypeA-Position field, and can obtain the first SIB1 according to the indication of the Dmrs-TypeA-Position field. According to the first SIB1, the first SIB1 can be obtained, and then the first terminal device can access the system and obtain the SIB1 sequentially and quickly, thereby realizing system access, cell selection, and uplink synchronization, etc., ensuring that terminal devices with simple capabilities can Normal communication improves communication efficiency.
  • second terminal devices for terminal devices with normal capabilities (hereinafter referred to as second terminal devices, and may also be referred to as second devices), for example, traditional enhanced mobile broadband (eMBB) terminal devices and high reliability and low latency ( ultra-reliable low-latency communication (URLLC) terminal equipment.
  • the second terminal device may obtain SIB1 (hereinafter referred to as second SIB1) related configuration information corresponding to the second terminal device according to the pdcch-ConfigSIB1 field in the first MIB.
  • the pdcch-ConfigSIB1 field is used to indicate the configuration of the PDCCH related to the second SIB1, including the Coreset and search space where the PDCCH is located, so as to obtain the second SIB1.
  • the second SIB1 includes information used by the second terminal device to implement cell access, cell selection, and uplink synchronization.
  • the expressions "second device” and "second terminal equipment” can be interchanged
  • the mapping type of the PDSCH carrying the second SIB1 is Type A
  • the time domain symbol position of the first DMRS of the PDSCH of the second SIB1 is the fourth time domain symbol or the third time slot symbol in the time unit (for example, time slot) where the PDSCH is located.
  • the MIB transmission method provided in this application redefines the content indicated by the field (parameter) of the parameter of the DMRS position of the demodulation reference signal DMRS of Type A PDSCH in the MIB.
  • the field may be DMRS-TypeA- in the MIB.
  • Position field This field is defined for simple-capable terminal devices to obtain the corresponding SIB1, so that simple-capable terminal devices can obtain SIB1, so that they can access the system sequentially and quickly and achieve uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the first terminal device detects a PDCCH on the control resource set corresponding to the first SIB1 indicated by the Dmrs-TypeA-Position field, and the PDCCH is used to schedule a physical downlink shared channel PDSCH that carries the first SIB1.
  • the first terminal device obtains the first SIB1 carried on the physical downlink shared channel PDSCH.
  • the Dmrs-TypeA-Position field may indicate the control resource set corresponding to the first SIB1 (hereinafter referred to as the first control resource set).
  • the first terminal device may determine the time-frequency position of the first control resource set according to the Dmrs-TypeA-Position field.
  • the control resource set can be understood as: certain specific time-frequency resources are used to carry control channels on the time-frequency resources in the system. These specific time-frequency resources will be notified to the terminal device through high-level signaling in advance, so that the terminal device can follow At a specific detection moment, the control channel is detected on the specific time-frequency resource.
  • the control resource set includes the time-frequency resource information occupied by the network device to send the control channel (such as PDCCH).
  • the network device can configure one or more control resource sets for the terminal device, and the network device can be in any one corresponding to the terminal device. On the control resource set, the control channel is sent to the terminal device.
  • the terminal device may receive the control channel sent by the network device on the time-frequency resource indicated by the control resource set.
  • the first terminal device may determine the time-frequency position of a control resource set (first control resource set) according to the indication of the Dmrs-TypeA-Position field. Wherein, the time-frequency position of the first control resource set may be predefined by a protocol or configured by high-level signaling.
  • the first terminal device may detect the PDCCH on the first control resource set. Wherein, the PDCCH carries DCI, and the DCI is used to schedule the PDSCH carrying the first SIB1.
  • the DCI may include: time-frequency resources corresponding to PDSCH, data modulation mode corresponding to PDSCH transmission information, data transmission block size (Transmission Block Size, TBS), power configuration, and the like.
  • the first terminal device may receive the PDSCH according to the DCI.
  • the first terminal device can obtain the first SIB1 carried on the PDSCH after receiving the PDSCH.
  • the time-frequency position of the control resource set indicated by the Dmrs-TypeA-Position field may be predefined by the protocol or configured by high-level signaling.
  • the time-frequency position of the first SIB1 on the PDSCH may also be predefined by the protocol or configured by high-layer signaling.
  • the Dmrs-TypeA-Position field indicates 1, it corresponds to a pre-configured or pre-defined control resource set.
  • the Dmrs-TypeA-Position field indicates 0, it corresponds to another pre-configured or pre-defined control resource set. That is, there may also be a corresponding relationship between the value indicated by the Dmrs-TypeA-Position field and the control resource set. The corresponding relationship may also be predefined by the protocol or configured by high-level signaling.
  • the Dmrs-TypeA-Position field indicates the control resource set corresponding to the first SIB1, so that the first terminal device can obtain the first SIB1.
  • the accuracy of obtaining the first SIB1 by the first terminal device can be improved, which is convenient for implementation.
  • the first parameter in the first MIB may also indicate the control resource set of the second terminal device corresponding to the second SIB1.
  • the Dmrs-TypeA-Position field indicates the control resource set (hereinafter referred to as the first control resource set) and the control resource set indicated by the pdcch-ConfigSIB1 field (hereinafter referred to as the second control resource set) may be the same or No need to.
  • the second control resource set is used for the second terminal device to obtain the second SIB1.
  • the second SIB1 includes access configuration information of the second terminal device.
  • the second SIB1 may include one or more of the following information:
  • Cell selection parameters necessary information for the second terminal device to determine whether the signal of the cell meets the cell camping condition
  • Access control parameters necessary information for the second terminal device to determine whether a certain type of access service is allowed to initiate;
  • the system message of the second terminal device requests configuration information
  • the Coreset during the initial access process can be called Coreset0, that is, during the initial access process, the pdcch-ConfigSIB1 field in the first MIB
  • the indicated is Coreset0.
  • the frequency range (frequency domain position and bandwidth) of Coreset0 is exactly the same as the bandwidth part (bandwidthPart, BWP) at the time of initial access, and the BWP can be understood as the time-frequency resource used to transmit the first PBCH (SSB).
  • the occupation of the first control resource set may be predefined or configured by a higher layer.
  • the deviation between the lower boundary of the first control resource set and the lower boundary of the first PBCH may be predefined or configured by a higher layer, and the deviation may be a resource block (Resource Block, RB) corresponding to the subcarrier interval of Coreset 0 as a unit.
  • Resource Block Resource Block
  • the first control resource set indicated by the Dmrs-TypeA-Position field may also be Coreset0.
  • the pdcch-ConfigSIB1 field in the first MIB can also indicate the deviation between the lower boundary of Coreset0 and the lower boundary of the first PBCH.
  • the deviation can be based on the resource block corresponding to the subcarrier interval of Coreset0. , RB) as the unit.
  • the upper 4 bits of the pdcch-ConfigSIB1 field can be used to indicate.
  • the first terminal device may use the DCI carried by the PDCCH in the first control resource set and the first information Acquire the first SIB1 in the PDSCH, where the first information is predefined or configured through higher layer signaling.
  • the first terminal device and the second terminal need to detect the PDCCH on the control resource set, that is, the first terminal device and the second terminal detect the DCI on the same control resource set.
  • the manner in which the first terminal device and the second terminal device read the DCI may be different. For example, suppose the length of the DCI is 10 bits, including four different field indications. For the first terminal device, the meaning of some bits (or some fields) among these 10 bits may be predetermined or configured by high-level signaling. For example, the MCS indicated by the modulation and coding scheme (MCS) field (or also referred to as the parameter MCS) in the DCI is predefined.
  • MCS modulation and coding scheme
  • the MCS field may be the above-mentioned first information. That is, the first information may be information indicated by certain fields in the DCI, and this information is predefined or configured through higher layer signaling.
  • the first terminal device reads the DCI, it does not read the fields in the DCI corresponding to the first information, but instead uses predefined information or information configured through high-level signaling. For fields that are not predefined in the DCI or configured through high-layer signaling, the first terminal device needs to read the information of these fields. That is, the first terminal device may obtain the first SIB1 in the PDSCH according to the DCI carried by the PDCCH in the first control resource set and the first information.
  • the first information may be information indicated by certain fields in the DCI, and the first information is predefined or configured through higher layer signaling.
  • the entire DCI needs to be read to obtain the second SIB1 in the PDSCH. That is, for the same DCI, the length of the DCI that the first terminal device and the second terminal device need to read are different.
  • the first terminal device after blindly detecting the DCI in the PDCCH, some bits in the DCI may not be interpreted, and the predefined first information may be directly used.
  • the first information may include: MCS, hybrid automatic repeat request (HARQ) process number (HARQ process number), and new data indicator (NDI) , One or more of redundancy version (redundancy version, RV), etc.
  • MCS hybrid automatic repeat request
  • HARQ process number hybrid automatic repeat request
  • NDI new data indicator
  • RV redundancy version
  • the first terminal device does not need to read one or more of the MCS field, HARQ process number field, NDI field, and RV field in the DCI, and directly adopts a predefined value or a value configured through higher layer signaling. For the second terminal device, these fields need to be read.
  • the information or values indicated by certain fields (parameters) in the DCI are configured through predefined or through high-layer signaling,
  • the length (detection range) of the DCI read by the first terminal device can be reduced, which effectively reduces the complexity of the DCI that the first terminal device needs to read, and reduces the The energy consumption of a terminal device.
  • the first control resource set corresponding to the first SIB1 when the first control resource set corresponding to the first SIB1 is the same as the second control resource set corresponding to the second SIB1, in this case, the same control resource Two different PDCCHs can be associated. That is, although the first control resource set corresponding to the first SIB1 is the same as the second control resource set corresponding to the second SIB1, the first control resource set or the second control resource may correspond to (including) two or more PDCCHs. To distinguish, the PDCCH corresponding to the first SIB1 is called the first PDCCH, and the PDCCH corresponding to the second SIB1 is called the second PDCCH. Among them, the first PDCCH and the second PDCCH are different.
  • the DCI corresponding to the first SIB1 (referred to as the first DCI) and the DCI corresponding to the second SIB1 (referred to as the second DCI) are different.
  • the first terminal device obtains the control resource set through the Dmrs-TypeA-Position field, and it needs to be further distinguished on which PDCCH in the control resource set the first DCI is detected. Therefore, the first radio access network temporary identifier (RNTI) can be used to scramble the first PDCCH, and the first PDCCH carries the first DCI.
  • the second PDCCH is scrambled with the second RNTI, and the second PDCCH carries the second DCI.
  • the correspondence between the PDCCH and the corresponding scrambling mode may be predefined or configured through high-level signaling.
  • the first terminal device may use the first RNTI to descramble the PDCCH (DCI), and the PDCCH (DCI) that is successfully descrambled is the first PDCCH.
  • the first terminal device can obtain the first SIB in the PDSCH according to the first DCI carried by the first PDCCH.
  • the second terminal device uses the second RNTI to descramble the PDCCH (DCI), and the PDCCH (DCI) successfully descrambling is the second PDCCH.
  • the first terminal device can acquire the second SIB in the PDSCH according to the second DCI carried by the second PDCCH.
  • the first RNTI is different from the second RNTI
  • the first RNTI may be the first universal terrestrial radio access network temporary identifier (U-RNTI), or the first RNTI may be the first cell radio network temporary identifier ( cell network temporary identifier, C-RNTI).
  • the second RNTI may be a second U-RNTI or a second C-RNTI. The first U-RNTI and the second U-RNTI are different, and the first C-RNTI and the second C-RNTI are different.
  • the first control resource set is the same as the second control resource set, and the same control resource can include multiple PDCCHs
  • different RNTIs can be used to scramble different PDCCHs
  • different RNTIs can be configured with predefined high-level signaling Correspondence with different PDCCHs.
  • the first terminal device can determine the corresponding first PDCCH according to the first RNTI used for descrambling the PDCCH, so as to obtain the first SIB1 carried on the PDSCH from the first DCI carried by the first PDCCH. This allows the first terminal device to quickly access the system and obtain the first SIB1. Improve communication efficiency.
  • the Dmrs-TypeA-Position field may be used to indicate that the first SIB1 is located at the first time-frequency position.
  • the first time-frequency position is predefined or configured through high-layer signaling.
  • the Dmrs-TypeA-Position field may also indicate that the first terminal device receives the first SIB1 at the first time-frequency position on the PDSCH.
  • the first terminal device may not need to use blind PDCCH detection to determine the time-frequency position of the first SIB1 on the PDSCH.
  • the first time-frequency position is predefined or configured through high-layer signaling. For example, when the Dmrs-TypeA-Position field indicates 1, it corresponds to a pre-configured or pre-defined first time-frequency position.
  • the first terminal device may determine to receive the first SIB1 at the first time-frequency position on the PDSCH according to the value indicated by the Dmrs-TypeA-Position field.
  • the Dmrs-TypeA-Position field indicates 0, it corresponds to another pre-configured or predefined time-frequency position.
  • the first terminal device may determine to receive the first SIB1 at the time-frequency position on the PDSCH according to the value indicated by the Dmrs-TypeA-Position field. That is, there may also be a correspondence between the value indicated by the Dmrs-TypeA-Position field and the time-frequency position.
  • the corresponding relationship may also be predefined by the protocol or configured by high-level signaling.
  • the Dmrs-TypeA-Position field indicates the time-frequency position on the PDSCH corresponding to the first SIB1, and the first terminal can directly receive the first SIB1 on the PDSCH according to the time-frequency resource position indicated by the Dmrs-TypeA-Position field.
  • the accuracy and efficiency of acquiring the first SIB1 by the first terminal device can be improved, and implementation is facilitated.
  • the Dmrs-TypeA-Position field is 0 or 1
  • the Dmrs-TypeA-Position field may be used to indicate the first PBCH corresponding to the first SIB1.
  • FIG. 5 is a schematic flowchart of MIB transmission methods in some embodiments of the present application. Based on the method steps shown in FIG.
  • the Dmrs-TypeA-Position field to obtain the first SIB1 includes: S243.
  • the first terminal device acquires the configuration information of the first SIB1 included in the first PBCH according to the first PBCH indicated by Dmrs-TypeA-Position, where the time-frequency resource location of the first PBCH is predefined or through high-layer signaling Configured.
  • the first terminal device obtains the first SIB1 according to the configuration information of the first SIB1.
  • steps S210, S220, and S230 shown in FIG. 5 reference may be made to the above-mentioned related descriptions of S210, S220, and S230, which are not repeated here for brevity.
  • the Dmrs-TypeA-Position field may be used to indicate the first PBCH corresponding to the first SIB1.
  • the network device may send the first MIB to the first terminal device through the PBCH.
  • the PBCH sent by the network device in S220 is called the second PBCH (second SSB)
  • the second PBCH (second SSB) includes the first MIB
  • the first MIB includes the Dmrs-TypeA-Position field
  • Dmrs-TypeA -The Position field is used by the first terminal device to obtain the first system information block SIB1.
  • the first terminal device When the Dmrs-TypeA-Position field indicates the first PBCH, the first terminal device needs to receive the first PBCH again.
  • the time-frequency resource location of the first PBCH is predefined or configured through high-layer signaling. For example, when the Dmrs-TypeA-Position field indicates 1, it corresponds to a pre-configured or pre-defined first PBCH. When the Dmrs-TypeA-Position field indicates 0, it corresponds to another pre-configured or pre-defined first PBCH. Or, when the Dmrs-TypeA-Position field indicates 0, it is used to indicate that the first PBCH corresponding to the first SIB1 is the same as the second PBCH.
  • the first terminal device can associate the first PBCH according to the Dmrs-TypeA-Position field. There may also be a correspondence between the value indicated by the Dmrs-TypeA-Position field and the PBCH. The corresponding relationship may also be predefined by the protocol or configured by high-level signaling.
  • the first terminal device determines the time-frequency resource position of the first PBCH according to the first PBCH indicated by the Dmrs-TypeA-Position, and then receives the first PBCH. After receiving the first PBCH, the configuration information of the first SIB1 included in the first PBCH is acquired.
  • the first PBCH may include a MIB, and the configuration information of the first SIB1 may be included in the MIB.
  • the configuration information of the first SIB1 may include: the control resource set and search space corresponding to the first SIB1, the type A corresponding to the first terminal device and the time domain symbol position of the first DMRS during PDSCH mapping.
  • the MIB in the first PBCH may include a pdcch-ConfigSIB1 field, which is used to indicate the configuration of the PDCCH related to the first SIB1, including the Coreset and search space where the PDCCH is located.
  • the MIB in the first PBCH may include the Dmrs-TypeA-Position field, which is used to indicate the time domain symbol position where the first DMRS is located when the Type A PDSCH corresponding to the first terminal device is mapped.
  • the first terminal device can blindly detect the PDCCH on the control resource set indicated by the pdcch-ConfigSIB1 field, and then receive the PDSCH according to the DCI indication in the detected PDCCH, and read the information of the first SIB1 in the PDSCH after receiving the PDSCH. take. Thus, the first SIB1 is obtained.
  • the first terminal can directly associate the first PBCH according to the Dmrs-TypeA-Position field indication, and obtain the configuration information of the first SIB1 in the first PBCH, and further In order to obtain the first SIB1, the first terminal device can access the system sequentially and quickly, and realize uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the Dmrs-TypeA-Position field may be used to indicate whether there is an update for the first SIB1.
  • the Dmrs-TypeA-Position field is used to instruct the first terminal device to acquire the first SIB1. Therefore, the Dmrs-TypeA-Position field can be used to indicate whether there is an update for the first SIB1. Whether there is an update is relative to the previous SIB1 obtained by the first terminal device last time.
  • the previous SIB1 means that the first terminal device can understand the SIB1 acquired by the SSB last (or before) interpretation.
  • the Dmrs-TypeA-Position field indicates that there is no update for the first SIB1
  • the Dmrs-TypeA-Position field is 1 or 0, it indicates that there is no update for the first SIB1.
  • the first terminal device may directly determine the previously acquired SIB1 as the first SIB1.
  • the first terminal device does not need to perform various steps and processes of acquiring the first SIB1 according to the first SIB1 configuration information included in the first MIB currently received.
  • the complexity of acquiring the first SIB1 by the first terminal device can be reduced, and the power consumption of the first terminal device can be reduced.
  • the Dmrs-TypeA-Position field indicates that there is an update for the first SIB1
  • the Dmrs-TypeA-Position field is 1 or 0, it indicates that there is an update for the first SIB1. That is, it indicates that the first SIB1 is different from the previous SIB1 acquired by the first terminal device last time. Then the first terminal device needs to acquire the first SIB1 according to the first SIB1 configuration information included in the first MIB currently received.
  • the first terminal device needs to obtain the control resource set corresponding to the first SIB1 according to the pdcch-ConfigSIB1 field in the first MIB type, and detect the PDCCH on the control resource set corresponding to the first SIB1, where the PDCCH is used for scheduling bearers
  • the physical downlink shared channel PDSCH of the first SIB Further, the first SIB1 carried on the physical downlink shared channel PDSCH is acquired.
  • the system information transmission method provided in this application releases/reinterprets the field (parameter) of the DMRS position of the TypeA PDSCH in the MIB.
  • the field may be the field of the DMRS-TypeA-Position in the MIB.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the signaling configuration can be understood as configured by high-level or physical layer signaling.
  • High-level signaling may include, for example, radio resource control (radio resource control, RRC), medium access control (medium access control, MAC) control element (CE), and radio link control (radio link control, RLC).
  • RRC radio resource control
  • MAC medium access control
  • CE control element
  • RLC radio link control
  • the physical layer signaling may include, for example, downlink control information (DCI), signaling transmitted through a downlink physical layer channel, and the like.
  • DCI downlink control information
  • the physical downlink channel may be, for example, PDCCH or PDSCH.
  • pre-defined can be implemented by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices). There is no limitation on its specific implementation.
  • FIG. 6 shows a schematic block diagram of a communication device 300 according to an embodiment of the present application.
  • the device 300 may correspond to the first terminal device described in the above method 200, or may be a chip or component applied to the first terminal device, and Each module or unit in the device 300 is respectively used to execute each action or processing procedure performed by the first terminal device in the above method 200.
  • the device 300 includes a transceiver unit 310 and a processing unit 320.
  • the transceiving unit 310 is configured to perform specific signal transceiving under the driving of the processing unit 320.
  • the transceiver unit 310 is configured to receive the first main information block MIB;
  • the processing unit 320 is configured to obtain a parameter indicating the position of the demodulation reference signal DMRS of the type A physical downlink shared channel PDSCH in the first MIB, and the parameter is used to obtain the first system information block SIB1, and the first SIB1 includes the first system information block SIB1. Access configuration information of a device;
  • the processing unit 320 is further configured to obtain the first SIB1 according to the parameter.
  • the communication device provided in this application redefines the content indicated by the field (parameter) of the parameter of the DMRS position of the demodulation reference signal DMRS of Type A PDSCH in the MIB.
  • the field may be the DMRS-TypeA-Position in the MIB. Field. This field is defined for simple-capable terminal devices to obtain the corresponding SIB1, so that simple-capable terminal devices can obtain SIB1, so that they can access the system sequentially and quickly and achieve uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the parameter is used to indicate the control resource set corresponding to the first SIB1; the processing unit 320 is also used to specify the control resource set corresponding to the first SIB1 indicated by the parameter
  • the physical downlink control channel PDCCH is detected on the upper, and the PDCCH is used to schedule the physical downlink shared channel PDSCH that carries the first SIB1.
  • control resource set corresponding to the first SIB1 is the same as or different from the control resource set corresponding to the second SIB1, where the first MIB includes a first parameter, and the first MIB The parameter is used to indicate the control resource set corresponding to the second SIB1, and the second SIB1 includes the access configuration information of the second device.
  • the control resource set corresponding to the first SIB1 when the control resource set corresponding to the first SIB1 is the same as the control resource set corresponding to the second SIB1, according to the PDCCH carried in the control resource set corresponding to the first SIB1
  • the downlink control information DCI and the first information acquire the first SIB1 in the PDSCH, and the first information is predefined or configured through higher layer signaling.
  • the first information may include one or more of MCS, the number of HARQ processes, NDI, and RV fields.
  • the processing unit when the control resource set corresponding to the first SIB1 is the same as the control resource set corresponding to the second SIB1, the processing unit is further configured to perform according to the downlink carried by the first PDCCH
  • the control information DCI acquires the first SIB1 in the PDSCH.
  • the first PDCCH is the PDCCH in the control resource set corresponding to the first SIB1
  • the first PDCCH is scrambled using the first wireless network temporary identifier RNTI
  • the second PDCCH is the PDCCH in the control resource set corresponding to the second SIB1
  • the second PDCCH is scrambled using a second RNTI
  • the first PDCCH is different from the second PDCCH
  • the first RNTI is different from the second RNTI.
  • the first RNTI may be the first U-RNTI, or the first RNTI may be the first C-RNTI.
  • the second RNTI may be a second U-RNTI or a second C-RNTI. The first U-RNTI and the second U-RNTI are different, and the first C-RNTI and the second C-RNTI are different.
  • the parameter is used to indicate that the first SIB1 is received at a first time-frequency position, where the first time-frequency position is predefined or configured through higher layer signaling.
  • the parameter is used to indicate the first physical broadcast channel PBCH corresponding to the first SIB1
  • the processing unit 320 is further configured to obtain the first SIB1 according to the first PBCH
  • the time-frequency resource location of the first PBCH is predefined or configured through high-layer signaling.
  • this parameter is used to indicate whether there is an update for the first SIB1.
  • the processing unit 320 is further configured to determine, according to the parameter, that the previous SIB1 is the first SIB1, and the previous SIB1 is the SIB1 acquired last time by the first device.
  • the processing unit 320 is further configured to obtain the first SIB1 according to the configuration information of the first SIB1 indicated in the first MIB.
  • the mapping type of the PDSCH carrying the first SIB1 is Type A
  • the time domain symbol position of the first DMRS carrying the PDSCH of the first SIB1 is the location of the PDSCH.
  • the parameter (field) used for the position of the demodulation reference signal DMRS of Type A PDSCH is the Dmrs-TypeA-Position parameter (field).
  • the device 300 may also be the storage unit, and the transceiving unit 310 may be a transceiver, an input/output interface, or an interface circuit.
  • the storage unit is used to store instructions executed by the transceiver unit 310 and the processing unit 320.
  • the transceiving unit 310, the processing unit 320, and the storage unit are coupled with each other.
  • the storage unit stores instructions, the processing unit 320 is used to execute the instructions stored in the storage unit, and the transceiving unit 310 is used to perform specific signal transceiving under the driving of the processing unit 320.
  • the transceiving unit 310 may include a receiving unit (module) and a sending unit (module), which are used to execute the various embodiments of the foregoing method 200 and the first terminal device in the embodiments shown in FIGS. 3 to 5 to receive information and Steps to send information.
  • a receiving unit module
  • a sending unit module
  • the transceiver unit 310 may be a transceiver, an input/output interface, or an interface circuit.
  • the storage unit may be a memory.
  • the processing unit 320 may be implemented by a processor.
  • the communication device 400 may include a processor 410, a memory 420, a transceiver 430, and a bus system 440.
  • the various components of the communication device 400 are coupled together through a bus system 440, where the bus system 440 may include a power bus, a control bus, a status signal bus, etc., in addition to a data bus.
  • various buses are marked as the bus system 440 in FIG. 7.
  • FIG. 7 is only schematically drawn.
  • the communication device 300 shown in FIG. 6 or the communication device 400 shown in FIG. 7 can implement the various embodiments of the aforementioned method 200 and the steps performed by the first terminal device in the embodiments shown in FIG. 3 to FIG. 5.
  • the communication device 300 shown in FIG. 6 or the communication device 400 shown in FIG. 7 may be a simple-capable terminal device.
  • FIG. 8 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the device 500 may correspond to the network device described in the above method 200, or may be a chip or component applied to the network device, and the device 500 may Each module or unit is respectively used to execute each action or processing procedure performed by the network device in the above method 200.
  • the device 500 may include a processing unit 510 and a transceiving unit 520.
  • the transceiving unit 520 is configured to perform specific signal transceiving under the driving of the processing unit 510.
  • the processing unit 510 is configured to determine a first master information block MIB, the first MIB including a parameter used to indicate the position of the demodulation reference signal DMRS of the type A physical downlink shared channel PDSCH, and the parameter is used to indicate the first system information block SIB1 ,
  • the first SIB1 includes the access configuration information of the first device
  • the transceiver unit 520 is configured to send the first MIB.
  • the communication device provided in this application redefines the content indicated by the field (parameter) of the parameter of the DMRS position of the demodulation reference signal DMRS of Type A PDSCH in the MIB.
  • the field may be the DMRS-TypeA-Position in the MIB. Field. This field is defined for simple-capable terminal devices to obtain the corresponding SIB1, so that simple-capable terminal devices can obtain SIB1, so that they can access the system sequentially and quickly and achieve uplink synchronization and cell selection.
  • the terminal equipment with simple capability can communicate normally, and the communication efficiency can be improved.
  • the parameter is used to indicate the control resource set corresponding to the first SIB1.
  • control resource set corresponding to the first SIB1 is the same as or different from the control resource set corresponding to the second SIB1, where the first MIB includes a first parameter, and the first MIB The parameter is used to indicate the control resource set corresponding to the second SIB1, and the second SIB1 includes the access configuration information of the second device.
  • the control resource set corresponding to the first SIB1 when the control resource set corresponding to the first SIB1 is the same as the control resource set corresponding to the second SIB1, the downlink carried by the PDCCH in the control resource set corresponding to the first SIB1
  • the first information in the control information DCI is predefined or configured through higher layer signaling.
  • the first information may include one or more of MCS, the number of HARQ processes of hybrid automatic repeat request, NDI, and RV.
  • the first PDCCH uses the first RNTI for scrambling
  • the second PDCCH uses the The second RNTI scrambling
  • the first PDCCH is the PDCCH in the control resource set corresponding to the first SIB1
  • the second PDCCH is the PDCCH in the control resource set corresponding to the second SIB1
  • the first PDCCH and the second PDCCH are The PDCCH is different
  • the first RNTI is different from the second RNTI.
  • the first RNTI may be the first U-RNTI, or the first RNTI may be the first C-RNTI.
  • the second RNTI may be a second U-RNTI or a second C-RNTI. The first U-RNTI and the second U-RNTI are different, and the first C-RNTI and the second C-RNTI are different.
  • the parameter is used to indicate that the first SIB1 is located at the first time-frequency position.
  • the first time-frequency position is predefined or configured through high-layer signaling.
  • the parameter is used to indicate the first physical broadcast channel PBCH corresponding to the first SIB1, and the time-frequency resource location of the first PBCH is predefined or configured through higher layer signaling .
  • this parameter is used to indicate whether there is an update for the first SIB1.
  • the mapping type of the PDSCH carrying the first SIB1 is Type A
  • the time domain symbol position of the first DMRS carrying the PDSCH of the first SIB1 is the PDSCH The 4th time domain symbol in the time unit where it is located.
  • the parameter (field) used for the position of the demodulation reference signal DMRS of Type A PDSCH is the Dmrs-TypeA-Position parameter (field).
  • the transceiving unit 520 may include a receiving unit (module) and a sending unit (module), which are used to execute the various embodiments of the aforementioned method 200 and the network devices in the embodiments shown in FIG. 2 to FIG. 5 to receive information and send information.
  • a receiving unit module
  • a sending unit module
  • the device 500 can also be the storage unit.
  • the transceiving unit 520 may be a transceiver, an input/output interface, or an interface circuit.
  • the storage unit is used to store instructions executed by the transceiver unit 520 and the processing unit 510.
  • the transceiving unit 520, the processing unit 510, and the storage unit are coupled with each other, the storage unit stores instructions, the processing unit 510 is used to execute the instructions stored in the storage unit, and the transceiving unit 520 is used to perform specific signal transceiving under the driving of the processing unit 510.
  • the transceiving unit 520 may be a transceiver, an input/output interface, or an interface circuit.
  • the storage unit may be a memory.
  • the processing unit 310 may be implemented by a processor.
  • the communication device 600 may include a processor 610, a memory 620, and a transceiver 630.
  • the communication device 500 shown in FIG. 8 or the communication device 600 shown in FIG. 9 can implement the embodiment in the aforementioned method 200 and the steps performed by the network device in the embodiment shown in FIG. 3 to FIG. 5.
  • the communication device 500 shown in FIG. 8 or the communication device 600 shown in FIG. 9 may be a network device.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • the processing element can also be called a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple digital signal processors (digital signal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • FIG. 10 is a schematic structural diagram of a terminal device 700 provided by this application.
  • the foregoing apparatus 300 or 400 may be configured in the terminal device 600.
  • the apparatus 300 or 400 itself may be the terminal device 700.
  • the terminal device 700 may execute the actions performed by the first terminal device in the foregoing method 200.
  • the terminal device 700 may be a simple-capable terminal device.
  • FIG. 10 only shows the main components of the terminal device.
  • the terminal device 700 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program. For example, it is used to support the terminal device to execute the above-mentioned transmission precoding matrix instruction method embodiment.
  • the memory is mainly used to store software programs and data, for example, to store the codebook described in the above embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process software programs. data.
  • the processor in FIG. 10 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 701 of the terminal device 700
  • the processor with the processing function can be regarded as the processing unit 702 of the terminal device 700.
  • the terminal device 700 includes a transceiving unit 701 and a processing unit 202.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiving unit 701 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 701 can be regarded as the sending unit, that is, the transceiving unit 701 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • FIG. 11 is a schematic structural diagram of another terminal device 800 provided by this application.
  • the terminal device includes a processor 810, a data sending processor 820, and a data receiving processor 830.
  • the processing unit 320 in the foregoing embodiment may be the processor 810 in FIG. 11, and completes corresponding functions.
  • the transceiving unit 310 in the foregoing embodiment may be the sending data processor 820 and/or the receiving data processor 830 in FIG. 11.
  • the channel encoder and the channel decoder are shown in FIG. 11, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • FIG. 12 is a schematic structural diagram of a network device 900 provided by an embodiment of this application, which may be used to implement the functions of the network device in the foregoing method.
  • the network device 900 includes one or more radio frequency units, such as a remote radio unit (RRU) 901 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 902.
  • RRU 901 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 9011 and a radio frequency unit 9012.
  • the RRU 901 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for sending the signaling messages in the foregoing embodiments to terminal equipment.
  • the 902 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 901 and the BBU 902 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 902 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 902 may be used to control the base station 90 to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 902 can be composed of one or more single boards, and multiple single boards can jointly support a radio access network of a single access standard (such as an LTE system or a 5G system), and can also support different connections. Enter the standard wireless access network.
  • the BBU 902 also includes a memory 9021 and a processor 9022.
  • the memory 9021 is used to store necessary instructions and data.
  • the memory 9021 stores the codebook in the above-mentioned embodiment and the like.
  • the processor 9022 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 9021 and the processor 9022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • SoC system-on-chip
  • all or part of the functions of part 902 and part 901 can be implemented by SoC technology, for example, a base station function chip Realization, the base station function chip integrates a processor, a memory, an antenna interface and other devices, the program of the base station related functions is stored in the memory, and the processor executes the program to realize the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to realize the relevant functions of the base station.
  • FIG. 12 the structure of the network device illustrated in FIG. 12 is only a possible form, and should not constitute any limitation in the embodiment of the present application. This application does not exclude the possibility of other types of base station structures that may appear in the future.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instruction may be transmitted from a website, computer, server, or data center through a cable (For example, infrared, wireless, microwave, etc.) to transmit to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the embodiment of the present application also provides a communication system, which includes: the foregoing simple capability terminal device and the foregoing network device.
  • the communication system may also include normal terminal equipment.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code, and the computer program includes instructions for executing the system information transmission method of the embodiment of the present application in the above method 200.
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in the embodiment of the present application.
  • This application also provides a computer program product, the computer program product includes an instruction, when the instruction is executed, so that the simple capability of the terminal device and the network device respectively execute the first terminal device and the network device corresponding to the above method operating.
  • An embodiment of the present application also provides a system chip, which includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions so that the chip in the communication device executes any of the system information transmission methods provided in the foregoing embodiments of the present application.
  • any communication device provided in the foregoing embodiments of the present application may include the system chip.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit in the terminal located outside the chip, such as a ROM or other storage units that can store static information and instructions.
  • static storage devices RAM, etc.
  • the processor mentioned in any of the above can be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used for program execution of the method for controlling the above-mentioned main system information transmission.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
  • the processing unit and the memory may also be coupled to the same device.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • system and "network” in this article are often used interchangeably in this article.
  • and/or in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • uplink and downlink appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
  • the "uplink” direction generally refers to the direction or distribution of data/information from the terminal to the network side.
  • the “downlink” direction generally refers to the direction in which data/information is transmitted from the network side to the terminal, or the direction in which the centralized unit transmits to the distributed unit.
  • uplink and downlink “It is only used to describe the direction of data/information transmission, and the specific start and end equipment of the data/information transmission is not limited.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), and random access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种***信息的传输方法和通信装置。该方法包括:获取第一MIB中用于指示类型A PDSCH的DMRS位置的参数,该参数用于获取第一***信息块SIB1,第一SIB1包括第一装置的接入配置信息;根据该参数,获取第一SIB1。第一装置可以为简易能力的终端设备。本申请提供的***信息传输的方法。通过释放/重解读MIB中用于类型A PDSCH的DMRS位置的参数(字段)。例如,该字段可以是MIB中的DMRS-TypeA-Position字段,指示简易能力的终端设备终端获取SIB1。使得简易能力的终端设备获取SIB1并实现上行同步和小区选择等。保障了简易能力的终端设备正常的通信。

Description

***信息的传输方法和通信装置 技术领域
本申请涉及通信领域,更为具体的,涉及一种***信息的传输方法和通信装置。
背景技术
同步信号块或者称为同步(synchronization sigal,SS)/物理广播信道块(physical broadcast channel block,PBCH块)是一种信号结构。PBCH包含了最基本的***信息例如***帧号、帧内定时信息等。终端设备成功接收同步信号块是其接入该小区的前提。
终端设备通过正确接收PBCH中承载的主***信息块(master information block,MIB)完成小区搜索和同步过程。具体的,终端设备通过接收MIB,获取MIB中的包括的解读***信息块类型1(system information block Type 1,SIB1)消息所需的配置信息,例如,该配置信息可以包括SIB1对应的控制资源集合(control resource set,Coreset)和搜索空间(search space,SS)等。根据SIB1对应配置信息获取SIB1,SIB1可以包括终端设备接入***所需的配置信息,终端设备可以根据SIB1实现***接入、小区选择和上行同步等。
当前新无线(new radio,NR)***中开展了关于简易能力终端设备接入NR***的讨论。简易能力终端设备,支持更小的带宽、更少的天线数目、更低的能耗、更低成本等。简易能力终端设备与传统的终端设备在接入能力、支持的带宽等方面均有显著的差异。
对于简易能力的终端设备,由于其在接入能力、支持的带宽等均低于传统的终端设备,其接入***并且获取SIB1的过程与传统的终端设备不同。但是,目前对于简易能力的终端设备如何接入NR***并获取SIB1并无特殊设计。因此,如何进行不同类型终端接入NR***的指示,亟待解决。
发明内容
本申请提供了一种***信息的传输方法和通信装置。通过释放/重解读MIB中的用于类型A PDSCH的DMRS位置的参数(字段),例如,该字段可以是MIB中的DMRS-TypeA-Position的字段,用来指示简易能力的终端设备终端接入NR***并获取SIB1。使得简易能力的终端设备可以顺序、快速的获取SIB1并接入***,实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
第一方面,提供了一种***信息的传输方法,该方法的执行主体既可以是终端设备,也可以是应用于终端设备的芯片。该终端设备可以是简易能力的终端设备(或者为第一装置)。该方法包括:获取该第一MIB中用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,该参数用于获取第一***信息块SIB1,该第一SIB1包括第一装置的接入配置信息;根据该参数,获取该第一SIB1。
第一方面提供的MIB传输的方法,通过重新定义MIB中用于类型A PDSCH的解调 参考信号DMRS位置的参数的字段(参数)指示的内容,例如,该字段可以是MIB中的DMRS-TypeA-Position的字段。定义该字段用于简易能力的终端设备获取对应的SIB1,使得简易能力的终端设备可以获取SIB1,从而可以顺序、快速的接入***并实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
在第一方面一种可能的实现方式中,第一装置的接入配置信息可以为第一装置接入***的配置信息,接入配置信息可以理解为第一装置与网络设备之间进行数据传输所需要的必要的***信息。例如,接入配置信息可以包括:RACH的配置信息,小区驻留和选择的配置信息,接入业务发起的配置信息,其他***消息的调度信息等。
在第一方面一种可能的实现方式中,该参数用于指示该第一SIB1对应的控制资源集;根据该参数,获取该第一SIB1,包括:
在该参数指示的该第一SIB1对应的控制资源集上检测物理下行控制信道PDCCH,该PDCCH用于调度承载该第一SIB1的物理下行共享信道PDSCH。在该实现方式中,通过用于类型A PDSCH的解调参考信号DMRS位置的参数指示第一SIB1对应的控制资源集,可以实现终端设备获取第一SIB1,以提高终端设备获取第一SIB1的准确率,便于实现。
在第一方面一种可能的实现方式中,该第一SIB1对应的控制资源集与第二SIB1对应的控制资源集相同或者不同,其中,该第一MIB中包括第一参数,该第一参数用于指示该第二SIB1对应的控制资源集,该第二SIB1包括第二装置的接入配置信息。
在第一方面一种可能的实现方式中,第二装置的接入配置信息可以为第二装置接入***的配置信息,接入配置信息可以理解为第二装置与网络设备之间进行数据传输所需要的必要的***信息。例如,包括:RACH的配置信息,小区驻留和选择的配置信息,接入业务发起的配置信息,其他***消息的调度信息等。
在第一方面一种可能的实现方式中,当该第一SIB1对应的控制资源集与该第二SIB1对应的控制资源集相同时,根据该第一SIB1对应的控制资源集中的PDCCH承载的下行控制信息DCI以及第一信息获取该PDSCH中的该第一SIB1,该第一信息是预定义的或者通过高层信令配置的。在该实现方式中,通过预定义的或者通过高层信令配置DCI中的某些字段(参数)的指示的信息或者值,可以降低终端设备读取DCI的长度(检测范围),有效的降低了终端设备需要读取DCI的复杂度,降低了终端设备的能耗。
在第一方面一种可能的实现方式中,第一信息可以包括:MCS、HARQ进程数、NDI、RV字段等中的一个或者多个。终端设备可以不用读取DCI中的MCS字段、HARQ process number字段、NDI字段、RV字段的中的一个或者多个,直接采用预定义的或者通过高层信令配置的值。
在第一方面一种可能的实现方式中,当该第一SIB1对应的控制资源集与该第二SIB1对应的控制资源集相同时,根据第一PDCCH承载的下行控制信息DCI获取该PDSCH中的该第一SIB1。中,该第一PDCCH为该第一SIB1对应的控制资源集中的PDCCH,该第一PDCCH利用第一无线网络临时标识RNTI加扰,第二PDCCH为该第二SIB1对应的控制资源集中的PDCCH,该第二PDCCH利用第二RNTI加扰,该第一PDCCH与该第二PDCCH不同,该第一RNTI与该第二RNTI不同。
在第一方面一种可能的实现方式中,第一RNTI可以为第一U-RNTI,或者第一RNTI为第一C-RNTI。第二RNTI可以为第二U-RNTI或者为第二C-RNTI。第一U-RNTI和 第二U-RNTI不同,第一C-RNTI和第二C-RNTI不同。
在第一方面一种可能的实现方式中,该参数用于指示在第一时频位置接收该第一SIB1,其中,该第一时频位置是预定义的或者通过高层信令配置的。在该实现方式中,终端可以直接根据指示的时频资源位置,在PDSCH上接收第一SIB1。可以提高第一终端设备获取第一SIB1的准确率和效率,便于实现。
在第一方面一种可能的实现方式中,该参数用于指示该第一SIB1对应的第一物理广播信道PBCH,根据该参数,获取该第一SIB1,包括:根据该第一PBCH获取该第一SIB1,该第一PBCH的时频资源位置是预定义或者通过高层信令配置的。在该实现方式中,通过指示第一SIB1对应的第一PBCH,终端可以直接根据用于类型A PDSCH的解调参考信号DMRS位置的参数指示第一PBCH,在第一PBCH中获取第一SIB1的配置信息,进一步的获取第一SIB1,从而可以使得终端设备顺序、快速的接入***并实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
在第一方面一种可能的实现方式中,该参数用于指示该第一SIB1是否存在更新。
在第一方面一种可能的实现方式中,当该参数指示该第一SIB1不存在更新时,根据该参数,获取该第一SIB1,包括:根据该参数,确定在先SIB1为该第一SIB1,该在先SIB1为该第一装置上一次获取的SIB1。在该实现方式中,用于类型A PDSCH的解调参考信号DMRS位置的参数指示第一SIB1不存在更新时,第一终端设备可以直接将在先获取到的SIB1确定为第一SIB1。终端设备不需要执行根据当前接收到的第一MIB中包括的第一SIB1配置信息获取第一SIB1的各种步骤和流程。可以降低终端设备获取第一SIB1复杂度,降低终端设备的功耗。
在第一方面一种可能的实现方式中,当该参数指示该第一SIB1存在更新时,根据该参数,获取该第一SIB1,包括:根据该第一MIB中指示的该第一SIB1的配置信息,获取该第一SIB1。
在第一方面一种可能的实现方式中,当承载该第一SIB1的PDSCH的映射类型为类型A时,承载该第一SIB1的PDSCH的第一个DMRS所在的时域符号位置为该PDSCH所在的时间单元内的第4个时域符号。
在第一方面一种可能的实现方式中,预定义的可以理解为由协议定义的。信令配置的可以理解为由高层或者物理层信令配置的。高层信令例如可以包括无线资源控制信令(radio resource control,RRC)、媒体接入控制(medium access control,MAC)控制元素(control element,CE)、无线链路控制(radio link control,RLC)信令等。物理层信令例如可以包括下行控制信息(downlink control information,DCI)、通过下行物理层信道传输的信令等,物理下行信道例如可以为PDCCH或者PDSCH等。
在第一方面一种可能的实现方式中,用于类型A PDSCH的解调参考信号DMRS位置的参数(字段)为Dmrs-TypeA-Position参数(字段)。
第二方面,提供了一种***信息传输的方法,该方法的执行主体既可以是网络设备,也可以是应用于网络设备的芯片。该方法包括:确定第一主信息块MIB,该第一MIB包括用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,该参数用于指示第一***信息块SIB1,该第一SIB1包括第一装置的接入配置信息。送该第一MIB。
第二方面提供的MIB传输的方法,通过重新定义MIB中用于类型A PDSCH的解调参考信号DMRS位置的参数的字段(参数)指示的内容,例如,该字段可以是MIB中的DMRS-TypeA-Position的字段。定义该字段用于简易能力的终端设备获取对应的SIB1,使得简易能力的终端设备可以获取SIB1,从而可以顺序、快速的接入***并实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
在第二方面一种可能的实现方式中,该参数用于指示该第一SIB1对应的控制资源集。在该实现方式中,通过用于类型A PDSCH的解调参考信号DMRS位置的参数指示第一SIB1对应的控制资源集,可以提高终端设备获取第一SIB1的准确率,便于实现。
在第二方面一种可能的实现方式中,该第一SIB1对应的控制资源集与第二SIB1对应的控制资源集相同或者不同,其中,该第一MIB中包括第一参数,该第一参数用于指示该第二SIB1对应的控制资源集,该第二SIB1包括第二装置的接入配置信息。
在第二方面一种可能的实现方式中,当该第一SIB1对应的控制资源集与该第二SIB1对应的控制资源集相同时,该第一SIB1对应的控制资源集中的PDCCH承载的下行控制信息DCI中的第一信息是预定义的或者通过高层信令配置的。在该实现方式中,通过预定义的或者通过高层信令配置DCI中的某些字段(参数)的指示的信息或者值,在终端设备和第二终端检测同一个DCI时,可以降低终端设备读取DCI的长度(检测范围),有效的降低了终端设备需要读取DCI的复杂度,降低了终端设备的能耗。
在第二方面一种可能的实现方式中,第一信息可以包括:MCS、HARQ进程数、NDI、RV字段等中的一个或者多个。终端设备可以不用读取DCI中的MCS字段、HARQ process number字段、NDI字段、RV字段的中的一个或者多个,直接采用预定义的或者通过高层信令配置的值。
在第二方面一种可能的实现方式中,当该第一SIB1对应的控制资源集与该第二SIB1对应的控制资源集相同时,第一PDCCH利用第一RNTI加扰,第二PDCCH利用第二RNTI加扰,其中,该第一PDCCH为该第一SIB1对应的控制资源集中的PDCCH,该第二PDCCH为该第二SIB1对应的控制资源集中的PDCCH,该第一PDCCH与该第二PDCCH不同,该第一RNTI与该第二RNTI不同。
在第二方面一种可能的实现方式中,该参数用于指示在第一SIB1位于第一时频位置。其中,该第一时频位置是预定义的或者通过高层信令配置的。在该实现方式中,终端可以直接根据指示的时频资源位置,在PDSCH上接收第一SIB1。可以提高第一终端设备获取第一SIB1的准确率和效率,便于实现。
在第二方面一种可能的实现方式中,该参数用于指示该第一SIB1对应的第一物理广播信道PBCH,该第一PBCH的时频资源位置是预定义或者通过高层信令配置的。在该实现方式中,通过指示第一SIB1对应的第一PBCH,终端可以直接根据用于类型A PDSCH的解调参考信号DMRS位置的参数指示第一PBCH,在第一PBCH中获取第一SIB1的配置信息,进一步的获取第一SIB1,从而可以使得终端设备顺序、快速的接入***并实现上行同步和小区选择等。保障了简易能力的中终端设备以正常的通信,提高通信效率。
在第二方面一种可能的实现方式中,该参数用于指示该第一SIB1是否存在更新。在该实现方式中,用于类型A PDSCH的解调参考信号DMRS位置的参数指示第一SIB1是否存在更新时,当不存在更新时,终端设备可以直接将在先获取到的SIB1确定为第一 SIB1。终端设备不需要执行根据当前接收到的第一MIB中包括的第一SIB1配置信息获取第一SIB1的各种步骤和流程。可以降低终端设备获取第一SIB1复杂度,降低终端设备的功耗。
在第二方面一种可能的实现方式中,当承载该第一SIB1的PDSCH的映射类型为类型A时,承载该第一SIB1的PDSCH的第一个DMRS所在的时域符号位置为该PDSCH所在的时间单元内的第4个时域符号。
在第二方面一种可能的实现方式中,用于类型A PDSCH的解调参考信号DMRS位置的参数(字段)为Dmrs-TypeA-Position参数(字段)。
第三方面,提供了一种通信装置,该装置包括用于执行以上第一方面或第一方面的任意可能的实现方式中的各个步骤的单元。
第四方面,提供了一种通信装置,该装置包括用于执行以上第二方面或第二方面的任意可能的实现方式中的各个步骤的单元。
第五方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该至少一个处理器用于执行以上第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该至少一个处理器用于执行以上第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种通信装置,该装置包括至少一个处理器和接口电路,该至少一个处理器用于执行以上第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,该装置包括至少一个处理器和接口电路,该至少一个处理器用于执行以上第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种终端设备,该终端设备可以是简易能力的终端设备。该终端设备包括上述第三方面提供的通信装置,或者,该终端设备包括上述第五方面提供的通信装置,或者,该终端设备包括上述第七方面提供的通信装置。
第十方面,提供了一种网络设备,该网络设备包括上述第四方面提供的通信装置,或者,该终端设备包括上述第六方面提供的通信装置,或者,该终端设备包括上述第八方面提供的通信装置。
第十一方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
第十二方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
第十三方面,提供了一种通信***,该通信***包括上述的简易终端设备和网络设备。可选的,该通信***还可以包括正常能力的终端设备。
第十四方面,提供了一种芯片,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的通信设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
本申请实施例提供的***信息传输的方法和通信装置。通过释放/重解读MIB中的用于Type A PDSCH的DMRS位置的字段(参数),例如,该字段可以是MIB中的 DMRS-TypeA-Position的字段,用来指示简易能力的终端设备终端接入NR***并获取SIB1。使得简易能力的终端设备可以顺序、快速的获取SIB1并接入***,实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
附图说明
图1是同步信号块的一种可能结构的示意图。
图2是一例适用于本申请实施例的移动通信***的架构示意图。
图3是本申请实施例提供的一例***信息的传输方法的示意***互图。
图4是本申请实施例提供的另一例***信息的传输方法的示意***互图。
图5是本申请实施例提供的又一例***信息的传输方法的示意***互图。
图6是本申请实施例提供的通信装置的示意性框图。
图7是本申请实施例提供的另一例通信装置的示意性框图。
图8是本申请实施例提供的又一例通信装置的示意性框图。
图9是本申请实施例提供的另一例通信装置的示意性框图。
图10是本申请实施例提供的终端设备的示意性框图。
图11是本申请实施例提供的另一例终端设备的示意性框图。
图12是本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、未来的第五代(5th Generation,5G)***、新无线(New Radio,NR)或未来的其他类型的通信***等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)***或码分多址(Code Division  Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备、未来演进的PLMN网络中的网络设备或未来的其他类型的通信***中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
同步信号块或者称为同步(Synchronization Sigal,SS)/物理广播信道块(physical Broadcast channel block,PBCH块)是一种信号结构,适用于5G以及之后的通信***中。图1是同步信号块的一种可能结构的示意图,如图1所示,同步信号块其包含主同步信号(Primary Synchronization Sigal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)以及物理广播信道(Physical Broadcast Channel,PBCH)。PSS和SSS主要作用是帮助用户设备识别小区以及和小区进行同步,PBCH则包含了最基本的***信息例如***帧号、帧内定时信息等。用户设备成功接收同步信号块是其接入该小区的前提。
终端设备开机后需要通过执行小区搜索(随机接入过程)接入到一个小区中。主要涉及如下过程:
终端设备通过PSS完成正交频分复用(orthogonal frequency division multiplexing,OFDM)符号边界同步、粗频率同步并获得小区标识(identity,ID)2。
终端设备通过SSS获得小区标识1(ID1),利用小区ID1和小区ID1计算小区ID。其中,小区ID=3×小区ID1+小区ID2。此外,辅同步信号还可以用于无线资源管理相关测量及无线链路检测相关测量。
终端设备通过正确接收PBCH中承载的主***消息(master information block,MIB)完成小区搜索和同步过程。具体的,终端设备通过接收MIB消息,获得***帧号及半帧指示,完成无线帧定时以及半帧定时。同时,终端设备通过MIB消息中的同步广播块索引(SSB Index)和当前频带采用的同步广播块集合图样,确定当前同步信号所在时隙和符号,完成时隙同步。
通常,终端设备需要经历如下流程,进行多个***信息的正常解读:
通过PSS和SSS完成终端设备的时频同步及小区ID获取;
通过PBCH中的调制解调参考信号(demodulation reference signal,DMRS)进行信道估计,并完成对PBCH的正确解调,读取PBCH中的MIB消息;
通过MIB中的消息,获取解读***信息块类型1(system information block Type 1,SIB1)消息所需的物理下行控制信道(physical downlink control channel,PDCCH)的配置信息,包括控制资源集合(control resource set,Coreset)和搜索空间(search space,SS),根据Coreset和SS,检测PDCCH,再依据检测到PDCCH中的调度指示(即PDCCH中的下行控制信信息(downlink control information,DCI)的调度指示),检测物理下行共享信道(physical downlink share channel,PDSCH)。例如,该DCI中可以包括:PDSCH对应的时频资源、PDSCH传输信息对应的数据调制方式、数据传输块大小(Transmission Block Size,TBS)、功率配置等。接收到PDSCH后,进行PDSCH中SIB1的信息的读取。其中,SIB1是承载在PDSCH中的。或者,也可以认为MIB中包括SIB1的调度信息;
依据SIB1中包括相关配置信息,获知其他***信息(System Information,SI),用于终端设备进行上行同步。
表1为MIB承载的多个比特位(字段)以及功能说明的示意性表格。
表1
Figure PCTCN2019109530-appb-000001
Figure PCTCN2019109530-appb-000002
当前NR开展了关于简易能力终端设备接入NR***的讨论。针对海量机器类通信(massive machine type communication,mMTC)中的简易能力终端设备,支持更小的带宽、更少的天线数目、更低的能耗、更低成本等。简易能力终端设备也可以称为NR-Light终端设备。因此,NR-Light终端设备与传统的增强移动宽带(enhanced mobile broadband,eMBB)终端设备和高可靠低时延(ultra-reliable low-latency communication,URLLC)终端设备在接入能力、支持的带宽等方面均有显著的差异。
这里需要说明的是,typeA为PDSCH映射类型的一种,例如PDSCH映射类型可以包含typeA和typeB。可选的,这些类型可以通过DMRS类型区分。PDSCH进行时频资源映射时,需要考虑映射的起始位置S以及持续的物理资源块PRB的长度L(也可以理解为是连续的PRB的个数)。对于typeA和typeB两种映射类型,所述S的取值范围、L的取值范围以及S与L之和的取值范围存在差异。这里不做具体的限定,可以参考现有技术的阐述或者未来通信***可能的定义。另外,typeA和typeB只是代表两种不同的类型,可替换的,typeA可以称为第一类型,typeB可以称为第二类型,以能够区分不同的PDSCH映射类型为准,或者,也可以用于区分其他可能的PDSCH类型。
目前,对接入NR***的终端设备,需要读取PBCH中承载MIB信息指示,在相应的Coreset和搜索空间上进行SIB1相关的PDCCH的正确解读,并最终获取SIB1。而对于简易能力的终端设备,由于其在接入能力、支持的带宽等均低于传统的eMBB和URLLC终端设备,其接入***并且获取SIB1的过程与传统的eMBB和URLLC终端设备不同。例如,简易能力的终端设备支持的盲检次数更小,带宽更小。需要为简易能力的终端设备设计专用的与获取SIB1相关的配置信息(或者也可以称为SIB1调度信息),以便于简易能力的终端设备也可以顺序、快速的接入***并获取SIB1,从而实现***接入、小区选择和上行同步等。但是,目前对于简易能力的终端设备如何接入NR***并获取SIB1并无特殊设计。尤其是当同时存在传统的eMBB和URLLC终端设备和简易能力的终端设备终端共存时,需要MIB中的更多的消息来指示不同类型的终端不同的接入信息。而MIB中可用的空余比特数目较少。因此,如何进行不同类型终端接入NR***的指示,亟待解决。
有鉴于此,本申请提供了一种主信息块传输MIB的方法,通过释放/重解读MIB中的用于Type A PDSCH的DMRS位置的字段(参数),例如,该字段可以是MIB中的DMRS-TypeA-Position的字段,用来指示简易能力的终端设备接入NR***并获取SIB1。使得简易能力的终端设备可以快速的获取SIB1并接入***,实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
为便于理解本申请实施例,首先结合图2简单介绍适用于本申请实施例的通信***。
图2是适用于本申请实施例的主***信息传输的方法的通信***100的示意图。如图2所示,该通信***100包括四个通信设备,例如,网络设备110,终端设备121至123。终端设备121至123,可以均为简易能力的终端设备,或者,终端设备121至123中,包括简易能力的终端设备以及传统的eMBB和URLLC终端设备。终端设备121至123中的 至少一个终端设备在进行接入***时,可以利用本申请提供的方法与网络设备110之间进行***的接入以及获取SIB1。
应理解,图2所示的通信***中还可以包括更多的网络节点,例如终端设备或网络设备,图2所示的通信***中包括的网络设备或者终端设备可以是上述各种形式的网络设备或者终端设备。本申请实施例在图中不再一一示出。
下面结合图3详细说明本申请提供的MIB传输的方法,图3是本申请一个实施例的MIB传输的方法200的示意***互图,该方法200可以应用在图2所示的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
还应理解,在本申请实施例中,以第一终端设备和网络设备作为执行方法的执行主体为例,对方法进行说明。作为示例而非限定,执行方法的执行主体也可以是应用于第一终端设备和网络设备的芯片、芯片***、或处理器等。第一终端设备可以为简易能力的终端设备。
如图3所示,图3中示出的方法200可以包括S210至S240。下面结合图3详细说明方法200中的各个步骤。
S210,网络设备确定第一MIB,该第一MIB包括用于指示类型A PDSCH的解调参考信号DMRS位置的参数,该指示类型A PDSCH的解调参考信号DMRS位置的参数用于第一终端设备获取第一***信息块SIB1,该第一SIB1包括第一终端设备的接入配置信息。其中,第一装置可以为简易能力的终端设备。下文的描述中,将以第一终端设备表示简易能力的终端设备为例进行说明。本申请中,“第一装置”和“第一终端设备”的表述可以互换。可替换的,本申请中的类型A PDSCH也可以称为第一类型PDSCH,该PDSCH通过第一类型的映射方式进行资源映射。
这里需要说明的是,本申请中所阐述的“接入配置信息”为相应的终端设备接入***所需要的配置信息。第一装置的接入配置信息可以为第一装置接入***的配置信息,第二装置的接入配置信息可以为第二装置接入***的配置信息。因此,接入配置信息可以理解为终端设备与网络设备之间进行数据传输所需要的必要的***信息。例如,随机接入信道(Rrandom Aaccess CHchannel,RACH)的配置信息,小区驻留和选择的配置信息,接入业务发起的配置信息,其他***消息的调度信息等。本申请不对接入配置信息包含的具体内容进行限定。
S220,网络设备向第一终端设备发送该第一MIB。相应的,第一终端设备接收该第一MIB。
S230,第一终端设备获取该第一MIB中用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,该指示类型A PDSCH的解调参考信号DMRS位置的参数用于第一终端设备获取第一***信息块SIB1,该第一SIB1包括第一终端设备的接入配置信息。
S240,第一终端设备根据该参数,获取该第一SIB1。
具体而言,在S210中,在小区接入和选择的过程中,网络设备会确定(还可以理解为生成,即网络设备发送第一MIB之前,必然会确定或者生成该第一MIB)第一MIB。第一MIB可以承载于网络设备发送的第一PBCH中。第一MIB包括用于指示类型A PDSCH的解调参考信号DMRS位置的参数。例如,用于指示类型A PDSCH的解调参考 信号DMRS位置的参数可以是第一MIB包括的Dmrs-TypeA-Position字段。关于第一MIB包括的信息,可以参考表1所示的内容,为了简洁,这里不再赘述。
应理解,在本申请下文的描述中,将用于指示类型A PDSCH的解调参考信号DMRS位置的参数(字段)以Dmrs-TypeA-Position字段为例进行说明,应该理解的是,本申请实施例中,用于指示类型A PDSCH的解调参考信号DMRS位置的参数还可能是第一MIB包括的其他字段(参数)或者第一MIB新加的字段(参数),只要该字段(参数)用于指示类型A PDSCH的解调参考信号DMRS位置即可,本申请在此不作限制。
还应理解,在本申请实施例中,第一MIB其他字段(例如预留字段)也可以用于第一终端设备获取第一SIB1。即用于第一终端设备获取第一SIB1的字段(参数)也可以不是指示类型A PDSCH的解调参考信号DMRS位置的参数(字段),而是第一MIB其他字段(参数),该参数用于第一终端设备获取第一SIB1。本申请在此不作限制。
PDSCH映射类型主要是确定PDSCH的DMRS的时域符号位置。其中,Dmrs-TypeA-Position字段主要用于指示PDSCH映射类型A时,PDSCH的第一个DMRS在PDSCH所在的时间单元内(例如时隙)的位置。其中,Dmrs-TypeA-Position可以指示第一个DMRS的位置在PDSCH所在的时隙(slot)的第3或者第4个时域符号。
应理解,在本申请实施例中,对于第一终端设备(简易能力的终端设备)而言,无论Dmrs-TypeA-Position字段的值为0还是1,当承载第一SIB1的PDSCH的映射类型为类型A时,第一终端设备对应的PDSCH(或者也可以称为承载第一SIB1的PDSCH)的第一个DMRS所在的时域符号位置均为该PDSCH所在的时间单元内(例如时隙)的第4个时域符号。即固定第一终端设备对应的PDSCH的映射类型为类型A时前置DMRS符号的位置为第4个时域符号。
本申请实施例中,第一MIB中的Dmrs-TypeA-Position字段用于第一终端设备获取第一SIB1,该第一SIB1包括第一终端设备的接入配置信息。
在S220,网络设备向第一终端设备发送该第一MIB。具体的,网络设备确定第一MIB后,会通过第一PBCH(或者第一SSB)向第一终端设备发送该第一MIB。即第一MIB承载于第一PBCH中。网络设备向第一终端设备发送第一PBCH(或者第一SSB),第一PBCH(或者第一SSB)中承载该第一MIB。相应的,第一终端设备通过接收第一PBCH,获取到第一PBCH中的第一MIB。
在S230中,第一终端设备获取该第一MIB后,读取第一MIB中的Dmrs-TypeA-Position字段。其中,Dmrs-TypeA-Position字段用于第一终端设备获取第一SIB1。第一SIB1是与第一终端设备对应的,第一SIB1包括第一终端设备的接入配置信息。
例如,第一SIB1可以用于简易能力的终端设备进行***接入和小区选择、以及上行同步等。
可选的,在本申请实施例中,第一SIB1可以包括如下信息中的一种或者多种:
小区选择参数:第一终端设备判断本小区信号是否满足小区驻留条件的必要信息;
接入控制参数:第一终端设备判断某类型的接入业务是否被允许发起的必要信息;
第一终端设备初始接入相关的信道配置信息、随机接入过程中所必须的配置信息;
第一终端设备的***消息请求配置信息;
第一终端设备的其他***消息的调度信息;
第一终端设备的其他的一些信息,比如是否支持基于IP的语音传输(Voice over Internet Protocol,VoIP)业务等。
在S240中,第一终端设备获取到Dmrs-TypeA-Position字段,根据Dmrs-TypeA-Position字段的指示,可以获取到第一SIB1。根据第一SIB1,便可以得到第一SIB1,进而第一终端设备可以顺序、快速的接入***并获取SIB1,从而实现***接入、小区选择以及上行同步等,保障了简易能力的终端设备可以正常的通信,提高通信效率。
应理解,对于正常能力的终端设备(下文称为第二终端设备,也可以称为第二装置),例如,传统的增强移动宽带(enhanced mobile broadband,eMBB)终端设备和高可靠低时延(ultra-reliable low-latency communication,URLLC)终端设备。第二终端设备可以根据第一MIB中的pdcch-ConfigSIB1字段,获取与第二终端设备对应的SIB1(下文称为第二SIB1)相关配置信息。其中,pdcch-ConfigSIB1字段用于指示与第二SIB1相关的PDCCH的配置,包括PDCCH所在的Coreset和搜索空间等,从而获取到第二SIB1。第二SIB1包括用于第二终端设备实现小区接入、小区选择以及上行同步相关的信息。本申请中,“第二装置”和“第二终端设备”的表述可以互换
还应理解,对于第二终端设备,当承载第二SIB1的PDSCH的映射类型为类型A时,需要根据Dmrs-TypeA-Position的指示,确定第二终端设备对应的PDSCH(或者也可以称为承载该第二SIB1的PDSCH)的第一个DMRS所在的时域符号位置是该PDSCH所在的时间单元内(例如时隙)的第4个时域符号还是第3个时隙符号。例如,当DMRS-TypeA-Position=0时,PDSCH的前置DMRS从第3个时域符号开始;当DMRS-TypeA-Position=1时,PDSCH的前置DMRS从第4个时域符号开始。
本申请提供的MIB传输的方法,通过重新定义MIB中用于类型A PDSCH的解调参考信号DMRS位置的参数的字段(参数)指示的内容,例如,该字段可以是MIB中的DMRS-TypeA-Position的字段。定义该字段用于简易能力的终端设备获取对应的SIB1,使得简易能力的终端设备可以获取SIB1,从而可以顺序、快速的接入***并实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
可选的,在本申请一些可能的实现方式中,Dmrs-TypeA-Position用于指示该第一SIB1对应的控制资源集。如图4所示,图4是本申请一些实施例中的MIB传输的方法的示意性流程图,在图3所示的方法步骤的基础上,该方法中的S240,第一终端设备根据该Dmrs-TypeA-Position字段,获取该第一SIB1,包括:S241。
S241,第一终端设备在该Dmrs-TypeA-Position字段指示的该第一SIB1对应的控制资源集上检测PDCCH,该PDCCH用于调度承载该第一SIB1的物理下行共享信道PDSCH。
S242,第一终端设备获取承载于物理下行共享信道PDSCH上的该第一SIB1。
图4所示的步骤S210、S220、S230可以参考上述对于S210、S220、S230相关描述,为了简洁,这里不再赘述。
在S241中,Dmrs-TypeA-Position字段可以指示的该第一SIB1对应的控制资源集(下文称为第一控制资源集)。
第一终端设备可以根据Dmrs-TypeA-Position字段确定第一控制资源集的时频位置。控制资源集可以理解为:在***中的时频资源上采用某些特定的时频资源承载控制信道,这些特定的时频资源会预先通过高层信令通知给终端设备,使得终端设备可以在后续特定 的检测时刻中均在该特定的时频资源上检测控制信道。而控制资源集包括用于网络设备发送控制信道(例如PDCCH)的所占的时频资源信息,网络设备可以为终端设备配置一个或者多个控制资源集,网络设备可以在终端设备对应的任意一个控制资源集上,向终端设备发送控制信道。终端设备可以在该控制资源集指示的时频资源上接收网络设备发送的控制信道。第一终端设备可以根据Dmrs-TypeA-Position字段的指示,确定一个控制资源集(第一控制资源集)的时频位置。其中,该第一控制资源集的时频位置可以是协议预定义的或者是高层信令配置的。第一终端设备可以在第一控制资源集上检测PDCCH。其中,该PDCCH中承载DCI,该DCI用于调度承载该第一SIB1的PDSCH。例如,该DCI可以包括:PDSCH对应的时频资源、PDSCH传输信息对应的数据调制方式、数据传输块大小(Transmission Block Size,TBS)、功率配置等。第一终端设备可以根据该DCI,接收PDSCH。
在S242中,第一终端设备接收到PDSCH,便可以获取承载于PDSCH上的第一SIB1。
应理解,在本申请实施例中,Dmrs-TypeA-Position字段指示的控制资源集的时频位置可以是协议预定义的或者是高层信令配置的。第一SIB1在PDSCH上的时频位置也可以是协议预定义的或者是高层信令配置的。例如,当Dmrs-TypeA-Position字段指示为1,对应一个预配置或者预定义的控制资源集。当Dmrs-TypeA-Position字段指示为0,对应另一个预配置或者预定义的控制资源集。即Dmrs-TypeA-Position字段指示的值与控制资源集之间也可以存在对应关系。该对应关系也可以是协议预定义的或者是高层信令配置的。
通过Dmrs-TypeA-Position字段指示第一SIB1对应的控制资源集,可以实现第一终端设备获取第一SIB1。可以提高第一终端设备获取第一SIB1的准确率,便于实现。
由于第一MIB中的第一参数(例如pdcch-ConfigSIB1字段)也可以指示第二终端设备的对应第二SIB1的控制资源集。在本申请实施例中,Dmrs-TypeA-Position字段指示控制资源集(下文称为第一控制资源集)与pdcch-ConfigSIB1字段指示的控制资源集(下文称为第二控制资源集)可以相同或者不用。其中,第二控制资源集用于第二终端设备获取第二SIB1。第二SIB1包括第二终端设备的接入配置信息。
可选的,第二SIB1可以包括如下信息中的一种或者多种:
小区选择参数:第二终端设备判断本小区信号是否满足小区驻留条件的必要信息;
接入控制参数:第二终端设备判断某类型的接入业务是否被允许发起的必要信息;
第二终端设备初始接入相关的信道配置信息、随机接入过程中所必须的配置信息;
第二终端设备的***消息请求配置信息;
第二终端设备的其他***消息的调度信息;
其他的一些信息。
由于在初始接入过程中,Coreset的时频位置时预定义的,初始接入过程中的Coreset可以称为Coreset0,也就是说,在初始接入过程中,第一MIB中的pdcch-ConfigSIB1字段指示的为Coreset0。其中,Coreset0的频率范围(频域位置和带宽)和初始接入时的带宽部分(bandwidthPart,BWP)完全相同,BWP可以理解为是用于传输第一PBCH(SSB)的时频资源。
因此,在本申请实施例中,当Dmrs-TypeA-Position字段指示的第一控制资源集与pdcch-ConfigSIB1字段指示的第二控制资源集不同时,可以预定义或者高层配置第一控制 资源集占用的物理资源块(physical resource block,PRB)的数目,或者第一控制资源集占用的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的数目。或者预定义或者高层配置第一控制资源集下边界和第一PBCH下边界的偏差,该偏差可以以Coreset0的子载波间隔对应的资源块(Resource Block,RB)为单位。
可选的,Dmrs-TypeA-Position字段指示的第一控制资源集也可以是Coreset0。
在初始接入的过程中,第一MIB中的pdcch-ConfigSIB1字段可以也可以指示Coreset0的下边界和第一PBCH下边界的偏差,该偏差可以以Coreset0的子载波间隔对应的资源块(Resource Block,RB)为单位。例如,可以利用pdcch-ConfigSIB1字段的高4比特指示。
可选的,在本申请一些实施例中,当该第一控制资源集与该第二控制资源集相同时,第一终端设备可以根据该第一控制资源集中的PDCCH承载的DCI以及第一信息获取PDSCH中的第一SIB1,该第一信息是预定义的或者通过高层信令配置的。
具体而言,当该第一控制资源集与该第二控制资源集相同时,例如均为Coreset0。并且,第一终端设备和第二终端需要在该控制资源集上检测PDCCH,即第一终端设备和第二终端在相同的控制资源集上检测DCI。第一终端设备和第二终端设备读取DCI的方式可以是不同的。例如,假设DCI的长度为10比特,包括四个不同字段的指示。对于第一终端设备而言,这10比特中的部分比特(或者部分字段)的含义可以是预定的或者是高层信令配置的。例如,DCI中的调制解调方案(modulation and coding scheme,MCS)字段(或者也可以称为参数MCS)指示的MCS是预定义好的。第一终端设备在读取DCI,可以不用读取MCS字段,这里的MCS字段可以为上述的第一信息。即第一信息可以是DCI中某些字段指示的信息,这些信息是预定义的或者通过高层信令配置的。第一终端设备在读取DCI时,不读取第一信息对应在DCI中的字段,而是利用预定义的或者通过高层信令配置的信息。对于DCI中没有被预定义的或者通过高层信令配置的字段,第一终端设备则需要读取这些字段的信息。也就是说,第一终端设备可以根据第一控制资源集中的PDCCH承载的DCI以及第一信息获取PDSCH中的第一SIB1。其中,第一信息可以是DCI中某些字段指示的信息,并且,该第一信息是预定义的或者通过高层信令配置的。
而对于第二终端设备,则需要读取整个DCI,才能获取PDSCH中的第二SIB1。也就是说,对于同一个DCI,第一终端设备和第二终端设备需要读取的DCI的长度是不同的。对于第一终端设备而言,在盲检出PDCCH中的DCI后,DCI中的部分比特(bit)可以不用解读,直接采用预定义的第一信息。
可选的,在本申请实施例中,第一信息可以包括:MCS、混合自动重传请求(hybrid automatic repeat request,HARQ)进程数(HARQ process number)、新数据指示(New data indicator,NDI)、冗余版本(redundancy version,RV)等中的一个或者多个。第一终端设备可以不用读取DCI中的MCS字段、HARQ process number字段、NDI字段、RV字段的中的一个或者多个,直接采用预定义的或者通过高层信令配置的值。而对于第二终端设备,这些字段都是需要读取的。
在第一控制资源集与该第二控制资源集相同时,对于第一终端设备而言,通过预定义的或者通过高层信令配置DCI中的某些字段(参数)的指示的信息或者值,在第一终端设备和第二终端检测同一个DCI时,可以降低第一终端设备读取DCI的长度(检测范围),有效的降低了第一终端设备需要读取DCI的复杂度,降低了第一终端设备的能耗。
可选的,在本申请的一些实施例中,当该第一SIB1对应的第一控制资源集与该第二SIB1对应的第二控制资源集相同时,在这种情况下,同一个控制资源可以关联两个不同的PDCCH。即虽然该第一SIB1对应的第一控制资源集与该第二SIB1对应的第二控制资源集相同,但是第一控制资源集或者第二控制资源可以对应(包括)两个或者多个PDCCH。为了区分,第一SIB1对应的PDCCH称为第一PDCCH,第二SIB1对应的PDCCH称为第二PDCCH。其中,第一PDCCH和第二PDCCH不同。第一SIB1对应DCI(称为第一DCI)和第二SIB1对应DCI(称为第二DCI)不同。在这种情况下,第一终端设备通过Dmrs-TypeA-Position字段获取到控制资源集,需要进一步区分是在该控制资源集上的哪一个PDCCH上检测第一DCI。因此,可以利用第一无线网络临时标识(radio access network temporary identifier,RNTI))加扰第一PDCCH,第一PDCCH承载第一DCI。利用第二RNTI加扰第二PDCCH,第二PDCCH承载第二DCI。其中,PDCCH与对应的加扰方式之间的对应关系可以是预定义的或者通过高层信令配置的。例如,第一终端设备在Dmrs-TypeA-Position字段指示的控制资源集上,可以利用第一RNTI解扰PDCCH(DCI),解扰成功的PDCCH(DCI)则为第一PDCCH。第一终端设备便可以根据第一PDCCH承载的第一DCI获取该PDSCH中的该第一SIB。第二终端设备在同样的控制资源集上,利用第二RNTI解扰PDCCH(DCI),解扰成功的PDCCH(DCI)则为第二PDCCH。第一终端设备便可以根据第二PDCCH承载的第二DCI获取该PDSCH中的该第二SIB。其中,该第一RNTI与该第二RNTI不同
可选的,在本申请实例中,第一RNTI可以为第一通用陆地无线接入网络(universal terrestrial radio access network temporary identifier,U-RNTI),或者第一RNTI为第一小区无线网络临时标识(cell network temporary identifier,C-RNTI)。第二RNTI可以为第二U-RNTI或者为第二C-RNTI。第一U-RNTI和第二U-RNTI不同,第一C-RNTI和第二C-RNTI不同。
在第一控制资源集与该第二控制资源集相同时,并且同一个控制资源可以包括多个PDCCH时,可以利用不同的RNTI加扰不同的PDCCH,并且可以预定义高层信令配置不同的RNTI与不同PDCCH之间的对应关系。这样,第一终端设备根据解扰PDCCH利用的第一RNTI,便可以确定与之对应的第一PDCCH,从而在该第一PDCCH承载的第一DCI获取该PDSCH上承载的第一SIB1。使得第一终端设备可以快速的接入***并获取第一SIB1。提高通信效率。
可选的,在本申请一些可能的实现方式中,Dmrs-TypeA-Position字段可以用于指示第一SIB1位于第一时频位置。其中,该第一时频位置是预定义的或者通过高层信令配置的。
具体而言,由于第一SIB1是承载于PDSCH上的,则Dmrs-TypeA-Position字段也可以指示第一终端设备在PDSCH上的第一时频位置接收该第一SIB1。第一终端设备可以不用通过盲检PDCCH确定第一SIB1在PDSCH上的时频位置。其中,该第一时频位置是预定义的或者通过高层信令配置的。例如,当Dmrs-TypeA-Position字段指示为1,对应一个预配置或者预定义的第一时频位置。第一终端设备根据Dmrs-TypeA-Position字段指示的值,可以确定在PDSCH上第一时频位置接收该第一SIB1。当Dmrs-TypeA-Position字段指示为0,对应另一个预配置或者预定义的时频位置。第一终端设备根据Dmrs-TypeA-Position字段指示的值,可以确定在PDSCH上该时频位置接收该第一SIB1。 即Dmrs-TypeA-Position字段指示的值与时频位置之间也可以存在对应关系。该对应关系也可以是协议预定义的或者是高层信令配置的。
通过Dmrs-TypeA-Position字段指示第一SIB1对应的在PDSCH上的时频位置,第一终端可以直接根据Dmrs-TypeA-Position字段指示的时频资源位置,在PDSCH上接收第一SIB1。可以提高第一终端设备获取第一SIB1的准确率和效率,便于实现。
可选的,当Dmrs-TypeA-Position字段为0或1时,也可以指示第一终端设备需要根据第一MIB中的第一参数(例如pdcch-ConfigSIB1字段)获取与第一SIB1对应的控制资源集,在第一SIB1对应的控制资源集上检测PDCCH,其中,该PDCCH用于调度承载该第一SIB的物理下行共享信道PDSCH。进一步的,获取承载于物理下行共享信道PDSCH上的该第一SIB1。
可选的,在本申请一些可能的实现方式中,Dmrs-TypeA-Position字段可以用于指示第一SIB1对应的第一PBCH。如图5所示,图5是本申请一些实施例中的MIB传输的方法的示意性流程图,在图3所示的方法步骤的基础上,该方法中的S240,第一终端设备根据该Dmrs-TypeA-Position字段,获取该第一SIB1,包括:S243。
S243,第一终端设备根据Dmrs-TypeA-Position指示的第一PBCH,获取第一PBCH包括的第一SIB1的配置信息,其中,该第一PBCH的时频资源位置是预定义或者通过高层信令配置的。
S244,第一终端设备根据第一SIB1的配置信息,获取第一SIB1。
图5所示的步骤S210、S220、S230可以参考上述对于S210、S220、S230相关描述,为了简洁,这里不再赘述。
在S243中,Dmrs-TypeA-Position字段可以用于指示第一SIB1对应的第一PBCH。在S220中,网络设备可以通过PBCH向第一终端设备发送第一MIB。为了区分,将S220中网络设备发送的PBCH称为第二PBCH(第二SSB),第二PBCH(第二SSB)中包括第一MIB,第一MIB包括Dmrs-TypeA-Position字段,Dmrs-TypeA-Position字段用于第一终端设备获取第一***信息块SIB1。当Dmrs-TypeA-Position字段指示第一PBCH时,第一终端设备需要重新接收第一PBCH。其中,该第一PBCH的时频资源位置是预定义或者通过高层信令配置的。例如,当Dmrs-TypeA-Position字段指示为1,对应一个预配置或者预定义的第一PBCH。当Dmrs-TypeA-Position字段指示为0,对应另一个预配置或者预定义的第一PBCH。或者,当Dmrs-TypeA-Position字段指示为0,用于指示第一SIB1对应的第一PBCH与第二PBCH相同。即第一终端设备可以根据Dmrs-TypeA-Position字段关联出第一PBCH。Dmrs-TypeA-Position字段指示的值与PBCH之间也可以存在对应关系。该对应关系也可以是协议预定义的或者是高层信令配置的。第一终端设备根据Dmrs-TypeA-Position指示的第一PBCH,确定第一PBCH的时频资源位置,进而接收该第一PBCH。在接收到第一PBCH后,获取第一PBCH包括的第一SIB1的配置信息。第一PBCH可以包括MIB,第一SIB1的配置信息可以包括在MIB中。其中,MIB包括的内容可以和表1所示的内容类似。第一SIB1的配置信息可以包括:第一SIB1对应的控制资源集和搜索空间,第一终端设备对应的类型A PDSCH映射时的第一个DMRS所在的时域符号位置等。例如,第一PBCH中的MIB可以包括pdcch-ConfigSIB1字段,用于指示与第一SIB1相关的PDCCH的配置,包括PDCCH所在的Coreset和搜索空间等。第一 PBCH中的MIB可以包括Dmrs-TypeA-Position字段,用于指示第一终端设备对应的类型A PDSCH映射时的第一个DMRS所在的时域符号位置。第一终端设备便可以在该pdcch-ConfigSIB1字段指示的控制资源集上盲检PDCCH,再依据检测到PDCCH中的DCI指示,接收PDSCH,接收到PDSCH后,进行PDSCH中第一SIB1的信息的读取。从而获取第一SIB1。
通过Dmrs-TypeA-Position字段指示第一SIB1对应的第一PBCH,第一终端可以直接根据Dmrs-TypeA-Position字段指示关联出第一PBCH,在第一PBCH中获取第一SIB1的配置信息,进一步的获取第一SIB1,从而可以使得第一终端设备顺序、快速的接入***并实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
可选的,在本申请另一些可能的实施例中,Dmrs-TypeA-Position字段可以用于指示该第一SIB1是否存在更新。
具体而言,由于Dmrs-TypeA-Position字段是用于指示第一终端设备获取该第一SIB1。因此,Dmrs-TypeA-Position字段可以用于指示该第一SIB1是否存在更新。是否存在更新是相对于第一终端设备上一次获取到的在先SIB1而言的。在先SIB1为可以理解第一终端设备上一次(或者之前)解读SSB获取到的SIB1。
当Dmrs-TypeA-Position字段指示第一SIB1不存在更新时,例如,Dmrs-TypeA-Position字段为1或0时,指示第一SIB1不存在更新。第一终端设备可以直接将在先获取到的SIB1确定为第一SIB1。第一终端设备不需要执行根据当前接收到的第一MIB中包括的第一SIB1配置信息获取第一SIB1的各种步骤和流程。可以降低第一终端设备获取第一SIB1复杂度,降低第一终端设备的功耗。
当Dmrs-TypeA-Position字段指示第一SIB1存在更新时,例如,Dmrs-TypeA-Position字段为1或0时,指示第一SIB1存在更新。即指示第一SIB1相对于第一终端设备上一次获取到的在先SIB1是不同的。则第一终端设备需要根据当前接收到的第一MIB中包括的第一SIB1配置信息获取第一SIB1。例如,第一终端设备需要根据第一MIB种中的pdcch-ConfigSIB1字段获取与第一SIB1对应的控制资源集,在第一SIB1对应的控制资源集上检测PDCCH,其中,该PDCCH用于调度承载该第一SIB的物理下行共享信道PDSCH。进一步的,获取承载于物理下行共享信道PDSCH上的该第一SIB1。
本申请提供的***信息的传输方法,通过释放/重解读MIB中的用于TypeA PDSCH的DMRS位置的字段(参数),例如,该字段可以是MIB中的DMRS-TypeA-Position的字段,用来指示简易能力的终端设备终端接入NR***并获取SIB1。使得简易能力的终端设备可以顺序、快速的获取SIB1并接入***并,实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
应理解,本申请实施例中,预定义的可以理解为由协议定义的。信令配置的可以理解为由高层或者物理层信令配置的。高层信令例如可以包括无线资源控制信令(radio resource control,RRC)、媒体接入控制(medium access control,MAC)控制元素(control element,CE)、无线链路控制(radio link control,RLC)信令等。物理层信令例如可以包括下行控制信息(downlink control information,DCI)、通过下行物理层信道传输的信令等,物理下行信道例如可以为PDCCH或者PDSCH等。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,例如,上述方法200中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,本申请实施例中,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
以上结合图1至图5对本申请实施例的***信息的传输方法做了详细说明。以下,结合图6至图12对本申请实施例通信装置进行详细说明。
图6示出了本申请实施例的通信装置300的示意性框图,该装置300可以对应上述方法200描述的第一终端设备,也可以是应用于第一终端设备的芯片或组件,并且,该装置300中各模块或单元分别用于执行上述方法200中第一终端设备所执行的各动作或处理过程。
如图6所示,该装置300包括收发单元310和处理单元320。收发单元310用于在处理单元320的驱动下执行具体的信号收发。
收发单元310,用于接收第一主信息块MIB;
处理单元320,用于获取该第一MIB中用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,该参数用于获取第一***信息块SIB1,该第一SIB1包括第一装置的接入配置信息;
该处理单元320,还用于根据该参数,获取该第一SIB1。
本申请提供的通信装置,通过重新定义MIB中用于类型A PDSCH的解调参考信号DMRS位置的参数的字段(参数)指示的内容,例如,该字段可以是MIB中的DMRS-TypeA-Position的字段。定义该字段用于简易能力的终端设备获取对应的SIB1,使得简易能力的终端设备可以获取SIB1,从而可以顺序、快速的接入***并实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
可选的,在本申请的一些实施例中,该参数用于指示该第一SIB1对应的控制资源集;该处理单元320,还用于在该参数指示的该第一SIB1对应的控制资源集上检测物理下行控制信道PDCCH,该PDCCH用于调度承载该第一SIB1的物理下行共享信道PDSCH。
可选的,在本申请的一些实施例中,该第一SIB1对应的控制资源集与第二SIB1对应 的控制资源集相同或者不同,其中,该第一MIB中包括第一参数,该第一参数用于指示该第二SIB1对应的控制资源集,该第二SIB1包括第二装置的接入配置信息。
可选的,在本申请的一些实施例中,当该第一SIB1对应的控制资源集与该第二SIB1对应的控制资源集相同时,根据该第一SIB1对应的控制资源集中的PDCCH承载的下行控制信息DCI以及第一信息获取该PDSCH中的该第一SIB1,该第一信息是预定义的或者通过高层信令配置的。
可选的,在本申请的一些实施例中,第一信息可以包括:MCS、HARQ进程数、NDI、RV字段等中的一个或者多个。
可选的,在本申请的一些实施例中,当该第一SIB1对应的控制资源集与该第二SIB1对应的控制资源集相同时,该处理单元,还用于根据第一PDCCH承载的下行控制信息DCI获取该PDSCH中的该第一SIB1。其中,该第一PDCCH为该第一SIB1对应的控制资源集中的PDCCH,该第一PDCCH利用第一无线网络临时标识RNTI加扰,第二PDCCH为该第二SIB1对应的控制资源集中的PDCCH,该第二PDCCH利用第二RNTI加扰,该第一PDCCH与该第二PDCCH不同,该第一RNTI与该第二RNTI不同。
可选的,在本申请的一些实施例中,第一RNTI可以为第一U-RNTI,或者第一RNTI为第一C-RNTI。第二RNTI可以为第二U-RNTI或者为第二C-RNTI。第一U-RNTI和第二U-RNTI不同,第一C-RNTI和第二C-RNTI不同。
可选的,在本申请的一些实施例中,该参数用于指示在第一时频位置接收该第一SIB1,其中,该第一时频位置是预定义的或者通过高层信令配置的。
可选的,在本申请的一些实施例中,该参数用于指示该第一SIB1对应的第一物理广播信道PBCH,该处理单元320,还用于根据该第一PBCH获取该第一SIB1,该第一PBCH的时频资源位置是预定义或者通过高层信令配置的。
可选的,在本申请的一些实施例中,该参数用于指示该第一SIB1是否存在更新。
可选的,在本申请的一些实施例中,当该参数指示该第一SIB1不存在更新时,
该处理单元320,还用于根据该参数,确定在先SIB1为该第一SIB1,该在先SIB1为该第一装置上一次获取的SIB1。
可选的,在本申请的一些实施例中,当该参数指示该第一SIB1存在更新时,
该处理单元320,还用于根据该第一MIB中指示的该第一SIB1的配置信息,获取该第一SIB1。
可选的,在本申请的一些实施例中,当承载第一SIB1的PDSCH的映射类型为类型A时,承载该第一SIB1的PDSCH的第一个DMRS所在的时域符号位置为该PDSCH所在的时间单元内的第4个时域符号。
可选的,在本申请的一些实施例中,用于类型A PDSCH的解调参考信号DMRS位置的参数(字段)为Dmrs-TypeA-Position参数(字段)。
进一步的,该装置300还可以该存储单元,收发单元310可以是收发器、输入/输出接口或接口电路。存储单元用于存储收发单元310和处理单元320执行的指令。收发单元310、处理单元320和存储单元相互耦合,存储单元存储指令,处理单元320用于执行存储单元存储的指令,收发单元310用于在处理单元320的驱动下执行具体的信号收发。
应理解,装置300中各单元执行上述相应步骤的具体过程请参照前文中结合方法200、 以及图3至图5中相关实施例的第一终端设备相关的描述,为了简洁,这里不加赘述。
可选的,收发单元310可以包括接收单元(模块)和发送单元(模块),用于执行前述方法200的各个实施例以及图3至图5所示的实施例中第一终端设备接收信息和发送信息的步骤。
应理解,收发单元310可以是收发器、输入/输出接口或接口电路。存储单元可以是存储器。处理单元320可由处理器实现。如图7所示,通信装置400可以包括处理器410、存储器420、收发器430和总线***440。通信装置400的各个组件通过总线***440耦合在一起,其中总线***440除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图7中将各种总线都标为总线***440。为便于表示,图7中仅是示意性画出。
图6所示的通信装置300或图7所示的通信装置400能够实现前述方法200的各个实施例以及图3至图5所示的实施例中第一终端设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
还应理解,图6所示的通信装置300或图7所示的通信装置400可以为简易能力的终端设备。
图8示出了本申请实施例的通信装置500的示意性框图,该装置500可以对应上述方法200中描述的网络设备,也可以是应用于网络设备的芯片或组件,并且,该装置500中各模块或单元分别用于执行上述方法200中网络设备所执行的各动作或处理过程。
如图8所示,该装置500可以包括处理单元510和收发单元520。收发单元520用于在处理单元510的驱动下执行具体的信号收发。
处理单元510,用于确定第一主信息块MIB,该第一MIB包括用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,该参数用于指示第一***信息块SIB1,该第一SIB1包括第一装置的接入配置信息
收发单元520,用于发送该第一MIB。
本申请提供的通信装置,通过重新定义MIB中用于类型A PDSCH的解调参考信号DMRS位置的参数的字段(参数)指示的内容,例如,该字段可以是MIB中的DMRS-TypeA-Position的字段。定义该字段用于简易能力的终端设备获取对应的SIB1,使得简易能力的终端设备可以获取SIB1,从而可以顺序、快速的接入***并实现上行同步和小区选择等。保障了简易能力的终端设备可以正常的通信,提高通信效率。
可选的,在本申请的一些实施例中,该参数用于指示该第一SIB1对应的控制资源集。
可选的,在本申请的一些实施例中,该第一SIB1对应的控制资源集与第二SIB1对应的控制资源集相同或者不同,其中,该第一MIB中包括第一参数,该第一参数用于指示该第二SIB1对应的控制资源集,该第二SIB1包括第二装置的接入配置信息。
可选的,在本申请的一些实施例中,当该第一SIB1对应的控制资源集与该第二SIB1对应的控制资源集相同时,该第一SIB1对应的控制资源集中的PDCCH承载的下行控制信息DCI中的第一信息是预定义的或者通过高层信令配置的。
可选的,在本申请的一些实施例中,第一信息可以包括:MCS、混合自动重传请求HARQ进程数、NDI、RV等中的一个或者多个。
可选的,在本申请的一些实施例中,当该第一SIB1对应的控制资源集与该第二SIB1 对应的控制资源集相同时,第一PDCCH利用第一RNTI加扰,第二PDCCH利用第二RNTI加扰,其中,该第一PDCCH为该第一SIB1对应的控制资源集中的PDCCH,该第二PDCCH为该第二SIB1对应的控制资源集中的PDCCH,该第一PDCCH与该第二PDCCH不同,该第一RNTI与该第二RNTI不同。
可选的,在本申请的一些实施例中,第一RNTI可以为第一U-RNTI,或者第一RNTI为第一C-RNTI。第二RNTI可以为第二U-RNTI或者为第二C-RNTI。第一U-RNTI和第二U-RNTI不同,第一C-RNTI和第二C-RNTI不同。
可选的,在本申请的一些实施例中,该参数用于指示该第一SIB1位于第一时频位置。其中,该第一时频位置是预定义的或者通过高层信令配置的。
可选的,在本申请的一些实施例中,该参数用于指示该第一SIB1对应的第一物理广播信道PBCH,该第一PBCH的时频资源位置是预定义或者通过高层信令配置的。
可选的,在本申请的一些实施例中,该参数用于指示该第一SIB1是否存在更新。
可选的,在本申请的一些实施例中,当承载该第一SIB1的PDSCH的映射类型为类型A时,承载该第一SIB1的PDSCH的第一个DMRS所在的时域符号位置为该PDSCH所在的时间单元内的第4个时域符号。
可选的,在本申请的一些实施例中,用于类型A PDSCH的解调参考信号DMRS位置的参数(字段)为Dmrs-TypeA-Position参数(字段)。
应理解,装置500中各单元执行上述相应步骤的具体过程请参照前文中结合方法200、以及图3至图5中相关实施例的网络设备相关的描述,为了简洁,这里不加赘述。
可选的,收发单元520可以包括接收单元(模块)和发送单元(模块),用于执行前述方法200的各个实施例以及图2至图5所示的实施例中网络设备接收信息和发送信息的步骤。
进一步的,该装置500还可以该存储单元。收发单元520可以是收发器、输入/输出接口或接口电路。存储单元用于存储收发单元520和处理单元510执行的指令。收发单元520、处理单元510和存储单元相互耦合,存储单元存储指令,处理单元510用于执行存储单元存储的指令,收发单元520用于在处理单元510的驱动下执行具体的信号收发。
应理解,收发单元520可以是收发器、输入/输出接口或接口电路。存储单元可以是存储器。处理单元310可由处理器实现。如图9所示,通信装置600可以包括处理器610、存储器620和收发器630。
图8所示的通信装置500或图9所示的通信装置600能够实现前述方法200中的实施例以及图3至图5所示的实施例中网络设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
还应理解,图8所示的通信装置500或图9所示的通信装置600可以为网络设备。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。这里该处理元件又可以称为 处理器,可以是一种具有信号处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
图10为本申请提供的一种终端设备700的结构示意图。上述装置300或者400可以配置在该终端设备600中。或者,该装置300或者400本身可以即为该终端设备700。或者说,该终端设备700可以执行上述方法200中第一终端设备执行的动作。可选的,该终端设备700可以是简易能力的终端设备。
为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备700包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
例如,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过 各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备700的收发单元701,将具有处理功能的处理器视为终端设备700的处理单元702。如图10所示,终端设备700包括收发单元701和处理单元202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元701中用于实现接收功能的器件视为接收单元,将收发单元701中用于实现发送功能的器件视为发送单元,即收发单元701包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图11为本申请提供的另一种终端设备800的结构示意图。在图11中,该终端设备包括处理器810,发送数据处理器820,接收数据处理器830。上述实施例中的处理单元320可以是图11中的处理器810,并完成相应的功能。上述实施例中的收发单元310可以是图11中的发送数据处理器820,和/或接收数据处理器830。虽然图11中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图12为本申请实施例提供的一种网络设备900的结构示意图,可以用于实现上述方法中的网络设备的功能。网络设备900包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)901和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)902。该RRU 901可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线9011和射频单元9012。该RRU 901部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中的信令消息。该BBU 902部分主要用于进行基带处理,对基站进行控制等。该RRU 901与BBU 902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU 902为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)902可以用于控制基站90执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,该BBU 902可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE***,或5G***),也可以分别支持不同接入制式的无线接入网。该BBU 902还包括存储器9021和处理器9022。该存储器9021用以存储必要的指令和数据。例如存储器9021存储上述实施例中的码本等。该处理器9022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。该存储器9021和处理器9022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上***(system-on-chip,SoC)技术的发展,可以将902部分和901部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够 读取该芯片外部的存储器以实现基站的相关功能。
应理解,图12示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行该计算机指令或计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本申请实施例还提供了一种通信***,该通信***包括:上述的简易能力终端设备和上述的网络设备。可选的,该通信***还可以包括正常的终端设备。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法200中本申请实施例的***信息传输的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行 时,以使得简易能力的终端设备和网络设备分别执行对应于上述方法的第一终端设备和网络设备的操作。
本申请实施例还提供了一种***芯片,该***芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种***信息传输的方法。
可选地,上述本申请实施例中提供的任意一种通信装置可以包括该***芯片。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的主***信息传输的方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该***芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/***/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理 解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种***信息的传输方法,其特征在于,包括:
    接收第一主信息块MIB;
    获取所述第一MIB中用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,所述参数用于获取第一***信息块SIB1,所述第一SIB1包括第一装置的接入配置信息;
    根据所述参数,获取所述第一SIB1。
  2. 根据权利要求1所述的方法,其特征在于,所述参数用于指示所述第一SIB1对应的控制资源集;
    所述根据所述参数,获取所述第一SIB1,包括:
    在所述参数指示的所述第一SIB1对应的控制资源集上检测物理下行控制信道PDCCH,所述PDCCH用于调度承载所述第一SIB1的物理下行共享信道PDSCH。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一SIB1对应的控制资源集与第二SIB1对应的控制资源集相同或者不同,其中,所述第一MIB中包括第一参数,所述第一参数用于指示所述第二SIB1对应的控制资源集,所述第二SIB1包括第二装置的接入配置信息。
  4. 根据权利要求3所述的方法,其特征在于,
    当所述第一SIB1对应的控制资源集与所述第二SIB1对应的控制资源集相同时,根据所述第一SIB1对应的控制资源集中的PDCCH承载的下行控制信息DCI以及第一信息获取所述PDSCH中的所述第一SIB1,所述第一信息是预定义的或者通过高层信令配置的。
  5. 根据权利要求3所述的方法,其特征在于,
    当所述第一SIB1对应的控制资源集与所述第二SIB1对应的控制资源集相同时,根据第一PDCCH承载的下行控制信息DCI获取所述PDSCH中的所述第一SIB1,
    其中,所述第一PDCCH为所述第一SIB1对应的控制资源集中的PDCCH,所述第一PDCCH利用第一无线网络临时标识RNTI加扰,第二PDCCH为所述第二SIB1对应的控制资源集中的PDCCH,所述第二PDCCH利用第二RNTI加扰,所述第一PDCCH与所述第二PDCCH不同,所述第一RNTI与所述第二RNTI不同。
  6. 根据权利要求1所述的方法,其特征在于,所述参数用于指示在第一时频位置接收所述第一SIB1,其中,所述第一时频位置是预定义的或者通过高层信令配置的。
  7. 根据权利要求1所述的方法,其特征在于,
    所述参数用于指示所述第一SIB1对应的第一物理广播信道PBCH,
    所述根据所述参数,获取所述第一SIB1,包括:
    根据所述第一PBCH获取所述第一SIB1,所述第一PBCH的时频资源位置是预定义或者通过高层信令配置的。
  8. 根据权利要求1所述的方法,其特征在于,所述参数用于指示所述第一SIB1是否存在更新。
  9. 根据权利要求8所述的方法,其特征在于,当所述参数指示所述第一SIB1不存在 更新时,所述根据所述参数,获取所述第一SIB1,包括:
    确定在先SIB1为所述第一SIB1,所述在先SIB1为所述第一装置上一次获取的SIB1。
  10. 根据权利要求8所述的方法,其特征在于,当所述参数指示所述第一SIB1存在更新时,所述根据所述参数,获取所述第一SIB1,包括:
    根据所述第一MIB中指示的所述第一SIB1的配置信息,获取所述第一SIB1。
  11. 根据权利要求1至10中任一项所述方法,其特征在于,当承载所述第一SIB1的PDSCH的映射类型为类型A时,承载所述第一SIB1的PDSCH的第一个DMRS所在的时域符号为所述PDSCH所在的时间单元内的第4个时域符号。
  12. 一种***信息的传输方法,其特征在于,包括:
    确定第一主信息块MIB,所述第一MIB包括用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,所述参数用于指示第一***信息块SIB1,所述第一SIB1包括第一装置的接入配置信息;
    发送所述第一MIB。
  13. 根据权利要求12所述的方法,其特征在于,所述参数用于指示所述第一SIB1对应的控制资源集。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一SIB1对应的控制资源集与第二SIB1对应的控制资源集相同或者不同,其中,所述第一MIB中包括第一参数,所述第一参数用于指示所述第二SIB1对应的控制资源集,所述第二SIB1包括第二装置的接入配置信息。
  15. 根据权利要求14所述的方法,其特征在于,
    当所述第一SIB1对应的控制资源集与所述第二SIB1对应的控制资源集相同时,所述第一SIB1对应的控制资源集中的PDCCH承载的下行控制信息DCI中的第一信息是预定义的或者通过高层信令配置的。
  16. 根据权利要求14所述的方法,其特征在于,
    当所述第一SIB1对应的控制资源集与所述第二SIB1对应的控制资源集相同时,第一PDCCH利用第一RNTI加扰,第二PDCCH利用第二RNTI加扰,其中,所述第一PDCCH为所述第一SIB1对应的控制资源集中的PDCCH,所述第二PDCCH为所述第二SIB1对应的控制资源集中的PDCCH,所述第一PDCCH与所述第二PDCCH不同,所述第一RNTI与所述第二RNTI不同。
  17. 根据权利要求12所述的方法,其特征在于,所述参数用于指示所述第一SIB1位于第一时频位置,其中,所述第一时频位置是预定义的或者通过高层信令配置的。
  18. 根据权利要求12所述的方法,其特征在于,
    所述参数用于指示所述第一SIB1对应的第一物理广播信道PBCH,所述第一PBCH的时频资源位置是预定义或者通过高层信令配置的。
  19. 根据权利要求12所述的方法,其特征在于,所述参数用于指示所述第一SIB1是否存在更新。
  20. 根据权利要求12至19中任一项所述方法,其特征在于,当承载所述第一SIB1的PDSCH的映射类型为类型A时,承载所述第一SIB1的PDSCH的第一个DMRS所在的时域符号为所述PDSCH所在的时间单元内的第4个时域符号。
  21. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一主信息块MIB;
    处理单元,用于获取所述第一MIB中用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,所述参数用于获取第一***信息块SIB1,所述第一SIB1包括第一装置的接入配置信息;
    所述处理单元,还用于根据所述参数,获取所述第一SIB1。
  22. 根据权利要求21所述的装置,其特征在于,所述参数用于指示所述第一SIB1对应的控制资源集;
    所述处理单元,还用于在所述参数指示的所述第一SIB1对应的控制资源集上检测物理下行控制信道PDCCH,所述PDCCH用于调度承载所述第一SIB1的物理下行共享信道PDSCH。
  23. 根据权利要求22所述的装置,其特征在于,
    所述第一SIB1对应的控制资源集与第二SIB1对应的控制资源集相同或者不同,其中,所述第一MIB中包括第一参数,所述第一参数用于指示所述第二SIB1对应的控制资源集,所述第二SIB1包括第二装置的接入配置信息。
  24. 根据权利要求23所述的装置,其特征在于,
    当所述第一SIB1对应的控制资源集与所述第二SIB1对应的控制资源集相同时,根据所述第一SIB1对应的控制资源集中的PDCCH承载的下行控制信息DCI以及第一信息获取所述PDSCH中的所述第一SIB1,所述第一信息是预定义的或者通过高层信令配置的。
  25. 根据权利要求23所述的装置,其特征在于,
    当所述第一SIB1对应的控制资源集与所述第二SIB1对应的控制资源集相同时,所述处理单元,还用于根据第一PDCCH承载的下行控制信息DCI获取所述PDSCH中的所述第一SIB1,
    其中,所述第一PDCCH为所述第一SIB1对应的控制资源集中的PDCCH,所述第一PDCCH利用第一无线网络临时标识RNTI加扰,第二PDCCH为所述第二SIB1对应的控制资源集中的PDCCH,所述第二PDCCH利用第二RNTI加扰,所述第一PDCCH与所述第二PDCCH不同,所述第一RNTI与所述第二RNTI不同。
  26. 根据权利要求21所述的装置,其特征在于,所述参数用于指示在第一时频位置接收所述第一SIB1,其中,所述第一时频位置是预定义的或者通过高层信令配置的。
  27. 根据权利要求21所述的装置,其特征在于,
    所述参数用于指示所述第一SIB1对应的第一物理广播信道PBCH,
    所述处理单元,还用于根据所述第一PBCH获取所述第一SIB1,所述第一PBCH的时频资源位置是预定义或者通过高层信令配置的。
  28. 根据权利要求21所述的装置,其特征在于,所述参数用于指示所述第一SIB1是否存在更新。
  29. 根据权利要求28所述的装置,其特征在于,当所述参数指示所述第一SIB1不存在更新时,
    所述处理单元,还用于根据所述参数,确定在先SIB1为所述第一SIB1,所述在先SIB1为所述第一装置上一次获取的SIB1。
  30. 根据权利要求28所述的装置,其特征在于,当所述参数指示所述第一SIB1存在更新时,
    所述处理单元,还用于根据所述第一MIB中指示的所述第一SIB1的配置信息,获取所述第一SIB1。
  31. 根据权利要求21至30中任一项所述装置,其特征在于,当承载所述第一SIB1的PDSCH的映射类型为类型A时,承载所述第一SIB1的PDSCH的第一个DMRS所在的时域符号为所述PDSCH所在的时间单元内的第4个时域符号。
  32. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一主信息块MIB,所述第一MIB包括用于指示类型A物理下行共享信道PDSCH的解调参考信号DMRS位置的参数,所述参数用于指示第一***信息块SIB1,所述第一SIB1包括第一装置的接入配置信息
    收发单元,用于发送所述第一MIB。
  33. 根据权利要求32所述的装置,其特征在于,所述参数用于指示所述第一SIB1对应的控制资源集。
  34. 根据权利要求33所述的装置,其特征在于,
    所述第一SIB1对应的控制资源集与第二SIB1对应的控制资源集相同或者不同,其中,所述第一MIB中包括第一参数,所述第一参数用于指示所述第二SIB1对应的控制资源集,所述第二SIB1包括第二装置的接入配置信息。
  35. 根据权利要求34所述的装置,其特征在于,
    当所述第一SIB1对应的控制资源集与所述第二SIB1对应的控制资源集相同时,所述第一SIB1对应的控制资源集中的PDCCH承载的下行控制信息DCI中的第一信息是预定义的或者通过高层信令配置的。
  36. 根据权利要求34所述的装置,其特征在于,
    当所述第一SIB1对应的控制资源集与所述第二SIB1对应的控制资源集相同时,第一PDCCH利用第一RNTI加扰,第二PDCCH利用第二RNTI加扰,其中,所述第一PDCCH为所述第一SIB1对应的控制资源集中的PDCCH,所述第二PDCCH为所述第二SIB1对应的控制资源集中的PDCCH,所述第一PDCCH与所述第二PDCCH不同,所述第一RNTI与所述第二RNTI不同。
  37. 根据权利要求32所述的装置,其特征在于,所述参数用于指示在所述第一SIB1位于第一时频位置,其中,所述第一时频位置是预定义的或者通过高层信令配置的。
  38. 根据权利要求32所述的装置,其特征在于,
    所述参数用于指示所述第一SIB1对应的第一物理广播信道PBCH,所述第一PBCH的时频资源位置是预定义或者通过高层信令配置的。
  39. 根据权利要求32所述的装置,其特征在于,所述参数用于指示所述第一SIB1是否存在更新。
  40. 根据权利要求32至39中任一项所述装置,其特征在于,当承载所述第一SIB1的PDSCH的映射类型为类型A时,承载所述第一SIB1的PDSCH的第一个DMRS所在的时域符号为所述PDSCH所在的时间单元内的第4个时域符号。
  41. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理 器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至11中任一项所述的方法,或者12至20中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求1至11中任一项所述的方法,或者12至20中任一项所述的方法。
  43. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的通信设备执行如权利要求1至11中任一项所述的方法,或者12至20中任一项所述的方法。
PCT/CN2019/109530 2019-09-30 2019-09-30 ***信息的传输方法和通信装置 WO2021062665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109530 WO2021062665A1 (zh) 2019-09-30 2019-09-30 ***信息的传输方法和通信装置
CN201980100137.5A CN114342520A (zh) 2019-09-30 2019-09-30 ***信息的传输方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109530 WO2021062665A1 (zh) 2019-09-30 2019-09-30 ***信息的传输方法和通信装置

Publications (1)

Publication Number Publication Date
WO2021062665A1 true WO2021062665A1 (zh) 2021-04-08

Family

ID=75337597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109530 WO2021062665A1 (zh) 2019-09-30 2019-09-30 ***信息的传输方法和通信装置

Country Status (2)

Country Link
CN (1) CN114342520A (zh)
WO (1) WO2021062665A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140378085A1 (en) * 2011-12-20 2014-12-25 Samsung Electronics Co., Ltd. Method and apparatus for transceiving a warning message in a wireless communication system
US20160021677A1 (en) * 2014-07-15 2016-01-21 Alcatel-Lucent Usa, Inc. Multi-board architecture for wireless transceiver station
CN107733582A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 发送指示信息和harq‑ack的方法及设备
CN109392140A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种用于监听pdcch的方法、终端及网络设备
CN109600839A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 一种指示方法、确定方法、发送设备和接收设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140378085A1 (en) * 2011-12-20 2014-12-25 Samsung Electronics Co., Ltd. Method and apparatus for transceiving a warning message in a wireless communication system
US20160021677A1 (en) * 2014-07-15 2016-01-21 Alcatel-Lucent Usa, Inc. Multi-board architecture for wireless transceiver station
CN107733582A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 发送指示信息和harq‑ack的方法及设备
CN109392140A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种用于监听pdcch的方法、终端及网络设备
CN109600839A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 一种指示方法、确定方法、发送设备和接收设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project Technical Specification Group Radio Access Network NR Radio Resource Control (RRC) Protocol specification (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.331, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V1.0.0, 14 December 2017 (2017-12-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 187, XP051450280 *

Also Published As

Publication number Publication date
CN114342520A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2020143750A1 (zh) 侧行参考信号的传输方法和通信装置
EP3749013B1 (en) Sounding reference signal transmission method, terminal device, and network device
US11457443B2 (en) Method for transmitting configuration information and terminal device
US11903010B2 (en) Sidelink quality measurement method and communications apparatus
US20220304059A1 (en) Method and Apparatus for Sharing Channel Occupancy Time on Unlicensed Spectrum
CN111294960B (zh) 识别下行控制信息的方法及设备
WO2019029425A1 (zh) 信息上报及信息处理方法、终端及网络设备
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
CN112491514B (zh) 侧行链路反馈信息传输的方法和通信装置
EP3846371A1 (en) Method for transmitting sidelink information, communication device and network device
CN113228544A (zh) 用于预配置的上行链路资源的重传方案和优化
WO2018137700A1 (zh) 一种通信方法,装置及***
US11330615B2 (en) Wireless communication method, terminal device and transmitting and receiving nodes
CN111511037B (zh) 获取***信息的方法、装置及计算机可读存储介质
US11991684B2 (en) Data transmission method and apparatus
WO2020029229A1 (en) Method and apparatus for indicating slot format information
WO2021062665A1 (zh) ***信息的传输方法和通信装置
WO2020155181A1 (zh) 信道传输的方法和设备
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信***
US20230084429A1 (en) PDSCH Transmission Method and Apparatus
WO2023010230A1 (en) Dynamic indication of channel occupancy time (cot) initiated by user equipment (ue) or network
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2021056579A1 (zh) 一种dmrs样式指示信息的传输方法和通信装置
JP2024511842A (ja) リソース決定方法およびリソース決定装置
CN117395785A (zh) 配置方法,装置和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947801

Country of ref document: EP

Kind code of ref document: A1