WO2021060930A1 - Scintillator for gamma-ray/neutron measurement, method for manufacturing scintillator, and seperation and measurement method using scintillator - Google Patents

Scintillator for gamma-ray/neutron measurement, method for manufacturing scintillator, and seperation and measurement method using scintillator Download PDF

Info

Publication number
WO2021060930A1
WO2021060930A1 PCT/KR2020/013123 KR2020013123W WO2021060930A1 WO 2021060930 A1 WO2021060930 A1 WO 2021060930A1 KR 2020013123 W KR2020013123 W KR 2020013123W WO 2021060930 A1 WO2021060930 A1 WO 2021060930A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
neutrons
gamma rays
manufacturing
gamma
Prior art date
Application number
PCT/KR2020/013123
Other languages
French (fr)
Korean (ko)
Inventor
김홍주
부옹 판콕
김성환
칸아사드
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2021060930A1 publication Critical patent/WO2021060930A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium

Definitions

  • the present invention relates to a scintillator for measuring gamma rays/neutrons, a method for manufacturing a scintillator, and a separation measurement method using the scintillator.
  • LiI:Eu scintillator is a representative neutron detector using the characteristic that Li ions react with neutrons, and although commercially available, gamma rays are also measured, so there is a problem that two radiations cannot be distinguished in a radiation field where gamma rays and neutrons are mixed.
  • FIG. 1 is a view showing the results of simultaneously measuring 1461 keV of potassium-40 and 2615 keV of thorium-based gamma rays and thermal neutrons with a LiI:Eu scintillator. Referring to FIG. 1, it is shown that measurement signals of two radiations are mixed, and gamma rays and neutrons are not separated on the spectrum.
  • the present invention is intended to provide a scintillator for efficiently separating gamma rays/neutrons in a gamma ray/neutron mixture field.
  • the present invention also proposes a separation measurement method using a scintillator to efficiently separate gamma rays/neutrons in a gamma ray/neutron mixed field.
  • a LiI:X scintillator for measuring gamma-ray/neutron separation in a gamma-ray/neutron mixed field is disclosed.
  • the concentration of the active agent X may be 0 ⁇ X ⁇ 20 mol%.
  • a method for manufacturing a scintillator is disclosed.
  • moisture may be removed by heat treatment to grow the scintillator into a single crystal of good quality.
  • the manufacturing method may remove moisture by heat treatment at 150 ⁇ 20° C. for 20 hours or more.
  • the manufacturing method may perform moisture removal in a high vacuum of 10 -6 torr or more.
  • a method of separating and measuring gamma rays and neutrons using a scintillator using a maximum likelihood method is disclosed.
  • gamma rays and neutrons may be separated and measured.
  • the pulse shape index (SI) may be set to a range of -0.1 ⁇ SI ⁇ 0.1, gamma rays and neutrons may be measured separately.
  • the scintillator according to the present invention has an effect that separation of gamma rays and neutrons is easier than that of the conventional scintillator.
  • 1 is a view showing a wave height spectrum for gamma rays and neutrons using a LiI:Eu scintillator.
  • FIG. 2 is a diagram showing a scintillation time characteristic spectrum for gamma rays/neutrons of a cerium doped click (Cs 2 LiYCl 6 :Ce 3+; CLYC) scintillator.
  • FIG. 3 is a diagram showing a peak waveform spectrum measured by the maximum likelihood method using the scintillator according to the present invention.
  • FIG. 4 is a diagram showing a scintillation attenuation spectrum of gamma rays and neutrons measured using a scintillator according to the present invention.
  • FIG. 5 is a diagram showing a wave height spectrum in which gamma rays and neutrons are measured at the same time.
  • FIG. 6 is a diagram showing a wave height spectrum obtained by measuring only neutrons after separating gamma rays and neutrons by the maximum likelihood method.
  • FIG. 7(a) is a diagram showing a spectrum using a LiI:Ag scintillator omitting drying and purification processes.
  • 7(b) is a diagram showing a two-dimensional spectrum of gamma rays and neutrons separated and measured by a pulse shape classification method of a LiI:Ag scintillator grown after removing moisture through a drying and refining process according to the present invention.
  • the main content of the present invention relates to a LiI:X scintillator detector capable of separately measuring two radiations in a radiation field in which gamma rays and neutrons are mixed, a gamma ray/neutron separation measurement method using the same, and a method of manufacturing a LiI:X scintillator.
  • the LiI scintillator is very susceptible to moisture, and when it is exposed to moisture, it is impossible to grow a single crystal of the scintillator, so the drying process in the reagent was confirmed.
  • the present invention discloses a method of manufacturing a scintillator having an optimum separation effect by limiting the temperature and time of the drying process.
  • the parent LiI reacts with neutrons or gamma rays to absorb energy into the scintillator.
  • Sn, Ag, Tl, In doped with the activator in the LiI:X scintillator receives energy absorbed from the parent and the excited electrons recombine at the luminescent center of the activator, causing a scintillation phenomenon.
  • energy conversion efficiency may vary depending on the type and combination of the activator, and the luminous wavelength or flash attenuation time characteristics may change.
  • Gamma rays and neutrons cause ionization in the scintillator.
  • the difference in charge density of the electrons generated by the physical properties of the two radiations occurs, and the difference in the flash time characteristics occurs due to the difference in energy conversion efficiency between the parent and the active agent, and this can be evaluated and measured separately.
  • the element X which is an activator, may be transformed into a trivalent rare earth or a transition metal to be applied.
  • trivalent rare earth or transition metal when trivalent rare earth or transition metal is used as an activator, the measurement effect of separating gamma rays and neutrons may be partially insufficient compared to the case of applying Sn, Ag, Tl, and In as activators.
  • the concentration of the active agent X in the LiI:X scintillator may satisfy 0 ⁇ X ⁇ 20 mol%.
  • the activator X may serve to increase the luminous efficiency of the scintillator.
  • the concentration of the activator is excessively increased, there is a problem in that the light output is rather reduced due to quenching by the activator.
  • the concentration of the activator (X) exceeds 20 mol%, the light output rapidly decreases, and the concentration of the activator X in the LiI:X scintillator may satisfy 0 ⁇ X ⁇ 20 mol%.
  • FIG. 3 is a diagram showing a peak waveform spectrum measured by the maximum likelihood method using the scintillator according to the present invention.
  • FIG. 3 is a peak waveform spectrum obtained by measuring gamma rays and neutrons by the maximum likelihood method according to the present invention.
  • Two types of radiation can be clearly distinguished and measured in a radiation field in which gamma rays and neutrons are mixed using the scintillator according to the present invention.
  • (1) represents a separated neutron measurement spectrum
  • (2) is a gamma ray measurement spectrum. That is, referring to FIG. 3, it can be seen that (1) and (2) are clearly separated and separated.
  • FIG. 4 is a diagram showing a scintillation attenuation spectrum of gamma rays and neutrons measured using a scintillator according to the present invention.
  • a signal of a neutron exhibits a much faster characteristic than that of a gamma ray according to a difference in the transition efficiency of the energy band due to the added activator. Using these features, gamma rays and neutrons can be measured separately.
  • a shape indicator (SI) for distinguishing the peaks of gamma rays and neutrons is defined by the following equation.
  • a i is the magnitude of the FADC output
  • W(t i ) is the load factor for the i-th time interval.
  • the load factor is Given by, where And Denotes the average value of each neutron and gamma ray measurement signal in the set time window area.
  • the shape index is Gamma rays and neutrons can be measured separately in the range of.
  • the shape index is determined from the difference in temporal characteristics of the gamma ray and neutron scintillation measurement signal.
  • a large SI index means that the difference in time characteristics between the two signals is large. In other words, this means that one measurement signal is very fast and the other measurement signal is very slow.
  • the maximum likelihood method is applicable to all scintillators with a difference in the decay time characteristics of the measurement signal of gamma rays and neutrons.
  • 5 is a diagram showing a wave height spectrum in which gamma rays and neutrons are measured at the same time.
  • 6 is a diagram showing a wave height spectrum obtained by measuring only neutrons after separating gamma rays and neutrons by the maximum likelihood method. 5 to 6, there is an effect of confirming that gamma rays and neutrons are measured separately.
  • 7(a) is a diagram showing a spectrum using a LiI:Ag scintillator omitting drying and purification processes.
  • 7(b) is a diagram showing a two-dimensional spectrum of gamma rays and neutrons separated and measured by a pulse shape classification method of a LiI:Ag scintillator grown after removing moisture through a drying and refining process according to the present invention.
  • the scintillator according to the present invention may remove moisture by heat treatment at 150 ⁇ 20° C. for 20 hours or more, and this moisture removal process may be processed in a high vacuum of 10 -6 torr.
  • the scintillator of LiI:Ag single crystal that has undergone an appropriate drying and purification process shows superior results in the separation measurement of gamma rays and neutrons than in the case of LiI:Ag omitting the drying and purification process.
  • a method of doping at least one of Sn, Ag, Tl, and In with an active agent is provided.
  • the conversion efficiency between energy bands is determined by doping one or more activators into the matrix. It also provides a method of removing free water and bound water of a scintillation material for single crystal growth of a scintillator.
  • LiI has a relatively low melting point of 469 degrees and has a cubic structure, so it is easy to grow a single crystal and has an economic advantage as a radiation detector because the unit cost of a main component and a doping element is very inexpensive.
  • the LiI:X scintillation detector has a figure of merit (FOM) for thermal neutrons of 2.2, which is effective in separating gamma rays/neutrons.
  • the LiI:X scintillator has a high reaction rate of Li with respect to neutrons, so that neutron detection efficiency is excellent.
  • the result of the present invention can be applied to a technique for separating two radiations in a region where gamma rays and neutrons are mixed, such as a nuclear power plant, a high energy accelerator laboratory, and a radioisotope production facility. Since neutrons have a greater biological effect than gamma rays, it is very important to separate and measure the dose evaluation of two radiations for radiation protection of radiation workers, and this can be measured using the scintillator of the present invention. In addition, neutrons and gamma rays generated by cosmic radiation are mixed at high altitudes, unlike ground where gamma rays are mainly present.
  • the present invention can be applied to radiation protection of high-altitude flight attendants according to the Living Environment Radiation Protection Act.
  • neutron dose evaluation in space development is a prerequisite for the safe operation of spacecraft and satellites, as well as spacecraft crew members, and is a major technology for detecting the presence of water, which is the most important for space development.
  • the scintillator of the present invention can be used for this.
  • since neutrons and gamma rays can be measured simultaneously, nuclear physics, high energy physics, industrial radiation measuring devices, and the like can also be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Disclosed is a LiI:X scintillator for gamma-ray/neutron separation and measurement in a gamma-ray/neutron mixed field. In a method for manufacturing the scintillator, moisture can be removed through heat treatment in order to grow the scintillator into a single crystal of good quality. Using the scintillator, gamma-rays and neutrons can be separated and measured using a maximum likelihood method.

Description

감마선/중성자 측정용 섬광체 및 섬광체의 제조 방법 그리고 섬광체를 이용한 분리 측정 방법Scintillator for gamma-ray/neutron measurement, method of manufacturing scintillator, and separation measurement method using scintillator
본 발명은 감마선/중성자 측정용 섬광체 및 섬광체의 제조 방법 그리고 섬광체를 이용한 분리 측정 방법에 관한 것이다.The present invention relates to a scintillator for measuring gamma rays/neutrons, a method for manufacturing a scintillator, and a separation measurement method using the scintillator.
LiI:Eu 섬광체는 Li이온이 중성자와 핵반응 하는 특성을 이용한 대표적인 중성자검출기이며, 상용화 되어있지만 감마선도 같이 측정되므로 감마선 및 중성자가 혼합된 방사선장에서 두 방사선을 구별하지 못하는 문제점이 있었다. LiI:Eu scintillator is a representative neutron detector using the characteristic that Li ions react with neutrons, and although commercially available, gamma rays are also measured, so there is a problem that two radiations cannot be distinguished in a radiation field where gamma rays and neutrons are mixed.
도 1은 LiI:Eu 섬광체로 칼륨-40의 1461 keV 및 토륨 계열의 2615 keV 감마선과 열중성자를 동시에 측정한 결과를 나타내는 도면이다. 도 1을 참조하면, 두 방사선의 측정 신호가 혼합되어 있으며, 스펙트럼 상에서 감마선과 중성자가 분리되지 않음을 나타낸다.1 is a view showing the results of simultaneously measuring 1461 keV of potassium-40 and 2615 keV of thorium-based gamma rays and thermal neutrons with a LiI:Eu scintillator. Referring to FIG. 1, it is shown that measurement signals of two radiations are mixed, and gamma rays and neutrons are not separated on the spectrum.
최근 세륨이 도핑 된 클릭 섬광체를 이용한 감마선과 중성자에 대한 감쇠시간 특성의 차이를 이용하여 피크 형상법으로 감마선 및 중성자를 분리 측정하는 방법에 대한 연구가 진행되고 있다. 클릭 섬광체의 모체인 이트륨 및 도핑 된 세륨은 고가의 희토류 원소이다. 이 경우, 방사선에 대한 내구성이 낮아서 수 Gy의 저선량에서 방사선 손상이 발생한다. 일반적으로 피크 형상법에서는 도 2에서 보는 바와 같이 섬광감쇠스펙트럼에서 2개 시간 윈도우에 측정되는 신호의 크기 비로 감쇠시간 특성을 평가하여 감마선과 중성자 측정 신호를 구별하지만 알파선은 따로 분리 측정하지 못한다. Recently, studies on a method of separating and measuring gamma rays and neutrons using a peak shape method using the difference in the decay time characteristics of gamma rays and neutrons using a click scintillator doped with cerium are being conducted. Yttrium and doped cerium, the parent of the click scintillator, are expensive rare earth elements. In this case, since the durability against radiation is low, radiation damage occurs at a low dose of several Gy. In general, in the peak shape method, as shown in FIG. 2, the decay time characteristic is evaluated by the magnitude ratio of the signal measured in two time windows in the scintillation attenuation spectrum to distinguish between the gamma ray and the neutron measurement signal, but the alpha ray cannot be separately measured.
따라서 감마선과 중성자 측정 신호를 분리할 수 있으면서, 그 효율이 높은 섬광체의 필요성이 요구되었다. Therefore, there is a need for a scintillator having high efficiency while being able to separate gamma rays and neutron measurement signals.
본 발명에서는, 감마선/중성자 혼합장에서 감마선/중성자를 효율적으로 분리하기 위한 섬광체를 제공하고자 한다. In the present invention, it is intended to provide a scintillator for efficiently separating gamma rays/neutrons in a gamma ray/neutron mixture field.
본 발명에서는 또한 감마선/중성자 혼합장에서 감마선/중성자를 효율적으로 분리하기 위한 섬광체를 이용한 분리 측정 방법을 제시하고자 한다. The present invention also proposes a separation measurement method using a scintillator to efficiently separate gamma rays/neutrons in a gamma ray/neutron mixed field.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제로 제한되지 않는다. 언급되지 않은 다른 기술적 과제들은 이하의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the problems mentioned above. Other technical problems not mentioned will be clearly understood by those of ordinary skill in the art from the following description.
본 발명에 따르면, 감마선/중성자 혼합장에서 감마선/중성자 분리 측정을 위한 LiI:X 섬광체가 개시된다. According to the present invention, a LiI:X scintillator for measuring gamma-ray/neutron separation in a gamma-ray/neutron mixed field is disclosed.
일 예시에 따르면, 펄스모양을 최적화하기 위하여 활성제로 X = Sn, Ag, Tl, In 중 적어도 하나 이상을 첨가할 수 있다. According to an example, at least one of X = Sn, Ag, Tl, and In may be added as an activator in order to optimize the shape of the pulse.
일 예시에 따르면, 활성제 X의 농도는 0 ≤ X ≤ 20 mol% 일 수 있다. According to an example, the concentration of the active agent X may be 0≦X≦20 mol%.
본 발명의 다른 일 예시에 따르면, 섬광체를 제조하기 위한 방법이 개시된다. According to another example of the present invention, a method for manufacturing a scintillator is disclosed.
상기 제조 방법에 따르면, 상기 섬광체를 양질의 단결정으로 성장시키기 위해 열처리하여 습기를 제거할 수 있다. According to the manufacturing method, moisture may be removed by heat treatment to grow the scintillator into a single crystal of good quality.
일 예시에 따르면, 상기 제조 방법은, 150±20℃에서 20시간 이상 열처리하여 습기를 제거할 수 있다. According to an example, the manufacturing method may remove moisture by heat treatment at 150±20° C. for 20 hours or more.
일 예시에 따르면, 상기 제조 방법은, 10-6 torr 이상의 고진공에서 습기 제거를 수행할 수 있다. According to an example, the manufacturing method may perform moisture removal in a high vacuum of 10 -6 torr or more.
본 발명의 또 다른 일 실시예에 따르면, 섬광체를 이용하여 최대가능도법으로 감마선 및 중성자를 구별하여 분리 측정하는 방법이 개시된다. According to another embodiment of the present invention, a method of separating and measuring gamma rays and neutrons using a scintillator using a maximum likelihood method is disclosed.
일 예시에 따르면, 펄스형상지수(SI)를 설정하여 감마선 및 중성자를 구별하여 분리 측정할 수 있다. According to an example, by setting the pulse shape index (SI), gamma rays and neutrons may be separated and measured.
일 예시에 따르면, 상기 펄스형상지수(SI)를 -0.1 ≤ SI ≤0.1 범위로 설정하여 감마선 및 중성자를 분리 측정할 수 있다. According to an example, by setting the pulse shape index (SI) to a range of -0.1≦SI≦0.1, gamma rays and neutrons may be measured separately.
본 발명에 따른 섬광체를 이용할 경우 중성자 검출 효율이 우수한 효과가 있다. When the scintillator according to the present invention is used, there is an effect of excellent neutron detection efficiency.
본 발명에 따른 섬광체는 감마선 및 중성자의 분리가 기존의 섬광체에 비해 용이한 효과가 있다. The scintillator according to the present invention has an effect that separation of gamma rays and neutrons is easier than that of the conventional scintillator.
본 발명의 효과는 상술한 효과들로 제한되지 않는다. 언급되지 않은 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-described effects. Effects not mentioned will be clearly understood by those of ordinary skill in the art from the present specification and the accompanying drawings.
도 1은 LiI:Eu 섬광체를 이용한 감마선 및 중성자에 대한 파고 스펙트럼을 나타내는 도면이다.1 is a view showing a wave height spectrum for gamma rays and neutrons using a LiI:Eu scintillator.
도 2는 세륨 도핑 클릭(Cs2LiYCl6:Ce3+; CLYC) 섬광체의 감마선/중성자에 대한 섬광시간 특성 스펙트럼을 나타내는 도면이다.FIG. 2 is a diagram showing a scintillation time characteristic spectrum for gamma rays/neutrons of a cerium doped click (Cs 2 LiYCl 6 :Ce 3+; CLYC) scintillator.
도 3은 감마선과 중성자를 본 발명에 따른 섬광체를 이용하여 최대가능도법으로 측정한 피크파형스펙트럼을 나타내는 도면이다. 3 is a diagram showing a peak waveform spectrum measured by the maximum likelihood method using the scintillator according to the present invention.
도 4는 본 발명에 따른 섬광체를 이용하여 측정한 감마선 및 중성자의 섬광감쇠스펙트럼을 나타내는 도면이다. 4 is a diagram showing a scintillation attenuation spectrum of gamma rays and neutrons measured using a scintillator according to the present invention.
도 5는 감마선과 중성자가 동시에 측정된 파고 스펙트럼을 나타내는 도면이다. 5 is a diagram showing a wave height spectrum in which gamma rays and neutrons are measured at the same time.
도 6은 최대가능도법으로 감마선과 중성자를 분리한 후 중성자만 측정한 파고 스펙트럼을 나타내는 도면이다.6 is a diagram showing a wave height spectrum obtained by measuring only neutrons after separating gamma rays and neutrons by the maximum likelihood method.
도 7(a)는 건조와 정제과정을 생략한 LiI:Ag 섬광체를 이용한 스펙트럼을 나타내는 도면이다. 7(a) is a diagram showing a spectrum using a LiI:Ag scintillator omitting drying and purification processes.
도 7(b)는 본 발명에 따라 건조 및 정제과정을 거쳐 수분을 제거한 후 육성된 LiI:Ag 섬광체의 펄스형상구분법으로 분리 측정된 감마선과 중성자의 2차원 스펙트럼을 나타내는 도면이다. 7(b) is a diagram showing a two-dimensional spectrum of gamma rays and neutrons separated and measured by a pulse shape classification method of a LiI:Ag scintillator grown after removing moisture through a drying and refining process according to the present invention.
본 발명의 다른 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술 되는 실시 예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Other advantages and features of the present invention, and a method of achieving them will become apparent with reference to embodiments to be described later in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms. It is provided to completely inform the scope of the invention to the possessor, and the invention is only defined by the scope of the claims.
만일 정의되지 않더라도, 여기서 사용되는 모든 용어들(기술 혹은 과학 용어들을 포함)은 이 발명이 속한 종래 기술에서 보편적 기술에 의해 일반적으로 수용되는 것과 동일한 의미를 가진다. 일반적인 사전들에 의해 정의된 용어들은 관련된 기술 그리고/혹은 본 출원의 본문에 의미하는 것과 동일한 의미를 갖는 것으로 해석될 수 있고, 그리고 여기서 명확하게 정의된 표현이 아니더라도 개념화되거나 혹은 과도하게 형식적으로 해석되지 않을 것이다.Even if not defined, all terms (including technical or scientific terms) used herein have the same meaning as commonly accepted by universal technology in the prior art to which this invention belongs. Terms defined by general dictionaries may be construed as having the same meaning as the related description and/or the text of this application, and not conceptualized or excessively formalized, even if not clearly defined herein. Won't.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다' 및/또는 이 동사의 다양한 활용형들 예를 들어, '포함', '포함하는', '포함하고', '포함하며' 등은 언급된 조성, 성분, 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 조성, 성분, 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 본 명세서에서 '및/또는' 이라는 용어는 나열된 구성들 각각 또는 이들의 다양한 조합을 가리킨다.The terms used in this specification are for describing exemplary embodiments and are not intended to limit the present invention. In this specification, the singular form also includes the plural form unless specifically stated in the phrase. As used in the specification,'include' and/or various conjugated forms of this verb, for example,'including','including','including','including', and the like refer to the mentioned composition, ingredient, component, Steps, operations and/or elements do not exclude the presence or addition of one or more other compositions, components, components, steps, operations and/or elements. In the present specification, the term'and/or' refers to each of the listed components or various combinations thereof.
본 발명의 주요 내용은 감마선과 중성자가 혼합된 방사선장에서 두 방사선을 분리 측정할 수 있는 LiI:X 섬광체 검출기와 이를 이용한 감마선/중성자 분리 측정법, 그리고 LiI:X 섬광체의 제조 방법에 관한 것이다.The main content of the present invention relates to a LiI:X scintillator detector capable of separately measuring two radiations in a radiation field in which gamma rays and neutrons are mixed, a gamma ray/neutron separation measurement method using the same, and a method of manufacturing a LiI:X scintillator.
본 발명에 따르면 두 방사선의 검출신호를 효율적으로 분리하기 위하여 LiI 모체에 에너지 전환 특성의 차이를 높일 수 있는 활성제(X=Sn, Ag, Tl, In)를 첨가한 LiI:X 섬광체를 제안하였고, 이 섬광체를 이용하여 감마선과 중성자 신호를 최대가능도법을 이용하여 분리 측정하였다. LiI 섬광체는 매우 습기에 취약하며, 습기에 노출된 경우 섬광체 단결정의 육성이 불가하므로 시약 내의 건조공정을 확정하였다. 건조공정의 온도가 지나치게 낮으면, 우수한 단결정 섬광체를 육성하기 어려우며, 건조공정의 온도가 지나치게 높으면, 에너지 효율이 낮아져 경제성이 낮아진다. 본 발명에서는 건조공정의 온도 및 시간을 한정함으로써, 최적의 분리 효과를 가지는 섬광체의 제조 방법에 대해 개시한다. According to the present invention, in order to efficiently separate the detection signals of two radiations, a LiI:X scintillator to which an activator (X=Sn, Ag, Tl, In) that can increase the difference in energy conversion characteristics is added to the LiI matrix was proposed, Using this scintillator, gamma rays and neutron signals were measured separately using the maximum likelihood method. The LiI scintillator is very susceptible to moisture, and when it is exposed to moisture, it is impossible to grow a single crystal of the scintillator, so the drying process in the reagent was confirmed. When the temperature of the drying process is too low, it is difficult to grow an excellent single crystal scintillator, and when the temperature of the drying process is too high, energy efficiency is lowered and economical efficiency is lowered. The present invention discloses a method of manufacturing a scintillator having an optimum separation effect by limiting the temperature and time of the drying process.
본 발명에서는 LiI:X(X=Sn, Ag, Tl, In) 섬광체를 이용하여 감마선과 중성자를 분리할 수 있다. LiI:X 섬광체에서 모체인 LiI 는 중성자 또는 감마선과 반응하여 에너지를 섬광체에 흡수하는 역할을 한다. LiI:X 섬광체에서 활성제로 도핑 한 Sn, Ag, Tl, In은 모체에서 흡수된 에너지를 전달받아 여기된 전자가 활성제의 발광중심에서 재결합하면서 섬광 현상을 일으킨다. 이 때 활성제의 종류와 조합에 따라 에너지 전환 효율의 차이가 발생하며 발광파장이나 섬광감쇠시간 특성이 변할 수 있다. 감마선과 중성자는 섬광체에서 전리작용을 일으킨다. 두 방사선의 물리적 성질에 의해 발생되는 전자의 전하밀도 차이가 발생하고, 모체와 활성제 간의 에너지 전환효율의 차이로 섬광시간 특성의 차이가 발생하며, 이를 평가하며 두 방사선을 분리 측정할 수 있다.In the present invention, gamma rays and neutrons can be separated using a LiI:X(X=Sn, Ag, Tl, In) scintillator. In the LiI:X scintillator, the parent LiI reacts with neutrons or gamma rays to absorb energy into the scintillator. Sn, Ag, Tl, In doped with the activator in the LiI:X scintillator receives energy absorbed from the parent and the excited electrons recombine at the luminescent center of the activator, causing a scintillation phenomenon. At this time, energy conversion efficiency may vary depending on the type and combination of the activator, and the luminous wavelength or flash attenuation time characteristics may change. Gamma rays and neutrons cause ionization in the scintillator. The difference in charge density of the electrons generated by the physical properties of the two radiations occurs, and the difference in the flash time characteristics occurs due to the difference in energy conversion efficiency between the parent and the active agent, and this can be evaluated and measured separately.
일 예시에 따르면, LiI:X 섬광체에서 활성제인 X 원소를 3가 희토류 또는 전이금속으로 변형하여 적용할 수도 있다. 이와 같이 3가 희토류 또는 전이금속을 활성제로 이용하는 경우, 활성제로 Sn, Ag, Tl, In를 적용하는 경우에 비해 감마선 및 중성자를 분리하는 측정 효과는 일부 부족할 수 있다.According to an example, in the LiI:X scintillator, the element X, which is an activator, may be transformed into a trivalent rare earth or a transition metal to be applied. As described above, when trivalent rare earth or transition metal is used as an activator, the measurement effect of separating gamma rays and neutrons may be partially insufficient compared to the case of applying Sn, Ag, Tl, and In as activators.
일 예시에 따르면, LiI:X 섬광체에서 활성제 X의 농도는 0 ≤ X ≤ 20 mol%를 만족할 수 있다. 활성제 X는 섬광체의 발광효율을 증가시키는 역할을 수행할 수 있다. 그러나, 활성제의 농도가 지나치게 증가하게 되면 활성제에 의한 소광현상으로 인해 오히려 광 출력이 감소하는 문제점이 있다. 일 예시에 따르면, LiI 의 경우 활성제(X)의 농도가 20mol%를 넘게 되면 급격히 광출력이 감소하는 바, LiI:X 섬광체에서 활성제 X의 농도는 0 ≤ X ≤ 20 mol%를 만족할 수 있다.According to an example, the concentration of the active agent X in the LiI:X scintillator may satisfy 0≦X≦20 mol%. The activator X may serve to increase the luminous efficiency of the scintillator. However, if the concentration of the activator is excessively increased, there is a problem in that the light output is rather reduced due to quenching by the activator. According to an example, in the case of LiI, when the concentration of the activator (X) exceeds 20 mol%, the light output rapidly decreases, and the concentration of the activator X in the LiI:X scintillator may satisfy 0≦X≦20 mol%.
도 3은 감마선과 중성자를 본 발명에 따른 섬광체를 이용하여 최대가능도법으로 측정한 피크파형스펙트럼을 나타내는 도면이다. 3 is a diagram showing a peak waveform spectrum measured by the maximum likelihood method using the scintillator according to the present invention.
도 3은 감마선과 중성자를 본 발명에 따른 최대가능도법으로 측정한 피크파형스펙트럼으로서 본 발명에 따른 섬광체를 이용하여 감마선과 중성자가 혼합된 방사선장에서 두 종류의 방사선이 명확히 구별하여 측정할 수 있음을 나타낸다. 도 3에서 (1)은 분리된 중성자 측정 스펙트럼을 나타내며, (2)는 감마선 측정 스펙트럼이다. 즉 도 3을 참조하면 (1)과 (2)가 명확히 분리되어 구분됨을 확인할 수 있다. 3 is a peak waveform spectrum obtained by measuring gamma rays and neutrons by the maximum likelihood method according to the present invention. Two types of radiation can be clearly distinguished and measured in a radiation field in which gamma rays and neutrons are mixed using the scintillator according to the present invention. Represents. In FIG. 3, (1) represents a separated neutron measurement spectrum, and (2) is a gamma ray measurement spectrum. That is, referring to FIG. 3, it can be seen that (1) and (2) are clearly separated and separated.
도 4는 본 발명에 따른 섬광체를 이용하여 측정한 감마선 및 중성자의 섬광감쇠스펙트럼을 나타내는 도면이다. 4 is a diagram showing a scintillation attenuation spectrum of gamma rays and neutrons measured using a scintillator according to the present invention.
도 4를 참조하면, 첨가된 활성제에 의한 에너지 밴드의 전이효율의 차이에 따라 중성자의 신호가 감마선에 비하여 훨씬 빠른 특성을 보인다. 이와 같은 특징을 이용하여 감마선과 중성자를 분리하여 측정할 수 있다. Referring to FIG. 4, a signal of a neutron exhibits a much faster characteristic than that of a gamma ray according to a difference in the transition efficiency of the energy band due to the added activator. Using these features, gamma rays and neutrons can be measured separately.
이 때, 감마선과 중성자의 피크를 구별하는 형상지수(SI; Shape Indicator)는 다음 식으로 정의된다. In this case, a shape indicator (SI) for distinguishing the peaks of gamma rays and neutrons is defined by the following equation.
Figure PCTKR2020013123-appb-I000001
Figure PCTKR2020013123-appb-I000001
상기 수식에서, Ai는 FADC의 출력의 크기이며, W(ti)는 i번째 시간간격에 대한 하중계수이다. 하중계수는
Figure PCTKR2020013123-appb-I000002
로 주어지며, 여기서
Figure PCTKR2020013123-appb-I000003
Figure PCTKR2020013123-appb-I000004
는 설정된 시간 윈도우 영역에서 중성자와 감마선 측정 신호의 각 평균값을 의미한다. 본 발명에 따르면 형상지수는
Figure PCTKR2020013123-appb-I000005
의 범위에서 감마선과 중성자를 분리 측정할 수 있다. 형상지수는 감마선과 중성자의 섬광 측정신호의 시간 특성의 차이로부터 결정된다. SI 지수가 크다는 것은 두 신호의 시간 특성차이가 크다는 것을 의미한다. 즉 이는 하나의 측정신호가 매우 빠르고, 다른 측정신호는 매우 느리다는 것을 의미한다. 측정신호가 느리면, 방사선의 계수효율이 감소하여 방사선 측정기로서의 특성이 매우 나빠지므로 형상지수의 범위를 -0.1 ~ 1.0 사이의 범위에서 분리 측정을 수행함으로써, 감마선과 중성자의 분리에 사용되는 최대가능도법의 효율을 높일 수 있는 효과가 존재한다.
In the above equation, A i is the magnitude of the FADC output, and W(t i ) is the load factor for the i-th time interval. The load factor is
Figure PCTKR2020013123-appb-I000002
Given by, where
Figure PCTKR2020013123-appb-I000003
And
Figure PCTKR2020013123-appb-I000004
Denotes the average value of each neutron and gamma ray measurement signal in the set time window area. According to the present invention, the shape index is
Figure PCTKR2020013123-appb-I000005
Gamma rays and neutrons can be measured separately in the range of. The shape index is determined from the difference in temporal characteristics of the gamma ray and neutron scintillation measurement signal. A large SI index means that the difference in time characteristics between the two signals is large. In other words, this means that one measurement signal is very fast and the other measurement signal is very slow. If the measurement signal is slow, the radiation counting efficiency decreases and the characteristics as a radiation measuring device are very bad. Therefore, the maximum likelihood method used for separation of gamma rays and neutrons by performing separate measurements within the range of -0.1 to 1.0 of the shape index. There is an effect that can increase the efficiency of.
최대가능도법은 감마선과 중성자의 측정 신호의 감쇠시간특성의 차이가 있는 모든 섬광체에 적용 가능하다.The maximum likelihood method is applicable to all scintillators with a difference in the decay time characteristics of the measurement signal of gamma rays and neutrons.
도 5는 감마선과 중성자가 동시에 측정된 파고 스펙트럼을 나타내는 도면이다. 도 6은 최대가능도법으로 감마선과 중성자를 분리한 후 중성자만 측정한 파고 스펙트럼을 나타내는 도면이다. 도 5 내지 도 6을 통해, 감마선과 중성자가 분리되어 측정됨을 확인할 수 있는 효과가 있다. 5 is a diagram showing a wave height spectrum in which gamma rays and neutrons are measured at the same time. 6 is a diagram showing a wave height spectrum obtained by measuring only neutrons after separating gamma rays and neutrons by the maximum likelihood method. 5 to 6, there is an effect of confirming that gamma rays and neutrons are measured separately.
도 7(a)는 건조와 정제과정을 생략한 LiI:Ag 섬광체를 이용한 스펙트럼을 나타내는 도면이다. 도 7(b)는 본 발명에 따라 건조 및 정제과정을 거쳐 수분을 제거한 후 육성된 LiI:Ag 섬광체의 펄스형상구분법으로 분리 측정된 감마선과 중성자의 2차원 스펙트럼을 나타내는 도면이다. 7(a) is a diagram showing a spectrum using a LiI:Ag scintillator omitting drying and purification processes. 7(b) is a diagram showing a two-dimensional spectrum of gamma rays and neutrons separated and measured by a pulse shape classification method of a LiI:Ag scintillator grown after removing moisture through a drying and refining process according to the present invention.
본 발명에 따른 LiI:X(X=Sn, Ag, Tl, In) 섬광체는 양질의 단결정으로 성장시키기 위해 습기를 제거할 수 있다. 일 예시에 따르면 본 발명에 따른 섬광체는 150±20℃에서 20시간 이상 열처리하여 습기를 제거할 수 있고, 이 습기 제거 공정은 10-6 torr의 고진공에서 처리될 수 있다. The LiI:X(X=Sn, Ag, Tl, In) scintillator according to the present invention can remove moisture in order to grow into a single crystal of good quality. According to an example, the scintillator according to the present invention may remove moisture by heat treatment at 150±20° C. for 20 hours or more, and this moisture removal process may be processed in a high vacuum of 10 -6 torr.
도 7을 참조하면, 건조 및 정제과정을 생략한 LiI:Ag의 경우보다, 적절한 건조 및 정제과정을 거친 LiI:Ag 단결정의 섬광체가 감마선 및 중성자의 분리 측정에 우수한 결과를 보이는 것을 확인할 수 있다. Referring to FIG. 7, it can be seen that the scintillator of LiI:Ag single crystal that has undergone an appropriate drying and purification process shows superior results in the separation measurement of gamma rays and neutrons than in the case of LiI:Ag omitting the drying and purification process.
본 발명에서는, 감마선 및 중성자의 혼합장에서 감마선 및 중성자를 효율적으로 분리하기 위하여 Sn, Ag, Tl, In 중 적어도 1개 이상을 활성제로 도핑 하는 방법을 제공한다. 중성자의 감쇠시간특성을 감마선의 시간특성보다 빠르게 하기 위하여 1개 이상의 활성제를 모체에 도핑 하여 에너지 밴드간의 전환 효율을 결정한다. 또한 섬광체의 단결정 성장을 위하여 섬광재료의 자유수 및 결합수를 제거하는 방법을 제공한다. 일 예시에 따르면, 최대가능도법을 이용하여 LiI:X 섬광체의 감마선 및 중성자선을 분리하여 측정하는 기술을 제공한다. LiI는 용융점이 469도로 비교적 낮고, 큐빅 구조를 가지므로 단결정 성장이 용이할 뿐만 아니라 주 성분 및 도핑 원소의 단가가 매우 저렴하여 방사선 검출기로서 경제적인 장점이 있다. 또한, LiI:X 섬광검출기는 열중성자에 대한 FOM(figure of merit; 감마선과 중성자를 구별할 수 있는 지표)가 2.2로 감마선/중성자 분리에 용이한 효과가 있다. 그리고, LiI:X 섬광체는 중성자에 대한 Li의 반응률이 높아서 중성자 검출효율이 우수한 효과가 있다.In the present invention, in order to efficiently separate gamma rays and neutrons in a mixed field of gamma rays and neutrons, a method of doping at least one of Sn, Ag, Tl, and In with an active agent is provided. In order to make the decay time characteristic of the neutron faster than that of the gamma ray, the conversion efficiency between energy bands is determined by doping one or more activators into the matrix. It also provides a method of removing free water and bound water of a scintillation material for single crystal growth of a scintillator. According to an example, a technique for separating and measuring gamma rays and neutron rays of a LiI:X scintillator using a maximum likelihood method is provided. LiI has a relatively low melting point of 469 degrees and has a cubic structure, so it is easy to grow a single crystal and has an economic advantage as a radiation detector because the unit cost of a main component and a doping element is very inexpensive. In addition, the LiI:X scintillation detector has a figure of merit (FOM) for thermal neutrons of 2.2, which is effective in separating gamma rays/neutrons. In addition, the LiI:X scintillator has a high reaction rate of Li with respect to neutrons, so that neutron detection efficiency is excellent.
본 발명의 결과물은 원자력발전소, 고에너지 가속기연구소, 방사성동위원소 생산시설 등 감마선과 중성자가 혼합된 영역에서 두 방사선을 분리하는 기술에 적용할 수 있다. 중성자는 감마선에 비하여 생물학적 효과가 크기 때문에 방사선 작업종사자의 방사선방호를 위해서 두 방사선의 선량평가를 분리하여 측정하는 것이 매우 중요하며, 본 발명의 섬광체를 이용하여 이를 측정할 수 있다. 또한, 고고도에서는 감마선이 주로 존재하는 지상과 달리 우주방사선에 의해 발생한 중성자 및 감마선이 혼재한다. 즉 본 발명은 생활환경방사선보호법에 따라 고고도 비행 승무원의 방사선 방호에서도 적용이 가능하다. 또한, 우주 개발에서 중성자 선량 평가는 우주선 승무원뿐만 아니라, 우주비행선, 인공위성 등의 안전한 운전을 위한 필수요건이며, 우주개발에 가장 중요한 물의 존재를 탐지하는 주요 기술에 해당한다. 본 발명의 섬광체를 이에 활용할 수 있다. 본 발명은, 중성자와 감마선을 동시에 구별하여 측정할 수 있으므로 핵물리학, 고에너지물리학, 산업체 방사선측정기기 등에도 활용이 가능한 효과가 있다.The result of the present invention can be applied to a technique for separating two radiations in a region where gamma rays and neutrons are mixed, such as a nuclear power plant, a high energy accelerator laboratory, and a radioisotope production facility. Since neutrons have a greater biological effect than gamma rays, it is very important to separate and measure the dose evaluation of two radiations for radiation protection of radiation workers, and this can be measured using the scintillator of the present invention. In addition, neutrons and gamma rays generated by cosmic radiation are mixed at high altitudes, unlike ground where gamma rays are mainly present. That is, the present invention can be applied to radiation protection of high-altitude flight attendants according to the Living Environment Radiation Protection Act. In addition, neutron dose evaluation in space development is a prerequisite for the safe operation of spacecraft and satellites, as well as spacecraft crew members, and is a major technology for detecting the presence of water, which is the most important for space development. The scintillator of the present invention can be used for this. According to the present invention, since neutrons and gamma rays can be measured simultaneously, nuclear physics, high energy physics, industrial radiation measuring devices, and the like can also be used.
이상의 실시 예들은 본 발명의 이해를 돕기 위하여 제시된 것으로, 본 발명의 범위를 제한하지 않으며, 이로부터 다양한 변형 가능한 실시 예들도 본 발명의 범위에 속하는 것임을 이해하여야 한다. 본 발명의 기술적 보호범위는 특허청구범위의 기술적 사상에 의해 정해져야 할 것이며, 본 발명의 기술적 보호범위는 특허청구범위의 문언적 기재 그 자체로 한정되는 것이 아니라 실질적으로는 기술적 가치가 균등한 범주의 발명에 대하여까지 미치는 것임을 이해하여야 한다.It is to be understood that the above embodiments have been presented to aid understanding of the present invention, do not limit the scope of the present invention, and various deformable embodiments from this also fall within the scope of the present invention. The technical protection scope of the present invention should be determined by the technical idea of the claims, and the technical protection scope of the present invention is not limited to the literal description of the claims itself, but a scope that has substantially equal technical value. It should be understood that it extends to the invention of.

Claims (9)

  1. 감마선/중성자 혼합장에서 감마선/중성자 분리 측정을 위한 LiI:X 섬광체.LiI:X scintillator for gamma-ray/neutron separation measurements in a gamma-ray/neutron mixed field.
  2. 제1항에 있어서,The method of claim 1,
    펄스모양을 최적화하기 위하여 활성제로 X = Sn, Ag, Tl, In 중 적어도 하나 이상을 첨가한 섬광체.A scintillator in which at least one of X = Sn, Ag, Tl, In is added as an activator to optimize the shape of the pulse.
  3. 제2항에 있어서, The method of claim 2,
    활성제 X의 농도가 0 ≤ X ≤ 20 mol% 인 섬광체.Scintillator with a concentration of activator X of 0 ≤ X ≤ 20 mol%.
  4. 제1항 내지 제3항 중 어느 한 항의 섬광체를 제조하기 위한 방법에 있어서, In the method for manufacturing the scintillator according to any one of claims 1 to 3,
    상기 섬광체를 양질의 단결정으로 성장시키기 위해 열처리하여 습기를 제거하는 섬광체의 제조 방법. A method of manufacturing a scintillator in which moisture is removed by heat treatment to grow the scintillator into a single crystal of good quality.
  5. 제4항에 있어서, The method of claim 4,
    상기 제조 방법은, 150±20℃에서 20시간 이상 열처리하여 습기를 제거하는 섬광체의 제조 방법.The manufacturing method is a method of manufacturing a scintillator to remove moisture by heat treatment at 150±20° C. for 20 hours or more.
  6. 제5항에 있어서, The method of claim 5,
    상기 제조 방법은, 10-6 torr 이상의 고진공에서 습기 제거를 수행하는 섬광체의 제조 방법.The manufacturing method is a method of manufacturing a scintillator performing moisture removal in a high vacuum of 10 -6 torr or more.
  7. 제1항 내지 제3항 중 어느 한 항의 섬광체를 이용하여 최대가능도법으로 감마선 및 중성자를 구별하여 분리 측정하는 방법. A method for separating and measuring gamma rays and neutrons by using the scintillator according to any one of claims 1 to 3 by the maximum likelihood method.
  8. 제7항에 있어서, The method of claim 7,
    펄스형상지수(SI)를 설정하여 감마선 및 중성자를 구별하여 분리 측정하는 방법. A method of separating and measuring gamma rays and neutrons by setting the pulse shape index (SI).
  9. 제8항에 있어서, The method of claim 8,
    상기 펄스형상지수(SI)를 -0.1 ≤ SI ≤0.1 범위로 설정하여 감마선 및 중성자를 분리 측정하는 방법.A method of separately measuring gamma rays and neutrons by setting the pulse shape index (SI) in the range of -0.1 ≤ SI ≤ 0.1.
PCT/KR2020/013123 2019-09-26 2020-09-25 Scintillator for gamma-ray/neutron measurement, method for manufacturing scintillator, and seperation and measurement method using scintillator WO2021060930A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190119117 2019-09-26
KR10-2019-0119117 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021060930A1 true WO2021060930A1 (en) 2021-04-01

Family

ID=75164874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013123 WO2021060930A1 (en) 2019-09-26 2020-09-25 Scintillator for gamma-ray/neutron measurement, method for manufacturing scintillator, and seperation and measurement method using scintillator

Country Status (2)

Country Link
KR (1) KR102466494B1 (en)
WO (1) WO2021060930A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043304A1 (en) * 2004-08-31 2006-03-02 Battelle Memorial Institute Apparatus and method for osl-based, remote radiation monitoring and spectrometry
US20070029493A1 (en) * 2005-06-27 2007-02-08 General Electric Company Gamma and neutron radiation detector
KR20150145742A (en) * 2014-05-12 2015-12-31 경북대학교 산학협력단 Scintillator, method for manufacturing the same and applications of scintillator
US20160102247A1 (en) * 2014-10-10 2016-04-14 Lawrence Livermore National Security, Llc Plastic scintillators with high loading of one or more metal carboxylates
US20170355905A1 (en) * 2014-11-19 2017-12-14 The Regents Of The University Of California Novel thallium doped sodium, cesium or lithium iodide scintillators

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10261214B2 (en) * 2016-05-02 2019-04-16 Schlumberger Technology Corporation Method and apparatus for separating gamma and neutron signals from a radiation detector and for gain-stabilizing the detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043304A1 (en) * 2004-08-31 2006-03-02 Battelle Memorial Institute Apparatus and method for osl-based, remote radiation monitoring and spectrometry
US20070029493A1 (en) * 2005-06-27 2007-02-08 General Electric Company Gamma and neutron radiation detector
KR20150145742A (en) * 2014-05-12 2015-12-31 경북대학교 산학협력단 Scintillator, method for manufacturing the same and applications of scintillator
US20160102247A1 (en) * 2014-10-10 2016-04-14 Lawrence Livermore National Security, Llc Plastic scintillators with high loading of one or more metal carboxylates
US20170355905A1 (en) * 2014-11-19 2017-12-14 The Regents Of The University Of California Novel thallium doped sodium, cesium or lithium iodide scintillators

Also Published As

Publication number Publication date
KR102466494B1 (en) 2022-11-16
KR20210037586A (en) 2021-04-06

Similar Documents

Publication Publication Date Title
Kobayashi et al. Improvement in transmittance and decay time of PbWO4 scintillating crystals by La-doping
EP1711580B1 (en) Bright and fast neutron scintillators
CN1942783A (en) Scintillator material based on rare earth with a reduced nuclear background
Forrest et al. Very energetic gamma-rays from the 3 June 1982 solar flare
WO2015174584A1 (en) Scintillator, preparing method thereof, and application thereof
Kamae et al. Well-type phoswich counter for low-flux X-ray/gamma-ray detection
WO2021060930A1 (en) Scintillator for gamma-ray/neutron measurement, method for manufacturing scintillator, and seperation and measurement method using scintillator
Daniel et al. Diffuse cosmic gamma rays observed at an equatorial balloon altitude
Reeder Thin GSO scintillator for neutron detection
CN113372004A (en) Borate scintillation microcrystalline glass and preparation method and application thereof
US4248731A (en) Thermoluminescent material
CN110451798B (en) Divalent europium activated lithium borate scintillation glass and preparation method thereof
Kaneko et al. An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities
Kuznetsov et al. First experience with SONG-M measurements on board CORONAS-F satellite
Spector et al. Advances in terbium-doped, lithium-loaded scintillator glass development
CN115368897A (en) Potassium cryolite type rare earth scintillation material
McGowan Angular Correlations of Gamma Rays in Ta 181
Kling et al. Scintillation properties of cerium-doped gadolinium-scandium-aluminum garnets
KR102515450B1 (en) Scintillators for dual gamma and fast neutron spectroscopy and method of radiation separation-detection using the same
Daniels et al. Decay of 24 min 146Pr
Patronis Jr et al. Low-energy capture gamma rays of Eu 152 and Eu 154
Freedman et al. Evidence for Hindered First-Forbidden Unique Beta Branch in Ca 47 Decay
Nagornaya et al. Application prospects of cadmium-containing crystals based on tungstates and double tungstates
Ramaswamy et al. Decay of Ba133
Handley et al. Long-Lived Isomer of Al 26

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869118

Country of ref document: EP

Kind code of ref document: A1