WO2021060115A1 - Semiconductor device manufacturing method and semiconductor device manufacturing apparatus - Google Patents

Semiconductor device manufacturing method and semiconductor device manufacturing apparatus Download PDF

Info

Publication number
WO2021060115A1
WO2021060115A1 PCT/JP2020/035133 JP2020035133W WO2021060115A1 WO 2021060115 A1 WO2021060115 A1 WO 2021060115A1 JP 2020035133 W JP2020035133 W JP 2020035133W WO 2021060115 A1 WO2021060115 A1 WO 2021060115A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor device
ruthenium
wafer
manufacturing
Prior art date
Application number
PCT/JP2020/035133
Other languages
French (fr)
Japanese (ja)
Inventor
真人 荒木
耕一 佐藤
石坂 忠大
浩一 高槻
佐久間 隆
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021060115A1 publication Critical patent/WO2021060115A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials

Definitions

  • This disclosure relates to a semiconductor device manufacturing method and a semiconductor device manufacturing device.
  • a process of forming a metal film on a semiconductor wafer (hereinafter referred to as a wafer), which is a substrate for manufacturing a semiconductor device, is performed.
  • a Ru (ruthenium) film may be formed.
  • Patent Document 1 describes a process of forming a Ru film as a barrier film in a recess having a side wall formed of a SiCOH film and a bottom surface made of copper, and then embedding copper as a conductive path. Further, it is described that B 2 H 6 (diborane) gas is supplied in order to improve the adhesion between Ru and the SiCOH film before the formation of the Ru film.
  • the present disclosure provides a technique capable of preventing an increase in electrical resistance between a metal film, which is a cobalt film or a tungsten film, and a ruthenium film formed on a substrate for manufacturing a semiconductor device.
  • the method for manufacturing a semiconductor device of the present disclosure is a method for manufacturing a semiconductor device, which comprises a step of forming a ruthenium film on a metal film which is a cobalt film or a tungsten film formed on a substrate for manufacturing the semiconductor device.
  • the substrate is heated after the formation of the ruthenium film, the intermediate layer containing ruthenium and boron for suppressing the interfacial diffusion between the metal film and the ruthenium film is formed.
  • the present disclosure it is possible to prevent an increase in electrical resistance between a metal film which is a cobalt film or a tungsten film and a ruthenium film formed on a substrate for manufacturing a semiconductor device.
  • the first embodiment of the method for manufacturing a semiconductor device of the present disclosure will be described. Specifically, in this embodiment, a method of laminating a Ru (ruthenium) film on a Co (cobalt) film which is a metal film formed on the surface of the wafer A will be described. More specifically, when the Ru film is formed on the Co film so as to be in contact with the Co film, interfacial diffusion between the Co film and the Ru film occurs when the wafer A is subsequently heated to a high temperature. That is, the metal atoms constituting the film move from one of the Co film and the Ru film to the other.
  • the contact portion between the Co film and the Ru film becomes an alloy of Co and Ru, and the formation of this alloy increases the electrical resistance between the Co film and the Ru film.
  • a Ru film is formed on the Co film so that the formation of an alloy due to this interfacial diffusion is suppressed.
  • FIGS. 1A, 1B, and 1C are longitudinal side views of the surface layer portion of the wafer A.
  • Each of the treatments is performed in a state where the wafer A is stored in the processing container, heated to a preset temperature, and the inside of the processing container is in a vacuum atmosphere.
  • the Co film 11 formed by PVD Physical Vapor Deposition
  • B 2 H 6 (diborane) gas is supplied to the wafer A, and the B 2 H 6 gas is adsorbed on the surface of the Co film 11 (FIG. 1B).
  • the supply of the B 2 H 6 gas is stopped, and for example, dodecacarbonium triruthenium (Ru 3 (CO) 12 ) gas, which is a boron compound gas, is supplied to the wafer A to perform CVD (Chemical Vapor Deposition).
  • Ru 3 (CO) 12 dodecacarbonium triruthenium
  • CVD Chemical Vapor Deposition
  • an intermediate layer 12 containing B (boron) and Ru in B 2 H 6 is formed on the Co film 11
  • a Ru film 13 is further formed on the intermediate layer 12 (FIG. 1C). It is considered that the intermediate layer 12 has a higher amorphous property than the Ru film 13 by containing B, that is, the formation of gaps between atoms is suppressed and the barrier property is high.
  • the wafer A is subjected to annealing treatment at a N 2 gas atmosphere as the heat treatment.
  • the above-mentioned intermediate layer 12 suppresses the interfacial diffusion described above. That is, the movement of Co constituting the Co film 11 to the Ru film 13 and the movement of the Ru constituting the Ru film 13 to the Co film 11 are inhibited, and as a result, the above-mentioned alloy formation of Ru and Co is formed. It is suppressed. Therefore, according to this first embodiment, it is possible to suppress an increase in the electrical resistance between the Ru film 13 and the Co film 11.
  • the Co film 11 and the Ru film 13 may both be films that form the wiring of the semiconductor device. Further, the Co film 11 may be a barrier film formed along the recess formed in the insulating film and preventing the diffusion of Ru atoms into the insulating film when the Ru13 film, which is a wiring, is embedded in the recess.
  • the second embodiment will be described with reference to FIGS. 2A to 2C, focusing on the differences from the first embodiment.
  • the Ru film 13 is laminated on the Co film 11.
  • CVD is performed to supply, for example, Ru 3 (CO) 12 gas to the wafer A on which the Co film 11 described in FIG. 1A is formed, to form a thin film 14 of Ru (FIG. 2A).
  • the wafer A supplies B 2 H 6 gas, react with the B 2 H 6 gas and the thin film 14, the thin film 14 is an intermediate layer 12 of (FIG. 2B). Therefore, in the second embodiment, unlike the first embodiment, the B 2 H 6 gas is supplied with the Ru thin film 14 exposed on the surface of the wafer A.
  • the Ru 3 (CO) 12 gas is supplied to the wafer A again to perform CVD, and a film forming step of forming the Ru film 13 on the intermediate layer 12 is performed (FIG. 2C). ).
  • the wafer A undergoes an annealing treatment in the same manner as in the first embodiment.
  • the intermediate layer 12 prevents the diffusion of the metal between the Co film 11 and the Ru film 13, and suppresses the formation of the above alloy between Ru and Co.
  • the intermediate layer 12 can be formed more reliably. That is, after the B 2 H 6 gas is supplied to the wafer A, the intermediate layer 12 is not formed due to the desorption of the B 2 H 6 gas before the Ru film 13 is formed. Can be done. Therefore, according to this second embodiment, it is possible to more reliably suppress the increase in electrical resistance between the Ru film 13 and the Co film 11.
  • the first embodiment is preferable from the viewpoint that the number of steps required for processing is small and high throughput can be obtained.
  • the film thickness H1 is preferably smaller than, for example, the film thickness H2 of the Ru film 13 (see FIG. 2C).
  • the film thickness H1 is preferably 1 nm to 3 nm, and more specifically, for example, 1 nm.
  • the intermediate layer 12 is formed by supplying the B 2 H 6 gas to the thin film 14 of Ru, that is, the intermediate layer 12 is formed before the annealing treatment.
  • the Ru film (thin film 14 and Ru film 13) and the adsorbed B 2 H 6 layer are separated from each other.
  • the Ru film and B are separated from each other.
  • second intermediate layer 12 and the layer with the reaction of H 6 may be formed.
  • the first embodiment has been described as assuming that the intermediate layer 12 is formed before the annealing treatment, the intermediate layer 12 may be formed during the annealing treatment.
  • the timing at which the intermediate layer 12 is formed is not limited to the timing described in each figure.
  • the manufacturing apparatus 2 which is one embodiment of the manufacturing apparatus of the semiconductor device capable of performing the processes described in the first embodiment and the second embodiment will be described with reference to the plan view of FIG. .
  • the manufacturing apparatus 2 includes a horizontally long normal pressure transfer chamber 21 whose internal atmosphere is made to be a normal pressure atmosphere by, for example, dry nitrogen gas, and a carrier C for storing a wafer A is placed in front of the normal pressure transfer chamber 21. Carry-in / out ports 22 for placement are installed side by side. A door 23 that opens and closes together with the lid of the carrier C is attached to the front wall of the normal pressure transfer chamber 21.
  • a first transport mechanism 24 provided with a joint arm for transporting the wafer A is provided in the normal pressure transport chamber 21.
  • an alignment chamber 25 for adjusting the orientation and eccentricity of the wafer A is provided on the left wall of the normal pressure transport chamber 21 when viewed from the carry-in / out port 22 side.
  • two load lock chambers 26A and 26B are arranged side by side.
  • a gate valve 27 is provided between the load lock chambers 26A and 26B and the normal pressure transfer chamber 21.
  • a vacuum transfer chamber 28 is arranged via a gate valve 29 on the back side of the load lock chambers 26A and 26B when viewed from the normal pressure transfer chamber 21 side.
  • two B 2 H 6 gas supply modules 4 and two Ru film forming modules 5 are connected to the vacuum transfer chamber 28 via a gate valve 31.
  • the vacuum transfer chamber 28 is provided with a second transfer mechanism 32 provided with a joint arm for conveying the wafer A, and the load lock chambers 26A, 26B, B 2 H 6 are provided by the second transfer mechanism 32. Wafer A is transferred between the gas supply module 4 and the Ru film forming module 5.
  • FIG. 4 shows a schematic longitudinal side view of the B 2 H 6 gas supply module 4 which is a boron compound gas supply unit.
  • the B 2 H 6 gas supply module 4 includes a processing container 41, and a stage 42 in which a heater is embedded is provided in the processing container 41.
  • the wafer A is conveyed between the stage 42 and the second transfer mechanism 32 of the vacuum transfer chamber 28 via an elevating pin (not shown) provided on the stage 42.
  • the upstream end of the exhaust pipe 43 is open in the processing container 41, and a vacuum exhaust mechanism 44 for exhausting the inside of the processing container 41 to create a vacuum atmosphere is connected to the downstream side of the exhaust pipe 43.
  • a gas shower head 45 is provided in the upper part of the processing container 41.
  • the base end side of the gas supply path 46 connected to the gas shower head 45 is branched and connected to the B 2 H 6 gas supply source 47 and, for example, the carrier gas supply source 48 which is N 2 (nitrogen).
  • the carrier gas supply source 48 which is N 2 (nitrogen).
  • V1 to V3 are valves interposed in the gas supply path 46
  • F1 and F2 in the figure are flow rate adjusting units interposed in the gas supply path 46.
  • FIG. 5 is a longitudinal side view of the Ru film forming module 5 which is a ruthenium film forming portion.
  • the Ru film forming module 5 includes a processing container 51, and a stage 52 in which a heater is embedded is provided in the processing container 51.
  • the wafer A is conveyed between the stage 52 and the second transfer mechanism 32 of the vacuum transfer chamber 28 via an elevating pin (not shown) provided on the stage 52.
  • the upstream end of the exhaust pipe 53 is open to the processing container 51, and a vacuum exhaust mechanism 54 for exhausting the inside of the processing container 51 to create a vacuum atmosphere is connected to the downstream side of the exhaust pipe 53.
  • a gas shower head 55 is provided in the upper part of the processing container 51.
  • 56 is a flow path of a fluid for adjusting the temperature of the gas shower head 55 provided in the gas shower head 55.
  • the downstream end of the gas supply path 57 is connected to the gas shower head 55, and the raw material bottle 58 is connected to the base end side of the gas supply path 57.
  • the powder 59 of Ru 3 (CO) 12 is contained in the raw material bottle 58.
  • the downstream end of the gas supply path 61 is open in the raw material bottle 58, and the CO (carbon monoxide) gas supply source 62, which is a carrier gas, is connected to the upstream end of the gas supply path 61.
  • 63 and 64 are a group of gas supply devices provided in the gas supply paths 57 and 61, respectively, and include a valve and a flow rate adjusting unit.
  • the semiconductor device manufacturing device 2 includes a control unit 20 (see FIG. 3) which is a computer, and this control unit 20 includes a program.
  • This program is stored in a storage medium such as a compact disk, a hard disk, a magneto-optical disk, or a DVD, and is installed in the control unit 20.
  • the control unit 20 outputs a control signal to each unit of the manufacturing apparatus 2 according to the program, and controls the operation of each unit.
  • this program includes operations such as transporting the wafer A by the first transport mechanism 24 and the second transport mechanism 32, supplying and supplying each gas to the wafer A in the modules 4 and 5, and heating the wafer A. To control. Then, the program sets up a step group so that a series of processes described as the first embodiment and the second embodiment can be carried out.
  • the carrier C accommodating the wafer A on which the Co film 11 is formed is placed on the carry-in / out port 22.
  • the wafer A in the carrier C is taken out by the first transfer mechanism 24 and conveyed in the order of the normal pressure transfer chamber 21 ⁇ the alignment chamber 25 ⁇ the load lock chamber 26A.
  • the wafer A is conveyed in the order of the vacuum transfer chamber 28 ⁇ B 2 H 6 gas supply module 4 ⁇ Ru film forming module 5 by the second transfer mechanism 32, and the processes described in FIGS. 1A to 1C are performed.
  • it is conveyed in the order of the vacuum transfer chamber 28 and the load lock chamber 26B.
  • the wafer A is returned to the carrier C by the first transfer mechanism 24.
  • the wafer A placed on the stage 42 of the B 2 H 6 gas supply module 4 is heated to a desired temperature.
  • the pressure in the processing container 41 is set to, for example, 133.3 Pa (1 Torr) to 933.1 Pa (7 Torr).
  • B 2 H 6 gas is supplied into the processing container 41, for example, 100 sccm to 2000 sccm, and N 2 gas is supplied, for example, 0 sccm to 1000 sccm, to perform the treatment.
  • the supply time of these B 2 H 6 gas and N 2 gas is, for example, 10 seconds to 300 seconds.
  • the wafer A placed on the stage 52 of the Ru film forming module 5 is heated to, for example, 100 ° C. to 250 ° C.
  • the inside of the processing container 51 is set to, for example, 1.33 Pa (10 mTorr) to 6.67 Pa (50 mTorr).
  • CO gas is supplied, for example, 100 sccm to 600 sccm, more specifically, 300 sccm, for example, into the processing container 51 through the raw material bottle 58 for processing.
  • the Ru film forming module 5 When performing the process described in the second embodiment, after the wafer A is carried into the vacuum transfer chamber 28 in the above transfer path, the Ru film forming module 5 ⁇ the vacuum transfer chamber 28 ⁇ B 2 H 6 gas.
  • the supply module 4 ⁇ the vacuum transfer chamber 28 ⁇ the Ru film forming module 5 are conveyed in this order. Since the transfer is performed in this way, the wafer A moves in the vacuum atmosphere and each process described in FIGS. 2A to 2C is performed. Therefore, the wafer A is not exposed to the atmosphere between the treatments, but may be exposed to the atmosphere.
  • the intermediate layer 12 is not formed from the supply of the B 2 H 6 gas to the wafer A to the film formation treatment of the Ru film 13, the B 2 H 6 to the wafer A is not formed.
  • the gas After supplying the gas, it is preferable to avoid the reaction between the adsorbed B 2 H 6 and the components in the atmosphere. Therefore, it is preferable to carry out the transfer through the vacuum transfer chamber 28 as described above so that the wafer A is not exposed to the air atmosphere during each process.
  • Ru if the film 13 should shows an example of the process conditions in the annealing process performed after the formation of, for example, the process chamber N 2 1 Torr ⁇ 7 Torr while the gas atmosphere, and more specifically, for example, 6.67 Pa (5 Torr ).
  • Wafer A is heated at, for example, 300 ° C. to 500 ° C. under such a pressure. The heating of the wafer A is performed by the heater of the stage on which the wafer A is placed, as in the case of heating the wafer A in the modules 4 and 5 described above. Even if the module to be annealed is connected to the vacuum transfer chamber 28, the wafer A after the formation of the Ru film 13 is conveyed to the module via the vacuum transfer chamber 28 to be processed. Good.
  • each of the treatments of the first embodiment or the second embodiment may be performed on the wafer A in which the W film is formed instead of the Co film 11 as the metal film under the Ru film 13.
  • the Co film 11 and the W film may be formed by either PVD or CVD.
  • the Ru film 13 is not limited to being formed by CVD, and may be formed by, for example, PVD.
  • the boron compound gas supplied to the wafer A for forming the intermediate layer 12 may be any gas containing B (boron), and is not limited to the B 2 H 6 gas.
  • a gas containing B such as monoborane, trimethylborane, triethylborane, dicarbadodecaborane, and decaborane can be used.
  • Evaluation test 1 As an evaluation test 1, a Co film 11 was formed on a wafer A whose surface was composed of a SiO 2 (silicon oxide) film so as to have a thickness of 10 nm. After that, the formation treatment of the Ru thin film 14 described as the second embodiment, the formation treatment of the intermediate layer 12 with B 2 H 6 gas, and the formation treatment of the Ru film 13 were sequentially performed. Then, after measuring the sheet resistance of the wafer A on which the Ru film 13 was formed, the wafer A was annealed, and after the annealing treatment, the sheet resistance of the wafer A was measured again.
  • SiO 2 silicon oxide
  • the median values of the parameters of each processing condition are shown below.
  • the pressure in the processing container 41 is 399.9 Pa (3 Torr)
  • the supply flow rate of B 2 H 6 gas is 1300 sccm
  • the supply flow rate of N 2 gas is 150 sccm
  • B 2 supply time of H 6 gas and N 2 gas is 40 seconds.
  • the temperature of the wafer A is 155 ° C.
  • the pressure in the processing container 51 is 2.27 Pa (17 mTorr)
  • the supply flow rate of CO gas is 300 sccm.
  • the temperature of the wafer A is 450 ° C.
  • the pressure in the processing container is 6.67 Pa (5 Torr).
  • the processing time in the annealing process, the supply flow rate of N 2 gas into the processing vessel are each 5 minutes, was 9500Sccm.
  • the wafer A was exposed to the air atmosphere during each of the above treatments. Then, the film was formed so that the film thickness H1 of the Ru thin film 14 was 1 nm and the film thickness H2 of the Ru film 13 was 9 nm. Further, with respect to the wafer A after the annealing treatment, an image of a vertical cross section of the wafer A was acquired by a method called HAADF (High-angle Annular Dark Field) using a TEM (transmission electron microscope). The larger the value of the sheet resistance, the larger the electrical resistance between the Ru film 13 and Co11.
  • HAADF High-angle Annular Dark Field
  • a Co film 11 is formed on a wafer A whose surface is composed of a SiO 2 film so that the thickness is 10 nm, and then a Ru film having a thickness of 10 nm is formed under the same processing conditions as in the evaluation test 1.
  • 13 was formed into a film.
  • the sheet resistance of the wafer A after the film formation treatment of the Ru film 13 was measured, and then the wafer A was annealed. After the annealing treatment, the sheet resistance of the wafer A was measured again.
  • the image of the vertical cross section of the wafer A after the annealing treatment was acquired by the HAADF of the TEM.
  • the intermediate layer 12 was not formed by the B 2 H 6 gas.
  • FIG. 6 is a graph showing the sheet resistance (unit: ⁇ / sq.) Measured in each of the evaluation test 1 and the comparative test 1.
  • the circle marker in the graph is the average value, and the square marker is the minimum or maximum value. Are shown respectively. Looking at the median value, in the comparative test 1, the sheet resistance after the annealing treatment increased as compared with that before the annealing treatment, but in the evaluation test 1, there was almost no change before and after the annealing treatment. Therefore, it was confirmed that the increase in the electrical resistance between the Ru film 13 and the Co film 11 after the annealing treatment was suppressed in the evaluation test 1 as compared with the comparative test 1.
  • FIG. 7A shows the image acquired in the evaluation test 1
  • FIG. 7B shows the image acquired in the comparative test 1.
  • the boundary between the Co film 11 and the Ru film 13 is unclear, and it is presumed that the alloy is formed by interfacial diffusion.
  • the Co film 11 and the Ru film 13 are clearly separated via the intermediate layer 12, and it is presumed that the formation of the alloy is suppressed as compared with the comparative test 1. ..
  • the suppression of alloy formation is presumed and the value of the sheet resistance is low. Therefore, from the result of this evaluation test 1, the effect of the above-mentioned second embodiment was confirmed. Further, it is presumed that the formation of the intermediate layer 12 suppressed the formation of such an alloy, but the first embodiment in which the intermediate layer 12 is formed is also the second embodiment as in the second embodiment. It is presumed from the result of this evaluation test 1 that the same effect as that of the embodiment of the above is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

This semiconductor device manufacturing method, comprising a step for forming a ruthenium film on a metal film, which is a cobalt film or a tungsten film and formed on a substrate for manufacturing a semiconductor device, involves performing a step for supplying boron compound gas to the substrate, on which the metal film is formed, so that an intermediate layer is formed which contains ruthenium and boron and is for suppressing interfacial diffusion between the metal film and the ruthenium film when the substrate is heated after the ruthenium film is formed, and then performing a step for forming the ruthenium film.

Description

半導体装置の製造方法及び半導体装置の製造装置Semiconductor device manufacturing method and semiconductor device manufacturing device
 本開示は、半導体装置の製造方法及び半導体装置の製造装置に関する。 This disclosure relates to a semiconductor device manufacturing method and a semiconductor device manufacturing device.
 半導体デバイスの製造工程においては、半導体装置の製造用の基板である半導体ウエハ(以下、ウエハと記載する)に金属膜を成膜する処理が行われる。この金属膜として、Ru(ルテニウム)膜が成膜される場合が有る。特許文献1においては、側壁がSiCOH膜により形成されると共に底面が銅により構成される凹部に、バリア膜としてRu膜を成膜した後、導電路となる銅を埋め込む処理について示されている。また、上記のRu膜の成膜前にはRuとSiCOH膜との密着性を高くするために、B(ジボラン)ガスを供給することが記載されている。 In the semiconductor device manufacturing process, a process of forming a metal film on a semiconductor wafer (hereinafter referred to as a wafer), which is a substrate for manufacturing a semiconductor device, is performed. As this metal film, a Ru (ruthenium) film may be formed. Patent Document 1 describes a process of forming a Ru film as a barrier film in a recess having a side wall formed of a SiCOH film and a bottom surface made of copper, and then embedding copper as a conductive path. Further, it is described that B 2 H 6 (diborane) gas is supplied in order to improve the adhesion between Ru and the SiCOH film before the formation of the Ru film.
特開2013-175702号公報Japanese Unexamined Patent Publication No. 2013-175702
 本開示は、半導体装置の製造用の基板に形成された、コバルト膜またはタングステン膜である金属膜と、ルテニウム膜との間の電気抵抗が大きくなることを防ぐことができる技術を提供する。 The present disclosure provides a technique capable of preventing an increase in electrical resistance between a metal film, which is a cobalt film or a tungsten film, and a ruthenium film formed on a substrate for manufacturing a semiconductor device.
 本開示の半導体装置の製造方法は、半導体装置の製造用の基板に形成されたコバルト膜あるいはタングステン膜である金属膜上にルテニウム膜を成膜する工程を含む半導体装置の製造方法において、
前記ルテニウム膜の形成後の前記基板の加熱時に、前記金属膜と前記ルテニウム膜との間の界面拡散を抑制するためのルテニウムとホウ素とを含む中間層が形成された状態となるように、前記金属膜が形成された基板にホウ素化合物ガスを供給する工程と、
続いて、前記ルテニウム膜を形成する工程と、
を含む。
The method for manufacturing a semiconductor device of the present disclosure is a method for manufacturing a semiconductor device, which comprises a step of forming a ruthenium film on a metal film which is a cobalt film or a tungsten film formed on a substrate for manufacturing the semiconductor device.
When the substrate is heated after the formation of the ruthenium film, the intermediate layer containing ruthenium and boron for suppressing the interfacial diffusion between the metal film and the ruthenium film is formed. The process of supplying the boron compound gas to the substrate on which the metal film is formed, and
Subsequently, the step of forming the ruthenium film and
including.
 本開示によれば半導体装置の製造用の基板に形成された、コバルト膜またはタングステン膜である金属膜と、ルテニウム膜との間の電気抵抗が大きくなることを防ぐことができる。 According to the present disclosure, it is possible to prevent an increase in electrical resistance between a metal film which is a cobalt film or a tungsten film and a ruthenium film formed on a substrate for manufacturing a semiconductor device.
本開示の一実施形態である半導体装置の製造工程図である。It is a manufacturing process diagram of the semiconductor device which is one Embodiment of this disclosure. 本開示の一実施形態である半導体装置の製造工程図である。It is a manufacturing process diagram of the semiconductor device which is one Embodiment of this disclosure. 本開示の一実施形態である半導体装置の製造工程図である。It is a manufacturing process diagram of the semiconductor device which is one Embodiment of this disclosure. 本開示の一実施形態である半導体装置の製造工程図である。It is a manufacturing process diagram of the semiconductor device which is one Embodiment of this disclosure. 本開示の一実施形態である半導体装置の製造工程図である。It is a manufacturing process diagram of the semiconductor device which is one Embodiment of this disclosure. 本開示の一実施形態である半導体装置の製造工程図である。It is a manufacturing process diagram of the semiconductor device which is one Embodiment of this disclosure. 前記製造工程を実施するための基板処理装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the substrate processing apparatus for carrying out the said manufacturing process. 前記基板処理装置に設けられるガス供給モジュールの縦断側面図である。It is a longitudinal side view of the gas supply module provided in the substrate processing apparatus. 前記基板処理装置に設けられる成膜モジュールの縦断側面図である。It is a vertical sectional side view of the film forming module provided in the substrate processing apparatus. 評価試験の結果を示すグラフ図である。It is a graph which shows the result of the evaluation test. 評価試験にて取得された画像を示す説明図である。It is explanatory drawing which shows the image acquired in the evaluation test. 評価試験にて取得された画像を示す説明図である。It is explanatory drawing which shows the image acquired in the evaluation test.
 本開示の半導体装置の製造方法の第1の実施形態について説明する。具体的に、この実施形態では、ウエハAの表面に形成された金属膜であるCo(コバルト)膜上にRu(ルテニウム)膜を積層する手法について説明する。さらに詳しく述べると、Co膜に接するようにRu膜を当該Co膜上に形成すると、その後にウエハAが高温に加熱された際に、Co膜とRu膜との間の界面拡散が起こる。つまり、Co膜及びRu膜のうちの一方から他方へ、膜を構成する金属原子が移動する。それにより、Co膜とRu膜との接触部がCoとRuとの合金となり、この合金の形成によって、Co膜とRu膜との間の電気抵抗が大きくなってしまう。本実施形態で説明する製造方法は、この界面拡散による合金の形成が抑制されるようにCo膜上にRu膜を形成する。 The first embodiment of the method for manufacturing a semiconductor device of the present disclosure will be described. Specifically, in this embodiment, a method of laminating a Ru (ruthenium) film on a Co (cobalt) film which is a metal film formed on the surface of the wafer A will be described. More specifically, when the Ru film is formed on the Co film so as to be in contact with the Co film, interfacial diffusion between the Co film and the Ru film occurs when the wafer A is subsequently heated to a high temperature. That is, the metal atoms constituting the film move from one of the Co film and the Ru film to the other. As a result, the contact portion between the Co film and the Ru film becomes an alloy of Co and Ru, and the formation of this alloy increases the electrical resistance between the Co film and the Ru film. In the production method described in this embodiment, a Ru film is formed on the Co film so that the formation of an alloy due to this interfacial diffusion is suppressed.
以下、ウエハAの表層部の縦断側面図である図1A、図1B及び図1Cを参照しながら、当該ウエハAに行う各処理を説明する。当該各処理はウエハAを処理容器内に格納して予め設定した温度に加熱し、当該処理容器内を真空雰囲気とした状態で行う。図1Aに示すウエハAの表面には、例えばPVD(Physical Vapor Deposition)により成膜されたCo膜11が露出した状態となっている。このウエハAにB(ジボラン)ガスを供給し、当該BガスをCo膜11の表面に吸着させる(図1B)。 Hereinafter, each process performed on the wafer A will be described with reference to FIGS. 1A, 1B, and 1C, which are longitudinal side views of the surface layer portion of the wafer A. Each of the treatments is performed in a state where the wafer A is stored in the processing container, heated to a preset temperature, and the inside of the processing container is in a vacuum atmosphere. On the surface of the wafer A shown in FIG. 1A, for example, the Co film 11 formed by PVD (Physical Vapor Deposition) is exposed. B 2 H 6 (diborane) gas is supplied to the wafer A, and the B 2 H 6 gas is adsorbed on the surface of the Co film 11 (FIG. 1B).
続いて、Bガスの供給を停止し、ホウ素化合物ガスである例えばドデカカルボニウム三ルテニウム(Ru(CO)12)ガスをウエハAに供給してCVD(Chemical Vapor Deposition)を行う。それによりCo膜11上にB中のB(ホウ素)とRuとを含む中間層12が形成され、さらにその中間層12上にRu膜13が成膜される(図1C)。この中間層12は、Bを含むことでRu膜13に比べてアモルファス性が高い、即ち原子間に隙間が形成されることが抑制され、バリア性が高い状態となっていると考えられる。 Subsequently, the supply of the B 2 H 6 gas is stopped, and for example, dodecacarbonium triruthenium (Ru 3 (CO) 12 ) gas, which is a boron compound gas, is supplied to the wafer A to perform CVD (Chemical Vapor Deposition). As a result, an intermediate layer 12 containing B (boron) and Ru in B 2 H 6 is formed on the Co film 11, and a Ru film 13 is further formed on the intermediate layer 12 (FIG. 1C). It is considered that the intermediate layer 12 has a higher amorphous property than the Ru film 13 by containing B, that is, the formation of gaps between atoms is suppressed and the barrier property is high.
その後の処理工程において、ウエハAは加熱処理としてNガス雰囲気にてアニール処理を受ける。この際に上記の中間層12によって既述した界面拡散が抑制される。つまり、Co膜11を構成するCoのRu膜13への移動、Ru膜13を構成するRuのCo膜11への移動が各々阻害され、その結果として上記のRuとCoとの合金の形成が抑制される。従って、この第1の実施形態によれば、Ru膜13とCo膜11との間の電気抵抗が上昇することを抑制することができる。 In subsequent process steps, the wafer A is subjected to annealing treatment at a N 2 gas atmosphere as the heat treatment. At this time, the above-mentioned intermediate layer 12 suppresses the interfacial diffusion described above. That is, the movement of Co constituting the Co film 11 to the Ru film 13 and the movement of the Ru constituting the Ru film 13 to the Co film 11 are inhibited, and as a result, the above-mentioned alloy formation of Ru and Co is formed. It is suppressed. Therefore, according to this first embodiment, it is possible to suppress an increase in the electrical resistance between the Ru film 13 and the Co film 11.
なお、上記のCo膜11及びRu膜13については、共に半導体装置の配線を構成する膜であってもよい。また、Co膜11は絶縁膜に形成された凹部に沿って形成され、凹部に配線であるRu13膜を埋め込んだときにRu原子の絶縁膜への拡散を防ぐバリア膜であってもよい。 The Co film 11 and the Ru film 13 may both be films that form the wiring of the semiconductor device. Further, the Co film 11 may be a barrier film formed along the recess formed in the insulating film and preventing the diffusion of Ru atoms into the insulating film when the Ru13 film, which is a wiring, is embedded in the recess.
続いて第2の実施形態について、図2A~図2Cを参照して、第1の実施形態との差異点を中心に説明する。この第2の実施形態においてもCo膜11上にRu膜13を積層する。先ず、図1Aで説明したCo膜11が形成されたウエハAに例えばRu(CO)12ガスを供給するCVDを行い、Ruの薄膜14を成膜する(図2A)。その後、ウエハAにBガスを供給し、当該Bガスと薄膜14とが反応し、薄膜14が上記の中間層12となる(図2B)。従って、第2の実施形態では第1の実施形態とは異なり、Ruの薄膜14がウエハAの表面に露出した状態でBガスの供給が行われる。 Subsequently, the second embodiment will be described with reference to FIGS. 2A to 2C, focusing on the differences from the first embodiment. Also in this second embodiment, the Ru film 13 is laminated on the Co film 11. First, CVD is performed to supply, for example, Ru 3 (CO) 12 gas to the wafer A on which the Co film 11 described in FIG. 1A is formed, to form a thin film 14 of Ru (FIG. 2A). Then, the wafer A supplies B 2 H 6 gas, react with the B 2 H 6 gas and the thin film 14, the thin film 14 is an intermediate layer 12 of (FIG. 2B). Therefore, in the second embodiment, unlike the first embodiment, the B 2 H 6 gas is supplied with the Ru thin film 14 exposed on the surface of the wafer A.
ガスの供給停止後、再度ウエハAにRu(CO)12ガスを供給してCVDを行い、中間層12上にRu膜13を成膜する成膜工程が行われる(図2C)。その後の処理工程で上記のウエハAは、第1の実施形態と同様にアニール処理を受ける。その際に中間層12によってCo膜11とRu膜13との間での金属の拡散が阻まれ、上記のRuとCoとの合金の形成が抑制される。 After the supply of the B 2 H 6 gas is stopped, the Ru 3 (CO) 12 gas is supplied to the wafer A again to perform CVD, and a film forming step of forming the Ru film 13 on the intermediate layer 12 is performed (FIG. 2C). ). In the subsequent processing step, the wafer A undergoes an annealing treatment in the same manner as in the first embodiment. At that time, the intermediate layer 12 prevents the diffusion of the metal between the Co film 11 and the Ru film 13, and suppresses the formation of the above alloy between Ru and Co.
この第2の実施形態においては、ウエハAへのBガスの供給時に既にウエハAにRu膜が成膜されているため、より確実に中間層12を形成することができる。つまり、ウエハAにBガスを供給した後、Ru膜13が成膜されるまでにBガスの脱離などが起きることにより中間層12が形成されない不具合の発生を抑えることができる。従って、この第2の実施形態によれば、より確実にRu膜13とCo膜11との間の電気抵抗の上昇を抑制することができる。ただし第1の実施形態については、処理に要する工程数が少なく、高いスループットが得られる観点から好ましい。 In this second embodiment, since the Ru film is already formed on the wafer A when the B 2 H 6 gas is supplied to the wafer A, the intermediate layer 12 can be formed more reliably. That is, after the B 2 H 6 gas is supplied to the wafer A, the intermediate layer 12 is not formed due to the desorption of the B 2 H 6 gas before the Ru film 13 is formed. Can be done. Therefore, according to this second embodiment, it is possible to more reliably suppress the increase in electrical resistance between the Ru film 13 and the Co film 11. However, the first embodiment is preferable from the viewpoint that the number of steps required for processing is small and high throughput can be obtained.
なお、この第2の実施形態において、Ruの薄膜14の膜厚H1(図2A参照)が大きすぎると中間層12の厚さが大きくなり、それによりRu膜13とCo膜11との間の抵抗が大きくなってしまう懸念が有る。そこで膜厚H1としては、例えばRu膜13の膜厚H2(図2C参照)よりも小さくすることが好ましい。例えば膜厚H1としては1nm~3nmとすることが好ましく、より具体的には例えば1nmである。 In this second embodiment, if the film thickness H1 (see FIG. 2A) of the Ru thin film 14 is too large, the thickness of the intermediate layer 12 becomes large, and thereby between the Ru film 13 and the Co film 11. There is a concern that resistance will increase. Therefore, the film thickness H1 is preferably smaller than, for example, the film thickness H2 of the Ru film 13 (see FIG. 2C). For example, the film thickness H1 is preferably 1 nm to 3 nm, and more specifically, for example, 1 nm.
ところで、第2の実施形態においてBガスをRuの薄膜14に供給することで中間層12が形成される、つまりアニール処理前に中間層12が形成されるものとして述べた。ただし、アニール処理前はRu膜(薄膜14及びRu膜13)と、吸着されたBの層と、が互いに分離しており、例えばアニール処理中に加わる熱により、当該Ru膜とBの層とが反応して中間層12が形成されてもよい。第1の実施形態についてもアニール処理前に中間層12が形成されるものとして述べたが、アニール処理時に中間層12が形成されてもよい。このように、中間層12が形成されるタイミングとしては各図で説明したタイミングに限られない。 By the way, in the second embodiment, it is described that the intermediate layer 12 is formed by supplying the B 2 H 6 gas to the thin film 14 of Ru, that is, the intermediate layer 12 is formed before the annealing treatment. However, before the annealing treatment, the Ru film (thin film 14 and Ru film 13) and the adsorbed B 2 H 6 layer are separated from each other. For example, due to the heat applied during the annealing treatment, the Ru film and B are separated from each other. second intermediate layer 12 and the layer with the reaction of H 6 may be formed. Although the first embodiment has been described as assuming that the intermediate layer 12 is formed before the annealing treatment, the intermediate layer 12 may be formed during the annealing treatment. As described above, the timing at which the intermediate layer 12 is formed is not limited to the timing described in each figure.
続いて、第1の実施形態及び第2の実施形態で述べた処理を行うことができる半導体装置の製造装置の一実施形態である製造装置2について、図3の平面図を参照しながら説明する。製造装置2は、その内部雰囲気が例えば乾燥した窒素ガスにより常圧雰囲気とされる横長の常圧搬送室21を備え、常圧搬送室21の手前には、ウエハAを格納するキャリアCを載置するための搬入出ポート22が左右に並べて設置されている。常圧搬送室21の正面壁には、前記キャリアCの蓋と一緒に開閉されるドア23が取り付けられている。常圧搬送室21内には、ウエハAを搬送するための関節アームを備えた第1の搬送機構24が設けられている。さらに、常圧搬送室21の搬入出ポート22側から見て左側壁には、ウエハAの向きや偏心の調整を行うアライメント室25が設けられている。 Subsequently, the manufacturing apparatus 2 which is one embodiment of the manufacturing apparatus of the semiconductor device capable of performing the processes described in the first embodiment and the second embodiment will be described with reference to the plan view of FIG. .. The manufacturing apparatus 2 includes a horizontally long normal pressure transfer chamber 21 whose internal atmosphere is made to be a normal pressure atmosphere by, for example, dry nitrogen gas, and a carrier C for storing a wafer A is placed in front of the normal pressure transfer chamber 21. Carry-in / out ports 22 for placement are installed side by side. A door 23 that opens and closes together with the lid of the carrier C is attached to the front wall of the normal pressure transfer chamber 21. In the normal pressure transport chamber 21, a first transport mechanism 24 provided with a joint arm for transporting the wafer A is provided. Further, an alignment chamber 25 for adjusting the orientation and eccentricity of the wafer A is provided on the left wall of the normal pressure transport chamber 21 when viewed from the carry-in / out port 22 side.
 常圧搬送室21における搬入出ポート22の反対側には、例えば2個のロードロック室26A、26Bが左右に並ぶように配置されている。ロードロック室26A、26Bと常圧搬送室21との間には、ゲートバルブ27が設けられている。ロードロック室26A、26Bの常圧搬送室21側から見て奥側には、真空搬送室28がゲートバルブ29を介して配置されている。真空搬送室28には、ゲートバルブ31を介して、例えば2つのBガス供給モジュール4及び2つのRu膜形成モジュール5が接続されている。真空搬送室28には、ウエハAを搬送するための関節アームを備えた第2の搬送機構32が設けられており、第2の搬送機構32により、ロードロック室26A、26B、Bガス供給モジュール4及びRu膜形成モジュール5間でウエハAの受け渡しが行われる。 On the opposite side of the carry-in / out port 22 in the normal pressure transport chamber 21, for example, two load lock chambers 26A and 26B are arranged side by side. A gate valve 27 is provided between the load lock chambers 26A and 26B and the normal pressure transfer chamber 21. A vacuum transfer chamber 28 is arranged via a gate valve 29 on the back side of the load lock chambers 26A and 26B when viewed from the normal pressure transfer chamber 21 side. For example, two B 2 H 6 gas supply modules 4 and two Ru film forming modules 5 are connected to the vacuum transfer chamber 28 via a gate valve 31. The vacuum transfer chamber 28 is provided with a second transfer mechanism 32 provided with a joint arm for conveying the wafer A, and the load lock chambers 26A, 26B, B 2 H 6 are provided by the second transfer mechanism 32. Wafer A is transferred between the gas supply module 4 and the Ru film forming module 5.
図4は、ホウ素化合物ガス供給部であるBガス供給モジュール4の概略縦断側面図を示している。Bガス供給モジュール4は処理容器41を備え、当該処理容器41内にはヒータが埋設されたステージ42が設けられている。ステージ42に設けられる図示しない昇降ピンを介して、当該ステージ42上と、上記の真空搬送室28の第2の搬送機構32との間でウエハAが搬送される。処理容器41には排気管43の上流端が開口しており、排気管43の下流側には処理容器41内を排気して真空雰囲気とするための真空排気機構44が接続されている。 FIG. 4 shows a schematic longitudinal side view of the B 2 H 6 gas supply module 4 which is a boron compound gas supply unit. The B 2 H 6 gas supply module 4 includes a processing container 41, and a stage 42 in which a heater is embedded is provided in the processing container 41. The wafer A is conveyed between the stage 42 and the second transfer mechanism 32 of the vacuum transfer chamber 28 via an elevating pin (not shown) provided on the stage 42. The upstream end of the exhaust pipe 43 is open in the processing container 41, and a vacuum exhaust mechanism 44 for exhausting the inside of the processing container 41 to create a vacuum atmosphere is connected to the downstream side of the exhaust pipe 43.
処理容器41内の上部には、ガスシャワーヘッド45が設けられている。ガスシャワーヘッド45に接続されるガス供給路46の基端側は分岐し、Bガス供給源47及び例えばN(窒素)であるキャリアガス供給源48に接続されている。図中V1~V3はガス供給路46に介設されるバルブであり、図中F1、F2は、ガス供給路46に介設される流量調整部である。 A gas shower head 45 is provided in the upper part of the processing container 41. The base end side of the gas supply path 46 connected to the gas shower head 45 is branched and connected to the B 2 H 6 gas supply source 47 and, for example, the carrier gas supply source 48 which is N 2 (nitrogen). In the figure, V1 to V3 are valves interposed in the gas supply path 46, and F1 and F2 in the figure are flow rate adjusting units interposed in the gas supply path 46.
 図5は、ルテニウム膜成膜部であるRu膜形成モジュール5の縦断側面図である。Ru膜形成モジュール5は処理容器51を備え、当該処理容器51内にはヒータが埋設されたステージ52が設けられている。ステージ52に設けられる図示しない昇降ピンを介して、当該ステージ52上と、上記の真空搬送室28の第2の搬送機構32との間でウエハAが搬送される。処理容器51には排気管53の上流端が開口しており、排気管53の下流側には処理容器51内を排気して真空雰囲気とするための真空排気機構54が接続されている。 FIG. 5 is a longitudinal side view of the Ru film forming module 5 which is a ruthenium film forming portion. The Ru film forming module 5 includes a processing container 51, and a stage 52 in which a heater is embedded is provided in the processing container 51. The wafer A is conveyed between the stage 52 and the second transfer mechanism 32 of the vacuum transfer chamber 28 via an elevating pin (not shown) provided on the stage 52. The upstream end of the exhaust pipe 53 is open to the processing container 51, and a vacuum exhaust mechanism 54 for exhausting the inside of the processing container 51 to create a vacuum atmosphere is connected to the downstream side of the exhaust pipe 53.
処理容器51内の上部には、ガスシャワーヘッド55が設けられている。図中56は、ガスシャワーヘッド55に設けられる当該ガスシャワーヘッド55の温調調整用の流体の流路である。ガスシャワーヘッド55にはガス供給路57の下流端が接続されており、ガス供給路57の基端側には原料ボトル58が接続されている。原料ボトル58内には、例えばRu(CO)12の粉体59が収容されている。また原料ボトル58内には、ガス供給路61の下流端が開口しており、ガス供給路61の上流端はキャリアガスであるCO(一酸化炭素)ガスの供給源62が接続されている。そしてキャリアガスが原料ボトル58に供給されると、Ru(CO)12が昇華されて、このRu(CO)12ガスが、キャリアガスと共にガスシャワーヘッド55に供給される。従って、処理容器51内はCO雰囲気とされて、Ru膜の成膜が行われる。図中63、64はガス供給路57、61に夫々介設されたガス供給機器群であり、バルブ及び流量調整部を含む。 A gas shower head 55 is provided in the upper part of the processing container 51. In the figure, 56 is a flow path of a fluid for adjusting the temperature of the gas shower head 55 provided in the gas shower head 55. The downstream end of the gas supply path 57 is connected to the gas shower head 55, and the raw material bottle 58 is connected to the base end side of the gas supply path 57. For example, the powder 59 of Ru 3 (CO) 12 is contained in the raw material bottle 58. Further, the downstream end of the gas supply path 61 is open in the raw material bottle 58, and the CO (carbon monoxide) gas supply source 62, which is a carrier gas, is connected to the upstream end of the gas supply path 61. When the carrier gas is supplied to the raw material bottle 58, the Ru 3 (CO) 12 is sublimated, and the Ru 3 (CO) 12 gas is supplied to the gas shower head 55 together with the carrier gas. Therefore, the inside of the processing container 51 has a CO atmosphere, and a Ru film is formed. In the figure, 63 and 64 are a group of gas supply devices provided in the gas supply paths 57 and 61, respectively, and include a valve and a flow rate adjusting unit.
 半導体装置の製造装置2はコンピュータである制御部20(図3参照)を備えており、この制御部20は、プログラムを備えている。このプログラムは、例えばコンパクトディスク、ハードディスク、光磁気ディスク、DVDなどの記憶媒体に収納され、制御部20にインストールされる。制御部20は当該プログラムにより、製造装置2の各部に制御信号を出力し、各部の動作を制御する。具体的にこのプログラムは、第1の搬送機構24及び第2の搬送機構32によるウエハAの搬送や、各モジュール4、5におけるウエハAへの各ガスの給断、ウエハAの加熱などの動作を制御する。そして、当該プログラムによって、第1の実施形態、第2の実施形態として夫々説明した一連の処理が実施できるようにステップ群が組まれている。 The semiconductor device manufacturing device 2 includes a control unit 20 (see FIG. 3) which is a computer, and this control unit 20 includes a program. This program is stored in a storage medium such as a compact disk, a hard disk, a magneto-optical disk, or a DVD, and is installed in the control unit 20. The control unit 20 outputs a control signal to each unit of the manufacturing apparatus 2 according to the program, and controls the operation of each unit. Specifically, this program includes operations such as transporting the wafer A by the first transport mechanism 24 and the second transport mechanism 32, supplying and supplying each gas to the wafer A in the modules 4 and 5, and heating the wafer A. To control. Then, the program sets up a step group so that a series of processes described as the first embodiment and the second embodiment can be carried out.
第1の実施形態の処理を行う際の製造装置2の動作について説明する。図1Aで示したようにCo膜11が形成されたウエハAを収容したキャリアCが搬入出ポート22上に載置される。そして、このキャリアC内のウエハAが、第1の搬送機構24によって取り出され、常圧搬送室21→アライメント室25→ロードロック室26Aの順で搬送される。続いて、ウエハAは第2の搬送機構32により、真空搬送室28→Bガス供給モジュール4→Ru膜形成モジュール5の順で搬送されて、図1A~図1Cで説明した処理を受けた後、真空搬送室28、ロードロック室26Bの順で搬送される。然る後、ウエハAは、第1の搬送機構24によってキャリアCに戻される。 The operation of the manufacturing apparatus 2 when performing the processing of the first embodiment will be described. As shown in FIG. 1A, the carrier C accommodating the wafer A on which the Co film 11 is formed is placed on the carry-in / out port 22. Then, the wafer A in the carrier C is taken out by the first transfer mechanism 24 and conveyed in the order of the normal pressure transfer chamber 21 → the alignment chamber 25 → the load lock chamber 26A. Subsequently, the wafer A is conveyed in the order of the vacuum transfer chamber 28 → B 2 H 6 gas supply module 4 → Ru film forming module 5 by the second transfer mechanism 32, and the processes described in FIGS. 1A to 1C are performed. After receiving it, it is conveyed in the order of the vacuum transfer chamber 28 and the load lock chamber 26B. After that, the wafer A is returned to the carrier C by the first transfer mechanism 24.
上記のようにウエハAが搬送されて処理が行われるにあたり、Bガス供給モジュール4のステージ42に載置されたウエハAは、所望の温度に加熱される。そのようにウエハAが加熱されると共に、処理容器41内の圧力が例えば133.3Pa(1Torr)~933.1Pa(7Torr)とされる。そのような圧力とされた状態で、処理容器41内にBガスが例えば100sccm~2000sccm供給されると共に、Nガスが例えば0sccm~1000sccm供給されて処理が行われる。これらBガス及びNガスの供給時間は例えば10秒~300秒である。 When the wafer A is conveyed and processed as described above, the wafer A placed on the stage 42 of the B 2 H 6 gas supply module 4 is heated to a desired temperature. As the wafer A is heated in this way, the pressure in the processing container 41 is set to, for example, 133.3 Pa (1 Torr) to 933.1 Pa (7 Torr). Under such a pressure, B 2 H 6 gas is supplied into the processing container 41, for example, 100 sccm to 2000 sccm, and N 2 gas is supplied, for example, 0 sccm to 1000 sccm, to perform the treatment. The supply time of these B 2 H 6 gas and N 2 gas is, for example, 10 seconds to 300 seconds.
そして、Ru膜形成モジュール5のステージ52に載置されたウエハAは、例えば100℃~250℃に加熱される。そのようにウエハAが加熱されると共に、処理容器51内が例えば1.33Pa(10mTorr)~6.67Pa(50mTorr)にされる。そのような圧力とされた状態で、原料ボトル58を介して処理容器51内にCOガスが例えば100sccm~600sccm、より具体的には例えば300sccm供給されて処理が行われる。 Then, the wafer A placed on the stage 52 of the Ru film forming module 5 is heated to, for example, 100 ° C. to 250 ° C. As the wafer A is heated in this way, the inside of the processing container 51 is set to, for example, 1.33 Pa (10 mTorr) to 6.67 Pa (50 mTorr). Under such pressure, CO gas is supplied, for example, 100 sccm to 600 sccm, more specifically, 300 sccm, for example, into the processing container 51 through the raw material bottle 58 for processing.
第2の実施形態で述べた処理を行う際には、上記の搬送経路においてウエハAが真空搬送室28に搬入された後は、Ru膜形成モジュール5→真空搬送室28→Bガス供給モジュール4→真空搬送室28→Ru膜形成モジュール5の順で搬送される。なお、このように搬送が行われるので、ウエハAは真空雰囲気中を移動して図2A~図2Cで述べた各処理が行われる。従って各処理間においてウエハAは大気に曝されないが、大気に曝されてもよい。その一方で、第1の実施形態については、BガスのウエハAへの供給からRu膜13の成膜処理を行うまで中間層12が形成されないため、ウエハAへのBガスの供給後は、吸着されたBと大気中の成分との反応を避けるようにすることが好ましい。従って、上記のように真空搬送室28を介して搬送を行い、各処理を行う間はウエハAを大気雰囲気に曝さないようにすることが好ましい。 When performing the process described in the second embodiment, after the wafer A is carried into the vacuum transfer chamber 28 in the above transfer path, the Ru film forming module 5 → the vacuum transfer chamber 28 → B 2 H 6 gas. The supply module 4 → the vacuum transfer chamber 28 → the Ru film forming module 5 are conveyed in this order. Since the transfer is performed in this way, the wafer A moves in the vacuum atmosphere and each process described in FIGS. 2A to 2C is performed. Therefore, the wafer A is not exposed to the atmosphere between the treatments, but may be exposed to the atmosphere. On the other hand, in the first embodiment, since the intermediate layer 12 is not formed from the supply of the B 2 H 6 gas to the wafer A to the film formation treatment of the Ru film 13, the B 2 H 6 to the wafer A is not formed. After supplying the gas, it is preferable to avoid the reaction between the adsorbed B 2 H 6 and the components in the atmosphere. Therefore, it is preferable to carry out the transfer through the vacuum transfer chamber 28 as described above so that the wafer A is not exposed to the air atmosphere during each process.
なお、Ru膜13の形成後に行われるアニール処理における処理条件の一例を示しておくと、例えば処理容器内をNガス雰囲気にすると共に1Torr~7Torr、より具体的には例えば6.67Pa(5Torr)とする。そのような圧力とした状態で例えば、300℃~500℃でウエハAを加熱する。このウエハAの加熱は、例えば上記の各モジュール4、5にてウエハAを加熱する場合と同様、ウエハAが載置されたステージのヒータにより行う。なお、このアニール処理を行うモジュールを上記の真空搬送室28に接続し、Ru膜13の形成後のウエハAが当該真空搬送室28を介して当該モジュールに搬送されて処理を受けるようにしてもよい。 Incidentally, Ru if the film 13 should shows an example of the process conditions in the annealing process performed after the formation of, for example, the process chamber N 2 1 Torr ~ 7 Torr while the gas atmosphere, and more specifically, for example, 6.67 Pa (5 Torr ). Wafer A is heated at, for example, 300 ° C. to 500 ° C. under such a pressure. The heating of the wafer A is performed by the heater of the stage on which the wafer A is placed, as in the case of heating the wafer A in the modules 4 and 5 described above. Even if the module to be annealed is connected to the vacuum transfer chamber 28, the wafer A after the formation of the Ru film 13 is conveyed to the module via the vacuum transfer chamber 28 to be processed. Good.
ところで、Co膜上にRu膜を成膜する代わりにW(タングステン)膜上にCo膜を成膜した場合にも、界面拡散によってWとRuとの合金が形成されてWとRuとの間の抵抗が上昇するおそれがある。しかし、上記のように中間層12を形成することで、当該合金の形成を防ぐことができると考えられる。つまり、Ru膜13の下層の金属膜としてCo膜11の代わりにW膜が形成されたウエハAについても、第1の実施形態または第2の実施形態の各処理を行ってもよい。また、Co膜11、W膜はPVD及びCVDのうちのいずれで成膜してもよい。また、Ru膜13についてもCVDにより形成されることに限られず、例えばPVDにより成膜されてもよい。 By the way, even when a Co film is formed on a W (tungsten) film instead of forming a Ru film on the Co film, an alloy of W and Ru is formed by interfacial diffusion between W and Ru. Resistance may increase. However, it is considered that the formation of the alloy can be prevented by forming the intermediate layer 12 as described above. That is, each of the treatments of the first embodiment or the second embodiment may be performed on the wafer A in which the W film is formed instead of the Co film 11 as the metal film under the Ru film 13. Further, the Co film 11 and the W film may be formed by either PVD or CVD. Further, the Ru film 13 is not limited to being formed by CVD, and may be formed by, for example, PVD.
また、中間層12を形成するためにウエハAに供給するホウ素化合物ガスとしてはB(ボロン)を含むガスであれば良く、Bガスに限られない。例えばモノボラン、トリメチルボラン、トリエチルボラン、ジカルバドデカボラン、デカボランなどのBを含むガスを用いることができる。 Further, the boron compound gas supplied to the wafer A for forming the intermediate layer 12 may be any gas containing B (boron), and is not limited to the B 2 H 6 gas. For example, a gas containing B such as monoborane, trimethylborane, triethylborane, dicarbadodecaborane, and decaborane can be used.
なお、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更または組み合わせが行われてもよい。 It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The above embodiments may be omitted, replaced, modified or combined in various forms without departing from the scope of the appended claims and their gist.
(評価試験)
続いて本技術に関連して行われた評価試験について説明する。
評価試験1
評価試験1として、表面がSiO(酸化シリコン)膜により構成されるウエハAに、厚さが10nmとなるようにCo膜11を成膜した。その後は、第2の実施形態として説明したRuの薄膜14の形成処理、Bガスによる中間層12の形成処理、Ru膜13の形成処理を順次行った。そして、このRu膜13が成膜されたウエハAのシート抵抗を測定した後、当該ウエハAをアニール処理し、アニール処理後に、ウエハAのシート抵抗を再度測定した。
(Evaluation test)
Next, the evaluation test conducted in connection with this technology will be described.
Evaluation test 1
As an evaluation test 1, a Co film 11 was formed on a wafer A whose surface was composed of a SiO 2 (silicon oxide) film so as to have a thickness of 10 nm. After that, the formation treatment of the Ru thin film 14 described as the second embodiment, the formation treatment of the intermediate layer 12 with B 2 H 6 gas, and the formation treatment of the Ru film 13 were sequentially performed. Then, after measuring the sheet resistance of the wafer A on which the Ru film 13 was formed, the wafer A was annealed, and after the annealing treatment, the sheet resistance of the wafer A was measured again.
Ruの薄膜14の形成処理、Bガスによる中間層12の形成処理、Ru膜13の成膜処理及びアニール処理について、各処理条件のパラメータとしては上記の範囲の値に設定した。以下に、各処理条件のパラメータの中央値を示しておく。Bガスの中間層12の形成処理について、処理容器41内の圧力が399.9Pa(3Torr)、Bガスの供給流量が1300sccm、Nガスの供給流量が150sccm、Bガス及びNガスの供給時間が40秒である。Ruの薄膜14及びRu膜の形成処理について、ウエハAの温度が155℃、処理容器51内の圧力が2.27Pa(17mTorr)、COガスの供給流量が300sccmである。アニール処理について、ウエハAの温度が450℃、処理容器内の圧力が6.67Pa(5Torr)である。この評価試験において、アニール処理における処理時間、処理容器内へのNガスの供給流量は夫々5分、9500sccmとした。 Formation process of the Ru thin film 14, formation process of the intermediate layer 12 by B 2 H 6 gas, the film forming process and the annealing process of the Ru film 13, as the parameters of the process conditions were set to a value within the above range. The median values of the parameters of each processing condition are shown below. Regarding the formation process of the intermediate layer 12 of B 2 H 6 gas, the pressure in the processing container 41 is 399.9 Pa (3 Torr), the supply flow rate of B 2 H 6 gas is 1300 sccm, the supply flow rate of N 2 gas is 150 sccm, B 2 supply time of H 6 gas and N 2 gas is 40 seconds. Regarding the formation treatment of the Ru thin film 14 and the Ru film, the temperature of the wafer A is 155 ° C., the pressure in the processing container 51 is 2.27 Pa (17 mTorr), and the supply flow rate of CO gas is 300 sccm. Regarding the annealing treatment, the temperature of the wafer A is 450 ° C., and the pressure in the processing container is 6.67 Pa (5 Torr). In this evaluation test, the processing time in the annealing process, the supply flow rate of N 2 gas into the processing vessel are each 5 minutes, was 9500Sccm.
また、上記の各処理間において、ウエハAを大気雰囲気に曝した。そして、上記のRuの薄膜14の膜厚H1としては1nm、Ru膜13の膜厚H2としては9nmとなるように成膜を行った。また、アニール処理後のウエハAについて、TEM(透過型電子顕微鏡)を用いたHAADF(High-angle Annular Dark Field)と呼ばれる手法により、ウエハAの縦断面の画像を取得した。なお、上記のシート抵抗の値が大きいほど、Ru膜13とCo11との間の電気抵抗が大きい。 In addition, the wafer A was exposed to the air atmosphere during each of the above treatments. Then, the film was formed so that the film thickness H1 of the Ru thin film 14 was 1 nm and the film thickness H2 of the Ru film 13 was 9 nm. Further, with respect to the wafer A after the annealing treatment, an image of a vertical cross section of the wafer A was acquired by a method called HAADF (High-angle Annular Dark Field) using a TEM (transmission electron microscope). The larger the value of the sheet resistance, the larger the electrical resistance between the Ru film 13 and Co11.
比較試験1として、表面がSiO膜により構成されるウエハAに厚さが10nmとなるようにCo膜11を成膜した後、評価試験1と同様の処理条件で厚さが10nmのRu膜13を成膜した。このRu膜13の成膜処理後のウエハAについてシート抵抗を測定し、その後、ウエハAをアニール処理した。アニール処理後に、ウエハAのシート抵抗を再度測定した。また、評価試験1と同様にアニール処理後のウエハAについて、TEMのHAADFにより、ウエハAの縦断面の画像を取得した。このように、比較試験1ではBガスによる中間層12の形成を行っていない。 As a comparative test 1, a Co film 11 is formed on a wafer A whose surface is composed of a SiO 2 film so that the thickness is 10 nm, and then a Ru film having a thickness of 10 nm is formed under the same processing conditions as in the evaluation test 1. 13 was formed into a film. The sheet resistance of the wafer A after the film formation treatment of the Ru film 13 was measured, and then the wafer A was annealed. After the annealing treatment, the sheet resistance of the wafer A was measured again. Further, in the same manner as in the evaluation test 1, the image of the vertical cross section of the wafer A after the annealing treatment was acquired by the HAADF of the TEM. As described above, in the comparative test 1, the intermediate layer 12 was not formed by the B 2 H 6 gas.
図6は評価試験1、比較試験1で各々測定されたシート抵抗(単位:Ω/sq.)を示すグラフであり、グラフ中の円のマーカーが平均値、四角のマーカーが最小値または最大値を夫々示している。中央値について見ると、比較試験1ではアニール処理前に比べてアニール処理後のシート抵抗が増加しているが、評価試験1ではアニール処理の前後で殆ど変化が無い。従って、評価試験1の方が比較試験1よりも、アニール処理後のRu膜13とCo膜11との間の電気抵抗の増加が抑制されたことが確認された。 FIG. 6 is a graph showing the sheet resistance (unit: Ω / sq.) Measured in each of the evaluation test 1 and the comparative test 1. The circle marker in the graph is the average value, and the square marker is the minimum or maximum value. Are shown respectively. Looking at the median value, in the comparative test 1, the sheet resistance after the annealing treatment increased as compared with that before the annealing treatment, but in the evaluation test 1, there was almost no change before and after the annealing treatment. Therefore, it was confirmed that the increase in the electrical resistance between the Ru film 13 and the Co film 11 after the annealing treatment was suppressed in the evaluation test 1 as compared with the comparative test 1.
図7Aは評価試験1で取得された画像、図7Bは比較試験1で取得された画像を夫々示している。比較試験1の画像では、Co膜11とRu膜13との境界が不明確となっており、界面拡散による合金の形成が起きていることが推定される。しかし評価試験1の画像については、中間層12を介してCo膜11とRu膜13とが明確に分離しており、比較試験1に比べて合金の形成が抑制されていることが推定される。 FIG. 7A shows the image acquired in the evaluation test 1, and FIG. 7B shows the image acquired in the comparative test 1. In the image of the comparative test 1, the boundary between the Co film 11 and the Ru film 13 is unclear, and it is presumed that the alloy is formed by interfacial diffusion. However, in the image of the evaluation test 1, the Co film 11 and the Ru film 13 are clearly separated via the intermediate layer 12, and it is presumed that the formation of the alloy is suppressed as compared with the comparative test 1. ..
このように、比較試験1に比べると、評価試験1においては合金の形成の抑制が推定されると共にシート抵抗の値が低い。従って、この評価試験1の結果から、既述の第2の実施形態の効果が確認された。また、中間層12の形成によってこのような合金の形成が抑制されたことが推定されるが、第2の実施形態と同じく中間層12の形成を行う第1の実施形態についても、当該第2の実施形態と同様の効果が得られることが、この評価試験1の結果から推定される。 As described above, as compared with the comparative test 1, in the evaluation test 1, the suppression of alloy formation is presumed and the value of the sheet resistance is low. Therefore, from the result of this evaluation test 1, the effect of the above-mentioned second embodiment was confirmed. Further, it is presumed that the formation of the intermediate layer 12 suppressed the formation of such an alloy, but the first embodiment in which the intermediate layer 12 is formed is also the second embodiment as in the second embodiment. It is presumed from the result of this evaluation test 1 that the same effect as that of the embodiment of the above is obtained.
A    ウエハ
11   Co膜
12   中間層
13   Ru膜

 
A Wafer 11 Co film 12 Intermediate layer 13 Ru film

Claims (7)

  1. 半導体装置の製造用の基板に形成されたコバルト膜あるいはタングステン膜である金属膜上にルテニウム膜を成膜する工程を含む半導体装置の製造方法において、
    前記ルテニウム膜の形成後の前記基板の加熱時に、前記金属膜と前記ルテニウム膜との間の界面拡散を抑制するためのルテニウムとホウ素とを含む中間層が形成された状態となるように、前記金属膜が形成された基板にホウ素化合物ガスを供給する工程と、
    続いて、前記ルテニウム膜を形成する工程と、
    を含む半導体装置の製造方法。
    In a method for manufacturing a semiconductor device, which comprises a step of forming a ruthenium film on a metal film which is a cobalt film or a tungsten film formed on a substrate for manufacturing a semiconductor device.
    When the substrate is heated after the formation of the ruthenium film, the intermediate layer containing ruthenium and boron for suppressing the interfacial diffusion between the metal film and the ruthenium film is formed. The process of supplying the boron compound gas to the substrate on which the metal film is formed, and
    Subsequently, the step of forming the ruthenium film and
    A method for manufacturing a semiconductor device including.
  2. 前記金属膜はコバルト膜である請求項1記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the metal film is a cobalt film.
  3. 前記ホウ素化合物ガスは、ジボランガスである請求項1または2記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the boron compound gas is diborane gas.
  4. 前記ホウ素化合物ガスを供給する工程は、前記金属膜が表面に露出した前記基板に前記ホウ素化合物ガスを吸着させる工程を含み、
    前記ルテニウム膜を形成する工程は、前記ホウ素化合物が吸着された基板上に当該ルテニウム膜を形成する工程である請求項1ないし3のいずれか一つに記載の半導体装置の製造方法。
    The step of supplying the boron compound gas includes a step of adsorbing the boron compound gas on the substrate on which the metal film is exposed on the surface.
    The method for manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the step of forming the ruthenium film is a step of forming the ruthenium film on a substrate on which the boron compound is adsorbed.
  5. 前記金属膜上にルテニウムの薄膜を形成する工程を含み、
    前記ホウ素化合物ガスを供給する工程は、前記ルテニウムの薄膜が表面に露出した前記基板に当該ホウ素化合物ガスを供給する工程である請求項1ないし3のいずれか一つに記載の半導体装置の製造方法。
    Including the step of forming a thin film of ruthenium on the metal film.
    The method for manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the step of supplying the boron compound gas is a step of supplying the boron compound gas to the substrate on which the ruthenium thin film is exposed on the surface. ..
  6. 前記ルテニウムの薄膜の厚さは、前記ルテニウム膜の厚さよりも小さい請求項5記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 5, wherein the thickness of the ruthenium thin film is smaller than the thickness of the ruthenium film.
  7. 半導体装置の製造用の基板に形成されたコバルト膜あるいはタングステン膜である金属膜上にルテニウム膜を成膜する処理を行う半導体装置の製造装置において、
    前記ルテニウム膜の形成後の前記基板の加熱時に、前記金属膜と前記ルテニウム膜との間の界面拡散を抑制するためのルテニウムとホウ素とを含む中間層が形成された状態となるように、前記金属膜が形成された基板にホウ素化合物ガスを供給するホウ素化合物ガス供給部と、
    前記ホウ素化合物ガス供給部によるホウ素化合物ガスの供給に続いて、前記ルテニウム膜を形成するルテニウム膜成膜部と、
    を含む半導体装置の製造装置。

     
    In a semiconductor device manufacturing device that performs a process of forming a ruthenium film on a metal film that is a cobalt film or a tungsten film formed on a substrate for manufacturing a semiconductor device.
    When the substrate is heated after the formation of the ruthenium film, the intermediate layer containing ruthenium and boron for suppressing the interfacial diffusion between the metal film and the ruthenium film is formed. A boron compound gas supply unit that supplies a boron compound gas to a substrate on which a metal film is formed,
    Following the supply of the boron compound gas by the boron compound gas supply unit, the ruthenium film forming unit forming the ruthenium film and the ruthenium film forming unit.
    Manufacturing equipment for semiconductor devices including.

PCT/JP2020/035133 2019-09-24 2020-09-16 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus WO2021060115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-173168 2019-09-24
JP2019173168A JP2021050379A (en) 2019-09-24 2019-09-24 Manufacturing method of semiconductor device and manufacturing apparatus of semiconductor device

Publications (1)

Publication Number Publication Date
WO2021060115A1 true WO2021060115A1 (en) 2021-04-01

Family

ID=75156042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035133 WO2021060115A1 (en) 2019-09-24 2020-09-16 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus

Country Status (2)

Country Link
JP (1) JP2021050379A (en)
WO (1) WO2021060115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070925A1 (en) * 2020-09-29 2022-04-07 東京エレクトロン株式会社 Method for manufacturing semiconductor device, and device for manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219400A1 (en) * 2022-05-10 2023-11-16 주성엔지니어링(주) Method for forming electrode for semiconductor devices, and electrode for semiconductor devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054487A1 (en) * 2005-09-06 2007-03-08 Applied Materials, Inc. Atomic layer deposition processes for ruthenium materials
JP2007533161A (en) * 2004-04-14 2007-11-15 ユニバーシティー オブ マサチューセッツ Adhesion of metal layers to substrates and related structures
US7425506B1 (en) * 2003-01-15 2008-09-16 Novellus Systems Inc. Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films
JP2013175702A (en) * 2012-01-25 2013-09-05 Tokyo Electron Ltd Manufacturing method of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425506B1 (en) * 2003-01-15 2008-09-16 Novellus Systems Inc. Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films
JP2007533161A (en) * 2004-04-14 2007-11-15 ユニバーシティー オブ マサチューセッツ Adhesion of metal layers to substrates and related structures
US20070054487A1 (en) * 2005-09-06 2007-03-08 Applied Materials, Inc. Atomic layer deposition processes for ruthenium materials
JP2013175702A (en) * 2012-01-25 2013-09-05 Tokyo Electron Ltd Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070925A1 (en) * 2020-09-29 2022-04-07 東京エレクトロン株式会社 Method for manufacturing semiconductor device, and device for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2021050379A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US5478780A (en) Method and apparatus for producing conductive layers or structures for VLSI circuits
KR101955062B1 (en) Semiconductor device, semiconductor device manufacturing method, and semiconductor manufacturing apparatus
JP5522979B2 (en) Film forming method and processing system
US7592259B2 (en) Methods and systems for barrier layer surface passivation
JP2008028058A (en) Method of manufacturing semiconductor device, apparatus for manufacturing semiconductor device, semiconductor device and storage medium
TW200834735A (en) Apparatus for manufacturing semiconductor, method for manufacturing semiconductor device, storage medium, and computer program
WO2021060115A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US20180144973A1 (en) Electromigration Improvement Using Tungsten For Selective Cobalt Deposition On Copper Surfaces
US20190027403A1 (en) Methods for depositing dielectric barrier layers and aluminum containing etch stop layers
TWI663277B (en) Film-forming method and film-forming device for ruthenium film, and method for manufacturing semiconductor device
JP5526189B2 (en) Method for forming Cu film
KR20040103061A (en) In-situ chemical vapor deposition metallization process and chemical vapor deposition apparatus used therein
KR102017944B1 (en) Manufacturing method of nickel wiring
JP2010192467A (en) Method for deposition of workpiece and processing system
US20020157610A1 (en) Method for forming a copper thin film
TWI821661B (en) Doping of metal barrier layers
JP7465287B2 (en) Low-k dielectrics with self-forming barrier layers
JP2000331957A (en) FORMATION OF Cu WIRING FILM
WO2022070925A1 (en) Method for manufacturing semiconductor device, and device for manufacturing semiconductor device
JP2015179697A (en) Semiconductor device manufacturing method
CN108475638B (en) Method for forming Cu film
WO2022202315A1 (en) Embedding method and processing system
WO2022270317A1 (en) Substrate processing method and substrate processing apparatus
TW202314800A (en) Methods and apparatus for selective etch stop capping and selective via open for fully landed via on underlying metal
JP2021008642A (en) Method and apparatus for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869217

Country of ref document: EP

Kind code of ref document: A1