WO2021060107A1 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
WO2021060107A1
WO2021060107A1 PCT/JP2020/035082 JP2020035082W WO2021060107A1 WO 2021060107 A1 WO2021060107 A1 WO 2021060107A1 JP 2020035082 W JP2020035082 W JP 2020035082W WO 2021060107 A1 WO2021060107 A1 WO 2021060107A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
polarizing plate
film
optical film
thickness
Prior art date
Application number
PCT/JP2020/035082
Other languages
French (fr)
Japanese (ja)
Inventor
毅 村重
俊樹 大峰
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227009216A priority Critical patent/KR20220074866A/en
Priority to CN202080066844.XA priority patent/CN114514452A/en
Publication of WO2021060107A1 publication Critical patent/WO2021060107A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to an optical film.
  • liquid crystal display elements and display elements using organic EL have been made lighter and thinner from the viewpoint of storage and design.
  • a cover glass has been used as the outermost surface of a display element, and after the polarizing plate is attached to a liquid crystal cell or the like, the cover glass is provided on the polarizing plate via an interlayer filler.
  • Patent Document 1 discloses that a glass film laminate having excellent strength and flexibility against contact with a protrusion having high hardness such as a pen is used for the outermost layer of a display element or a lighting element.
  • a glass film laminate used for a display element an optical film in which a glass film, an adhesive layer, a protective film, a polarizer, and an adhesive layer are laminated in this order has been proposed.
  • the present inventors make a glass film laminate into a predetermined size by processing such as laser or cutting according to the application such as a notebook computer, attach it to a display element, and perform a durability test in a humid environment or the like. went. As a result, it was found that cracks were generated at the edges of the glass film when processed to a predetermined size, and the cracks were elongated in a humidified environment or the like.
  • the present invention has been made in view of the above points, and provides an optical film capable of suppressing the elongation of cracks in a predetermined temperature and humidity environment even if cracks of a predetermined size are present at the edges of the glass film.
  • the purpose is to do.
  • the present optical film includes a glass film and a polarizing plate, the thickness of the glass film is 50 ⁇ m or more and 150 ⁇ m or less, the edge of the glass film has cracks of 20 ⁇ m or more in length, and the polarized light is used.
  • the plate has a polarizing element and a protective film arranged on at least one surface of the polarizing element, and the polarizing plate has a strain amount in the MD direction in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90%.
  • the absolute value of the difference between the amount of strain in the TD direction and the amount of strain in the TD direction is 0 or more and 40 ⁇ 10-6 or less.
  • an optical film capable of suppressing the elongation of cracks in a predetermined temperature and humidity environment even if cracks of a predetermined size are present at the edges of the glass film.
  • FIG. 1 is a cross-sectional view illustrating the optical film according to the first embodiment.
  • the optical film 10 includes a glass film 11, an adhesive layer 12, a polarizing plate 13, and an adhesive layer 14 in this order.
  • the pressure-sensitive adhesive layer means a layer that has adhesiveness at room temperature and adheres to an adherend with a light pressure. Therefore, even when the adherend attached to the pressure-sensitive adhesive layer is peeled off, the pressure-sensitive adhesive layer retains a practical adhesive force.
  • the adhesive layer is a layer capable of binding substances by interposing between the substances. Therefore, when the adherend attached to the adhesive layer is peeled off, the adhesive layer does not have a practical adhesive force.
  • the polarizing plate 13 has a polarizer 131 and a protective film 132.
  • the protective film 132 is arranged on at least one side (one side) of the polarizer 131.
  • the protective film 132 is preferably arranged at least on the adhesive layer 12 side of the polarizer 131, but may be arranged on both sides (one surface and the other surface) of the polarizer 131, if necessary.
  • a retardation layer may be arranged on the side of the polarizing plate 13 opposite to the adhesive layer 12.
  • the retardation layer can be laminated on the polarizing plate 13 via any suitable adhesive layer or adhesive layer.
  • a release film may be arranged on the side opposite to the polarizing plate 13 via the pressure-sensitive adhesive layer 14.
  • the glass film 11 is not particularly limited, and an appropriate glass film 11 can be adopted depending on the intended purpose.
  • the glass film 11 includes, for example, soda-lime glass, borosilicate glass, aluminosilicate glass, quartz glass and the like.
  • non-alkali glass and low-alkali glass can be mentioned.
  • the content of the alkali metal component (for example, Na 2 O, K 2 O, Li 2 O) of the glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
  • the thickness of the glass film 11 is preferably 50 ⁇ m to 150 ⁇ m, more preferably 60 ⁇ m to 140 ⁇ m, further preferably 70 ⁇ m to 130 ⁇ m, and particularly preferably 80 ⁇ m to 120 ⁇ m. Within such a range, it is possible to obtain an optical film 10 which is excellent in flexibility, can be processed by a roll-to-roll process, and has excellent productivity because the glass film is not easily cracked.
  • the light transmittance of the glass film 11 at a wavelength of 550 nm is preferably 85% or more.
  • the refractive index of the glass film 11 at a wavelength of 550 nm is preferably 1.4 to 1.65.
  • the density of the glass film 11 is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , and more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . If it is a glass film in the above range, it is possible to provide an optical film 10 that can contribute to weight reduction of an image display device or the like.
  • the molding method of the glass film 11 is not particularly limited, and an appropriate one can be adopted according to the purpose.
  • the glass film 11 is a mixture containing a main raw material such as silica and alumina, a defoaming agent such as sardine and antimony oxide, and a reducing agent such as carbon at a temperature of about 1400 ° C to 1600 ° C. It can be produced by melting, forming into a thin plate, and then cooling.
  • Examples of the molding method of the glass film 11 include a slot down draw method, a fusion method, and a float method.
  • the glass film formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve the smoothness.
  • the adhesive layer 12 is not particularly limited, and an appropriate adhesive can be adopted depending on the purpose.
  • the adhesive include polyester adhesives, polyurethane adhesives, polyvinyl alcohol adhesives, and epoxy adhesives. Among these, an epoxy-based adhesive that can obtain particularly good adhesion is preferable.
  • the adhesive layer 12 When the adhesive layer 12 is a thermosetting adhesive, it can exhibit peeling resistance by heating and curing (solidifying). Further, when the adhesive layer 12 is a photocurable adhesive such as an ultraviolet curable type, the peeling resistance can be exhibited by irradiating the adhesive layer 12 with light such as ultraviolet rays and curing the adhesive. Further, when the adhesive layer 12 is a moisture-curable adhesive, it can be cured by reacting with moisture in the air or the like, so that it can be cured even if it is left to stand, and peeling resistance can be exhibited.
  • the adhesive layer 12 for example, a commercially available adhesive may be used, or various curable resins may be dissolved or dispersed in a solvent to prepare an adhesive solution (or dispersion).
  • the thickness of the adhesive layer 12 is preferably 10 ⁇ m or less, more preferably 0.1 ⁇ m to 10 ⁇ m, further preferably 0.5 ⁇ m to 8 ⁇ m, and particularly preferably 1 ⁇ m to 6 ⁇ m. Within such a range, an optical film 10 having excellent flexibility and puncture resistance can be obtained.
  • the elastic modulus of the adhesive layer 12 is preferably 0.5 GPa to 15 GPa, more preferably 0.8 GPa to 10 GPa, and further preferably 1 GPa to 5 GPa. Within such a range, an optical film 10 having excellent flexibility and puncture resistance can be obtained. In the present specification, the elastic modulus can be measured under the following conditions using an autograph.
  • the thickness of the polarizing plate 13 is preferably 5 ⁇ m to 300 ⁇ m, more preferably 10 ⁇ m to 250 ⁇ m, further preferably 25 ⁇ m to 200 ⁇ m, and particularly preferably 25 ⁇ m to 100 ⁇ m.
  • the elastic modulus of the polarizing plate 13 is preferably 1 GPa or more, more preferably 1 GPa to 10 GPa, further preferably 2 GPa to 7 GPa, and particularly preferably 2 GPa to 5 GPa. Within such a range, an optical film 10 having excellent puncture resistance can be obtained.
  • the shape of the polarizing plate 13 is not particularly limited, and an appropriate shape can be adopted depending on the purpose. As an example, a square shape having a long side and a short side can be mentioned.
  • the polarizing plate 13 has a rectangular shape, it is preferable that the absorption axis direction of the polarizer 131 of the polarizing plate 13 and the long side or the short side of the polarizing plate 13 are substantially parallel.
  • substantially parallel is a concept including not only the case where it is strictly parallel but also the case where the angle formed by both lines is ⁇ 10 ° (preferably ⁇ 5 °).
  • the thickness of the polarizer 131 is not particularly limited, and an appropriate thickness can be adopted depending on the intended purpose.
  • the thickness of the polarizer 131 is typically about 1 ⁇ m to 80 ⁇ m.
  • a thin polarizer may be used as the polarizer 131.
  • the thickness of the polarizer 131 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 10 ⁇ m or less. It is 5 ⁇ m or less.
  • the polarizer 131 preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, still more preferably 42.0% or more, and particularly preferably 43.0% or more.
  • the degree of polarization of the polarizer 131 is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
  • the polarizer 131 is preferably an iodine-based polarizer. More specifically, the polarizer can be composed of a polyvinyl alcohol-based resin (hereinafter, referred to as "PVA-based resin") film containing iodine.
  • PVA-based resin polyvinyl alcohol-based resin
  • the PVA-based resin that forms the PVA-based resin film is not particularly limited, and an appropriate resin can be used depending on the intended purpose. Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. Is.
  • the degree of saponification is determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA-based resin is not particularly limited and can be appropriately selected according to the purpose.
  • the average degree of polymerization of the PVA-based resin is, for example, 1000 to 10000, preferably 1200 to 5000, and more preferably 1500 to 4500.
  • the average degree of polymerization is determined according to JIS K 6726-1994.
  • Examples of the method for producing the polarizer 131 include a method (I) of stretching and dyeing a single PVA-based resin film, and a method of stretching and dyeing a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer (i). II) and the like. Since the method (I) is a well-known and commonly used method in the art, detailed description thereof will be omitted.
  • a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer formed on one side of the resin base material is stretched and dyed, and polarized light is applied onto the resin base material.
  • the laminate (i) can be formed by applying and drying a coating liquid containing a polyvinyl alcohol-based resin on a resin base material. Further, the laminate (i) may be formed by transferring the polyvinyl alcohol-based resin layer onto the resin base material. Details of the production method (II) are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580, and this publication can be incorporated herein by reference.
  • the protective film 132 is not particularly limited, and an appropriate resin film can be used depending on the intended purpose.
  • the material for forming the protective film 132 include polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, and olefins such as polyethylene and polypropylene.
  • polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, and olefins such as polyethylene and polypropylene.
  • polyester resins such as polyethylene terephthalate (PET)
  • TAC triacetyl cellulose
  • cycloolefin resins such as norbornene resins
  • olefins such as polyethylene and polypropylene.
  • the (meth) acrylic resin for example, a (meth) acrylic resin having a glutarimide structure is used.
  • examples of the (meth) acrylic resin having a glutarimide structure include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in Japanese Patent Application Laid-Open No. 161744 and Japanese Patent Application Laid-Open No. 2010-284840. These statements may be incorporated herein by reference.
  • the protective film 132 and the polarizer 131 can be laminated via any suitable adhesive layer.
  • the resin base material used in the production of the polarizer 131 is peeled off before or after the protective film 132 and the polarizer 131 are laminated.
  • the thickness of the protective film 132 is preferably 4 ⁇ m to 250 ⁇ m, more preferably 5 ⁇ m to 150 ⁇ m, further preferably 10 ⁇ m to 100 ⁇ m, and particularly preferably 10 ⁇ m to 50 ⁇ m.
  • the elastic modulus of the protective film 132 is 1 GPa or more, preferably 1 GPa to 10 GPa, more preferably 1.8 GPa to 7 GPa, and further preferably 2 GPa to 5 GPa. Within such a range, an optical film 10 having excellent puncture resistance can be obtained.
  • the retardation layer is not an indispensable configuration, but is provided as needed.
  • the retardation layer is not particularly limited and may have any appropriate optical property and / or mechanical property depending on the purpose.
  • the retardation layer typically has a slow axis.
  • the optical and / or mechanical properties of the retardation layer can be appropriately selected depending on the orientation mode of the liquid crystal cell.
  • the retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
  • the thickness of the retardation layer is preferably 60 ⁇ m or less, more preferably 30 ⁇ m to 55 ⁇ m, and further preferably 30 ⁇ m or less.
  • the retardation layer can be made of any suitable resin film that can satisfy the above characteristics.
  • suitable resins are cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, polyvinyl alcohol resins, polyamide resins, polyimide resins, polyether resins, polystyrene resins, and acrylics. Examples thereof include based resins and polymer liquid crystal resins.
  • the pressure-sensitive adhesive layer 14 can be formed from any suitable pressure-sensitive adhesive.
  • a pressure-sensitive adhesive for example, a pressure-sensitive adhesive based on a polymer such as an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based polymer, or a rubber-based polymer is used.
  • an acrylic pressure-sensitive adhesive is used. This is because the acrylic pressure-sensitive adhesive is excellent in optical transparency, exhibits appropriate wettability, cohesiveness, and adhesiveness, and can be excellent in weather resistance, heat resistance, and the like.
  • an acrylic pressure-sensitive adhesive made of an acrylic polymer having 4 to 12 carbon atoms is preferable.
  • the thickness of the pressure-sensitive adhesive layer 14 is not particularly limited, and is, for example, about 1 to 400 ⁇ m. Further, the thickness of the pressure-sensitive adhesive layer 14 can be appropriately set in a preferable range depending on the method for producing the (meth) acrylic polymer used for the pressure-sensitive adhesive. For example, when a (meth) acrylic polymer is produced by solution polymerization or the like, the thickness of the pressure-sensitive adhesive layer 14 is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, further preferably 2 to 40 ⁇ m, and 5 to 35 ⁇ m. Is particularly preferable.
  • the thickness of the pressure-sensitive adhesive layer 14 is preferably 50 to 400 ⁇ m, more preferably 75 to 300 ⁇ m, and even more preferably 100 to 200 ⁇ m. Solution polymerization is suitable for producing an acrylic polymer having such a thickness.
  • the elastic modulus of the pressure-sensitive adhesive layer 14 at 23 ° C. is preferably 0.00001 GPa to 10 GPa, more preferably 0.001 GPa to 8 GPa, and further preferably 0.001 GPa to 5 GPa. Within such a range, an optical film 10 having excellent flexibility and puncture resistance can be obtained.
  • the release film is not an essential configuration and is provided as needed.
  • the release film can be formed of, for example, a resin of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the thickness of the release film is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and further preferably 30 ⁇ m to 50 ⁇ m.
  • the release film is peeled off at the interface with the pressure-sensitive adhesive layer 14 before the optical film 10 is attached to an optical element such as a liquid crystal cell.
  • the optical film 10 can be used as a viewing side polarizing plate, for example, when forming a liquid crystal panel.
  • the optical film 10 is provided, for example, on the visible side of the liquid crystal cell via an adhesive layer, and functions as a front plate of the liquid crystal panel.
  • the visual side means a side facing the side to be visually recognized when the predetermined member is applied to the image display device.
  • the optical film 10 is preferably used for, for example, an in-cell type liquid crystal element.
  • the in-cell type liquid crystal element is a liquid crystal element including a liquid crystal cell including a substrate in which a touch sensor is incorporated.
  • the inventors set the absolute value of the difference between the strain amount in the MD direction and the strain amount in the TD direction of the polarizing plate 13 under a predetermined temperature and humidity environment:
  • of the polarizing plate 13 in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90% is 0 or more and 40 ⁇ 10-6 or less.
  • of the polarizing plate 13 under the heating environment test at a temperature of 80 ° C. is 0 or more and 250 ⁇ 10-6 or less.
  • the absolute value of the strain amount of the polarizing plate 13 becomes small, so that the influence of the strain amount of the polarizing plate 13 on the glass film 11 is reduced, and the length of the edge of the glass film 11 is 20 ⁇ m or more. Even if there are cracks in the above, the elongation of the cracks can be suppressed. In particular, when the polarizing plate 13 and the glass film 11 are bonded and integrated via a layer having a high elastic modulus such as an adhesive layer 12, a remarkable effect on crack elongation is exhibited.
  • the MD direction is the direction in which the molten resin flows inside the mold when the resin is melted and molded in the mold.
  • the TD direction is a direction orthogonal to the MD direction.
  • the thickness of the polarizer 131 may be reduced.
  • the second embodiment shows an example of an optical film having a layer structure different from that of the first embodiment.
  • the description of the same components as those in the above-described embodiment may be omitted.
  • FIG. 2 is a cross-sectional view illustrating the optical film according to the second embodiment.
  • the optical film 10A differs from the optical film 10 (see FIG. 1) in that the adhesive layer 12 is replaced with the adhesive layer 15.
  • the material of the pressure-sensitive adhesive layer 15 can be appropriately selected from, for example, illustrated as the material of the pressure-sensitive adhesive layer 14.
  • the thickness of the pressure-sensitive adhesive layer 15 is preferably 20 ⁇ m or more and 500 ⁇ m or less.
  • the elastic modulus of the pressure-sensitive adhesive layer 15 at 25 ° C. is preferably 1.0 ⁇ 10 5 Pa or more and 5.5 ⁇ 10 6 Pa or less, and 1.0 ⁇ 10 5 Pa or more and 1.0 ⁇ 10 6 Pa or less. The following is more preferable.
  • the transmission of the strain of the polarizing plate 13 to the glass film 11 is further relaxed. As a result, even if cracks having a length of 20 ⁇ m or more are present at the end of the glass film 11, the elongation of the cracks can be further suppressed.
  • the adhesive layer 12 having a thickness of about several ⁇ m is used for bonding the glass film 11 and the polarizing plate 13 as in the optical film 10 according to the first embodiment, 25 of the adhesive layer 12
  • the elastic modulus at ° C. is 1.0 ⁇ 10 5 Pa or more and 5.5 ⁇ 10 6 Pa or less
  • the elongation of cracks can be suppressed.
  • the elastic modulus of the adhesive layer 12 at 25 ° C. is 1.0 ⁇ 10 5 Pa or more and 1.0 ⁇ 10 6 Pa or less
  • the elongation of cracks can be further suppressed. Details of suppressing the elongation of cracks in the glass film will be described later in Examples.
  • polarizer having a thickness of 5 ⁇ m.
  • An acrylic resin film having a thickness of 20 ⁇ m and an elastic modulus of 2.5 GPa was bonded to one side of the polarizing element with a polyvinyl alcohol-based adhesive to obtain a polarizing plate A (thickness: 25 ⁇ m).
  • Polarizing Plate C A triacetyl cellulose film (TAC) having a thickness of 28 ⁇ m and having a saponified thickness of 40 ⁇ m and an elasticity of 3.6 GPa is applied to one side of the polarizer.
  • a polarizing plate C (thickness: 98 ⁇ m) was obtained in the same manner as in Production Example 1 except that an acrylic resin film having a thickness of 30 ⁇ m and an elasticity of 2.6 GPa was bonded to each other with a polyvinyl alcohol-based adhesive. ..
  • Polarizing Plate D A triacetyl cellulose film (TAC) having a thickness of 18 ⁇ m and having a saponified thickness of 40 ⁇ m and an elasticity of 3.6 GPa is applied to one side of the polarizer.
  • a polarizing plate D (thickness: 88 ⁇ m) was obtained in the same manner as in Production Example 1 except that an acrylic resin film having a thickness of 30 ⁇ m and an elasticity of 2.6 GPa was bonded to each other with a polyvinyl alcohol-based adhesive. ..
  • Dibenzoyl peroxide (Niper BMT, manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.2 parts by weight as a peroxide in 100 parts by weight of the solid content of the acrylic polymer solution, and diglycidylaminomethylcyclohexane (Mitsubishi) as an epoxy-based cross-linking agent.
  • 0.05 parts by weight of Tetrad C) manufactured by Gas Chemicals 0.1 parts by weight of trimethylolpropane / tolylene diisocyanate adduct (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) as an isocyanate-based cross-linking agent, and a silane coupling agent.
  • KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd. 0.075 parts by weight were uniformly mixed and stirred to prepare an acrylic pressure-sensitive adhesive (solid content 10.9% by weight).
  • Example 1 (Preparation of optical film A) Adhesion of a 297 mm ⁇ 210 mm glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name “OA-10G”, thickness: 100 ⁇ m) and a 287 mm ⁇ 200 mm polarizing plate A produced in Production Example 1 prepared in Production Example 6. They were bonded together via an adhesive layer composed of the agent. At this time, the polarizing plate A was arranged so that the acrylic film was on the glass film side. Next, the adhesive layer was irradiated with ultraviolet rays (500 mJ / cm 2 ) by a high-pressure mercury lamp to cure the adhesive layer. The adhesive layer had a thickness of 2 ⁇ m and an elastic modulus of 1.8 GPa.
  • an adhesive layer (thickness: 30 ⁇ m) composed of the adhesive prepared in Production Example 5 is formed on the surface of the optical film A opposite to the glass film with respect to the polarizing plate A, and the optical film A is formed.
  • the pressure-sensitive adhesive layer was formed as follows. (I) A silicone-treated polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 ⁇ m) was applied and heated at 155 ° C. for 1 minute to form an adhesive layer having a thickness of 30 ⁇ m after drying. ii) The pressure-sensitive adhesive layer was transferred from a polyethylene terephthalate film to a polarizing plate A to form a pressure-sensitive adhesive layer.
  • Example 2 An optical film B was produced in the same manner as in Example 1 except that the polarizing plate B produced in Production Example 2 was used instead of the polarizing plate A produced in Production Example 1.
  • a glass crack was made at the end of the glass film of the optical film A using a diamond cutter. Then, 350 ⁇ 250 mm ⁇ 1.0 mm thick non-alkali glass (manufactured by Corning Inc., trade name “EG-XG”) was prepared, and the optical film A processed into 100 mm square was placed on the non-alkali glass side with the adhesive layer. It was affixed to non-alkali glass. Then, the glass crack was extended from the end of the polarizing plate of the optical film A to the inside so that the length of the crack was 20 ⁇ m or more.
  • EG-XG non-alkali glass
  • a strain gauge 120 (FLA-3-11-3LJCT, manufactured by Tokyo Sokki Kenkyusho Co., Ltd.) was applied to the evaluation sample A bonded to the non-alkali glass 100, and a cyanoacrylate adhesive was applied. (Aron Alpha, manufactured by Toagosei Co., Ltd.) The strain gauge 120 was attached so that the center of the strain gauge 120 was located 15 mm in the X direction and 15 mm in the Y direction from one corner of the evaluation sample A.
  • the measurement axis of the strain gauge 120 (the long side direction of the gauge) is made parallel to the absorption axis direction of the evaluation sample A so that the amount of strain in the direction orthogonal to the polarizing plate absorption axis direction can also be measured. I made it.
  • the lead wire of the strain gauge 120 was connected to a data logger (TDS-530, manufactured by Tokyo Sokki Kenkyusho Co., Ltd.), the strain amount at room temperature (23 ° C.) was adjusted to 0 ⁇ , and then the strain gauge 120 was attached.
  • the evaluation sample A was put into a constant temperature and humidity test (temperature 60 ° C. and humidity 90%) for 15 minutes. Then, the strain amount during that period was measured every 15 sec, and the strain amount at the time of 200 sec (intermediate point) was read and used as the strain amount of the evaluation sample A. Further, the difference in the amount of strain was calculated by the absolute value of (the amount of strain in the MD direction-the amount of strain in the TD direction). In addition, the crack elongation was visually determined using a magnifying glass.
  • Judgment criteria are: ⁇ : Marked crack ends are not elongated (pass), ⁇ : Marked crack edges are greater than 0 mm and 10 mm or less, and 50% or less of the marked cracks are elongated. (Pass), ⁇ : The elongation of the marked crack end is larger than 0 mm and 10 mm or less, and 50 to 75% of the marked cracks are elongated (Pass), ⁇ : The extension of the marked crack end is 10 mm. Greater (failed).
  • evaluation samples B to D were prepared in the same manner as in the optical film A. Then, in the same manner as in the evaluation sample A, the strain amount was measured, the strain amount difference was calculated, and the crack elongation was visually determined. The evaluation results are shown in FIG. 4 together with the configuration of each evaluation sample.
  • the absolute value of the difference between the strain amount in the MD direction and the strain amount in the TD direction of the polarizing plate in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90%
  • the polarizing plate preferably has a value of
  • in the polarizing plate in a constant temperature and humidity environment of 60 ° C. and 90% humidity is 0 or more and 10 ⁇ 10-6 or less. If it is within the range, it can be said that the elongation of cracks in the glass film can be further suppressed.
  • Example 3 An optical film E was obtained in the same manner as in Example 1.
  • Example 4 An optical film F was obtained in the same manner as in Example 2.
  • Example 5 An optical film G was produced in the same manner as in Example 1 except that the polarizing plate D produced in Production Example 4 was used instead of the polarizing plate A produced in Production Example 1.
  • the polarizing plate D was arranged so that the triacetyl cellulose film was on the glass film side.
  • Evaluation sample E (Example 3), evaluation sample F (Example 4), evaluation sample G (Example 5), and evaluation having cracks having a length of 20 ⁇ m or more in the same manner as the evaluation sample A.
  • Sample H (Comparative Example 3) was prepared. Then, in the same manner as in Evaluation 1, the strain amount of the evaluation samples E to H was changed, except that the test conditions were changed from the constant temperature and humidity test (temperature 60 ° C. and humidity 90%) to the heating environment test (temperature 80 ° C.). The crack elongation was visually determined by measurement, calculation of the difference in strain amount. The evaluation results are shown in FIG. 5 together with the configuration of each evaluation sample.
  • the polarizing plate preferably has a value of
  • Example 6 An adhesive layer composed of the adhesive prepared in Production Example 6 on the triacetyl cellulose film side of the polarizing plate C by using the polarizing plate C produced in Production Example 3 instead of the polarizing plate A produced in Production Example 1 ( An optical film I was produced in the same manner as in Example 1 except that it was bonded to a glass film via a thickness: 2 ⁇ m and an elastic coefficient: 5.27 GPa).
  • Example 7 A pressure-sensitive adhesive layer composed of the pressure-sensitive adhesive prepared in Production Example 5 on the triacetyl cellulose film side of the polarizing plate C using the polarizing plate C produced in Production Example 3 in place of the polarizing plate A produced in Production Example 1 ( An optical film J was produced in the same manner as in Example 1 except that it was bonded to a glass film via a thickness: 20 ⁇ m and an elastic coefficient: 0.12 GPa).
  • Example 8 A pressure-sensitive adhesive layer composed of the pressure-sensitive adhesive prepared in Production Example 5 on the triacetyl cellulose film side of the polarizing plate C using the polarizing plate C produced in Production Example 3 in place of the polarizing plate A produced in Production Example 1 ( An optical film K was produced in the same manner as in Example 1 except that it was bonded to a glass film via a thickness (thickness: 250 ⁇ m, elastic coefficient: 0.14 GPa).
  • each of the polarizers is 28 ⁇ m. Therefore, referring to the results of FIGS. 4 and 5,
  • the elastic modulus of the pressure-sensitive adhesive layer or the adhesive layer for bonding the glass film and the polarizing plate at 25 ° C. is 1.0 ⁇ 10 5 Pa or more and 5.5 ⁇ 10. If it is 6 Pa or less, it can be said that the elongation of cracks in the glass film can be suppressed. If the elastic modulus of the pressure-sensitive adhesive layer or the adhesive layer that adheres the glass film and the polarizing plate at 25 ° C. is 1.0 ⁇ 10 5 Pa or more and 1.0 ⁇ 10 6 Pa or less, the cracks in the glass film It can be said that the elongation can be further suppressed.
  • the use of more than the thickness 20 ⁇ m of the pressure-sensitive adhesive layer for bonding between the glass film and the polarizing plate may be a value close to the elastic modulus at 25 ° C. to 1.0 ⁇ 10 5 Pa, the cracks of the glass film Elongation can be further suppressed.
  • the thickness of the pressure-sensitive adhesive layer is preferably 500 ⁇ m or less.
  • it is preferable to reduce the thickness of the polarizer and set
  • the characteristics of the pressure-sensitive adhesive layer or the adhesive layer should be selected instead of the measures of reducing the thickness of the polarizer and setting
  • the elastic modulus of the pressure-sensitive adhesive layer or the adhesive layer for bonding the glass film and the polarizer at 25 ° C. is preferably 1.0 ⁇ 10 5 Pa or more and 5.5 ⁇ 10 6 Pa or less. , 1.0 ⁇ 10 5 Pa or more, more preferably 1.0 ⁇ 10 6 Pa or less.
  • the elastic modulus at 25 ° C. can be made extremely low.
  • measures are taken to reduce the thickness of the polarizing element so that

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

This optical film includes a glass film, and a polarizing plate. The glass film has a thickness of 50-150 μm inclusive, and has a crack with a length of 20 μm or more at an end thereof. The polarizing plate has a polarizer and a protective film disposed on at least one surface of the polarizer. Regarding the polarizing plate, the absolute value of a difference between a strain amount in an MD direction and a strain amount in a TD direction under a constant-temperature and constant humidity environment with a temperature of 60°C and a humidity of 90% is 0 to 40×10-6.

Description

光学フィルムOptical film
 本発明は、光学フィルムに関する。 The present invention relates to an optical film.
 近年、液晶表示素子や有機EL(Organic Electro-Luminescence)を用いた表示素子は、収納性、デザイン性の観点から軽量、薄型化が進んでいる。従来、表示素子の最表面としてカバーガラスが用いられており、偏光板を液晶セル等に貼り合わせた後、層間充填剤を介して偏光板上にカバーガラスが設けられている。 In recent years, liquid crystal display elements and display elements using organic EL (Organic Electro-Luminescence) have been made lighter and thinner from the viewpoint of storage and design. Conventionally, a cover glass has been used as the outermost surface of a display element, and after the polarizing plate is attached to a liquid crystal cell or the like, the cover glass is provided on the polarizing plate via an interlayer filler.
国際公開第2019/087938号International Publication No. 2019/087938
 一方で、極薄のガラス(ガラスフィルム)を偏光板と予め一体化して液晶セル等に貼り合わせることで、カバーガラスと偏光板とを層間充填剤を介して貼り合わせるプロセスを簡素化する取り組みもなされている。 On the other hand, there is also an effort to simplify the process of bonding the cover glass and the polarizing plate via an interlayer filler by integrating the ultra-thin glass (glass film) with the polarizing plate in advance and bonding it to a liquid crystal cell or the like. It has been done.
 特許文献1には、ペン等の硬度の高い突起物の接触に対して優れた強度及び可撓性を有するガラスフィルム積層体を表示素子や照明素子の最表層に用いることが開示されている。具体的には、表示素子に用いるガラスフィルム積層体として、ガラスフィルム、接着剤層、保護フィルム、偏光子、粘着剤層を、この順に積層した光学フィルムが提案されている。 Patent Document 1 discloses that a glass film laminate having excellent strength and flexibility against contact with a protrusion having high hardness such as a pen is used for the outermost layer of a display element or a lighting element. Specifically, as a glass film laminate used for a display element, an optical film in which a glass film, an adhesive layer, a protective film, a polarizer, and an adhesive layer are laminated in this order has been proposed.
 ここで、本発明者らは、ノートパソコン等の用途に合わせて、ガラスフィルム積層体をレーザや切削等の加工により所定のサイズとし、表示素子に貼り合わせ、加湿環境下等での耐久試験を行った。その結果、所定サイズに加工した際にガラスフィルムの端部にクラックが生じ、このクラックが加湿環境下等で伸長することがわかった。 Here, the present inventors make a glass film laminate into a predetermined size by processing such as laser or cutting according to the application such as a notebook computer, attach it to a display element, and perform a durability test in a humid environment or the like. went. As a result, it was found that cracks were generated at the edges of the glass film when processed to a predetermined size, and the cracks were elongated in a humidified environment or the like.
 本発明は、上記の点に鑑みてなされたもので、ガラスフィルムの端部に所定サイズのクラックが存在しても、所定の温湿度環境下でのクラックの伸長を抑制可能な光学フィルムを提供することを目的とする。 The present invention has been made in view of the above points, and provides an optical film capable of suppressing the elongation of cracks in a predetermined temperature and humidity environment even if cracks of a predetermined size are present at the edges of the glass film. The purpose is to do.
 本光学フィルムは、ガラスフィルムと、偏光板と、を含み、前記ガラスフィルムの厚みは、50μm以上150μm以下であり、前記ガラスフィルムの端部に、長さ20μm以上のクラックを有し、前記偏光板は、偏光子と、前記偏光子の少なくとも一方の面に配された保護フィルムと、を有し、前記偏光板は、温度60℃湿度90%の恒温恒湿環境下におけるMD方向のひずみ量とTD方向のひずみ量の差の絶対値が0以上40×10-6以下である。 The present optical film includes a glass film and a polarizing plate, the thickness of the glass film is 50 μm or more and 150 μm or less, the edge of the glass film has cracks of 20 μm or more in length, and the polarized light is used. The plate has a polarizing element and a protective film arranged on at least one surface of the polarizing element, and the polarizing plate has a strain amount in the MD direction in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90%. The absolute value of the difference between the amount of strain in the TD direction and the amount of strain in the TD direction is 0 or more and 40 × 10-6 or less.
 開示の技術によれば、ガラスフィルムの端部に所定サイズのクラックが存在しても、所定の温湿度環境下でのクラックの伸長を抑制可能な光学フィルムを提供できる。 According to the disclosed technology, it is possible to provide an optical film capable of suppressing the elongation of cracks in a predetermined temperature and humidity environment even if cracks of a predetermined size are present at the edges of the glass film.
第1実施形態に係る光学フィルムを例示する断面図である。It is sectional drawing which illustrates the optical film which concerns on 1st Embodiment. 第2実施形態に係る光学フィルムを例示する断面図である。It is sectional drawing which illustrates the optical film which concerns on 2nd Embodiment. ひずみゲージの貼り付け位置を示す図である。It is a figure which shows the sticking position of a strain gauge. 実施例及び比較例について説明する図(その1)である。It is a figure (the 1) explaining an Example and a comparative example. 実施例及び比較例について説明する図(その2)である。It is a figure (the 2) explaining an Example and a comparative example. 実施例及び比較例について説明する図(その3)である。It is a figure (the 3) explaining an Example and a comparative example.
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, a mode for carrying out the invention will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
 〈第1実施形態〉
 図1は、第1実施形態に係る光学フィルムを例示する断面図である。図1を参照すると、光学フィルム10は、ガラスフィルム11と、接着剤層12と、偏光板13と、粘着剤層14とをこの順に備える。
<First Embodiment>
FIG. 1 is a cross-sectional view illustrating the optical film according to the first embodiment. Referring to FIG. 1, the optical film 10 includes a glass film 11, an adhesive layer 12, a polarizing plate 13, and an adhesive layer 14 in this order.
 なお、本明細書において、粘着剤層とは、常温で接着性を有し、軽い圧力で被着体に接着する層をいう。従って、粘着剤層に貼着した被着体を剥離した場合にも、粘着剤層は実用的な粘着力を保持する。一方、接着剤層とは、物質の間に介在することによって物質を結合できる層をいう。従って、接着剤層に貼着した被着体を剥離した場合には、接着剤層は実用的な接着力を有さない。 In the present specification, the pressure-sensitive adhesive layer means a layer that has adhesiveness at room temperature and adheres to an adherend with a light pressure. Therefore, even when the adherend attached to the pressure-sensitive adhesive layer is peeled off, the pressure-sensitive adhesive layer retains a practical adhesive force. On the other hand, the adhesive layer is a layer capable of binding substances by interposing between the substances. Therefore, when the adherend attached to the adhesive layer is peeled off, the adhesive layer does not have a practical adhesive force.
 偏光板13は、偏光子131及び保護フィルム132を有する。保護フィルム132は、偏光子131の少なくとも片側(一方の面)に配置される。保護フィルム132は、少なくとも偏光子131の接着剤層12側に配置されることが好ましいが、必要に応じ、偏光子131の両側(一方の面及び他方の面)に配置されてもよい。 The polarizing plate 13 has a polarizer 131 and a protective film 132. The protective film 132 is arranged on at least one side (one side) of the polarizer 131. The protective film 132 is preferably arranged at least on the adhesive layer 12 side of the polarizer 131, but may be arranged on both sides (one surface and the other surface) of the polarizer 131, if necessary.
 なお、必要に応じ、偏光板13の接着剤層12とは反対側に、位相差層を配置してもよい。位相差層は、任意の適切な粘着剤層又は接着剤層を介して、偏光板13に積層できる。又、必要に応じ、粘着剤層14を介して偏光板13とは反対側に、離形フィルムを配置してもよい。 If necessary, a retardation layer may be arranged on the side of the polarizing plate 13 opposite to the adhesive layer 12. The retardation layer can be laminated on the polarizing plate 13 via any suitable adhesive layer or adhesive layer. Further, if necessary, a release film may be arranged on the side opposite to the polarizing plate 13 via the pressure-sensitive adhesive layer 14.
 以下、光学フィルム10の各構成要素について、更に詳しく説明する。 Hereinafter, each component of the optical film 10 will be described in more detail.
 [ガラスフィルム]
 ガラスフィルム11は、特に限定はなく、目的に応じて適切なものを採用できる。ガラスフィルム11は、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。又、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。上記ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の含有量は、好ましくは15重量%以下であり、更に好ましくは10重量%以下である。
[Glass film]
The glass film 11 is not particularly limited, and an appropriate glass film 11 can be adopted depending on the intended purpose. According to the classification according to the composition, the glass film 11 includes, for example, soda-lime glass, borosilicate glass, aluminosilicate glass, quartz glass and the like. Further, according to the classification according to the alkaline component, non-alkali glass and low-alkali glass can be mentioned. The content of the alkali metal component (for example, Na 2 O, K 2 O, Li 2 O) of the glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
 ガラスフィルム11の厚みは、好ましくは50μm~150μmであり、より好ましくは60μm~140μmであり、更に好ましくは70μm~130μmであり、特に好ましくは80μm~120μmである。このような範囲であれば、フレキシブル性に優れロールツーロールプロセスでの加工が可能であり、かつ、ガラスフィルムが割れがたく生産性に優れる光学フィルム10が得られる。 The thickness of the glass film 11 is preferably 50 μm to 150 μm, more preferably 60 μm to 140 μm, further preferably 70 μm to 130 μm, and particularly preferably 80 μm to 120 μm. Within such a range, it is possible to obtain an optical film 10 which is excellent in flexibility, can be processed by a roll-to-roll process, and has excellent productivity because the glass film is not easily cracked.
 ガラスフィルム11の波長550nmにおける光透過率は、好ましくは85%以上である。ガラスフィルム11の波長550nmにおける屈折率は、好ましくは1.4~1.65である。 The light transmittance of the glass film 11 at a wavelength of 550 nm is preferably 85% or more. The refractive index of the glass film 11 at a wavelength of 550 nm is preferably 1.4 to 1.65.
 ガラスフィルム11の密度は、好ましくは2.3g/cm~3.0g/cmであり、更に好ましくは2.3g/cm~2.7g/cmである。上記範囲のガラスフィルムであれば、画像表示装置等の軽量化に寄与し得る光学フィルム10を提供できる。 The density of the glass film 11 is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , and more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . If it is a glass film in the above range, it is possible to provide an optical film 10 that can contribute to weight reduction of an image display device or the like.
 ガラスフィルム11の成形方法は、特に限定はなく、目的に応じて適切なものを採用できる。代表的には、ガラスフィルム11は、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400℃~1600℃程度の温度で溶融し、薄板状に成形した後、冷却して作製できる。ガラスフィルム11の成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形されたガラスフィルムは、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学研磨されてもよい。 The molding method of the glass film 11 is not particularly limited, and an appropriate one can be adopted according to the purpose. Typically, the glass film 11 is a mixture containing a main raw material such as silica and alumina, a defoaming agent such as sardine and antimony oxide, and a reducing agent such as carbon at a temperature of about 1400 ° C to 1600 ° C. It can be produced by melting, forming into a thin plate, and then cooling. Examples of the molding method of the glass film 11 include a slot down draw method, a fusion method, and a float method. The glass film formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve the smoothness.
 [接着剤層]
 接着剤層12は、特に限定はなく、目的に応じて適切な接着剤を採用できる。接着剤としては、例えば、ポリエステル系接着剤、ポリウレタン系接着剤、ポリビニルアルコール系接着剤、エポキシ系接着剤が挙げられる。この中でも、特に良好な密着性が得られるエポキシ系接着剤が好ましい。
[Adhesive layer]
The adhesive layer 12 is not particularly limited, and an appropriate adhesive can be adopted depending on the purpose. Examples of the adhesive include polyester adhesives, polyurethane adhesives, polyvinyl alcohol adhesives, and epoxy adhesives. Among these, an epoxy-based adhesive that can obtain particularly good adhesion is preferable.
 接着剤層12が熱硬化型接着剤である場合は、加熱して硬化(固化)することにより剥離抵抗力を発揮できる。又、接着剤層12が紫外線硬化型等の光硬化型接着剤である場合は、紫外線等の光を照射して硬化することにより剥離抵抗力を発揮できる。又、接着剤層12が湿気硬化型接着剤である場合は、空気中の水分等と反応して硬化し得るので、放置することによっても硬化して剥離抵抗力を発揮できる。 When the adhesive layer 12 is a thermosetting adhesive, it can exhibit peeling resistance by heating and curing (solidifying). Further, when the adhesive layer 12 is a photocurable adhesive such as an ultraviolet curable type, the peeling resistance can be exhibited by irradiating the adhesive layer 12 with light such as ultraviolet rays and curing the adhesive. Further, when the adhesive layer 12 is a moisture-curable adhesive, it can be cured by reacting with moisture in the air or the like, so that it can be cured even if it is left to stand, and peeling resistance can be exhibited.
 接着剤層12は、例えば、市販の接着剤を使用してもよく、各種硬化型樹脂を溶媒に溶解又は分散し、接着剤溶液(又は分散液)として調製してもよい。 For the adhesive layer 12, for example, a commercially available adhesive may be used, or various curable resins may be dissolved or dispersed in a solvent to prepare an adhesive solution (or dispersion).
 接着剤層12の厚みは、好ましくは10μm以下であり、より好ましくは0.1μm~10μmであり、更に好ましくは0.5μm~8μmであり、特に好ましくは1μm~6μmである。このような範囲であれば、可撓性に優れ、かつ、耐突刺性に優れる光学フィルム10が得られる。 The thickness of the adhesive layer 12 is preferably 10 μm or less, more preferably 0.1 μm to 10 μm, further preferably 0.5 μm to 8 μm, and particularly preferably 1 μm to 6 μm. Within such a range, an optical film 10 having excellent flexibility and puncture resistance can be obtained.
 接着剤層12の弾性率は、好ましくは0.5GPa~15GPaであり、より好ましくは0.8GPa~10GPaであり、更に好ましくは1GPa~5GPaである。このような範囲であれば、可撓性に優れ、かつ、耐突刺性に優れる光学フィルム10が得られる。本明細書において、弾性率は、オートグラフを用いて、下記の条件で測定できる。 The elastic modulus of the adhesive layer 12 is preferably 0.5 GPa to 15 GPa, more preferably 0.8 GPa to 10 GPa, and further preferably 1 GPa to 5 GPa. Within such a range, an optical film 10 having excellent flexibility and puncture resistance can be obtained. In the present specification, the elastic modulus can be measured under the following conditions using an autograph.
 [弾性率測定方法]
 測定温度:25℃
 サンプルサイズ:幅2cm、長さ15cm
 チャック間距離:10cm
 引張速度:10mm/min。
[Modulus measurement method]
Measurement temperature: 25 ° C
Sample size: width 2 cm, length 15 cm
Distance between chucks: 10 cm
Tensile speed: 10 mm / min.
 [偏光板]
 偏光板13の厚みは、好ましくは5μm~300μmであり、より好ましくは10μm~250μmであり、更に好ましくは25μm~200μmであり、特に好ましくは25μm~100μmである。
[Polarizer]
The thickness of the polarizing plate 13 is preferably 5 μm to 300 μm, more preferably 10 μm to 250 μm, further preferably 25 μm to 200 μm, and particularly preferably 25 μm to 100 μm.
 偏光板13の弾性率は、好ましくは1GPa以上であり、より好ましくは1GPa~10GPaであり、更に好ましくは2GPa~7GPaであり、特に好ましくは2GPa~5GPaあるである。このような範囲であれば、耐突刺性に優れる光学フィルム10が得られる。 The elastic modulus of the polarizing plate 13 is preferably 1 GPa or more, more preferably 1 GPa to 10 GPa, further preferably 2 GPa to 7 GPa, and particularly preferably 2 GPa to 5 GPa. Within such a range, an optical film 10 having excellent puncture resistance can be obtained.
 偏光板13の形状は、特に限定はなく、目的に応じて適切な形状を採用できるが、一例として、長辺と短辺とを有する方形形状が挙げられる。偏光板13が方形形状である場合、偏光板13が有する偏光子131の吸収軸方向と、偏光板13の長辺又は短辺とは、略平行であることが好ましい。なお、本明細書において、「略平行」とは、厳密に平行である場合のみならず、両線のなす角が±10°(好ましくは±5°)である場合も含む概念である。 The shape of the polarizing plate 13 is not particularly limited, and an appropriate shape can be adopted depending on the purpose. As an example, a square shape having a long side and a short side can be mentioned. When the polarizing plate 13 has a rectangular shape, it is preferable that the absorption axis direction of the polarizer 131 of the polarizing plate 13 and the long side or the short side of the polarizing plate 13 are substantially parallel. In addition, in this specification, "substantially parallel" is a concept including not only the case where it is strictly parallel but also the case where the angle formed by both lines is ± 10 ° (preferably ± 5 °).
 [偏光子]
 偏光子131の厚みは、特に限定はなく、目的に応じて適切な厚みを採用できる。偏光子131の厚みは、代表的には、1μm~80μm程度である。偏光子131として薄型の偏光子を用いてもよく、この場合、偏光子131の厚みは、好ましくは20μm以下であり、より好ましくは15μm以下であり、更に好ましくは10μm以下であり、特に好ましくは5μm以下である。
[Polarizer]
The thickness of the polarizer 131 is not particularly limited, and an appropriate thickness can be adopted depending on the intended purpose. The thickness of the polarizer 131 is typically about 1 μm to 80 μm. A thin polarizer may be used as the polarizer 131. In this case, the thickness of the polarizer 131 is preferably 20 μm or less, more preferably 15 μm or less, still more preferably 10 μm or less, and particularly preferably 10 μm or less. It is 5 μm or less.
 偏光子131は、好ましくは、波長380nm~780nmの何れかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、更に好ましくは42.0%以上、特に好ましくは43.0%以上である。偏光子131の偏光度は、好ましくは99.8%以上であり、より好ましくは99.9%以上であり、更に好ましくは99.95%以上である。 The polarizer 131 preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, still more preferably 42.0% or more, and particularly preferably 43.0% or more. The degree of polarization of the polarizer 131 is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
 偏光子131は、好ましくは、ヨウ素系偏光子である。より詳細には、上記偏光子は、ヨウ素を含むポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)フィルムから構成できる。 The polarizer 131 is preferably an iodine-based polarizer. More specifically, the polarizer can be composed of a polyvinyl alcohol-based resin (hereinafter, referred to as "PVA-based resin") film containing iodine.
 PVA系樹脂フィルムを形成するPVA系樹脂としては、特に限定はなく、目的に応じて適切な樹脂を採用できるが、例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。 The PVA-based resin that forms the PVA-based resin film is not particularly limited, and an appropriate resin can be used depending on the intended purpose. Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
 ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%であり、更に好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求められる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られる。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. Is. The degree of saponification is determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
 PVA系樹脂の平均重合度は、特に限定はなく、目的に応じて適切に選択できる。PVA系樹脂の平均重合度は、例えば、1000~10000であり、好ましくは1200~5000であり、更に好ましくは1500~4500である。なお、平均重合度は、JIS K 6726-1994に準じて求められる。 The average degree of polymerization of the PVA-based resin is not particularly limited and can be appropriately selected according to the purpose. The average degree of polymerization of the PVA-based resin is, for example, 1000 to 10000, preferably 1200 to 5000, and more preferably 1500 to 4500. The average degree of polymerization is determined according to JIS K 6726-1994.
 偏光子131の製造方法としては、例えば、PVA系樹脂フィルム単体を延伸、染色する方法(I)、樹脂基材とポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色する方法(II)等が挙げられる。方法(I)は、当業界で周知慣用の方法であるため、詳細な説明は省略する。 Examples of the method for producing the polarizer 131 include a method (I) of stretching and dyeing a single PVA-based resin film, and a method of stretching and dyeing a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer (i). II) and the like. Since the method (I) is a well-known and commonly used method in the art, detailed description thereof will be omitted.
 方法(II)は、好ましくは、樹脂基材と該樹脂基材の片側に形成されたポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色して、該樹脂基材上に偏光子を作製する工程を含む。積層体(i)は、樹脂基材上にポリビニルアルコール系樹脂を含む塗布液を塗布・乾燥して形成され得る。又、積層体(i)は、ポリビニルアルコール系樹脂層を樹脂基材上に転写して形成されてもよい。上記製造方法(II)の詳細は、例えば、特開2012-73580号公報に記載されており、この公報は、本明細書に参考として援用できる。 In the method (II), preferably, a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer formed on one side of the resin base material is stretched and dyed, and polarized light is applied onto the resin base material. Including the step of producing a child. The laminate (i) can be formed by applying and drying a coating liquid containing a polyvinyl alcohol-based resin on a resin base material. Further, the laminate (i) may be formed by transferring the polyvinyl alcohol-based resin layer onto the resin base material. Details of the production method (II) are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580, and this publication can be incorporated herein by reference.
 [保護フィルム]
 保護フィルム132としては、特に限定はなく、目的に応じて適切な樹脂フィルムを採用できる。保護フィルム132の形成材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、(メタ)アクリル系樹脂等が挙げられる。これらの中でも、好ましくは、ポリエチレンテレフタレート(PET)である。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂及び/又はメタクリル系樹脂をいう。
[Protective film]
The protective film 132 is not particularly limited, and an appropriate resin film can be used depending on the intended purpose. Examples of the material for forming the protective film 132 include polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, and olefins such as polyethylene and polypropylene. Examples thereof include based resins and (meth) acrylic resins. Among these, polyethylene terephthalate (PET) is preferable. The "(meth) acrylic resin" refers to an acrylic resin and / or a methacrylic resin.
 (メタ)アクリル系樹脂としては、例えば、グルタルイミド構造を有する(メタ)アクリル系樹脂が用いられる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-009182号公報、特開2009-161744号公報、特開2010-284840号公報に記載されている。これらの記載は、本明細書に参考として援用できる。 As the (meth) acrylic resin, for example, a (meth) acrylic resin having a glutarimide structure is used. Examples of the (meth) acrylic resin having a glutarimide structure (hereinafter, also referred to as glutarimide resin) include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in Japanese Patent Application Laid-Open No. 161744 and Japanese Patent Application Laid-Open No. 2010-284840. These statements may be incorporated herein by reference.
 保護フィルム132と偏光子131とは、任意の適切な接着剤層を介して積層できる。偏光子131の作製時に用いた樹脂基材は、保護フィルム132と偏光子131とを積層する前、或いは積層した後に剥離される。 The protective film 132 and the polarizer 131 can be laminated via any suitable adhesive layer. The resin base material used in the production of the polarizer 131 is peeled off before or after the protective film 132 and the polarizer 131 are laminated.
 保護フィルム132の厚みは、好ましくは4μm~250μmであり、より好ましくは5μm~150μmであり、更に好ましくは10μm~100μmであり、特に好ましくは10μm~50μmである。 The thickness of the protective film 132 is preferably 4 μm to 250 μm, more preferably 5 μm to 150 μm, further preferably 10 μm to 100 μm, and particularly preferably 10 μm to 50 μm.
 保護フィルム132の弾性率は、1GPa以上であり、好ましくは1GPa~10GPaであり、より好ましくは1.8GPa~7GPaであり、更に好ましくは2GPa~5GPaである。このような範囲であれば、耐突刺性に優れる光学フィルム10が得られる。 The elastic modulus of the protective film 132 is 1 GPa or more, preferably 1 GPa to 10 GPa, more preferably 1.8 GPa to 7 GPa, and further preferably 2 GPa to 5 GPa. Within such a range, an optical film 10 having excellent puncture resistance can be obtained.
 [位相差層]
 前述のように、位相差層は、必須の構成ではなく、必要に応じて設けられる。位相差層を設ける場合、位相差層は、特に限定はなく、目的に応じて任意の適切な光学的特性及び/又は機械的特性を有してよい。位相差層は、代表的には遅相軸を有する。位相差層の光学的特性及び/又は機械的特性は、液晶セルの配向モードにより適宜選択できる。
[Phase difference layer]
As described above, the retardation layer is not an indispensable configuration, but is provided as needed. When the retardation layer is provided, the retardation layer is not particularly limited and may have any appropriate optical property and / or mechanical property depending on the purpose. The retardation layer typically has a slow axis. The optical and / or mechanical properties of the retardation layer can be appropriately selected depending on the orientation mode of the liquid crystal cell.
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。 The retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
 位相差層の厚みは、好ましくは60μm以下であり、より好ましくは30μm~55μmであり、更に好ましくは30μm以下である。 The thickness of the retardation layer is preferably 60 μm or less, more preferably 30 μm to 55 μm, and further preferably 30 μm or less.
 位相差層は、上記の特性を満足し得る任意の適切な樹脂フィルムで構成できる。そのような樹脂の代表例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂、高分子液晶樹脂が挙げられる。 The retardation layer can be made of any suitable resin film that can satisfy the above characteristics. Typical examples of such resins are cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, polyvinyl alcohol resins, polyamide resins, polyimide resins, polyether resins, polystyrene resins, and acrylics. Examples thereof include based resins and polymer liquid crystal resins.
 [粘着剤層]
 粘着剤層14は、任意の適切な粘着剤から形成できる。粘着剤としては、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系等のポリマーをベースポリマーとする粘着剤が用いられる。好ましくは、アクリル系粘着剤が用いられる。アクリル系粘着剤は、光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れ得るからである。特に、炭素数が4~12のアクリル系ポリマーよりなるアクリル系粘着剤が好ましい。
[Adhesive layer]
The pressure-sensitive adhesive layer 14 can be formed from any suitable pressure-sensitive adhesive. As the pressure-sensitive adhesive, for example, a pressure-sensitive adhesive based on a polymer such as an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based polymer, or a rubber-based polymer is used. Preferably, an acrylic pressure-sensitive adhesive is used. This is because the acrylic pressure-sensitive adhesive is excellent in optical transparency, exhibits appropriate wettability, cohesiveness, and adhesiveness, and can be excellent in weather resistance, heat resistance, and the like. In particular, an acrylic pressure-sensitive adhesive made of an acrylic polymer having 4 to 12 carbon atoms is preferable.
 粘着剤層14の厚みは、特に制限されず、例えば、1~400μm程度である。また、粘着剤層14の厚みは、粘着剤に用いる(メタ)アクリル系ポリマーの製造方法によって、適宜に好ましい範囲を設定できる。例えば、溶液重合等により(メタ)アクリル系ポリマーを製造する場合には、粘着剤層14の厚みは、1~100μmが好ましく、2~50μmがより好ましく、2~40μmが更に好ましく、5~35μmが特に好ましい。また、放射線重合等により、(メタ)アクリル系ポリマーを製造する場合には、粘着剤層14の厚みは、50~400μmが好ましく、75~300μmがより好ましく、100~200μmが更に好ましい。このような厚みのアクリル系ポリマーを製造する際には溶液重合が好適である。 The thickness of the pressure-sensitive adhesive layer 14 is not particularly limited, and is, for example, about 1 to 400 μm. Further, the thickness of the pressure-sensitive adhesive layer 14 can be appropriately set in a preferable range depending on the method for producing the (meth) acrylic polymer used for the pressure-sensitive adhesive. For example, when a (meth) acrylic polymer is produced by solution polymerization or the like, the thickness of the pressure-sensitive adhesive layer 14 is preferably 1 to 100 μm, more preferably 2 to 50 μm, further preferably 2 to 40 μm, and 5 to 35 μm. Is particularly preferable. When a (meth) acrylic polymer is produced by radiation polymerization or the like, the thickness of the pressure-sensitive adhesive layer 14 is preferably 50 to 400 μm, more preferably 75 to 300 μm, and even more preferably 100 to 200 μm. Solution polymerization is suitable for producing an acrylic polymer having such a thickness.
 粘着剤層14の23℃における弾性率は、好ましくは0.00001GPa~10GPaであり、より好ましくは0.001GPa~8GPaであり、更に好ましくは0.001GPa~5GPaである。このような範囲であれば、可撓性に優れ、かつ、耐突刺性に優れる光学フィルム10を得ることができる。 The elastic modulus of the pressure-sensitive adhesive layer 14 at 23 ° C. is preferably 0.00001 GPa to 10 GPa, more preferably 0.001 GPa to 8 GPa, and further preferably 0.001 GPa to 5 GPa. Within such a range, an optical film 10 having excellent flexibility and puncture resistance can be obtained.
 [離形フィルム]
 前述のように、離形フィルムは、必須の構成ではなく、必要に応じて設けられる。離形フィルムは、例えば、ポリエチレンテレフタレート(PET)の樹脂により形成できる。離形フィルムの厚みは、好ましくは5μm~200μmであり、より好ましくは10μm~100μmであり、更に好ましくは30μm~50μmである。離形フィルムは、光学フィルム10が液晶セル等の光学素子に貼り付けられる前に、粘着剤層14との界面で剥離される。
[Release film]
As described above, the release film is not an essential configuration and is provided as needed. The release film can be formed of, for example, a resin of polyethylene terephthalate (PET). The thickness of the release film is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and further preferably 30 μm to 50 μm. The release film is peeled off at the interface with the pressure-sensitive adhesive layer 14 before the optical film 10 is attached to an optical element such as a liquid crystal cell.
 光学フィルム10は、例えば、液晶パネルを構成する際に、視認側偏光板として用いることができる。この際、光学フィルム10は、例えば、液晶セルの視認側に粘着剤層を介して設けられ、液晶パネルの前面板として機能する。なお、視認側とは、所定の部材を画像表示装置に適用した際に視認される方に向いた側を意味する。光学フィルム10は、例えば、インセルタイプの液晶素子に好ましく用いられる。インセルタイプの液晶素子は、タッチセンサが組み込まれた基板を備える液晶セルを含む液晶素子である。 The optical film 10 can be used as a viewing side polarizing plate, for example, when forming a liquid crystal panel. At this time, the optical film 10 is provided, for example, on the visible side of the liquid crystal cell via an adhesive layer, and functions as a front plate of the liquid crystal panel. The visual side means a side facing the side to be visually recognized when the predetermined member is applied to the image display device. The optical film 10 is preferably used for, for example, an in-cell type liquid crystal element. The in-cell type liquid crystal element is a liquid crystal element including a liquid crystal cell including a substrate in which a touch sensor is incorporated.
 [ガラスフィルムのクラックの伸長]
 ガラスフィルム11の端部に所定サイズのクラックが存在すると、所定の温湿度環境下で偏光板13の膨張等によりクラックが伸長する場合があるが、これを抑制することが好ましい。
[Elongation of cracks in glass film]
If cracks of a predetermined size are present at the edges of the glass film 11, the cracks may grow due to expansion of the polarizing plate 13 under a predetermined temperature and humidity environment, but it is preferable to suppress this.
 発明者らの検討によれば、光学フィルム10の製品化に当たり、少なくとも温度60℃湿度90%の恒温恒湿環境下におけるガラスフィルム11の端部のクラックの伸長を抑制する必要があり、温度80℃の恒温恒湿環境下におけるガラスフィルム11の端部のクラックの伸長を抑制できれば更に好ましいことがわかった。 According to the studies by the inventors, in order to commercialize the optical film 10, it is necessary to suppress the elongation of cracks at the end of the glass film 11 in a constant temperature and humidity environment at least at a temperature of 60 ° C. and a humidity of 90%, and the temperature is 80. It was found that it is more preferable if the elongation of cracks at the end of the glass film 11 can be suppressed in a constant temperature and humidity environment at ° C.
 発明者らは、光学フィルム10において、所定の温湿度環境下における偏光板13のMD方向のひずみ量とTD方向のひずみ量の差の絶対値:|MD-TD|の値を所定範囲内に抑えることで、ガラスフィルム11の端部に所定サイズのクラックが存在しても、所定の温湿度環境下でのクラックの伸長を抑制できることを見出した。 In the optical film 10, the inventors set the absolute value of the difference between the strain amount in the MD direction and the strain amount in the TD direction of the polarizing plate 13 under a predetermined temperature and humidity environment: | MD-TD | within a predetermined range. It has been found that by suppressing the cracks, even if cracks of a predetermined size are present at the edges of the glass film 11, the growth of the cracks under a predetermined temperature and humidity environment can be suppressed.
 具体的には、温度60℃湿度90%の恒温恒湿環境下における偏光板13の|MD-TD|が0以上40×10-6以下であることが好ましい。これに加え、温度80℃の加熱環境試験下における偏光板13の|MD-TD|が0以上250×10-6以下であれば、より好ましい。 Specifically, it is preferable that the | MD-TD | of the polarizing plate 13 in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90% is 0 or more and 40 × 10-6 or less. In addition to this, it is more preferable that | MD-TD | of the polarizing plate 13 under the heating environment test at a temperature of 80 ° C. is 0 or more and 250 × 10-6 or less.
 これらの要件を満たすことで、偏光板13のひずみ量の絶対値が小さくなるため、偏光板13のひずみ量のガラスフィルム11への影響が低減され、ガラスフィルム11の端部に長さ20μm以上のクラックが存在しても、クラックの伸長を抑制できる。特に、偏光板13とガラスフィルム11が接着剤層12のような弾性率の高い層を介して貼り合わせられ一体化されている場合に、クラックの伸長に関し顕著な効果を発揮する。 By satisfying these requirements, the absolute value of the strain amount of the polarizing plate 13 becomes small, so that the influence of the strain amount of the polarizing plate 13 on the glass film 11 is reduced, and the length of the edge of the glass film 11 is 20 μm or more. Even if there are cracks in the above, the elongation of the cracks can be suppressed. In particular, when the polarizing plate 13 and the glass film 11 are bonded and integrated via a layer having a high elastic modulus such as an adhesive layer 12, a remarkable effect on crack elongation is exhibited.
 なお、MD方向とは、樹脂を溶融させて型で成形する際に、型の内部で溶融樹脂が流れる方向である。TD方向は、MD方向と直交する方向である。 The MD direction is the direction in which the molten resin flows inside the mold when the resin is melted and molded in the mold. The TD direction is a direction orthogonal to the MD direction.
 温度60℃湿度90%の恒温恒湿環境や温度80℃の加熱環境試験下における偏光板13の|MD-TD|の値を小さくするには、偏光子131の厚みを薄くすればよい。偏光子131の厚みを薄くするほど、偏光板13の|MD-TD|の値を小さくできる。ガラスフィルムのクラックの伸長の抑制の詳細については、実施例において後述する。 In order to reduce the value of | MD-TD | of the polarizing plate 13 under a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90% or a heating environment test at a temperature of 80 ° C., the thickness of the polarizer 131 may be reduced. The thinner the thickness of the polarizer 131, the smaller the value of | MD-TD | of the polarizing plate 13. Details of suppressing the elongation of cracks in the glass film will be described later in Examples.
 〈第2実施形態〉
 第2実施形態では、第1実施形態とは層構造の異なる光学フィルムの例を示す。なお、第2実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Second Embodiment>
The second embodiment shows an example of an optical film having a layer structure different from that of the first embodiment. In the second embodiment, the description of the same components as those in the above-described embodiment may be omitted.
 図2は、第2実施形態に係る光学フィルムを例示する断面図である。図2を参照すると、光学フィルム10Aは、接着剤層12が粘着剤層15に置換された点が、光学フィルム10(図1参照)と相違する。 FIG. 2 is a cross-sectional view illustrating the optical film according to the second embodiment. Referring to FIG. 2, the optical film 10A differs from the optical film 10 (see FIG. 1) in that the adhesive layer 12 is replaced with the adhesive layer 15.
 粘着剤層15の材料は、例えば、粘着剤層14の材料として例示した中から適宜選択できる。粘着剤層15の厚みは、20μm以上500μm以下であることが好ましい。粘着剤層15の厚みを20μm以上とすることで、偏光板13のひずみのガラスフィルム11への伝達が緩和される。これにより、ガラスフィルム11の端部に長さ20μm以上のクラックが存在しても、クラックの伸長を抑制できる。又、粘着剤層15の厚みを500μm以下とすることで、光学フィルム10をロールツーロールプロセスで製造する際の取り扱い性が向上する。 The material of the pressure-sensitive adhesive layer 15 can be appropriately selected from, for example, illustrated as the material of the pressure-sensitive adhesive layer 14. The thickness of the pressure-sensitive adhesive layer 15 is preferably 20 μm or more and 500 μm or less. By setting the thickness of the pressure-sensitive adhesive layer 15 to 20 μm or more, the transmission of the strain of the polarizing plate 13 to the glass film 11 is relaxed. As a result, even if cracks having a length of 20 μm or more are present at the end of the glass film 11, the growth of the cracks can be suppressed. Further, by setting the thickness of the pressure-sensitive adhesive layer 15 to 500 μm or less, the handleability when the optical film 10 is manufactured by the roll-to-roll process is improved.
 更に、粘着剤層15の25℃における弾性率が1.0×10Pa以上5.5×10Pa以下であることが好ましく、1.0×10Pa以上1.0×10Pa以下であることがより好ましい。これらの要件を満たすことで、偏光板13のひずみのガラスフィルム11への伝達が一層緩和される。これにより、ガラスフィルム11の端部に長さ20μm以上のクラックが存在しても、クラックの伸長を一層抑制できる。 Further, the elastic modulus of the pressure-sensitive adhesive layer 15 at 25 ° C. is preferably 1.0 × 10 5 Pa or more and 5.5 × 10 6 Pa or less, and 1.0 × 10 5 Pa or more and 1.0 × 10 6 Pa or less. The following is more preferable. By satisfying these requirements, the transmission of the strain of the polarizing plate 13 to the glass film 11 is further relaxed. As a result, even if cracks having a length of 20 μm or more are present at the end of the glass film 11, the elongation of the cracks can be further suppressed.
 なお、第1実施形態に係る光学フィルム10のように、ガラスフィルム11と偏光板13との貼り合わせに厚み数μm程度の接着剤層12を用いる場合であっても、接着剤層12の25℃における弾性率が1.0×10Pa以上5.5×10Pa以下であれば、クラックの伸長を抑制できる。又、接着剤層12の25℃における弾性率が1.0×10Pa以上1.0×10Pa以下であれば、クラックの伸長を一層抑制できる。ガラスフィルムのクラックの伸長の抑制の詳細については、実施例において後述する。 Even when the adhesive layer 12 having a thickness of about several μm is used for bonding the glass film 11 and the polarizing plate 13 as in the optical film 10 according to the first embodiment, 25 of the adhesive layer 12 When the elastic modulus at ° C. is 1.0 × 10 5 Pa or more and 5.5 × 10 6 Pa or less, the elongation of cracks can be suppressed. Further, when the elastic modulus of the adhesive layer 12 at 25 ° C. is 1.0 × 10 5 Pa or more and 1.0 × 10 6 Pa or less, the elongation of cracks can be further suppressed. Details of suppressing the elongation of cracks in the glass film will be described later in Examples.
 [実施例]
 以下、実施例及び比較例を挙げて光学フィルムについて更に具体的に説明するが、本発明は、これらの実施例に何ら限定されるものではない。又、実施例において、特に明記しない限り、「部」及び「%」は重量基準である。
[Example]
Hereinafter, the optical film will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Further, in the examples, unless otherwise specified, "parts" and "%" are based on weight.
 [製造例1]偏光板Aの準備
 厚み100μmのポリビニルアルコールフィルム(PVA)を、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、1.5%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み5μmの偏光子を得た。この偏光子の片面に厚み20μm、弾性率2.5GPaのアクリル系樹脂フィルムを、ポリビニルアルコール系接着剤により貼り合せて偏光板A(厚み:25μm)を得た。
[Production Example 1] Preparation of Polarizing Plate A Polyvinyl alcohol film (PVA) having a thickness of 100 μm is dyed three times in rolls having different speed ratios in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute. Stretched to. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 1.5% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 5 μm. An acrylic resin film having a thickness of 20 μm and an elastic modulus of 2.5 GPa was bonded to one side of the polarizing element with a polyvinyl alcohol-based adhesive to obtain a polarizing plate A (thickness: 25 μm).
 [製造例2]偏光板Bの準備
 厚み40μm、弾性率2.6GPaのアクリル系樹脂フィルムを用いたこと以外は、製造例1と同様にして、偏光板B(厚み:45μm)を得た。
[Production Example 2] Preparation of Polarizing Plate B A polarizing plate B (thickness: 45 μm) was obtained in the same manner as in Production Example 1 except that an acrylic resin film having a thickness of 40 μm and an elastic modulus of 2.6 GPa was used.
 [製造例3]偏光板Cの準備
 偏光子の厚みを28μmとしたこと、偏光子の片面に、けん化処理した厚み40μm、弾性率3.6GPaのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み30μm、弾性率2.6GPaのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せたこと以外は、製造例1と同様にして、偏光板C(厚み:98μm)を得た。
[Production Example 3] Preparation of Polarizing Plate C A triacetyl cellulose film (TAC) having a thickness of 28 μm and having a saponified thickness of 40 μm and an elasticity of 3.6 GPa is applied to one side of the polarizer. A polarizing plate C (thickness: 98 μm) was obtained in the same manner as in Production Example 1 except that an acrylic resin film having a thickness of 30 μm and an elasticity of 2.6 GPa was bonded to each other with a polyvinyl alcohol-based adhesive. ..
 [製造例4]偏光板Dの準備
 偏光子の厚みを18μmとしたこと、偏光子の片面に、けん化処理した厚み40μm、弾性率3.6GPaのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み30μm、弾性率2.6GPaのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せたこと以外は、製造例1と同様にして、偏光板D(厚み:88μm)を得た。
[Production Example 4] Preparation of Polarizing Plate D A triacetyl cellulose film (TAC) having a thickness of 18 μm and having a saponified thickness of 40 μm and an elasticity of 3.6 GPa is applied to one side of the polarizer. A polarizing plate D (thickness: 88 μm) was obtained in the same manner as in Production Example 1 except that an acrylic resin film having a thickness of 30 μm and an elasticity of 2.6 GPa was bonded to each other with a polyvinyl alcohol-based adhesive. ..
 [製造例5]粘着剤の準備
 (アクリル系ポリマーの調製)
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた四つ口フラスコに、ブチルアクリレート100重量部、アクリル酸5重量部及び2-ヒドロキシエチルアクリレート0.075重量部、重合開始剤として2,2'-アゾビスイソブチロニトリル0.2重量部、重合溶媒として酢酸エチル200重量部を仕込み、十分に窒素置換した後、窒素気流下で撹拌しながらフラスコ内の液温を55℃付近に保って10時間重合反応を行い、アクリル系ポリマー溶液を調製した。上記アクリル系ポリマーの重量平均分子量は220万であった。
[Production Example 5] Preparation of adhesive (preparation of acrylic polymer)
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler, 100 parts by weight of butyl acrylate, 5 parts by weight of acrylic acid and 0.075 parts by weight of 2-hydroxyethyl acrylate, and 2 as a polymerization initiator. , 2'-Azobisisobutyronitrile 0.2 parts by weight and ethyl acetate 200 parts by weight as a polymerization solvent were charged, and after sufficient nitrogen substitution, the liquid temperature in the flask was adjusted to around 55 ° C. while stirring under a nitrogen stream. The polymerization reaction was carried out for 10 hours to prepare an acrylic polymer solution. The weight average molecular weight of the acrylic polymer was 2.2 million.
 (粘着剤組成物の調製)
 上記アクリル系ポリマー溶液の固形分100重量部に、過酸化物としてジベンゾイルパーオキシド(ナイパーBMT、日本油脂社製)0.2重量部、エポキシ系架橋剤としてジグリシジルアミノメチルシクロへキサン(三菱瓦斯化学社製、テトラッドC)0.05重量部、イソシアネート系架橋剤としてトリメチロールプロパン/トリレンジイソシアネートのアダクト体(日本ポリウレタン工業社製、コロネートL)0.1重量部と、シランカップリング剤(信越化学工業社製、KBM403)0.075重量部を、均一に混合撹拌して、アクリル系粘着剤(固形分10.9重量%)を調製した。
(Preparation of adhesive composition)
Dibenzoyl peroxide (Niper BMT, manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.2 parts by weight as a peroxide in 100 parts by weight of the solid content of the acrylic polymer solution, and diglycidylaminomethylcyclohexane (Mitsubishi) as an epoxy-based cross-linking agent. 0.05 parts by weight of Tetrad C) manufactured by Gas Chemicals, 0.1 parts by weight of trimethylolpropane / tolylene diisocyanate adduct (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) as an isocyanate-based cross-linking agent, and a silane coupling agent. (KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.075 parts by weight were uniformly mixed and stirred to prepare an acrylic pressure-sensitive adhesive (solid content 10.9% by weight).
 [製造例6]接着剤の準備
 (エポキシ系接着剤の準備)
 セロキサイド2021P(ダイセル化学工業社製)70重量部、EHPE3150を5重量部、アロンオキセタンOXT-221(東亜合成社製)19重量部、KBM-403(信越化学工業社製)を4重量部、CPI101A(サンアフロ社製)を2重量部配合しエポキシ系接着剤を準備した。
[Manufacturing Example 6] Preparation of Adhesive (Preparation of Epoxy Adhesive)
Celoxide 2021P (manufactured by Daicel Chemical Industries) 70 parts by weight, EHPE3150 5 parts by weight, Aron Oxetane OXT-221 (manufactured by Toagosei) 19 parts by weight, KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts by weight, CPI101A (Manufactured by San Afro) was blended in 2 parts by weight to prepare an epoxy adhesive.
 〈実施例1、2、比較例1、2〉
 [実施例1]
 (光学フィルムAの作製)
 297mm×210mmのガラスフィルム(日本電気硝子社製、商品名「OA-10G」、厚み:100μm)と、製造例1で作製した287mm×200mmの偏光板Aとを、製造例6で調製した接着剤から構成される接着剤層を介して、貼り合わせた。このとき、偏光板Aは、アクリル系フィルムがガラスフィルム側になるようにして配置した。次に、高圧水銀ランプにより接着剤層に紫外線を照射(500mJ/cm)して接着剤層を硬化させた。接着剤層は厚み2μm、弾性率は、1.8GPaとした。
<Examples 1 and 2, Comparative Examples 1 and 2>
[Example 1]
(Preparation of optical film A)
Adhesion of a 297 mm × 210 mm glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name “OA-10G”, thickness: 100 μm) and a 287 mm × 200 mm polarizing plate A produced in Production Example 1 prepared in Production Example 6. They were bonded together via an adhesive layer composed of the agent. At this time, the polarizing plate A was arranged so that the acrylic film was on the glass film side. Next, the adhesive layer was irradiated with ultraviolet rays (500 mJ / cm 2 ) by a high-pressure mercury lamp to cure the adhesive layer. The adhesive layer had a thickness of 2 μm and an elastic modulus of 1.8 GPa.
 次に、光学フィルムAの偏光板Aに対してガラスフィルムとは反対側の面に、製造例5で調製した粘着剤から構成される粘着剤層(厚み:30μm)を形成し、光学フィルムAを得た。なお、この粘着剤層は、以下のようにして形成した。(i)シリコーン処理したポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム社製、厚み:38μm)上に塗布し、155℃で1分間加熱して、乾燥後の厚みが30μmの粘着剤層を形成し、(ii)当該粘着剤層を、ポリエチレンテレフタレートフィルムから、偏光板Aに転写して、粘着剤層を形成した。 Next, an adhesive layer (thickness: 30 μm) composed of the adhesive prepared in Production Example 5 is formed on the surface of the optical film A opposite to the glass film with respect to the polarizing plate A, and the optical film A is formed. Got The pressure-sensitive adhesive layer was formed as follows. (I) A silicone-treated polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 μm) was applied and heated at 155 ° C. for 1 minute to form an adhesive layer having a thickness of 30 μm after drying. ii) The pressure-sensitive adhesive layer was transferred from a polyethylene terephthalate film to a polarizing plate A to form a pressure-sensitive adhesive layer.
 [実施例2]
 製造例1で作製した偏光板Aに代えて製造例2で作製した偏光板Bを用いた以外は、実施例1と同様にして、光学フィルムBを作製した。
[Example 2]
An optical film B was produced in the same manner as in Example 1 except that the polarizing plate B produced in Production Example 2 was used instead of the polarizing plate A produced in Production Example 1.
 [比較例1]
 製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用いた以外は、実施例1と同様にして、光学フィルムCを作製した。なお、偏光板Dは、トリアセチルセルロースフィルムがガラスフィルム側になるようにして配置した。
[Comparative Example 1]
An optical film C was produced in the same manner as in Example 1 except that the polarizing plate C produced in Production Example 3 was used instead of the polarizing plate A produced in Production Example 1. The polarizing plate D was arranged so that the triacetyl cellulose film was on the glass film side.
 [比較例2]
 製造例1で作製した偏光板Aに代えて製造例4で作製した偏光板Dを用いた以外は、実施例1と同様にして、光学フィルムCを作製した。なお、偏光板Dは、トリアセチルセルロースフィルムがガラスフィルム側になるようにして配置した。
[Comparative Example 2]
An optical film C was produced in the same manner as in Example 1 except that the polarizing plate D produced in Production Example 4 was used instead of the polarizing plate A produced in Production Example 1. The polarizing plate D was arranged so that the triacetyl cellulose film was on the glass film side.
 (評価1)
 実施例1で得られた光学フィルムAについて、ひずみ量の測定等を実施した。以下、具体的に示す。
(Evaluation 1)
The strain amount of the optical film A obtained in Example 1 was measured. The details will be shown below.
 光学フィルムAのガラスフィルムの端部にダイヤモンドカッターを用いてガラスクラックを入れた。そして、350×250mm×1.0mm厚の無アルカリガラス(コーニング社製、商品名「EG-XG」)を準備し、100mm角に加工した光学フィルムAを、粘着剤層を無アルカリガラス側に向けて、無アルカリガラスに貼合した。そして、ガラスクラックを光学フィルムAの偏光板の端部より内側まで伸長させ、クラックの長さが20μm以上となるようにした。 A glass crack was made at the end of the glass film of the optical film A using a diamond cutter. Then, 350 × 250 mm × 1.0 mm thick non-alkali glass (manufactured by Corning Inc., trade name “EG-XG”) was prepared, and the optical film A processed into 100 mm square was placed on the non-alkali glass side with the adhesive layer. It was affixed to non-alkali glass. Then, the glass crack was extended from the end of the polarizing plate of the optical film A to the inside so that the length of the crack was 20 μm or more.
 次に、50℃、0.5MPaで15分間オートクレーブ処理して、光学フィルムAの粘着剤層を無アルカリガラスに密着させた。そして、恒温恒湿試験に投入する前に、目視確認でクラック端のマーキングを実施し、評価用サンプルAを得た。 Next, an autoclave treatment was performed at 50 ° C. and 0.5 MPa for 15 minutes to bring the adhesive layer of the optical film A into close contact with the non-alkali glass. Then, the crack end was marked by visual confirmation before being put into the constant temperature and humidity test to obtain a sample A for evaluation.
 次に、図3に示すように、無アルカリガラス100に貼合した評価用サンプルAにひずみゲージ120(FLA-3-11-3LJCT、東京測器研究所社製)を、シアノアクリレート系接着剤(アロンアルファ、東亜合成社製)で貼り付けた。なお、ひずみゲージ120は、評価用サンプルAの1つのコーナーからX方向に15mm、Y方向に15mm内側の位置に、ひずみゲージ120の中心が来るように貼り付けた。この際、ひずみゲージ120の測定軸(ゲージの長辺方向)が、評価用サンプルAの吸収軸方向と平行になるようにして、偏光板吸収軸方向と直交する方向のひずみ量も計測できるようにした。 Next, as shown in FIG. 3, a strain gauge 120 (FLA-3-11-3LJCT, manufactured by Tokyo Sokki Kenkyusho Co., Ltd.) was applied to the evaluation sample A bonded to the non-alkali glass 100, and a cyanoacrylate adhesive was applied. (Aron Alpha, manufactured by Toagosei Co., Ltd.) The strain gauge 120 was attached so that the center of the strain gauge 120 was located 15 mm in the X direction and 15 mm in the Y direction from one corner of the evaluation sample A. At this time, the measurement axis of the strain gauge 120 (the long side direction of the gauge) is made parallel to the absorption axis direction of the evaluation sample A so that the amount of strain in the direction orthogonal to the polarizing plate absorption axis direction can also be measured. I made it.
 ひずみゲージ120のリード線をデータロガー(TDS-530、東京測器研究所社製)に接続し、室温(23℃)下でのひずみ量を0μεに調整した後、ひずみゲージ120を貼り付けた評価用サンプルAを恒温恒湿試験(温度60℃湿度90%)に15分間投入した。そして、その間のひずみ量を15sec毎に計測し、200sec時点(中間点)のひずみ量を読み取って、評価用サンプルAのひずみ量とした。又、ひずみ量の差を、(MD方向のひずみ量 ― TD方向のひずみ量)の絶対値により算出した。又、拡大鏡を用いて目視でクラック伸長の判定を行った。 The lead wire of the strain gauge 120 was connected to a data logger (TDS-530, manufactured by Tokyo Sokki Kenkyusho Co., Ltd.), the strain amount at room temperature (23 ° C.) was adjusted to 0 με, and then the strain gauge 120 was attached. The evaluation sample A was put into a constant temperature and humidity test (temperature 60 ° C. and humidity 90%) for 15 minutes. Then, the strain amount during that period was measured every 15 sec, and the strain amount at the time of 200 sec (intermediate point) was read and used as the strain amount of the evaluation sample A. Further, the difference in the amount of strain was calculated by the absolute value of (the amount of strain in the MD direction-the amount of strain in the TD direction). In addition, the crack elongation was visually determined using a magnifying glass.
 判定基準は、◎:マーキングを実施したクラック端が伸長していない(合格)、〇:マーキングを実施したクラック端の伸長が0mmより大きく10mm以下でマーキングしたクラックの内伸長したものが50%以下(合格)、△:マーキングを実施したクラック端の伸長が0mmより大きく10mm以下でマーキングしたクラックの内伸長したものが50~75%(合格)、×:マーキングを実施したクラック端の伸長が10mmより大きい(不合格)、である。 Judgment criteria are: ⊚: Marked crack ends are not elongated (pass), 〇: Marked crack edges are greater than 0 mm and 10 mm or less, and 50% or less of the marked cracks are elongated. (Pass), Δ: The elongation of the marked crack end is larger than 0 mm and 10 mm or less, and 50 to 75% of the marked cracks are elongated (Pass), ×: The extension of the marked crack end is 10 mm. Greater (failed).
 実施例2で得られた光学フィルムB、比較例1で得られた光学フィルムC、及び比較例2で得られた光学フィルムDについて、光学フィルムAと同様にして評価用サンプルB~Dを作製し、評価用サンプルAと同様にして、ひずみ量の計測、ひずみ量の差の算出、目視でクラック伸長の判定を行った。各評価用サンプルの構成と共に、評価結果を図4に示す。 For the optical film B obtained in Example 2, the optical film C obtained in Comparative Example 1, and the optical film D obtained in Comparative Example 2, evaluation samples B to D were prepared in the same manner as in the optical film A. Then, in the same manner as in the evaluation sample A, the strain amount was measured, the strain amount difference was calculated, and the crack elongation was visually determined. The evaluation results are shown in FIG. 4 together with the configuration of each evaluation sample.
 図4より、偏光子の厚みを薄くすることで、温度60℃湿度90%の恒温恒湿環境下における偏光板のMD方向のひずみ量とTD方向のひずみ量の差の絶対値:|MD-TD|の値を小さくできることがわかる。そして、偏光板は、温度60℃湿度90%の恒温恒湿環境下における|MD-TD|の値が0以上40×10-6以下であることが好ましく、この範囲であれば、ガラスフィルムのクラックの伸長が抑制できるといえる。又、実施例2の結果より、偏光板は、温度60℃湿度90%の恒温恒湿環境下における|MD-TD|の値が0以上10×10-6以下であることがより好ましく、この範囲であれば、ガラスフィルムのクラックの伸長が更に抑制できるといえる。 From FIG. 4, by reducing the thickness of the polarizer, the absolute value of the difference between the strain amount in the MD direction and the strain amount in the TD direction of the polarizing plate in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90%: | MD- It can be seen that the value of TD | can be reduced. The polarizing plate preferably has a value of | MD-TD | in a constant temperature and humidity environment of 60 ° C. and 90% humidity of 0 or more and 40 × 10-6 or less. It can be said that the growth of cracks can be suppressed. Further, from the results of Example 2, it is more preferable that the value of | MD-TD | in the polarizing plate in a constant temperature and humidity environment of 60 ° C. and 90% humidity is 0 or more and 10 × 10-6 or less. If it is within the range, it can be said that the elongation of cracks in the glass film can be further suppressed.
 〈実施例3~5、比較例3〉
 [実施例3]
 実施例1と同様にして、光学フィルムEを得た。
<Examples 3 to 5, Comparative Example 3>
[Example 3]
An optical film E was obtained in the same manner as in Example 1.
 [実施例4]
 実施例2と同様にして、光学フィルムFを得た。
[Example 4]
An optical film F was obtained in the same manner as in Example 2.
 [実施例5]
 製造例1で作製した偏光板Aに代えて製造例4で作製した偏光板Dを用いた以外は、実施例1と同様にして、光学フィルムGを作製した。なお、偏光板Dは、トリアセチルセルロースフィルムがガラスフィルム側になるようにして配置した。
[Example 5]
An optical film G was produced in the same manner as in Example 1 except that the polarizing plate D produced in Production Example 4 was used instead of the polarizing plate A produced in Production Example 1. The polarizing plate D was arranged so that the triacetyl cellulose film was on the glass film side.
 [比較例3]
 比較例2と同様にして、光学フィルムHを得た。
[Comparative Example 3]
An optical film H was obtained in the same manner as in Comparative Example 2.
 (評価2)
 実施例3で得られた光学フィルムE、実施例4で得られた光学フィルムF、実施例5で得られた光学フィルムG、及び比較例3で得られた光学フィルムHについて、ひずみ量の測定等を実施した。以下、具体的に示す。
(Evaluation 2)
Measurement of strain amount of the optical film E obtained in Example 3, the optical film F obtained in Example 4, the optical film G obtained in Example 5, and the optical film H obtained in Comparative Example 3. Etc. were carried out. The details will be shown below.
 評価用サンプルAと同様にして、長さが20μm以上のクラックを有する評価用サンプルE(実施例3)、評価用サンプルF(実施例4)、評価用サンプルG(実施例5)、及び評価用サンプルH(比較例3)を作製した。そして、試験条件を恒温恒湿試験(温度60℃湿度90%)から加熱環境試験(温度80℃)に変更した以外は、評価1と同様にして、評価用サンプルE~Hについて、ひずみ量の計測、ひずみ量の差の算出、目視でクラック伸長の判定を行った。各評価用サンプルの構成と共に、評価結果を図5に示す。 Evaluation sample E (Example 3), evaluation sample F (Example 4), evaluation sample G (Example 5), and evaluation having cracks having a length of 20 μm or more in the same manner as the evaluation sample A. Sample H (Comparative Example 3) was prepared. Then, in the same manner as in Evaluation 1, the strain amount of the evaluation samples E to H was changed, except that the test conditions were changed from the constant temperature and humidity test (temperature 60 ° C. and humidity 90%) to the heating environment test (temperature 80 ° C.). The crack elongation was visually determined by measurement, calculation of the difference in strain amount. The evaluation results are shown in FIG. 5 together with the configuration of each evaluation sample.
 図5より、偏光子の厚みを薄くすることで、温度80℃の加熱環境下における偏光板のMD方向のひずみ量とTD方向のひずみ量の差の絶対値:|MD-TD|の値を小さくできることがわかる。そして、偏光板は、温度80℃の加熱環境下における|MD-TD|の値が0以上250×10-6以下であることが好ましく、この範囲であれば、ガラスフィルムのクラックの伸長が抑制できるといえる。 From FIG. 5, by reducing the thickness of the polarizer, the absolute value of the difference between the strain amount in the MD direction and the strain amount in the TD direction of the polarizing plate in a heating environment at a temperature of 80 ° C.: | MD-TD | You can see that it can be made smaller. The polarizing plate preferably has a value of | MD-TD | of 0 or more and 250 × 10-6 or less in a heating environment at a temperature of 80 ° C., and within this range, elongation of cracks in the glass film is suppressed. It can be said that it can be done.
 〈実施例6~8、比較例4、5〉
 [実施例6]
 製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用い、偏光板Cのトリアセチルセルロースフィルム側を製造例6で調製した接着剤から構成される接着剤層(厚み:2μm、弾性率:5.27GPa)を介してガラスフィルムと貼り合わせた以外は、実施例1と同様にして、光学フィルムIを作製した。
<Examples 6 to 8, Comparative Examples 4 and 5>
[Example 6]
An adhesive layer composed of the adhesive prepared in Production Example 6 on the triacetyl cellulose film side of the polarizing plate C by using the polarizing plate C produced in Production Example 3 instead of the polarizing plate A produced in Production Example 1 ( An optical film I was produced in the same manner as in Example 1 except that it was bonded to a glass film via a thickness: 2 μm and an elastic coefficient: 5.27 GPa).
 [実施例7]
 製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用い、偏光板Cのトリアセチルセルロースフィルム側を製造例5で調製した粘着剤から構成される粘着剤層(厚み:20μm、弾性率:0.12GPa)を介してガラスフィルムと貼り合わせた以外は、実施例1と同様にして、光学フィルムJを作製した。
[Example 7]
A pressure-sensitive adhesive layer composed of the pressure-sensitive adhesive prepared in Production Example 5 on the triacetyl cellulose film side of the polarizing plate C using the polarizing plate C produced in Production Example 3 in place of the polarizing plate A produced in Production Example 1 ( An optical film J was produced in the same manner as in Example 1 except that it was bonded to a glass film via a thickness: 20 μm and an elastic coefficient: 0.12 GPa).
 [実施例8]
 製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用い、偏光板Cのトリアセチルセルロースフィルム側を製造例5で調製した粘着剤から構成される粘着剤層(厚み:250μm、弾性率:0.14GPa)を介してガラスフィルムと貼り合わせた以外は、実施例1と同様にして、光学フィルムKを作製した。
[Example 8]
A pressure-sensitive adhesive layer composed of the pressure-sensitive adhesive prepared in Production Example 5 on the triacetyl cellulose film side of the polarizing plate C using the polarizing plate C produced in Production Example 3 in place of the polarizing plate A produced in Production Example 1 ( An optical film K was produced in the same manner as in Example 1 except that it was bonded to a glass film via a thickness (thickness: 250 μm, elastic coefficient: 0.14 GPa).
 [比較例4]
 製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用い、偏光板Cのトリアセチルセルロースフィルム側を製造例6で調製した接着剤から構成される接着剤層(厚み:2μm、弾性率:5.78GPa)を介してガラスフィルムと貼り合わせた以外は、実施例1と同様にして、光学フィルムLを作製した。
[Comparative Example 4]
An adhesive layer composed of the adhesive prepared in Production Example 6 on the triacetyl cellulose film side of the polarizing plate C by using the polarizing plate C produced in Production Example 3 instead of the polarizing plate A produced in Production Example 1 ( An optical film L was produced in the same manner as in Example 1 except that it was bonded to a glass film via a thickness: 2 μm and an elastic coefficient: 5.78 GPa).
 [比較例5]
 製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用い、偏光板Cのトリアセチルセルロースフィルム側を製造例6で調製した接着剤から構成される接着剤層(厚み:2μm、弾性率:6.58GPa)を介してガラスフィルムと貼り合わせた以外は、実施例1と同様にして、光学フィルムMを作製した。
[Comparative Example 5]
An adhesive layer composed of the adhesive prepared in Production Example 6 on the triacetyl cellulose film side of the polarizing plate C by using the polarizing plate C produced in Production Example 3 instead of the polarizing plate A produced in Production Example 1 ( An optical film M was produced in the same manner as in Example 1 except that it was bonded to a glass film via a thickness: 2 μm and an elastic coefficient: 6.58 GPa).
 (評価3)
 実施例6で得られた光学フィルムI、実施例7で得られた光学フィルムJ、実施例8で得られた光学フィルムK、比較例4で得られた光学フィルムL、及び比較例5で得られた光学フィルムMについて、評価1と同様にして、目視でクラック伸長の判定を行った。以下、具体的に示す。
(Evaluation 3)
The optical film I obtained in Example 6, the optical film J obtained in Example 7, the optical film K obtained in Example 8, the optical film L obtained in Comparative Example 4, and the optical film L obtained in Comparative Example 5. With respect to the obtained optical film M, crack elongation was visually determined in the same manner as in Evaluation 1. The details will be shown below.
 評価用サンプルAと同様にして、長さが20μm以上のクラックを有する評価用サンプルI(実施例6)、評価用サンプルJ(実施例7)、評価用サンプルK(実施例8)、評価用サンプルL(比較例4)、及び評価用サンプルM(比較例5)を作製した。 Similar to the evaluation sample A, the evaluation sample I (Example 6), the evaluation sample J (Example 7), the evaluation sample K (Example 8), and the evaluation sample having cracks having a length of 20 μm or more. Sample L (Comparative Example 4) and Evaluation Sample M (Comparative Example 5) were prepared.
 次に、評価用サンプルIを恒温恒湿試験(温度60℃湿度90%)に15分間投入した後、取り出し直後に目視でクラック伸長の判定を行った。各評価用サンプルの構成と共に、評価結果を図6に示す。なお、図6に示す弾性率は、25℃における弾性率である。 Next, after the evaluation sample I was put into a constant temperature and humidity test (temperature 60 ° C. and humidity 90%) for 15 minutes, crack elongation was visually judged immediately after taking out. The evaluation results are shown in FIG. 6 together with the configuration of each evaluation sample. The elastic modulus shown in FIG. 6 is the elastic modulus at 25 ° C.
 図6において、偏光子の厚みは何れも28μmである。従って、図4及び図5の結果を参照すると、|MD-TD|は、温度60℃湿度90%の恒温恒湿環境下や温度80℃の加熱環境下においてガラスフィルムのクラックが伸長する値になっていると思われる。 In FIG. 6, the thickness of each of the polarizers is 28 μm. Therefore, referring to the results of FIGS. 4 and 5, | MD-TD | has a value at which cracks in the glass film grow in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90% or in a heating environment at a temperature of 80 ° C. It seems that it has become.
 しかしながら、図6の結果から、このような場合でも、ガラスフィルムと偏光板とを貼り合わせる粘着剤層又は接着剤層の25℃における弾性率が1.0×10Pa以上5.5×10Pa以下であれば、ガラスフィルムのクラックの伸長が抑制できるといえる。又、ガラスフィルムと偏光板とを貼り合わせる粘着剤層又は接着剤層の25℃における弾性率が1.0×10Pa以上1.0×10Pa以下であれば、ガラスフィルムのクラックの伸長が一層抑制できるといえる。 However, from the results of FIG. 6, even in such a case, the elastic modulus of the pressure-sensitive adhesive layer or the adhesive layer for bonding the glass film and the polarizing plate at 25 ° C. is 1.0 × 10 5 Pa or more and 5.5 × 10. If it is 6 Pa or less, it can be said that the elongation of cracks in the glass film can be suppressed. If the elastic modulus of the pressure-sensitive adhesive layer or the adhesive layer that adheres the glass film and the polarizing plate at 25 ° C. is 1.0 × 10 5 Pa or more and 1.0 × 10 6 Pa or less, the cracks in the glass film It can be said that the elongation can be further suppressed.
 特に、ガラスフィルムと偏光板との貼り合わせに厚み20μm以上の粘着剤層を用いると、25℃における弾性率を1.0×10Paに近い値とすることができ、ガラスフィルムのクラックの伸長が一層抑制できる。なお、光学フィルム10をロールツーロールプロセスで製造する際の取り扱い性の観点から、粘着剤層の厚みは500μm以下であることが好ましい。 In particular, the use of more than the thickness 20μm of the pressure-sensitive adhesive layer for bonding between the glass film and the polarizing plate may be a value close to the elastic modulus at 25 ° C. to 1.0 × 10 5 Pa, the cracks of the glass film Elongation can be further suppressed. From the viewpoint of handleability when the optical film 10 is manufactured by the roll-to-roll process, the thickness of the pressure-sensitive adhesive layer is preferably 500 μm or less.
 以上の実施例及び比較例の結果をまとめると、ガラスフィルムのクラックの伸長を抑制するには、以下の要件を満たすことが好ましいといえる。 Summarizing the results of the above Examples and Comparative Examples, it can be said that it is preferable to satisfy the following requirements in order to suppress the elongation of cracks in the glass film.
 すなわち、偏光子の厚みを薄くし、温度60℃湿度90%の恒温恒湿環境下における|MD-TD|を0以上40×10-6以下とすることが好ましく、温度80℃の加熱環境試験下における|MD-TD|を0以上250×10-6以下とすることが好ましい。 That is, it is preferable to reduce the thickness of the polarizer and set | MD-TD | to 0 or more and 40 × 10-6 or less in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90%, and a heating environment test at a temperature of 80 ° C. It is preferable that | MD-TD | below is 0 or more and 250 × 10-6 or less.
 又、ガラスフィルムのクラックの伸長を抑制するために、偏光子の厚みを薄くして|MD-TD|を所定範囲とする対策に代えて、粘着剤層又は接着剤層の特性を選択することにより対策することも可能である。具体的には、ガラスフィルムと偏光子とを貼り合わせる粘着剤層又は接着剤層の25℃における弾性率を、1.0×10Pa以上5.5×10Pa以下とすることが好ましく、1.0×10Pa以上1.0×10Pa以下とすることがより好ましい。特に、ガラスフィルムと偏光板との貼り合わせに厚み20μm以上の粘着剤層を用いると、25℃における弾性率を極めて低い値にできる点で好適である。 Further, in order to suppress the elongation of cracks in the glass film, the characteristics of the pressure-sensitive adhesive layer or the adhesive layer should be selected instead of the measures of reducing the thickness of the polarizer and setting | MD-TD | in the predetermined range. It is also possible to take measures by. Specifically, the elastic modulus of the pressure-sensitive adhesive layer or the adhesive layer for bonding the glass film and the polarizer at 25 ° C. is preferably 1.0 × 10 5 Pa or more and 5.5 × 10 6 Pa or less. , 1.0 × 10 5 Pa or more, more preferably 1.0 × 10 6 Pa or less. In particular, when an adhesive layer having a thickness of 20 μm or more is used for bonding the glass film and the polarizing plate, it is preferable in that the elastic modulus at 25 ° C. can be made extremely low.
 又、ガラスフィルムのクラックの伸長を抑制するために、偏光子の厚みを薄くして|MD-TD|を所定範囲とする対策と、粘着剤層又は接着剤層の特性を選択して25℃における弾性率を所定範囲とする対策とを併用することも可能である。 Further, in order to suppress the elongation of cracks in the glass film, measures are taken to reduce the thickness of the polarizing element so that | MD-TD | is within a predetermined range, and the characteristics of the pressure-sensitive adhesive layer or the adhesive layer are selected at 25 ° C. It is also possible to use in combination with a measure that sets the elastic modulus in the predetermined range.
 以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。 Although the preferred embodiments and the like have been described in detail above, they are not limited to the above-described embodiments and the like, and various modifications and substitutions are made to the above-mentioned embodiments and the like without departing from the scope of claims. Can be added.
 本国際出願は2019年9月27日に出願した日本国特許出願2019-177234号に基づく優先権を主張するものであり、日本国特許出願2019-177234号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2019-177234 filed on September 27, 2019, and the entire contents of Japanese Patent Application No. 2019-177234 are incorporated into this international application. ..
 10、10A 光学フィルム
 11 ガラスフィルム
 12 接着剤層
 13 偏光板
 14、15 粘着剤層
 131 偏光子
 132 保護フィルム
10, 10A Optical film 11 Glass film 12 Adhesive layer 13 Polarizing plate 14, 15 Adhesive layer 131 Polarizer 132 Protective film

Claims (9)

  1.  ガラスフィルムと、偏光板と、を含み、
     前記ガラスフィルムの厚みは、50μm以上150μm以下であり、
     前記ガラスフィルムの端部に、長さ20μm以上のクラックを有し、
     前記偏光板は、偏光子と、前記偏光子の少なくとも一方の面に配置された保護フィルムと、を有し、
     前記偏光板は、温度60℃湿度90%の恒温恒湿環境下におけるMD方向のひずみ量とTD方向のひずみ量の差の絶対値が0以上40×10-6以下であることを特徴とする光学フィルム。
    Including a glass film and a polarizing plate,
    The thickness of the glass film is 50 μm or more and 150 μm or less.
    A crack having a length of 20 μm or more is provided at the end of the glass film.
    The polarizing plate has a polarizing element and a protective film arranged on at least one surface of the polarizing element.
    The polarizing plate is characterized in that the absolute value of the difference between the strain amount in the MD direction and the strain amount in the TD direction in a constant temperature and humidity environment at a temperature of 60 ° C. and a humidity of 90% is 0 or more and 40 × 10-6 or less. Optical film.
  2.  前記偏光板は、温度80℃の加熱環境試験下におけるMD方向のひずみ量とTD方向のひずみ量の差の絶対値が0以上250×10-6以下であることを特徴とする請求項1に記載の光学フィルム。 The polarizing plate is characterized in that the absolute value of the difference between the strain amount in the MD direction and the strain amount in the TD direction under a heating environment test at a temperature of 80 ° C. is 0 or more and 250 × 10-6 or less. The optical film described.
  3.  前記ガラスフィルム、前記保護フィルム、前記偏光子が、この順に積層され、
     前記ガラスフィルムと前記保護フィルムは、接着剤層又は粘着剤層を介して積層されていることを特徴とする請求項1又は2に記載の光学フィルム。
    The glass film, the protective film, and the polarizer are laminated in this order.
    The optical film according to claim 1 or 2, wherein the glass film and the protective film are laminated via an adhesive layer or an adhesive layer.
  4.  前記接着剤層及び前記粘着剤層の25℃における弾性率は、1.0×10Pa以上5.5×10Pa以下であること特徴とする請求項3に記載の光学フィルム。 The optical film according to claim 3, wherein the adhesive layer and the elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. are 1.0 × 10 5 Pa or more and 5.5 × 10 6 Pa or less.
  5.  前記接着剤層及び前記粘着剤層の25℃における弾性率は、1.0×10Pa以上1.0×10Pa以下であること特徴とする請求項4に記載の光学フィルム。 The optical film according to claim 4, wherein the adhesive layer and the elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. are 1.0 × 10 5 Pa or more and 1.0 × 10 6 Pa or less.
  6.  前記接着剤層及び前記粘着剤層の厚みが500μm以下であることを特徴とする請求項3乃至5の何れか一項に記載の光学フィルム。 The optical film according to any one of claims 3 to 5, wherein the thickness of the adhesive layer and the pressure-sensitive adhesive layer is 500 μm or less.
  7.  ガラスフィルムと、偏光板と、を含み、
     前記ガラスフィルムと偏光板とは、粘着剤層を介して積層されており、
     前記ガラスフィルムの厚みは、50μm以上150μm以下であり、
     前記ガラスフィルムの端部に、長さ20μm以上のクラックを有し、
     前記粘着剤層の厚みは、20μm以上500μm以下であることを特徴とする光学フィルム。
    Including a glass film and a polarizing plate,
    The glass film and the polarizing plate are laminated via an adhesive layer, and are laminated.
    The thickness of the glass film is 50 μm or more and 150 μm or less.
    A crack having a length of 20 μm or more is provided at the end of the glass film.
    An optical film having a thickness of the pressure-sensitive adhesive layer of 20 μm or more and 500 μm or less.
  8.  前記粘着剤層の25℃における弾性率は、1.0×10Pa以上5.5×10Pa以下であること特徴とする請求項7に記載の光学フィルム。 The optical film according to claim 7, wherein the elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. is 1.0 × 10 5 Pa or more and 5.5 × 10 6 Pa or less.
  9.  前記粘着剤層の25℃における弾性率は、1.0×10Pa以上1.0×10Pa以下であること特徴とする請求項8に記載の光学フィルム。 The optical film according to claim 8, wherein the elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. is 1.0 × 10 5 Pa or more and 1.0 × 10 6 Pa or less.
PCT/JP2020/035082 2019-09-27 2020-09-16 Optical film WO2021060107A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227009216A KR20220074866A (en) 2019-09-27 2020-09-16 optical film
CN202080066844.XA CN114514452A (en) 2019-09-27 2020-09-16 Optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-177234 2019-09-27
JP2019177234A JP2021056306A (en) 2019-09-27 2019-09-27 Optical film

Publications (1)

Publication Number Publication Date
WO2021060107A1 true WO2021060107A1 (en) 2021-04-01

Family

ID=75166979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035082 WO2021060107A1 (en) 2019-09-27 2020-09-16 Optical film

Country Status (5)

Country Link
JP (1) JP2021056306A (en)
KR (1) KR20220074866A (en)
CN (1) CN114514452A (en)
TW (1) TW202116556A (en)
WO (1) WO2021060107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3936333A4 (en) * 2019-03-06 2022-11-09 Nitto Denko Corporation Sensor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110026A (en) * 2009-02-12 2009-05-21 Nitto Denko Corp Pressure-sensitive adhesive layer for preventing glass breakage of liquid crystal panel
WO2009072357A1 (en) * 2007-12-05 2009-06-11 Nitto Denko Corporation Polarizing plate, liquid crystal panel and liquid crystal display device
JP2014527190A (en) * 2011-07-07 2014-10-09 コーニング インコーポレイテッド Surface flaw deformation for strengthening glass articles
JP2015106045A (en) * 2013-11-29 2015-06-08 株式会社ジャパンディスプレイ Planar display device and manufacturing method of the same
WO2015186685A1 (en) * 2014-06-05 2015-12-10 Dic株式会社 Protective adhesive film, image display device, and portable electronic terminal
JP2016160268A (en) * 2015-02-26 2016-09-05 綜研化学株式会社 Pressure-sensitive adhesive for optical member, and optical laminate
US20190085465A1 (en) * 2017-09-15 2019-03-21 Apple Inc. Multilayer composite including metallic glass and polymer with reduced fatigue
WO2019151091A1 (en) * 2018-01-31 2019-08-08 日東電工株式会社 Optical laminate roll

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208206B2 (en) * 2003-03-10 2007-04-24 Nitto Denko Corporation Glass crack prevention laminate and liquid crystal display device
JP4646294B2 (en) * 2005-01-12 2011-03-09 日東電工株式会社 Glass plate crack prevention film, optical film and display
KR102411234B1 (en) * 2017-10-30 2022-06-22 닛토덴코 가부시키가이샤 Laminate for image display device
KR102039824B1 (en) 2018-01-17 2019-11-01 부경대학교 산학협력단 Production method of high unsaturated fatty acid using marine microalgae

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072357A1 (en) * 2007-12-05 2009-06-11 Nitto Denko Corporation Polarizing plate, liquid crystal panel and liquid crystal display device
JP2009110026A (en) * 2009-02-12 2009-05-21 Nitto Denko Corp Pressure-sensitive adhesive layer for preventing glass breakage of liquid crystal panel
JP2014527190A (en) * 2011-07-07 2014-10-09 コーニング インコーポレイテッド Surface flaw deformation for strengthening glass articles
JP2015106045A (en) * 2013-11-29 2015-06-08 株式会社ジャパンディスプレイ Planar display device and manufacturing method of the same
WO2015186685A1 (en) * 2014-06-05 2015-12-10 Dic株式会社 Protective adhesive film, image display device, and portable electronic terminal
JP2016160268A (en) * 2015-02-26 2016-09-05 綜研化学株式会社 Pressure-sensitive adhesive for optical member, and optical laminate
US20190085465A1 (en) * 2017-09-15 2019-03-21 Apple Inc. Multilayer composite including metallic glass and polymer with reduced fatigue
WO2019151091A1 (en) * 2018-01-31 2019-08-08 日東電工株式会社 Optical laminate roll

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3936333A4 (en) * 2019-03-06 2022-11-09 Nitto Denko Corporation Sensor device

Also Published As

Publication number Publication date
KR20220074866A (en) 2022-06-03
CN114514452A (en) 2022-05-17
TW202116556A (en) 2021-05-01
JP2021056306A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR102530127B1 (en) Laminate for image display devices
WO2020203647A1 (en) Optical film
WO2021060107A1 (en) Optical film
WO2021095516A1 (en) Optical film set and liquid crystal panel
WO2020203128A1 (en) Optical film set and optical layered body
JP7304342B2 (en) Glass film-resin composite
WO2020179376A1 (en) Sensor device
TWI736968B (en) Optical film group and optical laminate
WO2020203124A1 (en) Glass resin layered body production method
WO2023032783A1 (en) Multi-layer structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870409

Country of ref document: EP

Kind code of ref document: A1