WO2021060097A1 - Electrode having cnt-dispersed cmc layer - Google Patents

Electrode having cnt-dispersed cmc layer Download PDF

Info

Publication number
WO2021060097A1
WO2021060097A1 PCT/JP2020/035016 JP2020035016W WO2021060097A1 WO 2021060097 A1 WO2021060097 A1 WO 2021060097A1 JP 2020035016 W JP2020035016 W JP 2020035016W WO 2021060097 A1 WO2021060097 A1 WO 2021060097A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
dispersed
item
cnt
cnts
Prior art date
Application number
PCT/JP2020/035016
Other languages
French (fr)
Japanese (ja)
Inventor
尚▲徳▼ 岩佐
辻 勝巳
圭三 米田
曽我部 敦
淳典 平塚
丈士 田中
仁志 六車
Original Assignee
東洋紡株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 東洋紡株式会社
Priority to JP2021548843A priority Critical patent/JPWO2021060097A1/ja
Publication of WO2021060097A1 publication Critical patent/WO2021060097A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a technique relating to an electrode having a CNT-dispersed CMC layer is disclosed.
  • nanocarbon Since nanocarbon has high electrical conductivity, its application as a conductive material for electron transfer with other substances is progressing. For example, it has been proposed to mix nanocarbon with an ink composed of carbon, a resin, and an organic solvent, print it on a substrate, and use it as an electrode for a biosensor (Patent Document 1).
  • carbon nanotubes which are a type of nanocarbon, are used in sensors for measuring peroxides (Patent Document 2), or are molded into a film together with enzymes and used as electrodes for sensors and fuel cells (Patent Document 2). Patent Document 3).
  • One issue is to provide improved electrodes.
  • CNT carbon nanotubes
  • Item 1 An electrode having a structure in which a layer in which carbon nanotubes are dispersed in carboxymethyl cellulose is formed on a metal substrate.
  • Item 2 Item 2. The electrode according to Item 1, wherein the layer further contains an enzyme.
  • Item 3 Item 2. The electrode according to Item 2, wherein the enzyme is an oxidase.
  • Item 4 Item 3. The electrode according to Item 3, wherein the oxidase is uricase.
  • Item 5 A sensor provided with the electrode according to any one of Items 1 to 4.
  • Item 6 Item 5. The sensor according to Item 5, which is used for detecting hydrogen peroxide.
  • Item 7 Item 6. The sensor according to Item 6, wherein the hydrogen peroxide is derived from uric acid.
  • Item 8 A method for detecting hydrogen peroxide using the electrode according to any one of Items 1 to 4 or the sensor according to Item 5.
  • Item 9 Item 8. The method according to Item 8, wherein the hydrogen peroxide is derived from
  • Hydrogen peroxide can be detected more sensitively.
  • the cyclic voltammogram when uric acid is detected using an electrode having a layer in which a single-walled CNT is dispersed in CMC is shown.
  • the cyclic voltammogram when uric acid is detected using an electrode having a layer in which a single-walled CNT is dispersed in sodium cholicate is shown.
  • the cyclic voltammogram when uric acid is detected using an electrode having a layer in which multi-walled CNTs are dispersed in CMC is shown.
  • the cyclic voltammogram when uric acid is detected using an electrode having a layer in which multi-walled CNTs are dispersed in sodium cholic acid is shown.
  • the electrode preferably has a structure in which a layer in which carbon nanotubes are dispersed in carboxymethyl cellulose is formed on a metal substrate.
  • Carboxymethyl cellulose is commercially available and can be purchased and used.
  • CMC can also be synthesized and used. Methods for synthesizing CMC are known.
  • the CNT may be any of single-walled CNT, double-walled CNT, and multi-walled CNT. Further, the diameter and length of the CNT are also arbitrary and are not particularly limited. In one embodiment, the diameter of the CNT is preferably 0.5 to 50 nm. In one embodiment, the length of the CNTs is preferably 0.1 to 1000 ⁇ m. Commercially available CNTs may be purchased and used, or they may be synthesized and used. Methods for synthesizing CNTs are known.
  • the metal substrate is not particularly limited as long as it can be used as an electrode.
  • the metal electrode is preferably one in which a metal film is fixed to an insulating substrate.
  • the metal film is preferably a metal film selected from the group consisting of gold, platinum, titanium, and carbon. Such metal electrodes are known.
  • the formation of a layer in which CNTs are dispersed in CMC on a metal substrate can be obtained, for example, by dispersing CNTs in a liquid in which CMC is dissolved, dropping the CNTs on the metal substrate, and drying the layers.
  • the solution in which CMC is dissolved can be obtained, for example, by dissolving CMC in a suitable solvent such as water.
  • the concentration of CMC in the solvent is not particularly limited, but can be, for example, 0.01 to 2% (w / v).
  • the amount of CNTs dispersed in the solution in which CMC is dissolved is arbitrary and is not particularly limited, but is, for example, about 0.001 to 1% (w / v).
  • the dispersed state of CNTs is preferably a state in which the CNTs are not bundled and the CNTs form a network having many contacts.
  • the concentration ratio (CNT / CMC) of CNTs and CMCs is 0.1 to 1.0 in the case of single-walled CNTs and 0.5 to 5 in the case of multi-walled CNTs. It is preferably 0.0.
  • the layer in which CNTs are dispersed in the CMC formed on the metal substrate further contains an enzyme.
  • the type of enzyme can be selected according to the purpose and is not particularly limited.
  • preferred enzymes are oxidases such as uricase, glucose oxidase, lactate oxidase, cholesterol oxidase, alcohol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, glycerol oxidase, glycerol-3-phosphate oxidase.
  • the preferred enzyme is uricase.
  • the uricase is preferably from the genus Bacillus or from the genus Candida.
  • the method of incorporating the enzyme into the layer in which the CNTs are dispersed in the CMC is arbitrary.
  • the enzyme can be contained in the layer by dropping the solution in which the enzyme is dissolved onto the layer and drying it. It is also possible to disperse CNTs in a solution in which CMC is dissolved, prepare a solution in which an enzyme is further dissolved, drop the solution on a metal substrate, and dry the solution.
  • the amount of the enzyme contained in the layer is arbitrary and can be set according to the purpose, but can be, for example, 0.1 to 100 U / mm 2 .
  • pH buffers eg phosphate buffers, citrate buffers, and Good buffers
  • sugars sucrose, lactose, etc.
  • salts phosphates, ammonium sulfate, etc.
  • amino acids glycine, alanine, etc.
  • Serin, etc. other enzyme stabilizers
  • the sensor preferably includes the above electrodes.
  • the electrode is usually a working electrode.
  • the sensor preferably further includes a counter electrode and a reference electrode.
  • the configuration of such a sensor is known in the art. Further, the sensor may be provided with a configuration usually provided by a biosensor such as a potentiatory stat and a current detection circuit.
  • Hydrogen peroxide can be detected accurately using the above-mentioned electrode or a sensor equipped with it.
  • Hydrogen peroxide can be any substance, and in one embodiment hydrogen peroxide is preferably derived from uric acid. That is, uric acid in the sample can be detected using the electrode or the sensor. In one embodiment, the uric acid in the sample is oxidized by uricase, and the uric acid in the sample can be detected by detecting the hydrogen peroxide produced at that time.
  • FIG. 1 An electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet in which gold was vapor-deposited on a PET substrate (FIG. 1).
  • FIG. 1 is a PET film
  • “2” is an adhesive sheet
  • "3” is a gold-deposited PET film
  • "4" is a working electrode site. 5 ⁇ L of the aqueous dispersion of any of the following (1) to (4) was added dropwise to the working electrode site and dried.
  • Multi-walled carbon nanotubes (NC7000: Nanocyl) in a 0.05% (w / v) carboxymethyl cellulose aqueous solution (diameter: 10 nm (median), 5 to 15 nm (measurement method: TEM), length: 1.5 ⁇ m ( A solution in which (average) (measurement method: TEM)) is dispersed at 0.1% (w / v).
  • NC7000 Nanocyl
  • FIG. 2 is the single-walled carbon nanotube dispersion liquid of the above (1)
  • FIG. 3 is the single-walled carbon nanotube dispersion liquid of the above (2)
  • FIG. 4 is the multilayer carbon nanotube dispersion liquid of the above (3)
  • FIG. This is the case where the multi-walled carbon nanotube dispersion liquid of 4) is used.
  • Table 1 shows the current value of + 0.4V when sweeping from -0.8V to + 0.8V in this cyclic voltammogram.
  • CNT indicates carbon nanotube
  • CMC indicates carboxymethyl cellulose
  • SC indicates sodium cholic acid
  • uric acid can be detected more sensitively at a lower voltage than when dispersed in sodium cholic acid.
  • the voltage required for detecting uric acid can be lowered, so that uric acid can be detected while avoiding the detection of reducing substances that may be present in the biological sample.

Abstract

An electrode having a structure in which a layer comprising carbon nanotubes dispersed in carboxymethyl cellulose is formed on a metal substrate, and a sensor provided with the electrode in which the aforementioned layer further contains an enzyme are provided.

Description

CNT分散CMC層を有する電極Electrode with CNT-dispersed CMC layer
 CNT分散CMC層を有する電極に関する技術が開示される。 A technique relating to an electrode having a CNT-dispersed CMC layer is disclosed.
 ナノカーボンは電気の伝導率が高いことから他の物質との電子伝達を行う導電材料としての応用が進んでいる。例えばナノカーボンをカーボンと樹脂および有機溶剤からなるインクに混合し基板上に印刷してバイオセンサ用の電極として用いることが提案されている(特許文献1)。また、ナノカーボンの一種であるカーボンナノチューブは過酸化物を測定するセンサに用いられたり(特許文献2)、酵素とともにフィルム状に成形し、センサや燃料電池の電極として用いられたりしている(特許文献3)。 Since nanocarbon has high electrical conductivity, its application as a conductive material for electron transfer with other substances is progressing. For example, it has been proposed to mix nanocarbon with an ink composed of carbon, a resin, and an organic solvent, print it on a substrate, and use it as an electrode for a biosensor (Patent Document 1). In addition, carbon nanotubes, which are a type of nanocarbon, are used in sensors for measuring peroxides (Patent Document 2), or are molded into a film together with enzymes and used as electrodes for sensors and fuel cells (Patent Document 2). Patent Document 3).
WO2005088288WO2005088288 WO2011007582WO2011007582 WO2012002290WO2012002290
 改良された電極を提供することが1つの課題である。 One issue is to provide improved electrodes.
 斯かる課題を解決すべく鋭意研究を重ねた末、カーボンナノチューブ(以下、「CNT」とも称する。)をカルボキシメチルセルロースに分散させることにより、電極の性能が向上することが見出された。斯かる知見に基づき、更なる検討を重ね、下記を包含する発明が提供される。 As a result of intensive research to solve such problems, it was found that the performance of the electrode is improved by dispersing carbon nanotubes (hereinafter, also referred to as "CNT") in carboxymethyl cellulose. Based on such findings, further studies will be conducted, and inventions including the following will be provided.
項1
カルボキシメチルセルロースにカーボンナノチューブが分散した層が金属基板上に形成された構造を有する電極。
項2
該層が更に酵素を含有する、項1に記載の電極。
項3
該酵素がオキシダーゼである、項2に記載の電極。
項4
該オキシダーゼがウリカーゼである、項3に記載の電極。
項5
項1~4のいずれかに記載の電極を備えたセンサ。
項6
過酸化水素検出用である、項5に記載のセンサ。
項7
過酸化水素が尿酸由来である、項6に記載のセンサ。
項8
項1~4のいずれかに記載の電極または項5に記載のセンサを用いて過酸化水素を検出する方法。
項9
過酸化水素が尿酸由来である、項8に記載の方法。
Item 1
An electrode having a structure in which a layer in which carbon nanotubes are dispersed in carboxymethyl cellulose is formed on a metal substrate.
Item 2
Item 2. The electrode according to Item 1, wherein the layer further contains an enzyme.
Item 3
Item 2. The electrode according to Item 2, wherein the enzyme is an oxidase.
Item 4
Item 3. The electrode according to Item 3, wherein the oxidase is uricase.
Item 5
A sensor provided with the electrode according to any one of Items 1 to 4.
Item 6
Item 5. The sensor according to Item 5, which is used for detecting hydrogen peroxide.
Item 7
Item 6. The sensor according to Item 6, wherein the hydrogen peroxide is derived from uric acid.
Item 8
A method for detecting hydrogen peroxide using the electrode according to any one of Items 1 to 4 or the sensor according to Item 5.
Item 9
Item 8. The method according to Item 8, wherein the hydrogen peroxide is derived from uric acid.
 過酸化水素をより感度良く検出することができる。 Hydrogen peroxide can be detected more sensitively.
電極構造の一例を示す。「1」はPETフィルムであり、「2」は粘着シートであり、「3」は金蒸着PETフィルムであり、「4」は作用電極を示す。An example of the electrode structure is shown. "1" is a PET film, "2" is an adhesive sheet, "3" is a gold-deposited PET film, and "4" is a working electrode. 単層CNTをCMCに分散させた層を有する電極を用いて尿酸を検出した場合のサイクリックボルタモグラムを示す。The cyclic voltammogram when uric acid is detected using an electrode having a layer in which a single-walled CNT is dispersed in CMC is shown. 単層CNTをコール酸ナトリウムに分散させた層を有する電極を用いて尿酸を検出した場合のサイクリックボルタモグラムを示す。The cyclic voltammogram when uric acid is detected using an electrode having a layer in which a single-walled CNT is dispersed in sodium cholicate is shown. 多層CNTをCMCに分散させた層を有する電極を用いて尿酸を検出した場合のサイクリックボルタモグラムを示す。The cyclic voltammogram when uric acid is detected using an electrode having a layer in which multi-walled CNTs are dispersed in CMC is shown. 多層CNTをコール酸ナトリウムに分散させた層を有する電極を用いて尿酸を検出した場合のサイクリックボルタモグラムを示す。The cyclic voltammogram when uric acid is detected using an electrode having a layer in which multi-walled CNTs are dispersed in sodium cholic acid is shown.
 電極は、カルボキシメチルセルロースにカーボンナノチューブが分散した層が金属基板上に形成された構造を有することが好ましい。 The electrode preferably has a structure in which a layer in which carbon nanotubes are dispersed in carboxymethyl cellulose is formed on a metal substrate.
 カルボキシメチルセルロースは市販されており、それを購入して使用することができる。また、CMCは合成して使用することもできる。CMCの合成方法は公知である。 Carboxymethyl cellulose is commercially available and can be purchased and used. CMC can also be synthesized and used. Methods for synthesizing CMC are known.
 CNTは、単層CNT、二層CNT、多層CNTのいずれであってもよい。また、CNTの直径及び長さも任意であり、特に制限されない。一実施形態においてCNTの直径は0.5~50nmであることが好ましい。一実施形態において、CNTの長さは0.1~1000μmであることが好ましい。CNTは市販されているものを購入して使用してもよく、合成して使用してもよい。CNTの合成方法は公知である。 The CNT may be any of single-walled CNT, double-walled CNT, and multi-walled CNT. Further, the diameter and length of the CNT are also arbitrary and are not particularly limited. In one embodiment, the diameter of the CNT is preferably 0.5 to 50 nm. In one embodiment, the length of the CNTs is preferably 0.1 to 1000 μm. Commercially available CNTs may be purchased and used, or they may be synthesized and used. Methods for synthesizing CNTs are known.
 金属基板は、電極として用いることができるものであれば特に制限されない。金属電極は、絶縁性基板に金属膜が固定されたものであることが好ましい。金属膜は、金、白金、チタン、及びカーボンから成る群より選択される金属の膜であることが好ましい。このような金属電極は公知である。 The metal substrate is not particularly limited as long as it can be used as an electrode. The metal electrode is preferably one in which a metal film is fixed to an insulating substrate. The metal film is preferably a metal film selected from the group consisting of gold, platinum, titanium, and carbon. Such metal electrodes are known.
 金属基板上にCMCにCNTが分散した層を形成することは、例えば、CMCが溶解した液にCNTを分散させ、それを金属基板上に滴下し、乾燥させることで得ることができる。CMCを溶解させた液は、例えば、CMCを水などの適当な溶媒に溶解することで得ることができる。ここで、溶媒中のCMCの濃度は特に制限されないが、例えば、0.01~2%(w/v)とすることができる。CMCが溶解した液にCNTを分散させる量は任意であり、特に制限されないが、例えば、0.001~1%(w/v)程度である。 The formation of a layer in which CNTs are dispersed in CMC on a metal substrate can be obtained, for example, by dispersing CNTs in a liquid in which CMC is dissolved, dropping the CNTs on the metal substrate, and drying the layers. The solution in which CMC is dissolved can be obtained, for example, by dissolving CMC in a suitable solvent such as water. Here, the concentration of CMC in the solvent is not particularly limited, but can be, for example, 0.01 to 2% (w / v). The amount of CNTs dispersed in the solution in which CMC is dissolved is arbitrary and is not particularly limited, but is, for example, about 0.001 to 1% (w / v).
 CNTの分散状態はCNTが束にならずかつCNT同士が多くの接点を持つネットワークを形成する状態であることが好ましい。このような観点から、一実施形態において、CNTとCMCとの濃度比(CNT/CMC)は単層CNTの場合には0.1~1.0、多層CNTの場合には0.5~5.0であることが好ましい。 The dispersed state of CNTs is preferably a state in which the CNTs are not bundled and the CNTs form a network having many contacts. From this point of view, in one embodiment, the concentration ratio (CNT / CMC) of CNTs and CMCs is 0.1 to 1.0 in the case of single-walled CNTs and 0.5 to 5 in the case of multi-walled CNTs. It is preferably 0.0.
 一実施形態において、金属基板上に形成されるCMCにCNTが分散した層は、更に酵素を含有することが好ましい。酵素の種類は、目的に応じて選択でき、特に制限されない。一実施形態において、好ましい酵素は、オキシダーゼ(例えば、ウリカーゼ、グルコースオキシダーゼ、乳酸オキシダーゼ、コレステロールオキシダーゼ、アルコールオキシダーゼ、ザルコシンオキシダーゼ、フルクトシルアミンオキシダーゼ、ピルビン酸オキシダーゼ、グリセロールオキシダーゼ、グリセロール-3-リン酸オキシダーゼ、コリンオキシダーゼ、キサンチンオキシダーゼ、及びヒドロキシ酪酸デヒドロゲナーゼ等)であり、好適な一実施形態において、好ましい酵素はウリカーゼである。一実施形態において、ウリカーゼとしてはバチルス属由来またはカンジダ属由来のものが好ましい。 In one embodiment, it is preferable that the layer in which CNTs are dispersed in the CMC formed on the metal substrate further contains an enzyme. The type of enzyme can be selected according to the purpose and is not particularly limited. In one embodiment, preferred enzymes are oxidases such as uricase, glucose oxidase, lactate oxidase, cholesterol oxidase, alcohol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, glycerol oxidase, glycerol-3-phosphate oxidase. , Choline oxidase, xanthine oxidase, hydroxybutyric acid dehydrogenase, etc.), and in one preferred embodiment, the preferred enzyme is uricase. In one embodiment, the uricase is preferably from the genus Bacillus or from the genus Candida.
 CMCにCNTが分散した層に酵素を含有させる手法は任意である。例えば、酵素が溶解した液を当該層の上に滴下し、乾燥させることによって、当該層に酵素を含めることができる。また、CMCを溶解させた液にCNTを分散させ、更に酵素を溶解させた液を調製し、それを金属基板上に滴下し、乾燥させることもできる。層に含有させる酵素の量は任意であり、目的に応じて設定できるが、例えば、0.1~100U/mmとすることができる。層にはさらにpH緩衝剤(例えばリン酸緩衝液、クエン酸緩衝液、及びグッド緩衝液等)や糖(ショ糖、乳糖等)、塩(リン酸塩、硫酸アンモニウム等)、アミノ酸(グリシン、アラニン、セリン等))等の酵素安定化剤などを含有させることができる。 The method of incorporating the enzyme into the layer in which the CNTs are dispersed in the CMC is arbitrary. For example, the enzyme can be contained in the layer by dropping the solution in which the enzyme is dissolved onto the layer and drying it. It is also possible to disperse CNTs in a solution in which CMC is dissolved, prepare a solution in which an enzyme is further dissolved, drop the solution on a metal substrate, and dry the solution. The amount of the enzyme contained in the layer is arbitrary and can be set according to the purpose, but can be, for example, 0.1 to 100 U / mm 2 . Further layers include pH buffers (eg phosphate buffers, citrate buffers, and Good buffers), sugars (sucrose, lactose, etc.), salts (phosphates, ammonium sulfate, etc.), amino acids (glycine, alanine, etc.). , Serin, etc.)) and other enzyme stabilizers can be contained.
 センサは上記の電極を備えることが好ましい。上記電極は、通常、作用電極となる。センサは、更に、カウンター電極及び参照電極を備えることが好ましい。このようなセンサの構成は、当該技術分野において公知である。また、センサは、ポテンションスタット及び電流検出回路等のバイオセンサが通常備える構成を備えることができる。 The sensor preferably includes the above electrodes. The electrode is usually a working electrode. The sensor preferably further includes a counter electrode and a reference electrode. The configuration of such a sensor is known in the art. Further, the sensor may be provided with a configuration usually provided by a biosensor such as a potentiatory stat and a current detection circuit.
 上述の電極またはそれを備えたセンサを用いて過酸化水素を精度良く検出することができる。過酸化水素は任意の物質にし得、一実施形態において過酸化水素は尿酸に由来することが好ましい。即ち、当該電極またはセンサを用いて試料中の尿酸を検出することができる。一実施形態において、試料中の尿酸は、ウリカーゼによって酸化され、その際に生成される過酸化水素を検出することにより、試料中の尿酸を検出することができる。 Hydrogen peroxide can be detected accurately using the above-mentioned electrode or a sensor equipped with it. Hydrogen peroxide can be any substance, and in one embodiment hydrogen peroxide is preferably derived from uric acid. That is, uric acid in the sample can be detected using the electrode or the sensor. In one embodiment, the uric acid in the sample is oxidized by uricase, and the uric acid in the sample can be detected by detecting the hydrogen peroxide produced at that time.
 理論によって拘束されるわけではないが、CNTをCMCに分散させることにより、従来に比べて、CNTの分散状態が良くなり、これが感度の良い過酸化水素の検出に寄与すると考えられる。 Although not constrained by theory, it is considered that by dispersing CNTs in CMC, the dispersed state of CNTs is improved as compared with the conventional case, which contributes to the detection of hydrogen peroxide with good sensitivity.
 以下、実施例により本発明についてさらに詳細に説明するが、本発明はこれらに制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
 PET基板に金を蒸着したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した(図1)。図1において、「1」はPETフィルムであり、「2」は粘着シートであり、「3」は金蒸着PETフィルムであり、「4」は作用電極部位を示す。この作用電極部位に下記の(1)~(4)のいずれかの水分散液を5μL滴下し乾燥させた。(1)0.3%(w/v)カルボキシメチルセルロース水溶液に単層カーボンナノチューブ(MEIJO eDIPS EC1.0:(株)名城ナノカーボン)(直径:1.0nm(中央値),0.5~1.5nm(測定法:ラマン分光法(RBM))、長さ:5~10μm)を0.1%(w/v)で分散させた液。
(2)2.0%(w/v)コール酸ナトリウム水溶液に単層カーボンナノチューブ(MEIJO eDIPS EC1.0)を0.1%(w/v)で分散させた液。
(3)0.05%(w/v)カルボキシメチルセルロース水溶液に多層カーボンナノチューブ(NC7000:Nanocyl)(直径:10nm(中央値),5~15nm(測定法:TEM)、長さ:1.5μm(平均)(測定法:TEM))を0.1%(w/v)で分散させた液。
(4)2.0%(w/v)コール酸ナトリウム水溶液に多層カーボンナノチューブ(NC7000)を0.1%(w/v)で分散させた液。
An electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet in which gold was vapor-deposited on a PET substrate (FIG. 1). In FIG. 1, "1" is a PET film, "2" is an adhesive sheet, "3" is a gold-deposited PET film, and "4" is a working electrode site. 5 μL of the aqueous dispersion of any of the following (1) to (4) was added dropwise to the working electrode site and dried. (1) Single-walled carbon nanotubes (MEIJO eDIPS EC1.0: Meijo Nanocarbon Co., Ltd.) in 0.3% (w / v) carboxymethyl cellulose aqueous solution (diameter: 1.0 nm (median), 0.5 to 1) A solution in which 0.5 nm (measurement method: Raman spectroscopy (RBM)), length: 5 to 10 μm) is dispersed at 0.1% (w / v).
(2) A solution in which single-walled carbon nanotubes (MEIJO eDIPS EC1.0) are dispersed in a 2.0% (w / v) sodium cholic acid aqueous solution at 0.1% (w / v).
(3) Multi-walled carbon nanotubes (NC7000: Nanocyl) in a 0.05% (w / v) carboxymethyl cellulose aqueous solution (diameter: 10 nm (median), 5 to 15 nm (measurement method: TEM), length: 1.5 μm ( A solution in which (average) (measurement method: TEM)) is dispersed at 0.1% (w / v).
(4) A solution in which multi-walled carbon nanotubes (NC7000) are dispersed in a 2.0% (w / v) sodium cholic acid aqueous solution at 0.1% (w / v).
 カーボンナノチューブ分散液の乾燥後、作用電極部位に50mMリン酸ナトリウム緩衝液(pH7.4)に溶解したウリカーゼ(東洋紡(株)製;10U/μL)を5μL滴下し乾燥させた。ウリカーゼ液の乾燥後、作用電極部位に1%ナフィオン液を5μL滴下し、乾燥させカーボンナノチューブ及びウリカーゼを作用電極に固定化した。電気化学アナライザー(ALS/CHI 660B、エービーエス(株)社製)の作用極に上記で作製した電極チップ、参照電極に銀/塩化銀電極、対極に白金線をセットした。この3電極を尿酸を含む50mMリン酸ナトリウム緩衝液(pH7.4)に浸漬し、サイクリックボルタンメトリーによる測定を実施した。尿酸濃度を0mM、0.65mM、1.3mM、2.4mMでそれぞれ測定したサイクリックボルタモグラムを図2~図5に示す。図2は、上記(1)の単層カーボンナノチューブ分散液、図3は上記(2)の単層カーボンナノチューブ分散液、図4は上記(3)の多層カーボンナノチューブ分散液、図5は上記(4)の多層カーボンナノチューブ分散液を用いた場合である。 After the carbon nanotube dispersion was dried, 5 μL of uricase (manufactured by Toyobo Co., Ltd .; 10 U / μL) dissolved in 50 mM sodium phosphate buffer (pH 7.4) was added dropwise to the working electrode site and dried. After the uricase solution was dried, 5 μL of 1% nafion solution was added dropwise to the working electrode site, and the solution was dried to immobilize carbon nanotubes and uricase on the working electrode. The electrode tip prepared above was set as the working electrode of the electrochemical analyzer (ALS / CHI 660B, manufactured by ABS Co., Ltd.), the silver / silver chloride electrode was set as the reference electrode, and the platinum wire was set as the counter electrode. These three electrodes were immersed in a 50 mM sodium phosphate buffer solution (pH 7.4) containing uric acid, and measurement was performed by cyclic voltammetry. Cyclic voltamograms in which uric acid concentrations were measured at 0 mM, 0.65 mM, 1.3 mM, and 2.4 mM are shown in FIGS. 2 to 5, respectively. FIG. 2 is the single-walled carbon nanotube dispersion liquid of the above (1), FIG. 3 is the single-walled carbon nanotube dispersion liquid of the above (2), FIG. 4 is the multilayer carbon nanotube dispersion liquid of the above (3), and FIG. This is the case where the multi-walled carbon nanotube dispersion liquid of 4) is used.
 このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.4Vの電流値を下記表1に示す。 Table 1 below shows the current value of + 0.4V when sweeping from -0.8V to + 0.8V in this cyclic voltammogram.
Figure JPOXMLDOC01-appb-T000001
表中、CNTはカーボンナノチューブ、CMCはカルボキシメチルセルロース、SCはコール酸ナトリウムを示す。
Figure JPOXMLDOC01-appb-T000001
In the table, CNT indicates carbon nanotube, CMC indicates carboxymethyl cellulose, and SC indicates sodium cholic acid.
 カーボンナノチューブをカルボキシメチルセルロースに分散させることにより、コール酸ナトリウムに分散させた場合よりも、より低い電圧でより感度良く尿酸を検出できることが確認された。カーボンナノチューブをカルボキシメチルセルロースに分散させることにより、尿酸の検出に必要な電圧を低くすることができるため、生体試料中に存在し得る還元物質の検出を回避しながら尿酸の検出が可能になる。 It was confirmed that by dispersing carbon nanotubes in carboxymethyl cellulose, uric acid can be detected more sensitively at a lower voltage than when dispersed in sodium cholic acid. By dispersing the carbon nanotubes in carboxymethyl cellulose, the voltage required for detecting uric acid can be lowered, so that uric acid can be detected while avoiding the detection of reducing substances that may be present in the biological sample.

Claims (9)

  1. カルボキシメチルセルロースにカーボンナノチューブが分散した層が金属基板上に形成された構造を有する電極。 An electrode having a structure in which a layer in which carbon nanotubes are dispersed in carboxymethyl cellulose is formed on a metal substrate.
  2. 該層が更に酵素を含有する、請求項1に記載の電極。 The electrode according to claim 1, wherein the layer further contains an enzyme.
  3. 該酵素がオキシダーゼである、請求項2に記載の電極。 The electrode according to claim 2, wherein the enzyme is an oxidase.
  4. 該オキシダーゼがウリカーゼである、請求項3に記載の電極。 The electrode according to claim 3, wherein the oxidase is uricase.
  5. 請求項1~4のいずれかに記載の電極を備えたセンサ。 A sensor comprising the electrode according to any one of claims 1 to 4.
  6. 過酸化水素検出用である、請求項5に記載のセンサ。 The sensor according to claim 5, which is for detecting hydrogen peroxide.
  7. 過酸化水素が尿酸由来である、請求項6に記載のセンサ。 The sensor according to claim 6, wherein the hydrogen peroxide is derived from uric acid.
  8. 請求項1~4のいずれかに記載の電極または請求項5に記載のセンサを用いて過酸化水素を検出する方法。 A method for detecting hydrogen peroxide using the electrode according to any one of claims 1 to 4 or the sensor according to claim 5.
  9. 過酸化水素が尿酸由来である、請求項8に記載の方法。 The method of claim 8, wherein the hydrogen peroxide is derived from uric acid.
PCT/JP2020/035016 2019-09-26 2020-09-16 Electrode having cnt-dispersed cmc layer WO2021060097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548843A JPWO2021060097A1 (en) 2019-09-26 2020-09-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-175257 2019-09-26
JP2019175257 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021060097A1 true WO2021060097A1 (en) 2021-04-01

Family

ID=75166958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035016 WO2021060097A1 (en) 2019-09-26 2020-09-16 Electrode having cnt-dispersed cmc layer

Country Status (2)

Country Link
JP (1) JPWO2021060097A1 (en)
WO (1) WO2021060097A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292495A (en) * 2005-04-08 2006-10-26 Toray Ind Inc Carbon nanotube composition, biosensor and manufacturing method of them
WO2018043050A1 (en) * 2016-08-29 2018-03-08 国立研究開発法人産業技術総合研究所 Reagent for glucose sensor, glucose sensor, glucose sensor production method, and glucose measurement device
JP2018036061A (en) * 2016-08-29 2018-03-08 東レ株式会社 Laminate
JP2018169220A (en) * 2017-03-29 2018-11-01 東レ株式会社 Laminated body
JP2020085759A (en) * 2018-11-29 2020-06-04 東洋紡株式会社 Glucose sensor reagent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292495A (en) * 2005-04-08 2006-10-26 Toray Ind Inc Carbon nanotube composition, biosensor and manufacturing method of them
WO2018043050A1 (en) * 2016-08-29 2018-03-08 国立研究開発法人産業技術総合研究所 Reagent for glucose sensor, glucose sensor, glucose sensor production method, and glucose measurement device
JP2018036061A (en) * 2016-08-29 2018-03-08 東レ株式会社 Laminate
JP2018169220A (en) * 2017-03-29 2018-11-01 東レ株式会社 Laminated body
JP2020085759A (en) * 2018-11-29 2020-06-04 東洋紡株式会社 Glucose sensor reagent

Also Published As

Publication number Publication date
JPWO2021060097A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
Bartlett et al. There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene
Pumera et al. Carbon nanotube-epoxy composites for electrochemical sensing
Antiochia et al. Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages
Mani et al. Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor
Huang et al. rGO/SWCNT composites as novel electrode materials for electrochemical biosensing
Karuwan et al. A disposable screen printed graphene–carbon paste electrode and its application in electrochemical sensing
Ivnitski et al. Direct bioelectrocatalysis of PQQ‐dependent glucose dehydrogenase
Peng et al. A graphene-based electrochemical sensor for sensitive detection of vanillin
Canbay et al. Design of a multiwalled carbon nanotube–Nafion–cysteamine modified tyrosinase biosensor and its adaptation of dopamine determination
Carrara et al. Do carbon nanotubes contribute to electrochemical biosensing?
Li et al. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes
Xu et al. Electrocatalytic oxidation of catechol at multi‐walled carbon nanotubes modified electrode
Li et al. Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes
Pérez et al. Glucose biosensor based on carbon nanotube epoxy composites
Thirumalraj et al. A reliable electrochemical sensor for determination of H2O2 in biological samples using platinum nanoparticles supported graphite/gelatin hydrogel
Navaee et al. FAD-based glucose dehydrogenase immobilized on thionine/AuNPs frameworks grafted on amino-CNTs: Development of high power glucose biofuel cell and biosensor
Tu et al. Novel carboxylation treatment and characterization of multiwalled carbon nanotubes for simultaneous sensitive determination of adenine and guanine in DNA
Pasakon et al. A high-performance, disposable screen-printed carbon electrode modified with multi-walled carbon nanotubes/graphene for ultratrace level electrochemical sensors
JP4863398B2 (en) Biosensor using carbon nanotubes
Luong et al. Multiwall carbon nanotube (MWCNT) based electrochemical biosensors for mediatorless detection of putrescine
Wu et al. The fabrication of a carbon nanotube film on a glassy carbon electrode and its application to determining thyroxine
Laschi et al. Disposable electrodes modified with multi-wall carbon nanotubes for biosensor applications
Kun et al. Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassy carbon electrode
Li et al. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor
Vamvakaki et al. Carbon nanostructures as transducers in biosensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867937

Country of ref document: EP

Kind code of ref document: A1