WO2021057902A1 - 资源使用方法及通信设备 - Google Patents

资源使用方法及通信设备 Download PDF

Info

Publication number
WO2021057902A1
WO2021057902A1 PCT/CN2020/117731 CN2020117731W WO2021057902A1 WO 2021057902 A1 WO2021057902 A1 WO 2021057902A1 CN 2020117731 W CN2020117731 W CN 2020117731W WO 2021057902 A1 WO2021057902 A1 WO 2021057902A1
Authority
WO
WIPO (PCT)
Prior art keywords
rule
target
uplink data
uplink
random access
Prior art date
Application number
PCT/CN2020/117731
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021057902A1 publication Critical patent/WO2021057902A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present invention relate to the field of communication technologies, and in particular, to a method for using resources and communication equipment.
  • the network-side devices are configured periodic uplink resource for transmitting the terminal data.
  • the above periodic uplink resources can be used in the random access process.
  • the current protocol can only allow one random access process to exist. Therefore, in the scenario where the terminal uses the above-mentioned periodic uplink resource to send data during the random access process, after the terminal sends a piece of data during the random access process, only When the terminal ends the random access process and initiates another random access process, the next data can be sent, which results in a long data transmission delay. It can be seen that the reliability of the existing resource usage method is low.
  • the embodiment of the present invention provides a method for using resources and a communication device to solve the problem of low reliability of the existing method for using resources.
  • the present invention is implemented as follows:
  • an embodiment of the present invention provides a resource usage method, which is applied to a communication device, and the method includes:
  • the periodic uplink transmission resources are available for the random access process and the uplink data transmission process, use the uplink transmission resources to transmit data in the target process;
  • the target process includes at least one of the random access process and the uplink data sending process.
  • an embodiment of the present invention also provides a communication device, the communication device including:
  • a transmission module configured to use the uplink transmission resource to transmit data in the target process under the condition that the periodic uplink transmission resource can be used for the random access process and the uplink data transmission process;
  • the target process includes at least one of the random access process and the uplink data sending process.
  • an embodiment of the present invention also provides a communication device that includes a processor, a memory, and a computer program stored on the memory and capable of running on the processor, and the computer program is The processor implements the steps of the resource usage method as described above when executed.
  • an embodiment of the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the resource usage method described above are implemented.
  • the periodic uplink sending resource in addition to the random access process, can also be used for the uplink data sending process, and the communication device can choose to use the uplink sending resource to transmit data in the target process.
  • the target process includes at least one of the random access process and the uplink data sending process.
  • Figure 1 is a schematic diagram of a two-step random access process provided by an embodiment of the present invention
  • Fig. 2 is a flowchart of a resource usage method provided by an embodiment of the present invention.
  • Figure 3 is one of the schematic diagrams of resources provided by an embodiment of the present invention.
  • Figure 4 is the second schematic diagram of resources provided by an embodiment of the present invention.
  • Figure 5 is one of the structural diagrams of a communication device provided by an embodiment of the present invention.
  • Fig. 6 is a second structural diagram of a communication device provided by an embodiment of the present invention.
  • Configured uplink authorization Configured Grant, CG
  • the network side configures a periodic uplink resource for transmitting data to UE
  • the periodic uplink resources can be referred to as CG.
  • the transmission channel of the periodic uplink resource is a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH).
  • the periodic uplink resources can be divided into the following two types:
  • Uplink configuration grant Type 1 (UL configured grant Type 1): Configure the resource allocation period and specific resource allocation information for each period through Radio Resource Control (RRC) signaling;
  • RRC Radio Resource Control
  • Uplink configured grant Type 2 (UL configured grant Type 2): The resource allocation cycle is configured through RRC signaling, and then the network side uses Downlink Control Information (DCI) to specify the specific resource allocation information for each cycle.
  • DCI Downlink Control Information
  • the specific resource allocation information of each cycle may include: the location and number of physical resource blocks (Physical Resource Block, PRB); and modulation and coding scheme (Modulation and Coding Scheme, MCS).
  • PRB Physical Resource Block
  • MCS Modulation and Coding Scheme
  • a terminal also referred to as a user equipment (User Equipment, UE)
  • UE User Equipment
  • Uplink Non-synchronized the UE cannot send an uplink signal, and thus cannot use the CG.
  • the UE needs to trigger the random access process first. After obtaining the uplink signal timing advance (TA) through the random access process, the uplink signal can be sent and the CG can be used in the uplink synchronization state. .
  • TA uplink signal timing advance
  • the random access process can be triggered by the following events:
  • the downlink or uplink data in the RRC connection state arrives, and the uplink synchronization state is out of synchronization;
  • the physical uplink control channel (PUCCH) resource where the uplink data arrives in the RRC connection state and is not configured is used as a scheduling request (SR);
  • Synchronous reconfiguration requested by RRC (eg handover);
  • RRC inactive state (INACTIVE) state transition (eg, transition to RRC connected state);
  • the two-step random access process can include the following steps:
  • Step 101 The network side device configures two-step random access configuration information (2-Step RACH Configuration) for the UE.
  • the configuration information of the two-step random access may include: message (Message, Msg) A and MsgB corresponding transmission resource information.
  • Step 102 The UE sends MsgA to the network side device.
  • the UE triggers a 2-step RACH process and sends the request information (MsgA) to the network side, such as sending MsgA through PUSCH.
  • the UE may also send PRACH information to the network side device.
  • MsgA can carry data (Data) and UE identification (UE-ID).
  • Data data
  • UE-ID UE identification
  • Step 103 The network side device sends MsgB to the UE.
  • the UE After sending the MsgA, the UE monitors the reception of the MsgB for a period of time (that is, a random access response (Random Access Response, RAR) window (Window)).
  • RAR Random Access Response
  • the UE If the UE fails to receive MsgB, the UE resends MsgA.
  • the UE-ID and an ACK indication can be carried in the MsgB.
  • the UE can send a physical random access channel (Physical Random Access Channel, PRACH) and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) in Msg A in an out-of-synchronization state. If one MsgA transmission is unsuccessful, the UE can increase the transmission power of MsgA and resend MsgA.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • the communication device may be a terminal or a network side device.
  • the terminal can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), a personal digital assistant (PDA), a mobile Internet device (Mobile Internet Device, MID), Wearable device (Wearable Device) or vehicle-mounted device.
  • the network side device can be a base station, a relay, or an access point.
  • the resource usage method may include the following steps:
  • Step 201 In the case that periodic uplink transmission resources are available for the random access process and the uplink data transmission process, use the uplink transmission resources to transmit data in the target process; wherein, the target process includes the random access process And at least one item in the uplink data sending process.
  • the use of the uplink transmission resource to transmit data in the target process may specifically be expressed as: the use of the uplink transmission resource to transmit data in the target process.
  • the use of the uplink transmission resource to transmit data in the target process may specifically be expressed as: the use of the uplink transmission resource to receive data in the target process.
  • the periodic uplink transmission resources can be used in the random access process and the uplink data transmission process, and can be configured by the network side device or agreed upon by the protocol. In other words, the scope of application of periodic uplink transmission resources may be agreed upon by the network side device or protocol.
  • the terminal can only use one of the periodic uplink transmission resources to send data during a random access process.
  • the random access process in this embodiment may specifically be expressed as a two-step random access process.
  • the terminal can continuously use periodic uplink sending resources to send data. Therefore, the uplink data sending process in this embodiment can also be referred to as a continuous uplink data sending process.
  • Fig. 3 includes three cycles of uplink transmission resources, which are in the order of time: uplink transmission resource 1, uplink transmission resource 2, and uplink transmission resource 3.
  • the terminal can continuously use the uplink sending resource 1, the uplink sending resource 2 and the uplink sending resource 3 to send data.
  • the terminal After the terminal uses the uplink sending resource 1 to send MsgA, it needs to monitor for a period of time to receive MsgB. During the receiving time of monitoring MsgB, the terminal cannot use this periodic uplink transmission resource. For example, if the use time of the uplink transmission resource 2 in FIG. 3 is within the receiving time of the monitoring MsB, the terminal cannot use the uplink transmission resource 2.
  • the uplink transmission resource may include a first channel resource and a second channel resource.
  • the first channel may be a control channel
  • the second channel may be a data channel
  • the uplink transmission resources may include control channel resources and data channel resources.
  • control channel may be PRACH
  • data channel may be PUSCH.
  • each uplink transmission resource may include one PRACH resource and one PUSCH resource, and the terminal needs to send both PUSCH and PRACH when sending data.
  • uplink transmission resource 1 includes PRACH resource 1 and PUSCH resource 1; uplink transmission resource 2 includes PRACH resource 2 and PUSCH resource 2; uplink transmission resource 3 includes PRACH resource 3 and PUSCH resource 3.
  • the periodic uplink sending resources can also be used in the uplink data sending process, and the communication device can choose to use the uplink sending resource to transmit data in the target process.
  • the target process includes at least one of the random access process and the uplink data sending process.
  • the target rule may be determined by the terminal and the network side device according to the target rule.
  • the target rule is configured by the network side device or agreed by a protocol.
  • the target rule is determined by the network side device and configured to the terminal.
  • the network side device may send configuration information, where the configuration information is used to configure the target rule.
  • the terminal and the network side device need to determine the target process through the same rule.
  • the method further includes:
  • the target rule includes any one of the following:
  • the first rule is used to: determine the target process according to the size of the uplink data to be sent and the size of the uplink data that can be sent by the uplink transmission resource;
  • a second rule where the second rule is used to determine the target process according to a trigger event of the random access process
  • a third rule where the third rule is used to determine the random access process and the uplink data sending process as the target process.
  • Case 1 The target rule includes the first rule.
  • the process of determining the target according to the target rule includes at least one of the following:
  • the uplink data sending process determines the uplink data sending process as the target process
  • the random access process is determined as the target process.
  • the size of the uplink data to be sent is greater than the size of the uplink data that can be sent by the uplink sending resource, it means that the sending of the uplink data to be sent cannot be completed by one uplink sending resource, that is, the uplink data to be sent needs to pass at least two uplinks. Send resource transmission. Therefore, it is possible to choose to use periodic uplink transmission resources to send the uplink data to be sent during the uplink data sending process, so that the transmission delay of the uplink data to be sent can be shortened.
  • the size of the uplink data to be sent is less than or equal to the size of the uplink data that can be sent by the uplink sending resource, it is indicated that the sending of the uplink data to be sent can be completed by 1 uplink sending resource, that is, the uplink data to be sent can only pass 1 Uplink transmission resource transmission. Therefore, it is possible to choose to use periodic uplink transmission resources to send the uplink data to be sent in the random access process, so that the transmission of the uplink data to be sent can be completed in the random access process and reduce the power consumption of the communication device.
  • each uplink transmission resource includes one PUSCH resource and one PRACH resource
  • the size of uplink data that can be transmitted by the uplink transmission resource may specifically be expressed as: the size of uplink data that can be transmitted by one PUSCH resource.
  • TBS Transport Block Size
  • Uplink Grant Uplink Grant
  • the communication device can select the uplink data sending process as the target process.
  • MAC Medium Access Control
  • PDU Protocol Data Unit
  • the communication device can select the random access process as the target process.
  • Case 2 The target rule includes the second rule.
  • the determining the target process according to the target rule includes:
  • the random access process is determined as the target process.
  • the terminal when the triggering event of the random access process includes beam failure recovery, the terminal preferentially performs beam failure recovery, and therefore, the random access process is determined as the target process.
  • a primary cell (Primary Cell, PCell) of a terminal a primary cell (Primary Secondary Cell, PSCell) or SCell of a secondary cell group has a beam failure
  • the terminal triggers a random access procedure for beam failure recovery.
  • the terminal first triggers the random access process for beam failure recovery, so the random access process is selected as the target process .
  • Case 3 The target rule includes the third rule.
  • the determining the target process according to the target rule includes:
  • the random access process and the uplink data sending process are determined as the target process.
  • the terminal can use periodic uplink transmission resources to send data during the random access process and the uplink data transmission process. Therefore, after the terminal triggers the random access process, if there is still data to be sent, it can send it during the uplink data sending process.
  • the UE triggers a random access process and uses uplink transmission resources to send MsgA during the random access process. After sending MsgA, the UE sends uplink data again, and the uplink sending resource 2 is within the receiving time window of MsgB. At this time, the UE may continue to use the uplink transmission resource 2 to transmit uplink data during the uplink data transmission process.
  • this embodiment can improve the utilization rate of resource use, thereby improving the reliability of resource use.
  • the target rule includes the fourth rule.
  • the process of determining the target according to the target rule includes at least one of the following:
  • the random access process is determined as the target process.
  • the first threshold value can be configured by the network side device or agreed upon by a protocol.
  • the uplink data sending process is used to transmit the data, so that the sending delay of the uplink data to be sent can be reduced.
  • the random access process is adopted to transmit the data, so that the transmission of the uplink data to be sent can be completed in the random access process, thereby reducing the power consumption of the communication device.
  • the priority of the uplink data to be sent can be determined in at least one of the following ways:
  • Method 1 Determine the priority of the uplink data to be sent according to the priority of the logical channel of the uplink data to be sent;
  • Method 2 Determine the priority of the uplink data to be sent according to the channel type for transmitting the uplink data to be sent;
  • Manner 3 Determine the priority of the uplink data to be sent according to the priority of the Medium Access Control (MAC) control element (CE) that transmits the uplink data to be sent.
  • MAC Medium Access Control
  • CE control element
  • the priority of the uplink data to be sent is positively correlated with the priority of the logical channel for the uplink data to be sent. That is to say, the higher the priority of the logical channel to send the uplink data, the higher the priority of the uplink data to be sent.
  • the channel type can include control channel and data channel. Further, the priority of the uplink data to be sent transmitted through the control channel is higher than the priority of the uplink data to be sent transmitted through the data channel.
  • data from a signaling radio bearer (Signaling Radio Bearer, SRB) has a higher priority than a data radio bearer (Data Radio Bearer, DRB)).
  • MAC CE may include Buffer Status Report (BSR) MAC CE, Power Headroom Report (PHR) MAC CE, Dedicated Traffic Channel (DTCH) MAC CE, etc. Further, the data priority of BSR/PHR MAC CE is higher than the data priority of DTCH).
  • BSR Buffer Status Report
  • PHR Power Headroom Report
  • DTCH Dedicated Traffic Channel
  • the target rule includes the fifth rule.
  • the process of determining the target according to the target rule includes at least one of the following:
  • the delay requirement of the uplink data to be sent is greater than or equal to the second threshold value, determining the uplink data sending process as the target process;
  • the random access process is determined as the target process.
  • the second threshold value may be configured by the network side device or agreed upon by a protocol.
  • the uplink data sending process is used to transmit the data, so that the sending delay of the uplink data to be sent can be reduced.
  • the random access process is used to transmit data, so that random access can be realized while the delay requirement of the uplink data to be sent is met, thereby reducing communication Device power consumption.
  • the higher the delay demand the smaller the time value corresponding to the delay demand.
  • the examples are as follows:
  • the delay requirement of the uplink data to be sent is 1 millisecond (ms)
  • the second threshold is 2 ms. It can be seen that the delay requirement of the uplink data to be sent is higher than the second threshold, therefore, the uplink data sending process can be used to transmit data.
  • the target rule may also be determined by the network side device and then indicated to the terminal. In this way, compared with the implementation in which the target rule is determined by the terminal according to the target rule, the operating burden of the terminal can be reduced.
  • the resource usage method in this embodiment can be applied to the scenario of the terminal uplink out of synchronization, but it is not limited to this.
  • the resource usage method can include the following steps:
  • Step 1 The network side device configures the location of periodic uplink transmission resources, where each uplink transmission resource includes both control channel resources and data channel resources.
  • the period for the network side device to configure the uplink transmission resources is 1 millisecond (ms), and each uplink transmission resource includes 1 PRACH resource and 1 PUSCH resource, and the UE needs to send both PUSCH and PRACH when sending uplink data.
  • the network-side device configuration or protocol stipulates that the uplink transmission resource can be used for both the "random access process” and the “continuous uplink data transmission process”.
  • the UE can continuously use (PRACH1+PUSCH1) and (PRACH2+PUSCH2).
  • the UE For the "random access procedure", after the UE uses (PRACH1+PUSCH1) to send MsgA, it needs to monitor for a period of time to receive MsgB. During the receiving time of monitoring MsgB, the UE cannot use this periodic uplink transmission resource. As shown in the figure above (PRACH2+PUSCH2) within the receiving time of monitoring MsgB, the UE cannot use (PRACH2+PUSCH2).
  • Step 2 the network-side equipment configuration or protocol stipulates that the UE selects the rules of "random access process” and “continuous uplink data transmission process” so that the UE selects the target process according to the rules, and Use this periodic uplink transmission resource to send data in the target process.
  • the rules can include any of the following:
  • Rule 1 When the size of the uplink data to be sent by the UE is greater than the size of the uplink data that can be transmitted by 1 PUSCH resource, the UE selects the "continuous uplink data transmission process".
  • the UE selects the "continuous uplink data transmission process".
  • Rule 2 When the size of the uplink data to be sent by the UE is less than or equal to the size of the uplink data that can be transmitted by 1 PUSCH resource, the UE selects the "random access procedure".
  • the TBS of the Uplink Grant of the PUSCH resource is 40 bits.
  • a beam failure occurs in the PCell/PSCell/SCell of the UE, and the UE triggers a random access procedure for beam failure recovery.
  • the size of the MAC PDU corresponding to the data to be sent by the UE is 80, and the UE preferentially triggers the random access process.
  • Rule 4 The UE can use this periodic resource at the same time using the "random access process” and the “continuous uplink data transmission process”.
  • the UE triggers a random access procedure to use (PRACH1+PUSCH1) to send MsgA. After sending MsgA, the UE sends uplink data again, and (PRACH2+PUSCH2) is within the receiving time window of MsgB. At this time, the UE can continue to use (PRACH2+PUSCH2) for uplink data transmission.
  • the network side device when the network side device is configured with periodic PRACH+PUSCH resources and can be used for both the continuous uplink data sending process and the random access process, the network configuration or the rules agreed by the protocol can be used Let the UE make a reasonable choice between the continuous uplink data transmission process and the random access process, such as reducing the data transmission delay through continuous data transmission, or initiating a random access process for beam failure recovery.
  • FIG. 5 is one of the structural diagrams of the communication device provided by the embodiment of the present invention.
  • the communication device 500 includes:
  • the transmission module 501 is configured to use the uplink transmission resource to transmit data in the target process when the periodic uplink transmission resource can be used for the random access process and the uplink data transmission process;
  • the target process includes at least one of the random access process and the uplink data sending process.
  • the communication device 500 further includes:
  • a first determining module configured for the sending module to determine the target process according to target rules before the target process uses the uplink sending resource to transmit data
  • the target rule includes any one of the following:
  • the first rule is used to: determine the target process according to the size of the uplink data to be sent and the size of the uplink data that can be sent by the uplink transmission resource;
  • a second rule where the second rule is used to determine the target process according to a trigger event of the random access process
  • a third rule where the third rule is used to determine the random access process and the uplink data sending process as the target process;
  • the fourth rule is used to: determine the target process according to the priority of the uplink data to be sent;
  • the fifth rule is used to determine the target process according to the delay requirement of the uplink data to be sent.
  • the first determining module is specifically used for at least one of the following:
  • the uplink data sending process determines the uplink data sending process as the target process
  • the random access process is determined as the target process.
  • the first determining module is specifically configured to:
  • the random access process is determined as the target process.
  • the first determining module is specifically configured to:
  • the random access process and the uplink data sending process are determined as the target process.
  • the target rule is configured by the network side device or agreed by a protocol.
  • the uplink sending resource includes a first channel resource and a second channel resource.
  • the communication device 500 can implement various processes that can be implemented by the communication device in the method embodiment of the present invention and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • FIG. 6 is the second structural diagram of the communication device provided by the embodiment of the present invention.
  • the communication device 600 includes: a processor 601, a memory 602, a user interface 603, a transceiver 604, and a bus interface.
  • the communication device 600 further includes: a computer program stored in the memory 602 and capable of running on the processor 601, and the computer program is executed by the processor 601 to implement the following steps:
  • the transceiver 604 uses the uplink transmission resource to transmit data in the target process under the condition that the periodic uplink transmission resource can be used for the random access process and the uplink data transmission process;
  • the target process includes at least one of the random access process and the uplink data sending process.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 601 and various circuits of the memory represented by the memory 602 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 604 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 603 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 602 can store data used by the processor 2601 when performing operations.
  • the target rule includes any one of the following:
  • the first rule is used to: determine the target process according to the size of the uplink data to be sent and the size of the uplink data that can be sent by the uplink transmission resource;
  • the second rule the second rule is used to determine the target process according to the triggering event of the random access process
  • a third rule where the third rule is used to determine the random access process and the uplink data sending process as the target process;
  • the fourth rule is used to: determine the target process according to the priority of the uplink data to be sent;
  • the fifth rule is used to determine the target process according to the delay requirement of the uplink data to be sent.
  • the target rule includes the first rule
  • the computer program when executed by the processor 601, at least one of the following may be implemented:
  • the uplink data sending process determines the uplink data sending process as the target process
  • the random access process is determined as the target process.
  • the following steps may be further implemented when the computer program is executed by the processor 601:
  • the random access process is determined as the target process.
  • the following steps may also be implemented when the computer program is executed by the processor 601:
  • the random access process and the uplink data sending process are determined as the target process.
  • the target rule is configured by the network side device or agreed by a protocol.
  • the uplink sending resource includes a first channel resource and a second channel resource.
  • the communication device 600 can implement each process implemented by the communication device in the foregoing method embodiment, and in order to avoid repetition, details are not described herein again.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the foregoing resource usage method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a communication device (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a communication device which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种资源使用方法及通信设备。其中,所述方法包括:在周期性的上行发送资源可用于随机接入过程和上行数据发送过程的情况下,在目标过程使用所述上行发送资源传输数据;其中,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。本发明可以提高资源使用的可靠性。

Description

资源使用方法及通信设备
相关申请的交叉引用
本申请主张在2019年9月27日在中国提交的中国专利申请号No.201910927095.4的优先权,其全部内容通过引用包含于此。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种资源使用方法及通信设备。
背景技术
在第五代(5 th Generation,5G)移动通信***中,网络侧设备会配置周期性的上行资源用于终端数据的发送。
上述周期性的上行资源可用于随机接入过程中。然而,目前协议只能允许一个随机接入过程存在,因此,终端在随机接入过程中使用上述周期性的上行资源发送数据的场景中,终端在随机接入过程中发送一个数据之后,只有在终端结束该随机接入过程并发起另一随机接入过程时,才能发送下一个数据,导致数据发送的延时较长。可见,现有资源使用方法的可靠性较低。
发明内容
本发明实施例提供一种资源使用方法及通信设备,以解决现有资源使用方法可靠性较低的问题。
为解决上述问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种资源使用方法,应用于通信设备,所述方法包括:
在周期性的上行发送资源可用于随机接入过程和上行数据发送过程的情况下,在目标过程使用所述上行发送资源传输数据;
其中,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。
第二方面,本发明实施例还提供一种通信设备,所述通信设备包括:
传输模块,用于在周期性的上行发送资源可用于随机接入过程和上行数据发送过程的情况下,在目标过程使用所述上行发送资源传输数据;
其中,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。
第三方面,本发明实施例还提供一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的资源使用方法的步骤。
第四方面,本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的资源使用方法的步骤。
在本发明实施例中,周期性的上行发送资源除可以用于随机接入过程之外,还可以用于上行数据发送过程,且通信设备可以选择在目标过程使用所述上行发送资源传输数据,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。这样,本发明实施例不仅拓展了周期性的上行发送资源的适用范围,通信设备还可以在随机接入过程和上行数据发送过程中进行合理的选择,以在目标过程使用所述上行发送资源传输数据,从而可以提高资源使用的可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的两步随机接入过程的示意图;
图2是本发明实施例提供的资源使用方法的流程图;
图3是本发明实施例提供的资源的示意图之一;
图4是本发明实施例提供的资源的示意图之二;
图5是本发明实施例提供的通信设备的结构图之一;
图6是本发明实施例提供的通信设备的结构图之二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,本申请中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
为了方便理解,以下对本发明实施例涉及的一些内容进行说明:
一、配置的上行授权(Configured Grant,CG)。
在第五代(5 th Generation,5G)移动通信***中,网络侧会配置周期性的上行资源用于UE数据的发送,该周期性的上行资源可以称为CG。该周期性的上行资源的发送信道为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。该周期性的上行资源可以分为以下2种类型:
上行配置授权类型1(UL configured grant Type 1):通过无线资源控制(Radio Resource Control,RRC)信令配置资源分配周期和每个周期的资源具体分配信息;
上行配置授权类型2(UL configured grant Type 2):通过RRC信令配置资源分配周期,然后网络侧通过下行控制信息(Downlink Control Information,DCI)指定每个周期的资源具体分配信息。
其中,每个周期的资源具体分配信息可以包括:物理资源块(Physical Resource Block,PRB)的位置和数量;调制编码方式(Modulation and Coding  Scheme,MCS)。
当终端(也可以称作用户设备(User Equipment,UE))处于上行失步状态(Uplink Non-synchronized)的时候,UE不能发送上行信号,也就不能使用CG。如果UE此时有上行数据到达,则UE需要先触发随机接入过程,通过随机接入过程获取上行信号定时提前量(Timing Advance,TA)后,在上行同步的状态才能发送上行信号并使用CG。
二、随机接入过程。
随机接入过程可以由以下事件触发:
RRC空闲态(IDLE)的初始接入;
RRC连接重建立流程;
RRC连接态的下行或上行数据到达,且上行同步状态为失步;
RRC连接态上行数据到达且没有配置的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源作为调度请求(Scheduling Request,SR)使用;
SR发送失败;
RRC请求的同步重配置(如,切换);
RRC非激活态(INACTIVE)的状态转换(如,转化到RRC连接态);
建立辅小区(Secondary Cell,SCell)的上行定时;
***信息请求;
波束失败恢复。
三、两步随机接入过程(2-Step RACH)。
如图1所示,两步随机接入过程可以包括以下步骤:
步骤101、网络侧设备给UE配置两步随机接入的配置信息(2-Step RACH Configuration)。
其中,两步随机接入的配置信息可以包括:消息(Message,Msg)A和MsgB对应的发送资源信息。
步骤102、UE向网络侧设备发送MsgA。
UE触发2-step RACH过程,将请求信息(MsgA)发送给网络侧,如通过PUSCH发送MsgA。同时UE也可能会发送PRACH信息给网络侧设备。
如图1所示,MsgA中可以携带数据(Data)和UE标识(UE-ID)。
步骤103、网络侧设备向UE发送MsgB。
UE在发送MsgA之后,在一段时间内(即随机接入响应(Random Access Response,RAR)窗口(Window))监听MsgB的接收。
若UE接收MsgB失败,则UE重新发送MsgA。
在随机接入成功的情况下,如图1所示,MsgB中可以携带UE-ID和肯定回答指示(ACK Indication)。
对于两步随机接入过程,UE可以在失步的状态下在Msg A中发送物理随机接入信道(Physical Random Access Channel,PRACH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。如果一次MsgA发送没有成功,UE可以提高MsgA的发送功率重发MsgA。
以下对本发明实施例的资源使用方法进行说明。
参见图2,图2是本发明实施例提供的资源使用方法的流程图。本发明实施例的资源使用方法应用于通信设备。具体实现时,通信设备可以是终端或网络侧设备。在实际应用中,终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备。网络侧设备可以是基站、中继或接入点。
如图2所示,资源使用方法可以包括以下步骤:
步骤201、在周期性的上行发送资源可用于随机接入过程和上行数据发送过程的情况下,在目标过程使用所述上行发送资源传输数据;其中,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。
应理解的是,在通信设备是终端的情况下,所述在目标过程使用所述上行发送资源传输数据,具体可以表现为:在目标过程使用所述上行发送资源发送数据。在通信设备是网络侧设备的情况下,所述在目标过程使用所述上行发送资源传输数据,具体可表现为:在目标过程使用所述上行发送资源接收数据。
具体实现时,周期性的上行发送资源可用于随机接入过程和上行数据发 送过程,可由网络侧设备配置或协议约定。也就是说,周期性的上行发送资源的适用范围可以由网络侧设备或协议约定。
在本实施例中,对于随机接入过程,终端在一个随机接入过程中,只能使用周期性的上行发送资源中的一个上行发送资源发送数据。本实施例的随机接入过程具体可以表现为两步随机接入过程。
对于上行数据发送过程,终端可以持续的使用周期性的上行发送资源发送数据。因此,本实施例的上行数据发送过程也可称为持续的上行数据发送过程。
为方便理解,结合图3示例说明如下:
图3中包括3个周期的上行发送资源,按照时间的先后依次顺序分别为:上行发送资源1、上行发送资源2和上行发送资源3。
对于上行数据发送过程,终端可以持续的使用上行发送资源1、上行发送资源2和上行发送资源3发送数据。
对于随机接入过程,终端在使用上行发送资源1发送MsgA后,需要持续监听一段时间用于接收MsgB。在监听MsgB的接收时间内,终端不能使用该周期性的上行发送资源。如若图3中的上行发送资源2的使用时间在监听MsB的接收时间内,则终端不能使用上行发送资源2。
在本实施例中,可选的,所述上行发送资源可以包括第一信道资源和第二信道资源。
具体实现时,第一信道可以是控制信道,第二信道可以是数据信道,即所述上行发送资源可以包括控制信道资源和数据信道资源。
进一步地,控制信道可以是PRACH,数据信道可以是PUSCH。此情况下,每个上行发送资源可以包括1个PRACH资源和1个PUSCH资源,终端发送数据的时候需要同时发送PUSCH和PRACH。
为方便理解,请参阅图4。在图4中,上行发送资源1包括PRACH资源1和PUSCH资源1;上行发送资源2包括PRACH资源2和PUSCH资源2;上行发送资源3包括PRACH资源3和PUSCH资源3。
本实施例的资源使用方法,周期性的上行发送资源除可以用于随机接入过程之外,还可以用于上行数据发送过程,且通信设备可以选择在目标过程 使用所述上行发送资源传输数据,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。这样,本发明实施例不仅拓展了周期性的上行发送资源的适用范围,通信设备还可以在随机接入过程和上行数据发送过程中进行合理的选择,以在目标过程使用所述上行发送资源传输数据,从而可以提高资源使用的可靠性。
在本实施例中,所述目标规则可以由终端和网络侧设备根据目标规则确定。可选的,所述目标规则由网络侧设备配置或由协议约定。
在所述目标规则由网络侧设备配置的情况下,所述目标规则由网络侧设备确定并配置给终端。具体实现时,网络侧设备可以发送配置信息,所述配置信息用于配置所述目标规则。
在所述目标规则由协议预定的情况下,为保证终端和网络侧设备确定的目标过程相同,终端和网络侧设备需要通过相同的规则进行目标过程的确定。
可选的,所述在目标过程使用所述上行发送资源传输数据之前,所述方法还包括:
根据目标规则,确定所述目标过程;
其中,所述目标规则包括以下任意一项:
第一规则,所述第一规则用于:根据待发送上行数据的大小与所述上行发送资源可发送上行数据的大小,确定所述目标过程;
第二规则,所述第二规则用于:根据所述随机接入过程的触发事件,确定所述目标过程;
第三规则,所述第三规则用于:将所述随机接入过程和所述上行数据发送过程确定为所述目标过程。
具体说明如下:
情况一、所述目标规则包括所述第一规则。
可选的,所述根据目标规则,确定所述目标过程,包括以下至少一项:
在待发送上行数据的大小大于所述上行发送资源可发送上行数据的大小的情况下,将所述上行数据发送过程确定为所述目标过程;
在待发送上行数据的大小小于或等于所述上行发送资源可发送上行数据的大小的情况下,将所述随机接入过程确定为所述目标过程。
在待发送上行数据的大小大于所述上行发送资源可发送上行数据的大小的情况下,说明通过1个上行发送资源不能完成待发送上行数据的发送,即待发送上行数据需要通过至少两个上行发送资源传输。因此,可以选择在上行数据发送过程中使用周期性的上行发送资源发送待发送上行数据,从而可以缩短待发送上行数据的发送时延。
在待发送上行数据的大小小于或等于所述上行发送资源可发送上行数据的大小的情况下,说明通过1个上行发送资源可以完成待发送上行数据的发送,即待发送上行数据可以仅通过1个上行发送资源传输。因此,可以选择在随机接入过程中使用周期性的上行发送资源发送待发送上行数据,从而可以在随机接入过程中完成待发送上行数据的传输,降低通信设备功耗。
在每个上行发送资源包括1个PUSCH资源和1个PRACH资源的场景中,所述上行发送资源可发送上行数据的大小具体可以表现为:1个PUSCH资源可发送上行数据的大小。
示例性的,假设PUSCH资源的上行授权(Uplink Grant)的传输块大小(Transport Block Size,TBS)为40比特(bit)。
若待发送的数据对应的媒体接入控制(Medium Access Control,MAC)协议数据单元(Protocol Data Unit,PDU)的大小为80bit,则通信设备可以选择上行数据发送过程为目标过程。
若待发送的数据对应的MAC PDU的大小为20bit,则通信设备可以选择随机接入过程为目标过程。
情况二、所述目标规则包括所述第二规则。
可选的,所述根据目标规则,确定所述目标过程,包括:
在所述随机接入过程的触发事件包括波束失败恢复的情况下,将所述随机接入过程确定为所述目标过程。
在本实施方式中,在所述随机接入过程的触发事件包括波束失败恢复的情况下,终端优先进行波束失败恢复,因此,将所述随机接入过程确定为所述目标过程。
示例性的,终端的主小区(Primary Cell,PCell)、辅小区组的主小区(Primary Secondary Cell,PSCell)或SCell发生了波束失败,终端触发随机 接入过程用于波束失败恢复。假设PUSCH资源的Uplink Grant的TBS为40bit,同时终端待发送的数据对应的MAC PDU的大小为80bit,则终端优先触发随机接入过程,用于波束失败恢复,从而选择随机接入过程为目标过程。
情况三、所述目标规则包括所述第三规则。
可选的,所述根据目标规则,确定所述目标过程,包括:
将所述随机接入过程和所述上行数据发送过程确定为所述目标过程。
在本实施方式中,由于终端可以在随机接入过程和上行数据发送过程使用周期性的上行发送资源发送数据。因此,终端在触发随机接入过程后,若还有数据需要发送,则可以在上行数据发送过程中进行发送。
请再次参阅图3。假设UE触发随机接入过程,并在随机接入过程中使用上行发送资源发送MsgA。在发送了MsgA后,UE又有上行数据发送,而上行发送资源2在MsgB的接收时间窗口内。此时,UE可以在上行数据发送过程中继续使用上行发送资源2进行上行数据的发送。
这样,相比于目标过程是上行数据发送过程或随机接入过程,本实施方式可以提高资源使用的利用率,进而提高资源使用的可靠性。
情况四、所述目标规则包括所述第四规则。
可选的,所述根据目标规则,确定所述目标过程,包括以下至少一项:
在待发送上行数据的优先级大于或等于第一门限值的情况下,将所述上行数据发送过程确定为所述目标过程;
在待发送上行数据的优先级小于所述第一门限值的情况下,将所述随机接入过程确定为所述目标过程。
具体实现时,第一门限值可以由网络侧设备配置或由协议约定。
在本实施方式中,在待发送上行数据的优先级较高的情况下,采用上行数据发送过程传输数据,从而可以降低待发送上行数据的发送时延。
在待发送上行数据的优先级较低的情况下,采用随机接入过程传输数据,从而可以随机接入过程中完成待发送上行数据的传输,从而可以降低通信设备功耗。
具体实现时,待发送上行数据的优先级可以通过以下至少一种方式确定:
方式一、根据待发送上行数据的逻辑信道的优先级,确定待发送上行数 据的优先级;
方式二、根据传输待发送上行数据的信道类型,确定待发送上行数据的优先级;
方式三、根据传输待发送上行数据的媒体接入控制(Medium Access Control,MAC)控制单元(Control Element,CE)的优先级,确定待发送上行数据的优先级。
对于方式一,待发送上行数据的优先级,与待发送上行数据的逻辑信道的优先级正相关。也就是说,待发送上行数据的逻辑信道的优先级越高,待发送上行数据的优先级越高。
对于方式二,信道类型可以包括控制信道和数据信道。进一步地,通过控制信道传输的待发送上行数据的优先级高于通过数据信道传输的待发送上行数据的优先级。示例性的,从信令无线承载(Signaling Radio Bearer,SRB)来的数据比数据无线承载(Data Radio Bearer,DRB)的数据优先级高)。
对于方式三,MAC CE可以包括缓冲状态报告(Buffer Status Report,BSR)MAC CE、功率余量报告(Power Headroom Report,PHR)MAC CE、专属数据信道(Dedicated Traffic Channel,DTCH)MAC CE等。进一步地,BSR/PHR MAC CE的数据优先级高于DTCH的数据优先级)。
情况五、所述目标规则包括所述第五规则。
可选的,所述根据目标规则,确定所述目标过程,包括以下至少一项:
在待发送上行数据的延时需求大于或等于第二门限值的情况下,将所述上行数据发送过程确定为所述目标过程;
在待发送上行数据的延时需求小于所述第二门限值的情况下,将所述随机接入过程确定为所述目标过程。
具体实现时,第二门限值可以由网络侧设备配置或由协议约定。
在本实施方式中,在待发送上行数据的延时需求较高的情况下,采用上行数据发送过程传输数据,从而可以降低待发送上行数据的发送时延。
在待发送上行数据的时延需求较低的情况下,采用随机接入过程传输数据,从而可以在满足待发送上行数据的延时需求的情况下,还可以实现随机接入,从而可以降低通信设备功耗。
具体实现时,延时需求越高,该延时需求对应的时间值越小。为方便理解,示例说明如下:
假设待发送上行数据的延时需求为1毫秒(ms),第二门限值为2ms。可见,待发送上行数据的延时需求高于第二门限值,因此,可以采用上行数据发送过程传输数据。
需要说明的是,在本实施例中的其他实施方式中,目标规则也可以由网络侧设备确定后指示给终端。这样,相比于目标规则由终端根据目标规则确定的实施方式,可以降低终端的运行负担。
本实施例的资源使用方法可以适用于终端上行失步场景,但不仅限于此。
需要说明的是,本发明实施例中介绍的多种可选的实施方式,彼此可以相互结合实现,也可以单独实现,对此本发明实施例不作限定。
为方便理解,示例说明如下:
资源使用方法可以包括以下步骤:
步骤一、网络侧设备配置周期性的上行发送资源的位置,其中每一个上行发送资源同时包括控制信道资源和数据信道资源。
如,网络侧设备配置上行发送资源的周期为1毫秒(ms),每个上行发送资源包括1个PRACH资源和1个PUSCH资源,则UE发送上行数据的时候需要同时发送PUSCH和PRACH。
进一步的,网络侧设备配置或协议约定,该上行发送资源可以同时用于“随机接入过程”和“持续的上行数据发送过程”。
如图4所示,对于“持续的上行数据发送过程”,UE可以持续的使用(PRACH1+PUSCH1)和(PRACH2+PUSCH2)。
对于“随机接入过程”,UE在使用(PRACH1+PUSCH1)发送MsgA后,需要持续监听一段时间用于接收MsgB。在监听MsgB的接收时间内,UE不能使用该周期性的上行发送资源。如上图(PRACH2+PUSCH2)在监听MsgB的接收时间内,则UE不能使用(PRACH2+PUSCH2)。
步骤二、对于该周期性的上行发送资源,网络侧设备配置或协议约定UE选择“随机接入过程”和“持续的上行数据发送过程”的规则,以使UE根据该规则选择目标过程,并在目标过程使用该周期性的上行发送资源发送数 据。
其中,规则可以包括以下任意一种:
规则1:当UE待发送的上行数据的大小大于1个PUSCH资源可以传输的上行数据大小时,UE选择“持续的上行数据发送过程”。
如,PUSCH资源的Uplink Grant的TBS为40bit,而UE待发送的数据对应的MAC PDU的大小为80,则UE选择“持续的上行数据发送过程”。
规则2:当UE待发送的上行数据的大小小于或等于1个PUSCH资源可以传输的上行数据大小时,UE选择“随机接入过程”。
规则3:当UE触发波束失败恢复的随机接入过程时,优先采用“随机接入过程”。
如,PUSCH资源的Uplink Grant的TBS为40bit。UE的PCell/PSCell/SCell发生了波束失败,UE触发随机接入过程用于波束失败恢复。同时UE待发送的数据对应的MAC PDU的大小为80,则UE优先触发随机接入过程。
规则4:UE可以同时采用“随机接入过程”和“持续的上行数据发送过程”使用该周期性的资源。
如图4所示,UE触发随机接入过程使用(PRACH1+PUSCH1)发送MsgA。在发送了MsgA后,UE又有上行数据发送,而(PRACH2+PUSCH2)在MsgB的接收时间窗口内。此时,UE可以继续使用(PRACH2+PUSCH2)进行上行数据的发送。
采用本发明实施例的资源使用方法,当网络侧设备配置周期性的PRACH+PUSCH资源可以同时用于持续的上行数据发送过程和随机接入过程的时候,通过网络配置或协议约定的规则,可以让UE在持续的上行数据发送过程和随机接入过程间进行合理的选择,如通过持续数据发送减少数据发送延时,或通过发起随机接入过程进行波束失败恢复。
参见图5,图5是本发明实施例提供的通信设备的结构图之一。如图5所示,通信设备500包括:
传输模块501,用于在周期性的上行发送资源可用于随机接入过程和上行数据发送过程的情况下,在目标过程使用所述上行发送资源传输数据;
其中,所述目标过程包括所述随机接入过程和所述上行数据发送过程中 的至少一项。
可选的,所述通信设备500还包括:
第一确定模块,用于所述发送模块在目标过程使用所述上行发送资源传输数据之前,根据目标规则,确定所述目标过程;
其中,所述目标规则包括以下任意一项:
第一规则,所述第一规则用于:根据待发送上行数据的大小与所述上行发送资源可发送上行数据的大小,确定所述目标过程;
第二规则,所述第二规则用于:根据所述随机接入过程的触发事件,确定所述目标过程;
第三规则,所述第三规则用于:将所述随机接入过程和所述上行数据发送过程确定为所述目标过程;
第四规则,所述第四规则用于:根据待发送上行数据的优先级,确定所述目标过程;
第五规则,所述第五规则用于:根据待发送上行数据的延时需求,确定所述目标过程。
可选的,在所述目标规则包括所述第一规则的情况下,所述第一确定模块,具体用于以下至少一项:
在待发送上行数据的大小大于所述上行发送资源可发送上行数据的大小的情况下,将所述上行数据发送过程确定为所述目标过程;
在待发送上行数据的大小小于或等于所述上行发送资源可发送上行数据的大小的情况下,将所述随机接入过程确定为所述目标过程。
可选的,在所述目标规则包括所述第二规则的情况下,所述第一确定模块,具体用于:
在所述随机接入过程的触发事件包括波束失败恢复的情况下,将所述随机接入过程确定为所述目标过程。
可选的,在所述目标规则包括所述第三规则的情况下,所述第一确定模块,具体用于:
将所述随机接入过程和所述上行数据发送过程确定为所述目标过程。
可选的,所述目标规则由网络侧设备配置或由协议约定。
可选的,所述上行发送资源包括第一信道资源和第二信道资源。
通信设备500能够实现本发明方法实施例中通信设备能够实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
参见图6,图6是本发明实施例提供的通信设备的结构图之二,如图6所示,通信设备600包括:处理器601、存储器602、用户接口603、收发机604和总线接口。
其中,在本发明实施例中,通信设备600还包括:存储在存储器602上并可在处理器601上运行的计算机程序,计算机程序被处理器601执行时实现如下步骤:
通过收发机604在周期性的上行发送资源可用于随机接入过程和上行数据发送过程的情况下,在目标过程使用所述上行发送资源传输数据;
其中,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器602代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机604可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口603还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器601负责管理总线架构和通常的处理,存储器602可以存储处理器2601在执行操作时所使用的数据。
可选的,计算机程序被处理器601执行时还可实现如下步骤:
根据目标规则,确定所述目标过程;
其中,所述目标规则包括以下任意一项:
第一规则,所述第一规则用于:根据待发送上行数据的大小与所述上行发送资源可发送上行数据的大小,确定所述目标过程;
第二规则,所述第二规则用于:根据所述随机接入过程的触发事件,确 定所述目标过程;
第三规则,所述第三规则用于:将所述随机接入过程和所述上行数据发送过程确定为所述目标过程;
第四规则,所述第四规则用于:根据待发送上行数据的优先级,确定所述目标过程;
第五规则,所述第五规则用于:根据待发送上行数据的延时需求,确定所述目标过程。
可选的,在所述目标规则包括所述第一规则的情况下,计算机程序被处理器601执行时还可实现以下至少一项:
在待发送上行数据的大小大于所述上行发送资源可发送上行数据的大小的情况下,将所述上行数据发送过程确定为所述目标过程;
在待发送上行数据的大小小于或等于所述上行发送资源可发送上行数据的大小的情况下,将所述随机接入过程确定为所述目标过程。
可选的,在所述目标规则包括所述第二规则的情况下,计算机程序被处理器601执行时还可实现如下步骤:
在所述随机接入过程的触发事件包括波束失败恢复的情况下,将所述随机接入过程确定为所述目标过程。
可选的,在所述目标规则包括所述第三规则的情况下,计算机程序被处理器601执行时还可实现如下步骤:
将所述随机接入过程和所述上行数据发送过程确定为所述目标过程。
可选的,所述目标规则由网络侧设备配置或由协议约定。
可选的,所述上行发送资源包括第一信道资源和第二信道资源。
通信设备600能够实现上述方法实施例中通信设备实现的各个过程,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述资源使用方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台通信设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (16)

  1. 一种资源使用方法,应用于通信设备,其特征在于,所述方法包括:
    在周期性的上行发送资源可用于随机接入过程和上行数据发送过程的情况下,在目标过程使用所述上行发送资源传输数据;
    其中,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。
  2. 根据权利要求1所述的方法,其特征在于,所述在目标过程使用所述上行发送资源传输数据之前,所述方法还包括:
    根据目标规则,确定所述目标过程;
    其中,所述目标规则包括以下任意一项:
    第一规则,所述第一规则用于:根据待发送上行数据的大小与所述上行发送资源可发送上行数据的大小,确定所述目标过程;
    第二规则,所述第二规则用于:根据所述随机接入过程的触发事件,确定所述目标过程;
    第三规则,所述第三规则用于:将所述随机接入过程和所述上行数据发送过程确定为所述目标过程;
    第四规则,所述第四规则用于:根据待发送上行数据的优先级,确定所述目标过程;
    第五规则,所述第五规则用于:根据待发送上行数据的延时需求,确定所述目标过程。
  3. 根据权利要求2所述的方法,其特征在于,在所述目标规则包括所述第一规则的情况下,所述根据目标规则,确定所述目标过程,包括以下至少一项:
    在待发送上行数据的大小大于所述上行发送资源可发送上行数据的大小的情况下,将所述上行数据发送过程确定为所述目标过程;
    在待发送上行数据的大小小于或等于所述上行发送资源可发送上行数据的大小的情况下,将所述随机接入过程确定为所述目标过程。
  4. 根据权利要求2所述的方法,其特征在于,在所述目标规则包括所述 第二规则的情况下,所述根据目标规则,确定所述目标过程,包括:
    在所述随机接入过程的触发事件包括波束失败恢复的情况下,将所述随机接入过程确定为所述目标过程。
  5. 根据权利要求2所述的方法,其特征在于,在所述目标规则包括所述第三规则的情况下,所述根据目标规则,确定所述目标过程,包括:
    将所述随机接入过程和所述上行数据发送过程确定为所述目标过程。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述目标规则由网络侧设备配置或由协议约定。
  7. 根据权利要求1所述的方法,其特征在于,所述上行发送资源包括第一信道资源和第二信道资源。
  8. 一种通信设备,其特征在于,所述通信设备包括:
    传输模块,用于在周期性的上行发送资源可用于随机接入过程和上行数据发送过程的情况下,在目标过程使用所述上行发送资源传输数据;
    其中,所述目标过程包括所述随机接入过程和所述上行数据发送过程中的至少一项。
  9. 根据权利要求8所述的通信设备,其特征在于,所述通信设备还包括:
    第一确定模块,用于所述发送模块在目标过程使用所述上行发送资源发送上行数据之前,根据目标规则,确定所述目标过程;
    其中,所述目标规则包括以下任意一项:
    第一规则,所述第一规则用于:根据待发送上行数据的大小与所述上行发送资源可发送上行数据的大小,确定所述目标过程;
    第二规则,所述第二规则用于:根据所述随机接入过程的触发事件,确定所述目标过程;
    第三规则,所述第三规则用于:将所述随机接入过程和所述上行数据发送过程确定为所述目标过程。
  10. 根据权利要求9所述的通信设备,其特征在于,在所述目标规则包括所述第一规则的情况下,所述第一确定模块,具体用于以下至少一项:
    在待发送上行数据的大小大于所述上行发送资源可发送上行数据的大小的情况下,将所述上行数据发送过程确定为所述目标过程;
    在待发送上行数据的大小小于或等于所述上行发送资源可发送上行数据的大小的情况下,将所述随机接入过程确定为所述目标过程。
  11. 根据权利要求9所述的通信设备,其特征在于,在所述目标规则包括所述第二规则的情况下,所述第一确定模块,具体用于:
    在所述随机接入过程的触发事件包括波束失败恢复的情况下,将所述随机接入过程确定为所述目标过程。
  12. 根据权利要求9所述的通信设备,其特征在于,在所述目标规则包括所述第三规则的情况下,所述第一确定模块,具体用于:
    将所述随机接入过程和所述上行数据发送过程确定为所述目标过程。
  13. 根据权利要求9至12中任一项所述的通信设备,其特征在于,所述目标规则由网络侧设备配置或由协议约定。
  14. 根据权利要求8所述的通信设备,其特征在于,所述上行发送资源包括第一信道资源和第二信道资源。
  15. 一种通信设备,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的资源使用方法的步骤。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的资源使用方法的步骤。
PCT/CN2020/117731 2019-09-27 2020-09-25 资源使用方法及通信设备 WO2021057902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910927095.4A CN112584496B (zh) 2019-09-27 2019-09-27 一种资源使用方法及通信设备
CN201910927095.4 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021057902A1 true WO2021057902A1 (zh) 2021-04-01

Family

ID=75110008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117731 WO2021057902A1 (zh) 2019-09-27 2020-09-25 资源使用方法及通信设备

Country Status (2)

Country Link
CN (1) CN112584496B (zh)
WO (1) WO2021057902A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517174A (zh) * 2015-11-20 2016-04-20 上海华为技术有限公司 一种传输数据的方法及装置
US20180324795A1 (en) * 2014-02-16 2018-11-08 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
CN109495886A (zh) * 2018-11-06 2019-03-19 海信集团有限公司 一种数据传输的方法和设备
CN110011773A (zh) * 2018-01-04 2019-07-12 联发科技股份有限公司 用于无线通信***的网络的随机接入过程的数据发送及接收方法
CN110140409A (zh) * 2017-01-05 2019-08-16 索尼公司 通信装置、基础设施设备和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2745601B1 (en) * 2011-09-30 2017-03-22 Nokia Technologies Oy Selection between random access and dedicated scheduling request resources
US10015824B2 (en) * 2014-02-28 2018-07-03 Lg Electronics Inc. Method and apparatus for transmitting uplink data having low latency in wireless communication system
CN106255223B (zh) * 2015-06-09 2020-10-09 电信科学技术研究院 一种进行随机接入的方法和设备
US10264607B2 (en) * 2015-07-03 2019-04-16 Lg Electronics Inc. Method and device for performing random access in wireless communication system
CN107736069B (zh) * 2016-01-08 2020-04-14 华为技术有限公司 数据传输方法及装置
US10455624B2 (en) * 2016-05-13 2019-10-22 Qualcomm Incorporated Ordered physical random access channel resource management
CN108271125B (zh) * 2017-01-04 2022-01-28 中兴通讯股份有限公司 数据发送、数据接收方法及装置
JP2020057822A (ja) * 2017-01-27 2020-04-09 シャープ株式会社 端末装置、基地局装置、および、通信方法
EP3603301A1 (en) * 2017-03-22 2020-02-05 Comcast Cable Communications, LLC Random access process in new radio
EP4236400A3 (en) * 2017-08-10 2023-09-13 Kyocera Corporation Communication control method
CN109392175B (zh) * 2017-08-11 2023-08-08 华为技术有限公司 调度请求的发送方法、调度请求的处理方法及相关设备
CN108834215B (zh) * 2018-04-20 2020-12-25 北京邮电大学 一种适用于上行小数据包的无连接传输方法及终端
US11729782B2 (en) * 2018-06-11 2023-08-15 Apple Inc. Enhanced uplink beam management

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180324795A1 (en) * 2014-02-16 2018-11-08 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
CN105517174A (zh) * 2015-11-20 2016-04-20 上海华为技术有限公司 一种传输数据的方法及装置
CN110140409A (zh) * 2017-01-05 2019-08-16 索尼公司 通信装置、基础设施设备和方法
CN110011773A (zh) * 2018-01-04 2019-07-12 联发科技股份有限公司 用于无线通信***的网络的随机接入过程的数据发送及接收方法
CN109495886A (zh) * 2018-11-06 2019-03-19 海信集团有限公司 一种数据传输的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "RACH-less with SSB Association", 3GPP DRAFT; R2-1905980 ENHANCED RACH-LESS SOLUTION FOR NR, vol. RAN WG2, 3 May 2019 (2019-05-03), Reno USA, pages 1 - 3, XP051710324 *

Also Published As

Publication number Publication date
CN112584496A (zh) 2021-03-30
CN112584496B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
US11706814B2 (en) Communications device, infrastructure equipment and methods
CN106470439B (zh) 用户设备的pdcp控制pdu传输的方法
EP3576452B1 (en) Information transmission method and apparatus for power headroom reporting in a multi-numerology or multi-beam scenario
US9439209B2 (en) Selection between random access and dedicated scheduling request resources
WO2018171634A1 (zh) 无线网络中的通信方法、装置和***
US20170353992A1 (en) Radio bearer reconfiguration method, radio bearer establishment method, user equipment, and base station
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
CN116889075A (zh) 用于侧行链路通信的方法和终端设备
US20210352743A1 (en) Communication method and apparatus
WO2013166670A1 (zh) 上行信道资源配置方法和设备
TWI700955B (zh) 處理雙連結中的測量組態的裝置及方法
WO2020259662A1 (zh) 一种随机接入的方法及通信装置
CN114175726B (zh) 用于移动性控制的无线通信方法
WO2017133470A1 (en) Early connection release
US20180160462A1 (en) Data Radio Bearer Establishment Method and Apparatus
EP3876464A1 (en) Internet of vehicles data transmission method, transmission terminal and network side device
US20230199895A1 (en) Methods and apparatus for data transmission in new radio (nr) inactive state
US20220124794A1 (en) Channel access method, terminal device, and network device
TWI670985B (zh) 處理雙連結的裝置及方法
WO2021057902A1 (zh) 资源使用方法及通信设备
WO2021139459A1 (zh) 一种发送sr的方法及设备
CN109845363B (zh) 一种路径转换方法及相关设备
WO2022036611A1 (zh) 一种数据传输方法及通信装置
US20240214127A1 (en) Method for data transmission, terminal device, and computer storage medium
WO2023001172A1 (zh) 推荐比特率确定方法、装置及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868595

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20868595

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20868595

Country of ref document: EP

Kind code of ref document: A1