WO2021057715A1 - 一种高效率的增材制造方法 - Google Patents

一种高效率的增材制造方法 Download PDF

Info

Publication number
WO2021057715A1
WO2021057715A1 PCT/CN2020/116802 CN2020116802W WO2021057715A1 WO 2021057715 A1 WO2021057715 A1 WO 2021057715A1 CN 2020116802 W CN2020116802 W CN 2020116802W WO 2021057715 A1 WO2021057715 A1 WO 2021057715A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
scrapers
scraper
forming cylinder
forming
Prior art date
Application number
PCT/CN2020/116802
Other languages
English (en)
French (fr)
Inventor
王泽敏
骆顺存
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021057715A1 publication Critical patent/WO2021057715A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention belongs to the technical field related to additive manufacturing, and more specifically, relates to a high-efficiency additive manufacturing method.
  • Additive manufacturing technology especially powder-based additive manufacturing technology, uses powder as raw material, according to a computer-designed three-dimensional CAD model, and uses high-energy beams (laser beams or electron beams) to irradiate the powdered raw materials through layer-by-layer sintering/ Melt accumulation forming directly manufactures the final product.
  • the formed parts have high performance, high surface quality and forming accuracy.
  • This technology has technical advantages such as short design and manufacturing cycle, no molds, no tools, and no restrictions on the shape of the model. It has been widely used in aerospace, military, and automobiles. , Medical and other fields.
  • the forming efficiency of additive manufacturing based on powder bed is not only affected by high energy beam power, scanning speed, powder layer thickness and other process parameters, but also greatly affected by the waiting time for powder spreading and the "idle" time of high energy beam.
  • the existing powder-based additive manufacturing powder spreading methods can be divided into two types: one-way powder spreading and two-way powder spreading.
  • the one-way powder spreading method adopts a single scraper single-stroke working mode. Across the powder feeding cylinder and forming cylinder, after each layer is processed, the powder spreading scraper needs to return to the initial position for powder spreading. This method of spreading powder is inefficient and takes a long time.
  • the two-way powder spreading method usually adopts single scraper mode or double scraper mode for two-way powder spreading, which reduces the idle stroke of the scraper.
  • the processing is still performed after a layer of powder is spread.
  • the forming cylinder is lowered by the height of the powder layer, and then the next layer of powder is spread.
  • There is a long waiting time for powder spreading which limits the further improvement of the forming efficiency of additive manufacturing equipment.
  • the high-energy beam between the layers still has a long "idle" time, so that repeated rapid melting and rapid solidification easily form a high temperature gradient and a high cooling rate inside the component, resulting in a high internal temperature. Stress causes the formed components to be easily warped, deformed or cracked.
  • the surface of the scraper will be worn or even damaged, or foreign matter will stick to it, which will cause changes in the thickness of the powder spreading and affect the quality of the powder spreading and the forming quality of the components.
  • the entire forming process needs to be aborted, the operation process is cumbersome, the installation accuracy is difficult to ensure, and it is difficult to ensure the continuity of the forming process.
  • the present invention provides a high-efficiency additive manufacturing method. Based on the characteristics of the existing additive manufacturing, a high-efficiency additive manufacturing method is researched and designed.
  • the number of powder spreading blades used for additive manufacturing is set to multiple, and each blade can be synchronized or independently for two-way continuous powder spreading.
  • the multiple scraper spreading method can realize the simultaneous multi-layer spreading and multi-layer processing. After the processing of multiple layers, the forming cylinder can lower the height of multiple powder layers at a time, which greatly improves the forming efficiency of the additive manufacturing equipment .
  • this application breaks through the limitations of additive manufacturing of single-layer powder coating and then single-layer processing of parts, ensures the continuity of the forming process, eliminates the waiting time for powder coating between layers and effectively reduces the "idle of high-energy beams" "Time, thereby significantly improving the internal stress of forming and improving the forming quality of parts.
  • the present invention provides a highly efficient additive manufacturing method, which mainly includes the following steps:
  • a forming device includes a forming cylinder, a plurality of powder feeding mechanisms and a plurality of scrapers, a plurality of the scrapers are arranged adjacent to the forming cylinder, and a plurality of the powder feeding mechanisms are arranged adjacent to the scrapers;
  • Multiple powder feeding mechanisms respectively feed powder to the multiple scrapers, and the multiple scrapers sequentially start spreading powder along the first direction according to the corresponding numbers.
  • multiple high-energy beams respectively lay the multiple scrapers.
  • the powder is scanned and formed, so that powder spreading and scanning processing are performed simultaneously until the processing of a predetermined number of layers is completed at a time, and the predetermined number is equal to the number of multiple scrapers;
  • the multiple scrapers are re-ordered and numbered, and the distance between the scrapers and the reference plane of the forming cylinder is re-adjusted, and then spreading along the second direction.
  • Powder and scanning processing until the processing of a predetermined number of layers is completed at one time, and the forming cylinder is lowered by a predetermined number of times the thickness of the powder layer; wherein, the first direction is opposite to the second direction;
  • a plurality of scrapers are numbered in turn according to the distance between the scrapers and the reference plane of the forming cylinder, and the scraper closest to the reference plane of the forming cylinder has the smallest number, and the one that is farthest from the reference plane of the forming cylinder has the smallest number.
  • the scraper has the largest number.
  • a plurality of the scrapers are arranged on the same side of the forming cylinder, and a plurality of the scrapers are arranged at intervals along the same direction.
  • the plurality of scrapers are equally divided into two groups, the two sets of scrapers are respectively arranged on opposite sides of the forming cylinder, and the two sets of scrapers are symmetrically arranged with respect to the forming cylinder.
  • a plurality of the scrapers are arranged around the forming cylinder.
  • a plurality of the scrapers are arranged at intervals along an arc, and the plurality of scrapers are numbered along the arc starting from the scraper at the end of the arc.
  • the powder materials contained in the multiple powder feeding mechanisms are the same or completely different;
  • the high-energy beam is a laser beam, an electron beam, or a combination thereof.
  • the material of the powder is metal powder, ceramic powder, polymer material powder or composite material powder.
  • each scraper can perform two-way continuous powder spreading independently or synchronously with other scrapers.
  • the forming device adopts one of a laser selective melting forming device, a laser selective sintering forming device, and an electron beam selective melting forming device.
  • the high-efficiency additive manufacturing method provided by the present invention mainly has the following beneficial effects:
  • the scraper can continuously move for two-way powder spreading, which reduces the number of reciprocation of the scraper, eliminates the idle stroke and waiting time of the single or double scraper in the powder spreading process, improves the powder spreading efficiency, and continuously spreads powder and continuous processing After multiple layers, the forming cylinder can lower the height of multiple powder layers at a time, which greatly improves the forming efficiency of the additive manufacturing equipment.
  • Powder spreading and high-energy beam processing can be performed simultaneously, which significantly shortens the "idle" time of high-energy beams; during the processing, the processed surface has not yet cooled down, and the next scraper has begun to spread powder, so you can use the previous
  • the cooled forming surface preheats the laid powder, helping to reduce the difference between the powder temperature and the melting temperature.
  • the high-energy beam scans the laid powder synchronously, which significantly reduces the cooling rate and temperature gradient, reduces the internal stress of the part due to the alternating cold and heat, reduces the possibility of part deformation, and improves the part The forming quality.
  • Multi-scraper bidirectional powder spreading can realize alternate spreading between layers of a variety of powder materials, providing a better solution for the preparation of composite materials, functionally gradient materials, multilayer or layered materials.
  • FIG. 1 is a schematic diagram of a single-side multi-squeegee synchronously spreading powder to the left involved in the high-efficiency additive manufacturing method provided by the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the laser beam/electron beam selective melting and forming of the single-sided multi-squeegee synchronous powder spreading involved in the high-efficiency additive manufacturing method in FIG. 1;
  • Fig. 3 is a schematic diagram of synchronously spreading powder on one side with multiple scrapers to the right involved in the high-efficiency additive manufacturing method in Fig. 1;
  • FIG. 4 is a schematic diagram of a single-sided multi-squeegee spreading powder independently to the left involved in the high-efficiency additive manufacturing method provided by the second embodiment of the present invention
  • Fig. 5 is a schematic diagram of the single-sided multi-scraper independent powder spreading laser beam/electron beam selective melting forming in the high-efficiency additive manufacturing method in Fig. 4;
  • Fig. 6 is a schematic diagram of the single-side multi-squeegee spreading powder to the right alone involved in the high-efficiency additive manufacturing method in Fig. 4;
  • FIG. 7 is a schematic diagram of the multi-scrapers on both sides independently spreading powder to the left involved in the high-efficiency additive manufacturing method provided by the third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the laser beam/electron beam selective melting and forming of powder with multiple scrapers on both sides involved in the high-efficiency additive manufacturing method in FIG. 7;
  • FIG. 9 is a schematic diagram of the high-efficiency additive manufacturing method in FIG. 7 involving multiple scrapers on both sides spreading powder independently to the right;
  • FIG. 10 is a schematic diagram of multiple scrapers arranged around the high-efficiency additive manufacturing method provided by the fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of multiple scrapers arranged around the high-efficiency additive manufacturing method in FIG. 10 along another angle;
  • FIG. 12 is a schematic diagram of the laser beam/electron beam selective melting and forming of the surrounding multi-squeegee continuous powder spreading involved in the high-efficiency additive manufacturing method in FIG. 10;
  • FIG. 13 is a schematic diagram of a single-sided multi-squeegee simultaneous powder spreading laser beam/electron beam selective melting preparation gradient or layered material involved in the high-efficiency additive manufacturing method provided by the fifth embodiment of the present invention.
  • FIG. 14 is a schematic flowchart of a high-efficiency additive manufacturing method provided by a preferred embodiment of the present invention.
  • the additive manufacturing method mainly includes the following steps:
  • Step 1 Provide a forming device, the forming device comprising a forming cylinder, a plurality of powder feeding mechanisms and a plurality of scrapers, a plurality of the scrapers are arranged adjacent to the forming cylinder, and a plurality of the powder feeding mechanisms are arranged adjacent to the scrapers.
  • the forming device further includes at least two powder recovery cylinders for recovering powder, and the powder recovery cylinder is arranged around the forming cylinder.
  • Step two sequentially number a plurality of scrapers, and respectively adjust the distance between the plurality of scrapers and the reference plane of the forming cylinder to the corresponding number multiple of the thickness of the powder layer, that is, between the scraper and the reference plane of the forming cylinder
  • the distance between the layers is a multiple of the thickness of the powder layer and is consistent with the number of the corresponding scraper.
  • Step 3 Multiple powder feeding mechanisms respectively feed powder to the multiple scrapers.
  • the multiple scrapers sequentially start spreading powder along the first direction according to the corresponding numbers.
  • multiple high-energy beams respectively lay the multiple scrapers.
  • the powder is scanned and formed, so that powder spreading and scanning processing are performed simultaneously, until the processing of a predetermined number of layers is completed at a time, and the predetermined number is equal to the number of a plurality of scrapers.
  • Step 4 After the forming cylinder drops a predetermined number of times the thickness of the powder layer, the multiple scrapers are re-ordered and numbered, and the distance between the scrapers and the reference plane of the forming cylinder is re-adjusted, and then the paving is performed along the second direction. Powder and scanning processing until the processing of a predetermined number of layers is completed at one time, and the forming cylinder is lowered by a predetermined number of times the thickness of the powder layer; wherein, the first direction is opposite to the second direction.
  • Step five repeat steps two to four until the integral forming of the parts is completed.
  • the first embodiment of the present invention provides a high-efficiency additive manufacturing method
  • the additive manufacturing method uses a single-side scraper synchronous powder spreading, laser selective melting/laser selective sintering/electronics The beam selection area is melted and formed.
  • This embodiment adopts a single-sided multi-squeegee method (that is, multiple scrapers are located on the same side of the forming cylinder). Each scraper is arranged at a certain interval according to the size of the upper surface of the part and the scanning time of each layer of high energy beam. All the scrapers can be Two-way continuous powder spreading is carried out simultaneously, and multiple focused laser beams/electron beams are used for rapid processing of different powder layers at the same time. Among them, before each high-energy beam is processed, the processing parameters are determined, and at the same time, it is ensured that each scraper is well spread.
  • the distance between the scraper and the reference plane of the forming cylinder is set to 1 powder layer thickness, and the scraper 1-2 adjacent to the scraper 1-1 is connected to the
  • the interval between the reference planes of the forming cylinder 6 is set to twice the thickness of the powder layer, the interval between the scraper 1-3 and the reference plane of the forming cylinder 6 is set to 3 times the thickness of the powder layer, the scraper 1-4
  • the distance from the reference plane of the forming cylinder 6 is set to 4 times the thickness of the powder layer, and so on, the distance between the scraper 1-n and the reference plane of the forming cylinder 6 is set to n of the thickness of the powder layer. Times.
  • the powder feeding mechanism cooperates with the spacing between the scrapers to feed powder quantitatively for each scraper, scraper 1-1, scraper 1-2, scraper 1-3, scraper 1-4, scraper 1-5, scraper 1-6, «, the scraper 1-n moves to the left synchronously to spread the powder.
  • high-energy beams focused laser beams/electron beams
  • high-energy beams 2-2 high-energy beams 2-3, ..., high-energy beams 2-n (or non-one A corresponding focused laser beam/electron beam 2-1, 2-2, 2-3,..., 2-m, and m>n)
  • the preset pattern of each layer respectively, the squeegee 1-1 and the squeegee 1 -2.
  • Scraper 1-3, Scraper 1-4,..., Scraper 1-n The area where powder has been laid is scanned and formed, that is, powder spreading and high-energy beam processing are performed simultaneously, until n-layer processing is completed at one time, and the excess powder is scraped Enter the left powder recovery cylinder 4-1, and then the piston 5 drives the forming cylinder 6 to move downwards, and the parts 7 and powder in the forming cylinder 6 also drop by n times the height of the powder layer thickness.
  • the height between the scraper 1-n closest to the forming cylinder 6 and the reference plane of the forming cylinder 6 is converted into a powder layer thickness, and the scraper 1-(n-1) and the forming cylinder 6
  • the height between the reference planes of 6 is adjusted to twice the thickness of the powder layer, and so on, the height between the scraper 1-1 and the reference plane of the forming cylinder 6 is converted to n times the thickness of the powder layer.
  • the powder feeding mechanism on the left side feeds each scraper quantitatively according to the distance between the scrapers, and then executes multiple scrapers to spread powder synchronously to the right, and multiple high-energy beams are processed simultaneously until n-layer processing is completed at one time.
  • the powder is scraped into the right powder recovery cylinder 4-1', and then the piston 5 moves downward, driving the parts 7 and the powder in the forming cylinder 6 to drop n times the height of the powder layer thickness.
  • the second embodiment of the present invention provides a high-efficiency additive manufacturing method
  • the additive manufacturing method uses a single-sided scraper to spread powder alone, laser selective melting/laser selective sintering/electronics The beam selection area is melted and formed.
  • This embodiment adopts a single-sided multi-squeegee method, each of which can independently carry out two-way continuous powder spreading, and multiple focused laser beams/electron beams are used to rapidly process the powder layer at the same time. Among them, before multiple focusing laser beam/electron beam processing, determine the processing process parameters, and at the same time ensure that each squeegee is spread well.
  • the height between the scraper 1-1 closest to the forming cylinder 6 and the reference plane of the forming cylinder 6 is set to 1 powder layer thickness
  • the scraper 1-2 adjacent to the scraper 1-1 is
  • the spacing between the reference planes of the forming cylinder 6 is set to twice the thickness of the powder layer
  • the spacing between the scraper 1-3 and the reference plane of the forming cylinder 6 is set to three times the thickness of the powder layer
  • the distance between the reference planes of the forming cylinder 6 is set to 4 times the thickness of the powder layer
  • the distance between the scraper 1-n and the reference plane of the forming cylinder 6 is set to n times the thickness of the powder layer .
  • the distance between the scraper 1-n closest to the forming cylinder 6 and the reference plane of the forming cylinder 6 is adjusted to a powder layer thickness
  • the scraper 1-(n-1) is the reference of the forming cylinder 6
  • the distance between the planes is adjusted to 2 times the thickness of the powder layer
  • the distance between the scraper 1-1 and the reference plane of the forming cylinder 6 is adjusted to n times the thickness of the powder layer
  • the powder feeding mechanism on the left Start to feed powder quantitatively to the front of each scraper, then scraper 1-n, scraper 1-(n-1), ..., scraper 1-3, scraper 1-2, scraper 1-1 move to the right in order to reverse Pour powder in the same direction, and multiple high-energy beams are processed simultaneously, until n-layer processing is completed at one time, and the excess powder is scraped into the right powder recovery cylinder 4-1', and the piston 5 moves downward to drive the forming cylinder 6 Part 7 and powder drop n times the thickness of the powder layer.
  • the third embodiment of the present invention provides a high-efficiency additive manufacturing method.
  • the additive manufacturing method uses multiple scrapers on both sides to spread powder independently, laser selective melting/laser selective sintering/ Electron beam selective melting and forming.
  • a plurality of scrapers are symmetrically arranged on both sides of the forming cylinder 6, and each scraper can independently carry out two-way continuous powder spreading, and multiple focused laser beams/electron beams are used to rapidly process the powder layer at the same time. Among them, before multiple focused laser beam/electron beam processing, the processing process parameters are determined, and at the same time, it is ensured that each scraper is well spread.
  • the distance between the scraper 1-1 and the scraper 1-1' closest to the forming cylinder 6 and the reference plane of the forming cylinder 6 are adjusted to a powder layer thickness
  • the scraper 1-1 and the scraper 1- The distances between 2'and the reference plane of the forming cylinder 6 are adjusted to twice the thickness of the powder layer, and the distances between the scraper 1-3 and the scraper 1-3' and the forming cylinder 6 are all adjusted to the powder layer 3 times the layer thickness, the spacing between the scraper 1-4 and the scraper 1-4' and the forming cylinder 6 are adjusted to 4 times the thickness of the powder layer, and so on, the scraper 1-n and the scraper 1-n' The distance from the reference plane of the forming cylinder 6 is adjusted to n times the thickness of the powder layer.
  • the right squeegee 1-1, squeegee 1-2, squeegee 1-3, squeegee 1-4, ..., squeegee 1 -n moves to the left to spread powder, and the powder feeding mechanism on the right side feeds powder quantitatively to the front position of each scraper, using one-to-one corresponding high-energy beam (focused laser beam/electron beam) 2-1, high-energy beam 2- 2.
  • High-energy beam 2-3, high-energy beam 2-4, ..., high-energy beam 2-n (or non-one-to-one focused laser beam/electron beam 2-1, 2-2, 2-3, ..., 2-m, and m>n)
  • the excess powder is scraped into the left powder recovery cylinder 4-1 for recovery, and the piston 5 moves downwards to drive the forming cylinder 6 Part 7 and powder drop n times the height of the powder layer thickness.
  • the scraper 1-1, scraper 1-2, scraper 1-3, scraper 1-4, ..., scraper 1-n synchronously return to the right side
  • the left side powder feeding mechanism moves to the front position of each scraper Quantitative powder feeding
  • right scraper 1-1', scraper 1-2', scraper 1-3', scraper 1-4', ..., scraper 1-n' moves to the right for powder spreading, and multiple high-energy
  • the beam is processed synchronously until n-layer processing is completed at one time, and the excess powder is scraped into the right powder recovery cylinder 4-1' for recovery, and then the piston 5 moves downward, driving the parts and powder in the forming cylinder 6 to drop by n times the thickness of the powder layer Height, squeegee 1-1', squeegee 1-2', squeegee 1-3', squeegee 1-4',..., squeegee 1-n' returns to the left side synchronously.
  • the fourth embodiment of the present invention provides a high-efficiency additive manufacturing method.
  • the additive manufacturing method uses multiple scrapers around the forming cylinder 6 for continuous powder spreading and laser selective melting/ Laser selective sintering/electron beam selective melting and forming.
  • multiple scrapers and multiple powder recovery cylinders are arranged around the forming cylinder 6, and each scraper can be used for continuous two-way powder spreading, and multiple powder feeding mechanisms are arranged above the forming cylinder, and multiple focused lasers are used.
  • the beam/electron beam simultaneously processes the powder layer quickly. Among them, before multiple focused laser beam/electron beam processing, the processing process parameters are determined, and at the same time, it is ensured that each scraper is well spread.
  • the distance between the scraper 1-1 and the reference plane of the forming cylinder 6 is adjusted to a thickness of the powder layer, and the distance between the scraper 1-2 and the reference plane of the forming cylinder 6 is adjusted to the thickness of the powder layer.
  • the distance between the scraper 1-3 and the reference plane of the forming cylinder 6 is adjusted to 3 times the thickness of the powder layer.
  • the powder feeding mechanism 3-1, the powder feeding mechanism 3-2 and the powder feeding mechanism 3-3 respectively feed powder quantitatively to the front position of the scraper 1-1, the scraper 1-2, and the scraper 1-3, and then the scraper 1-1 , The scraper 1-2 and the scraper 1-3 continuously move to the forming cylinder 6 to lay down the corresponding powder.
  • one-to-one corresponding high-energy beam (focused laser beam/electron beam) 2-1, high-energy beam 2-2, high-energy beam 2-3 (or non-one-to-one corresponding focused laser beam/electron beam 2-1, 2 -2, 2-3,..., 2-m, and m>n) Scan and shape the areas where the powder has been applied to the scraper 1-1, scraper 1-2, and scraper 1-3 according to the preset pattern, That is, powder laying and high-energy beam processing are performed simultaneously until the three-layer processing is completed, and the excess powder is scraped into the corresponding powder recovery cylinder 4-4, powder recovery cylinder 4-5, and powder recovery cylinder 4-6.
  • the forming cylinder 6 Driven by the piston 5, the parts 7 and the powder in the lower part are 3 times the height of the powder layer.
  • the powder feeding mechanism 3-4, the powder feeding mechanism 3-5, and the powder feeding mechanism 3-6 respectively feed the powder quantitatively to the front position of the scraper 1-1, the scraper 1-2, and the scraper 1-3, and then the scraper 1-1 , Scraper 1-2, scraper 1-3 reverse movement to lay the corresponding powder.
  • one-to-one corresponding high-energy beam 2-1, high-energy beam 2-2, high-energy beam 2-3 (or non-one-to-one corresponding focused laser beam/electron beam 2-1, 2-2, 2-3,... ..., 2-m, and m>n) Scan and shape the areas where the scraper 1-1, scraper 1-2, and scraper 1-3 have been coated according to the preset pattern, until the 3-layer processing is completed.
  • the powder is scraped into the corresponding powder recovery cylinder 4-1, the powder recovery cylinder 4-2, and the powder recovery cylinder 4-3 respectively.
  • the parts 7 and powder in the forming cylinder 6 are driven by the piston 5 to drop 3 times.
  • a single-sided multi-squeegee synchronous powder spreading, laser beam/electron beam selective melting is used to prepare gradient or layered materials.
  • a plurality of scrapers are arranged on one side of the forming cylinder 6, each scraper can simultaneously perform continuous bidirectional powder spreading, and a plurality of powder feeding mechanisms are respectively arranged above the two sides of the forming cylinder 6.
  • the scraper 1-1 is responsible for laying the first powder
  • the scraper 1-2 is responsible for laying the second powder
  • the scraper 1-n is responsible for laying the nth powder.
  • multiple focused laser beams/electron beams are used to process powder layers of different materials to quickly prepare gradient or layered materials. Among them, before each focused laser beam/electron beam processing, the processing process parameters are determined, and at the same time, it is ensured that each squeegee is well spread.
  • the distance between the scraper 1-1 closest to the forming cylinder 6 and the reference plane of the forming cylinder 6 is set to a thickness of the powder layer, and the distance between the scraper 1-2 and the reference plane of the forming cylinder 6
  • the distance between the scrapers 1-3 and the reference plane of the forming cylinder 6 is set to be 3 times the thickness of the powder layer, the scrapers 1-4 and the reference plane of the forming cylinder 6
  • the distance between is set to 4 times the thickness of the powder layer, and so on, the distance between the scraper 1-n and the reference plane of the forming cylinder 6 is set to n times the thickness of the powder layer.
  • the powder feeding mechanism 3-1, the powder feeding mechanism 3-2, the powder feeding mechanism 3-3, the powder feeding mechanism 3-4,..., the powder feeding mechanism 3-n are respectively directed to the scraper 1-1, the scraper 1-2 , Squeegee 1-3, Squeegee 1-4,..., the front position of Squeegee 1-n synchronously feeds powder, then Squeegee 1-1, Squeegee 1-2, Squeegee 1-3, Squeegee 1-4,..., The scraper 1-n moves to the left synchronously to lay down the corresponding powder.
  • Scraper 1-3, squeegee 1-4,..., squeegee 1-n where the powder has been laid is scanned and formed, that is, powder laying and focused laser beam/electron beam processing are performed simultaneously, until n-layer processing is completed at one time.
  • the excess powder is scraped into the left powder recovery cylinder 4-1, and the piston 5 moves downward, driving the parts 7 and the powder in the forming cylinder 6 to drop by n times the thickness of the powder layer.
  • the powder feeding mechanism 3-1', the powder feeding mechanism 3-2', the powder feeding mechanism 3-3', the powder feeding mechanism 3-4',..., the powder feeding mechanism 3-n' respectively quantitatively feed powder, and execute Multiple scrapers spread powder synchronously to the right, and multiple focused laser beams/electron beams are processed synchronously, until n-layer processing is completed at one time, and the excess powder is scraped into the right powder recovery cylinder 4-1', and then the piston 5 moves downward to drive it
  • the parts 7 and powder in the forming cylinder 6 are reduced by n times the height of the powder layer thickness.
  • the multi-squeegee continuous bidirectional powder spreading method in the present invention eliminates the waiting time for spreading powder between layers and effectively shortens the "idle" time of high-energy beams, greatly improves the forming efficiency of additive manufacturing equipment, and ensures the smoothness of the forming process. Continuity, thereby improving the internal stress and the microstructure of the control member, can also realize the rapid preparation of composite materials, functionally gradient materials, multilayer or layered materials.
  • each scraper can simultaneously or independently perform two-way continuous powder spreading, and the scraper can be arranged on one side, two sides or around the forming cylinder.
  • This method can realize multi-layer spreading. Powder and multi-layer processing are carried out simultaneously, eliminating the waiting time for powder spreading between layers and effectively shortening the "idle" time of high-energy beams, which not only greatly improves the forming efficiency of additive manufacturing equipment, but also significantly improves the forming stress.
  • the processing method can be laser selective melting, laser selective sintering or electron beam selective melting forming.
  • the high-energy beam can be laser beam, electron beam or a combination thereof, and the forming material can be metal, ceramic, polymer or composite material. , Can realize the rapid preparation of composite materials, functionally gradient materials, multilayer materials or layered materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于增材制造相关技术领域,其公开了一种高效率的增材制造方法,方法包括以下步骤:(1)提供成形装置,成形装置包括成形缸及多个刮刀;(2)依次对多个刮刀进行排序编号,并分别将多个刮刀与成形缸的基准表面之间的间距调整为粉末层层厚的对应编号倍数;(3)多个刮刀按照对应的编号依次先后开始进行铺粉,同时,多个高能束分别对多个刮刀铺设好的粉末进行扫描成形,由此铺粉与扫描加工同步进行,直至完成预定个数层的加工;(4)成形缸下降粉末层层厚的预定个数倍后,继而重新铺粉及扫描加工,直至完成预定个数层的加工,成形缸再次下降;(5)重复步骤(2)-(4),直至完成整体成形。本发明提高了成形效率及成形质量。

Description

一种高效率的增材制造方法 【技术领域】
本发明属于增材制造相关技术领域,更具体地,涉及一种高效率的增材制造方法。
【背景技术】
增材制造技术,尤其是粉末基增材制造技术,是以粉末为原料,根据计算机设计的三维CAD模型,利用高能束(激光束或者电子束)对粉末原料进行辐照,通过逐层烧结/熔化堆积成形直接制造最终产品。成形的零件具有高性能、高的表面质量和成形精度,该技术是具有设计制造周期短、无模具、无刀具、不受模型形状限制等技术优势,已经广泛的应用到航空航天、军工、汽车、医疗等领域。
基于粉末床的增材制造成形效率除了受高能束功率、扫描速度、粉末层厚等工艺参数影响外,很大程度上受铺粉等待时间和高能束“闲置”时间的影响。零件越高,成形层数越多,则铺粉次数越多,铺粉等待时间和高能束“闲置”时间越长,导致整个零件加工时间加长,成形效率降低。
现有粉末基增材制造铺粉方法可以分为单向铺粉和双向铺粉两种,其中,单向铺粉方法是采用单刮刀单行程工作模式,每次铺粉时,铺粉刮刀需要横跨送粉缸及成形缸,每加工完一层后,铺粉刮刀需要返回至初始位置进行铺粉。这种铺粉方式效率低,耗时长。双向铺粉的方法通常采用单刮刀模式或者双刮刀模式进行双向铺粉,减少了刮刀的空行程。
但是无论是单刮刀模式还是双刮刀模式,仍然是铺完一层粉末之后再进行加工,待加工完一层粉末之后成形缸下降一个粉末层厚的高度,然后再进行下一层铺粉,均存在较长的铺粉等待时间,限制了增材制造装备成形效率的进一步提高。而且,由于需要等待铺粉,层与层之间高能束“闲置”时间仍然较长,这样反复的快速熔化和快速凝固容易在构件内部形成高的温度梯度和高的冷却速 率,产生高的内应力,导致成形构件易翘曲变形或者开裂。
此外,随着加工层数的增加,刮刀表面会受到磨损甚至破损,或者粘有异物,导致铺粉厚度发生变化,影响铺粉质量和构件成形质量。对于单刮刀或者双刮刀模式,此时更换新的刮刀,需要中止整个成形过程,操作过程繁琐,安装精度难以保证,且难以确保成形过程的连续性。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种高效率的增材制造方法,其基于现有增材制造的特点,研究及设计了一种高效率的增材制造方法。该方法将用于增材制造的铺粉刮刀数量设置为多个,每个刮刀可以同步或者独自进行双向连续铺粉。多个刮刀铺粉方法可以实现多层铺粉与多层加工同步进行,待加工完多层后,成形缸可一次下降多个粉末层厚的高度,大幅度提高了增材制造装备的成形效率。此外,本申请突破了增材制造单层铺粉再单层加工零部件的局限性,确保成形过程的连续性,消除了层与层之间铺粉等待时间和有效地缩短了高能束“闲置”时间,从而显著改善成形内应力,提高了零件的成形质量。
为实现上述目的,本发明提供了一种高效率的增材制造方法,所述增材制造方法主要包括以下步骤:
(1)提供成形装置,所述成形装置包括成形缸、多个送粉机构及多个刮刀,多个所述刮刀临近所述成形缸设置,多个所述送粉机构临近所述刮刀设置;
(2)依次对多个刮刀进行排序编号,并分别将多个刮刀与所述成形缸的基准平面之间的间距调整为粉末层层厚的对应编号倍数,即刮刀与成形缸的基准平面之间的间距为粉末层层厚的倍数与对应的刮刀的编号相一致;
(3)多个送粉机构分别给多个所述刮刀送粉,多个刮刀按照对应的编号依次先后开始沿第一方向进行铺粉,同时,多个高能束分别对多个刮刀铺设好的粉末进行扫描成形,由此铺粉与扫描加工同步进行,直至一次完成预定个数层的加工,该预定个数与多个刮刀的数量相等;
(4)所述成形缸下降粉末层层厚的预定个数倍后,重新对多个刮刀进行排 序编号,并重新调整刮刀与成形缸的基准平面之间的间距,继而沿第二方向进行铺粉及扫描加工,直至一次性完成预定个数层的加工,所述成形缸再下降粉末层层厚的预定个数倍;其中,所述第一方向与所述第二方向相反;
(5)重复步骤(2)至步骤(4),直至完成零部件的整体成形。
进一步地,按照刮刀距离所述成形缸基准平面的距离自近到远依次对多个刮刀进行编号,距离所述成形缸基准平面最近的刮刀的编号最小,距离所述成形缸基准平面最远的刮刀编号最大。
进一步地,多个所述刮刀设置于所述成形缸的同一侧,且多个所述刮刀沿同一个方向间隔设置。
进一步地,多个所述刮刀均分为两组,两组所述刮刀分别设置在所述成形缸相背的两侧,且两组所述刮刀相对于所述成形缸对称设置。
进一步地,两组所述刮刀交替进行铺粉。
进一步地,多个所述刮刀围绕所述成形缸布置。
进一步地,多个所述刮刀沿一个弧形间隔设置,自处于弧形端部的刮刀开始沿着所述弧形对多个所述刮刀进行编号。
进一步地,多个所述送粉机构内收容的粉末材质相同或者完全不同;所述高能束为激光束、电子束或者其组合。
进一步地,所述粉末的材质为金属粉末、陶瓷粉末、高分子材料粉末或者复合材料粉末。
进一步地,每个刮刀能独自进行双向连续铺粉或者与其他刮刀同步双向连续铺粉。
进一步地,所述成形装置采用激光选区熔化成形装置、激光选区烧结成形装置、电子束选区熔化成形装置中的一种。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明提供的高效率的增材制造方法主要具有以下有益效果:
1.刮刀均可以连续运动进行双向铺粉,减少了刮刀往复次数,消除了单刮刀或双刮刀在铺粉过程中的空行程及等待时间,提高了铺粉效率,且连续铺粉 和连续加工多层之后,成形缸可一次下降多个粉末层厚的高度,大大地提高了增材制造装备的成形效率。
2.铺粉和高能束加工可以同步进行,这样显著地缩短了高能束“闲置”时间;加工过程中,已加工的表面还没有冷却下来,下一个刮刀已经开始铺粉,因此可以利用前面未冷却的成形表面对铺设的粉末进行预热,有助于减少粉末温度与熔融温度的差值。同时,高能束同步对已经铺设的粉末进行扫描,这样显著地降低了冷却速率和温度梯度,使零件由于冷热交变而产生的内应力减小,降低了零件变形的可能性,提高了零件的成形质量。
3.多个刮刀可上下精准调整与成形缸基准平面之间的高度,在成形过程中,若有刮刀发生磨损或破损,可利用其他刮刀进行替换,然后继续执行铺粉,这不仅避免了刮刀磨损带来的铺粉厚度变化,还避免了因刮刀破损而中止实验或重新安装刮刀的繁琐过程,操作方便,既保证了成形过程的连续性,又保证了成形质量及表面精度。此外,在多个刮刀的作用下,单个刮刀负责铺粉的层数相对减少,从而提高了刮刀寿命。
4.多刮刀双向铺粉,可以对多种粉末材料实现层与层之间交替铺粉,为复合材料、梯度功能材料、多层或分层材料的制备提供了更好的解决方案。
【附图说明】
图1是本发明第一实施方式提供的高效率的增材制造方法涉及的单侧多刮刀同步向左铺粉的示意图;
图2是图1中的高效率的增材制造方法涉及的单侧多刮刀同步铺粉激光束/电子束选区熔化成形示意图;
图3是图1中的高效率的增材制造方法涉及的单侧多刮刀同步向右铺粉示意图;
图4是本发明第二实施方式提供的高效率的增材制造方法涉及的单侧多刮刀独自向左铺粉的示意图;
图5是图4中的高效率的增材制造方法涉及的单侧多刮刀独自铺粉激光束/电子束选区熔化成形示意图;
图6是图4中的高效率的增材制造方法涉及的单侧多刮刀独自向右铺粉的示意图;
图7是本发明第三实施方式提供的高效率的增材制造方法涉及的两侧多刮刀独自向左铺粉的示意图;
图8是图7中的高效率的增材制造方法涉及的两侧多刮刀独自铺粉激光束/电子束选区熔化成形示意图;
图9是图7中的高效率的增材制造方法涉及的两侧多刮刀独自向右铺粉的示意图;
图10是本发明第四实施方式提供的高效率的增材制造方法涉及的周围布置的多刮刀示意图;
图11是图10中的高效率的增材制作方法涉及的周围布置的多刮刀沿另一个角度的示意图;
图12是图10中的高效率的增材制造方法涉及的周围布置的多刮刀连续铺粉激光束/电子束选区熔化成形示意图;
图13是本发明第五实施方式提供的高效率的增材制造方法涉及的单侧多刮刀同步铺粉激光束/电子束选区熔化制备梯度或者分层材料的示意图;
图14是本发明较佳实施方式提供的高效率的增材制造方法的流程示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:5-活塞,6-成形缸,7-零件。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图14,本发明较佳实施方式提供的高效率的增材制造方法,所述增材制造方法主要包括以下步骤:
步骤一,提供成形装置,所述成形装置包括成形缸、多个送粉机构及多个 刮刀,多个所述刮刀临近所述成形缸设置,多个所述送粉机构临近所述刮刀设置。
具体地,所述成形装置还包括至少两个粉末回收缸,其用于回收粉末,以及所述粉末回收缸绕所述成形缸设置。
步骤二,依次对多个刮刀进行排序编号,并分别将多个刮刀与所述成形缸的基准平面之间的间距调整为粉末层层厚的对应编号倍数,即刮刀与成形缸的基准平面之间的间距为粉末层层厚的倍数与对应的刮刀的编号相一致。
步骤三,多个送粉机构分别给多个所述刮刀送粉,多个刮刀按照对应的编号依次先后开始沿第一方向进行铺粉,同时,多个高能束分别对多个刮刀铺设好的粉末进行扫描成形,由此铺粉与扫描加工同步进行,直至一次完成预定个数层的加工,该预定个数与多个刮刀的数量相等。
步骤四,所述成形缸下降粉末层层厚的预定个数倍后,重新对多个刮刀进行排序编号,并重新调整刮刀与成形缸的基准平面之间的间距,继而沿第二方向进行铺粉及扫描加工,直至一次性完成预定个数层的加工,所述成形缸再下降粉末层层厚的预定个数倍;其中,所述第一方向与所述第二方向相反。
步骤五,重复步骤二至步骤四,直至完成零部件的整体成形。
请参阅图1、图2及图3,本发明第一实施方式提供的高效率的增材制造方法,所述增材制造方法采用单侧刮刀同步铺粉、激光选区熔化/激光选区烧结/电子束选区熔化成形。
本实施方式采用单侧多刮刀方式(即多个所述刮刀位于所述成形缸的同一侧),每个刮刀根据零件上表面尺寸和每层高能束扫描时间按照一定间距排开,所有刮刀可以同步进行双向连续铺粉,且采用多个聚焦激光束/电子束同时对不同粉末层进行快速加工。其中,在每个高能束加工之前,确定加工工艺参数,同时确保每个刮刀铺粉良好。
首先,需要设置刮刀与成形缸基准平面之间的间距。具体地,将距离所述成形缸6最近的一个刮刀1-1与所述成形缸6的基准平面之间的间隔设置为1个粉层厚度,临近刮刀1-1的刮刀1-2与所述成形缸6的基准平面之间的间隔设 置为粉层厚度的2倍,刮刀1-3与所述成形缸6的基准平面之间的间隔设置为粉层厚度的3倍,刮刀1-4与所述成形缸6的基准平面之间的间距设置为粉层厚度的4倍,以此类推,刮刀1-n与所述成形缸6的基准面之间的间距设置为粉层厚度的n倍。
接着,送粉机构根据刮刀之间的间距配合为每个刮刀定量送粉,刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4、刮刀1-5、刮刀1-6,……,刮刀1-n同步向左运动进行铺粉。同时,采用分别与多个刮刀一一对应的高能束(聚焦激光束/电子束)2-1、高能束2-2、高能束2-3,……,高能束2-n(或非一一对应的聚焦激光束/电子束2-1,2-2,2-3,……,2-m,且m>n)按照每层预先设定的图形分别对刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4,……,刮刀1-n已经铺设粉末的区域进行扫描成形,即铺粉与高能束加工同步进行,直至一次完成n层加工,多余的粉末刮入左粉末回收缸4-1,然后活塞5带动所述成形缸6向下运动,所述成形缸6内的零件7及粉末也下降n倍粉末层厚的高度。
之后,将距离所述成形缸6最近的一个刮刀1-n与所述成形缸6的基准平面之间的高度变换为1个粉层厚度,刮刀1-(n-1)与所述成形缸6的基准平面之间的高度调整为粉层厚度的2倍,以此类推,刮刀1-1与所述成形缸6的基准平面之间的高度变换为粉层厚度的n倍。同时,左侧送粉机构根据刮刀之间的间距配合为每个刮刀定量送粉,然后执行多个刮刀同步向右铺粉,且多个高能束同步加工,直至一次完成n层加工,多余的粉末刮入右粉末回收缸4-1’,然后所述活塞5向下运动,带动所述成形缸6中的零件7和粉末下降n倍粉末层厚的高度。
重复以上步骤,直至完成零部件的整体成形。
请参阅图4,图5及图6,本发明第二实施方式提供的高效率的增材制造方法,所述增材制造方法采用单侧刮刀独自铺粉、激光选区熔化/激光选区烧结/电子束选区熔化成形。
本实施方式采用单侧多刮刀方式,每个刮刀可以分别独自进行双向连续铺粉,采用多个聚焦激光束/电子束同时对粉末层进行快速加工。其中,在多个聚 焦激光束/电子束加工之前,确定加工工艺参数,同时确保每个刮刀铺粉良好。
首先,将距离所述成形缸6最近的一个刮刀1-1与所述成形缸6的基准平面之间的高度设置为1个粉层厚度,临近刮刀1-1的刮刀1-2与所述成形缸6的基准平面之间的间隔设置为粉层厚度的2倍,刮刀1-3与所述成形缸6的基准平面之间的间距设置为粉层厚度的3倍,刮刀1-4与所述成形缸6的基准平面之间的间距设置为粉层厚度的4倍,以此类推,刮刀1-n与所述成形缸6的基准平面之间的间距设置为粉层厚度的n倍。
接着,在确保成形区内的刮刀铺粉和高能束加工互不干扰的前提下,刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4、刮刀1-5、刮刀1-6,……,刮刀1-n先后向左运动进行铺粉,且右侧送粉机构往每个刮刀的前方位置定量送粉。此外,采用一一对应的高能束(聚焦激光束/电子束)2-1、高能束2-2、高能束2-3、高能束2-4、高能束2-4,……,高能束2-n(或非一一对应的聚焦激光束/电子束2-1,2-2,2-3,……,2-m,且m>n)按照预先设定的图形分别对刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4,……,刮刀1-n已经铺设好粉末的区域进行扫描成形,即铺粉与高能束加工同步进行,直至一次完成n层加工,多余的粉末刮入左粉末回收缸4-1,所述活塞5向下运动,带动所述成形缸6中的零件7和粉末下降n倍粉末层厚的高度。
之后,将距离所述成形缸6最近的一个刮刀1-n与所述成形缸6的基准平面之间的间距调整为一个粉层厚度,刮刀1-(n-1)与成形缸6的基准平面之间的间距调整为粉层层厚的2倍,依此类推,刮刀1-1与所述成形缸6的基准平面之间的间隔调整为粉层厚度的n倍,左侧送粉机构开始往每个刮刀的前方位置定量送粉,然后刮刀1-n,刮刀1-(n-1),……,刮刀1-3,刮刀1-2,刮刀1-1先后向右运动进行反向铺粉,且多个高能束同步加工,直至一次完成n层加工,多余的粉末刮入右粉末回收缸4-1’,所述活塞5向下运动,以带动所述成形缸6中的零件7和粉末下降粉层厚度的n倍。
重复以上步骤,直至完成零部件的整体成形。
请参阅图7、图8及图9,本发明第三实施方式提供的高效率的增材制造方 法,所述增材制造方法采用两侧多刮刀独自铺粉、激光选区熔化/激光选区烧结/电子束选区熔化成形。
本实施方式在所述成形缸6的两侧对称设置多个刮刀,每个刮刀可以独自进行双向连续铺粉,采用多个聚焦激光束/电子束同时对粉末层进行快速加工。其中,在多个聚焦激光束/电子束加工之前,确定加工工艺参数,同时确保每个刮刀铺粉良好。
首先,将距离所述成形缸6最近的刮刀1-1和刮刀1-1’与所述成形缸6的基准平面之间的间距均调整为一个粉层厚度,刮刀1-1和刮刀1-2’与所述成形缸6的基准平面之间的间距均调整为粉层厚度的2倍,刮刀1-3和刮刀1-3’与所述成形缸6之间的间距均调整为粉层层厚的3倍,刮刀1-4及刮刀1-4’与所述成形缸6之间的间距均调整为粉层厚度的4倍,以此类推,刮刀1-n和刮刀1-n’与所述成形缸6的基准平面之间的间距调整为粉层厚度的n倍。
接着,在确保成形区刮刀铺粉、激光束/电子束加工互不干扰的前提下,右侧刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4,……,刮刀1-n先后向左运动进行铺粉,且右侧送粉机构往每个刮刀的前方位置定量送粉,采用一一对应的高能束(聚焦激光束/电子束)2-1、高能束2-2、高能束2-3、高能束2-4,……,高能束2-n(或非一一对应的聚焦激光束/电子束2-1,2-2,2-3,……,2-m,且m>n)按照预先设定好的图形分别对刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4,……,刮刀1-n已经铺设粉末的区域进行扫描成形,即铺粉与高能束加工同步进行,直至一次完成n层加工,多余的粉末刮入左粉末回收缸4-1进行回收,活塞5向下运动,带动所述成形缸6内的零件7和粉末下降n倍粉层厚度的高度。
之后,刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4,……,刮刀1-n同步返回右侧,与此同时,左侧送粉机构往每个刮刀的前方位置定量送粉,右侧刮刀1-1’、刮刀1-2’、刮刀1-3’、刮刀1-4’,……,刮刀1-n’先后向右运动进行铺粉,且多个高能束同步加工,直至一次完成n层加工,多余的粉末刮入右粉末回收缸4-1’进行回收,然后活塞5向下运动,带动成形缸6中的零件和粉末下降n倍粉末层厚的高度,刮刀1-1’、刮刀1-2’、刮刀1-3’、刮刀1-4’,……,刮刀1-n’同步 返回左侧。
重复以上步骤,直至完成零部件的整体成形。
请参阅图10、图11及图12,本发明第四实施方式提供的高效率的增材制造方法,所述增材制造方法采用在成形缸6周围布置多刮刀连续铺粉、激光选区熔化/激光选区烧结/电子束选区熔化成形。
本实施方式中,在成形缸6周围布置多个刮刀及多个粉末回收缸,每个刮刀可进行连续双向铺粉,且在成形缸周围的上方布置多个送粉机构,采用多个聚焦激光束/电子束同时对粉末层进行快速加工。其中,在多个聚焦激光束/电子束加工之前,确定加工工艺参数,同时确保每个刮刀铺粉良好。
首先,将刮刀1-1与所述成形缸6的基准平面之间的间距调整为一个粉层厚度,刮刀1-2与所述成形缸6的基准平面之间的间距调整为粉层厚度的2倍,刮刀1-3与所述成形缸6的基准平面之间的间距调整为粉层厚度的3倍。送粉机构3-1、送粉机构3-2及送粉机构3-3分别向所述刮刀1-1、刮刀1-2、刮刀1-3的前方位置定量送粉,然后刮刀1-1、刮刀1-2、刮刀1-3连续向所述成形缸6运动以铺设相应的粉末。同时,采用一一对应的高能束(聚焦激光束/电子束)2-1、高能束2-2、高能束2-3(或非一一对应的聚焦激光束/电子束2-1,2-2,2-3,……,2-m,且m>n)按照预先设定的图形分别对刮刀1-1、刮刀1-2、刮刀1-3已经铺设粉末的区域进行扫描成形,即铺设粉末与高能束加工同步进行,直至完成3层加工,多余的粉末分别刮入对应的粉末回收缸4-4、粉末回收缸4-5、粉末回收缸4-6,所述成形缸6中的零件7和粉末在所述活塞5的带动下下降3倍粉末层厚的高度。
接着,送粉机构3-4、送粉机构3-5、送粉机构3-6分别向刮刀1-1、刮刀1-2、刮刀1-3的前方位置定量送粉,然后刮刀1-1、刮刀1-2、刮刀1-3反向运动铺设相应的粉末。同时,采用一一对应的高能束2-1、高能束2-2、高能束2-3(或非一一对应的聚焦激光束/电子束2-1,2-2,2-3,……,2-m,且m>n)按照预先设定的图形分别对刮刀1-1、刮刀1-2、刮刀1-3已经铺设粉末的区域进行扫描成形,直至完成3层加工,多余的粉末分别刮入对应的粉末回收缸4-1、粉末回 收缸4-2、粉末回收缸4-3,所述成形缸6中的零件7和粉末在所述活塞5的带动下再下降3倍粉末层厚的高度。
重复以上步骤,直至完成零部件的整体成形。
请参阅图13,本实施方式采用单侧多刮刀同步铺粉、激光束/电子束选区熔化制备梯度或者分层材料。本实施方式在成形缸6的一侧布置多个刮刀,每个刮刀可同步进行连续双向铺粉,且在所述成形缸6两侧的上方分别布置多个送粉机构。刮刀1-1负责铺设第一种粉末,刮刀1-2负责铺设第二种粉末,以此类推,刮刀1-n负责铺设第n种粉末。同时,利用多个聚焦激光束/电子束对不同材料的粉末层进行加工,快速制备梯度或者分层材料。其中,在每个聚焦激光束/电子束加工之前,确定加工工艺参数,同时确保每个刮刀铺粉良好。
首先,将距离所述成形缸6最近的刮刀1-1与所述成形缸6的基准平面之间的间距设置为一个粉层厚度,刮刀1-2与所述成形缸6的基准平面之间的间距设置为粉层厚度的2倍,刮刀1-3与所述成形缸6的基准平面之间的间距设置为粉层厚度的3倍,刮刀1-4与所述成形缸6的基准平面之间的间距设置为粉层厚度的4倍,以此类推,刮刀1-n与所述成形缸6的基准平面之间的间距设置为粉层厚度的n倍。
接着,送粉机构3-1、送粉机构3-2、送粉机构3-3、送粉机构3-4,……,送粉机构3-n分别向刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4,……,刮刀1-n的前方位置同步定量送粉,然后刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4,……,刮刀1-n同步向左运动铺设相应的粉末。同时,采用一一对应的高能束(聚焦激光束/电子束)2-1、高能束2-2、高能束2-3、高能束2-4,……,高能束2-n(或非一一对应的聚焦激光束/电子束2-1,2-2,2-3,……,2-m,且m>n)按照预先设定的图形分别对刮刀1-1、刮刀1-2、刮刀1-3、刮刀1-4,……,刮刀1-n已经铺设好粉末的区域进行扫描成形,即铺设粉末与聚焦激光束/电子束加工同步进行,直至一次完成n层加工,多余的粉末刮入左粉末回收缸4-1,活塞5向下运动,带动成形缸6中的零件7和粉末下降n倍粉末层厚的高度。
之后,将距离成形缸最近的刮刀1-n与成形缸6的基准平面之间的高度调整 为1个粉层厚度,刮刀1-(n-1)与成形缸6的基准平面之间的高度调整为粉层厚度的2倍,以此类推,刮刀1-1与成形缸6的基准平面之间的高度调整为粉层厚度的n倍。同时,送粉机构3-1’、送粉机构3-2’、送粉机构3-3’、送粉机构3-4’,……,送粉机构3-n’分别定量送粉,执行多个刮刀同步向右铺粉,且多个聚焦激光束/电子束同步加工,直至一次完成n层加工,多余的粉末刮入右粉末回收缸4-1’,然后活塞5向下运动,带动所述成形缸6中的零件7和粉末下降n倍粉层层厚的高度。
重复以上步骤,直至完成梯度或者分层材料零部件的整体成形。
本发明中多刮刀连续双向铺粉方法消除了层与层之间铺粉等待时间和有效地缩短了高能束“闲置”时间,大大地提高了增材制造装备的成形效率,确保了成形过程的连续性,从而改善了内应力和调控构件的微观组织,还可以实现复合材料、梯度功能材料、多层或者分层材料的快速制备。
本发明提供的高效率的增材制造方法,其中,每个刮刀可同步或者独自进行双向连续铺粉,且刮刀可在成形缸的一侧、两侧或者周围布置,该方法可实现多层铺粉与多层加工同步进行,消除了层与层之间铺粉等待时间和有效地缩短了高能束“闲置”时间,不仅大幅度提高了增材制造装备的成形效率,而且显著改善了成形内应力。不仅如此,其加工方式可为激光选区熔化、激光选区烧结或者电子束选区熔化成形,高能束可为激光束、电子束或者其组合,同时成形材料可为金属、陶瓷、高分子或者复合物材料,可实现复合材料、梯度功能材料、多层材料或者分层材料的快速制备。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高效率的增材制造方法,其特征在于,该方法包括以下步骤:
    (1)提供成形装置,所述成形装置包括成形缸、多个送粉机构及多个刮刀,多个所述刮刀临近所述成形缸设置,多个所述送粉机构临近所述刮刀设置;
    (2)依次对多个刮刀进行排序编号,并分别将多个刮刀与所述成形缸的基准平面之间的间距调整为粉末层层厚的对应编号倍数,即刮刀与成形缸的基准平面之间的间距为粉末层层厚的倍数与对应的刮刀的编号相一致;
    (3)多个送粉机构分别给多个所述刮刀送粉,多个刮刀按照对应的编号依次先后开始沿第一方向进行铺粉,同时,多个高能束分别对多个刮刀铺设好的粉末进行扫描成形,由此铺粉与扫描加工同步进行,直至一次完成预定个数层的加工,该预定个数与多个刮刀的数量相等;
    (4)所述成形缸下降粉末层层厚的预定个数倍后,重新对多个刮刀进行排序编号,并重新调整刮刀与成形缸的基准平面之间的间距,继而沿第二方向进行铺粉及扫描加工,直至一次性完成预定个数层的加工,所述成形缸再下降粉末层层厚的预定个数倍;其中,所述第一方向与所述第二方向相反;
    (5)重复步骤(2)至步骤(4),直至完成零部件的整体成形。
  2. 如权利要求1所述的高效率的增材制造方法,其特征在于:按照刮刀距离所述成形缸基准平面的距离自近到远依次对多个刮刀进行编号,距离所述成形缸基准平面最近的刮刀的编号最小,距离所述成形缸基准平面最远的刮刀编号最大。
  3. 如权利要求2所述的高效率的增材制造方法,其特征在于:多个所述刮刀设置于所述成形缸的同一侧,且多个所述刮刀沿同一个方向间隔设置。
  4. 如权利要求2所述的高效率的增材制造方法,其特征在于:多个所述刮刀均分为两组,两组所述刮刀分别设置在所述成形缸相背的两侧,且两组所述刮刀相对于所述成形缸对称设置。
  5. 如权利要求4所述的高效率的增材制造方法,其特征在于:两组所述刮 刀交替进行铺粉。
  6. 如权利要求1所述的高效率的增材制造方法,其特征在于:多个所述刮刀围绕所述成形缸布置。
  7. 如权利要求6所述的高效率的增材制造方法,其特征在于:多个所述刮刀沿一个弧形间隔设置,自处于弧形端部的刮刀开始沿着所述弧形对多个所述刮刀进行编号。
  8. 如权利要求1-7任一项所述的高效率的增材制造方法,其特征在于:多个所述送粉机构内收容的粉末材质相同或者完全不同;所述高能束为激光束、电子束或者其组合。
  9. 如权利要求1-7任一项所述的高效率的增材制造方法,其特征在于:所述粉末的材质为金属粉末、陶瓷粉末、高分子材料粉末或者复合材料粉末。
  10. 如权利要求1-7任一项所述的高效率的增材制造方法,其特征在于:每个刮刀能独自进行双向连续铺粉或者与其他刮刀同步双向连续铺粉。
PCT/CN2020/116802 2019-09-24 2020-09-22 一种高效率的增材制造方法 WO2021057715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910905514.4 2019-09-24
CN201910905514.4A CN110576608A (zh) 2019-09-24 2019-09-24 一种高效率的增材制造方法

Publications (1)

Publication Number Publication Date
WO2021057715A1 true WO2021057715A1 (zh) 2021-04-01

Family

ID=68813432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116802 WO2021057715A1 (zh) 2019-09-24 2020-09-22 一种高效率的增材制造方法

Country Status (2)

Country Link
CN (1) CN110576608A (zh)
WO (1) WO2021057715A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114226762A (zh) * 2021-12-24 2022-03-25 天津镭明激光科技有限公司 一种用于增材制造设备的单刮刀双向铺粉装置
CN114535601A (zh) * 2022-01-24 2022-05-27 武汉理工大学 一种免刮平的激光选区熔化工艺打印热电材料的方法及热电粉体作为打印原料免刮平的方法
CN114535613A (zh) * 2022-03-18 2022-05-27 中北大学 基于选区激光熔化设备的智能铺粉规划方法
CN114714617A (zh) * 2022-03-03 2022-07-08 上海航天设备制造总厂有限公司 提高工件致密度的供铺粉集成装置及工作方法
CN114734060A (zh) * 2022-04-18 2022-07-12 深圳市华阳新材料科技有限公司 一种铺粉打印方法
CN115090898A (zh) * 2022-07-07 2022-09-23 河北科技大学 金属零部件增材制造方法及装置
CN115815631A (zh) * 2023-01-07 2023-03-21 福州大学 复合结构金属构件选区激光熔化增材制造装置及工作方法
CN116372193A (zh) * 2023-06-05 2023-07-04 西安空天机电智能制造有限公司 大尺寸TiAl合金电子束增材制造设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110576608A (zh) * 2019-09-24 2019-12-17 华中科技大学 一种高效率的增材制造方法
CN113059195B (zh) * 2021-06-03 2021-08-13 西安赛隆金属材料有限责任公司 一种粉床铺粉装置及粉床增材制造设备
CN113427755B (zh) * 2021-06-30 2022-06-07 湖南华曙高科技股份有限公司 一种3d打印方法及3d打印设备
CN114289740A (zh) * 2021-12-31 2022-04-08 南京中科煜宸激光技术有限公司 适用于选区激光熔化的大幅面成型的一体式刮刀装置与铺粉式增材制造方法
CN114734065B (zh) * 2022-06-13 2022-10-04 天津大学 具有多级可调刮粉功能的金属粉末增材制造装置和方法
CN117680714A (zh) * 2024-02-01 2024-03-12 西安空天机电智能制造有限公司 一种电子束成形铺粉装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2788249A1 (en) * 2009-12-30 2011-07-07 Beat Lechmann Intergrated multi-material implants and methods of manufacture
CN203843168U (zh) * 2014-05-22 2014-09-24 华中科技大学 一种高能束增材制造大尺寸金属零部件的设备
CN105415687A (zh) * 2015-12-22 2016-03-23 吉林大学 一种多工艺3d打印方法
WO2016205855A1 (en) * 2015-06-23 2016-12-29 Aurora Labs Pty Ltd 3d printing method and apparatus
CN107984754A (zh) * 2017-12-27 2018-05-04 广东科达洁能股份有限公司 一种多喷头压紧式3d打印机及其打印方法
CN110576608A (zh) * 2019-09-24 2019-12-17 华中科技大学 一种高效率的增材制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2788249A1 (en) * 2009-12-30 2011-07-07 Beat Lechmann Intergrated multi-material implants and methods of manufacture
CN203843168U (zh) * 2014-05-22 2014-09-24 华中科技大学 一种高能束增材制造大尺寸金属零部件的设备
WO2016205855A1 (en) * 2015-06-23 2016-12-29 Aurora Labs Pty Ltd 3d printing method and apparatus
CN105415687A (zh) * 2015-12-22 2016-03-23 吉林大学 一种多工艺3d打印方法
CN107984754A (zh) * 2017-12-27 2018-05-04 广东科达洁能股份有限公司 一种多喷头压紧式3d打印机及其打印方法
CN110576608A (zh) * 2019-09-24 2019-12-17 华中科技大学 一种高效率的增材制造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114226762A (zh) * 2021-12-24 2022-03-25 天津镭明激光科技有限公司 一种用于增材制造设备的单刮刀双向铺粉装置
CN114226762B (zh) * 2021-12-24 2023-10-27 天津镭明激光科技有限公司 一种用于增材制造设备的单刮刀双向铺粉装置
CN114535601A (zh) * 2022-01-24 2022-05-27 武汉理工大学 一种免刮平的激光选区熔化工艺打印热电材料的方法及热电粉体作为打印原料免刮平的方法
CN114535601B (zh) * 2022-01-24 2024-05-14 武汉理工大学 一种免刮平的激光选区熔化工艺打印热电材料的方法及热电粉体作为打印原料免刮平的方法
CN114714617A (zh) * 2022-03-03 2022-07-08 上海航天设备制造总厂有限公司 提高工件致密度的供铺粉集成装置及工作方法
CN114714617B (zh) * 2022-03-03 2023-09-01 上海航天设备制造总厂有限公司 提高工件致密度的供铺粉集成装置及工作方法
CN114535613B (zh) * 2022-03-18 2023-10-17 中北大学 基于选区激光熔化设备的智能铺粉规划方法
CN114535613A (zh) * 2022-03-18 2022-05-27 中北大学 基于选区激光熔化设备的智能铺粉规划方法
CN114734060A (zh) * 2022-04-18 2022-07-12 深圳市华阳新材料科技有限公司 一种铺粉打印方法
CN115090898A (zh) * 2022-07-07 2022-09-23 河北科技大学 金属零部件增材制造方法及装置
CN115815631A (zh) * 2023-01-07 2023-03-21 福州大学 复合结构金属构件选区激光熔化增材制造装置及工作方法
CN116372193B (zh) * 2023-06-05 2023-09-05 西安空天机电智能制造有限公司 大尺寸TiAl合金电子束增材制造设备
CN116372193A (zh) * 2023-06-05 2023-07-04 西安空天机电智能制造有限公司 大尺寸TiAl合金电子束增材制造设备

Also Published As

Publication number Publication date
CN110576608A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2021057715A1 (zh) 一种高效率的增材制造方法
CN108247056B (zh) 一种对送粉式激光增材制造制件同步改性的方法
CN105382411B (zh) 一种t型接头双侧激光扫描焊接方法
CN108817386B (zh) 用于多光束激光选区熔化成形的层间梳状拼接方法
CN104001915B (zh) 一种高能束增材制造大尺寸金属零部件的设备及其控制方法
CN105081325B (zh) 一种金属熔滴打印3d零件表面质量控制装置及其控制方法
CN102328081B (zh) 一种高功率激光快速成形三维金属零件的方法
WO2018196106A1 (zh) 一种激光热力逐层交互增材制造的组合装置
CN105171229A (zh) 一种金属材料搅拌摩擦增材制造方法
CN104525944A (zh) 一种金属材料高能束-超声复合增材制造方法
CN203843168U (zh) 一种高能束增材制造大尺寸金属零部件的设备
CN105149583B (zh) 铝材的激光选区熔化成形方法及其***
CN104801712A (zh) 一种激光与微束等离子复合3d打印设备与方法
AU2010282928B2 (en) Incremental forging
CN106735220A (zh) 一种多材料激光选区熔化成型装置与方法
CN109158829A (zh) 一种基于增材工艺成型的金属构件优化方法与成型设备
CN110976869A (zh) 一种零件增材复合制造装置及方法
CN109226755A (zh) 提高增材构件沉积层间结合强度的增材制造装置和方法
CN108581490A (zh) 一种多机器人协作增等减材复合加工装置及工艺方法
CN113649597B (zh) 一种增材制造方法及增材制造设备
CN204892952U (zh) 3d打印成型机
CN109047759B (zh) 一种提高层间强度和减少翘曲变形的激光扫描方法
US11565349B2 (en) Composite device for high-precision laser additive/subtractive manufacturing
CN104972123A (zh) 分子结构模型的3d打印成型方法以及3d打印成型机
CN110548876B (zh) 一种铺粉式再制造装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868353

Country of ref document: EP

Kind code of ref document: A1