WO2021057386A1 - 球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件 - Google Patents

球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件 Download PDF

Info

Publication number
WO2021057386A1
WO2021057386A1 PCT/CN2020/112243 CN2020112243W WO2021057386A1 WO 2021057386 A1 WO2021057386 A1 WO 2021057386A1 CN 2020112243 W CN2020112243 W CN 2020112243W WO 2021057386 A1 WO2021057386 A1 WO 2021057386A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten iron
content
iron
casting
silicon
Prior art date
Application number
PCT/CN2020/112243
Other languages
English (en)
French (fr)
Inventor
丛建臣
邵诗波
于海明
戴学忠
倪培相
冯梅珍
吕世杰
丛红日
Original Assignee
天润工业技术股份有限公司
山东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天润工业技术股份有限公司, 山东理工大学 filed Critical 天润工业技术股份有限公司
Priority to US17/642,572 priority Critical patent/US11946120B2/en
Publication of WO2021057386A1 publication Critical patent/WO2021057386A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron
    • C21D5/06Malleabilising
    • C21D5/14Graphitising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This application relates to the technical field of metallurgy and cast iron alloys, in particular to a method for controlling the addition of silicon in ductile iron, a method for casting ductile iron, and castings.
  • Nodular cast iron (referred to as ductile iron) has poor impact toughness, especially notched impact toughness.
  • existing ductile cast iron generally does not require impact toughness except for ferritic ductile iron, and even if the impact energy needs to be tested, it is limited to testing the impact energy of an unnotched test block. Although the notched impact energy of ferritic ductile iron is relatively high, the tensile strength is low.
  • the grade in the national standard GB/T1348 is QT400-18R, and its room temperature notched impact energy is ⁇ 14J, but the tensile strength is only above 400MPa; it is the highest at present Although the tensile strength of the high-strength pearlitic ductile iron QT900-2 can reach more than 900MPa, the notch impact energy at room temperature is only 2-3J. Therefore, those mechanical parts that require high strength and withstand specific impact loads are basically made of forged steel, and the manufacturing cost is high.
  • ductile iron For the connecting rod of an internal combustion engine, it requires both high tensile strength and high impact toughness.
  • the existing production technology of ductile iron is either ductile iron with high tensile strength but low impact energy, or ductile iron with high impact energy but low tensile strength. It is difficult to balance the two.
  • One of the objectives of this application is to provide a method for controlling the addition of silicon in ductile cast iron, so that ductile cast iron can simultaneously obtain high tensile strength and high notched impact toughness.
  • the second purpose of this application is to provide a method for casting ductile cast iron, which solves the problem that ductile cast iron cannot have both high tensile strength and high notched impact toughness.
  • the third purpose of this application is to provide a casting.
  • this application provides a method for controlling the addition of silicon in ductile iron, which includes the following steps:
  • Si addition is the added silicon content in the molten iron, and CuE is the copper equivalent in the molten iron; P, S, and Si originally are the phosphorus content, sulfur content and silicon content in the molten iron before adding ferrosilicon;
  • CuE is copper equivalent
  • [W Cu ] newly added is the copper content added in molten iron
  • W Mn , W Cr , W Mo , W Ni , W Sn , W Cu , W v are molten iron respectively
  • this application provides a method for casting ductile cast iron, including: adjusting the silicon content by adopting the above-mentioned method for controlling the addition of silicon in the ductile cast iron.
  • the present application provides a casting, which is obtained by casting using the above-mentioned nodular cast iron casting method.
  • the tensile strength of the pearlitic ductile iron obtained by using the silicon addition control method of the application and the casting method of the application can reach more than 900MPa, and the notch impact energy at room temperature can reach more than 7J, far exceeding the pearlite specified in the national standard GB/T1348
  • the performance of the highest grade of nodular cast iron QT900-2, especially the outstanding feature of high notch impact toughness, can be applied to the production of connecting rods.
  • the ferrite content in the matrix structure of the high-performance ductile iron produced by the prior art does not exceed 10%, so that the tensile strength can reach more than 900 MPa, the notch impact energy at room temperature is only 2-3J. It is often difficult to balance both tensile strength and impact energy performance.
  • this application provides a method for controlling the addition of silicon in ductile iron, which includes the following steps:
  • Nodular cast iron is smelted with scrap steel as raw materials.
  • the sources of scrap include but are not limited to stamping parts, such as automobile stamping parts.
  • Scrap steel can be carbon steel, alloy steel or a mixture of the two. Using scrap steel as a raw material can avoid the hereditary effects of using pig iron as a raw material.
  • the copper alloy is first added to make the copper equivalent in the molten iron 0.8-1.0%, and the copper equivalent is controlled according to the mathematical model of the following formula:
  • CuE [W Cu ] new addition +[(W Mn -0.45%)/2.5+1.1W Cr +(W Mo -0.15%)/2+0.1W Ni +12W Sn +W Cu +4W v ] original , Among them, CuE is copper equivalent, [W Cu ] newly added is the copper content (wt%) added in molten iron, W Mn , W Cr , W Mo , W Ni , W Sn , W Cu , W v are molten iron respectively The original manganese content (wt%), chromium content (wt%), molybdenum content (wt%), nickel content (wt%), tin content (wt%), copper content (wt%) and vanadium content (wt%) ).
  • Samples are taken immediately after the molten iron is melted to analyze the content (wt%) of the alloying elements copper, manganese, chromium, molybdenum, nickel, vanadium, and tin that are already in the molten iron.
  • the front spectrometer can quickly analyze the content of alloying elements in the molten iron, mainly the content of Mn, Cr, Mo, Ni, Sn, Cu, V, etc. Then calculate the copper content that needs to be added according to the above copper equivalent control mathematical model, and convert it into a copper alloy to add to the molten iron, so that the copper equivalent of the molten iron is at 0.8-1.0%, for example, the copper equivalent is 0.8%, 0.85%, 0.9 %, 0.95% or 1.0%.
  • Si addition 1.3CuE+10P+4S-Si original , where Si addition is the silicon content added in the molten iron wt%, CuE is the copper equivalent% in the molten iron; P, S, and Si original are respectively before adding ferrosilicon Phosphorus content wt%, sulfur content wt% and silicon content wt% in hot metal;
  • the weight of ferrosilicon to be added is: Si addition /silicon content in ferrosilicon ⁇ weight of molten iron.
  • scrap steel as a raw material can take advantage of its low heritability, but unlike pig iron, which basically does not contain alloying elements, scrap steel (such as automotive stamping parts scrap) contains alloying elements, which are many and mixed. Copper, manganese, chromium, molybdenum, nickel, vanadium, etc. all increase the pearlite content of cast iron, thereby increasing the tensile strength of cast iron and reducing impact toughness; while silicon reduces the content of pearlite, thereby reducing tensile strength and increasing impact toughness. At the same time, the phosphorus and sulfur in the molten iron seriously reduce the impact toughness.
  • the silicon content in the molten iron is dynamically adjusted according to the copper equivalent and the phosphorus and sulfur content, so that the tensile strength and impact energy can be optimized at the same time.
  • a mixture of microcrystalline graphite powder and silicon carbide crystals is added during the process of molten iron melting.
  • the mixed body of microcrystalline graphite powder and silicon carbide crystals accounts for 4-6% of the weight of the molten iron, including, for example, but not limited to 5%.
  • the purpose of adding a mixture of microcrystalline graphite powder and silicon carbide crystals is to use silicon carbide in the molten iron to react with iron to form iron silicide and carbon.
  • the silicon carbide will continue to melt before the reaction is terminated to promote the increase of nucleation temperature and increase the non-spontaneous shape.
  • the nucleus moves the molten iron eutectic cooling curve upward and promotes the precipitation of graphite.
  • the mixture of microcrystalline graphite powder and silicon carbide crystal is added within 10-15 minutes, and the copper alloy is added to make the copper equivalent in the molten iron 0.8-1.0%.
  • the addition control method further includes adding a copper alloy to make the copper equivalent in the molten iron 0.8-1.0%, then heating the molten iron to 1400°C-1450°C (preferably 1420°C-1440°C), and then checking the molten iron The chemical composition is added to the step of ferrosilicon.
  • a method for casting ductile iron which includes: adjusting the silicon content by using the above-mentioned method for controlling the addition of silicon in the ductile iron.
  • the casting method and the above-mentioned method for controlling the addition of silicon in nodular cast iron are based on the same inventive concept and can achieve the same effect.
  • the casting method further includes: adopting the method for controlling the amount of silicon in the nodular cast iron to adjust the silicon content before performing spheroidization and casting;
  • the spheroidizing treatment and casting molding are not limited, and can be carried out in a conventional manner.
  • the spheroidizing treatment temperature may be, for example, 1500° C., 1510° C., 1520° C., 1530° C., or 1540° C., and the spheroidizing treatment temperature may be, for example, 3 min, 4 min, or 5 min.
  • the casting method further includes: normalizing and tempering after casting to obtain a mixed matrix structure of pearlite and crushed ferrite;
  • the normalizing and tempering treatments are not limited, and can be carried out in a conventional manner.
  • the ferrite content is not more than 10%.
  • a typical nodular cast iron casting method includes the following steps:
  • Si addition is the silicon content added to the molten iron
  • CuE is the copper equivalent in molten iron
  • P, S, and Si were originally the content before ferrosilicon was added
  • the ferrite content in the matrix structure of the high-performance ductile iron produced by the prior art does not exceed 10%, so that the tensile strength can reach more than 900 MPa, the notch impact energy at room temperature is only 2-3J.
  • the ductile iron produced by the process of this application not only has a tensile strength of more than 900 MPa, but also has an impact energy of more than 7 J at room temperature.
  • a casting is provided, which is obtained by casting using the above-mentioned nodular cast iron casting method.
  • the casting is an internal combustion engine connecting rod casting.
  • the tensile strength of the ductile iron castings obtained by the method of this application is ⁇ 900MPa, the elongation ⁇ 7%, and the normal temperature notch impact energy ⁇ 7J, which far exceeds the pearlitic nodular graphite specified in the national standard GB/T1348
  • a preparation method of nodular cast iron for connecting rods with high tensile strength and high notch impact toughness comprising the following steps:
  • the scraps of automobile stamping parts are used as raw materials and melted in a 7.5-ton electric furnace.
  • a mixture of microcrystalline graphite powder and silicon carbide crystals is added to promote the precipitation of carbon in the form of graphite, and at the same time, it can increase silicon.
  • the rod blank is subjected to secondary isothermal normalizing and tempering treatment.
  • scraps of automobile stamping parts are used as raw materials, a batching list is compiled and input into the automatic batching weighing system for automatic weighing.
  • the transfer package is transferred to the ball chemical station, and the molten iron is poured into the teapot-type sealed spheroidizing pouring ladle for spheroidizing treatment; after the spheroidizing process is finished, the molten iron is slag cleaned again, covered with insulation materials and turned to the pouring station to inject the molten iron into the casting
  • the as-cast blank is formed in the mold.
  • the as-cast blank is normalized and tempered to obtain a mixed matrix structure of pearlite and broken ferrite, and the ferrite content does not exceed 10%.
  • a preparation method of nodular cast iron for connecting rods with high tensile strength and high notch impact toughness comprising the following steps:
  • the transfer package is transferred to the ball chemical station, and the molten iron is poured into the teapot-type sealed spheroidizing pouring ladle for spheroidization; after the spheroidizing process is completed, the molten iron is cleaned again, covered with insulation materials and transferred to the pouring station. The molten iron is poured into the mold to form a rough as-cast.
  • a preparation method of nodular cast iron for connecting rods with high tensile strength and high notch impact toughness comprising the following steps:
  • the transfer package is transferred to the ball chemical station, and the molten iron is poured into the teapot-type sealed spheroidizing pouring ladle for spheroidization; after the spheroidizing process is completed, the molten iron is cleaned again, covered with insulation materials and transferred to the pouring station. The molten iron is poured into the mold to form a rough as-cast.
  • This comparative example produces high-performance ductile iron according to the existing conventional technology, that is, pig iron, carbon steel scrap and reheating material are used as raw materials, and ferrosilicon is added during the melting process for inoculation treatment.
  • the silicon content is controlled at about 2.5%, and then alloying treatment, spheroidizing treatment and casting molding are carried out, and the connecting rod blank after casting is normalized and tempered.
  • Example 1 uses pig iron, carbon steel scrap and reheating materials as raw materials, and the silicon content is added according to a fixed index; while Example 1 uses automobile stamping parts scrap as raw materials, and the silicon content is based on The amount of silicon added is added after the calculation of the control formula.
  • pig iron, carbon steel scrap and recycled materials are used as raw materials.
  • the specific raw material ratio is: 50% pig iron + 30% carbon steel scrap + 20% recycled materials.
  • the batching list is compiled and input into the automatic batching weighing system. Automatic weighing, a total of 7 tons of raw materials are added to the electric furnace and begin to melt.
  • the copper alloy is added to make the copper equivalent of the molten iron 0.9%.
  • the transfer package is transferred to the ball chemical station, and the molten iron is poured into the teapot-type sealed spheroidizing pouring ladle for spheroidizing treatment; after the spheroidizing process is finished, the molten iron is slag cleaned again, covered with insulation materials and turned to the pouring station to inject the molten iron into the casting
  • the as-cast blank is formed in the mold.
  • the as-cast blank is normalized and tempered with a ferrite content of 25%.
  • This comparative example produces high-performance ductile iron according to the existing conventional technology, that is, pig iron, carbon steel scrap and reheating material are used as raw materials, and ferrosilicon is added during the melting process for inoculation treatment.
  • the silicon content is controlled at about 1.8%, and then alloying, spheroidizing and casting are carried out. After casting, the connecting rod blank is normalized and tempered.
  • scraps of automobile stamping parts are used as raw materials, a batching list is compiled and input into the automatic batching weighing system, which is automatically weighed. A total of 7 tons of raw materials are added to the electric furnace to start melting.
  • the copper alloy is added to make the copper equivalent of the molten iron 0.9%.
  • the transfer package is transferred to the ball chemical station, and the molten iron is poured into the teapot-type sealed spheroidizing pouring ladle for spheroidizing treatment; after the spheroidizing process is finished, the molten iron is slag cleaned again, covered with insulation materials and turned to the pouring station to inject the molten iron into the casting
  • the as-cast blank is formed in the mold.
  • the as-cast blank is normalized and tempered to obtain a mixed matrix structure of pearlite and broken ferrite, with a ferrite content of 5%.
  • Table 1 shows the comparison of the performance of the ductile iron connecting rod body and the C70S6 forged steel connecting rod body obtained from the above-mentioned embodiment and the comparative example.
  • the testing methods for each index are as follows: Tensile specimens, impact specimens, and hardness test blocks are all made from the connecting rod shaft.
  • the impact test block is V-shaped notch.
  • the ductile cast iron produced by the ductile iron casting method of this application has the same performance as C70S6, which is currently the most widely used connecting rod, and the weight of the parts can be reduced by more than 8%; meanwhile, the weight fluctuation of traditional forged steel connecting rods is as high as 3%-5%, The weight fluctuation range of the connecting rod cast by the manufacturing process of the present application is only 1%-2%, so there is no need for grouping use, which reduces the difficulty of production.
  • This embodiment has simple process steps and a production cost that is more than 30% lower than that of the C70S6 steel connecting rod, and is a good material for manufacturing the connecting rod.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

本申请提供了一种球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件,涉及冶金和铸铁合金技术领域。球墨铸铁中硅量的添加控制方法包括:以废钢为原料熔炼球墨铸铁,在铁水熔化后,先加入铜合金使铁水中的铜当量为0.8-1.0%,铜当量控制公式如式(II),再加入硅铁,使铁水中添加的硅含量满足式(I)。本申请通过硅含量动态调控,解决了球墨铸铁要么抗拉强度高但缺口冲击韧性低,要么缺口冲击韧性高但抗拉强度低的难题。本申请方法得到的铸件本体抗拉强度≥900MPa,伸长率≥7%,常温缺口冲击功≥7J,可应用于连杆的生产。

Description

球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件
相关申请的交叉引用
本申请要求于2019年09月26日提交中国专利局的申请号为CN201910916689.5、名称为“球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及冶金和铸铁合金技术领域,尤其是涉及一种球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件。
背景技术
球墨铸铁(简称球铁)冲击韧性差,尤其是缺口冲击韧性。现有球墨铸铁除铁素体球铁外一般不做冲击韧性要求,即使需要检测冲击功也仅限于检测无缺口试块的冲击功。铁素体球铁虽然缺口冲击功较高,但抗拉强度低,如国标GB/T1348中牌号为QT400-18R,其室温缺口冲击功≥14J,但抗拉强度仅400MPa以上;又如目前最高强度的珠光体球铁QT900-2,虽然抗拉强度可达900MPa以上,但常温缺口冲击功仅2-3J。因此,那些既要求高强度又承受特定冲击载荷的机械零件基本采用锻钢制造,制造成本高。
对内燃机连杆而言,其既要求高抗拉强度又要求高冲击韧性。而现有球墨铸铁生产技术要么是获得高抗拉强度但冲击功较低的球铁,要么是获得高冲击功但抗拉强度较低的球铁,二者难以兼顾。
因此,所期望的是提供一种球墨铸铁工艺方法,其能够解决上述问题中的至少一个。
发明内容
本申请的目的之一在于提供一种球墨铸铁中硅量的添加控制方法,使球墨铸铁可同时获得高抗拉强度和高缺口冲击韧性。
本申请的目的之二在于提供一种球墨铸铁的铸造方法,解决了球墨铸铁高抗拉强度和高缺口冲击韧性不能兼顾的难题。
本申请的目的之三在于提供一种铸件。
为了实现本申请的上述目的,特采用以下技术方案:
第一方面,本申请提供了一种球墨铸铁中硅量的添加控制方法,包括以下步骤:
以废钢为原料熔炼球墨铸铁,在铁水熔化后,先加入铜合金使铁水中的铜当量为0.8-1.0%,再加入硅铁,使铁水中添加的硅含量满足如下式(I):
Si 添加=1.3CuE+10P+4S-Si 原有 式(I),
式(I)中,Si 添加为铁水中添加的硅含量,CuE为铁水中的铜当量;P、S、Si 原有分别为添加硅铁前铁水中的磷含量、硫含量和硅含量;
其中,铜当量控制公式如式(II):
CuE=[W Cu] 新加+[(W Mn-0.45%)/2.5+1.1W Cr+(W Mo-0.15%)/2+0.1W Ni+12W Sn+W Cu+4W v] 原有式(II),
式(II)中,CuE为铜当量,[W Cu] 新加为铁液中添加的铜含量,W Mn、W Cr、W Mo、W Ni、W Sn、W Cu、W v分别为铁液中原有的锰含量、铬含量、钼含量、镍含量、锡含量、铜含量和钒含量。
第二方面,本申请提供了一种球墨铸铁的铸造方法,包括:采用上述球墨铸铁中硅量的添加控制方法对硅含量进行调控。
第三方面,本申请提供了一种铸件,采用上述球墨铸铁的铸造方法铸造得到。
与已有技术相比,本申请具有如下有益效果:
本申请针对以废钢为原料熔炼球墨铸铁过程铁水中元素多且杂的特点,引入铜当量的概念,将锰、铬、钼、镍、钒等折算为铜当量并控制铜当量0.8-1.0%,从而稳定达到高抗拉强度和伸长率,同时铁水中的硅含量根据铜当量及磷、硫含量进行动态调控,使抗拉强度与冲击功同时达到最佳。
通过采用本申请硅量添加控制方法以及本申请铸造方法获得的珠光体球墨铸铁的抗拉强度可以达到900MPa以上,常温缺口冲击功达到7J以上,远远超过国家标准GB/T1348中规定的珠光体球墨铸铁最高牌号QT900-2的性能,尤其是具有高缺口冲击韧性的突出特征,可应用于连杆的生产。
具体实施方式
下面将结合实施例对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施 例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
现有技术生产的高性能球铁,虽然基体组织中铁素体含量也不超过10%,使得抗拉强度达900MPa以上,但常温缺口冲击功仅2-3J。抗拉强度和冲击功性能二者往往难以兼顾。
为使铸铁同时具有高抗拉强度和高缺口冲击韧性,本申请提供了一种球墨铸铁中硅量的添加控制方法,包括以下步骤:
以废钢为原料熔炼球墨铸铁,废钢的来源包括但不限于冲压件边角料,例如汽车冲压件边角料,废钢可以是碳素钢、合金钢或者二者的混合。采用废钢为原料可避免以生铁为原料带来的遗传性影响。
在铁水熔化后,先加入铜合金使铁水中的铜当量为0.8-1.0%,其中,铜当量根据下式的数学模型控制:
CuE=[W Cu] 新加+[(W Mn-0.45%)/2.5+1.1W Cr+(W Mo-0.15%)/2+0.1W Ni+12W Sn+W Cu+4W v] 原有,其中,CuE为铜当量,[W Cu] 新加为铁液中添加的铜含量(wt%),W Mn、W Cr、W Mo、W Ni、W Sn、W Cu、W v分别为铁液中原有的锰含量(wt%)、铬含量(wt%)、钼含量(wt%)、镍含量(wt%)、锡含量(wt%)、铜含量(wt%)和钒含量(wt%)。
在铁水熔化后即时取样,分析铁水中已有的合金元素铜、锰、铬、钼、镍、钒、锡的含量(wt%),分析方法可采用常规的分析铁水化学成分的方式,例如炉前光谱仪可快速分析铁水中的合金元素含量,主要是Mn、Cr、Mo、Ni、Sn、Cu、V等的含量。然后根据上面的铜当量控制数学模型计算出需要添加的铜含量,并换算成铜合金向铁水中添加,使铁水中的铜当量处于0.8-1.0%,例如铜当量为0.8%、0.85%、0.9%、0.95%或1.0%。
该数学模型具体可参考专利CN103556033A,在此不再赘述。
然后再加入硅铁,使铁水中添加的硅含量满足下式:
Si 添加=1.3CuE+10P+4S-Si 原有,其中,Si 添加为铁水中添加的硅含量wt%,CuE为铁水中的铜当量%;P、S、Si 原有分别为添加硅铁前铁水中的磷含量wt%、硫含量wt%和硅含量wt%;
加入硅铁前,分析铁水中已有的磷、硫和硅的含量(wt%),然后按照上式计算出需要增加(添加)的硅含量,并换算成硅铁重量向铁水中添加,达到调节硅含量的目的。
硅铁重量与铁水中添加的硅含量Si 添加的换算关系为:
需加入的硅铁重量为:Si 添加/硅铁中硅含量×铁水重量。
采用废钢为原料,可利用其遗传性小的优点,但与生铁中基本不含合金元素的特点不同,废钢中(例如汽车冲压件边角料)含有合金元素,这些元素多且杂。由于铜、锰、铬、钼、镍、钒等均提高铸铁的珠光体含量,进而提高铸铁抗拉强度、减小冲击韧性;而硅则减少珠光体含量,进而减小抗拉强度、增加冲击韧性。同时,铁水中的磷、硫严重降低冲击韧性。而现有技术的增硅过程是直接按设定的硅含量向铁水中添加硅铁,铁水中的硅含量是固定不变的。但由于每炉铁水中的铜、锰、铬、钼、镍、钒、锡、磷、硫均存在一定波动,定量添加硅则不能使抗拉强度与冲击功同时达到最佳。因此,为使铸铁同时具有高抗拉强度和高缺口冲击韧性,本申请引入铜当量的概念,将锰、铬、钼、镍、钒等折算为铜当量并控制铜当量为0.8-1.0%,从而稳定达到高抗拉强度和伸长率,同时铁水中的硅含量根据铜当量及磷、硫含量进行动态调控,使抗拉强度与冲击功同时达到最佳。
在一些优选的实施方案中,铁水熔化的过程中,加入微晶石墨粉与碳化硅晶体混合体。
在一些优选的实施方案中,加入微晶石墨粉与碳化硅晶体混合体占铁水重量的4-6%,包括例如为但不限于为5%。
加入微晶石墨粉与碳化硅晶体混合体的目的是利用碳化硅在铁液中可与铁反应生成硅化铁和碳,在反应终止前碳化硅不断熔解,促进形核温度提高并增加非自发形核,使铁水共晶冷却曲线上移,促进石墨的析出。
在一些优选的实施方案中,加入微晶石墨粉与碳化硅晶体混合体10-15min内,加入铜合金使铁水中的铜当量为0.8-1.0%。
及时加入铜合金维持一定的铜当量有利于球墨铸铁达到高抗拉强度和高伸长率。
在一些优选的实施方案中,添加控制方法还包括加入铜合金使铁水中的铜当量为0.8-1.0%后,将铁水升温到1400℃-1450℃(优选1420℃-1440℃)后,检查铁水化学成分再加入硅铁的步骤。
根据本申请的第二个方面,提供了一种球墨铸铁的铸造方法,包括:采用上述球墨铸铁中硅量的添加控制方法对硅含量进行调控。
该铸造方法与上述球墨铸铁中硅量的添加控制方法是基于同一发明构思的,能够获得相同的效果。
在一些优选的实施方案中,铸造方法还包括:采用所述球墨铸铁中硅量的添加控制方法对硅含量进行调控后再进行球化处理和浇注成型的步骤;
对球化处理和浇注成型不作限定,可采用常规方式进行。
优选地,球化处理温度例如可以为1500℃、1510℃、1520℃、1530℃或1540℃,球化处理保温时间例如可以为3min、4min或5min。
在一些优选的实施方案中,铸造方法还包括:浇注成型后进行正火与回火处理,获得珠光体与破碎状铁素体混合基体组织的步骤;
对正火与回火处理不作限定,可采用常规方式进行。
优选地,铁素体含量不大于10%。
在一些优选的实施方案中,一种典型的球墨铸铁的铸造方法,包括以下步骤:
(a)原料准备:以汽车冲压件边角料为原料熔炼球墨铸铁;
(b)将汽车冲压件边角料及微晶石墨粉与碳化硅晶体混合体加入到电炉中升温熔化,加入微晶石墨粉与碳化硅晶体混合体占铁水重量的4-6%;
(c)在加入微晶石墨粉与碳化硅晶体混合体10-15min内,加入铜合金并使铁水中铜当量为0.8-1.0%,再按硅量添加控制公式计算需添加的硅含量,然后折算成硅铁重量后将硅铁加入铁水中;
硅量添加控制公式是:Si 添加=1.3CuE+10P+4S-Si 原有
式中,Si 添加为向铁水中添加的硅含量;
CuE为铁水中的铜当量;
P、S、Si 原有为添加硅铁之前的含量;
(d)继续将铁液升温到1500℃保温3-5min后进行球化处理,然后浇注为铸件;
(e)将铸件进行正火与回火获得珠光体与破碎状铁素体混合基体组织,铁素体含量不超过10%。
现有技术生产的高性能球铁,虽然基体组织中铁素体含量也不超过10%,使得抗拉强度达900MPa以上,但常温缺口冲击功仅2-3J。本申请工艺生产出的球铁不仅本体抗拉强 度900MPa以上,常温冲击功也可达到7J以上。
根据本申请的第三个方面,提供了一种铸件,采用上述球墨铸铁的铸造方法铸造得到。
优选地,所述铸件为内燃机连杆铸件。
与现有技术对比,本申请方法铸造得到的球铁铸件本体抗拉强度≥900MPa,伸长率≥7%,常温缺口冲击功≥7J,远远超过国家标准GB/T1348中规定的珠光体球墨铸铁最高牌号QT900-2的性能,尤其是具有高缺口冲击韧性的突出特征。
下面结合实施例和对比例对本申请做进一步描述。
实施例1
一种高抗拉强度高缺口冲击韧性连杆用球墨铸铁的制备方法,包括以下步骤:
以汽车冲压件边角料为原料,在7.5吨电炉熔化。在熔化过程中加入微晶石墨粉与碳化硅晶体混合体,促进碳以石墨形态析出,同时起到增硅的作用,然后进行合金化处理、球化处理及浇注成型,将浇注成型后的连杆毛坯进行二次等温正火及回火处理。
该实施例中,采用汽车冲压件边角料为原料,编制配料单输入自动配料称量***,自动称量。
向电炉中加入7吨汽车冲压件边角料,再加入350公斤微晶石墨粉与碳化硅晶体混合体,开始熔化。
加入铜合金并使铁水中铜当量为0.9%,具体包括:
铁水熔化后取样分析铁液中原有的合金元素含量(wt%):Mn 0.862、Cr 0.253、Mo 0.205、Ni 0.063、Sn 0.00203、Cu 0.0281、V 0.0362,检测铁水中的磷含量0.05%,硫含量0.02%,硅含量1.3%。取铜当量0.9%,按铜当量控制公式计算需要向铁水中添加的铜含量:
[W Cu] 新加=0.9%-[(W Mn-0.45%)/2.5+1.1W Cr+(W Mo-0.15%)/2+0.1W Ni+12W Sn+W Cu+4W v] 原有=0.326%;
折算成铜合金的加入量为7350×0.326%=24.0kg。
再按硅量添加控制公式计算需添加的硅含量后将硅铁加入铁水中。
Si 添加=1.3CuE+10P+4S-Si 原有=1.3×0.9%+10×0.05%+4×0.02%-1.3%=0.45%
75硅铁中硅含量75%,则加入硅铁0.45%/0.75×7350公斤=44公斤。
继续将铁水升温至1500℃,高温静置4min,降温至1400℃时进行二次扒渣后,向转运包内定量出铁水。
转运包周转至球化工位,将铁水倒入茶壶式密封球化浇注包内进行球化处理;球化处理完成的铁水再次扒渣干净后,覆盖保温材料并周转至浇注工位将铁水注入铸型中成铸态毛坯。
将铸态毛坯进行正火与回火处理,获得珠光体与破碎状铁素体混合基体组织,铁素体含量不超过10%。
实施例2
一种高抗拉强度高缺口冲击韧性连杆用球墨铸铁的制备方法,包括以下步骤:
(1)采用汽车冲压件边角料为原料,编制配料单输入自动配料称量***,自动称量。
向电炉中加入7吨汽车冲压件边角料,再加入350公斤微晶石墨粉与碳化硅晶体混合体,开始熔化。
(2)加入铜合金并使铁水中铜当量为0.8%,具体包括:
铁水熔化后取样分析铁液中原有的合金元素含量(wt%):Mn 0.63、Cr 0.162、Mo 0.092、Ni 0.037、Sn 0.0018、Cu 0.036、V 0.0078,检测铁水中的磷含量0.032%,硫含量0.015%,硅含量1.08%。取铜当量0.8%,按铜当量控制公式计算需要向铁水中添加的铜含量:
[W Cu] 新加=0.8%-[(W Mn-0.45%)/2.5+1.1W Cr+(W Mo-0.15%)/2+0.1W Ni+12W Sn+W Cu+4W v] 原有=0.487%;
折算成铜合金的加入量为7350×0.487%=35.8kg。
再按硅量添加控制公式计算需添加的硅含量后将硅铁加入铁水中。
Si 添加=1.3CuE+10P+4S-Si 原有=1.3×0.8%+10×0.032%+4×0.015%-1.08%=0.34%
75硅铁中硅含量75%,则加入硅铁0.34%/0.75×7350公斤=33公斤。
(3)继续将铁水升温至1500℃,高温静置4min,降温至1400℃时进行二次扒渣后,向转运包内定量出铁水。
(4)转运包周转至球化工位,将铁水倒入茶壶式密封球化浇注包内进行球化处理;球化处理完成的铁水再次扒渣干净后,覆盖保温材料并周转至浇注工位将铁水注入铸型中成铸态毛坯。
(5)将铸态毛坯进行正火与回火处理,获得珠光体与破碎状铁素体混合基体组织,铁素体含量不超过10%。
实施例3
一种高抗拉强度高缺口冲击韧性连杆用球墨铸铁的制备方法,包括以下步骤:
(1)采用汽车冲压件边角料为原料,编制配料单输入自动配料称量***,自动称量。
向电炉中加入7吨汽车冲压件边角料,再加入350公斤微晶石墨粉与碳化硅晶体混合体,开始熔化。
(2)加入铜合金并使铁水中铜当量为1.0%,具体包括:
铁水熔化后取样分析铁液中原有的合金元素含量(wt%):Mn 0.52、Cr 0.225、Mo 0.165、Ni 0.032、Sn 0.00187、Cu 0.026、V 0.018,检测铁水中的磷含量0.035%,硫含量0.011%,硅含量1.12%。取铜当量1.0%,按铜当量控制公式计算需要向铁水中添加的铜含量:
[W Cu] 新加=1.0%-[(W Mn-0.45%)/2.5+1.1W Cr+(W Mo-0.15%)/2+0.1W Ni+12W Sn+W Cu+4W v] 原有=0.583%;
折算成铜合金的加入量为7350×0.583%=42.9kg。
再按硅量添加控制公式计算需添加的硅含量后将硅铁加入铁水中。
Si 添加=1.3CuE+10P+4S-Si 原有=1.3×1.0%+10×0.035%+4×0.011%-1.12%=0.57%
75硅铁中硅含量75%,则加入硅铁0.57%/0.75×7350公斤=56公斤。
(3)继续将铁水升温至1500℃,高温静置4min,降温至1400℃时进行二次扒渣后,向转运包内定量出铁水。
(4)转运包周转至球化工位,将铁水倒入茶壶式密封球化浇注包内进行球化处理;球化处理完成的铁水再次扒渣干净后,覆盖保温材料并周转至浇注工位将铁水注入铸型中成铸态毛坯。
(5)将铸态毛坯进行正火与回火处理,获得珠光体与破碎状铁素体混合基体组织,铁 素体含量不超过10%。
对比例1
该对比例按现有常规技术生产高性能球墨铸铁,即以生铁、碳素钢废钢及回炉料为原料,在熔化过程中加入硅铁进行孕育处理。为获得较高的冲击韧性,将硅含量控制在2.5%左右,然后进行合金化处理、球化处理及浇注成型,将浇注成型后的连杆毛坯进行正火及回火处理。
该对比例与实施例1的主要区别在于:该对比例以生铁、碳素钢废钢及回炉料为原料,硅含量按固定指标添加;而实施例1以汽车冲压件边角料为原料,硅含量按硅量添加控制公式计算后添加。
该对比例中,采用生铁、碳素钢废钢及回炉料为原料,具体原料配比为:50%生铁+30%碳素钢废钢+20%回炉料,编制配料单输入自动配料称量***,自动称量,共7吨原料加入电炉,开始熔化。
铁水融化过程中加入240公斤75硅铁。75硅铁中硅含量75%,则铁水中的硅含量为240×75%/7240=2.5%。
铁水熔化后加入铜合金并使铁水中铜当量为0.9%。
继续将铁水升温至1500℃,高温静置4分钟,降温至1400℃时进行二次扒渣后,向转运包内定量出铁水。
转运包周转至球化工位,将铁水倒入茶壶式密封球化浇注包内进行球化处理;球化处理完成的铁水再次扒渣干净后,覆盖保温材料并周转至浇注工位将铁水注入铸型中成铸态毛坯。
将铸态毛坯进行正火与回火处理,铁素体含量25%。
对比例2
该对比例按现有常规技术生产高性能球墨铸铁,即以生铁、碳素钢废钢及回炉料为原料,在熔化过程中加入硅铁进行孕育处理。为获得较高的抗拉强度,将硅含量控制在1.8%左右,然后进行合金化处理、球化处理及浇注成型,将浇注成型后的连杆毛坯进行正火及回火处理。
该对比例中,采用汽车冲压件边角料为原料,编制配料单输入自动配料称量***,自 动称量,共7吨原料加入电炉,开始熔化。
铁水融化过程中加入172公斤75硅铁。75硅铁中硅含量75%,则铁水中的硅含量为172×75%/7172=1.8%。
铁水熔化后加入铜合金并使铁水中铜当量为0.9%。
继续将铁水升温至1500℃,高温静置4分钟,降温至1400℃时进行二次扒渣后,向转运包内定量出铁水。
转运包周转至球化工位,将铁水倒入茶壶式密封球化浇注包内进行球化处理;球化处理完成的铁水再次扒渣干净后,覆盖保温材料并周转至浇注工位将铁水注入铸型中成铸态毛坯。
将铸态毛坯进行正火与回火处理,获得珠光体与破碎状铁素体混合基体组织,铁素体含量5%。
上述实施例与对比例得到的球墨铸铁连杆本体性能及C70S6锻钢连杆本体性能对比见表1。
各指标的检测方法如下:拉伸试样、冲击试样、硬度试块均从连杆杆身制取。
按照GB/T228“金属材料室温拉伸试验方法”检测抗拉强度、屈服强度及伸长率;按照GB/T229“金属材料夏比摆锤冲击试验方法”检测冲击功;按照GB/T“金属材料布氏硬度试验第1部分试验方法”检测硬度。
表1 实施例与对比例及C70S6锻钢连杆本体性能对比表
序号 抗拉强度/MPa 屈服强度/MPa 伸长率(%) 冲击功(J) 硬度HBW
实施例1 927 625 8 7.6 288
实施例2 939 636 7.8 7.5 292
实施例3 936 613 8.2 7.3 290
对比例1 716 402 6.3 7.5 262
对比例2 931 582 4.5 2.4 292
C70S6 900-1050 550-650 10-15 6-8 250-310
注:冲击试块为V型缺口。
从表1可以看出,本申请铸造方法获得的球墨铸铁连杆本体不仅抗拉强度可以达到900MPa以上,伸长率7%以上,而且常温缺口冲击功也能达到7J以上。
本申请球墨铸铁铸造方法生产的球墨铸铁与目前应用于连杆最为广泛的C70S6材料性能相当且零件重量可减轻8%以上;同时,传统锻钢连杆的重量波动高达3%-5%,而本申请的制造工艺铸造出的连杆重量波动范围仅为1%-2%,因而不需要分组使用,降低了生产的难度。
该实施例工艺步骤简单、生产成本低于C70S6钢连杆30%以上,是制造连杆的良好材料。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (9)

  1. 一种球墨铸铁中硅量的添加控制方法,其特征在于,包括以下步骤:
    以废钢为原料熔炼球墨铸铁,在铁水熔化后,先加入铜合金使铁水中的铜当量为0.8-1.0%,再加入硅铁,使铁水中添加的硅含量满足如下式(I):
    Si 添加=1.3CuE+10P+4S-Si 原有     式(I),
    式(I)中,Si 添加为铁水中添加的硅含量,CuE为铁水中的铜当量;P、S、Si 原有分别为添加硅铁前铁水中的磷含量、硫含量和硅含量;
    其中,铜当量控制公式如式(II):
    CuE=[W Cu] 新加+[(W Mn-0.45%)/2.5+1.1W Cr+(W Mo-0.15%)/2+0.1W Ni+12W Sn+W Cu+4W v] 原有
    式(II),
    式(II)中,CuE为铜当量,[W Cu] 新加为铁液中添加的铜含量,W Mn、W Cr、W Mo、W Ni、W Sn、W Cu、W v分别为铁液中原有的锰含量、铬含量、钼含量、镍含量、锡含量、铜含量和钒含量。
  2. 根据权利要求1所述的球墨铸铁中硅量的添加控制方法,其特征在于,铁水熔化的过程中,加入微晶石墨粉与碳化硅晶体混合体;
    优选地,加入微晶石墨粉与碳化硅晶体混合体占铁水重量的4-6%;
    优选地,加入微晶石墨粉与碳化硅晶体混合体10-15min内,加入铜合金使铁水中的铜当量为0.8-1.0%。
  3. 根据权利要求1所述的球墨铸铁中硅量的添加控制方法,其特征在于,所述添加控制方法还包括加入铜合金使铁水中的铜当量为0.8-1.0%后,将铁水升温到1400℃-1450℃后检查铁水化学成分再加入硅铁的步骤。
  4. 根据权利要求1-3任一项所述的球墨铸铁中硅量的添加控制方法,其特征在于,所述废钢来自冲压件边角料,优选地来自汽车冲压件边角料。
  5. 一种球墨铸铁的铸造方法,其特征在于,包括:采用权利要求1-4任一项所述的球墨铸铁中硅量的添加控制方法对硅含量进行调控。
  6. 根据权利要求5所述的球墨铸铁的铸造方法,其特征在于,所述铸造方法还包括:采用所述球墨铸铁中硅量的添加控制方法对硅含量进行调控后再进行球化处理和浇注成型 的步骤;
    优选地,球化处理温度为1500℃-1540℃,球化处理保温时间为3-5min。
  7. 根据权利要求6所述的球墨铸铁的铸造方法,其特征在于,所述铸造方法还包括:浇注成型后进行正火与回火处理,获得珠光体与破碎状铁素体混合基体组织的步骤;
    优选地,铁素体含量不大于10%。
  8. 一种铸件,其特征在于,采用权利要求5-7任一项所述的球墨铸铁的铸造方法铸造得到。
  9. 根据权利要求8所述的铸件,其特征在于,所述铸件包括连杆。
PCT/CN2020/112243 2019-09-26 2020-08-28 球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件 WO2021057386A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/642,572 US11946120B2 (en) 2019-09-26 2020-08-28 Method for controlling amount of silicon added to ductile cast iron, method for casting ductile cast iron, and cast product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910916689.5 2019-09-26
CN201910916689.5A CN110484676B (zh) 2019-09-26 2019-09-26 球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件

Publications (1)

Publication Number Publication Date
WO2021057386A1 true WO2021057386A1 (zh) 2021-04-01

Family

ID=68544363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112243 WO2021057386A1 (zh) 2019-09-26 2020-08-28 球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件

Country Status (3)

Country Link
US (1) US11946120B2 (zh)
CN (1) CN110484676B (zh)
WO (1) WO2021057386A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484676B (zh) * 2019-09-26 2021-05-11 天润曲轴股份有限公司 球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157840A1 (en) * 2010-06-18 2011-12-22 Zanardi Fonderie S.P.A. Method for manufacturing mechanical components made of particularly wear-resistant austempered spheroidal cast iron
CN102367537B (zh) * 2011-07-11 2013-09-04 山东汇金股份有限公司 一种高强韧性铸态球墨铸铁及其生产方法
CN103556033A (zh) * 2013-10-30 2014-02-05 天润曲轴股份有限公司 一种合金球铁铜量的添加控制方法
CN109402495A (zh) * 2018-11-28 2019-03-01 精诚工科汽车***有限公司 具有均匀壁厚的球墨铸铁铸件中合金元素添加量的确定方法与球墨铸铁铸件及其铸造和模具
CN110484676A (zh) * 2019-09-26 2019-11-22 天润曲轴股份有限公司 球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171729A (ja) * 2001-12-10 2003-06-20 Daihatsu Motor Co Ltd 鋼板スクラップの再利用方法
CN100535159C (zh) * 2007-11-28 2009-09-02 中国船舶重工集团公司第十二研究所 一种用于液压件生产的合成铸铁及其制备方法
RU2618294C1 (ru) * 2015-12-31 2017-05-03 федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГАОУ ВО "ЮУрГУ (НИУ)") Способ выплавки синтетического высокопрочного чугуна в индукционных печах
CN106636523B (zh) * 2016-09-27 2018-08-03 宝鸡市晨瑞鑫铸造有限责任公司 利用全废钢制备球墨铸铁的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157840A1 (en) * 2010-06-18 2011-12-22 Zanardi Fonderie S.P.A. Method for manufacturing mechanical components made of particularly wear-resistant austempered spheroidal cast iron
CN102367537B (zh) * 2011-07-11 2013-09-04 山东汇金股份有限公司 一种高强韧性铸态球墨铸铁及其生产方法
CN103556033A (zh) * 2013-10-30 2014-02-05 天润曲轴股份有限公司 一种合金球铁铜量的添加控制方法
CN109402495A (zh) * 2018-11-28 2019-03-01 精诚工科汽车***有限公司 具有均匀壁厚的球墨铸铁铸件中合金元素添加量的确定方法与球墨铸铁铸件及其铸造和模具
CN110484676A (zh) * 2019-09-26 2019-11-22 天润曲轴股份有限公司 球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件

Also Published As

Publication number Publication date
CN110484676B (zh) 2021-05-11
US11946120B2 (en) 2024-04-02
CN110484676A (zh) 2019-11-22
US20220325390A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2022148492A1 (zh) 一种乘用车万向节叉冷锻用钢及其制造方法
AU2015281542A1 (en) Carburized alloy steel, method for preparing same, and use thereof
CN105779883A (zh) 485MPa级TMCP+回火耐候桥梁钢板及生产方法
CN109594010B (zh) 一种采用全废钢生产铸态qt950-4曲轴的方法
CN110894582B (zh) 一种高强度和高导热蠕墨铸铁及其制备方法
CN106399858B (zh) 一种低密度Ti3Al增强超高强度钢及其制备方法
CN102400032B (zh) 一种大断面球墨铸铁
CN114411068A (zh) 用于汽车涡轮壳、排气管的耐热钢及其制备方法
CN115612929A (zh) 一种稠油热采井用石油套管及其制备方法
CN111206182B (zh) 一种模具用低合金球墨铸铁的制备方法
CN111893371A (zh) 一种提高高强热轧带肋钢筋强屈比合格率的方法
CN112143970B (zh) 高强高韧非调质前轴用钢及其生产方法
CN111218614B (zh) 一种易切削连杆用钢及其制造方法
WO2021057386A1 (zh) 球墨铸铁中硅量的添加控制方法、球墨铸铁的铸造方法、铸件
CN103484777B (zh) 奥氏体锰钢及其制备方法
CN111910120A (zh) 一种高韧性的球墨铸铁的制备方法
CN115261711B (zh) 一种风电铸件用硅固溶强化铁素体球墨铸铁及其制备方法
CN113737085B (zh) 一种球墨铸铁桥壳及其制造方法
CN110284056B (zh) 一种耐腐蚀海洋平台用钢板及其生产方法
CN110468329B (zh) ZG-SY09MnCrNiMo RE钢及铸件制备方法
CN110846567B (zh) 一种高强度耐极寒环境冲击螺栓用钢及其生产方法
CN102373365A (zh) 大断面球墨铸铁
CN111690866A (zh) 一种高强度高硬度球墨铸铁的制备方法
CN105002438A (zh) 一种SY17MnNiVNbTi钢及其钢结构件制备方法
CN102672117A (zh) 高炉-中频炉双联生产ht200、ht250铸件的工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867979

Country of ref document: EP

Kind code of ref document: A1