WO2021057200A1 - 减振结构、检测***和测序*** - Google Patents

减振结构、检测***和测序*** Download PDF

Info

Publication number
WO2021057200A1
WO2021057200A1 PCT/CN2020/101908 CN2020101908W WO2021057200A1 WO 2021057200 A1 WO2021057200 A1 WO 2021057200A1 CN 2020101908 W CN2020101908 W CN 2020101908W WO 2021057200 A1 WO2021057200 A1 WO 2021057200A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light beam
module
plate
vibration
Prior art date
Application number
PCT/CN2020/101908
Other languages
English (en)
French (fr)
Inventor
郑焦
姜泽飞
周志良
王光明
张松振
Original Assignee
深圳市真迈生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市真迈生物科技有限公司 filed Critical 深圳市真迈生物科技有限公司
Priority to US17/763,164 priority Critical patent/US20220373780A1/en
Priority to CN202080005509.9A priority patent/CN112955534B/zh
Priority to EP20868405.0A priority patent/EP4036205A4/en
Publication of WO2021057200A1 publication Critical patent/WO2021057200A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/362Mechanical details, e.g. mountings for the camera or image sensor, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/001Specific functional characteristics in numerical form or in the form of equations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR

Definitions

  • This application relates to the field of machinery, and in particular to a vibration damping structure, a detection system and a sequencing system.
  • Mechanical vibration is a ubiquitous natural physical phenomenon.
  • the internal mutual movement of the mechanism itself can be generated, and the external excitation conduction can also cause it.
  • the impact of mechanical vibration is negative, and in severe cases it may even cause safety failures.
  • the detection system including the imaging module realizes detection based on the acquisition of images and analysis of image data, and is generally sensitive to vibration.
  • design and testing of the detection system including the design and testing of hardware component modules and system integration, vibration suppression, vibration isolation design, etc., and vibration evaluation are generally considered, in order to design component modules and/or systems that can effectively isolate and / Or attenuate the interference of external and internal vibration factors.
  • the sequencing system includes an imaging module, and the imaging module is used to photograph the nucleic acid molecules in the reaction device (such as a chip) during the sequencing reaction, and Analyze the captured images to obtain sequencing results.
  • the imaging module captures signals from a single molecule or molecular cluster of nucleic acid
  • the imaging module and/or the sequencing system are very sensitive to vibration.
  • it is necessary to effectively isolate and attenuate the interference from external and/or internal vibration factors of the imaging module or sequencing system to ensure that the imaging/sequencing process can stably obtain clear nucleic acid molecular images and make the sequencing results accurate Performance and reliability are guaranteed.
  • the embodiments of the present application provide a vibration damping structure, a detection system, and a sequencing system.
  • the present application provides a damping structure for use in a detection system.
  • the damping structure includes a body and a support.
  • the body is connected to the detection system through the support.
  • the body includes an imaging module and an upper structure.
  • a lower structure and an intermediate structure the imaging module is mounted on the upper structure, the lower structure carries the upper structure through the intermediate structure, and the natural frequency of the body is greater than or equal to Times the internal excitation frequency.
  • the body adopts an upper and lower double-layer structure, which can effectively suppress the vibration of the entire platform.
  • the natural frequency of the body is greater than or equal to Double the internal excitation frequency, which can further effectively suppress the internal excitation, thereby enhancing the vibration reduction effect of the entire vibration reduction structure.
  • a detection system provided by the present application includes the vibration damping structure of any one of the above-mentioned embodiments.
  • a sequencing system provided by the present application includes the vibration reduction structure of any one of the above embodiments.
  • the main body adopts an upper and lower double-layer structure, which can effectively suppress the vibration of the entire platform.
  • the natural frequency of the main body is greater than or equal to Double the internal excitation frequency, which can further effectively suppress the internal excitation, thereby enhancing the vibration reduction effect of the entire vibration reduction structure.
  • Fig. 1 is a schematic structural diagram of a vibration damping structure according to an embodiment of the present application
  • FIG. 2 is another structural diagram of the vibration damping structure of the embodiment of the present application.
  • Fig. 3 is another structural schematic diagram of the vibration damping structure of the embodiment of the present application.
  • FIG. 4 is another structural schematic diagram of the vibration damping structure of the embodiment of the present application.
  • FIG. 5 is a bright spot diagram of the light source for imaging the light source by the imaging module according to the embodiment of the present application
  • Fig. 6 is a schematic structural diagram of a sequencing system according to an embodiment of the present application.
  • FIGS 7 to 11 are related diagrams of performing vibration analysis on the vibration damping structure in the implementation of the present application.
  • FIG. 25 is a schematic structural diagram of an imaging module according to an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a first light source according to an embodiment of the present application.
  • FIG. 27 is a schematic diagram of another structure of an imaging module according to an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of a second light source according to an embodiment of the present application.
  • FIG. 29 is a schematic diagram of the simulation result of the spot size of the imaging beam when the imaging module according to the embodiment of the present application does not include the first beam splitter;
  • FIG. 30 is a schematic diagram of a simulation result of the size of the imaging light spot of the imaging beam including the first beam splitter in the imaging module according to the embodiment of the present application;
  • FIG. 31 is a schematic diagram of the simulation result of the size of the imaging beam spot of the imaging beam introduced with the compensation lens in the imaging module of the embodiment of the present application;
  • FIG. 32 is a partial perspective view of an imaging module according to an embodiment of the present application.
  • FIG. 33 is a front view of the imaging module of FIG. 32;
  • FIG. 34 is a top view of the imaging module of FIG. 32;
  • 35 is a schematic diagram of the structure of the optical splitting module of the embodiment of the present application during debugging;
  • FIG. 36 is a schematic structural diagram of a collimator according to an embodiment of the present application.
  • FIG. 37 is a schematic diagram of a pattern of a resolution line on a reticle according to an embodiment of the present application.
  • FIG. 38 is another schematic diagram of the structure of the spectroscopic module of the embodiment of the present application during debugging
  • FIG. 39 is a three-dimensional schematic diagram of an object carrying module according to an embodiment of the present application.
  • FIG. 40 is another three-dimensional schematic diagram of the load module according to the embodiment of the present application.
  • FIG. 41 is a schematic cross-sectional view of an object carrying module according to an embodiment of the present application.
  • FIG. 42 is an enlarged schematic diagram of part V of the load module in FIG. 41;
  • FIG. 43 is a schematic diagram of the connection between the supporting member and the first adjusting member according to the embodiment of the present application.
  • FIG. 44 is another schematic cross-sectional view of the load module according to the embodiment of the present application.
  • FIG. 45 is an enlarged schematic diagram of the VI part of the load module in FIG. 44;
  • FIG. 46 is a schematic diagram of the connection between the primary adjustment structure and the load-bearing module according to an embodiment of the present application.
  • FIG. 47 is another schematic diagram of the connection between the primary adjustment structure and the load-bearing module according to the embodiment of the present application.
  • FIG. 48 is a schematic plan view of a primary adjustment structure and a carrying module according to an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be The mechanical connection can also be an electrical connection or can communicate with each other; it can be a direct connection or an indirect connection through an intermediary, and it can be a communication between two components or an interaction relationship between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be The mechanical connection can also be an electrical connection or can communicate with each other; it can be a direct connection or an indirect connection through an intermediary, and it can be a communication between two components or an interaction relationship between two components.
  • sequence determination is the same as nucleic acid sequence determination, including DNA sequencing and/or RNA sequencing, including long fragment sequencing and/or short fragment sequencing.
  • sequence reaction is the same as the sequencing reaction.
  • the template can be extended by one base through a round of sequencing reaction, and the said base is selected from at least one of A, T, C, G, and U.
  • sequencing reaction includes extension reaction (base extension), information collection (photograph/image collection) and group excision (cleave).
  • the substrate for the sequencing reaction is the so-called "nucleotide analogue", also known as the terminator (terminator), which is the analogue of A, T, C, G and/or U, which can follow the principle of base complementation and A specific type of base pairing can terminate the binding of the next nucleotide analog/substrate to the template strand at the same time.
  • terminator the terminator
  • a specific type of base pairing can terminate the binding of the next nucleotide analog/substrate to the template strand at the same time.
  • a vibration damping structure 60 provided by the embodiment of the present application is used in a detection system.
  • the vibration damping structure 60 includes a main body 62 and a support body 64.
  • the main body 62 is connected to the detection system through the support body 64.
  • the main body 62 includes an imaging module 10, an upper structure 66, a lower structure 68, and an intermediate structure 70.
  • the imaging module 10 is mounted on the upper structure 66.
  • the lower structure 68 carries the upper structure 66 through the intermediate structure 70.
  • the natural frequency of the main body 62 is greater than or equal to Times the internal excitation frequency.
  • the vibration damping structure 60 can be used in any detection system based on imaging detection and analysis of target objects, for example, in biomolecule detection and analysis devices such as microscopes, and more specifically, in imaging-based sequencing platforms such as commercially available BGI, ILLUMINA sequencing platform.
  • the damping structure 60 with the above-mentioned characteristics, considering that when the damping structure 60 is used in a detection system, the body 62 involves two-dimensional or three-dimensional motion in the X/Y/Z direction, so the upper structure 66 and the intermediate structure are adopted.
  • the double-layer structure formed by the connection between 70 and the lower structure 68 can effectively suppress or reduce the influence of external excitation and/or internal excitation on the damping structure 60, and at the same time, make the natural frequency of the body 62 of the damping structure greater than or equal Double the internal excitation frequency can further effectively suppress or reduce the influence brought by the internal excitation, thereby improving the vibration reduction effect of the entire vibration reduction structure 60.
  • the so-called internal excitation is a concept relative to external excitation.
  • the vibration generated by the mutual movement of the internal structure/composition/connection of the damping structure 60 can be referred to as internal excitation.
  • the vibration generated outside the damping structure 60 can affect or be transmitted to the
  • the vibration of the vibration damping structure 60 can be referred to as external excitation.
  • the body 62 can be connected to the detection system through a support.
  • the detection system is described as a sequencing system 300. It can be understood that, in other embodiments, the detection system may also be other detection systems that are sensitive to vibration.
  • the main body 62 includes a loading module 100, which is used to carry and/or move the reaction device 200, and the loading module 100 is installed on the lower structure 68 to react The device is detachably installed on the load module 100.
  • the imaging module 10 is used to take pictures of the reaction device 200 fixedly placed on the object carrying module 100.
  • the sequencing system 300 is provided with a liquid path system through which reaction reagents/solutions can be passed to the reaction device 200.
  • the reaction device 200 is provided with one or more channels, the reaction reagents/solutions, etc. are located in the channels, the nucleic acid molecules to be tested are fixed in the reaction device 200 in advance, and the nucleotide analogs/substrates are placed in the reaction reagents/solutions. .
  • the imaging module 10 is placed above the reaction device 200, so that during the sequencing of nucleic acid molecules, images of the nucleic acid molecules with optically detectable labels in a specific position (Field of View, FOV for short) of the reaction device 200 can be collected.
  • the so-called optically detectable label is, for example, a fluorescent molecule.
  • the reaction device 200 is, for example, a chip, or includes a chip and a plastic outer frame, and the chip may be mounted in the plastic outer frame. It can be understood that the detection system may also be other systems including the imaging module 10.
  • the imaging module 10 includes an auto-focusing module.
  • the imaging module 10 When the auto-focusing module is used to focus on a specific position of the reaction device 200, the imaging module 10 does not move, and the object-carrying module 100 drives the response according to the information/instructions of the auto-focusing module.
  • the device 200 moves in a plane perpendicular to the optical axis OP, so that the imaging module 10 can capture images of different positions on the reaction device 200.
  • the imaging module 10 is a total internal reflection fluorescence microscopy system.
  • the total internal reflection microscopy system is susceptible to interference from various factors during signal acquisition, including vibration, and is very sensitive to vibration. Therefore, the excitation source of the sequencing system (including Both external and internal) vibrations will have a great impact on the imaging effect.
  • the influencing excitation is mainly divided into two parts. One part comes from the outside, which is called external excitation, which is generated by the surrounding environment; the other part comes from the inside, which is called The internal excitation is mainly generated by the movement of the imaging module 10 and/or the object-carrying module 100.
  • the natural frequency of the vibration damping structure 60 in the sequencing system 300 is not equal to the external excitation frequency.
  • the external excitation includes personnel walking, personnel communication, air conditioning vibration, and other modules/structures of the sequencing system such as internal fan operation and pump operation when the sequencing system 300 is working normally. Vibration caused by a series of factors, as well as low-frequency vibration conducted by the ground, and so on. This part of the excitation will be transmitted to the main body 62 including the imaging module 10 through the support 64 of the sequencing system 300, causing the vibration damping structure 60 to vibrate as a whole.
  • the vibration damping structure 60 provided in the sequencing system 300 includes a loading module 100, and the internal excitation of the vibration damping structure 60 mainly comes from the movement of the imaging module 10 and/or the loading module 100 when the sequencing system is running.
  • the movement of the load module 100 includes XY two-dimensional movement or XYZ three-direction movement
  • the movement of the imaging module 10 includes the excitation generated when the camera and the fan are running.
  • the loading module 100 provides movement of the reaction device 200 in the XY two-dimensional direction or the XYZ three directions, so that the imaging module 10 can collect the entire test area of the reaction device 200.
  • fluorescent molecules are relatively fragile and have easy luminescence behavior.
  • Frequency, amplitude, and phase are three important parameters for evaluating vibration signals. Among them, frequency corresponds to the reciprocal of the period, amplitude refers to the maximum position of the mechanism relative to the equilibrium position during vibration, and phase describes the vibration signal and trigger pulse. The relative positional relationship of the vibration signal is generally generated after the trigger pulse.
  • the applicant evaluates the vibration reduction effect of the designed vibration reduction structure 60 through the quality of the image collected by the imaging module 10. Specifically, in the sequencing system 300 including the imaging module 10, the design of the vibration damping structure 60 is mainly to reduce the impact of vibration on imaging, so the vibration signal can be evaluated by evaluating the quality of the image.
  • the sequencing system 300 realizes the signal collection of multiple fields of view on the reaction device by moving the load module 100, and uses the collected signal, that is, the information of the luminous position (bright spot or bright spot) on the reaction device to identify the base. /Determine the nucleic acid sequence. If the load module 100 vibrates during the camera exposure process, the imaging position of the object will shift. Observing from the image, it will be found that the bright spot will shake, and the serious tailing will appear, that is, the image will be blurred. Therefore, by judging whether the image is clear, it can be evaluated whether the vibration reduction structure 60 including the load-carrying module 100 has been stationary, or whether the vibration signal has been reduced to a level that does not affect the sequencing.
  • the image sharpness is estimated by calculating the image sharpness.
  • a sequencing system 300 that implements sequencing based on fluorescence detection, such as a single-molecule fluorescence detection platform, a light spot on the image corresponds to one or a few fluorescent molecules, and the intensity distribution of the light spot conforms to or approximates to a Gaussian distribution, as shown in FIG. 5 .
  • the intensity distribution of the light spot no longer has the characteristics of the Gaussian distribution. With this imaging characteristic, in this embodiment, it is evaluated whether the load module 100 vibrates (further description later).
  • the upper structure 66 of the so-called damping structure 60 includes an upper plate 71, which can be used to install the imaging module 10.
  • the imaging module 10 can be made up of five types: laser module, autofocus module, illuminator module, objective lens module, and camera module. Partial composition.
  • the lower structure 68 of the so-called damping structure 60 includes a lower plate 73, which can be used to install the load module 100, the load module 100 is used to support the reaction device 200, the reaction device 200, and the load module 100 can provide
  • the positioning and clamping of the reaction device 200 are connected with the flow path system of the sequencing system 300.
  • the reaction device 200 with a high flatness on the surface facilitates focus tracking stability during continuous image acquisition during sequencing.
  • the positioning of the reaction device 200 needs to meet specific requirements.
  • the position adjustment of the reaction device 200 using the loading module 100 will be further exemplified later.
  • the load module 100 includes a high-precision two-dimensional motion platform and two-stage pitch adjustment, which realizes the docking of the reaction device 200 and the imaging module 10, and provides two-dimensional movement for the reaction device 200, so that the field of view collected by the imaging module 10 can cover the entire or Part of the test area of the reaction device 200, and when collecting different fields of view, the surface of the reaction device 200 is perpendicular to the optical axis of the objective lens.
  • the optical axis of the imaging module 10 should not only be perpendicular to the surface of the reaction device 200, but also perpendicular to the direction of movement of the two-dimensional motion platform, so that the laser in the imaging module 10 can irradiate the entire FOV fully and uniformly, and make it brighter.
  • the spots (fluorescent spots) are symmetrically and uniformly excited.
  • the intermediate structure 70 includes a first connecting piece 72 and a second connecting piece 74, the upper structure 66 and the lower structure 68 have left and right sides, the first connecting piece 72 and the second connecting piece
  • the members 74 are respectively a plate structure and a column structure.
  • One of the first connecting member 72 and the second connecting member 74 connects the left side of the lower structure 68 and the left side of the upper structure 66, and the other connects the right side of the lower structure 68 and The right side of the superstructure 66.
  • the number of the first connecting member 72 is one
  • the number of the second connecting member 74 is two
  • the first connecting member 72 connects the left side of the lower structure 68 and the left side of the upper structure 66
  • the second connecting member 74 connects the right side of the lower structure 68 and the right side of the upper structure 66.
  • the first connecting member 72 may connect the right side of the lower structure 68 and the right side of the upper structure 66
  • the second connecting member 74 may connect the left side of the lower structure 68 and the left side of the upper structure 66 .
  • the intermediate structure 70 includes a first connecting piece 72 and a second connecting piece 74, the upper structure 66 and the lower structure 68 have left and right sides, the first connecting piece 72 and the second connecting piece Pieces 74 are all plate-like structures,
  • One of the first connecting member 72 and the second connecting member 74 connects the left side of the lower structure 68 and the left side of the upper structure 66, and the other connects the right side of the lower structure 68 and the right side of the upper structure 66.
  • the first connecting member 72 connects the left side of the lower structure 68 and the left side of the upper structure 66
  • the second connecting member 74 connects the right side of the lower structure 68 and the right side of the upper structure 66 .
  • the first connecting member 72 may connect the right side of the lower structure 68 and the right side of the upper structure 66
  • the second connecting member 74 may connect the left side of the lower structure 68 and the left side of the upper structure 66 .
  • the double second connecting member 74 on one side is changed into a plate-like structure, which is basically the same as the first connecting member 72 in structure.
  • the first connecting piece 72 and the second connecting piece 74 are symmetrically arranged along the center line H of the body 62, that is, the first connecting piece 72 and the second connecting piece 74 are symmetrically connected to the upper board 71 and the lower board 73, thereby enhancing and reducing
  • the vibration structure 60 has strength in the X direction.
  • the intermediate structure 70 includes a third connecting member 76.
  • the third connecting member 76 is a plate-shaped structure. Both the upper structure 66 and the lower structure 68 have a rear side.
  • the third connecting member 76 connects the rear side of the lower structure 68 and the upper structure. The back side of 66. In this way, the strength of the vibration damping structure 60 in the X direction is further enhanced, and the strength in the Y direction can be increased at the same time.
  • the first connecting member 72, the second connecting member 74 and the third connecting member 76 are each part of an integrated structure.
  • the so-called integrated structure can be similar to a tank without a front
  • the upper structure 66 and the lower structure 68 are respectively similar to the top and bottom of the tank
  • the first connecting piece 72 and the second connecting piece 74 are respectively similar to the tank.
  • the third connecting piece 76 is similar to the rear of the tank
  • the first connecting piece 72, the second connecting piece 74 and the third connecting piece 76 are all part of one structure.
  • both the damping structure 60 of the first and second embodiments can effectively damping/anti-vibrate.
  • the damping effect of the damping structure 60 of the second embodiment is better than that of the damping structure 60 of the first embodiment.
  • the applicant believes that, relatively speaking, it may be because the mass distribution of the vibration damping structure 60 of the first embodiment is not uniform, and the structure of the second embodiment rearranges the positions of the various components of the imaging module 10 in the upper structure 66, and the center of mass is in the entire On the center line H of the body 62, or the deviation of the center of mass from the center line is within a desired range, the mass distribution is relatively uniform.
  • the materials of the upper plate 71, the lower plate 73 and the intermediate structure 70 in the first and second embodiments may be aluminum alloy. Further, the lower plate 73 is heavier than the upper plate 71, so that the center of gravity can be moved down, and the stability of the vibration damping structure 60 can be increased.
  • the damping structure 60 includes a reinforcement member 78, the reinforcement member 78 can reduce the center of mass of the body 62, the reinforcement member 78 connects the first connecting member 72 and the lower structure 68, and the reinforcement member 78 The first connecting member 72, the upper structure 66 and the second connecting member 74 are connected.
  • the Z-axis is mounted on the upper plate 71.
  • the thickness of the upper plate 71 can be increased.
  • the excitation given by the two-dimensional motion platform is basically in the X-direction.
  • the number of reinforcing members 78 is two, and a cross beam is added in the middle as one of the reinforcing members 78, the middle reinforcing member 78 connects the first connecting member 72, the upper structure 66 and the second connecting member 74, and another reinforcing member is added to the left A member 78, the reinforcing member 78 on the left side connects the first connecting member 72 and the lower structure 68.
  • the reinforcement member 78 connects the outer side of the first connecting member 72 and the upper side of the lower structure 68.
  • the reinforcing member 78 connects the inner side of the first connecting member 72, the lower side of the upper structure 66 and the inner side of the second connecting member 74.
  • the reinforcing member 78 connects the first connecting member 72 and the lower structure 68, or the reinforcing member 78 connects the first connecting member 72, the upper structure 66 and the second connecting member 74.
  • the material of the lower plate 73 and the intermediate structure 70 can be replaced with steel.
  • the density of the material used in the lower plate 73 and the density of the material used in the intermediate structure 70 are greater than the density of the material used in the upper plate 71, which reduces the center of mass of the body 62, which is beneficial to the damping structure 60's stability. It can be understood that the density of the material used in the lower plate 73 or the material used in the intermediate structure 70 is higher than the density of the material used in the upper plate 71, and the center of mass of the body 62 can also be reduced.
  • first connecting member 72, the second connecting member 74, and/or the third connecting member 76 include a plate-like structure, one or more of the plate-like structures are present. Through holes/voids, the plate-like structure can adjust the balance of the strength of the vibration damping structure 60 in the X, Y, and/or Z directions by including through holes or holes.
  • the supporting body 64 includes a vibration damping member 80 and a supporting leg 192
  • the detection system includes a supporting base plate 83 (please refer to FIG. 6)
  • the body 62 is mounted on the vibration damping member 80
  • the vibration damping member 80 is installed on the support base 83 through the support feet 192. In this way, the docking between the main body 62 and the detection system is realized, and a great degree of isolation of external excitation is completed.
  • the vibration damping member 80 may include an anti-vibration gel seat (such as silica gel), the number of the anti-vibration gel seat may be four, the number of the supporting legs 192 may be four, and each supporting leg 192 is connected to a corresponding one.
  • Anti-vibration gel seat and lower structure 68 may include an anti-vibration gel seat (such as silica gel), the number of the anti-vibration gel seat may be four, the number of the supporting legs 192 may be four, and each supporting leg 192 is connected to a corresponding one.
  • Anti-vibration gel seat and lower structure 68 such as silica gel
  • the main axis T of the vibration damping member 80 is parallel to the optical axis direction OP of the imaging module 10.
  • the elastic main axis T of each anti-vibration gel seat is parallel to the Z-axis direction.
  • the vibration reduction structure 60 of the first to third embodiments are applied to the sequencing system 300 to further illustrate the connection relationship between the vibration reduction structure 60, the sequencing system 300, and/or the vibration reduction structure 60 and other modules of the sequencing system.
  • the sequencing system 300 realizes the sequence determination of the nucleic acid molecule by collecting the signal from the nucleotide bound to the nucleic acid molecule on the reaction device 200, the so-called nucleotide (if not otherwise specified, the same as the nucleotide analog) Optically detectable label, for example with fluorescent molecules.
  • damping members 80 of the same model can be used to support the imaging module 10, and the damping member 80 and the supporting feet 192 constitute the support body 64, and the elastic main axes of the four damping members 80 are all along the Z-axis direction, Or parallel to the Z-axis direction; the upper structure 66, the lower structure 68, the intermediate structure 70 and the imaging module 10 constitute the main body 62.
  • the damping structure 60 of the sequencing system can be divided into two parts: a body 62 and a support 64. Specifically,
  • the imaging module 10 is composed of five parts: a laser module, an auto-focus module, an illuminator module, an objective lens module, and a camera module.
  • the laser module provides the imaging module 10 with laser of appropriate power.
  • the laser will be coupled through the coupler to obtain a parallel coupled laser;
  • the illuminator module realizes the coupling of the laser into the objective lens at a suitable angle;
  • the auto focus module realizes the objective lens Z axis Linkage realizes that the fluorescence reflection of each field of view (Field of View, FOV, that is, the pixel window of an image) can be collected on the focal plane of the objective lens;
  • the objective lens module transmits the coupled light conducted in the front section to the test at an appropriate angle
  • the plane realizes total internal reflection;
  • the camera module accepts the reflected light to realize the collection of fluorescent points (bright spots or bright spots) in the FOV.
  • the reaction device module including the reaction device 200 and the reaction device fixture, provides the positioning and clamping of the reaction device 200 to be tested, and is connected to the flow path system. It is better to use a high flatness reaction device 200, which helps to ensure that the reaction device 200 (such as a chip) is stable during the entire sequencing process.
  • the positioning of the reaction device 200 needs to meet the requirements, which is beneficial to prevent damage and repeat positioning accuracy when the working distance of the objective lens in the imaging module is relatively small.
  • the load module 100 includes a high-precision two-dimensional motion platform and a two-stage pitch adjustment structure to realize the connection between the reaction device module and the imaging module 10, and provide two-dimensional or three-dimensional movement for the reaction device 200, so that the objective lens can be viewed Cover the entire detection area of the reaction device 200. In the entire field of view, the surface of the reaction device 200 is perpendicular to the optical axis of the objective lens.
  • the optical axis of the imaging module 10 should not only be perpendicular to the surface of the reaction device 200, but also perpendicular to the direction of movement of the two-dimensional micro-motion platform, so that the laser in the system can be fully and uniformly irradiated in the entire FOV plane, so that the phosphor points are symmetrically and uniformly excited .
  • the supporting body 64 includes four anti-vibration gel seats and supporting feet 192, which realizes the docking between the imaging module 10 and the whole machine, and realizes the isolation of external excitation to a great extent.
  • the sequencing system 300 mainly recognizes base sequence information through imaging, and the support 64 is used as a connection medium with the whole machine. Preferably, it is hoped that it can greatly weaken the excitation from the outside or the whole machine.
  • the sequencing system 300 captures the signals of the fluorescent spots in the reaction device 200 through the imaging module 10, and then converts these optical signals into corresponding base information, thereby measuring the corresponding nucleic acid sequence.
  • this can be achieved by making the reaction device 200 contain multiple channels, that is, having a larger reaction/detection area.
  • Each channel contains hundreds of FOVs. Therefore, generally, the relative displacement of the objective lens and the reaction device 200 in the X/Y direction should be considered when designing the structure or system; and considering the unevenness of the surface of the reaction device 200, it is better , Increase the Z-axis dimension to realize the automatic focus tracking function in the sequencing process.
  • single-molecule sequencing system 300 single molecule (single molecule or The fluorescence signal of a few molecules) is very fragile. For example, long-term exposure will cause rapid fluorescence quenching, and rapid image acquisition is required; in one example, the mass of the carrier module 100 carrying the reaction device 200 is relatively heavy.
  • the entire damping structure 60 is designed as a double-layered structure as in the first embodiment, with a plate-shaped first connecting piece 72 and two column-shaped second connecting pieces 74 in the middle, which facilitates the X/Y direction There is a large range of motion; as shown in Figure 1-4 and Figure 6, the upper double-layer structure is called the main body, and the four anti-vibration gel seats and the support base 83 are connected by four cylindrical support feet 192.
  • most of the entire damping structure 60 is made of aluminum alloy; the use of four anti-vibration gel seats as the support body 64 to connect the double-layer structure is beneficial to enhance the vibration suppression effect of the damping structure 60, and the support body 64 can effectively give the upper part Double-layer structure vibration isolation.
  • the vibration characteristics of the entire vibration damping structure 60 can be understood through the dynamic characteristics of the two-dimensional platform and the Z axis at the working position.
  • the applicant set the X/Y two-dimensional platform and Z axis in the most commonly used working positions: the X/Y two-dimensional platform is in the imaging state of the objective lens most of the time, and the objective lens is placed in the middle of the flow channel of the reaction device 200 The position is the working position of the X/Y two-dimensional platform; the Z axis is in the focus tracking state of the objective most of the time, so the theoretical focal plane corresponds to the Z axis position.
  • the two cylindrical second connecting pieces 74 connected by two layers are isotropic, and the left side is only a thinner first connecting piece 72, the X-direction strength is not enough. Therefore, the structure of the single-molecule gene sequencing system is changed.
  • the two cylindrical second connecting pieces 74 are changed to a thin plate-shaped second connecting piece 74 on one side of the symmetry, and then a plate-shaped third connecting piece 76 is added on the back to enhance the overall mechanism in X To strength.
  • the Z-direction high-precision movement of the objective lens comes from the Z-axis.
  • the Z-axis is installed on the upper plate 71.
  • the thickness of the upper plate 71 is increased; therefore, a large range of FOV is distributed in the X direction during the sequencing process.
  • the excitation given by the two-dimensional platform is basically in the X direction.
  • the applicant indirectly evaluates the vibration damping performance of the vibration damping structure 60 by evaluating the quality of the collected images.
  • the test found that the evaluation method is simple and straightforward, the test platform is easier to build, requires less equipment, and the operation steps are simple. The larger the amplitude and the more obvious the image difference, the more conducive to accurate evaluation.
  • the method can also test and verify the built sequencing system. Whether 300 is reliable/can realize the predetermined function. Specifically, with the help of the imaging module 10 included in the sequencing system 300 itself, it has an imaging function, and the evaluation of the vibration of the system through images is simple and intuitive, and has inherent adaptability. More directly, the vibration suppression effect of the sequencing system 300/damping structure 60 can be determined by observing whether the image is blurred.
  • the object-carrying module 100 vibrates, the imaging position of the object will be shifted. Observing from the image, it will be found that the bright spot will shake and tailing will occur, and the image will be blurred visually. By judging whether the image is clear, it can be evaluated whether the object-carrying module 100 is stationary or in a state that does not affect signal acquisition (or the effect is negligible).
  • This embodiment does not limit the method for judging whether the image is clear.
  • the applicant evaluates the sharpness of the image by calculating the sharpness of the image.
  • Figure 5 shows the intensity distribution of an ideal bright spot on the image, which is a Gaussian distribution or an approximate Gaussian distribution.
  • the load module 100 vibrates and causes the image to move, it will cause the pixels in a small imaging area of the camera (such as 3*3 pixels, roughly the size of an ideal fluorescent molecule on the image surface) at different times.
  • the strength signal of the same signal source is received within. In this way, the intensity value of the signal source is averaged to n pixels in the imaging area. Therefore, the difference between pixels in the imaging area becomes very small and no longer has the characteristics of Gaussian distribution.
  • a set of indirect measurement schemes for evaluating vibration can be established.
  • the so-called single-molecule gene sequencing system is a sequencing system that recognizes a single base through a total internal reflection fluorescence imaging system (Tirf).
  • Tirf total internal reflection fluorescence imaging system
  • the single-molecule base signal is extremely weak, and microscopic imaging requires high magnification, high NA, and small depth of field. It is extremely sensitive to external disturbances including environmental vibration.
  • the incentives that affect the single-molecule gene sequencing system are mainly divided into two parts. One part comes from the outside, called external incentives, and is generated by the surrounding environment. The other part comes from the inside, which is called internal excitation, which is generated by the imaging module 10.
  • the ground vibration frequency of the earth pulsation type is mainly between 0Hz-1Hz, and the vibration frequency caused by laboratory workers walking is between 1Hz-3Hz; the vibration caused by ventilation ducts, transformers and motors are between 6Hz-65Hz; the building itself Generally swing between 10Hz-100Hz frequency.
  • the external excitation can be obtained through experimental tests.
  • the applicant arranges a three-axis acceleration sensor probe on the support 64 installed in the sequencing system 300 to manufacture the working conditions during normal operation without deliberately shielding people from walking and moving. Communication, the whole machine is turned on, and the internal fans and pumps of the sequencing system 300 are all turned on.
  • the external excitation X-direction first-order peak is 4.5 Hz
  • Y-direction first-order peak is 4 Hz
  • Z-direction first-order peak is 11.5 Hz. Therefore, the excitation frequency of the excitation source in the environment can be known, and this data serves as the basis for subsequent finite element analysis and comparison.
  • the sequencing system 300 mainly recognizes the base sequence by the camera collecting the fluorescent spots excited by the laser in the reaction device 200 through the objective lens, so the entire imaging module 10 is a whole, and any component in this optical path is relatively Relative vibration of other parts will affect the image collection. Therefore, the internal excitations that affect the imaging module 10 mainly include: two-dimensional micro-motion platform movement, Z-axis movement, camera fan operation, and so on.
  • the single-molecule gene sequencing system on the bottom plate can simplify the dynamic model according to the single-stage vibration isolation method. By simplifying it into an idealized rigid-body dynamics model, it is convenient to observe the essential law of vibration suppression, and then from simple to complex, analyze complex vibration suppression optimization problems.
  • the main body 62 of the single-molecule gene sequencing system serves as the vibration isolation object of the support 64. Since the mass and rigidity of the body 62 are much greater than that of the support body 64 that supports it, the body 62 can be simplified to a rigid body, ignoring the weight of the shock-proof gel seat, thereby forming a simplified model of the body 62, that is, the shock-proof gel seat is simplified as The four mass points are symmetrically distributed and support the body 62 simplified as a rigid body.
  • each anti-vibration gel seat is simplified to a spring and a damping structure, so that the stiffness and damping corresponding to the three directions can be simplified as k ix , k iy , k iz , c ix , c iy , c iz .
  • the resulting single-stage passive vibration isolation system has six degrees of freedom of movement. Assuming that the initial positions are all 0, and the body 62 is in a small displacement vibration state under excitation, u, v, w are linear displacements in X, Y, and Z directions respectively, and ⁇ , ⁇ , and ⁇ are respectively around X and Y Angular displacement of the three axes of, Z; first ignore the influence of damping C, according to the momentum theorem and moment of momentum theorem of classical mechanics, six independent differential equations of motion can be obtained, as follows.
  • m the mass of the body
  • u displacement of the body along the X axis
  • v displacement of the body along the Y axis
  • w displacement of the body along the Z axis
  • k ix the stiffness of the body X
  • k iy the stiffness of the body Y
  • K iz body Z stiffness
  • a body length half
  • b body width half
  • d body height half
  • I xx relative mass center X-direction moment of inertia
  • I yy relative mass center Y-direction rotation Moment of inertia
  • I zz Moment of inertia relative to the center of mass in the Z direction
  • Angular displacement of the body around the X axis
  • Angular displacement of the body around the Y axis
  • Angular displacement of the body around the Z
  • the matrix can be abbreviated as the following form:
  • M body mass matrix
  • C body damping matrix
  • K body stiffness matrix
  • i—— can be from 1 to 6, respectively representing 6 degrees of freedom; ——N-order mode The i-th component of.
  • the sequencing system 300 is an under-damped system with a damping ratio of 0 ⁇ n ⁇ 1.
  • the frequency ratio ⁇ is a system parameter related to the excitation frequency wj and the natural frequency wn of the vibration damping structure 60.
  • the excitation frequency wj is less than the natural frequency wn of the vibration damping structure 60, that is, the frequency ratio ⁇ 1; the excitation frequency wj is equal to the system natural frequency
  • the design goal is to avoid the resonance frequency in each degree of freedom, and to absorb the vibration transmitted from the outside or the inside through the support 64 as much as possible, so as to minimize the impact on the imaging module 10. Therefore, the natural frequency of the vibration damping structure 60 is not equal to the frequency of the external excitation, which can effectively reduce the influence of the external excitation on the sequencing system 300.
  • the body 62 connected to the support 64 in the sequencing system platform is simplified as a rigid body; for internal excitation, the body 62 can be separately proposed as a target object for analysis.
  • the main purpose is to make the relative displacement of the objective lens and the reaction device 200 under the excitation action meet the requirements of the automatic focus tracking of the imaging module 10.
  • F N K s X s (3-19), where F N —— internal excitation; K s —— body stiffness; X s —— body deformation.
  • the deformation size X s of the body 62 is inversely proportional to the stiffness K s of the body 62. To obtain a small X s , a suitable stiffness of the body 62 is required.
  • w s the natural frequency of the body
  • M s the mass of the body
  • the rigidity of the main body 62 is proportional to the natural frequency of the main body 62.
  • Increasing the natural frequency w s means increasing the rigidity of the main body 62.
  • the rigidity of the body 62 is proportional to the mass, and increasing the mass of the body 62 is to increase the rigidity of the body 62.
  • a three-axis acceleration sensor probe is arranged on the bottom plate of the platform where the single-molecule gene sequencing system is installed to create the working conditions during normal operation. There is no need to specifically shield personnel from walking and communicating. The whole machine is turned on and the internal fan , The pumps are all on.
  • the cloud wisdom data acquisition analyzer (INV3062C1) and the ultra-low frequency acceleration velocity vibration pickup (941B) are used.
  • the environmental excitation under this working condition is shown in Figure 8. It can be seen from the figure that the Nyquist sampling theorem is used to design the sampling frequency of the experiment, the number of FFT points is 1024, the number of spectral lines is 512, the first-order peak of the external excitation X direction is 4.5 Hz, the first-order peak of Y direction is 4 Hz, and the Z direction The first-order peak is 11.5 Hz.
  • the excitation frequency distribution of the excitation source in the environment can be known.
  • the X/Y/Z three-directional environmental excitations are all low-frequency.
  • the rubber shock-proof gel seat can be used to isolate it, making it easy to achieve stiffness in three directions.
  • the internal excitation is mainly concentrated in the main body 62.
  • the imaging modules 10 are installed on the upper plate 71. As a whole, apart from the vibration caused by the rotation of the camera cooling fan, there is no other internal interaction between them, so they can be ignored first; As the movement mechanism, the shaft will bring the objective lens in the focus-tracking state. The focus-tracking will adjust the moving distance of the objective lens with the flatness of the chip. Because the objective lens is relatively light and the acceleration is small, the excitation generated is also relatively small.
  • the two-dimensional micro-motion platform provides the chip with movement in the two-dimensional XY direction, which can provide enough field of view for the objective lens to cover the entire test area of the chip, because the single-molecule fluorescence signal is relatively fragile, and long exposure will cause the fluorescence to be quenched quickly. Therefore, the micro-motion platform needs to respond quickly, and the high-speed, emergency-stop motion curve will bring motion excitation to the entire system. This part of the excitation acts on the inside of the platform, which will cause mutual vibration inside. During normal operation, the two-dimensional micro-motion platform has the greatest impact on vibration.
  • the main analysis of its motion mechanism is to move a FOV's speed-time curve VT diagram, as shown in Figure 9.
  • This two-dimensional micro-motion platform follows an S-shaped curve in a channel, the distance between the two FOVs is 0.22mm, the maximum speed is 12.8mm/s, the maximum acceleration time is 0.1s, and the converted acceleration a is 0.128m/s2.
  • the X forward movement is taken as the calculation target, and the measured load of the micro-motion platform is about 2kg. According to its motion trajectory, it can be inferred that the excitation is a rectangular wave, as shown in Figure 10.
  • the time domain signal needs to be converted into a frequency domain signal.
  • This conversion can be processed by matlab.
  • the rectangular frame sampling time interval is 2s, and the corresponding power spectral density curve can be obtained through the standard function Fourier transformation, as shown in Figure 11.
  • the load of the Z-axis motion platform is known to be 300g.
  • the maximum speed is 12.8mm/s and the maximum acceleration time is 0.2s;
  • the first-order natural frequency of the main body 62 in the X/Y direction is much greater than 117Hz, and it can achieve a very good vibration isolation effect if it can reach more than 165Hz.
  • the first-order natural frequency of the main body 62 in the Z-direction is far greater than 31 Hz, and it can achieve a good vibration isolation effect if it can reach above 44 Hz.
  • the natural frequency of the body 62 is greater than or equal to Double the internal excitation frequency, which can achieve a better vibration isolation effect, that is to say, for each direction along XYZ, the natural frequency of the body 62 is greater than or equal to Times the internal excitation frequency.
  • the camera continuously takes pictures according to the minimum exposure time that can be recorded, continuously records the state of the image during the entire process of the two-dimensional motion platform from start to stop, and outputs motion Shoot and record the information of the fluorescent spots.
  • the trajectory of the objective lens relative to the reaction device 200 follows an S-shaped curve in a channel with a 2 ⁇ 50 FOV.
  • the partial trajectory diagram is shown in Fig. 12, one back and forth two lines, each line having 50 FOV.
  • the movement distance between the two FOVs is 0.22mm
  • the acceleration a is 0.128m/s 2
  • each FOV stays for 1s.
  • a qualified reaction device 200 is prepared to ensure that the dot shape and density meet the requirements. Place the reaction device 200 on the loading module 100 and clamp it, apply the corresponding lens oil, move the two-dimensional micro-motion platform so that the objective lens is in the designated channel, turn on the laser 532nm, and manually find the appropriate focal plane. Keep the fluorescent spot in the FOV in the clearest state, and then lock the focal plane for subsequent automatic focus tracking.
  • the camera exposure time is set to 30ms, the test is started, and a group of more than 3000 pictures will be output after the shooting. The same experiment was performed on the three sequencing systems 300 of the first to third embodiments, respectively, so that multiple sets of experimental results can be obtained.
  • Image denoising Image denoising and enhancement measures are taken for the continuously collected images
  • the points (bright spots/bright spots/signal points) in a Fov image are densely covered with tens of thousands of stars, and the brightness of each point is different, mixed with interference such as adsorption and background noise. Therefore, in general, it is first necessary to eliminate interference and find bright spots that meet the requirements.
  • the image denoising method used in this embodiment is mainly for the purpose of removing the influence of the background in the image.
  • the experiment uses the morphological opening operation in image processing, that is, the result of the image opening operation is considered to be the image background.
  • the original image is then used to subtract the calculated background image to obtain a denoised image.
  • the gray value of the signal point has a Gaussian distribution, and the value of the central area will be higher than the value of the edge area. Using the above characteristics, you can find out almost all the signal point positions in the image, but at the same time many noise points will be located. In order to filter out the influence of noise points, the candidate points found in the previous step need to be further screened. Specifically, the signal-to-noise ratio of each signal point, the distribution of imaging gray values, and other information are used to determine the confidence of each signal point, so as to filter out signal points with low confidence.
  • the images in Figure 13 from left to right and top to bottom respectively show the original image (collected image), background image, denoising image, image with signal points and noise points located, and confidence filtering as described above. Image of signal points with low intensity.
  • Sharpness value calculation Calculate the sharpness value of each point light source signal, and select the representative point light source sharpness value as the sharpness value of the image and output.
  • Calculating the sharpness value of each signal point can follow the following steps: a. Fit the intensity value at the center position of the signal point according to the intensity distribution of the area near the center of the signal point; b. Then calculate the intensity value and phase at the center position The interpolation average of the intensity value of the neighboring area is taken as the sharpness value of the signal point.
  • the evaluation standard is to take the difference between the center of the light source and the surrounding 8 neighborhoods, and then divide by the average gray value of the 3*3 area, and you can follow the formula (5-1 ) To calculate.
  • Score 9*(8Center-edge[8])/(Center+edge[8])(5-1), where Score—— is the sharpness value of the image; Center—— is the intensity value of the center position; edge[ 8]——Intensity value of 8 neighborhoods around the light source.
  • the sharpness value Score of all signal points can be calculated, the Scores of all the points are arranged in ascending order, and the Score of 90 points is taken as the sharpness value ImageScore to evaluate the sharpness of the overall image.
  • a set of sample image definition values obtained using the above method is shown in Figure 14.
  • this embodiment selects the 90th minute of the sharpness value of all signal points as the sharpness value ImageScore of the image. Understandably, values corresponding to other quantiles can also be selected as the sharpness value of the image.
  • Figure 14 shows a set of sample image sharpness values. From left to right and from top to bottom, the images are images with ImageScore value equal to 0, images with ImageScore value equal to 1.49, images with ImageScore value equal to 2.03, and ImageScore value equal to 2.51. The image with the ImageScore value equal to 3.01.
  • ImageScore is an image evaluation index, and the higher the value, the clearer the image. Generally, the points on the picture above 2.0 are clearer, and the picture below 1.5 is blurry. ImageScore can more accurately distinguish the sharpness of the image, and can be used to evaluate whether the platform vibrates after reaching the designated position.
  • a bunch of images output in the test are processed through image processing, and each image can get an ImageScore value. If these values are drawn into a curve, it can be found that they change in cycles. The interception of two cycles is shown in Figure 15, where the abscissa Is the number of images, and the ordinate is the ImageScore value corresponding to the image.
  • the FOV whose ImageScore value drops rapidly can be found first, which corresponds to the starting point of the movement of the two-dimensional micro-motion platform. Then calculate backward from this FOV, and find the previous FOV in which the area is stable. Because the steady-state ImageScore value is also a fluctuating value, the judgment basis for the point rule before statistical stability should avoid this situation.
  • the judgment basis is that if the difference between the ImageScore values of two consecutive points behind this point is not greater than 0.3, this point is The required FOV. Then follow this statistic to move from the beginning to the stable FOV number Nw. This process can be completed by importing ImageScore value data into Matlab, and then programming.
  • the minimum image acquisition exposure time of this camera is 30ms, that is, its corresponding resolution is like this.
  • the micro-motion platform may only start to start, so when the statistical stabilization time Tw is compared with the real movement time of the two-dimensional micro-motion platform, the exposure misalignment delay must be considered.
  • the time required for the two-dimensional micro-motion platform to move from the start to the end of each cycle is about 90ms.
  • the number of FOVs Nw required for the statistics to stabilize can be obtained.
  • the output curve is shown in Figure 17, where the abscissa represents the number of moving FOVs, and the ordinate represents the number of photos required for stability. Then, a graph of the stable time Tw can be obtained, as shown in Fig. 18.
  • Tw fluctuates very large, ranging from a very small 60ms to a large 990ms.
  • the calculated average value is 270ms, which is much longer than the comparison time required for the two-dimensional micro-motion platform from the beginning to the end. Td (60 ⁇ 120ms).
  • the sequencing system 300 including the vibration damping structure 60 of the implementation one needs a long time to recover the focus tracking stability after the two-dimensional micro-motion platform is moved into place. It can be seen from the ImageScore value curve that when the ImageScore value is in a stable state , Its amplitude will change a lot, indicating that the instrument is always in a relatively unstable state, is susceptible to external interference, and is less able to meet the demand for vibration suppression.
  • the tail in front of the curve is caused by the non-synchronization of the two-dimensional micro-motion platform and the beginning of the photo, but it does not affect the data processing results. It can be seen from the figure that the first four extreme points are all in the two-dimensional micro-motion platform before the formal movement, so the follow-up statistics can exclude the first four cycles from statistics. Observing the graph, it can be found that the ImageScore value curve is more regular than the previous group, and the fluctuation value in the steady state is also smaller than it.
  • the subsequent formal 97 cycles tend to stabilize the time Tw fluctuates greatly, ranging from a very small 60ms to a large 360ms.
  • the calculated average value is 151ms, which is larger than the two-dimensional micro-motion platform.
  • the contrast time Td (60 ⁇ 120ms) required from the start of the movement to the end. Therefore, it can be judged that the sequencing system 300 including the vibration damping structure 60 of the second embodiment needs more than 30 milliseconds to recover the focus tracking stability after the two-dimensional micro-motion platform is moved into position. From the comparison of the ImageScore value curve, compared with the sequencing system 300 including the vibration reduction structure 60 of the first embodiment, the vibration reduction structure 60 of the second embodiment is more stable and further suppresses vibration.
  • the tails on the front and back of the curve are caused by the two-dimensional micro-motion platform and the start of the photo are not synchronized, but it does not affect the data processing results. It can be seen from the figure that the first 5 extreme points are all in the two-dimensional micro-motion platform before the formal movement, so the follow-up statistics can exclude the first 5 cycles from the statistics.
  • the number of FOVs Nw required for stabilization is obtained through matlab processing, as shown in Figure 23. Consistent with the conclusions obtained from the previous ImageScore value curve, the first 5 cycle data may not be included in the statistical results. Then, a graph of the stable time Tw can be obtained, as shown in Fig. 24.
  • the stabilization time Tw of the subsequent 98 cycles is between 60ms and 120ms, with an average value of 92.8ms. Therefore, it can be judged that after the single-molecule gene sequencing system 300 including the vibration damping structure 60 of the implementation three is moved to the position of the two-dimensional micro-motion platform, there is basically no vibration affecting the image blurring on it, which further meets the requirements for vibration suppression.
  • a sequencing system 300 provided by an embodiment of the present application includes the vibration damping structure 60 of any of the foregoing embodiments.
  • the damping structure 60 included in the sequencing system 300 is the damping structure 60 of the third embodiment. It can be understood that, in other embodiments, the test system 300 may also include the vibration damping structure 60 of any one of the first to second embodiments.
  • An imaging module 10 includes a first light source 12, a first lens 16 and a beam splitting module 40.
  • the beam splitting module 40 includes a first beam splitter 14, a second lens 18, and a first camera 20. And the second camera 22.
  • the first lens 16 is used for receiving the first light beam from the first light source 12 and collimating the light beam to be incident on the sample 24, and for receiving the light beam from the sample 24 and collimating the light beam.
  • the second lens 18 is used to focus the collimated light beam from the first lens 16 to the first camera 20 and the second camera 22.
  • the first beam splitter 14 is used to divide the focused beam from the second lens 18 into a second beam and a third beam.
  • the first camera 20 is used to receive the second light beam.
  • the second camera 22 is used to receive the third light beam.
  • the imaging module 10 of this embodiment can be applied to any one of the first to third embodiments of the vibration damping structure 60 described above.
  • the imaging module 10 after the second lens 18 focuses the light, it is divided into the second beam and the third beam by the first beam splitter 14. This can reduce the use of optical elements and the length of the beam splitting light path is small, so that the total size of the imaging module 10 is reduced. The shorter the optical path length is beneficial to the miniaturization of the imaging module 10 and the industrialization.
  • the sample 24 may be a nucleic acid sample to be tested, and the nucleic acid sample to be tested may be placed in the reaction device 200, such as in a chip.
  • the first light source 12 may be a laser light source.
  • the chip includes a substrate, a channel is provided on the substrate, and a glass is provided on the substrate.
  • the first light source 12 emits laser light into a specific field of view of the chip through the first lens 16, the fluorophores in the field of view are excited to emit fluorescence, and the fluorescence is focused by the first lens 16 and the second lens 18.
  • the first beam splitter 14 splits the fluorescent condensed beam into a second beam and a third beam.
  • the first camera 20 receives the second beam, and the second camera 22 receives the third beam. The first image and the second image.
  • the first light source 12 may include a first light emitter 13 and a third lens 15.
  • the first light beam is a collimated light beam emitted by the first light emitter 13 after passing through the third lens 15.
  • the first light beam is focused by the fourth lens 17 to the back focal plane of the first lens 16, and then collimated by the first lens 16, and then incident on the sample 24.
  • the first light source 12 further includes an optical fiber coupler, such as a single-mode optical fiber coupler.
  • the imaging module 10 is a total internal reflection imaging module.
  • the collimated beam (parallel beam) passing through the first lens 16 is incident on the surface of the chip at an angle greater than the critical angle, causing total internal reflection, and generating an evanescent field on the lower surface of the chip glass ( Evanescent wave).
  • the fluorescence emitted by the excited fluorescent molecules in the evanescent field is received by the first lens 16.
  • the light beam from the sample 24 received by the first lens 16 is the light beam emitted by the sample 24.
  • the image sensors of the first camera 20 and the second camera 22 may use CCD or CMOS.
  • the image sensors used by the first camera 20 and the second camera 22 are of the same type, for example, both are CCD or both are CMOS.
  • the first beam splitter 14 may be a dichroic mirror.
  • the second beam is the transmitted beam of the first beam splitter 14, and the third beam is the reflected beam of the first beam splitter 14.
  • the first camera 20 and the second camera 22 are arranged at 90 degrees or 270 degrees. In this way, it is convenient to arrange multiple cameras of the first camera 20 and the second camera 22 into the imaging module 10 in a limited space.
  • the first beam splitter 14 has a first reflective surface 26.
  • the angle between the first reflective surface 26 and the horizontal plane is 45 degrees, and is incident on a part of the first reflective surface 26 in the horizontal direction.
  • the light beam is reflected and turned 90 degrees to reach the second camera 22, and another part of the light beam incident on the first reflecting surface 26 in the horizontal direction passes through the first reflecting surface 26 and enters the first camera 20.
  • the first camera 20 and the second camera 22 are arranged clockwise at 90 degrees and counterclockwise at 270 degrees.
  • the sample has two fluorescent labels, such as Cy3 and Atto647N.
  • the emission wavelengths of the two fluorescent molecules are 550-620nm and 650-750nm (wave peaks are about 564nm and 670nm, respectively);
  • the device 14 is a dichroic mirror, which has a high transmittance for light with a wavelength of 550-620 nm and a high reflectance for light above 650 nm.
  • the so-called fluorescent-labeled nucleotide reagents include four types of nucleotide reagents, A, T, C, and G, and different kinds of nucleotide reagents can be placed in different containers. In an example, four nucleotides carry the same fluorescent label.
  • each round of sequencing reaction includes four base extension reactions, and the four base extension reactions are the addition of the four nucleotides in sequence. And get the corresponding image.
  • the four nucleotides are paired with a first fluorescent label and a second fluorescent label.
  • the first fluorescent label and the second fluorescent label can be excited to emit different fluorescence.
  • Two-color sequencing, each round of sequencing reaction includes two base extension reactions.
  • the two labeled nucleotide reagents or solutions are mixed in the channel to react, and the first light source 12 simultaneously emits the first laser and the second laser into a specific field of view of the chip through the first lens 16, and the first fluorescent label and The second fluorescent mark is respectively excited by the first laser and the second laser to emit the first fluorescent light and the second fluorescent light.
  • the first fluorescent light and the second fluorescent light are condensed to the first beam splitter 14 through the first lens 16 and the second lens 18 (two The dichroic mirror separates the first fluorescent light and the second fluorescent light that converge, the first fluorescent light is focused on the image surface of the first camera 20, and the second fluorescent light is focused on the image surface of the second camera 22, thereby respectively obtaining The first image and the second image formed by the first fluorescence and the second fluorescence of the field of view. Based on nucleotide addition sequence and first image and second image information of different rounds of sequencing reactions, base identification/sequencing is realized.
  • the four kinds of nucleotides are respectively labeled with fluorescent label a, fluorescent label b, dual fluorescent label ab, and without label.
  • the fluorescent label a and fluorescent label b can be excited to emit different fluorescence. Utilize four-color sequencing, and each round of sequencing reaction includes a base extension reaction.
  • the nucleic acid to be tested, the enzyme, and the four nucleotides mentioned above are Reagents or solutions are mixed in the channel to react, and the first light source 12 simultaneously emits the first laser and the second laser into a specific field of view of the chip through the first lens 16, and the fluorescent markers in the field of view are respectively excited by the first laser and the second laser Fluorescence is emitted, and the fluorescence is condensed to the first beam splitter 14 (dichroic mirror) through the first lens 16 and the second lens 18, and the dichroic mirror divides the fluorescence into the fluorescence from the fluorescent label a and the autofluorescent label b
  • the fluorescence from the fluorescent marker a is focused on the image plane of the first camera 20, and the fluorescence from the fluorescent marker b is focused on the image plane of the second camera 22, thereby respectively obtaining the first image and the second image of the field of view.
  • Base identification/sequencing is realized by combining the
  • the first lens 16 includes one or more lenses
  • the second lens 18 includes one or more lenses.
  • one or more lenses of the first lens 16 constitute an objective lens
  • one or more lenses of the second lens 18 constitute a tube lens.
  • the first lens 16 includes one or more lenses
  • or the second lens 18 includes one or more lenses.
  • the imaging module 10 includes a second beam splitter 28 for receiving the first light beam from the first light source 12 and steering the first light beam to the first lens 16, so that the second beam splitter 28 A light beam is merged into the optical path (imaging optical path) where the optical axis of the first lens is located.
  • the arrangement of the second beam splitter 28 enables the first light source 12 to be located outside the optical path where the optical axis of the first lens 16 is located, which enables the components of the imaging module 10 to be arranged in a compact and reasonable manner, which is conducive to the miniaturization of the imaging module 10. Conducive to industrial applications.
  • the second beam splitter 28 is used to rotate the first beam at an angle of 90 degrees.
  • the position where it is convenient to configure the first light source 12 includes the relative position of the components contained therein.
  • the imaging module 10 includes a third beam splitter 30 and an auto focus module 32.
  • the auto-focus module 32 is used to emit the fourth light beam and to receive the fourth light beam reflected by the sample 24.
  • the third beam splitter 30 is used to receive the fourth light beam and redirect the fourth light beam to the first lens 16, and It is used for receiving the fourth light beam reflected by the sample 24 and steering the fourth light beam to the auto-focusing module 32.
  • the auto-focusing module 32 can be used to achieve focusing, and the imaging module 10 can be used for image acquisition.
  • the auto focus module 32 includes a second light source 34 and a receiver 36.
  • the second light source 34 is used to emit the fourth light beam to the third beam splitter 30, and the receiver 36 is used to receive the fourth light beam collimated by the first lens 16 beam.
  • the second light source 34 may be an infrared light source.
  • the receiver 36 may be a photodiode.
  • the second light source 34 emits a fourth light beam, which is redirected to the first lens 16 by the third beam splitter 30, and the fourth light beam is condensed to the sample 24 by the first lens 16.
  • the fourth light beam reflected by the sample 24 is collimated by the first lens and then enters the third beam splitter 30.
  • the platform carrying the sample can be moved to move the sample 24 closer to or away from the first lens 16, thereby achieving focusing.
  • the receiver 36 includes a sensor, such as a two-dimensional PSD sensor, and the second light source 34 includes an LED light source and a mask located in front of the LED light source;
  • the light spot of the specific pattern is transferred to the first lens 16 by the third beam splitter 30 to converge on the sample 24, and the light spot reflected by the sample 24 finally reaches the sensor;
  • the auto-focusing module 32 also includes a signal processing module, and the sensor is connected to the signal The processing module obtains the information of the light spot through the signal processing module.
  • the auto-focusing module 32 also includes a signal output module for outputting changes in light spot information, so that the platform carrying the sample drives the sample to the object surface of the imaging light path (for example, the fluorescence light path).
  • the second light source 34 includes a second light emitter 35 and a fifth lens 37
  • the fourth light beam is a collimated light beam emitted by the second light emitter 38 after passing through the fifth lens 37.
  • the fourth light beam reflected by the sample 24 is condensed to the receiver 36 by the fifth lens 37.
  • the second light beam is a light beam that is a focused light beam from the second lens 18 transmitted through the first beam splitter 14.
  • the imaging module 10 includes a compensation lens 38, and the compensation lens 38 is located in the first beam splitter. Between 14 and the first camera 20, the compensation lens 38 is used to compensate for the astigmatism caused by the second light beam.
  • the second lens 18 is not introduced and the first beam splitter 14 is not introduced after the comparison, that is, no light splitting is performed after focusing.
  • Perform light splitting and the imaging simulation results are shown in Figure 29 and Figure 30, respectively. It can be seen that the light spot (diffuse spot) formed by the light beam from the same field of view after passing through the second lens 18 and the first beam splitter 14 and only passing through the second The astigmatism of the light spot (diffuse spot) formed by the lens 18 is significantly increased.
  • the RMS radius (RMS RADIUS, root mean square radius) can be used to measure the size of the spot, to quantitatively reflect the size of the spot actually imaged by an imaging module.
  • the root mean square radius is an important radius parameter. It is the coordinate of each point of the dispersion spot, with reference to the center point, after the sum of the square coordinates, divided by the number of points, and then the square root value. The radius of this value can reflect a typical dispersion
  • the spot size can quantitatively reflect the actual spot size of the system.
  • GEO RADIUS (GEO radius) represents the diameter of the diffuse spot. It can be clearly seen that the light spot formed by the focusing of the light beam from the same field of view has a larger RMS radius than that of Fig. 30.
  • the applicant introduces a compensation lens 38 at any position between the second lens 18 and the first camera, hoping to compensate for astigmatism caused by imaging after the beam is transmitted.
  • a compensation lens 38 at any position between the second lens 18 and the first camera, hoping to compensate for astigmatism caused by imaging after the beam is transmitted.
  • the spot size of the light beam from the same field of view in Fig. 31 is significantly smaller than that of Fig. 30, and from the RMS radius, at the same coordinates, the spot of Fig. 31 The spot size is close to or even smaller than that of FIG. 29.
  • the compensation lens 38 can be a parallel flat plate or a dichroic mirror. In the embodiment of FIGS. 32-34, the compensation lens 38 uses a dichroic mirror.
  • the angle T between the compensation lens 38 and a plane P is 45 degrees
  • the first beam splitter 14 is perpendicular to the plane P
  • the plane P is jointly defined by the optical axis A of the second light beam and the optical axis B of the third light beam.
  • the embodiment of the present application also provides a method for adjusting the imaging module.
  • the imaging module 10 includes a beam splitting module 40, and the beam splitting module 40 includes a second lens 18, a first beam splitter 14, a first camera 20, and a second lens.
  • the camera 22, the second lens 18, the first beam splitter 14, and the first camera 20 are arranged in sequence along the optical axis of the second lens 18.
  • the method includes: using a collimator tube 50 to emit a collimated light beam to the second lens 18, a collimator tube 50 includes a reticle 42 which includes one or more patterns.
  • the collimated beam is condensed to the first beam splitter 14 through the second lens 18, and is divided into the second beam and the third beam by the first beam splitter 14 ,
  • the first camera 20 receives the second light beam to obtain the first image of the pattern
  • the second camera 22 receives the third light beam to obtain the second image of the pattern; adjust the angle of the first camera 20 and/or the second camera 22 and/or Position so that the contrast of the first image and the second image are consistent.
  • the method of adjusting the imaging module uses the spectroscopic module 40 as a module of the entire imaging module 10 to be debugged separately, which can reduce the limitation on the debugging space of the whole machine, and can simply and conveniently realize the verticality of multiple cameras to the optical axis, which is conducive to rapid Realize the adjustment of the imaging module including the light splitting optical path.
  • the collimator 50 also includes a third light source 52, ground glass 54, and an objective lens 56.
  • the third light source 52, ground glass 54, reticle 42 and objective lens 56 are arranged in sequence.
  • the light beam emitted by the third light source 52 It exits to the second lens 18 through the ground glass 54, the reticle 42 and the objective lens 56 in sequence.
  • the collimated light beam emitted by the collimator 50 is a parallel light beam, and the parallel light beam enters the first beam splitter 14 through the second lens 18 and is divided into a second light beam and a third light beam.
  • the first image contrast of the pattern of the reticle 42 acquired by the first camera 20 is the same as the second image contrast of the pattern of the reticle 42 acquired by the second camera 22, which means that the plane of the image sensor of the first camera 20 is the same as the second image contrast of the pattern of the reticle 42 acquired by the second camera 22.
  • the optical axis of the two lenses 18 is perpendicular, and the plane of the image sensor of the second camera 22 is perpendicular to the optical axis of the beam splitting optical path.
  • the reticle 42 is a customized resolution line pair reticle 42 designed by the applicant. Please refer to Fig. 37.
  • the resolution line pair reticle includes 5 patterns A1-A5 with different distribution positions, which are obtained by the first camera 20
  • the image sensor of the first camera 20 can be determined
  • the plane is perpendicular to the optical axis of the second lens 18, and the plane of the image sensor of the second camera 22 is perpendicular to the optical axis of the light beam reflected by the first beam splitter 14, which meets the requirements for image acquisition for sequence determination.
  • the MTF value (MTF value is Modulation Transfer Function value, modulation transfer function value) of the multiple images of the pattern is the same, that is, it is determined that the contrast of these images is the same.
  • the difference between two or more MTF values is less than 10%, preferably less than 5%, and it is determined that the MTF values are the same.
  • the MTF values of the images of patterns A1-A5 are 0.80, 0.80, 0.80, 0.78, 0.80, 0.78, 0.80, 0.80, and 0.80, 0.80, respectively, thereby determining the first image It is consistent with the contrast of the second image, and the imaging module 10 is calibrated. The closer the MTF value is to 1, the better the performance of the imaging module 10 is.
  • the reticle 42 has a plurality of patterns. As shown in FIG. 37, the sizes of the first image and the second image are the sizes of the circles formed by the images of the five patterns A1-A5.
  • the first image is required
  • the size of the first image and/or the second image is not less than forty percent of the size of the image required for imaging using the imaging module 10 actually. In this way, when the imaging module 10 is used for imaging, it is beneficial to obtain high-quality images, which meets the requirements of sequence determination.
  • the size of the first image may refer to the size of an image formed by distributing images of a plurality of patterns on the first camera 20.
  • the size of the second image may refer to the size of an image formed by distributing images of a plurality of patterns on the second camera 22.
  • the size of the first image and/or the second image is not less than fifty percent of the size of the image actually obtained by imaging with the imaging module.
  • the beam splitting module 40 further includes a compensation lens 38, which is located between the first beam splitter 14 and the first camera 20.
  • the first camera 20 receives the second light beam passing through the compensation lens 38 to obtain a first image. In this way, the imaging effect of the first image is good.
  • a load-carrying module 100 includes a load-bearing module 102, a primary adjustment structure 104, and a secondary adjustment structure 106.
  • the load-bearing module 102 is disposed on the primary adjustment structure 104.
  • the secondary regulating structure 104 is arranged on the secondary regulating structure 106, the carrying module 102 is used to carry the reaction device 200, the secondary regulating structure 106 includes the first plane 108, and the secondary regulating structure 106 is used for regulating so that the first plane 108 is in contact with the pre-stage.
  • the primary adjustment structure 104 is used for adjustment so that the surface 202 of the reaction device 200 and the first plane 108 meet the second preset position relationship.
  • the above-mentioned load module 100 can adjust the plane 202 of the reaction device 200 to a preset positional relationship with a preset axis through a two-stage adjustment structure. Therefore, when other devices or components are set based on the preset axis, the reaction can be made The positional relationship between the plane 202 of the device 200 and other devices or components is adjusted to a desired positional relationship, which satisfies the requirements of sequencing, including enabling the optical detection of specific positions of the reaction device 200 during the sequencing process and the reaction device 200 during the dynamic process. Multiple specific locations for optical inspection can be achieved.
  • the preset axis may be a certain reference axis on the sequencing system 300.
  • the sequencing system 300 includes the imaging module 10, the preset axis may be the lens optical axis OP of the imaging module 10, and the reaction device 200 The plane 202 of may be the upper surface of the reaction device 200.
  • the imaging module 10 includes a camera (not shown) and a microscope 112. The camera is located on the image side of the lens of the microscope 112, and the reaction device 200 is located on the object side of the lens of the microscope 112.
  • the primary adjustment structure 104 with the reaction device 200 is first removed from the secondary adjustment structure 106, and the secondary adjustment structure 106 is adjusted to Make the first plane 108 and the optical axis OP of the lens meet the vertical relationship, after that, the primary adjustment structure 104 with the reaction device 200 is mounted on the secondary adjustment structure 106, and the primary adjustment structure 104 is adjusted to make the upper surface of the reaction device 200 The surface meets the parallel relationship with the first plane 108.
  • the upper surface of the reaction device 200 and the lens optical axis OP can meet the vertical relationship, and during the relative movement of the reaction device 200 and the lens optical axis OP The two still maintain a vertical relationship. Therefore, in this example, the first predetermined positional relationship is a vertical relationship, and the second predetermined positional relationship is a parallel relationship.
  • the reaction device 200 is, for example, a chip.
  • the first preset positional relationship and the second preset positional relationship may also be different.
  • the preset axis is the same as the optical axis of the lens.
  • OP is perpendicular to the axis
  • the plane 108 of the reaction device 200 is the upper surface
  • the first preset position is in a parallel relationship and the second preset relationship is in a parallel relationship
  • the preset axis and the axis are inclined to the optical axis OP of the lens
  • the reaction device The plane 108 of 200 is the upper surface
  • the first predetermined relationship is an oblique relationship
  • the second predetermined relationship is a parallel relationship.
  • the predetermined axis is an axis perpendicular to the optical axis OP of the lens
  • the plane 108 of the reaction device 200 is a side surface perpendicular to the upper surface of the reaction device 200
  • the first predetermined position is in a parallel relationship and the second predetermined relationship is in vertical Relationship
  • the plane 108 of the reaction device 200 is a side surface perpendicular to the upper surface of the reaction device 200
  • the first predetermined relationship is the inclined relationship
  • the second predetermined relationship is Vertical relationship and so on.
  • the positional relationship between the preset axis and the optical axis OP of the lens is generally unchanged.
  • the preset axis may also be an axis parallel to the optical axis of the lens.
  • the first predetermined positional relationship is vertical, or parallel, or inclined; and/or the second predetermined positional relationship is vertical, or parallel, or inclined.
  • the term “tilt” refers to non-vertical and non-parallel.
  • the preset axis may be another axis that has nothing to do with the optical axis OP of the lens.
  • the secondary adjusting structure 106 includes a first adjusting plate 114, a first adjusting member 116, and a supporting member 118.
  • the first adjusting plate 114 is provided with a first plane 108 to support
  • the member 118 is provided with an inclined surface 120
  • the first adjusting plate 114 is provided on the inclined surface 120
  • the first adjusting member 116 is connected to the supporting member 118 and used to drive the supporting member 118 to move to adjust the position of the first adjusting plate 114 on the inclined surface 120.
  • the first plane 108 may be the upper surface of the first adjusting plate 114.
  • the secondary adjusting structure 106 includes a base plate 122.
  • the first adjusting member 116 and the supporting member 118 are arranged on the base plate 122.
  • the first adjusting plate 114 is located on the base plate 122.
  • the first adjusting member 116 drives the supporting member 118, the first plane is adjusted.
  • the first adjusting member 116 is a screw
  • the first adjusting member 116 is threadedly connected to the supporting member 118
  • the base plate 122 is provided with a limiting slot 124
  • the supporting member 118 is disposed in the limiting slot 124
  • the limiting slot 124 is used for The rotation of the supporting member 118 relative to the first adjusting member 116 is restricted.
  • the supporting member 118 can only move linearly back and forth along the length direction of the first adjusting member 116, thus realizing the position of the first adjusting plate 114 on the inclined surface 120 adjust.
  • the secondary adjustment structure 106 includes a spacer 126, a first elastic member 128, a connecting screw 130, and a mating component 132.
  • the connecting screw 130 includes a head 134 and a post 136, and the head 134 includes a protruding post. Department of the flange.
  • the first adjusting plate 114 is provided with a first connecting through hole 138, and the first connecting through hole 138 is in a stepped shape.
  • the connecting screw 130 passes through the first connecting through hole 138, a part of the head 134 and the pillar portion 136 is received in the larger section of the first connecting through hole 138, and the other part of the pillar portion 136 passes through the larger portion of the first connecting through hole 138.
  • the small section is connected to the substrate 122.
  • a first elastic member 128 is accommodated between the head 134 and the bottom surface of the larger section of the first connecting through hole 138, so that the base plate 122 and the first adjusting plate 114 can be elastically connected.
  • the spacer 126 is clamped between the mating component 132 and the inclined surface 120.
  • the supporting member 117 is provided with a through hole 140 passing through the inclined surface 120 and penetrating the supporting member, and the column portion 136 of the connecting screw 130 is penetrated by the through hole 140.
  • the space between the left and right side walls of the through hole 140 and the post 136 of the connecting screw 130 is large enough so that the connecting screw 130 will not block the support member 118 from moving back and forth along the axis of the first adjusting member 116. Expected displacement.
  • the mating assembly 132 includes a first mating piece 142 and a second mating piece 144.
  • the first mating piece 142 is provided on the bottom surface of the first adjusting plate 114, and the second mating piece 144 is provided. Groove on the top surface of the spacer 126.
  • the first mating member 142 includes a first mating surface 146 in a circular arc shape, and the second mating member 144 includes a second mating surface 148 in a circular arc shape.
  • the first mating surface 146 and the second mating surface 148 are rotatably connected.
  • the left and right sides of the first adjusting plate 114 are provided with a first adjusting member 116, a supporting member 118, a cushion block 126, a first elastic member 128, a connecting screw 130, and a matching assembly 132 to achieve more accurate Pitch adjustment.
  • the first adjusting member 116 and the supporting member 118 may also be provided on one side of the first adjusting plate 114. If elastic support and smoother angle adjustment are required, a cushion block 126, a first elastic member 128, a connecting screw 130 and a matching component 132 can be added.
  • the secondary adjusting structure 106 includes a connecting piece 150, a third matching piece 152, and a fourth matching piece 154.
  • the connecting piece 150 connects the first adjusting plate 114 and the base plate 122, and the third matching piece
  • the 152 and the fourth fitting 154 are relatively rotatably connected and located between the first adjusting plate 114 and the base plate 122, the third fitting 152 is provided on the first adjusting plate 114, and the fourth fitting 154 is provided on the base 122.
  • the first adjusting member 116 and the supporting member 118 are located on the left and/or right side of the first adjusting plate 114 closer to the front side of the load module 100, and the connecting member 150 and the third matching member The 152 and the fourth matching member 154 are located on the rear side of the first adjusting plate 114, so that an adjustment solution is formed in which the pitch angle can be adjusted on the front side and the rear side is used as the rotation point.
  • the connecting member 150 can be a screw.
  • the first adjusting plate 114 is provided with a second connecting through hole 154, and the second connecting through hole 155 is in a stepped shape.
  • the connecting member 150 includes a head and a post, and the head includes a protrusion protruding from the post. Flange.
  • the connecting member 150 penetrates through the second connecting through hole 155, a part of the head and the column of the connecting member 150 is received in the larger section of the second connecting through hole 155, and the other part of the column of the connecting member 150 passes through the second connecting through hole.
  • the smaller section of 155 is connected to the first adjusting plate 114.
  • a second elastic member 156 is accommodated between the head of the connecting member 150 and the bottom surface of the larger section of the second connecting through hole 155, so that the base plate 122 and the first adjusting plate 114 can be elastically connected.
  • the third matching member 152 includes a third matching surface 158 having an arc shape
  • the fourth matching member 154 includes a fourth matching surface 160 having an arc shape.
  • the surface 158 and the fourth mating surface 160 are rotatably connected.
  • the secondary adjustment structure 106 includes a fixing assembly 162, and the fixing assembly 162 is used to fix the first adjustment plate 114.
  • the fixing assembly 160 may be used to fix the position of the first adjusting plate 114, ensuring that the first plane 108 and the preset axis meet the first preset positional relationship.
  • the fixing assembly 162 includes a fixing plate 164 and a fixing member 166.
  • the fixing plate 164 is L-shaped. One side plate of the fixing plate 164 is connected to the upper surface of the base plate 122, and the other side plate is connected to the side surface of the first adjusting plate 114.
  • the fixing member 166 fixedly connects the fixing plate 164 with the first adjusting plate 114 and the base plate 122.
  • the fixing member 166 can be a screw.
  • both the left and right sides of the first adjusting plate 114 are provided with fixing components 162. In this way, the stability of the first adjusting plate 114 is ensured.
  • the primary adjusting structure 104 includes a second adjusting plate 168 and a plurality of second adjusting members 170
  • the carrying module 102 includes a base 172 provided on the second adjusting plate 168, and a plurality of second adjusting members. 170 is arranged at intervals and movably connects the base 172 and the second adjusting plate 168.
  • the second adjusting member 170 is used to adjust the second adjusting plate 168 when moving so that the surface 202 of the reaction device 200 and the first plane 108 meet the second Preset position relationship. In this way, through multi-point adjustment, the plane 202 of the reaction device 200 and the first plane 108 satisfy the second preset positional relationship.
  • the load module 100 includes a movable platform 174, the movable platform 174 is provided on the first adjusting plate 114, the primary adjusting structure 104 is provided on the movable platform 172, and the movable platform 174 can drive the primary adjusting structure 104
  • the reaction device 200 moves in a direction perpendicular to the optical axis OP of the lens.
  • the second adjusting member 170 includes two adjusting screws 176, a third elastic member, and a matching component.
  • the adjustment screw 176 and the third elastic member realize the elastic connection mode of the second adjustment plate 168 and the base 172, please refer to the above-mentioned elastic connection mode of the base plate 122 and the first adjustment plate 114, and the mating components can realize the smoother adjustment mode of the base 172.
  • Two adjustment screws 176 are located on the outside of the mating assembly.
  • the adjusting screw 176 connects the second adjusting plate 168 and the base 172, and the distance between the second adjusting plate 168 and the base 172 is adjusted by the adjusting screw 176.
  • the distance between the second adjusting plate 168 and the base 172 is adjusted by screwing in and out of the two adjusting screws 176, so that the adjustment of the plurality of second adjusting members 170 , It can be realized that the plane 202 of the reaction device 200 and the first plane 108 satisfy the second preset positional relationship.
  • the number of the second adjusting members 170 is three, and the three second adjusting members 170 are distributed in an isosceles triangle.
  • the two second adjusting members 170 are respectively distributed on the left and right sides of the second adjusting plate 168 closer to the front side of the load module 100, and the other second adjusting member 170 is distributed on the second Adjust the back side of the board.
  • the connecting line of the two second adjusting members 170 is the base of the isosceles triangle, and the two connecting lines of the two second adjusting members 170 and the other second adjusting member 170 are the two waists of the isosceles triangle.
  • the base 172 is provided with a containing groove 178 for containing the reaction device 200, and the containing groove 178 is provided with a positioning structure 180 for positioning the reaction device 200.
  • the positioning structure 180 can better pre-position the reaction device 200 to ensure the establishment of the flow path.
  • the positioning structure 180 includes three positioning pillars 182, and the three positioning pillars 182 are distributed on two adjacent sides of the accommodating groove 178. In this way, the three-point positioning of the reaction device 200 can be realized.
  • the plane shape of the accommodating groove 178 is basically a square, two positioning posts 182 are located on the upper side of the accommodating groove 178, and one positioning post 182 is located on the right side of the accommodating groove 178.
  • the two positioning posts 182 may be arranged in a direction parallel to the channel of the reaction device 200.
  • the positioning post 182 may be a positioning pin.
  • the load-bearing module 102 includes a side pushing mechanism 184 located at the junction of the left side and the lower side.
  • the side pushing mechanism 184 is telescopically arranged in the accommodating groove 178 and used to ensure that the reaction device 200 is close to the positioning structure 180.
  • the side pushing mechanism 184 can be matched with the waist hole of the reaction device 200 to avoid over-constraint when the reaction device 200 is accommodated in the containing groove 178. At the same time, the side pushing mechanism 184 ensures that the reaction device 200 is tightly attached to the positioning structure 180 to achieve Positioning and fixing.
  • the side pushing mechanism 184 includes a side pushing member 186 and a fourth elastic member (not shown).
  • the fourth elastic member is arranged in the base 172.
  • the side pushing member 186 is connected to the fourth elastic member and partially protrudes in the accommodating groove 178.
  • the fourth elastic member can apply elastic force to the reaction device 200 through the side pusher 186, so that the reaction device 200 is close to the positioning posts 182 on the upper and right sides.
  • the sequencing system 300 includes a reagent box 188 for storing reagents, and a rotary valve, a three-way valve, a carrying module 102, and a power device are provided in the direction of flow of the liquid flowing out of the reagent box 188.
  • the carrying module 102 contains a reaction device 200, and the channel of the reaction device 200 is connected to the flow path of the sequencing system 300.
  • different reagents can be introduced into the flow path through the three-way valve to perform different reactions in the channel of the reaction device 200, including but not limited to extension, ablation, capping, imaging, cleaning, and the like.
  • the power unit can use a pump to provide power for the liquid in the flow path.
  • the loading module 100 is installed on the sequencing system 300 through four supporting feet 192.
  • the sequencing system 300 can omit the three-way valve, and the rotary valve can directly introduce different reagents into the channel of the reaction device 200.
  • a "computer-readable storage medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices. .
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种减振结构(60)、检测***和测序***。减振结构(60)用于检测***中,减振结构(60)包括本体(62)和支撑体(64),本体(62)通过支撑体(64)与检测***连接,本体(62)包括成像模块(10)、上层结构(66)、下层结构(68)和中间结构(70),成像模块(10)安装在上层结构(66)上,下层结构(68)通过中间结构(70)承载上层结构(66),本体(62)的固有频率大于或等于√2倍内部激励频率。

Description

减振结构、检测***和测序***
优先权信息
本申请请求2019年09月24日向中国国家知识产权局提交的、专利申请号为201910907555.7的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及机械领域,尤其涉及一种减振结构、检测***和测序***。
背景技术
机械振动是一种普遍存在的自然物理现象,机构自身内部相互运动能够产生,外部激励传导也会引起。在大在多数情况下,机械振动带来的影响都是负面效果,严重时甚至会引起安全故障。
包含成像模块的检测***,基于采集图像、分析图像数据实现检测,一般对振动较敏感。在检测***设计和测试时,包括硬件组成模块和***集成的设计和测试,一般都要考虑抑制振动、隔振设计等以及进行振动评价,以期设计出的组成模块和/或***能够有效隔绝和/或衰减外部和内部振动因素的干扰。
在基于光学成像***检测反应装置中的待测核酸分子的测序***/测序平台中,测序***包括成像模块,利用成像模块对测序反应时的反应装置(例如芯片)中的核酸分子进行拍摄,并分析拍摄所得的图像进而得到测序结果。
一般地,由于成像模块拍摄的是来自核酸单个分子或者分子簇的信号,因而成像模块和/或测序***对振动非常敏感。在成像过程/测序过程中,需要有效地隔绝和衰减成像模块或测序***外部和/或内部振动因素的干扰,以确保成像/测序过程能够稳定地获得清晰的核酸分子图像,使得测序结果的准确性和可靠性得到保障。
因此,有必要提供一种减振结构、一种检测***和/或一种测序***。
发明内容
本申请的实施例提供一种减振结构、检测***和测序***。
本申请提供一种减振结构,用于检测***中,所述减振结构包括本体和支撑体,所述本体通过所述支撑体与所述检测***连接,所述本体包括成像模块、上层结构、下层结构和中间结构,所述成像模块安装在所述上层结构上,所述下层结构通过所述中间结构承载所述上层结构,所述本体的固有频率大于或等于
Figure PCTCN2020101908-appb-000001
倍内部激励频率。
上述减振结构中,考虑到在本体上有X/Y方向上的二维运动,因此主体采用上下双层结构,可有效抑制整个平台的振动,同时,本体的固有频率大于或等于
Figure PCTCN2020101908-appb-000002
倍内部激励频率,可进一步有效地抑制内部激励,进而提升整个减振结构的减振效果。
本申请提供的一种检测***,包括上述任一实施方式的减振结构。
本申请提供的一种测序***,包括上述任一实施方式的减振结构。
上述检测***和测序***中,考虑到在本体上有X/Y方向上的二维运动,因此主体采用上下双层结构,可有效抑制整个平台的振动,同时,本体的固有频率大于或等于
Figure PCTCN2020101908-appb-000003
倍内部激励频率,可进一步有效地抑制内部激励,进而提升整个减振结构的减振效果。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请实施方式的实践了解到。
附图说明
本申请实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的减振结构的结构示意图;
图2是本申请实施方式的减振结构的另一结构示意图;
图3是本申请实施方式的减振结构的再一结构示意图;
图4是本申请实施方式的减振结构的又一结构示意图;
图5是本申请实施方式的成像模块对光源进行成像的光源亮斑图;
图6是本申请实施方式的测序***的结构示意图;
图7至图11是本申请实施方式对减振结构进行振动分析的相关图;
图12至图24是本申请实施方式利用图像对载物模块是否发生振动进行评估的相关图;
图25是本申请实施方式的成像模块的结构示意图;
图26是本申请实施方式的第一光源的结构示意图;
图27是本申请实施方式的成像模块的另一结构示意图;
图28是本申请实施方式的第二光源的结构示意图;
图29是本申请实施方式的成像模块在不包含第一分光器时的成像光束的光斑尺寸仿真结果示意图;
图30是本申请实施方式的成像模块在包含第一分光器的成像光束的光斑的尺寸仿真结果示意图;
图31是本申请实施方式的成像模块在引入补偿镜片的成像光束的光斑的尺寸仿真结果示意图;
图32是本申请实施方式的成像模块的部分立体示意图;
图33是图32的成像模块的主视图;
图34是图32的成像模块的俯视图;
图35是本申请实施方式的分光模组在调试时的结构示意图;
图36是本申请实施方式的平行光管的结构示意图;
图37是本申请实施方式的分辨率线对分划板的图案示意图;
图38是本申请实施方式的分光模组在调试时的另一结构示意图;
图39是本申请实施方式的载物模块的立体示意图;
图40是本申请实施方式的载物模块的另一立体示意图;
图41是本申请实施方式的载物模块的截面示意图;
图42是图41的载物模块V部分的放大示意图;
图43是本申请实施方式的支撑件和第一调节件的连接示意图;
图44是本申请实施方式的载物模块的另一截面示意图;
图45是图44的载物模块VI部分的放大示意图;
图46是本申请实施方式的一级调节结构和承载模块的连接示意图;
图47是本申请实施方式的一级调节结构和承载模块的另一连接示意图;
图48是本申请实施方式的一级调节结构和承载模块的平面示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者顺序。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开, 下文中对特定例子的部件和设定进行描述。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。
本申请实施方式所称的“序列测定”同核酸序列测定,包括DNA测序和/或RNA测序,包括长片段测序和/或短片段测序。所称的“序列测定反应”同测序反应。一般地,在核酸序列测定中,通过一轮测序反应能够使模板延伸一个碱基,所称碱基选自A、T、C、G和U中的至少一种。在边合成边测序和/或边连接边测序的测序反应中,所称的测序反应包括延伸反应(碱基延伸)、信息收集(拍照/图像采集)和基团切除(cleave)。发生测序反应的底物为所称的“核苷酸类似物”,也称为终止子(terminator),为A、T、C、G和/或U的类似物,能够遵循碱基互补原则与特定类型的碱基配对、同时能够终止下一个核苷酸类似物/底物结合到模板链上。
请参图1-图4,本申请实施方式提供的一种减振结构60,用于检测***中,减振结构60包括本体62和支撑体64,本体62通过支撑体64与检测***连接,本体62包括成像模块10、上层结构66、下层结构68和中间结构70,成像模块10安装在上层结构66上,下层结构68通过中间结构70承载上层结构66,本体62的固有频率大于或等于
Figure PCTCN2020101908-appb-000004
倍内部激励频率。该减振结构60可用于任何基于成像检测分析目标物的检测***,例如,用于显微镜等生物分子检测分析装置中,更具体的,用于基于成像的测序平台如市售的华大基因、ILLUMINA测序平台中。
具有上述特征的减振结构60,考虑到该减振结构60用于检测***时,本体62上涉及X/Y/Z方向上的二维运动或三维运动,因此采用具有上层结构66、中间结构70和下层结构68连接形成的双层结构,可有效抑制或减少外部激励和/或内部激励对该减振结构60带来的影响,同时,使该减振结构的本体62的固有频率大于或等于
Figure PCTCN2020101908-appb-000005
倍内部激励频率,可进一步有效地抑制或减少内部激励带来的影响,进而提升整个减振结构60的减振效果。所称的内部激励是相对于外部激励的概念,这里,减振结构60内部结构/组成/连接相互运动产生的振动可称为内部激励,减振结构60外部产生的、能够影响或传导至该减振结构60的振动可称为外部激励。
具体地,本体62可通过支撑体连接于检测***中。在本申请实施方式中,检测***以测序***300进行说明。可以理解,在其它实施方式,检测***还可为对振动敏感的其它检测***。请参图1-4,在图示的实施方式中,本体62包括载物模块100,载物模块100用于承载和/或移动反应装置200,载物模块100安装在下层结构68上,反应装置可拆卸地安装在载物模块100上。成像模块10用于对固定放置在载物模块100上的反应装置200进行拍照。测序***300中设置有液路***,通过该液路***能够向反应装置200通入反应试剂/溶液。反应装置200上设有一个或多个通道(channel),反应试剂/溶液等位于通道中,待测核酸分子预先固定在反应装置200中,核苷酸类似物/底物置于反应试剂/溶液中。成像模块10置于反应装置200上方,使得在对核酸分子的测序过程中,能够采集反应装置200特定位置(视野,Field of View,简称FOV)中的带光学可检测标记的核酸分子的图像,所称的光学可检测标记例如为荧光分子。反应装置200例如为芯片,或者包括芯片和塑料外框,芯片可安装在塑料外框中。可以理解,检测***也可以为其它包含成像模块10的***。
在一些实施方式中,成像模块10包括自动对焦模块,在利用自动对焦模块对反应装置200的特定位置进行对焦时,成像模块10不动,载物模块100根据自动对焦模块的信息/指令带动反应装置200在垂直于光轴OP的平面内移动,以使成像模块10能够对反应装置200上的不同位置进行图像采集。在一个示例中,成像模块10为全内反射荧光显微***,全内反射显微镜***在信号采集时易受各种因素的干扰,包括振动,对振动很敏感,因而测序***的激励源(包括外部和内部)产生的振动对成像效果都会产生极大的影响。
对设置与测序***300中减振结构60来说,带来影响的激励主要分为两个部分,一部分来自外部,称之为外部激励,是由周围环境产生;另外一部分来自内部,称之为内部激励,主要是由成像模块10和/或载物模块100运动产生。在一个示例中,使测序***300中的减振结构60的固有频率不等于外部 激励频率。
在一个具体示例中,对于测序***300中的减振结构60,外部激励包括该测序***300正常工作时,人员走动、人员沟通、空调振动、测序***其它模块/结构例如内部风扇运转以及泵运作等一系列因素产生的振动,还有地面传导的低频振动等等。这一部分激励会通过测序***300的支撑体64传递给本体62包括成像模块10,导致该减振结构60整体振动。
在一个示例中,设置于测序***300中的减振结构60包括载物模块100,该减振结构60的内部激励主要来自测序***运行时成像模块10和/或载物模块100的运动。具体地,载物模块100的运动包括XY二维运动或者XYZ三个方向的运动,成像模块10的运动包括相机和风扇运转时产生的激励。载物模块100提供反应装置200的XY二维方向或者XYZ三个方向上的移动,能够使成像模块10能够采集到整个反应装置200的测试区域,而一般地,荧光分子比较脆弱其发光行为易受各种因素的波动,特别是单个或少数几个荧光分子,受光强光照时长等的影响明显,需要载物模块100快速响应,高速、急停的运动曲线会对整个***带来运动激励。这一部分激励作用于减振结构60内部,会导致其内部相互运动产生振动。
频率、幅值和相位是评估振动信号的三个重要参数,其中,频率对应的是周期的倒数,幅值是指振动时机构相对平衡位置运动的最大位置,相位描述的是振动信号和触发脉冲的相对位置关系,一般振动信号的正峰值是在触发脉冲之后产生的。在一个示例中,申请人通过成像模块10所采集到的图像的质量来评估所设计的减振结构60的减振效果。具体地,在包含成像模块10的测序***300中,减振结构60的设计主要是为了减少振动对成像的影响,所以可通过评价图像的质量来评估振动信号。在一个示例中,测序***300通过使载物模块100运动来实现反应装置上多个视野的信号采集,利用采集的信号即反应装置上的发光位置(亮斑或亮点)的信息来识别碱基/测定核酸序列,在相机曝光过程中若载物模块100发生振动则会导致物体成像位置发生偏移,从图像上观察会发现亮点会抖动,严重的会出现拖尾,即图像发生运动模糊,因此通过判断图像是否清晰可以评估减振结构60包括载物模块100是否已经静止,或者振动信号是否已减至不影响测序。
判断图像是否清晰的方法有很多,该实施方式对此不作限制。在一个示例中通过计算图像锐度来估计图像清晰度。在基于荧光检测实现测序的测序***300中,例如单分子荧光检测平台,图像上的一个光斑对应一个或少数几个荧光分子,该光斑的强度分布符合或近似于高斯分布,如图5所示。清晰度越高,该高斯分布越尖锐。但如果载物模块100振动导致图像发生运动,光斑的强度分布不再具备高斯分布的特性。凭借这个成像特性,本实施方式中,对载物模块100是否发生振动进行评估(后续进一步说明)。
在一些示例中,所称的减振结构60的上层结构66包括上层板71,可用于安装成像模块10,成像模块10可由激光模块、自动对焦模块、照明器模块、物镜模块和相机模块五个部分组成。
在一些示例中,所称的减振结构60的下层结构68包括下层板73,可用于安装载物模块100,载物模块100用于承载反应装置200,反应装置200,载物模块100可提供反应装置200的定位与装夹,与测序***300的流路***对接。表面高平整度的反应装置200,利于测序中连续采集图像时的追焦稳定。较佳地,因为成像模块10中物镜的工作距离比较小,为防止损坏,以及重复定位精度,对反应装置200的定位需要满足特定要求。后面会对利用载物模块100来对反应装置200的位置调整作进一步示例说明。
载物模块100包括一个高精度的二维运动平台和两级俯仰调节,实现反应装置200和成像模块10的对接,为反应装置200提供二维运动,使成像模块10采集的视野能够覆盖整个或一部分反应装置200的测试区域,并且在采集不同视野时,反应装置200的表面都与物镜光轴垂直。更好地,成像模块10的光轴不仅要与反应装置200的表面垂直,还要与二维运动平台运动方向垂直,这样才能使成像模块10中的激光能够充分均匀的照射整个FOV,使亮斑(荧光点)对称均匀激发。
请结合图1,在实施例一,中间结构70包括第一连接件72和第二连接件74,上层结构66和下层 结构68均具有左侧和右侧,第一连接件72和第二连接件74分别为板状结构和柱状结构,第一连接件72和第二连接件74中的一个连接下层结构68的左侧和上层结构66的左侧,另一个连接下层结构68的右侧和上层结构66的右侧。
具体地,在图示的实施例中,第一连接件72的数量是一个,第二连接件74的数量是两个,第一连接件72连接下层结构68的左侧和上层结构66的左侧,第二连接件74连接下层结构68的右侧和上层结构66的右侧。可以理解,在其它实施例中,第一连接件72可连接下层结构68的右侧和上层结构66的右侧,第二连接件74可连接下层结构68的左侧和上层结构66的左侧。
请结合图2,在实施例二,中间结构70包括第一连接件72和第二连接件74,上层结构66和下层结构68均具有左侧和右侧,第一连接件72和第二连接件74均为板状结构,
第一连接件72和第二连接件74中的一个连接下层结构68的左侧和上层结构66的左侧,另一个连接下层结构68的右侧和上层结构66的右侧。
具体地,在图示的实施例中,第一连接件72连接下层结构68的左侧和上层结构66的左侧,第二连接件74连接下层结构68的右侧和上层结构66的右侧。可以理解,在其它实施例中,第一连接件72可连接下层结构68的右侧和上层结构66的右侧,第二连接件74可连接下层结构68的左侧和上层结构66的左侧。
具体地,在实施例一中,由于双层结构连接的两个第二连接件74是各向同性,而且左侧又只是一块比较薄的第一连接件72,担心X向强度不够,因此在实施例二中,将一侧的双第二连接件74改成板状结构,其与第一连接件72的结构基本相同。较佳地,第一连接件72和第二连接件74沿本体62的中心线H对称设置,即第一连接件72和第二连接件74对称连接上层板71和下层板73,从而增强减振结构60在X向强度。
进一步地,中间结构70包括第三连接件76,第三连接件76为板状结构,上层结构66和下层结构68均具有后侧,第三连接件76连接下层结构68的后侧和上层结构66的后侧。如此进一步增强减振结构60在X向强度,也同时能增加在Y向强度。
在一个具体的实施方式中,第一连接件72、第二连接件74和第三连接件76各自均为一个一体化结构的一部分。例如,所称的一体化结构可以类似于没有正面的坦克,上层结构66和下层结构68分别类似于该坦克的顶部和底部,第一连接件72和第二连接件74分别类似于该坦克的两个侧面结构,第三连接件76类似于坦克的后部,该第一连接件72、第二连接件74和第三连接件76均为一个结构的一部分。
测试以上结构,发现实施例一和二的减振结构60均能有效的减振/抗震,相对地,实施例二的减振结构60的减振效果优于实施例一的减振结构60。申请人认为,相对来说,可能由于实施例一的减振结构60的质量分布不太均匀,而实施例二的结构重新排布了上层结构66中成像模块10的各个部件位置,质心在整个本体62的中心线H上,或质心与中心线的偏差在期望的范围内,质量分布相对均匀。
实施例一和实施例二的上层板71、下层板73和中间结构70的材料可采用铝合金。进一步地,下层板73较上层板71重,如此,能够使重心下移,增加减振结构60的稳定性。
请结合图3和图4,在实施例三,减振结构60包括加强件78,加强件78能够降低本体62的质心,加强件78连接第一连接件72和下层结构68,和加强件78连接第一连接件72、上层结构66和第二连接件74。
具体地,由于物镜的Z向高精度移动来自Z轴,Z轴安装在上层板71上,为保证Z轴安装定位的稳定性,可增加上层板71的厚度。又因在测序过程中大范围FOV分布在X向,因而二维运动平台给的激励基本上是X方向的,为了进一步增强整个减振结构60在X向的强度,在图示的实施例中,加强件78的数量是两个,在中间增加横梁作为其中一个加强件78,中间的加强件78连接第一连接件72、上层结构66和第二连接件74,以及左侧增加另一个加强件78,左侧的加强件78连接第一连接件72和下层结构68。
更具体地,加强件78连接第一连接件72的外侧和下层结构68的上侧。加强件78连接第一连接件72的内侧、上层结构66的下侧和第二连接件74的内侧。
可以理解,在其它实施例中,加强件78连接第一连接件72和下层结构68,或加强件78连接第一连接件72、上层结构66和第二连接件74。
为了降低本体62的质心,可将下层板73以及中间结构70的材质换成钢材。较佳的,在实施例一至三中,下层板73采用的材料的密度和中间结构70采用的材料的密度比上层板71采用的材料的密度大可降低本体62的质心,有利于减振结构60的稳定。可以理解,下层板73采用的材料的密度或中间结构70采用的材料的密度比上层板71采用的材料的密度大,也可降低本体62的质心。
在实施例一至三的任一实施例中,第一连接件72、第二连接件74和/或第三连接件76若是包括板状结构,该个或该些板状结构出现一个或多个通孔/空洞,板状结构通过包含通孔或空洞能够调节该减振结构60在X、Y和/或Z方向的强度的平衡。
在实施例一至实施例三的任一实施例中,支撑体64包括减振件80和支撑脚192,检测***包括支撑基板83(请参图6),本体62安装在减振件80上,减振件80通过支撑脚192安装在支撑基板83上。如此,实现本体62与检测***的对接,完成外部激励极大程度的隔离。
具体地,减振件80可包括防振凝胶座(如硅胶),防振凝胶座的数量可为四个,支撑脚192的数量可为四个,每个支撑脚192连接对应的一个防振凝胶座和下层结构68。
较佳地,减振件80的主轴T平行于成像模块10的光轴方向OP。在实施例一至三的任一实施例中,即每个防振凝胶座的弹性主轴T平行于Z轴方向。
以下分别就实施例一至三的减振结构60应用到测序***300来进一步示例说明该减振结构60、测序***300和/或该减振结构60与测序***其它模块的连接关系。该测序***300通过采集反应装置200上来自结合到核酸分子上的核苷酸的信号实现核酸分子的序列测定,所称的核苷酸(如无另外说明,同核苷酸类似物)带有光学可检测标记,例如带有荧光分子。
具体地,可以采用四个型号相同的减振件80支承着成像模块10,减振件80和支撑脚192构成支撑体64,这四个减振件80的弹性主轴均沿着Z轴方向,或平行于Z轴方向;上层结构66、下层结构68、中间结构70和成像模块10,构成本体62。
测序***的减振结构60可分为本体62和支撑体64两个部分。具体包括,
(1)成像模块10,由激光模组、自动对焦模组、照明器模组、物镜模组和相机模组五个部分组成。激光器模组为成像模块10提供合适功率的激光,激光会经过耦合器耦合,得到平行的耦合激光;照明器模组实现耦合后的激光以合适的角度进入物镜;自动对焦模组实现物镜Z轴联动,实现每个视野(Field of View,简称FOV,即一张图像的像素窗口)荧光反射都能汇集在物镜焦面上;物镜模组将前段传导的耦合光以合适的角度传递到待测平面,实现全内反射;相机模组接受反射回来的光,实现FOV中荧光点(亮斑或亮点)的采集。
(2)反应装置模块,包括反应装置200和反应装置夹具,提供待测反应装置200的定位与装夹,与流路***对接。选用高平整度的反应装置200较佳,利于保证整个测序过程中反应装置200(例如芯片)追焦稳定。需要对反应装置200的定位能够满足要求,利于在成像模块中物镜的工作距离比较小的情况下,防止了损坏以及重复定位精度。
(3)载物模块100,包括一个高精度的二维运动平台和两级俯仰调节结构,实现反应装置模块和成像模块10的连接,为反应装置200提供二维或三维运动,让物镜视野能够覆盖整个反应装置200检测区域。在整个视野范围内,反应装置200表面都与物镜光轴垂直。成像模块10的光轴不仅要与反应装置200表面垂直,还要与二维微动平台运动方向垂直,这样才能使***中的激光能够充分均匀的照射整个FOV面内,使荧光点对称均匀激发。
(4)支撑体64,包括四个防振凝胶座和支撑脚192,实现成像模块10与整机的对接,实现外部激 励极大程度的隔离。测序***300主要是通过成像来识别碱基序列信息,支撑体64作为与整机的连接媒介,较佳的,希望其能极大程度的削弱外部或者整机带来的激励。
由上可知,该测序***300通过成像模块10捕捉反应装置200中荧光点的信号,再将该些光学信号转化成相应的碱基信息,从而测得相应的核酸序列。
人类基因组共有23对染色体,分别是22对体染色体和一对性染色体,总共含有约31.6亿个碱基对。为了测定人基因组序列,经常通过测该基因组多遍(测序深度)来提高测序结果的可信度,对该测序***300的通量(能获得的下机数据量)有要求。
针对通量,在一些示例中,可通过使反应装置200含有多条通道即具有较大的反应/检测区域来实现。
每条通道含有几百个FOV,因此一般地,结构或***设计时需要考虑物镜和反应装置200在X/Y方向上的相对位移;而考虑到反应装置200表面的不平整度,较好的,增加Z轴维度来实现测序过程中的自动追焦功能。
相关结构或***设计时对这个三维运动进行分解,利于实现快精准测序、缩短图像(视野)采集时间,特别适用于单分子测序***300,在单分子测序***300中,单分子(单个分子或少数几个分子)的荧光信号非常脆弱,例如长时间的曝光会导致荧光的快速淬灭,更是需要快速图像采集;在一个示例中,承载反应装置200的载物模块100的质量相对重,并且考虑到操作人员拿放反应装置200的便捷性,给载物模块100提供X/Y方向上的二维运动;物镜质量相对轻,并且考虑到物镜需要保护,因而给其提供高精度的Z方向运动。
进一步地,将整个减振结构60设计成如实施例一的上下双层的结构,中间用一个板状的第一连接件72和两个柱状的第二连接件74,利于使X/Y方向有较大的运动量程;如图1-4和图6所示,上部双层结构称构成主体,四个防震凝胶座与支撑基板83用四个圆柱状的支撑脚192连接,在一个示例中,整个减振结构60大部分采用铝合金;利用四个防震凝胶座作为支撑体64连接双层结构,利于增强该减振结构60对振动的抑制作用,支撑体64能够有效的给上部双层结构隔振。
在一些示例中,由于X/Y二维平台和Z轴在测序过程中处于运动状态,可通过二维平台和Z轴在工作位置时的动态特性来了解整个减振结构60的振动特性,故初始设计时,申请人将X/Y二维平台和Z轴都设置在最常用的工作位置:X/Y二维平台的大部分时间处于物镜成像拍照状态,取物镜在反应装置200流道正中位置时X/Y二维平台的工作位置;Z轴大部分时间处于物镜追焦状态,因而取理论焦面对应Z轴位置。
由于双层连接的两个圆柱状的第二连接件74是各向同性,而且左侧又只是一块较薄的第一连接件72,担心X向强度不够,因此将单分子基因测序***结构的实施例一中两个圆柱状的第二连接件74改成对称一侧的薄板状的第二连接件74,进一步,然后再背部增加板状的第三连接件76,从而增强整个机构在X向强度。
考虑到实施例一中质量分布不均匀,重新排布上层结构中个模组的位置,尽量让质心在整个机构的中心线上,从而完成单分子基因测序***结构的实施例二的设计,如图2所示。
物镜的Z向高精度移动来自Z轴,Z轴安装在上层板71上,为保证Z轴安装定位的稳定性,增加上层板71的厚度;因而测序过程中大范围FOV分布在X向,因而二维平台给的激励基本上是X方向的,为了进一步增强整个机构在X向的强度,考虑在中间增加横梁作为加强筋,以及左侧增加加强筋;为来降低本体62的质心,将下层板73以及中间结构70的连接板材质换成钢材,从而形成单分子基因测序仪***结构的实施例三,如图3和图4所示。
这样按照设计思路完成三个单分子基因测序***的结构方案,后续进一步评估该些结构受振动的影响。
可以利用现有的方法包括利用市售测的设备如测振仪测量减振结构60受到的振动大小和振动变化,本申请对此不作限定。
在一些示例中,申请人利用评估采集到的图像的质量来间接评估减振结构60的减振性能。测试发现,该评估方法简单直接,测试平台搭建比较容易,需要设备少,操作步骤简单,振幅越大、图像差异越明显越有利于准确评估,同时,该方法还能测试验证搭建出的测序***300是否可靠/可实现预定功能。具体的,借助于测序***300本身就包含的成像模块10,具备成像功能,通过图像来评价***的振动简单直观,具有先天的适应性。较直接地,可通过观察图像是否模糊来测定测序***300/减振结构60的振动抑制效果。
在相机曝光过程中若载物模块100发生振动则会导致物体成像位置发生偏移,从图像上观察会发现亮点会抖动,发生拖尾,视觉上该图像较模糊。通过判断图像是否清晰可以评估载物模块100是否已经静止或者说是否处于不影响信号采集(或影响可忽略)的状态。
本实施方式对判断图像是否清晰的方法不作限制。在一个实例中,申请人通过计算图像锐度来评估图像清晰度。图5显示图像上一个理想亮点的强度分布,为一个高斯分布或者近似高斯分布。
清晰度越高,其高斯分布波峰就越尖锐。但如果载物模块100振动导致图像发生运动,即会使相机一块很小的成像区域内的像素(如3*3pixels,大致为一个理想状态的荧光分子在像面上的大小)在不同的时间内接收到同一信号源的强度信号。这样该信号源的强度值就被平均到该成像区域内的n个像素上。因此该成像区域内像素间的差值就变得很小,不再具备高斯分布的特性。凭借这个成像特性,可以建立一套评估振动的间接测量方案。
所称的单分子基因测序***为通过全内反射荧光成像***(Tirf)识别单个碱基的测序***,单分子碱基信号是极其微弱的,显微成像需要具有高倍率、高NA、小景深的特点,对于包括环境振动在内的外界干扰极其敏感。对单分子基因测序***带来影响的激励主要分为两个部分,一部分来自外部,称之为外部激励,是由周围环境产生。另外一部分来自内部,称之为内部激励,是由成像模块10产生。
(1)外部激励:正常工作时,人员走动,人员沟通,空调振动,整机内部风扇运转以及泵运作等一系列因素都会产生,还有地面传导的低频振动等等。这一部分激励会通过支撑脚192传递给单分子基因测序***平台,导致其整体振动。
通常地,大地脉动型地面振动频率主要在0Hz-1Hz,实验室工作人员走动所引起的振动频率在1Hz-3Hz;通风管道、变压器和马达所引起的振动在6Hz-65Hz之间;建筑物本身一般在10Hz-100Hz频率之间摆动。
外部激励可通过实验测试得出,在一个示例中,申请人在安装于测序***300中的支撑体64上布置一个三轴加速度传感器探头,制造正常工作时的工况,不用特意屏蔽人员走动及沟通,整机处于开机状态,测序***300的内部风扇、泵都处于开启状态。经实验测得,外部激励X向一阶波峰为4.5Hz,Y向一阶波峰为4Hz,Z向一阶波峰为11.5Hz。因而可以得知环境中激励源的激励频率,这一数据作为后续有限元分析对比基础。
(2)内部激励:测序***300主要是相机通过物镜采集反应装置200中被激光激发的荧光点来识别碱基序列的,所以整个成像模块10是个整体,而这一光路中任何一个组成部分相对其他部分有相对振动,都会对图像的采集造成影响,因此对成像模块10造成影响的内部激励主要有:二维微动平台运动,Z轴运动,相机风扇运转等。
外部激励作用下***响应特性分析
针对于外部激励,一般情况下,采取过隔振措施的振动***不再发生大幅振动,位于底板之上的单分子基因测序***,可按照单级隔振方式简化动力学模型。通过简化成理想化的刚体动力学模型,便于观察振动抑制的本质规律,然后从简入繁,分析复杂的振动抑制优化问题。
如图7所示,为单分子基因测序***的简化模型。
单分子基因测序***的本体62作为支撑体64的隔振对象。由于本体62的质量和刚度都远远大于支撑它的支撑体64,因而可以将本体62简化为刚体,忽略防震凝胶座的重量,从而形成本体62的简化 模型,即防震凝胶座简化为四个质点对称分布支撑着简化为刚体的本体62。
假设本体62的质量为m,本体62的质心当作坐标系xyz的原点O,Ixx、Iyy、Izz是本体62相对于质心O在X/Y/Z惯性矩;将四个防震凝胶座分别定义为质点i=1、2、3、4,从图7他们的坐标值,每个防振凝胶座简化为一个弹簧和一个阻尼结构,从而对应三个方向的刚度和阻尼可以分别简化为k ix、k iy、k iz、c ix、c iy、c iz
从而得到的单级无源隔振***,具有六个运动自由度。假设初始位置都为0,且本体62在激励作用下处于小位移振动状态,u、v、w分别X、Y、Z三个方向的线位移,α、β、γ分别为绕着X、Y、Z三个轴的角位移;先忽略阻尼C的影响,根据经典力学的动量定理和动量矩定理,可以得到六个独立的运动微分方程,如下。
Figure PCTCN2020101908-appb-000006
Figure PCTCN2020101908-appb-000007
Figure PCTCN2020101908-appb-000008
Figure PCTCN2020101908-appb-000009
Figure PCTCN2020101908-appb-000010
Figure PCTCN2020101908-appb-000011
式中m——本体质量;u——本体沿X轴位移;v——本体沿Y轴位移;w——本体沿Z轴位移;k ix——本体X刚度;k iy——本体Y刚度;k iz——本体Z刚度;a——本体长度一半;b——本体宽度一半;d——本体高度一半;I xx——相对质心X向转动惯量;I yy——相对质心Y向转动惯量;I zz——相对质心Z向转动惯量;α——本体绕X轴角位移;β——本体绕Y轴角位移;γ——本体绕Z轴角位移。
上面6个独立的运动微分方程是基于u、v、w、α、β、γ这6个自由度,为了便于计算,简化这六个微分方程,可令:
Figure PCTCN2020101908-appb-000012
Figure PCTCN2020101908-appb-000013
Figure PCTCN2020101908-appb-000014
使用矩阵形式表示如下:
Figure PCTCN2020101908-appb-000015
引入阻尼和激励影响,可将矩阵简写为如下形式:
Figure PCTCN2020101908-appb-000016
式中M——本体质量矩阵;C——本体阻尼矩阵;K——本体刚度矩阵;
Figure PCTCN2020101908-appb-000017
——节点绝对加速度向量;
Figure PCTCN2020101908-appb-000018
——节点绝对速度向量;{X}——节点绝对位移向量;{F}——激励向量。
引入基础等效激励向量:{F(t)}=C{X 0jcosω jt+K{X 0}sinω jt(3-9),式中ω j——为激励频率。
可令:
Figure PCTCN2020101908-appb-000019
Ω=diag[{2ξ nω n}](3-11),Λ=diag[{ω n 2}](3-12),式中[Ψ]——特征向量矩阵(由主振型组成);
Figure PCTCN2020101908-appb-000020
——为第n阶模态;ξ n——为第n阶阻尼;Ω——为两倍的阻尼比乘固有频率构成的特征值矩阵;Λ——为固有频率的平方构成的特征值矩阵矩阵。
对于满足解耦条件的小型阻尼***,则存在正则化关系:
[Ψ] TC[Ψ]=Ω(3-13),[Ψ] TK[Ψ]=Λ(3-14);
则等式(3-9)两侧乘以[Ψ] T后,可简化如下:
Figure PCTCN2020101908-appb-000021
可令:
Figure PCTCN2020101908-appb-000022
式中n——对应不同阶次。
通过模态坐标下解耦,可以得到等效激励力:
Figure PCTCN2020101908-appb-000023
在基础正弦位移激励下,{X}的第i个分量为:
Figure PCTCN2020101908-appb-000024
式中i——可取1到6,分别表示6个自由度;
Figure PCTCN2020101908-appb-000025
——n阶模态
Figure PCTCN2020101908-appb-000026
的第i个分量。
在基础激励下,***的动力响应幅频特性为:
Figure PCTCN2020101908-appb-000027
该测序***300为欠阻尼***,阻尼比0<ξn<1。频率比λ是一个同激励频率wj和减振结构60固有频率wn相关的***参数,当激励频率wj小于减振结构60固有频率wn时,即频率比λ<1;激励频率wj等于***固有频率wn时,即频率比λ=1;当激励频率wj大于减振结构60固有频率wn时,即频率比λ>1。
根据(3-18)可以得到,每个自由度的
Figure PCTCN2020101908-appb-000028
的幅值都是一条与λ相关的有拐点的曲线,当λ=1时,对应的
Figure PCTCN2020101908-appb-000029
为其极大值,也就是对应自由度的***平台将产生共振,此时隔振器不但没有起到减振效果,反而加剧了平台的振动效果。
设计的目标是在每个自由度都避开共振频率,通过支撑体64尽量吸收外部或者内部传递过来的振动,是其对成像模块10造成的影响最小。因此,减振结构60的固有频率不等于外部激励频率,能够有效地减少外部激励对测序***300的影响。
内部激励作用下***响应特性分析
针对于外部激励时,将测序***平台中支撑体64连接的本体62作为一个刚体简化;针对于内部激励,可以单独提出本体62作为目标对象进行分析。主要为使物镜和反应装置200在激励作用下,相对位移满足成像模块10的自动追焦要求。
F N=K sX s(3-19),式中F N——内部激励;K s——本体刚度;X s——本体形变。
在内部激励一定的前提下,根据公式(3-19)可知,本体62形变大小X s与本体62刚度K s成反比,想要得到很小的X s,需要合适的本体62刚度。
Figure PCTCN2020101908-appb-000030
式中w s——本体固有频率;M s——本体质量。
根据公式(3-20),在一定质量的前提下,本体62的刚度与本体62的固有频率成正比,增加了固有频率w s,就是增大本体62刚度。在固有频率一定的前提,本体62刚度同质量成正比,增大本体62质量就是增大本体62刚度。
因此在内部激励作用下,想要较强的振动抑制效果,可以通过增大本体62固有频率来实现。
基于上面对外部和内部激励分析结果可知,如果想要对内外部激励进行隔振,需要详细分析激励组成,然后根据实际激励来分析结构模型。
外部激励隔振设计分析
需要通过实验测试获得外部激励,在安装单分子基因测序***平台底板上布置一个三轴加速度传感器探头,制造正常工作时的工况,不用特意屏蔽人员走动及沟通,整机处于开机状态,内部风扇、泵都处于开启状态。
测试中,采用云智慧数据采集分析仪(INV3062C1),以及超低频加速度速度拾振器(941B)。通 过其自带的DASP智能数据采集和信号分析***,可以得出在此工况下环境激励如图8所示。从图中可知,采用奈奎斯特采样定理来设计实验的采样频率,FFT点数1024,谱线条数512,外部激励X向一阶波峰为4.5Hz,Y向一阶波峰为4Hz,Z向的一阶波峰为11.5Hz。
因而可以得知环境中激励源的激励频率分布,X/Y/Z三向的环境激励都是低频的,可使用橡胶防震凝胶座隔离它,使其易于在三个方向上实现刚度。此支撑体64中有金属导向杆,可以保证其水平方向的稳定性。对***结构设计时,要保证***对应各个自由度固有频率避开对应激励频率,避免发生共振,残余振动可以通过支撑体64来减弱。
内部激励隔振设计分析
内部激励主要集中在本体62中,成像模块10都安装在上层板71上,作为一个整体,除了相机散热风扇转动带来的振动,他们之间并没有其他内部相互作用,因而可以先忽略;Z轴作为运动机构会带动物镜在工作时一直处于追焦状态,追焦会随着芯片平整度调整物镜移动距离,因为物镜质量相对较轻,加速度小,因而产生的激励也相对较小。
二维微动平台为芯片提供XY二维方向上的移动,能够为物镜提供足够的视野让其能够覆盖整个芯片的测试区域,因为单分子荧光信号比较脆弱,长曝光会促使荧光快速淬灭,从而需要微动平台快速响应,高速、急停的运动曲线会对整个***带来运动激励。这一部分激励作用于平台内部,会导致其内部产生相互振动。正常运作过程中二维微动平台对振动带来的影响最大,在此主要分析其运动机制,移动一个FOV的速度时间曲线VT图,如图9所示。
此二维微动平台在一个通道内走S形曲线,两个FOV运动间距为0.22mm,最大速度为12.8mm/s,最大加速时间为0.1s,换算加速度a为0.128m/s2。
考虑到结构的对称性,取X正向移动为计算目标,测得微动平台负载约2kg,根据其运动轨迹,可以推断出激发是矩形波,如图10所示。
为了便于后续模态分析,需要将时域信号转化为频域信号,这一转换可以通过matlab来进行相应处理。根据上面得到的矩形波激励,矩形框取样时间间隔2s区间,通过标准函数傅里叶转化可以得到对应的功率谱密度曲线,如图11所示。
本体62质量Ms=50kg,由二维微动平台运动激励计算得出FN1=0.2N,从以上分析单分子基因测序***X/Y向能够接受的运动模糊ΔY≤291nm,即Xs1≤291nm,根据公式(3-20)可以得到对应的固有频率。
Figure PCTCN2020101908-appb-000031
同理,已知Z轴运动平台的负载300g,查阅Z轴运动平台的相关资料可知其最大速度为12.8mm/s,最大加速时间为0.2s;换算加速度a为0.064m/s2,换算成Z轴运动激励FN2=0.0192N,通过分析物镜景深知道单分子基因测序***Z向能够接受的最大位移Xs2≤400nm,根据公式(3-20)可以得到对应的固有频率。
Figure PCTCN2020101908-appb-000032
因此根据分析的结果可知,如果想要对内部激励有合适的隔振效果,需要本体62在X/Y向一阶固有频率远大于117Hz,能达到165Hz以上将达到非常好的隔振效果。本体62在Z向的一阶固有频率远大于31Hz,能达到44Hz以上将能得到很好的隔振效果。综上所述,本体62的固有频率大于或等于
Figure PCTCN2020101908-appb-000033
倍内部激励频率,能够起到较佳的隔振效果,也就是说,对于沿XYZ的每一个方向,本体62的固有频率大于或等于
Figure PCTCN2020101908-appb-000034
倍内部激励频率。
利用图像对载物模块100是否发生振动进行评估:
具体地,用一组动态拍摄记录荧光点的信息,根据荧光点信息清晰模糊程度判断二维微动平台目前所处的状态,匹配微动平台的运动轨迹,除开其运动过程时间线,如果图像仍处于模糊状态,就是振动 追焦造成的影响。
在软件中为二维微动平台设定一定的运动轨迹,使其按照一定的加速度、频率和路径带着反应装置200按照设置目标轨迹移动,为便于区分振动状态,放大振动静止的分界线,移动一个FOV后会停止一段时间,让二维微动平台充分停稳;
为了保证过程的准确性,一般会增加实验的重复次数来实现;与此同时相机按照能够记录的最小曝光时间连续拍照,连续记录二维运动平台从开始到停止整个过程中图像的状态,输出运动拍摄记录荧光点的信息。
在这个过程中,物镜相对于反应装置200轨迹,是在一个通道内走S形曲线,2×50FOV,局部轨迹图如图12所示,一来一回两行,每行50个FOV。两个FOV运动间距为0.22mm,加速度a为0.128m/s 2,每个FOV停留1s时间。
软件设置完成后,准备合格的反应装置200,保证点形态、密度满足要求。将反应装置200置于载物模块100上装夹好,涂抹相应的镜油,过程中不要有气泡,移动二维微动平台,使物镜处于指定通道内,开启激光532nm,手动找到合适焦面,使FOV中荧光点处于最清晰状态,然后锁定焦面,便于后续自动追焦。相机曝光时间设置30ms,开始测试,拍摄结束后会输出一组3000多张图片。分别在实施例一至三的三台测序***300上进行同样的实验,这样就能得到多组实验结果。
图像处理方案
虽然已经知道通过计算图像锐度来估计图像清晰度,但是一个成像图像窗口中荧光分子数以万计,其中既有需要的信息点,也有各种杂质带来的背景噪声,需要通过图像处理去噪精炼,输出需要的整体锐度值,此部分可以通过C++语言编程实现。
(1)图片获取:用反应装置200在搭建的仪器中进行实验测试,会得到一系列的图片,软件从指定的文件夹中获取图片信息,导入程序中。
(2)图像去噪:是对连续采集到的图像,进行图像去噪、增强措施;
一张Fov图像中的点(亮点/亮斑/信号点)如繁星密布,数以万计,而且每个点的明暗不一,夹杂着吸附、背景噪声等干扰。因而,一般地,首先需要排除干扰,找到满足要求的亮斑。本实施方式中所使用的图像去噪方法主要是为了实现去除图像中背景影响的目的。对于图像背景的计算,实验中使用了图像处理中的形态学开运算,即认为图像开运算的结果即为图像背景。然后使用原始图像减去计算出的背景图像来获得去噪图像。
(3)信号定位:定位图像中所有点光源信号位置。
为了定位图像中每个信号点位置,首先需要根据信号点成像特性,信号点灰度值呈高斯分布,其中心区域值会高于边缘区域值。使用上述特性可以找出图像中几乎所有的信号点位置,但是同时也会定位到很多噪声点。为了滤除噪声点的影响,需要再对上一步骤找到的候选点做进一步的筛选。具体是通过每个信号点位置的信噪比,成像灰度值分布等信息判断每个信号点的置信度,从而滤除掉置信度低的信号点。图13从左到右、从上往下中的各个图像分别显示如上所说的原始图像(采集得的图像)、背景图像、去噪图像、定位了信号点和噪声点的图像以及滤除了置信度低的信号点的图像。
(4)锐度值计算:计算每个点光源信号的锐度值,挑选具有代表性的点光源锐度值作为该图像的清晰度值输出。
定位到每个信号点后,需要对每个信号点计算其在图像上的锐度值,从而进一步判断图像锐度值。计算每个信号点的锐度值都可以按照以下步骤:a.根据信号点中心附近区域的强度分布拟合出信号点中心位置上的强度值;b.再计算中心位置上的强度值与相邻区域的强度值的插值平均作为该信号点的锐度值,评价标准为取光源中心对周边8临域的差,再除以3*3区域灰度均值,即可按照公式(5-1)来计算。
Score=9*(8Center-edge[8])/(Center+edge[8])(5-1),式中Score——为图像的锐度值;Center——为中心位置强度值;edge[8]——光源周边8邻域强度值。
根据上述步骤可计算达到所有信号点的锐度值Score,将所有点的Score按升序排列,取90分位点的Score作为清晰度值ImageScore值,来评价整体图像的清晰度。使用上述方法得到的一组sample图像清晰度值,如图14所示。
之所以取90分位点,主要是考虑到单分子点的发光的随机性较强,且中心计算区域内可能带有杂质噪点等干扰,为了避免信号点定位过程中没有被完全滤除的噪声点的干扰,因此本实施方式选取所有信号点锐度值的90分位点作为该图像的锐度值ImageScore。可以理解地,也可以选择其它分位点对应的值作为作为该图像的锐度值。图14显示了一组sample图像清晰度值,从左到右、从上往下各图分别为ImageScore值等于0的图像、ImageScore值等于1.49的图像、ImageScore值等于2.03的图像、ImageScore值等于2.51的图像以及ImageScore值等于3.01的图像。
由图14可知,ImageScore为图像评价指标,数值越高对应的图像约清晰。一般在2.0以上的图片上的点表现较为清晰,在1.5以下则图片较为模糊。ImageScore能够较为准确的分辨出图像的清晰度,可用于评价平台到达指定位置后是否发生振动。
(5)数据处理将上一步得到的ImageScore值输出到指定文件中,方便后续评价使用。
数据处理方案
测试中输出的一堆图像通过图像处理,每一张图像可以得到一个ImageScore值,将这些值绘成曲线可以发现他们是成周期变化的,截取其中两个周期如图15所示,其中横坐标是图像个数,纵坐标是图像对应的ImageScore值。
观察不难发现曲线波动和二维微动平台运动成周期性变化,当二维微动平台开始运动时ImageScore值会急速下降甚至会变成0;当其开始停止到稳定过程中,对应的ImageScore值会逐渐增大;当其稳定后,对应的ImageScore值会是趋于稳定最大值。
根据这个规律可以首先找到ImageScore值急速下降的FOV,其对应的就是二维微动平台移动的起始点。然后从这个FOV往后推算,找到其区域稳定的前一个FOV。因为稳定状态ImageScore值也是一个波动值,所以统计稳定前的点规律的判断依据要避开这种情况,判断依据是如果此点后方连续两个点ImageScore值相差开始不都大于0.3,此点就是所需要的FOV。然后跟去这个统计从开始移动到趋于稳定需要FOV数Nw。此过程可以通过将ImageScore值数据导入Matlab,然后通过程序编写来完成。
由于相机的曝光时间是30ms,相当于每个点对应耗时30ms,乘以前面统计的趋于稳定所需要FOV数Nw,就能得到二维微动平台从开始运动到趋于稳定所需要的时间。
考虑到此相机最小的图像采集曝光时间为30ms,即它对应的分辨率就是如此。测试时无法保证二维微动平台每一次运动起始点时刻与相机曝光开启时刻全部统一,其真实情况是大部分它们的时刻点都处于错开状态,也就是说相机正在曝光时间段30ms内,二维微动平台可能才开始启动,所以统计趋于稳定时间Tw与二维微动平台真实运动时间对比时,要考虑到曝光错位延迟。二维微动平台每个周期开始运动到结束所需时间Ts约90ms,考虑曝光错位延迟,二维微动平台每个周期开始运动到结束所需对比时间Td=Ts±30ms,即60~120ms。
结果分析
实验条件都相同的前提下,分别对包括实施例一至三的减振结构60的三台测序***300做多次同样的实验测试,会得到多组实验数据结果,对比实验数据可以发现每台仪器结果趋势一致,重复性验证没有问题,下面单独对每台测序仪的结果进行分析。
实施例一的减振结构60的实验结果分析
按照上一节步骤进行多次实验,选取其中一组实验,经过数据处理可以得到其对应的ImageScore值曲线如图16所示。观察曲线可知ImageScore值虽然也是成周期性变化,但是一直处于不稳定的波动状态,说明此结构对振动比较敏感,相对来说,减振效果较弱。
经过matlab处理,可以得到统计趋于稳定所需要FOV个数Nw,输出曲线如图17所示,其中横坐 标代表移动FOV数量,纵坐标代表稳定所需拍照数。继而可以得到趋于稳定时间Tw的曲线图,如图18所示。
从图中可发现整个过程趋于稳定时间Tw波动非常大,既有非常小60ms的,也有很大到达990ms,计算均值为270ms,远大于二维微动平台从开始运动到结束所需对比时间Td(60~120ms)。
从而可以判断包括实施一的减振结构60的测序***300在二维微动平台移动到位后,还需要很长时间恢复追焦稳定,从ImageScore值曲线可以看出,当ImageScore值处于稳定状态时,其幅值会发生很大变化,表明仪器始终处于较不稳定状态,易受外界干扰,较不能满足振动抑制需求。
实施例二的减振结构60实验结果分析
类似地,按照上一节步骤进行多次实验,选取其中一组实验,经过数据处理可以得到其ImageScore值曲线如图19所示。
曲线前面尾巴是因为二维微动平台和拍照开始时刻不同步造成的,但是不影响数据处理结果。从图中可以看到前四个极值点都处于二维微动平台还没有正式运动前,所以后续统计可以把前四个cycle排除不统计。观察图可以发现,ImageScore值曲线相较于上一组就更为规律,稳定状态下波动值也比它小。
经过matlab处理得到统计的趋于稳定所需要FOV个数Nw,如图20所示。和前面ImageScore值曲线得到的结论一致,前四个cycle数据可以不纳入统计结果。继而可以得到趋于稳定时间Tw的曲线图,如图21所示。
从图中可发现除去前四个cycle,后续正式97个cycle趋于稳定时间Tw波动非常大,既有非常小60ms的,也有很大到达360ms,计算均值为151ms,大于二维微动平台从开始运动到结束所需对比时间Td(60~120ms)。从而可以判断包括实施例二的减振结构60的测序***300在二维微动平台移动到位后,还需要30多毫秒时间恢复追焦稳定。从ImageScore值曲线对比,相较于包括实施例一的减振结构60的测序***300,实施例二的减振结构60更为稳定,进一步对振动进行抑制。
实施例三的减振结构60的实验结果分析
按照上一节步骤进行多次实验,选取其中一组实验,经过数据处理可以得到其ImageScore值曲线如图22所示。
曲线前后有尾巴是因为二维微动平台和拍照开始时刻不同步造成的,但是不影响数据处理结果。从图中可以看到前5个极值点都处于二维微动平台还没有正式运动前,所以后续统计可以把前5个cycle排除不统计。
经过matlab处理得到统计的趋于稳定所需要FOV个数Nw,如图23所示。和前面ImageScore值曲线得到的结论一致,前5个cycle数据可以不纳入统计结果。继而可以得到趋于稳定时间Tw的曲线图,如图24所示。
从图中可发现除去前5个cycle,后续正式98个cycle趋于稳定时间Tw都介于60ms~120ms之间,均值为92.8ms。从而可以判断包括实施三的减振结构60的单分子基因测序***300在二维微动平台移动到位后,基本没有振动对其造成图像模糊影响,进一步满足对振动抑制的要求。
请参图6,本申请实施方式提供的一种测序***300,包括上述任一实施例的减振结构60。在图示的实施方式中,测序***300包括的减振结构60是实施例三的减振结构60。可以理解,在其它实施方式中,测试***300也可包括实施一至实施二的任一实施例的减振结构60。
请参阅图25,本申请实施方式的一种成像模块10,包括第一光源12、第一透镜16和分光模块40,分光模块40包括第一分光器14、第二透镜18、第一相机20和第二相机22。第一透镜16用于接收来自第一光源12的第一光束并使该光束准直后入射至样品24上,以及用于接收来自样品24的光束并使该光束准直。第二透镜18用于将来自第一透镜16的准直光束聚焦至第一相机20和第二相机22。第一分光器14用于将来自第二透镜18的聚焦光束分为第二光束和第三光束。第一相机20用于接收第二光束。第二相机22用于接收第三光束。本实施方式的成像模块10可应用于上述减振结构60的实施例一至三 的任一实施例。
上述成像模块10,由于第二透镜18将光聚焦后,再由第一分光器14分成第二光束和第三光束,这样可减少光学元件的使用、分光光路长度小,使得成像模块10的总光路长度变短,有利于成像模块10的小型化,利于工业化。
具体地,样品24可为待测核酸样本,待测核酸样本可放置在反应装置200内,如芯片内。第一光源12可为激光光源。在一个示例中,芯片包含基底,基底上设有通道,基底上设有玻璃,在利用测序***300进行测序时,在一定条件下,待测核酸、酶、带荧光标记的核苷酸试剂或溶液等混合于通道中发生反应,然后第一光源12发射激光经第一透镜16入射至芯片特定视野,该视野的荧光基团被激发发出荧光,荧光经第一透镜16和第二透镜18聚焦到达第一分光器14,第一分光器14将该荧光会聚光束分成第二光束和第三光束,第一相机20接收第二光束,第二相机22接收第三光束,分别采集得该视野的第一图像和第二图像。
在一个例子中,请结合图26,第一光源12可包括第一发光器13和第三透镜15,第一光束为第一发光器13发出的光束经过第三透镜15后的准直光束,第一光束经第四透镜17聚焦到第一透镜16的后焦面、进而经过第一透镜16准直后入射至样品24上。在一个示例中,第一光源12还包括光纤耦合器,例如单模光线耦合器。具体地,成像模块10为全内反射成像模块,经过第一透镜16的准直光束(平行光束)以大于临界角入射至芯片表面,发生全内反射,在芯片玻璃的下表面产生消逝场(消逝波)。该消逝场中的荧光分子被激发发出的荧光被第一透镜16接收。
在第一光源16发射的光束激发样品24的荧光基团发光时,第一透镜16接收的来自样品24的光束是样品24发出的光束。
第一相机20和第二相机22的图像传感器可采用CCD或CMOS。较佳地,第一相机20和第二相机22所采用的图像传感器的类型相同,例如,均为CCD或均为CMOS。第一分光器14可为二向色镜。
第二光束为第一分光器14的透射光束,第三光束为第一分光器14的反射光束。
在某些实施方式中,第一相机20与第二相机22呈90度或270度设置。如此,便于在有限空间内将第一相机20和第二相机22多个相机配置到该成像模块10中。具体地,在图25所示的方位中,第一分光器14具有第一反射面26,第一反射面26与水平面的夹角成45度,沿水平方向入射至第一反射面26的一部分光束被反射转向90度到达第二相机22,而沿水平方向入射至第一反射面26的另一部分光束穿过第一反射面26并入射至第一相机20。在图25和图27中,第一相机20与第二相机22沿顺时针呈90度设置,沿逆时针呈270度设置。在一个示例中,样品带有两种荧光标记,例如为Cy3和Atto647N,该两种荧光分子的发射光波段分别为550-620nm和650-750nm(波峰分别大约为564nm和670nm);第一分光器14为二向色镜,该二向色镜对波长550-620nm的光具有较高的透射率,对650nm以上的光具有较高的反射率。
所称的带荧光标记的核苷酸试剂包括A、T、C和G四种类型核苷酸试剂,不同种核苷酸试剂可分别盛放于不同容器中。在一个示例中,四种核苷酸带有同一种荧光标记,在DNA测序时,每轮测序反应包括四次碱基延伸反应,四次碱基延伸反应分别为依次加入该四种核苷酸以及获得相应的图像。
在一个示例中,四种核苷酸两两分别带有第一荧光标记和第二荧光标记,第一荧光标记和第二荧光标记可被激发发出不同的荧光,利用该四种核苷酸进行双色测序,每轮测序反应包括两次碱基延伸反应,在利用包含该成像模块10的测序***300进行测序时,在一定条件下,待测核酸、酶以及带第一荧光标记和第二荧光标记的两种核苷酸试剂或溶液等混合于通道中发生反应,第一光源12同时发射第一激光和第二激光经第一透镜16入射至芯片特定视野,该视野的第一荧光标记和第二荧光标记分别被第一激光和第二激光激发发出第一荧光和第二荧光,该第一荧光和第二荧光经第一透镜16和第二透镜18会聚至第一分光器14(二向色镜),该二向色镜分开会聚的第一荧光和第二荧光,第一荧光聚焦到第一相机20像面,第二荧光聚焦到第二相机22像面,由此,分别获得该视野的第一荧光和第二荧光形成的第 一图像和第二图像。基于核苷酸加入顺序和不同轮测序反应的第一图像和第二图像信息,实现碱基识别/测序。
在另一个示例中,四种核苷酸分别带荧光标记a、荧光标记b、双荧光标记a-b以及不带标记,荧光标记a和荧光标记b可被激发发出不同的荧光,利用该四种核苷酸进行四色测序,每轮测序反应包括一次碱基延伸反应,在利用包含该成像模块10的测序***300进行测序时,在一定条件下,待测核酸、酶以及上述四种核苷酸试剂或溶液等混合于通道中发生反应,第一光源12同时发射第一激光和第二激光经第一透镜16入射至芯片特定视野,该视野的荧光标记分别被第一激光和第二激光激发发出荧光,该荧光经第一透镜16和第二透镜18会聚至第一分光器14(二向色镜),该二向色镜将该荧光分为来自荧光标记a的荧光和自荧光标记b的荧光,来自荧光标记a的荧光聚焦到第一相机20像面,来自荧光标记b的荧光聚焦到第二相机22像面,由此,分别获得得该视野的第一图像和第二图像。通过不同轮测序反应的第一图像和第二图像以及合并同一轮测序反应的第一图像和第二图像的信息,实现碱基识别/测序。
在某些实施方式中,第一透镜16包含一个或多个透镜,和第二透镜18包含一个或多个透镜。具体地,在显微镜***中,第一透镜16的一个或多个透镜构成了物镜;第二透镜18的一个或多个透镜构成了筒镜(tube lens)。在其它实施方式中,第一透镜16包含一个或多个透镜,或第二透镜18包含一个或多个透镜。
在某些实施方式中,成像模块10包括第二分光器28,第二分光器28用于接收来自第一光源12的第一光束并使该第一光束转向至第一透镜16,使得该第一光束并入到第一透镜光轴所在的光路(成像光路)中。如此,第二分光器28的设置可使得第一光源12位于第一透镜16的光轴所在光路外,能够使该成像模块10的各元件紧凑合理的设置,利于该成像模块10的小型化,利于工业应用。
具体地,第二分光器28用于使该第一光束转90度角。如此,便于配置第一光源12的位置包括其包含的元件的相对位置。
在某些实施方式中,成像模块10包括第三分光器30和自动对焦模块32。自动对焦模块32用于发出第四光束,以及用于接收被样品24反射回的第四光束,第三分光器30用于接收第四光束并使该第四光束转向至第一透镜16,还用于接收被样品24反射回的第四光束并使该第四光束转向至自动对焦模块32。如此,可利用自动对焦模块32实现对焦,实现利用该成像模块10进行图像采集。
具体地,自动对焦模块32包括第二光源34和接收器36,第二光源34用于发射第四光束至第三分光器30,接收器36用于接收第一透镜16准直后的第四光束。在一个例子中,第二光源34可以是红外光源。接收器36可为光电二极管。在进行对焦时,第二光源34发射第四光束,经第三分光器30转向至第一透镜16,第四光束经第一透镜16会聚至样品24。样品24反射回的第四光束经过第一透镜准直后入射至第三分光器30。此时,通过确定接收器36接收到的由样品24反射回的第四光束的信息的变化,可移动承载样品的平台使样品24靠近或远离第一透镜16,由此实现对焦。
在一个示例中,接收器36包括传感器,例如二维PSD传感器,第二光源34包括LED光源和位于LED光源前的掩膜;LED光源发出的光照射到腌模上得到特定图案的光斑,该特定图案的光斑经第三分光器30转至第一透镜16会聚到样品24上,经样品24反射回的该光斑最后到达传感器;该自动对焦模块32还包括信号处理模块,该传感器连接该信号处理模块,通过该信号处理模块后得到该光斑的信息。进一步地,该自动对焦模块32还包括信号输出模块,用于输出光斑信息的变化,以使承载样品的平台带动样品移动到成像光路(例如荧光光路)的物面。
在某些实施方式中,请结合图28,第二光源34包括第二发光器35和第五透镜37,第四光束为第二发光器38发出的光束经过第五透镜后37的准直光束,被样品24反射回的第四光束经第五透镜37会聚至接收器36。
在某些实施方式中,请结合图27,第二光束为来自第二透镜18的聚焦光束透射经过第一分光器14 的光束,成像模块10包括补偿镜片38,补偿镜片38位于第一分光器14和第一相机20之间,补偿镜片38用于补偿第二光束带来的像散。
具体地,在一些示例中,利用软件(例如Zemax)对第二透镜18的聚焦光束进行成像仿真时发现,对比第二透镜18后不引入和引入第一分光器14即聚焦后不进行分光和进行分光,成像仿真结果分别如图29和图30所示,可以看出,来自相同视场的光束经过第二透镜18和第一分光器14后形成的光斑(弥散斑)和只经过第二透镜18形成的光斑(弥散斑),像散明显增大。例如,图30中坐标(0,0)、(0,3.250)和(0,6.500)处的光斑尺寸均大于图29中相应坐标处的光斑尺寸。可以利用RMS半径(RMS RADIUS,均平方根半径)来衡量光斑的大小,来定量的反映某成像模块实际成像的光斑大小。均平方根半径是一个重要的半径参数,它是弥散斑各个点坐标,参考中心点,进行的坐标平方和后,除以点数量,然后开方的值,这个值的半径可以反映一个典型的弥散斑的大小,以定量的反映这个***实际的斑点大小。另外,GEO RADIUS(GEO半径)表示弥散斑的直径。明显可看出,来自相同视场的光束聚焦形成的光斑,图30的较图29的弥散,RMS半径较大。
基于此,在一些示例中,申请人引入补偿镜片38于第二透镜18和第一相机之间的任意位置,希望能补偿光束透射后成像造成的像散。在引入补偿镜片38后,请结合图31,来自相同视场的光束形成的光斑,图31的光斑尺寸明显小于图30的光斑尺寸,并且从RMS半径来看,在相同坐标处,图31的光斑尺寸接近甚至小于图29的光斑尺寸。
补偿镜片38可采用平行平板或二向色镜。在图32-34的实施例中,补偿镜片38采用二向色镜。补偿镜片38与一平面P的夹角T成45度,第一分光器14与平面P垂直,平面P由第二光束的光轴A和第三光束的光轴B共同限定。
本申请实施方式还提供一种调校成像模块的方法,请结合图35,成像模块10包括分光模块40,分光模块40包括第二透镜18、第一分光器14、第一相机20和第二相机22,第二透镜18、第一分光器14和第一相机20沿第二透镜18的光轴依次布置,方法包括:利用平行光管50发射准直光束至第二透镜18,平行光管50包括分划板42,分划板42包括一个或多个图案,准直光束经过第二透镜18会聚至第一分光器14,并经过第一分光器14分为第二光束和第三光束,第一相机20接收第二光束,获得图案的第一图像,第二相机22接收第三光束,获取图案的第二图像;调节第一相机20和/或第二相机22的角度和/或位置,以使第一图像和第二图像的对比度一致。
该调校成像模块的方法,将分光模块40作为整个成像模块10的一个模块单独调试,可降低整机调试空间上的限制,能简单方便地实现多个相机与光轴的垂直,利于快速地实现包含分光光路的成像模块的调校。
具体地,请结图36,平行光管50还包括第三光源52、毛玻璃54和物镜56,第三光源52、毛玻璃54、分划板42和物镜56依次排列,第三光源52发射的光束依次经毛玻璃54、分划板42和物镜56出射至第二透镜18。平行光管50发射的准直光束为平行光束,平行光束经过第二透镜18入射至第一分光器14分成第二光束和第三光束。
第一相机20获取的分划板42的图案的第一图像对比度和第二相机22获取的分划板42的图案的第二图像对比度一致,即说明第一相机20的图像传感器的平面与第二透镜18的光轴垂直,第二相机22的图像传感器的平面与分光光路的的光轴垂直。
分划板42为申请人设计定制的分辨率线对分划板42,请结合图37,该分辨率线对分划板包括分布位置不同的5个图案A1-A5,第一相机20获取的分划板42的图案A1-A5的图像与第二相机22获取的该分划板42的图案A1-A5的图像,相应的图像的对比度一致时,则可确定第一相机20的图像传感器的平面与第二透镜18的光轴垂直,第二相机22的图像传感器的平面与经过第一分光器14反射的光束的光轴垂直,符合用于序列测定图像采集的要求。
图案的多个像的MTF值(MTF值是Modulation Transfer Function值,调制传递函数值)相同即判 定该些图像的对比度一致。在一些示例中,两个或多个MTF值差异小于10%、较佳地小于5%,判定该些MTF值相同。具体地,在第一图像和第二图像中,图案A1-A5的像的MTF值分别为0.80、0.80,0.80、0.78,0.80、0.78,0.80、0.80以及0.80、0.80,由此判定第一图像和第二图像的对比度一致,该成像模块10调校完成。MTF值越接近1,说明成像模块10的性能越优异。
分划板42带有多个图案,如图37所示,第一图像和第二图像的大小分别为5个图案A1-A5的像形成的圆的大小,设计该成像模块10时,要求第一图像和/或第二图像的大小不小于实际利用该成像模块10进行成像所要求的图像的大小的百分四十。如此,利用该成像模块10进行成像时,利于获得高质量的图像,符合序列测定的要求。
具体地,第一图像的大小可指多个图案的像分布在第一相机20上所形成的图像的大小。第二图像的大小可指多个图案的像分布在第二相机22上所形成的图像的大小。较佳地,第一图像和/或第二图像的大小不小于实际利用该成像模块进行成像所得的图像的大小的百分五十。
请结合图38,分光模块40还包括补偿镜片38,补偿镜片38位于第一分光器14和第一相机20之间,第一相机20接收经过补偿镜片38的第二光束,获得第一图像。如此,第一图像的成像效果好。
利用载物模块100来对反应装置200的位置调整:
请参阅图39和图40,本申请实施方式的一种载物模块100,包括承载模块102、一级调节结构104和二级调节结构106,承载模块102设置在一级调节结构104上,一级调节结构104设置在二级调节结构106上,承载模块102用于承载反应装置200,二级调节结构106包括第一平面108,二级调节结构106用于调节以使第一平面108与预设轴线满足第一预设位置关系,一级调节结构104用于调节以使反应装置200的表面202与第一平面108满足第二预设位置关系。
上述载物模块100,通过两级调节结构,可将反应装置200的平面202调节到与预设轴线成预设位置关系,因此,基于预设轴线来设定其它装置或组件时,可以使得反应装置200的平面202与其它装置或组件之间的位置关系调节到期望的位置关系,满足了测序的要求,包括使得测序过程中对反应装置200特定位置进行光学检测以及动态过程中对反应装置200多个特定位置进行光学检测得以实现。
具体地,预设轴线可以是测序***300上的某个参考轴线,例如,请结合图6,测序***300包括成像模块10,预设轴线可为成像模块10的镜头光轴OP,反应装置200的平面202可为反应装置200的上表面,通常地,成像模块10包括相机(图未示)和显微镜112,相机位于显微镜112的镜头像侧,反应装置200位于显微镜112的镜头物侧。在需要反应装置200的上表面与镜头光轴OP满足垂直的位置关系时,先将带有反应装置200的一级调节结构104从二级调节结构106上卸下,二级调节结构106调节以使第一平面108与镜头光轴OP满足垂直关系,之后,将带有反应装置200的一级调节结构104安装至二级调节结构106上,一级调节结构104调节以使反应装置200的上表面与第一平面108满足平行关系,这样通过上述两级调节结构,可使得反应装置200的上表面与镜头光轴OP满足垂直关系,并且在反应装置200和镜头光轴OP的相对运动过程中二者仍旧保持垂直关系。因此,在这个例子中,第一预设位置关系为垂直关系,第二预设位置关系为平行关系。反应装置200例如芯片。
可以理解,在其它例子,在所选择的预设轴线和反应装置200的平面不同时,第一预设位置关系和第二预设位置关系也可不同,例如,预设轴线为与镜头光轴OP垂直的轴线,反应装置200的平面108是上表面,第一预设位置为平行关系和第二预设关系为平行关系,或预设轴与为与镜头光轴OP倾斜的轴线,反应装置200的平面108是上表面,第一预设关系为倾斜关系和第二预设关系为平行关系。又如,预设轴线为与镜头光轴OP垂直的轴线,反应装置200的平面108为与反应装置200的上表面垂直的侧面,第一预设位置为平行关系和第二预设关系为垂直关系,或预设轴与为与镜头光轴OP倾斜的轴线,反应装置200的平面108为与反应装置200的上表面垂直的侧面,第一预设关系为倾斜关系和第二预设关系为垂直关系等等。在上面的例子中,预设轴线与镜头光轴OP的位置关系一般是不变的。在其它例子中,预设轴线也可为与镜头光轴平行的轴线。
综上,第一预设位置关系为垂直、或平行、或倾斜;和/或第二预设位置关系为垂直、或平行、或倾斜。
需要说明的是,所说的倾斜是指非垂直和非平行。另外,在其它实施例中,预设轴线可以是与镜头光轴OP无关的其它轴线。
在某些实施方式中,请结合图41至图43,二级调节结构106包括第一调节板114、第一调节件116和支撑件118,第一调节板114设有第一平面108,支撑件118设有斜面120,第一调节板114设于斜面120上,第一调节件116连接支撑件118并用于带动支撑件118移动以调节第一调节板114在斜面120上的位置。如此,通过第一调节板114在斜面120上的位置调节来使第一平面108与预设轴线满足第一预设位置关系,调节方式简单,易于实现。第一平面108可为第一调节板114的上表面。
具体地,二级调节结构106包括基板122,第一调节件116和支撑件118设置在基板122,第一调节板114位于基板122上,第一调节件116带动支撑件118时调节第一平面108相对于基板122的俯仰角度。
在一个例子中,第一调节件116为螺钉,第一调节件116与支撑件118螺纹连接,基板122开设有限位槽124,支撑件118设置在限位槽124中,限位槽124用于限制支撑件118相对于第一调节件116的转动。当第一调节件116转动时,由于限位槽124的作用,支撑件118只能沿第一调节件116的长度方向前后线性运动,这样,实现了第一调节板114在斜面120上的位置调节。
在本实施方式中,二级调节结构106包括垫块126、第一弹性件128、连接螺钉130和配合组件132,连接螺钉130包括头部134和柱部136,头部134包括凸出于柱部的凸缘。第一调节板114开设有第一连接通孔138,第一连接通孔138呈阶梯状。连接螺钉130穿设第一连接通孔138,头部134和柱部136的一部分收容在第一连接通孔138的较大段,柱部136的另一部分穿过第一连接通孔138的较小段并与基板122连接。头部134与第一连接通孔138的较大段的底面之间收容有第一弹性件128,这样可实现基板122与第一调节板114的弹性连接。
垫块126夹持于配合组件132和斜面120之间。支撑件117开设有通过斜面120并贯穿支撑件的通孔140,连接螺钉130的柱部136穿设通孔140。请结合图42,通孔140的左右两侧壁与连接螺钉130的柱部136之间的空间足够大,以致于连接螺钉130不会阻挡支撑件118沿第一调节件116轴线前后运动时所期望达到的位移。
为使第一调节板114的俯仰角度更顺畅,配合组件132包括第一配合件142和第二配合件144,第一配合件142设在第一调节板114的底面,第二配合件144设在垫块126的顶面凹槽。第一配合件142包括呈圆弧形的第一配合面146,第二配合件144包括呈圆弧形的第二配合面148,第一配合面146和第二配合面148可转动地连接。
在图39中,第一调节板114的左右两侧均设有第一调节件116、支撑件118、垫块126、第一弹性件128、连接螺钉130和配合组件132,以实现更准确的俯仰调节。可以理解,在其它实施方式中,也可以是第一调节板114的单侧设有第一调节件116和支撑件118。若需要弹性支撑和更顺畅的角度调节,则可加入垫块126、第一弹性件128、连接螺钉130和配合组件132。
进一步地,请结合图44和图45,二级调节结构106包括连接件150、第三配合件152和第四配合件154,连接件150连接第一调节板114和基板122,第三配合件152和第四配合154可相对转动地连接并位于第一调节板114和基板122之间,第三配合件152设在第一调节板114,第四配合件154设在基板122。
具体地,在图39中,第一调节件116和支撑件118位于第一调节板114的左侧和/或右侧更靠载物模块100前侧的位置,连接件150、第三配合件152和第四配合件154位于第一调节板114的后侧,这样就形成可在前侧调节俯仰角度,后侧作为转动点的调节方案。
连接件150可为螺钉,第一调节板114开设有第二连接通孔154,第二连接通孔155呈阶梯状,连 接件150包括头部和柱部,头部包括凸出于柱部的凸缘。连接件150穿设第二连接通孔155,连接件150头部和柱部的一部分收容在第二连接通孔155的较大段,连接件150柱部的另一部分穿过第二连接通孔155的较小段并与第一调节板114连接。连接件150头部与第二连接通孔155的较大段的底面之间收容有第二弹性件156,这样可实现基板122与第一调节板114的弹性连接。
为使第一调节板114的俯仰角度更顺畅,第三配合件152包括呈圆弧形的第三配合面158,第四配合件154包括呈圆弧形的第四配合面160,第三配合面158和第四配合面160可转动地连接。
在某些实施方式中,请参图39,二级调节结构106包括固定组件162,固定组件162用于固定第一调节板114。如此,在对第一调节板114调节完成后,可采用固定组件160对第一调节板114的位置进行固定,保证了第一平面108与预设轴线满足第一预设位置关系。
具体地,固定组件162包括固定板164和固定件166,固定板164呈L型,固定板164的一侧板连接基板122的上表面,另一侧板连接第一调节板114的侧面。固定件166将固定板164与第一调节板114和基板122固定连接。固定件166可采用螺钉。
在图39中,第一调节板114的左右两侧均设有固定组件162。这样保证了第一调节板114的稳固。
在某些实施方式中,一级调节结构104包括第二调节板168和多个第二调节件170,承载模块102包括设在第二调节板168上的基座172,多个第二调节件170间隔设置并可活动地连接基座172和第二调节板168,第二调节件170用于在活动时调节第二调节板168以使反应装置200的表面202与第一平面108满足第二预设位置关系。如此,通过多点调节实现反应装置200的平面202与第一平面108满足第二预设位置关系。
具体地,载物模块100包括可移动平台174,可移动平台174设在第一调节板114上,一级调节结构104设在可移动平台172上,可移动平台174能够带动一级调节结构104和反应装置200在垂直于镜头光轴OP的方向上移动。
在本实施方式中,请结合图46至图48,第二调节件170包括两个调节螺钉176、第三弹性件和配合组件。调节螺钉176和第三弹性件实现第二调节板168和基座172的弹性连接方式可参上述基板122与第一调节板114的弹性连接方式,配合组件实现基座172更顺畅调节方式可参上述第一调节板114的更顺畅调节方式。两个调节螺钉176位于配合组件的外侧。调节螺钉176连接第二调节板168和基座172,通过调节螺钉176调节第二调节板168与基座172的距离。具体地,对于每个第二调节件170来说,通过两个调节螺钉176的旋进和旋出来调节第二调节板168与基座172的距离,这样通过多个第二调节件170的调节,可实现反应装置200的平面202与第一平面108满足第二预设位置关系。
在图48的示例中,第二调节170的数量是三个,三个第二调节件170呈等腰三角形分布。
具体地,请结合10,两个第二调节件170分别分布在第二调节板168的左侧和右侧更靠载物模块100前侧的位置,另一个第二调节件170分布在第二调节板的后侧。这两个第二调节件170的连接线为等腰三角形的底边,这两个第二调节件170与另一个第二调节件170的两个连接线为等腰三角形的两个腰。
在某些实施方式中,基座172上设有用于容置反应装置200的容置槽178,容置槽178设有用于定位反应装置200的定位结构180。如此,通过在容置槽178分别设置定位结构180,使得反应装置200容置在容置槽178时,定位结构180能够较好地对反应装置200进行预定位,保证流路的建立。
具体地,定位结构180包括三个定位柱182,三个定位柱182分布在容置槽178相邻接的两侧。如此,可实现对反应装置200的三点定位。
在图48中,容置槽178的平面形状基本呈方形,两个定位柱182位于容置槽178的上侧,一个定位柱182位于容置槽178的右侧。两个定位柱182可沿平行于反应装置200通道的方向设置。定位柱182可为定位销。
另外,承载模块102包括位于左侧和下侧连接处的侧推机构184,侧推机构184可伸缩地设置在容 置槽178,并用于保证反应装置200紧贴定位结构180。
如此,侧推机构184可与反应装置200的腰孔配合,避免在反应装置200容置在容置槽178内过约束,同时,通过侧推机构184保证反应装置200紧贴定位结构180,实现定位和固定。
侧推机构184包括侧推件186和第四弹性件(图未示),第四弹性件设置在基座172内,侧推件186连接第四弹性件并部分地凸出在容置槽178内,以使得反应装置200容置在容置槽178内时,第四弹性件通过侧推件186能够向反应装置200施加弹力,使反应装置200紧贴上侧和右侧的定位柱182。
另外,测序***300包括用于存放试剂的试剂盒188,从试剂盒188流出的液体流动方向设置有旋转阀、三通阀、承载模块102和动力装置。承载模块102里容置有反应装置200,反应装置200的通道接入测序***300的流路中。通过旋转阀可将不同的试剂经三通阀引入流路中以在反应装置200的通道内进行不同的反应,包括但不限于延伸、切除、加帽、成像、清洗等。
动力装置可采用泵为流路中的液体提供动力。请结合图40,载物模块100通过4个支撑脚192安装在测序***300。在其它实施例中,测序***300可省略三通阀,旋转阀可将不同的试剂直接引入到反应装置200的通道。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“实施例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读存储介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,“计算机可读存储介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。
此外,在本申请各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (35)

  1. 一种减振结构,用于检测***中,其特征在于,所述减振结构包括本体和支撑体,所述本体通过所述支撑体与所述检测***连接,所述本体包括成像模块、上层结构、下层结构和中间结构,所述成像模块安装在所述上层结构上,所述下层结构通过所述中间结构承载所述上层结构,所述本体的固有频率大于或等于
    Figure PCTCN2020101908-appb-100001
    倍内部激励频率。
  2. 根据权利要求1所述的减振结构,其特征在于,所述本体包括载物模块,所述载物模块用于承载和移动反应装置,所述载物模块安装在所述下层结构上,所述反应装置可拆卸地安装在所述载物模块上。
  3. 根据权利要求1所述的减振结构,其特征在于,所述中间结构包括第一连接件和第二连接件,所述上层结构和所述下层结构均具有左侧和右侧,所述第一连接件和第二连接件分别为板状结构和柱状结构,
    所述第一连接件和所述第二连接件中的一个连接所述下层结构的左侧和所述上层结构的左侧,另一个连接所述下层结构的右侧和所述上层结构的右侧。
  4. 根据权利要求1所述的减振结构,其特征在于,所述中间结构包括第一连接件和第二连接件,所述上层结构和所述下层结构均具有左侧和右侧,所述第一连接件和第二连接件均为板状结构,
    所述第一连接件和所述第二连接件中的一个连接所述下层结构的左侧和所述上层结构的左侧,另一个连接所述下层结构的右侧和所述上层结构的右侧。
  5. 根据权利要求4所述的减振结构,其特征在于,所述中间结构包括第三连接件,所述第三连接件为板状结构,所述上层结构和所述下层结构均具有后侧,所述第三连接件连接所述下层结构的后侧和所述上层结构的后侧。
  6. 根据权利要求5所述的减振结构,其特征在于,所述第一连接件、所述第二连接件和所述第三连接件各自为一个一体化结构的一部分。
  7. 根据权利要求4或5所述的减振结构,其特征在于,所述本体具有中心线,所述第一连接件和所述第二连接件沿所述中心线对称设置。
  8. 根据权利要求4或5或7所述的减振结构,其特征在于,所述减振结构包括加强件,所述加强件能够增强所述本体的强度,所述加强件连接所述第一连接件和所述下层结构,和/或所述加强件连接所述第一连接件和所述第二连接件。
  9. 根据权利要求8所述的减振结构,其特征在于,所述加强件连接所述第一连接件的外侧和所述下层结构的上侧。
  10. 根据权利要求8所述的减振结构,其特征在于,所述加强件连接所述第一连接件的内侧、所述上层结构的下侧和所述第二连接件的内侧。
  11. 根据权利要求1所述的减振结构,其特征在于,所述支撑体包括减振件和支撑脚,所述检测***包括基板,所述本体安装在所述减振件上,所述减振件通过所述支撑脚安装在所述基板上。
  12. 根据权利要求11所述的减振结构,其特征在于,所述减振件的主轴平行于所述成像模块的光轴。
  13. 根据权利要求11或12所述的减振结构,其特征在于,所述减振件为防振凝胶座。
  14. 根据权利要求1所述的减振结构,其特征在于,所述上层结构包括上层板,所述下层结构包括下层板,所述下层板采用的材料的密度和/或所述中间结构采用的材料的密度比所述上层板采用的材料的密度大。
  15. 根据权利要求14所述的减振结构,其特征在于,所述下层板较所述上层板重。
  16. 根据权利要求14所述的减振结构,其特征在于,所述上层板采用的材料包括铝合金,所述下层板和/或所述中间结构采用的材料包括钢材。
  17. 根据权利要求1所述的减振结构,其特征在于,所述减振结构的固有频率不等于外部激励频率。
  18. 一种检测***,其特征在于,包括权利要求1-17任一项所述的减振结构。
  19. 一种测序***,其特征在于,包括权利要求1-17任一项所述的减振结构。
  20. 根据权利要求19所述的测序***,其特征在于,所述成像模块包括第一光源、第一透镜和分光模块,所述分光模块包括第一分光器、第二透镜、第一相机和第二相机,
    所述第一透镜用于接收来自所述第一光源的第一光束并使该第一光束准直后入射至样品上,以及用于接收来自所述样品的光束并使该光束准直,
    所述第二透镜用于使来自所述第一透镜的准直光束会聚,
    所述第一分光器用于将来自所述第二透镜的会聚光束分为第二光束和第三光束,
    所述第一相机用于接收所述第二光束,
    所述第二相机用于接收所述第三光束。
  21. 根据权利要求20所述的测序***,其特征在于,所述第一光源包括第一发光器和第三透镜,所述成像模块包括第四透镜,所述第一光束为所述第一发光器发出的光束经过所述第三透镜后的准直光束,所述第一光束经过所述第四透镜聚焦到所述第一透镜的后焦面、进而经过所述第一透镜准直后入射至所述样品上。
  22. 根据权利要求20所述的测序***,其特征在于,所述成像模块包括第二分光器,所述第二分光器用于接收来自所述第一光源的所述第一光束并使该第一光束转向至所述第一透镜。
  23. 根据权利要求20或22所述的测序***,其特征在于,所述成像模块包括第三分光器和自动对焦模块,
    所述自动对焦模块用于发出第四光束,以及用于接收被所述样品反射回的第四光束,
    所述第三分光器用于接收所述第四光束并使该第四光束转向至所述第一透镜,还用于接收所述被样品反射回的第四光束并使该第四光束转向至所述自动对焦模块。
  24. 根据权利要求23所述的测序***,其特征在于,所述自动对焦模块包括第二光源和接收器,所述第二光源用于发射所述第四光束至所述第三分光器,所述接收器用于接收所述被样品反射回的第四光束。
  25. 根据权利要求23或24所述的测序***,其特征在于,所述第四光束经过所述第一透镜会聚到所述样品上;
    所述被样品反射回的第四光束经过所述第一透镜准直后入射至所述第三分光器。
  26. 根据权利要求24所述的测序***,其特征在于,所述第二光源包括第二发光器和第五透镜,所述第四光束为所述第二发光器发出的光束经过所述第五透镜后的准直光束,所述被样品反射回的第四光束经所述第五透镜会聚至所述接收器。
  27. 根据权利要求20所述的测序***,其特征在于,所述第二光束为来自所述第二透镜的聚焦光束透射经过所述第一分光器的光束,所述成像模块包括补偿镜片,所述补偿镜片位于所述第一分光器和所述第一相机之间,所述补偿镜片用于补偿所述第二光束带来的像散。
  28. 根据权利要求27所述的测序***,其特征在于,所述补偿镜片与一平面的夹角成45度,所述第一分光器与所述平面垂直,所述平面由所述第二光束的光轴和所述第三光束的光轴共同限定。
  29. 根据权利要求19所述的测序***,其特征在于,所述本体包括载物模块,所述载物模块包括承载模块、一级调节结构和二级调节结构,所述承载模块设置在所述一级调节结构上,所述一级调节结构设置在所述二级调节结构上,所述承载模块用于承载所述反应装置,所述二级调节结构包括第一平面,所述二级调节结构用于调节以使所述第一平面与预设轴线满足第一预设位置关系,所述一级调节结构用于调节以使所述反应装置的表面与所述第一平面满足第二预设位置关系。
  30. 根据权利要求29所述的测序***,其特征在于,所述第一预设位置关系为垂直、或平行、或倾斜;和/或
    所述第二预设位置关系为垂直、或平行、或倾斜。
  31. 根据权利要求29所述的测序***,其特征在于,所述二级调节结构包括第一调节板、第一调节件和支撑件,所述第一调节板设有所述第一平面,所述支撑件设有斜面,所述第一调节板设于所述斜面上,所述第一调节件连接所述支撑件并用于带动所述支撑件移动以调节所述第一调节板在所述斜面上的位置。
  32. 根据权利要求31所述的测序***,其特征在于,所述二级调节结构包括基板,所述第一调节件和所述支撑件设置在所述基板,所述第一调节板位于所述基板上,所述第一调节件带动所述支撑件时调节所述第一平面相对于所述基板的俯仰角度。
  33. 根据权利要求29所述的测序***,其特征在于,所述二级调节结构包括连接件、第一配合件和第二配合件,所述连接件连接所述第一调节板和所述基板,所述第一配合件和所述第二配合可相对转动地连接并位于所述第一调节板和所述基板之间,所述第一配合件设在所述第一调节板,所述第二配合件设在所述基板。
  34. 根据权利要求29所述的测序***,其特征在于,所述一级调节结构包括第二调节板和多个第二调节件,所述承载模块包括设在所述第二调节板上的基座,所述多个第二调节件间隔设置并可活动地连接所述基座和所述第二调节板,所述第二调节件用于在活动时调节所述第二调节板以使所述反应装置的表面与所述第一平面满足所述第二预设位置关系。
  35. 根据权利要求34所述的测序***,其特征在于,所述基座上设有用于容置所述反应装置的容置槽,所述容置槽设有用于定位所述反应装置的定位结构。
PCT/CN2020/101908 2019-09-24 2020-07-14 减振结构、检测***和测序*** WO2021057200A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/763,164 US20220373780A1 (en) 2019-09-24 2020-07-14 Vibration dampening structure, detection system and sequencing system
CN202080005509.9A CN112955534B (zh) 2019-09-24 2020-07-14 减振结构、检测***和测序***
EP20868405.0A EP4036205A4 (en) 2019-09-24 2020-07-14 VIBRATION DAMPING STRUCTURE, DETECTION SYSTEM AND SEQUENCING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910907555.7 2019-09-24
CN201910907555 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021057200A1 true WO2021057200A1 (zh) 2021-04-01

Family

ID=75166386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101908 WO2021057200A1 (zh) 2019-09-24 2020-07-14 减振结构、检测***和测序***

Country Status (4)

Country Link
US (1) US20220373780A1 (zh)
EP (1) EP4036205A4 (zh)
CN (2) CN112955534B (zh)
WO (1) WO2021057200A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113779693A (zh) * 2021-08-23 2021-12-10 同济大学 一种电驱动总成双层隔振***优化方法
EP3896146A4 (en) * 2018-12-12 2022-01-19 GeneMind Biosciences Company Limited OPTICAL SYSTEM, METHOD OF CALIBRATION OF AN OPTICAL SYSTEM AND SEQUENCING SYSTEM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024118641A1 (en) * 2022-11-29 2024-06-06 Element Biosciences, Inc. Flow cell devices and optical systems for nucleic acid sequencing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970876A (zh) * 2008-05-06 2011-02-09 科尔摩根公司 包含荧光显微镜的基因测序仪
CN204356321U (zh) * 2014-12-16 2015-05-27 深圳华大基因研究院 用于基因测序仪的支撑平台及光学***
CN205317635U (zh) * 2015-12-26 2016-06-15 嘉兴凯实生物科技有限公司 一种减震装置及流式荧光检测器
CN205368376U (zh) * 2016-02-03 2016-07-06 深圳华大基因研究院 基因测序仪光学***及其对焦***
US20160223461A1 (en) * 2011-01-14 2016-08-04 Lumencor, Inc. System and method for controlled intensity illumination in a bioanalysis or other system
CN109799595A (zh) * 2017-11-16 2019-05-24 长光华大基因测序设备(长春)有限公司 一种基因测序仪显微物镜的检调焦方法与装置
CN209052715U (zh) * 2018-07-19 2019-07-02 深圳华大智造科技有限公司 支撑平台、基因测序仪

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667743B1 (ko) * 2000-10-04 2007-01-12 삼성전자주식회사 마이크로 렌즈 일체형 표면광 레이저
US6871527B2 (en) * 2001-07-18 2005-03-29 The Regents Of The University Of California Measurement head for atomic force microscopy and other applications
WO2005096059A1 (ja) * 2004-03-31 2005-10-13 Olympus Corporation 観察装置および蛍光観察装置
JP5559010B2 (ja) * 2010-11-01 2014-07-23 株式会社日立ハイテクノロジーズ 遺伝子配列解析装置および遺伝子配列解析方法
US9428384B2 (en) * 2011-01-18 2016-08-30 Jizhong He Inspection instrument
CN106525856A (zh) * 2016-12-30 2017-03-22 深圳市研创精密设备有限公司 一种应用于电路板检测机的稳定检测机构
KR20190012950A (ko) * 2017-07-31 2019-02-11 창원대학교 산학협력단 진동 방지를 위한 검사 장치
CN109971629B (zh) * 2017-12-28 2022-07-22 长春长光华大智造测序设备有限公司 基因测序仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970876A (zh) * 2008-05-06 2011-02-09 科尔摩根公司 包含荧光显微镜的基因测序仪
US20160223461A1 (en) * 2011-01-14 2016-08-04 Lumencor, Inc. System and method for controlled intensity illumination in a bioanalysis or other system
CN204356321U (zh) * 2014-12-16 2015-05-27 深圳华大基因研究院 用于基因测序仪的支撑平台及光学***
CN205317635U (zh) * 2015-12-26 2016-06-15 嘉兴凯实生物科技有限公司 一种减震装置及流式荧光检测器
CN205368376U (zh) * 2016-02-03 2016-07-06 深圳华大基因研究院 基因测序仪光学***及其对焦***
CN109799595A (zh) * 2017-11-16 2019-05-24 长光华大基因测序设备(长春)有限公司 一种基因测序仪显微物镜的检调焦方法与装置
CN209052715U (zh) * 2018-07-19 2019-07-02 深圳华大智造科技有限公司 支撑平台、基因测序仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036205A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896146A4 (en) * 2018-12-12 2022-01-19 GeneMind Biosciences Company Limited OPTICAL SYSTEM, METHOD OF CALIBRATION OF AN OPTICAL SYSTEM AND SEQUENCING SYSTEM
US11874453B2 (en) 2018-12-12 2024-01-16 Genemind Biosciences Company Limited Optical system, method for calibrating optical system, and sequencing system
CN113779693A (zh) * 2021-08-23 2021-12-10 同济大学 一种电驱动总成双层隔振***优化方法
CN113779693B (zh) * 2021-08-23 2024-03-26 同济大学 一种电驱动总成双层隔振***优化方法

Also Published As

Publication number Publication date
EP4036205A4 (en) 2024-02-07
CN112955534A (zh) 2021-06-11
CN213068609U (zh) 2021-04-27
CN112955534B (zh) 2023-01-24
EP4036205A1 (en) 2022-08-03
US20220373780A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
WO2021057200A1 (zh) 减振结构、检测***和测序***
KR101409644B1 (ko) 입체 형상 계측 장치
US7355701B2 (en) Spectroscopy analysis apparatus
CN1967245B (zh) 显微镜及显微镜自动对焦方法
JP5982144B2 (ja) 落射照明画像用のエッジ位置測定値補正
EP2742338B1 (en) Method for presenting and evaluation of images of microtiter plate properties
US8680485B2 (en) Optical analysis method using the detection of a single light-emitting particle
US9863806B2 (en) Optical analysis method and optical analysis device using the detection of light from a single light-emitting particle
CN208351127U (zh) 成像***及用于成像***的镜筒透镜
US20130136311A1 (en) Three dimensional position observation method and apparatus
KR20110060041A (ko) 3차원 표면 형상 측정 장치 및 방법과 그 시스템
CN110352373A (zh) Tirf显微术的布置、显微镜和方法
WO2015107872A1 (en) Image acquisition apparatus and control method thereof
US10684221B2 (en) Light microscope and method for determining a wavelength-dependent refractive index of a sample medium
US9528923B2 (en) Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US20120215456A1 (en) System and method for cellular optical wavefront sensing
JP2012008415A (ja) 顕微鏡システム
JP2022543592A (ja) 光学イメージングパフォーマンス試験システムおよび方法
Temprine et al. Three-dimensional photoactivated localization microscopy with genetically expressed probes
JP2006275971A (ja) レンズメータ
CN217116267U (zh) 一种近眼成像设备的光学参数检测装置
JP2013174848A (ja) 照明光強度分布測定機能付き観察装置、観察装置の照明光強度分布測定方法及び観察装置の照明光照明方法
CN216209253U (zh) 一种扫描探针显微镜
JP2014002026A (ja) レンズ形状測定装置およびレンズ形状測定方法
CN107144383A (zh) 薄膜应力测试装置和薄膜应力测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020868405

Country of ref document: EP

Effective date: 20220425