WO2021057101A1 - 一种低负荷多维度智能睡眠监护筛查方法 - Google Patents

一种低负荷多维度智能睡眠监护筛查方法 Download PDF

Info

Publication number
WO2021057101A1
WO2021057101A1 PCT/CN2020/095725 CN2020095725W WO2021057101A1 WO 2021057101 A1 WO2021057101 A1 WO 2021057101A1 CN 2020095725 W CN2020095725 W CN 2020095725W WO 2021057101 A1 WO2021057101 A1 WO 2021057101A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
data
patient
chip
low
Prior art date
Application number
PCT/CN2020/095725
Other languages
English (en)
French (fr)
Inventor
张丹
魏建磊
霍瑞鹏
阎嵩
汤先保
Original Assignee
橙意家人科技(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 橙意家人科技(天津)有限公司 filed Critical 橙意家人科技(天津)有限公司
Publication of WO2021057101A1 publication Critical patent/WO2021057101A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters

Definitions

  • the invention relates to the field of biomedical technology, in particular to a low-load multi-dimensional intelligent sleep monitoring and screening method.
  • the traditional monitoring method still has many shortcomings: 1. It is necessary to wear a lot of sensors, which will often increase the sleep burden of the tested patient, increase the difficulty of falling asleep, and make the monitoring results bias; 2. It often needs to be carried out in the hospital, which increases the patient’s Time and cost costs. In addition, the hospital’s sleeping environment is inconsistent with the patient’s own environment, which will also cause sleep burdens for patients; 3. It is complicated to wear and requires professional doctors to operate; 4. Data export is complicated and report interpretation is obscure; 5. It is necessary to make an appointment for the hospital, which is expensive and cannot achieve long-term continuous monitoring.
  • the purpose of the present invention is to provide a low-load multi-dimensional intelligent sleep monitoring and screening method, which realizes a simple design through sensor separation, can simplify wearing, reduce the difficulty of operation, and the patient can measure independently, and at the same time reduce the patient's sleep burden. Collecting and analyzing multiple indicators of the human body while sleeping is convenient, fast, time-saving and labor-saving.
  • the data is uploaded to the cloud by connecting to a smart phone, and reports are calculated and generated for feedback to the patient, providing visual sleep quality evaluation, which has broad application prospects , Is conducive to popularization and application.
  • the present invention provides a low-load multi-dimensional intelligent sleep monitoring screening method, which is characterized in that it includes the following steps:
  • Monitoring indicators include reflection blood oxygen measurement, frontal temperature monitoring, sleeping posture monitoring, snoring monitoring and ECG monitoring;
  • the cloud server finishes processing the data and sends the report to the mobile phone
  • the mobile APP displays the content of the sleep report.
  • the reflective blood oxygen measurement includes the following steps:
  • S6 Record the calculation result in the memory chip, and repeat the above steps to continuously obtain the patient's blood oxygen, pulse rate and other data.
  • the forehead temperature monitoring includes the following steps:
  • S5 Store the calculation result in the memory chip, and repeat the above steps to obtain the patient's forehead temperature data every second.
  • the sleeping posture monitoring includes the following steps:
  • the snoring monitoring includes the following steps:
  • the ECG monitoring includes the following steps:
  • the low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention has the following beneficial effects.
  • the invention realizes a simple design through the separation of sensors, which can simplify wearing, reduce the difficulty of operation, and at the same time reduce the sleep burden of patients. Patients can measure independently, which is beneficial to reduce maintenance costs, and long-term continuous monitoring at home can be achieved through cost reduction. Collecting and analyzing multiple indicators of the human body while sleeping is convenient, fast, time-saving and labor-saving.
  • the data is uploaded to the cloud by connecting to a smart phone, and reports are calculated and generated for feedback to the patients, providing visual sleep quality evaluation, which has broad application prospects , Is conducive to popularization and application.
  • the reflection type blood oxygen measurement method of the present invention is different from the traditional photoelectric transmission blood oxygen measurement method.
  • the reflection blood oxygen measurement method is adopted.
  • the light emission and reception are on the same side and integrated in a chip, which reduces the structure design. At the same time, it avoids the shortcomings of blood vessel compression and hand restraint caused by the transmission type blood oxygen monitoring, and avoids the burden of sleep.
  • Figure 1 is an overall flow chart of a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention
  • FIG. 2 is a flow chart of reflective blood oxygen measurement in a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention
  • FIG. 3 is a flow chart of forehead temperature monitoring in a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention
  • FIG. 4 is a flowchart of sleeping posture monitoring in a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention
  • FIG. 5 is a flow chart of snoring monitoring in a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention
  • Fig. 6 is a flow chart of central electrical monitoring of a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention.
  • the low-load multi-dimensional intelligent sleep monitoring screening method includes the following steps:
  • Monitoring indicators include reflection blood oxygen measurement, frontal temperature monitoring, sleeping posture monitoring, snoring monitoring and ECG monitoring;
  • the cloud server finishes processing the data and sends the report to the mobile phone
  • the mobile APP displays the content of the sleep report.
  • FIG. 2 it is a flow chart of reflective blood oxygen measurement in a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention.
  • the reflection type blood oxygen measurement includes the following steps:
  • S6 Record the calculation result in the memory chip, and repeat the above steps to continuously obtain the patient's blood oxygen, pulse rate and other data.
  • FIG. 3 it is a flow chart of forehead temperature monitoring in a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention. Among them, forehead temperature monitoring includes the following steps:
  • S5 Store the calculation result in the memory chip, and repeat the above steps to obtain the patient's forehead temperature data every second.
  • sleeping posture monitoring includes the following steps:
  • FIG. 5 it is a flow chart of snoring monitoring in a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention. Among them, snoring monitoring includes the following steps:
  • FIG. 6 it is a flow chart of central electrical monitoring of a low-load multi-dimensional intelligent sleep monitoring and screening method provided by the present invention.
  • ECG monitoring includes the following steps:
  • the invention realizes a simple design through the separation of the sensor, can simplify the wearing, reduce the difficulty of operation, and at the same time reduce the sleep burden of the patient.
  • Patients can measure independently, which is beneficial to reduce maintenance costs, and long-term continuous monitoring at home can be achieved through cost reduction.
  • Collecting and analyzing multiple indicators of the human body while sleeping is convenient, fast, time-saving and labor-saving.
  • the data is uploaded to the cloud by connecting to a smart phone, and reports are calculated and generated for feedback to the patient, providing visual sleep quality evaluation, which has broad application prospects , Is conducive to popularization and application.
  • the reflection type blood oxygen measurement method of the present invention is different from the traditional photoelectric transmission blood oxygen measurement method. It adopts the reflection blood oxygen measurement method.
  • the light is emitted and received on the same side and integrated in a chip, which reduces the complexity of the structure design. At the same time, it avoids the shortcomings of blood vessel compression and hand restraint caused by the transmission type blood oxygen monitoring, and avoids the burden of sleep.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种低负荷多维度智能睡眠监护筛查方法,包括如下步骤:(1)将随机的电极片安装在头贴和胸贴两个传感器上并开机;(2)将头贴和胸贴两个传感器分别贴附于患者额头和胸部的指定部位;(3)启动监测,监测指标包括反射式血氧测量,额温监测,睡姿监测,鼾声监测和心电监测;(4)监测结束后打开手机APP同步数据至云端;(5)云端服务器处理完数据,将报告发送至手机;(6)手机APP显示睡眠报告内容。通过传感器分离实现简约设计,可简化佩戴,降低操作难度,患者可自主进行测量,同时减轻患者的睡眠负担,在睡眠的同时对人体多项指标进行采集和分析,方便快捷,省时省力,通过连接智能手机将数据上传至云端,计算并生成报告反馈给患者,提供可视化睡眠质量评判。

Description

一种低负荷多维度智能睡眠监护筛查方法 技术领域
本发明涉及生物医疗技术领域,尤其涉及一种低负荷多维度智能睡眠监护筛查方法。
背景技术
随着人们保健意识的提高,睡眠质量越来越被人们关注,睡眠质量差会造成反复觉醒,血氧饱和度指数下降,长此以往会对身体脏器功能产生影响,诱发高血压,心律失常,心肌梗塞等疾病。现有的睡眠监护筛查方法一般是采用多导睡眠仪进行,传统的多导睡眠仪往往采用十几甚至二十多个电极,胸腹带等传感器对脑电,心电,血氧,口鼻气流,温度等多个参数进行整晚采集。
但是,传统的监测方法仍存在诸多缺陷:1、需要佩戴许多传感器,往往会增加被测患者睡眠负担,加大入睡难度,使监测结果出现偏差;2、往往需要在医院进行,增加了患者的时间和费用成本,另外医院的睡眠环境和患者自有的环境不一致,也会对患者造成睡眠负担;3、佩戴复杂,需要专业的医师进行操作;4、数据导出复杂,报告解读晦涩;5、需要预约医院,费用昂贵,不能实现长期连续地监测。造成上述问题的原因是多导睡眠仪需要采集多维度的数据进行综合评判,依附于繁多传感器,使得不论是佩戴使用还是后期分析极为复杂,需要专业医护人员,增加了使用和维护的成本。因此,急需开发一种新型的低负荷多维度智能睡眠监护筛查方法以解决上述技术问题。
有鉴于此,特提出本发明。
发明内容
本发明的目的是提供一种低负荷多维度智能睡眠监护筛查方法,通过传感器分离实现简约设计,可简化佩戴,降低操作难度,患者可自主进行测量,同时减轻患者的睡眠负担。在睡眠的同时对人体多项指标进行采集和分析,方便快捷,省时省力,通过连接智能手机将数据上传至云端,计算并生成报告反馈给患者,提供可视化睡眠质量评判,具有广阔的应用前景,有利于推广应用。
为了实现上述目的,本发明提供的一种低负荷多维度智能睡眠监护筛查方法,其特征在于,包括如下步骤:
(1)将随机的电极片安装在头贴和胸贴两个传感器上并开机;
(2)将头贴和胸贴两个传感器分别贴附于患者额头和胸部的指定部位;
(3)启动监测,监测指标包括反射式血氧测量,额温监测,睡姿监测,鼾声监测和心电监测;
(4)监测结束后打开手机APP同步数据至云端;
(5)云端服务器处理完数据,将报告发送至手机;
(6)手机APP显示睡眠报告内容。
优选地,在步骤(3)中,所述反射式血氧测量包括如下步骤:
S1:设备启动后,血氧芯片MAX86150会在IIC通讯的控制下进行初始化;
S2:完成初始化之后,开始通过MAX86150对红光和红外透射反射光进行200Hz的采样;
S3:数据采样完成后,对采样数据进行判断,如果此时用户已经正确佩戴,则对AD采样数据通过低通滤波器进行滤波处理,然后将滤波后的数据归一化处理,从而去除原始采样数据中的噪声和大范围的波动;
S4:滤波后对于平整的数据进行波峰查找,根据查找的波峰位置计算出脉率,并根据红光和红外透射反射光的吸收率计算出血氧;
S5:通过九点平均的方法对血氧和脉率进行平均得到最终结果;
S6:将计算结果记录在存储芯片中,重复上述步骤可连续获得患者的血氧、脉率等数据。
优选地,在步骤(3)中,所述额温监测包括如下步骤:
S1:设备启动后,通过单线通讯协议对CT1711温度传感器进行初始化;
S2:初始化完成后,等待CT1711温度转化完成,然后读取额温数字信号;
S3:通过判断数字信号,剔除其中错误的转换结果,从而得到正确的额温;
S4:将得到的额温数值进行五点平均后,得到最终的计算结果;
S5:将计算结果存储在存储芯片中,重复上述步骤可逐秒得到患者的额温数据。
优选地,在步骤(3)中,所述睡姿监测包括如下步骤:
S1:设备启动后,通过IIC协议自动初始化BMA253加速度计芯片;
S2:BMA253初始化之后,定时读取该芯片的固定寄存器得到XYZ三个方 向的数值,根据各个方向数值大小的比较可以得到芯片所处的姿态,然后推导出佩戴患者的睡姿情况;
S3:得到患者的睡姿后,逐秒将结果记录在存储芯片中,重复上述步骤可逐秒得到患者的睡姿参数。
优选地,在步骤(3)中,所述鼾声监测包括如下步骤:
S1:设备启动后,会自动初始化硅麦芯片SPK0838HT4H;
S2:然后通过PDM_PCM对声音进行定时采样,并将1s内通过硅麦芯片得到的声音采样数值进行累加;
S3:当累加周期达到1s后,对得到结果进行缩放归一化到0-255范围内;
S4:得到声音强度后,将计算结果存储在存储芯片中,重复上述步骤可逐秒得到声强参数。
优选地,在步骤(3)中,所述心电监测包括如下步骤:
S1:设备启动后,会自动通过SPI通讯初始化心电芯片ADS1292R;
S2:完成初始化后,心电芯片会连续输出心电I通道的采样数值;
S3:得到采样数值后,将采样通过低通数字滤波器处理,滤除杂波和市电干扰,得到规整的心电波形信号;
S4:通过程序阈值检测后检索出QRS波的R点位置,标记此处峰值R1点的位置,重复上述步骤可得到峰值R2点的位置;
S5:通过做差得到R-R间期,并计算出心率;
S6:完成计算后将心率和RR间期存储在存储芯片中,重复上述步骤可连续得到心率和RR间期参数。
本发明提供的一种低负荷多维度智能睡眠监护筛查方法,具有如下有益效果。
1.本发明通过传感器分离实现简约设计,可简化佩戴,降低操作难度,同时减轻患者的睡眠负担。患者可自主进行测量,有利于降低维护成本,通过成本的降低可实现在家长期连续地监测。在睡眠的同时对人体多项指标进行采集和分析,方便快捷,省时省力,通过连接智能手机将数据上传至云端,计算并生成报告反馈给患者,提供可视化睡眠质量评判,具有广阔的应用前景,有利于推广应用。
2.本发明的反射式血氧测量方法有别于传统的光电透射血氧测量方法,采用反射血氧测量法,光的发射和接收在同一侧,并集成在一块芯片中,降低了结构设计的复杂度,同时避免了透射式血氧监测带来的压迫血管,束缚手部等缺点,避免造成睡眠负担。
附图说明
图1为本发明提供的一种低负荷多维度智能睡眠监护筛查方法的整体流程图;
图2为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中反射式血氧测量的流程图;
图3为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中额温监测的流程图;
图4为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中睡姿监测的流程图;
图5为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中鼾声监测的流程图;
图6为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中心电监测的流程图。
具体实施方式
下面结合具体实施例和附图对本发明做进一步说明,以助于理解本发明的内容。
如图1所示,为本发明提供的一种低负荷多维度智能睡眠监护筛查方法的整体流程图。该低负荷多维度智能睡眠监护筛查方法包括如下步骤:
(1)将随机的电极片安装在头贴和胸贴两个传感器上并开机;
(2)将头贴和胸贴两个传感器分别贴附于患者额头和胸部的指定部位;
(3)启动监测,监测指标包括反射式血氧测量,额温监测,睡姿监测,鼾声监测和心电监测;
(4)监测结束后打开手机APP同步数据至云端;
(5)云端服务器处理完数据,将报告发送至手机;
(6)手机APP显示睡眠报告内容。
如图2所示,为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中反射式血氧测量的流程图。其中,反射式血氧测量包括如下步骤:
S1:设备启动后,血氧芯片MAX86150会在IIC通讯的控制下进行初始化;
S2:完成初始化之后,开始通过MAX86150对红光和红外透射反射光进行200Hz的采样;
S3:数据采样完成后,对采样数据进行判断,如果此时用户已经正确佩戴,则对AD采样数据通过低通滤波器进行滤波处理,然后将滤波后的数据归一化处理,从而去除原始采样数据中的噪声和大范围的波动;
S4:滤波后对于平整的数据进行波峰查找,根据查找的波峰位置计算出脉率,并根据红光和红外透射反射光的吸收率计算出血氧;
S5:通过九点平均的方法对血氧和脉率进行平均得到最终结果;
S6:将计算结果记录在存储芯片中,重复上述步骤可连续获得患者的血氧、脉率等数据。
如图3所示,为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中额温监测的流程图。其中,额温监测包括如下步骤:
S1:设备启动后,通过单线通讯协议对CT1711温度传感器进行初始化;
S2:初始化完成后,等待CT1711温度转化完成,然后读取额温数字信号;
S3:通过判断数字信号,剔除其中错误的转换结果,从而得到正确的额温;
S4:将得到的额温数值进行五点平均后,得到最终的计算结果;
S5:将计算结果存储在存储芯片中,重复上述步骤可逐秒得到患者的额温数据。
如图4所示,为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中睡姿监测的流程图。其中,睡姿监测包括如下步骤:
S1:设备启动后,通过IIC协议自动初始化BMA253加速度计芯片;
S2:BMA253初始化之后,定时读取该芯片的固定寄存器得到XYZ三个方向的数值,根据各个方向数值大小的比较可以得到芯片所处的姿态,然后推导出佩戴患者的睡姿情况;
S3:得到患者的睡姿后,逐秒将结果记录在存储芯片中,重复上述步骤可逐秒得到患者的睡姿参数。
如图5所示,为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中鼾声监测的流程图。其中,鼾声监测包括如下步骤:
S1:设备启动后,会自动初始化硅麦芯片SPK0838HT4H;
S2:然后通过PDM_PCM对声音进行定时采样,并将1s内通过硅麦芯片得到的声音采样数值进行累加;
S3:当累加周期达到1s后,对得到结果进行缩放归一化到0-255范围内;
S4:得到声音强度后,将计算结果存储在存储芯片中,重复上述步骤可逐秒得到声强参数。
如图6所示,为本发明提供的一种低负荷多维度智能睡眠监护筛查方法中心电监测的流程图。其中,心电监测包括如下步骤:
S1:设备启动后,会自动通过SPI通讯初始化心电芯片ADS1292R;
S2:完成初始化后,心电芯片会连续输出心电I通道的采样数值;
S3:得到采样数值后,将采样通过低通数字滤波器处理,滤除杂波和市电干扰,得到规整的心电波形信号;
S4:通过程序阈值检测后检索出QRS波的R点位置,标记此处峰值R1点的位置,重复上述步骤可得到峰值R2点的位置;
S5:通过做差得到R-R间期,并计算出心率;
S6:完成计算后将心率和RR间期存储在存储芯片中,重复上述步骤可连续得到心率和RR间期参数。
本发明通过传感器分离实现简约设计,可简化佩戴,降低操作难度,同时减轻患者的睡眠负担。患者可自主进行测量,有利于降低维护成本,通过成本的降低可实现在家长期连续地监测。在睡眠的同时对人体多项指标进行采集和分析,方便快捷,省时省力,通过连接智能手机将数据上传至云端,计算并生成报告反馈给患者,提供可视化睡眠质量评判,具有广阔的应用前景,有利于推广应用。本发明的反射式血氧测量方法有别于传统的光电透射血氧测量方法,采用反射血氧测量法,光的发射和接收在同一侧,并集成在一块芯片中,降低了结构设计的复杂度,同时避免了透射式血氧监测带来的压迫血管,束缚手部等缺点,避免造成睡眠负担。
本文中应用了具体个例对发明构思进行了详细阐述,以上实施例的说明只是 用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离该发明构思的前提下,所做的任何显而易见的修改、等同替换或其他改进,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种低负荷多维度智能睡眠监护筛查方法,其特征在于,包括如下步骤:
    (1)将随机的电极片安装在头贴和胸贴两个传感器上并开机;
    (2)将头贴和胸贴两个传感器分别贴附于患者额头和胸部的指定部位;
    (3)启动监测,监测指标包括反射式血氧测量,额温监测,睡姿监测,鼾声监测和心电监测;
    (4)监测结束后打开手机APP同步数据至云端;
    (5)云端服务器处理完数据,将报告发送至手机;
    (6)手机APP显示睡眠报告内容。
  2. 根据权利要求1所述的一种低负荷多维度智能睡眠监护筛查方法,其特征在于,在步骤(3)中,所述反射式血氧测量包括如下步骤:
    S1:设备启动后,血氧芯片MAX86150会在IIC通讯的控制下进行初始化;
    S2:完成初始化之后,开始通过MAX86150对红光和红外透射反射光进行200Hz的采样;
    S3:数据采样完成后,对采样数据进行判断,如果此时用户已经正确佩戴,则对AD采样数据通过低通滤波器进行滤波处理,然后将滤波后的数据归一化处理,从而去除原始采样数据中的噪声和大范围的波动;
    S4:滤波后对于平整的数据进行波峰查找,根据查找的波峰位置计算出脉率,并根据红光和红外透射反射光的吸收率计算出血氧;
    S5:通过九点平均的方法对血氧和脉率进行平均得到最终结果;
    S6:将计算结果记录在存储芯片中,重复上述步骤可连续获得患者的血氧、脉率等数据。
  3. 根据权利要求2所述的一种低负荷多维度智能睡眠监护筛查方法,其特征在于,在步骤(3)中,所述额温监测包括如下步骤:
    S1:设备启动后,通过单线通讯协议对CT1711温度传感器进行初始化;
    S2:初始化完成后,等待CT1711温度转化完成,然后读取额温数字信号;
    S3:通过判断数字信号,剔除其中错误的转换结果,从而得到正确的额温;
    S4:将得到的额温数值进行五点平均后,得到最终的计算结果;
    S5:将计算结果存储在存储芯片中,重复上述步骤可逐秒得到患者的额温数据。
  4. 根据权利要求3所述的一种低负荷多维度智能睡眠监护筛查方法,其特征在于,在步骤(3)中,所述睡姿监测包括如下步骤:
    S1:设备启动后,通过IIC协议自动初始化BMA253加速度计芯片;
    S2:BMA253初始化之后,定时读取该芯片的固定寄存器得到XYZ三个方向的数值,根据各个方向数值大小的比较可以得到芯片所处的姿态,然后推导出佩戴患者的睡姿情况;
    S3:得到患者的睡姿后,逐秒将结果记录在存储芯片中,重复上述步骤可逐秒得到患者的睡姿参数。
  5. 根据权利要求4所述的一种低负荷多维度智能睡眠监护筛查方法,其特征在于,在步骤(3)中,所述鼾声监测包括如下步骤:
    S1:设备启动后,会自动初始化硅麦芯片SPK0838HT4H;
    S2:然后通过PDM_PCM对声音进行定时采样,并将1s内通过硅麦芯片得到的声音采样数值进行累加;
    S3:当累加周期达到1s后,对得到结果进行缩放归一化到0-255范围内;
    S4:得到声音强度后,将计算结果存储在存储芯片中,重复上述步骤可逐秒得到声强参数。
  6. 根据权利要求5所述的一种低负荷多维度智能睡眠监护筛查方法,其特征在于,在步骤(3)中,所述心电监测包括如下步骤:
    S1:设备启动后,会自动通过SPI通讯初始化心电芯片ADS1292R;
    S2:完成初始化后,心电芯片会连续输出心电I通道的采样数值;
    S3:得到采样数值后,将采样通过低通数字滤波器处理,滤除杂波和市电干扰,得到规整的心电波形信号;
    S4:通过程序阈值检测后检索出QRS波的R点位置,标记此处峰值R1点的位置,重复上述步骤可得到峰值R2点的位置;
    S5:通过做差得到R-R间期,并计算出心率;
    S6:完成计算后将心率和RR间期存储在存储芯片中,重复上述步骤可连续得到心率和RR间期参数。
PCT/CN2020/095725 2019-09-25 2020-06-12 一种低负荷多维度智能睡眠监护筛查方法 WO2021057101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910916186.8 2019-09-25
CN201910916186.8A CN110680339A (zh) 2019-09-25 2019-09-25 一种低负荷多维度智能睡眠监护筛查方法

Publications (1)

Publication Number Publication Date
WO2021057101A1 true WO2021057101A1 (zh) 2021-04-01

Family

ID=69110345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095725 WO2021057101A1 (zh) 2019-09-25 2020-06-12 一种低负荷多维度智能睡眠监护筛查方法

Country Status (2)

Country Link
CN (1) CN110680339A (zh)
WO (1) WO2021057101A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110680339A (zh) * 2019-09-25 2020-01-14 橙意家人科技(天津)有限公司 一种低负荷多维度智能睡眠监护筛查方法
CN111665754A (zh) * 2020-06-02 2020-09-15 方应龙 一种智能床的控制装置及实现方法
CN113208563A (zh) * 2021-04-28 2021-08-06 西安领跑网络传媒科技股份有限公司 睡眠监测方法、装置、***、计算机设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232825A (zh) * 2010-05-05 2011-11-09 陈澎 基于紫蜂的多功能睡眠护理和监测装置
CN203693592U (zh) * 2014-02-13 2014-07-09 重庆海睿科技有限公司 一种基于智能终端的心电信号采集线
CN106343973A (zh) * 2016-08-23 2017-01-25 中国农业大学 一种人体体征检测装置
US9636066B2 (en) * 2015-05-21 2017-05-02 Umm Al-Qura University Headband monitoring system
US20180049690A1 (en) * 2016-08-19 2018-02-22 Matthew Walker Sleep tracking systems, methods, and devices
CN108030479A (zh) * 2018-02-01 2018-05-15 深圳市禹欣鑫电子有限公司 脑电波智能医疗健康器
CN110251094A (zh) * 2019-05-14 2019-09-20 周常安 指戴式生理检测装置
CN110680339A (zh) * 2019-09-25 2020-01-14 橙意家人科技(天津)有限公司 一种低负荷多维度智能睡眠监护筛查方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103892796A (zh) * 2012-12-30 2014-07-02 青岛海尔软件有限公司 腕带式睡眠监测***
KR20170028247A (ko) * 2015-09-03 2017-03-13 삼성전자주식회사 수면 관리 방법
CN106510663B (zh) * 2016-11-28 2019-07-26 宝贝部落(上海)家具用品有限公司 一种基于物联网的睡眠监控方法
CN108309233B (zh) * 2017-12-21 2020-07-10 速眠创新科技(深圳)有限公司 睡眠质量监测方法、***、计算机设备和存储介质
CN110251095A (zh) * 2019-05-14 2019-09-20 周常安 指戴式生理装置及***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232825A (zh) * 2010-05-05 2011-11-09 陈澎 基于紫蜂的多功能睡眠护理和监测装置
CN203693592U (zh) * 2014-02-13 2014-07-09 重庆海睿科技有限公司 一种基于智能终端的心电信号采集线
US9636066B2 (en) * 2015-05-21 2017-05-02 Umm Al-Qura University Headband monitoring system
US20180049690A1 (en) * 2016-08-19 2018-02-22 Matthew Walker Sleep tracking systems, methods, and devices
CN106343973A (zh) * 2016-08-23 2017-01-25 中国农业大学 一种人体体征检测装置
CN108030479A (zh) * 2018-02-01 2018-05-15 深圳市禹欣鑫电子有限公司 脑电波智能医疗健康器
CN110251094A (zh) * 2019-05-14 2019-09-20 周常安 指戴式生理检测装置
CN110680339A (zh) * 2019-09-25 2020-01-14 橙意家人科技(天津)有限公司 一种低负荷多维度智能睡眠监护筛查方法

Also Published As

Publication number Publication date
CN110680339A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2021057101A1 (zh) 一种低负荷多维度智能睡眠监护筛查方法
CN105877723B (zh) 无创连续血压测量装置
CN109157202B (zh) 一种基于多生理信号深度融合的心血管疾病预警***
US20190336068A1 (en) Systems and methods for determining sleep patterns and circadian rhythms
JP5844389B2 (ja) 耳装着型の複数バイタルサインのモニタ
CN106937808A (zh) 一种智能床垫的数据采集***
CN106175695B (zh) 一种睡眠呼吸暂停综合征的检测***
CN105796124B (zh) 基于物联网的移动心音听诊***及其方法
CN201227272Y (zh) 基于Zigbee的穿戴式心电和呼吸率监护仪
WO2016168979A1 (zh) 一种生命体征分析方法与***
CN106974629A (zh) 动态心血管活动监测方法及使用该方法的***
CN109222946A (zh) 基于光纤垫的生理参数检测***及检测方法
CN109288515A (zh) 基于穿戴式心电信号中早搏信号的周期性监测方法及装置
Xu et al. Implementation of cuff-less continuous blood pressure measurement system based on Android
CN205866733U (zh) 无创连续血压测量装置
CN201394012Y (zh) 穿戴式心电电极远程监护装置
CN109009019A (zh) 多参数生理检测仪
CN107898447A (zh) 一种穿戴式智能体征监控装置及监控***
CN212165772U (zh) 一种血压测量装置
CN213345606U (zh) 一种多功能手持观测仪
CN211834381U (zh) 一种基于生物阻抗的睡眠呼吸状态信号采集与检测装置
CN113476024A (zh) 一种病区医学信号连续动态监测***
CN202699126U (zh) 一种网络化十二导联心电图检测装置
CN202143625U (zh) 基于usb的便携式多参数采集器
CN208511021U (zh) 基于振幅整合脑电图的睡眠监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870203

Country of ref document: EP

Kind code of ref document: A1