WO2021056913A1 - 基于i2c通讯的故障定位方法、装置及*** - Google Patents

基于i2c通讯的故障定位方法、装置及*** Download PDF

Info

Publication number
WO2021056913A1
WO2021056913A1 PCT/CN2019/130019 CN2019130019W WO2021056913A1 WO 2021056913 A1 WO2021056913 A1 WO 2021056913A1 CN 2019130019 W CN2019130019 W CN 2019130019W WO 2021056913 A1 WO2021056913 A1 WO 2021056913A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
communication
data information
module
processor
Prior art date
Application number
PCT/CN2019/130019
Other languages
English (en)
French (fr)
Inventor
闫家乐
Original Assignee
苏州浪潮智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州浪潮智能科技有限公司 filed Critical 苏州浪潮智能科技有限公司
Priority to US17/763,481 priority Critical patent/US20220345360A1/en
Publication of WO2021056913A1 publication Critical patent/WO2021056913A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2273Test methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0016Inter-integrated circuit (I2C)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning

Definitions

  • the present invention relates to the technical field of server testing, in particular to a fault location method, device and system based on I2C communication.
  • the I2C bus is a two-way binary synchronous serial bus used to connect the microcontroller and its peripherals. It only needs two wires (a serial data line SDA, a serial clock line SCL) to connect to the bus Transfer information between devices on the device. When the device on the bus detects that the bus is free, it can act as a host and start transmitting data.
  • the related technology finds all codes related to PSU communication from the BMC code, and then analyzes these codes to locate the fault.
  • the way to find the code is not targeted, time-consuming, and inefficient.
  • the embodiments of the present disclosure provide a fault location method, device, and system based on I2C communication, which can efficiently locate faults that occur during I2C communication between BMC and PSU, reduce debugging time and participation manpower, and effectively improve fault resolution efficiency.
  • the embodiments of the present invention provide the following technical solutions:
  • One aspect of the embodiments of the present invention provides a fault location system based on I2C communication, including a power module, a baseboard management controller, a fixture and a processor; the power module and the baseboard management controller are connected through the fixture , The fixture is connected to the processor through an I2C bus;
  • the processor is used to obtain the status data information of the power module in the normal I2C communication process with the baseboard management controller, and convert the data type of the status data information into a data type of a preset format; When the power module fails, the fault code is located according to the status data information.
  • the processor is specifically configured to detect whether the power supply module is in a fault state by monitoring a changed status word in the status data information.
  • the processor is further configured to package and output the fault code and log information in the corresponding process to a preset path, and at the same time back up the fault code.
  • the processor is further configured to call a pre-stored debug version set to analyze the fault code to obtain the corresponding fault type; the debug version set includes multiple debug versions, and each debug version uniquely corresponds to one type Fault type.
  • Another aspect of the embodiments of the present invention provides a fault location method based on I2C communication, which is applied to a fault location system based on I2C communication that includes a power supply module, a baseboard management controller, a fixture, and a processor; the power supply module and The baseboard management controller is connected through the fixture, and the fixture is connected to the processor through an I2C bus, including:
  • a failure code is located according to the status data information.
  • locating the fault code according to the status data information includes:
  • the method further includes:
  • the fault code and the log information in the corresponding process are packaged and output to a preset path, and the fault code is backed up at the same time.
  • the method further includes:
  • the debug version set includes multiple debug versions, and each debug version uniquely corresponds to one type of fault.
  • the embodiment of the present invention also provides a fault location device based on I2C communication, which is applied to a fault location system based on I2C communication that includes a power supply module, a baseboard management controller, a fixture, and a processor; the power supply module and the The baseboard management controller is connected through the fixture, and the fixture is connected to the processor through an I2C bus, including:
  • a status information acquisition module configured to acquire status data information of the power supply module in the I2C normal communication process with the baseboard management controller
  • a data type conversion module for converting the data type of the status data information into a data type of a preset format
  • the fault location module is used for locating the fault code according to the status data information when it is detected that the power module has a fault.
  • the fault location module is a module that detects whether the power supply module is in a fault state by monitoring a changed status word in the status data information.
  • the advantage of the technical solution provided by this application is that the power supply module, the baseboard management controller, the fixture and the processor are all connected to the I2C bus, which does not affect the normal communication between the power supply module and the baseboard management controller, and the processor can also be used
  • the status of the power module is monitored on the basis of not affecting the communication between the power module and the BMC.
  • the fault code is located by collecting the status data information of the power module, which is conducive to the independent analysis of BMC communication faults by the PSU testers.
  • BMC developers provide targeted code troubleshooting directions to efficiently locate faults that occur during I2C communication between BMC and PSU, reduce debugging time and participation manpower, and effectively improve troubleshooting efficiency.
  • the embodiment of the present invention also provides a corresponding implementation method and device for a fault location system based on I2C communication, which further makes the system more feasible, and the method and device have corresponding advantages.
  • FIG. 1 is a structural diagram of a specific implementation manner of a fault location system based on I2C communication provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a fault location method based on I2C communication according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another fault location method based on I2C communication according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a specific implementation manner of a fault location device based on I2C communication provided by an embodiment of the present invention
  • FIG. 5 is a structural diagram of another specific implementation manner of a fault location device based on I2C communication provided by an embodiment of the present invention.
  • Fig. 1 is a structural framework diagram of a fault location system based on I2C communication provided by an embodiment of the present invention in a specific implementation manner.
  • the embodiment of the present invention may include the following content:
  • the fault location system based on I2C communication may include a power module 1, a baseboard management controller 2, a fixture 3, and a processor 4.
  • the power module 1 and the baseboard management controller 2 are connected through a fixture, and the fixture 3 leads out the I2C bus and is connected to the processor 4.
  • the fixture 3 can be any test fixture, such as a CRPS fixture;
  • the processor 4 can be any hardware device that can perform corresponding functions, such as a PC upper computer.
  • Fixture 3 leads to I2C, and you can use Microchip PICkit Serial Analyzer to connect the I2C bus to the PC host computer.
  • the devices on the bus include PSU, BMC and PC host computer.
  • the PC can be used to host the computer.
  • the computer monitors the status of the power supply module in a targeted manner, and realizes the PSU debug test of multi-host joint debugging.
  • the processor 4 can be used to obtain the status data information of the power module 1 in the normal I2C communication process with the baseboard management controller 2, and convert the data type of the status data information into the data type of the preset format; If the power module fails, locate the fault code based on the status data information.
  • the functions implemented by the processor 4 can be installed on the upper computer in the form of application software.
  • the status word of the power supply module 1 can reflect whether it is in a fault state.
  • the processor 4 can ignore the fact that there is no failure in the whole process of monitoring multiple status words of the power supply module.
  • the changed status word only monitors the changed status word during the fault process, and gradually narrows the monitoring range. It is determined that the BMC uses the instruction to clear the fault, which causes the PSU to be unable to maintain the fault state and improve the processing efficiency.
  • the application also uses the output overvoltage protection fault of the power module as an example to illustrate the implementation process of the entire technical solution.
  • the PSU output overvoltage protection threshold is set to 12V through I2C, and the PSU The protection is triggered immediately, the LED changes from steady green to steady amber, and at the same time, the fault type of the output overvoltage protection is reported to the BMC through the status word, which can include the following:
  • the PSU After setting the output overvoltage protection threshold of the PSU, the PSU triggers a fault, but the protection type uploaded to the BMC through the status word is incorrect.
  • Set the I2C communication software on the PC upper computer to read the status word of the PSU cyclically, modify the output overvoltage protection threshold of the PSU through the BMC, and trigger the PSU output overvoltage protection.
  • the status word of the PSU reports the output overvoltage fault in an instant, and then reports the PS-OFF status. It can be determined that the fault reporting function of the PSU itself is normal, which is an abnormality in the BMC processing information after the fault is reported. After determining the cause of the fault, it can help BMC developers to troubleshoot the code in a targeted manner, and finally solve the fault problem.
  • the power supply module, the baseboard management controller, the fixture and the processor are all connected to the I2C bus, which will not affect the normal communication between the power supply module and the baseboard management controller.
  • the power module monitors the status of the power module without affecting the communication between the power module and the baseboard management controller.
  • the fault code is located by collecting the status data information of the power module, which is conducive to the independent analysis of BMC communication faults by the PSU testers, and Provide targeted code investigation directions for BMC developers, so as to efficiently locate faults that occur during I2C communication between BMC and PSU, reduce debugging time and manpower participation, and effectively improve the efficiency of fault resolution.
  • the processor 4 can also package and output the fault code and log information in the corresponding process. Go to the preset path and back up the fault code at the same time.
  • the corresponding process here is within a period of time when the failure is detected. For example, if a PSU failure is detected at time t, the log information and the fault code for the period from t-10s to t+10s can be packaged at the same time as the cause of the fault. The basis of this is conducive to quickly and accurately determining the cause of the failure.
  • the processor 4 is also used to call a pre-stored debug version set to analyze the fault code to obtain the corresponding fault type;
  • the debug version set includes multiple debug versions, and each debug version uniquely corresponds to one type of fault.
  • the debug version is a program written in advance according to each type of fault, and the corresponding PSU fault type can be accurately detected by using the debug program.
  • users can also test the fault type according to their needs, select the corresponding target debug version according to the required fault type, use the target debug version to analyze the corresponding fault type, the system can directly output the current PSU fault type, which is helpful for the staff to quickly determine the cause of the fault .
  • the embodiment of the present invention also provides a corresponding implementation method for a fault location system based on I2C communication, which further makes the method more feasible.
  • the following describes the fault location method based on I2C communication provided by the embodiment of the present invention.
  • the fault location method based on I2C communication described below and the fault location system based on I2C communication described above can be referred to each other.
  • Figure 2 is a schematic flow diagram of a fault location method based on I2C communication provided by an embodiment of the present invention, which is applied to a fault location based on I2C communication including a power supply module, a baseboard management controller, a fixture and a processor.
  • the power module and the baseboard management controller are connected through a fixture, and the fixture is connected to the processor through an I2C bus.
  • the embodiment of the present invention may include the following content:
  • the status data information of the power supply module is collected during the normal I2C communication process between the power supply module and the baseboard management controller.
  • the status of the power supply module can be collected by polling when the power supply module is in the communication gap with the baseboard management controller. Data information.
  • S202 Convert the data type of the status data information into a data type of a preset format.
  • the format of the collected data information needs to be converted into a data format type that can be recognized or processed by the processor 4.
  • Different status words represent different current states of the power module. When a faulty status word is detected, it is determined that the current power module is faulty. Monitor the PSU status during the fault process, locate the code fault according to the PSU status performance, and can also be used to monitor the status word during the steady-state operation of the PSU.
  • S203 it may further include:
  • S204 Package and output the fault code and log information in the corresponding process to a preset path, and at the same time back up the fault code.
  • the debug version set includes multiple debug versions, and each debug version uniquely corresponds to a fault type.
  • the embodiment of the present invention monitors the status of the PSU without affecting the original communication between the BMC and the PSU through the multi-host I2C configuration mode, which can efficiently locate the faults that occur during the I2C communication between the BMC and the PSU, and reduce the debugging time. And participating manpower can effectively improve the efficiency of troubleshooting.
  • the embodiment of the present invention also provides a corresponding implementation device for the fault location method based on I2C communication, which further makes the method more practical.
  • the fault location device based on I2C communication described below and the fault location method based on I2C communication described above can be referred to each other.
  • FIG. 4 is a structural diagram of a fault location device based on I2C communication provided by an embodiment of the present invention in a specific implementation manner, which is applied to an I2C-based device including a power supply module, a baseboard management controller, a fixture, and a processor.
  • the power module and the baseboard management controller are connected through a fixture, and the fixture is connected to the processor through an I2C bus.
  • the device may include:
  • the status information acquisition module 401 is used to acquire status data information of the power supply module in the I2C normal communication process with the baseboard management controller.
  • the data type conversion module 402 is used for converting the data type of the status data information into a data type of a preset format.
  • the fault location module 403 is used for locating the fault code according to the status data information when the power module is detected to be faulty.
  • the fault location module 403 may also be a module that detects whether the power supply module is in a fault state by monitoring the changed status word in the status data information.
  • the apparatus may further include, for example:
  • the output module 404 is used to package and output the fault code and log information in the corresponding process to a preset path;
  • the backup module 405 is used to backup the fault code.
  • the fault type analysis module 406 is used to call the pre-stored debug version set to analyze the fault code to obtain the corresponding fault type; the debug version set includes multiple debug versions, and each debug version uniquely corresponds to one type of fault.
  • each functional module of the I2C communication-based fault location device in the embodiment of the present invention can be implemented according to the method in the above method embodiment.
  • the multi-host I2C configuration mode of the embodiment of the present invention monitors the PSU status without affecting the original communication between the BMC and the PSU, and can efficiently locate the faults that occur during the I2C communication between the BMC and the PSU, reducing the debugging time and Participating in manpower can effectively improve the efficiency of troubleshooting.
  • the embodiment of the present invention also provides a fault location device based on I2C communication, which may specifically include:
  • Memory used to store computer programs
  • the processor is configured to execute a computer program to implement the steps of the I2C communication-based fault location method as described in any of the above embodiments.
  • each functional module of the fault location device based on I2C communication in the embodiment of the present invention can be implemented according to the method in the above method embodiment.
  • the embodiment of the present invention can efficiently locate faults that occur during the I2C communication between the BMC and the PSU, reduce debugging time and participation manpower, and can effectively improve the efficiency of troubleshooting.
  • the embodiment of the present invention also provides a computer-readable storage medium that stores a fault location program based on I2C communication.
  • the fault location program based on I2C communication is executed by a processor, it is the same as the one based on I2C communication in any of the above embodiments. Steps of the fault location method.
  • the storage medium may be a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk, and other media that can store program codes.
  • each functional module of the computer-readable storage medium in the embodiment of the present invention can be specifically implemented according to the method in the above method embodiment, and the specific implementation process can refer to the related description of the above method embodiment, and will not be repeated here.
  • the embodiment of the present invention can efficiently locate faults that occur during the I2C communication between the BMC and the PSU, reduce debugging time and participation manpower, and can effectively improve the efficiency of troubleshooting.
  • the steps of the method or algorithm described in combination with the embodiments disclosed herein can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Debugging And Monitoring (AREA)

Abstract

一种基于I2C通讯的故障定位方法、装置及***。其中,***包括电源模块(1)、基板管理控制器(2)、治具(3)和处理器(4);电源模块(1)和基板管理控制器(2)通过治具(3)相连,通过治具(3)将I2C总线引出并连接至处理器(4)上。处理器(4)用于获取电源模块(1)在与基板管理控制器(2)的I2C正常通讯过程中的状态数据信息,并将状态数据信息的数据类型转化为预设格式的数据类型;当检测到电源模块(1)出现故障,则根据状态数据信息定位故障代码。实现高效定位BMC与PSU在I2C通讯过程中发生的故障,减少调试时间和参与人力,有效提高故障解决效率。

Description

基于I2C通讯的故障定位方法、装置及***
本申请要求于2019年09月27日提交中国专利局、申请号为201910926583.3、发明名称为“基于I2C通讯的故障定位方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及服务器测试技术领域,特别是涉及一种基于I2C通讯的故障定位方法、装置及***。
背景技术
软硬件产品在推广市场应用之前,均需要进行测试,高效准确的测试对整个产品的研发至关重要,决定着产品研发的周期和成本。在BMC(Baseboard Management Controller,基板管理控制器)开发调试过程中,不可避免的会存在PSU(Power Supply Unit,电源模块)在单体调试和***调试表现不一致的现象,这种情况一般是由于BMC通过I2C(Inter-Integrated Circuit,)总线对PSU的寄存器进行了错误的写入操作。
I2C总线为一种双向二进制同步串行总线,用于连接微控制器及其***设备,它只需要两根线(一条串行数据线SDA,一条串行时钟线SCL)即可在连接于总线上的器件之间传送信息。当总线上的器件侦听到总线空闲,便可作为主机开始传输数据。
在对BMC与PSU的I2C调试测试过程中,在发生bug或者是故障时,相关技术通过从BMC代码中查找与PSU通讯相关的所有代码,然后分析这些代码进行故障定位。而查找代码的方式没有针对性,耗时长,效率低。
鉴于此,如何迅速定位BMC与PSU在I2C通讯过程中产生的故 障问题,是本领域技术人员需要解决的问题。
发明内容
本公开实施例提供了一种基于I2C通讯的故障定位方法、装置及***,可高效定位BMC与PSU在I2C通讯过程中发生的故障,减少了调试时间和参与人力,可有效提高故障解决效率。
为解决上述技术问题,本发明实施例提供以下技术方案:
本发明实施例一方面提供了一种基于I2C通讯的故障定位***,包括电源模块、基板管理控制器、治具和处理器;所述电源模块和所述基板管理控制器通过所述治具相连,所述治具通过I2C总线连接至所述处理器上;
所述处理器用于获取所述电源模块在与所述基板管理控制器的I2C正常通讯过程中的状态数据信息,并将所述状态数据信息的数据类型转化为预设格式的数据类型;当检测到所述电源模块出现故障,则根据所述状态数据信息定位故障代码。
可选的,所述处理器具体用于通过监控所述状态数据信息中发生变化的状态字来检测所述电源模块是否处于故障状态。
可选的,所述处理器还用于将所述故障代码和相应过程中的日志信息打包输出至预设路径下,并同时备份所述故障代码。
可选的,所述处理器还用于调用预先存储的调试版本集解析所述故障代码,得到相对应的故障类型;所述调试版本集包括多个调试版本,每个调试版本唯一对应一种故障类型。
本发明实施例另一方面提供了一种基于I2C通讯的故障定位方法,应用于包括电源模块、基板管理控制器、治具和处理器的基于I2C通讯的故障定位***中;所述电源模块和所述基板管理控制器通过所述治具相连,所述治具通过I2C总线连接至所述处理器上,包括:
获取所述电源模块在与所述基板管理控制器的I2C正常通讯过程中的状态数据信息;
将所述状态数据信息的数据类型转化为预设格式的数据类型;
当检测到所述电源模块出现故障,则根据所述状态数据信息定位故障代码。
可选的,所述当检测到所述电源模块出现故障,则根据所述状态数据信息定位故障代码包括:
通过监控所述状态数据信息中发生变化的状态字来检测所述电源模块是否处于故障状态。
可选的,所述根据所述状态数据信息定位故障代码之后,还包括:
将所述故障代码和相应过程中的日志信息打包输出至预设路径下,并同时备份所述故障代码。
可选的,所述根据所述状态数据信息定位故障代码之后,还包括:
调用预先存储的调试版本集解析所述故障代码,得到相对应的故障类型;所述调试版本集包括多个调试版本,每个调试版本唯一对应一种故障类型。
本发明实施例还提供了一种基于I2C通讯的故障定位装置,应用于包括电源模块、基板管理控制器、治具和处理器的基于I2C通讯的故障定位***中;所述电源模块和所述基板管理控制器通过所述治具相连,所述治具通过I2C总线连接至所述处理器上,包括:
状态信息获取模块,用于获取所述电源模块在与所述基板管理控制器的I2C正常通讯过程中的状态数据信息;
数据类型转换模块,用于将所述状态数据信息的数据类型转化为预设格式的数据类型;
故障定位模块,用于当检测到所述电源模块出现故障,则根据所述状态数据信息定位故障代码。
可选的,所述故障定位模块为通过监控所述状态数据信息中发生变化的状态字来检测所述电源模块是否处于故障状态的模块。
本申请提供的技术方案的优点在于,将电源模块、基板管理控制器、治具和处理器均连接在I2C总线上,既不影响电源模块和基板管理控制器的正常通讯,还可利用处理器在不影响电源模块和基板管理控制器通讯的基础上监控电源模块状态,在电源模块故障时,通过采 集电源模块的状态数据信息定位故障代码,有利于PSU测试人员独立分析BMC通讯故障,并为BMC开发人员提供针对性的代码排查方向,从而高效定位BMC与PSU在I2C通讯过程中发生的故障,减少了调试时间和参与人力,可有效提高故障解决效率。
此外,本发明实施例还针对基于I2C通讯的故障定位***提供了相应的实现方法及装置,进一步使得所述***更具有可行性,所述方法及装置具有相应的优点。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
为了更清楚的说明本发明实施例或相关技术的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的基于I2C通讯的故障定位***的一种具体实施方式结构图;
图2为本发明实施例提供的一种基于I2C通讯的故障定位方法的流程示意图;
图3为本发明实施例提供的另一种基于I2C通讯的故障定位方法的流程示意图;
图4为本发明实施例提供的基于I2C通讯的故障定位装置的一种具体实施方式结构图;
图5为本发明实施例提供的基于I2C通讯的故障定位装置的另一种具体实施方式结构图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等是用于区别不同的对象,而不是用于描述特定的顺序。此外术语“包括”和“具有”以及他们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可包括没有列出的步骤或单元。
在介绍了本发明实施例的技术方案后,下面详细的说明本申请的各种非限制性实施方式。
首先参见图1,图1为本发明实施例提供的一种基于I2C通讯的故障定位***在一种具体实施方式下的结构框架图,本发明实施例可包括以下内容:
基于I2C通讯的故障定位***可包括电源模块1、基板管理控制器2、治具3和处理器4。电源模块1和基板管理控制器2通过治具相连,治具3引出I2C总线,并连接至处理器4上。治具3可为任何一种测试治具,例如CRPS治具;处理器4可为任何一种可执行相应功能的硬件设备,例如PC上位机。治具3将I2C引出,可使用Microchip PICkit Serial Analyzer连接I2C总线至PC上位机上,这样,总线上存在的设备包括PSU、BMC和PC上位机,在不影响BMC正常工作的基础上,通过PC上位机有针对性地监控电源模块状态,实现多主机联调的PSU debug测试。
具体的,处理器4可用于获取电源模块1在与基板管理控制器2的I2C正常通讯过程中的状态数据信息,并将状态数据信息的数据类型转化为预设格式的数据类型;当检测到电源模块出现故障,则根据状态数据信息定位故障代码。可将处理器4实现的功能以应用程序软 件的形式安装至上位机上。
可以理解的是,电源模块1的状态字可反映其是否处于故障状态,经过本发明申请人多次分析研究,处理器4在监控电源模块的多个状态字过程中,可忽略整个过程中没有变化的状态字,只监测故障过程中发生变化的状态字,逐步缩小监控范围,确定是由于BMC使用了清除故障的指令,导致PSU无法维持故障状态,提高处理效率。
为了便于本领域技术人员更加清楚明白本申请技术方案,本申请还以电源模块的输出过压保护故障为例阐述整个技术方案的实现过程,通过I2C将PSU输出过压保护阈值设置为12V,PSU立即触发保护,LED从绿色常亮变为琥珀色常亮,同时通过状态字向BMC上报输出过压保护的故障类型,可包括下述内容:
按照服务器套餐配置要求在主板上安装相应的CPU、内存、硬盘等组件;使用治具连接PSU和主板;接通AC电源,并开机。将治具引出的I2C总线通过Microchip PICkit Serial Analyzer连接到PC,在PC上打开I2C通讯软件;I2C通讯软件用于实现上述处理器4的功能。
在设置完成PSU的输出过压保护阈值之后,PSU触发故障,但是通过状态字向BMC上传的保护类型有误。设置PC上位机上的I2C通讯软件循环读取PSU的状态字,通过BMC修改PSU的输出过压保护阈值,触发PSU输出过压保护。在PC上位机上可以看到PSU的状态字在一瞬间上报输出过压故障,随后上报PS-OFF状态,可以确定PSU本身的故障上报功能正常,是故障上报之后在BMC处理信息中出现的异常。在确定故障原因后,可以有助于BMC开发人员有针对性地对代码进行排查,最终解决故障问题。
在本发明实施例提供的技术方案中,将电源模块、基板管理控制器、治具和处理器均连接在I2C总线上,既不影响电源模块和基板管理控制器的正常通讯,还可利用处理器在不影响电源模块和基板管理控制器通讯的基础上监控电源模块状态,在电源模块故障时,通过采集电源模块的状态数据信息定位故障代码,有利于PSU测试人员独立分析BMC通讯故障,并为BMC开发人员提供针对性的代码排查方向, 从而高效定位BMC与PSU在I2C通讯过程中发生的故障,减少了调试时间和参与人力,可有效提高故障解决效率。
作为一种优选的实施方式,为了防止断电等异常情况出现,提升整个***的可靠性和稳定性,处理器4在定位故障代码后,还可将故障代码和相应过程中的日志信息打包输出至预设路径下,并同时备份故障代码。此处的相应过程为检测到发生故障的一段时间内,例如在t时间检测到PSU故障,则可将t-10s~t+10s这段时间的日志信息与故障代码同时打包,作为查询故障原因的依据,有利于快速、准确确定故障原因。
可选的,处理器4还用于调用预先存储的调试版本集解析故障代码,得到相对应的故障类型;调试版本集包括多个调试版本,每个调试版本唯一对应一种故障类型。调试版本为预先根据每种故障类型编写的程序,利用该调试程序可准确检测到对应的PSU故障类型。当然,用户也可根据需求测试故障的类型,根据所需故障类型选择相应的目标调试版本,利用目标调试版本解析相应故障类型,***可直接输出当前PSU故障类型,有利于工作人员快速确定故障原因。
本发明实施例还针对基于I2C通讯的故障定位***提供了相应的实现方法,进一步使得所述方法更具有可行性。下面对本发明实施例提供的基于I2C通讯的故障定位方法进行介绍,下文描述的基于I2C通讯的故障定位方法与上文描述的基于I2C通讯的故障定位***可相互对应参照。
首先参见图2,图2为本发明实施例提供的一种基于I2C通讯的故障定位方法的流程示意图,应用于包括电源模块、基板管理控制器、治具和处理器的基于I2C通讯的故障定位***中;电源模块和基板管理控制器通过治具相连,治具通过I2C总线连接至处理器上,本发明实施例可包括以下内容:
S201:获取电源模块在与基板管理控制器的I2C正常通讯过程中的状态数据信息。
电源模块的状态数据信息是在电源模块在与基板管理控制器的正常I2C通讯过程中采集的,例如可以轮询方式在在电源模块在与基板管理控制器的通讯空档中采集电源模块的状态数据信息。
S202:将状态数据信息的数据类型转化为预设格式的数据类型。
可以理解的是,需要将采集的数据信息的格式转化为处理器4可识别或可处理的数据格式类型。
S203:当检测到电源模块出现故障,则根据状态数据信息定位故障代码。
不同状态字表征电源模块当前的不同状态,当检测到发生故障的状态字时,则确定当前电源模块出现故障。监控故障过程中的PSU状态,根据PSU状态表现定位代码故障,还可用于PSU稳态运行过程中的状态字监控。
作为一种可选的实施方式,请参阅图3,在S203之后,还可包括:
S204:将故障代码和相应过程中的日志信息打包输出至预设路径下,并同时备份故障代码。
S205:调用预先存储的调试版本集解析故障代码,得到相对应的故障类型。
调试版本集包括多个调试版本,每个调试版本唯一对应一种故障类型。
由上可知,本发明实施例通过多主机的I2C配置方式,在不影响BMC与PSU原通讯的前提下监控PSU状态,可高效定位BMC与PSU在I2C通讯过程中发生的故障,减少了调试时间和参与人力,可有效提高故障解决效率。
本发明实施例还针对基于I2C通讯的故障定位方法提供了相应的实现装置,进一步使得所述方法更具有实用性。下文描述的基于I2C通讯的故障定位装置与上文描述的基于I2C通讯的故障定位方法可相互对应参照。
参见图4,图4为本发明实施例提供的基于I2C通讯的故障定位 装置在一种具体实施方式下的结构图,应用于包括电源模块、基板管理控制器、治具和处理器的基于I2C通讯的故障定位***中;电源模块和基板管理控制器通过治具相连,治具通过I2C总线连接至处理器上,该装置可包括:
状态信息获取模块401,用于获取电源模块在与基板管理控制器的I2C正常通讯过程中的状态数据信息。
数据类型转换模块402,用于将状态数据信息的数据类型转化为预设格式的数据类型。
故障定位模块403,用于当检测到电源模块出现故障,则根据状态数据信息定位故障代码。
可选的,在本实施例的一些实施方式中,所述故障定位模块403还可为通过监控状态数据信息中发生变化的状态字来检测电源模块是否处于故障状态的模块。
在本实施例的另一些实施方式中,请参阅图4,所述装置例如还可以包括:
输出模块404,用于将故障代码和相应过程中的日志信息打包输出至预设路径下;
备份模块405,用于备份故障代码。
故障类型解析模块406,用于调用预先存储的调试版本集解析故障代码,得到相对应的故障类型;调试版本集包括多个调试版本,每个调试版本唯一对应一种故障类型。
本发明实施例所述基于I2C通讯的故障定位装置的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
由上可知,本发明实施例多主机的I2C配置方式,在不影响BMC与PSU原通讯的前提下监控PSU状态,可高效定位BMC与PSU在I2C通讯过程中发生的故障,减少了调试时间和参与人力,可有效提高故障解决效率。
本发明实施例还提供了一种基于I2C通讯的故障定位设备,具体可包括:
存储器,用于存储计算机程序;
处理器,用于执行计算机程序以实现如上任意一实施例所述基于I2C通讯的故障定位方法的步骤。
本发明实施例所述基于I2C通讯的故障定位设备的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
由上可知,本发明实施例可高效定位BMC与PSU在I2C通讯过程中发生的故障,减少了调试时间和参与人力,可有效提高故障解决效率。
本发明实施例还提供了一种计算机可读存储介质,存储有基于I2C通讯的故障定位程序,所述基于I2C通讯的故障定位程序被处理器执行时如上任意一实施例所述基于I2C通讯的故障定位方法的步骤。该存储介质可以为U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例所述计算机可读存储介质的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
由上可知,本发明实施例可高效定位BMC与PSU在I2C通讯过程中发生的故障,减少了调试时间和参与人力,可有效提高故障解决效率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者 的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本发明所提供的一种基于I2C通讯的故障定位方法、装置及***进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。

Claims (10)

  1. 一种基于I2C通讯的故障定位***,其特征在于,包括电源模块、基板管理控制器、治具和处理器;所述电源模块和所述基板管理控制器通过所述治具相连,所述治具通过I2C总线连接至所述处理器上;
    所述处理器用于获取所述电源模块在与所述基板管理控制器的I2C正常通讯过程中的状态数据信息,并将所述状态数据信息的数据类型转化为预设格式的数据类型;当检测到所述电源模块出现故障,则根据所述状态数据信息定位故障代码。
  2. 根据权利要求1所述的基于I2C通讯的故障定位***,其特征在于,所述处理器具体用于通过监控所述状态数据信息中发生变化的状态字来检测所述电源模块是否处于故障状态。
  3. 根据权利要求2所述的基于I2C通讯的故障定位***,其特征在于,所述处理器还用于将所述故障代码和相应过程中的日志信息打包输出至预设路径下,并同时备份所述故障代码。
  4. 根据权利要求1-3任意一项所述的基于I2C通讯的故障定位***,其特征在于,所述处理器还用于调用预先存储的调试版本集解析所述故障代码,得到相对应的故障类型;所述调试版本集包括多个调试版本,每个调试版本唯一对应一种故障类型。
  5. 一种基于I2C通讯的故障定位方法,其特征在于,应用于包括电源模块、基板管理控制器、治具和处理器的基于I2C通讯的故障定位***中;所述电源模块和所述基板管理控制器通过所述治具相连,所述治具通过I2C总线连接至所述处理器上,包括:
    获取所述电源模块在与所述基板管理控制器的I2C正常通讯过程中的状态数据信息;
    将所述状态数据信息的数据类型转化为预设格式的数据类型;
    当检测到所述电源模块出现故障,则根据所述状态数据信息定位故障代码。
  6. 根据权利要求5所述的基于I2C通讯的故障定位方法,其特征 在于,所述当检测到所述电源模块出现故障,则根据所述状态数据信息定位故障代码包括:
    通过监控所述状态数据信息中发生变化的状态字来检测所述电源模块是否处于故障状态。
  7. 根据权利要求5所述的基于I2C通讯的故障定位方法,其特征在于,所述根据所述状态数据信息定位故障代码之后,还包括:
    将所述故障代码和相应过程中的日志信息打包输出至预设路径下,并同时备份所述故障代码。
  8. 根据权利要求5-7任意一项所述的基于I2C通讯的故障定位方法,其特征在于,所述根据所述状态数据信息定位故障代码之后,还包括:
    调用预先存储的调试版本集解析所述故障代码,得到相对应的故障类型;所述调试版本集包括多个调试版本,每个调试版本唯一对应一种故障类型。
  9. 一种基于I2C通讯的故障定位装置,其特征在于,应用于包括电源模块、基板管理控制器、治具和处理器的基于I2C通讯的故障定位***中;所述电源模块和所述基板管理控制器通过所述治具相连,所述治具通过I2C总线连接至所述处理器上,包括:
    状态信息获取模块,用于获取所述电源模块在与所述基板管理控制器的I2C正常通讯过程中的状态数据信息;
    数据类型转换模块,用于将所述状态数据信息的数据类型转化为预设格式的数据类型;
    故障定位模块,用于当检测到所述电源模块出现故障,则根据所述状态数据信息定位故障代码。
  10. 根据权利要求9所述的基于I2C通讯的故障定位装置,其特征在于,所述故障定位模块为通过监控所述状态数据信息中发生变化的状态字来检测所述电源模块是否处于故障状态的模块。
PCT/CN2019/130019 2019-09-27 2019-12-30 基于i2c通讯的故障定位方法、装置及*** WO2021056913A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/763,481 US20220345360A1 (en) 2019-09-27 2019-12-30 Fault Locating Method, Apparatus And System Based On I2C Communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910926583.3 2019-09-27
CN201910926583.3A CN110618909B (zh) 2019-09-27 2019-09-27 基于i2c通讯的故障定位方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021056913A1 true WO2021056913A1 (zh) 2021-04-01

Family

ID=68924718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130019 WO2021056913A1 (zh) 2019-09-27 2019-12-30 基于i2c通讯的故障定位方法、装置及***

Country Status (3)

Country Link
US (1) US20220345360A1 (zh)
CN (1) CN110618909B (zh)
WO (1) WO2021056913A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618909B (zh) * 2019-09-27 2021-03-26 苏州浪潮智能科技有限公司 基于i2c通讯的故障定位方法、装置、设备及存储介质
CN111538624A (zh) * 2020-04-23 2020-08-14 苏州浪潮智能科技有限公司 一种服务器电源的维修方法、装置、设备及介质
US20230117637A1 (en) * 2021-10-19 2023-04-20 Arista Networks, Inc. Saving volatile system state

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100064150A1 (en) * 2008-09-08 2010-03-11 Osamu Higuchi Power supply system and power supply method
CN103605596A (zh) * 2013-11-13 2014-02-26 曙光信息产业(北京)有限公司 用于atca刀片上的fpga芯片与bmc芯片协同电源管理***和方法
CN103792923A (zh) * 2014-02-14 2014-05-14 浪潮电子信息产业股份有限公司 一种采用数字芯片侦测和控制主板各组电源的方法
US20140359339A1 (en) * 2013-05-29 2014-12-04 Hon Hai Precision Industry Co., Ltd. Apparatus and method for detecting power failure
CN104199757A (zh) * 2014-09-05 2014-12-10 浪潮电子信息产业股份有限公司 一种服务器***故障信息离线告警的方法
CN106354685A (zh) * 2016-08-19 2017-01-25 浪潮电子信息产业股份有限公司 一种psu和me通信i2c总线挂死恢复的实现方法
CN107291206A (zh) * 2017-06-14 2017-10-24 郑州云海信息技术有限公司 一种主板与bbu的互联架构
CN109240846A (zh) * 2018-09-19 2019-01-18 郑州云海信息技术有限公司 一种电源故障诊断方法、装置及服务器
CN109683696A (zh) * 2018-12-25 2019-04-26 浪潮电子信息产业股份有限公司 服务器电源故障检测***、方法、装置、设备及介质
CN110618909A (zh) * 2019-09-27 2019-12-27 苏州浪潮智能科技有限公司 基于i2c通讯的故障定位方法、装置、设备及存储介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8607076B2 (en) * 2009-06-26 2013-12-10 Seagate Technology Llc Circuit apparatus with memory and power control responsive to circuit-based deterioration characteristics
US20110307746A1 (en) * 2010-06-07 2011-12-15 Sullivan Jason A Systems and Methods for Intelligent and Flexible Management and Monitoring of Computer Systems
JP5682703B2 (ja) * 2011-03-28 2015-03-11 富士通株式会社 情報処理システム及び情報処理システムの処理方法
KR20130055156A (ko) * 2011-11-18 2013-05-28 삼성에스디아이 주식회사 배터리 관리 모듈의 오류 통보 장치 및 이를 구비한 에너지 저장 시스템
US20160147590A1 (en) * 2013-07-17 2016-05-26 Hewlett-Packard Development Company, L.P. Determine malfunction state of power supply module
KR20150021378A (ko) * 2013-08-20 2015-03-02 한국전자통신연구원 컴퓨터 시스템의 전력 절감 장치 및 방법
US9507566B2 (en) * 2014-04-01 2016-11-29 Oracle International Corporation Entropy generation for a distributed computing system
US10114784B2 (en) * 2014-04-25 2018-10-30 Liqid Inc. Statistical power handling in a scalable storage system
US9954727B2 (en) * 2015-03-06 2018-04-24 Quanta Computer Inc. Automatic debug information collection
JP6358389B2 (ja) * 2015-03-26 2018-07-18 富士通株式会社 情報処理装置
CN106326061B (zh) * 2015-06-26 2020-06-23 伊姆西Ip控股有限责任公司 高速缓存数据处理方法及设备
US9743272B1 (en) * 2016-03-28 2017-08-22 Bank Of America Corporation Security implementation for resource distribution
CN106292986A (zh) * 2016-08-08 2017-01-04 浪潮电子信息产业股份有限公司 一种服务器电源psu故障确定方法及装置
CN107870846B (zh) * 2016-09-23 2021-04-02 伊姆西Ip控股有限责任公司 故障元件指示方法、设备和***
US10198353B2 (en) * 2017-07-07 2019-02-05 Dell Products, Lp Device and method for implementing save operation of persistent memory
CN107315675A (zh) * 2017-07-24 2017-11-03 郑州云海信息技术有限公司 一种服务器开关电源保护装置和方法
JP7067399B2 (ja) * 2018-10-03 2022-05-16 富士通株式会社 制御回路および情報処理装置
US10880362B2 (en) * 2018-12-03 2020-12-29 Intel Corporation Virtual electrical networks
US11366504B2 (en) * 2019-04-26 2022-06-21 Dell Products L.P. Safety feature for a power supply
CN110133477A (zh) * 2019-05-16 2019-08-16 北京瑞源芯科技有限公司 录波型板卡电源检测装置及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100064150A1 (en) * 2008-09-08 2010-03-11 Osamu Higuchi Power supply system and power supply method
US20140359339A1 (en) * 2013-05-29 2014-12-04 Hon Hai Precision Industry Co., Ltd. Apparatus and method for detecting power failure
CN103605596A (zh) * 2013-11-13 2014-02-26 曙光信息产业(北京)有限公司 用于atca刀片上的fpga芯片与bmc芯片协同电源管理***和方法
CN103792923A (zh) * 2014-02-14 2014-05-14 浪潮电子信息产业股份有限公司 一种采用数字芯片侦测和控制主板各组电源的方法
CN104199757A (zh) * 2014-09-05 2014-12-10 浪潮电子信息产业股份有限公司 一种服务器***故障信息离线告警的方法
CN106354685A (zh) * 2016-08-19 2017-01-25 浪潮电子信息产业股份有限公司 一种psu和me通信i2c总线挂死恢复的实现方法
CN107291206A (zh) * 2017-06-14 2017-10-24 郑州云海信息技术有限公司 一种主板与bbu的互联架构
CN109240846A (zh) * 2018-09-19 2019-01-18 郑州云海信息技术有限公司 一种电源故障诊断方法、装置及服务器
CN109683696A (zh) * 2018-12-25 2019-04-26 浪潮电子信息产业股份有限公司 服务器电源故障检测***、方法、装置、设备及介质
CN110618909A (zh) * 2019-09-27 2019-12-27 苏州浪潮智能科技有限公司 基于i2c通讯的故障定位方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20220345360A1 (en) 2022-10-27
CN110618909A (zh) 2019-12-27
CN110618909B (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US9747192B2 (en) Automated operating system installation on multiple drives
US9720758B2 (en) Diagnostic analysis tool for disk storage engineering and technical support
WO2021056913A1 (zh) 基于i2c通讯的故障定位方法、装置及***
US6532552B1 (en) Method and system for performing problem determination procedures in hierarchically organized computer systems
US6944796B2 (en) Method and system to implement a system event log for system manageability
US20230375639A1 (en) Bbu fault diagnosis method and apparatus, electronic device, and storage medium
CN104850485A (zh) 一种基于bmc远程诊断服务器开机故障的方法及***
CN103198000A (zh) 一种linux***下的故障内存位置定位方法
US9542304B1 (en) Automated operating system installation
WO2020087954A1 (zh) 抓取NVME硬盘trace的方法、装置、设备及***
CN111258830B (zh) 一种服务器功耗对比测试***及方法
CN105718340A (zh) 一种基于Crontab的CPU稳定性的测试方法
EP3839742A1 (en) A method for diagnosing power supply failure in a wireless communication device
WO2020087956A1 (zh) 抓取NVME硬盘trace的方法、装置、设备及***
TW201516665A (zh) 伺服器之系統錯誤資訊偵測系統及方法
TW202018312A (zh) 測試系統
WO2024124862A1 (zh) 基于服务器的内存处理方法和装置、处理器及电子设备
CN107562565A (zh) 一种验证内存Patrol Scurb功能的方法
CN115757099A (zh) 平台固件保护恢复功能自动测试方法和装置
TWI771759B (zh) 電源故障監測方法、裝置、電子設備及存儲介質
CN102023916B (zh) 电脑***的检测方法
CN114064401A (zh) 定位硬盘故障的方法、装置、电子设备及存储介质
CN114138600A (zh) 一种固件关键信息的存储方法、装置、设备及存储介质
US10216525B1 (en) Virtual disk carousel
CN111459734A (zh) 一种故障监控周期的测试方法、***及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946734

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19946734

Country of ref document: EP

Kind code of ref document: A1