WO2021054688A1 - Temperature-sensitive magnetic-core dendrimer and method for preparing same - Google Patents

Temperature-sensitive magnetic-core dendrimer and method for preparing same Download PDF

Info

Publication number
WO2021054688A1
WO2021054688A1 PCT/KR2020/012370 KR2020012370W WO2021054688A1 WO 2021054688 A1 WO2021054688 A1 WO 2021054688A1 KR 2020012370 W KR2020012370 W KR 2020012370W WO 2021054688 A1 WO2021054688 A1 WO 2021054688A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
dendrimer
magnetic
sensitive
poly
Prior art date
Application number
PCT/KR2020/012370
Other languages
French (fr)
Korean (ko)
Inventor
박재우
한예림
김혜란
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190173662A external-priority patent/KR102357221B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2021054688A1 publication Critical patent/WO2021054688A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00

Definitions

  • the present disclosure relates to a temperature-sensitive magnetic centered dendrimer and a method of manufacturing the same. More specifically, the present disclosure relates to a temperature-sensitive magnetic-centered dendrimer applicable to various fields including water treatment through temperature control by attaching a moiety derived from a temperature-sensitive material to the end of the magnetic-centered dendrimer, and a method of manufacturing the same. will be.
  • Dendrimer can mean a macromolecule (oligomer or polymer) having a regular branch structure, its molecular weight distribution is close to 1, has an approximately spherical shape, and the outermost (end) Since it contains a large number of functional groups, it exhibits chemical and/or physically unique properties.
  • dendrimers consist of three elements: a center, a constituent unit and a terminal group.
  • the branch site constituting the constituent unit of the dendrimer can be grown for generation through repetitive synthesis, and can be used in various ways by modifying the terminal functional group according to the purpose.
  • Typical applications of the dendrimer include additives, powder coatings, drug delivery systems, functional carriers, catalysts, sensors, multifunctional crosslinking agents, and the like.
  • a magnetic-centered dendrimer in the case of a magnetic-centered dendrimer, it has a characteristic that can be controlled by an external magnetic field by growing generation through a branch-shaped structure in the magnetic center.
  • the removal efficiency can be increased by increasing the probability of contact with contaminants, and at the same time, the abundant cavities between the terminal branches can also be utilized for removing contaminants. have.
  • dendrimers are generally used in drug delivery systems, but magnetic-centered dendrimers have advantages that can be applied to environmental fields, for example, adsorption separation of pollutants or photocatalytic reactions (Korean Patent Publication No. 2012- 140537, 2013-8373, etc.).
  • a filter for water purification and a method of removing oxidation using a catalyst are known, but the filter is difficult to recycle, and the oxidation method using a catalyst is a metal catalyst. It is uneconomical because it uses.
  • interfacial chemistry such as emulsion stabilization and demulsification, silica, polymer electrolyte, etc. are used to stabilize the emulsion, while silica whose properties are changed by external stimuli such as pH, temperature, or light for demulsification. Etc. have been utilized, but there is a limit to the recycling of these materials.
  • a new magnetic-centered dendrimer is provided based on a magnetic-centered dendrimer, but a temperature-sensitive material (moiety) is attached to the terminal thereof, and furthermore, a temperature-sensitive magnetic-centered through temperature control
  • a temperature-sensitive material moiety
  • it is intended to provide a method that is effectively applied to applications that are difficult to implement in the prior art, for example, separation of aromatic hydrocarbons in wastewater, emulsion stabilization or demulsification.
  • Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit.
  • a temperature sensitive magnetic centered dendrimer is provided.
  • step b) Apart from step a), providing a carboxy group-containing temperature-sensitive material whose size reversibly changes according to temperature change;
  • thermosensitive magnetic centered dendrimer comprising a.
  • step a) is a step of providing a hydroxy group-terminated magnetic centered dendrimer
  • Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit.
  • Encapsulating the aromatic hydrocarbon in the aqueous medium by raising the temperature above the LCST of the temperature-sensitive material in a state in which the temperature-sensitive magnetic centered dendrimer is in contact with the aromatic hydrocarbon-containing aqueous medium;
  • a method for separating an aromatic hydrocarbon comprising a is provided.
  • Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit.
  • the magnetic-centered dendrimer with a temperature-sensitive material (moiety) attached to the end imparts thermal responsiveness to the existing magnetic dendrimer to induce a reversible size change through temperature control. It is possible to separate (or remove) aromatic hydrocarbons by encapsulating the aromatic hydrocarbons in the medium in the space of the magnetic center dendrimer, and to stabilize and/or demulsify the emulsion (i.e., oil phase) when preparing an emulsion containing an oil phase and an aqueous phase. Separating the and aqueous phase) can be carried out effectively. Furthermore, it is advantageous in terms of economical efficiency as it can recover or reuse the used magnetic-centered dendrimer using magnetic force.
  • FIG. 1 is a diagram schematically showing the structure of a temperature-sensitive magnetic centered dendrimer according to an exemplary embodiment
  • FIG. 2A to 2D illustrate a temperature-sensitive magnetic centered dendrimer using poly(N-isopropylacrylamide) [poly(N-isopropylacrylamide), pNIPAM] as a temperature-sensitive material according to an exemplary embodiment of the present disclosure. It is a reaction formula showing a series of processes of two methods of synthesis (reacting PNIPAM-COOH to a hydroxy group-terminated magnetic center dendrimer, or PNIPAM-COOH to an amine group-terminated magnetic center dendrimer) step by step;
  • FIG. 3 is a diagram schematically showing the principle of separation by encapsulating an aromatic hydrocarbon using a temperature-sensitive magnetocentric dendrimer, according to an exemplary embodiment
  • FIG. 4 is a diagram conceptually showing a series of processes of stabilizing an emulsion using a temperature-sensitive magnetic centered dendrimer and further demulsifying the stabilized emulsion (phase separation) according to an exemplary embodiment
  • 5A is a hydroxy group-terminated first-generation magnetic centered dendrimer (G1-OH), a temperature-sensitive material (PNIPAM-COOH) synthesized in Example, and a temperature-sensitive magnetic-centered dendrimer synthesized by reacting them (PNIPAM-g-MCD ( magnetic-cored dendrimer)) is a graph showing the results of FT-IR analysis,
  • Figure 5b is an amine group-terminated first-generation magnetic centered dendrimer (G1-NH 2 ) synthesized in Example, a temperature-sensitive material (PNIPAM-COOH), and a temperature-sensitive magnetic-centered dendrimer synthesized by reacting them (PNIPAM-g- This is a graph showing the results of FT-IR analysis for each magnetic-cored dendrimer (MCD);
  • FIG. 6A and 6B are TEM photographs of a first-generation magnetic centered dendrimer (G1) and a heat-sensitive material (PNIPAM) synthesized in Examples, and FIG. 6C is a temperature-sensitive magnetic-centered dendrimer (PNIPAM-g-G1). This is an SEM picture;
  • FIG. 7 is a graph showing TGA analysis results for each of MNP (magnetic nanoparticle), first generation magnetic centered dendrimer (G1), and temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) according to an embodiment;
  • MNP magnetic nanoparticle
  • G1 first generation magnetic centered dendrimer
  • PNIPAM-g-G1 temperature-sensitive magnetic centered dendrimer
  • FIG. 8 is a graph showing the XRD analysis results of each of the first-generation magnetic centered dendrimers (G1) and temperature-sensitive magnetic centered dendrimers (PNIPAM-g-G1) synthesized in Examples;
  • FIG. 9 is a graph showing the size change of the first-generation magnetic centered dendrimer (G1) and the temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) synthesized in Example according to heating and cooling;
  • FIGS. 10A and 10B shows the separation of two aromatic hydrocarbons (naphthalene and benzene) according to temperature using a first-generation magnetic-centered dendrimer (G1) and a temperature-sensitive magnetic-centered dendrimer (PNIPAM-g-G1) in Examples. It is a graph showing the test results (25° C. and 45° C.); And
  • FIG. 11 is a photograph showing the stabilization or demulsification (phase separation) behavior of an emulsion according to temperature using a first-generation magnetic-centered dendrimer (G1) and a temperature-sensitive magnetic-centered dendrimer (PNIPAM-g-G1), respectively. .
  • Magnetic may refer to a material that exhibits magnetism even in the absence of an external magnetic field
  • superparamagnetic may refer to a property that exhibits strong magnetism only in the presence of a magnetic field.
  • Nanoscale can typically mean a sub-micron scale, eg, having a morphology of about 100 nm or less.
  • the property changes according to temperature change.
  • a magnetocentric dendrimer is provided.
  • an exemplary structure of a temperature-sensitive magnetic centered dendrimer is shown in FIG. 1.
  • a moiety derived from a temperature-sensitive material is attached to at least a part of a magnetic nanoparticle (MNP), a dendrimer constituent unit, and a terminal group of the dendrimer constituent unit.
  • MNP magnetic nanoparticle
  • the magnetic nanoparticles may typically be iron oxide particles.
  • Iron oxide is known to be largely in eight types depending on the oxidation state.
  • iron oxide exhibiting magnetism typically hematite ( ⁇ -Fe 2 O 3 ), maghemite ( ⁇ -Fe 2 O 3 ), and magnetite (magnetite, Fe 3 O 4 )
  • magnetite and maghemite crystal form it is an iron ore crystal form that has strong magnetism, and is advantageous for recovery using magnetism after use of a magnetic dendrimer.
  • the iron oxide particles may optionally further include at least one from manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and gadolinium (Gd).
  • magnetite (Fe 3 O 4 ) is iron oxide that can be used in various fields such as pigments, MRI, drug delivery, and the like, and in the present embodiment, a commercially available one may be used or may be synthesized and used.
  • iron oxide specifically magnetite (Fe 3 O 4 ) particles
  • coprecipitation method pyrolysis method, sol-gel method, combustion method, hydrothermal synthesis method, synthesis using microwave, ball Milling, mechanical-chemical processes, thermal decomposition of organometallic compounds, and the like
  • pyrolysis method sol-gel method
  • combustion method hydrothermal synthesis method
  • synthesis using microwave, ball Milling mechanical-chemical processes, thermal decomposition of organometallic compounds, and the like
  • the shape of the iron oxide particles may be, for example, spherical, rod-shaped, cubic-shaped, hexagonal-shaped, triangular-shaped, hollow-shaped, flower-like structure-shaped, etc., but the synthesis method Considering the stability of the surface energy and the surface area, it may be advantageous to have a spherical shape. However, this may be understood as an exemplary meaning.
  • iron oxide, specifically magnetite (Fe 3 O 4 ) particles are typically nanoscale particles, such as about 100 nm or less, specifically about 35 nm or less, more specifically about 8 to It may have a particle size range of 11 nm, and may also exhibit superparamagnetic properties.
  • the temperature-sensitive material may be a polymer having a property that is reversibly deformed (for example, contracted or expanded) in response to an external stimulus, and specifically, a polymer (hydrogel polymer) that reversibly changes in size according to temperature change. ) Can be.
  • temperature-sensitive substances include poly(N-isopropyl acrylamide) [poly(N-isopropylacrylamide), pNIPAM], poly(N-isopropyl acrylamide-co-allylamine)[poly(N-isopropyl acrylamide- co-allylamine), poly(NIPAM-co-AA)], poly(N-isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate)[poly(Nisopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethylacrylate)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], poly(N-isopropyl
  • n is a degree of polymerization and may be in the range of at least 90, specifically 500 to 1,0000,000, and more specifically 1000 to 50,000.
  • a hydrogel represents LCST (lower critical solution temperature), and in a broad sense, LCST is the maximum temperature at which a polymer can be dissolved in a solvent, and narrowly refers to the temperature at which a polymer loses solubility in an aqueous medium. It can mean. Polymers of this nature expand by hydration and swelling of the polymer chain at a temperature below LCST, while dehydration and contraction at a temperature above or above LCST.
  • LCST lower critical solution temperature
  • the contact temperature between the temperature-sensitive magnetic centered dendrimer and the aqueous medium is controlled to a certain level (eg, LCST) or higher, the particles are contracted.
  • a certain level eg, LCST
  • the LCST of pNIPAM may be approximately 32°C.
  • the temperature-sensitive magnetic centered dendrimer may be represented by the following Chemical Formula 2 or Chemical Formula 3.
  • MNP is a magnetic nanoparticle
  • m is an integer of 1 or more representing the number of generations of the dendrimer
  • n is as described above.
  • the property (dimension) of the magnetic center dendrimer can be changed by controlling the temperature.
  • a specific compound can be captured or encapsulated in the changed magnetic center dendrimer particles, and the distribution characteristics, etc. due to the interaction between the temperature-sensitive magnetic center dendrimer particles can be changed.
  • the temperature-sensitive material is PNIPAM
  • the particle size of the temperature-sensitive magnetic centered dendrimer formed by growing the first generation at a temperature below LCST is, for example, about 10 to 50 nm, specifically about 12 to 30 nm. , More specifically, it may be in the range of about 15 to 20 nm, but this may be understood as an exemplary meaning.
  • the temperature-sensitive magnetic centered dendrimer provides magnetic nanoparticles largely, and a dendrimer structure (branch) is grown generationally based on this to synthesize a magnetic centered dendrimer, and the grown dendrimer It can be prepared by performing a process of attaching a moiety derived from a temperature-sensitive material in a short time.
  • a reaction for synthesizing an amine group-terminated magnetic centered dendrimer and attaching a moiety derived from a temperature-sensitive material thereto may be performed.
  • a reaction for synthesizing a hydroxy group-terminated magnetic centered dendrimer and attaching a moiety derived from a temperature-sensitive material thereto may be performed.
  • a step of substituting the amine group at the end of the magnetic center dendrimer with a hydroxy group may be involved.
  • the surface of the magnetic nanoparticles to functional molecules that is, dendrimers
  • it is modified with, for example, an amino-terminated silane.
  • an amino-terminated silane 3-aminopropyl) triethoxysilane (APTMS) can be used, for example.
  • a dendrimer structure is formed on the magnetic nanoparticles through generational growth, and at least one branched structure is made by reacting the amino group present on the surface of the previously modified magnetic nanoparticles with a dendrimer-forming compound (e.g., methyl acrylate, etc.) And subsequently reacting with a compound containing an amine group (eg, ethylenediamine (EDA)) to synthesize an amine group-terminated magnetic centered dendrimer exemplified as in Formula 4 below.
  • a dendrimer-forming compound e.g., methyl acrylate, etc.
  • EDA ethylenediamine
  • MNP is a magnetic nanoparticle
  • m is as described above.
  • the above-described amine group-containing compound may be used without a separate conversion reaction (amine group-terminated magnetic centered dendrimer), or may be subsequently changed to a hydroxy group (hydroxy group-terminated magnetic centered dendrimer).
  • a temperature-sensitive material specifically, a carboxy group-containing temperature-sensitive material
  • formation of a peptide bond or an ester bond it is ultimately a temperature-sensitive It affects the amount of adhesion of the substance. This will be described separately below.
  • a lactone-based compound for example, ⁇ -buty At least one selected from lolactone (dihydrofuran-2(3H)-one), ⁇ -caprolactone, valerolactone, and the like can be reacted with a compound.
  • the lactone-based compound added to the amine group-terminated magnetic center dendrimer is, for example, about 0.8 to 5 mol, based on 1 mol of the compound containing the amine group (specifically, ethylenediamine) added during the synthesis of the first generation magnetic center dendrimer. (Specifically, about 1 to 3 moles, more specifically about 1.2 to 2 moles) can be added and reacted.
  • a carboxy group-containing temperature-sensitive material that reversibly changes in size according to temperature changes is provided.
  • a temperature-sensitive material a commercially available type may be used, or a polymer product obtained by polymerization reaction of a monomer may be used.
  • the method of manufacturing a temperature-sensitive material is known in the art, detailed descriptions will be omitted.
  • an amine group-terminated magnetic centered dendrimer or (ii) a hydroxy group-terminated magnetic centered dendrimer and a temperature-sensitive material (specifically, a carboxy group-containing temperature-sensitive material) is reacted (i.e., a peptide bond formation reaction or Ester bond formation reaction) to attach a temperature-sensitive moiety to the end of the dendrimer structure.
  • a temperature-sensitive material may be added and reacted.
  • reaction temperature may be, for example, about 20 to 40°C, specifically about 22 to 30°C, and more specifically room temperature, but is not limited thereto.
  • a magnetic centered dendrimer having a temperature-sensitive moiety attached to the terminal may be prepared through a series of reaction processes described above, and may be selectively recovered by performing a conventional post-treatment procedure such as a drying process.
  • the temperature-sensitive magnetic-centered dendrimer uses temperature as an external stimulus source and reversibly changes its size through temperature control. Using these characteristics, it can be applied to various fields.
  • a typical application example of a temperature-sensitive magnetic centered dendrimer is in the water treatment field.
  • a temperature-sensitive magnetic-centered dendrimer is used, and when the temperature exceeds a certain temperature (eg, LCST) by increasing the temperature, the temperature-sensitive moiety rapidly shrinks. It is possible to encapsulate (capture) the aromatic hydrocarbons present in the medium.
  • a certain temperature eg, LCST
  • FIG. 3 the principle of separation by encapsulating an aromatic hydrocarbon using a temperature-sensitive magnetic center dendrimer is schematically illustrated in FIG. 3.
  • the magnetically centered dendrimer in which the aromatic hydrocarbon is encapsulated in this way can be separated and recovered using magnetism.
  • the recovered magnetic-centered dendrimer lowers the temperature so that the shrinked moiety returns to its pre-shrink form to desorb aromatic hydrocarbons, and then, through ultrasonic treatment, the aromatic hydrocarbons remaining between the moieties (e.g., naphthalene, At least one selected from benzene and the like) can be separated. At this time, it can be recycled through a process of removing contaminants such as a simple washing procedure.
  • the amount of the temperature-sensitive magnetic centered dendrimer used for separation of aromatic hydrocarbons is, based on the water treatment medium, for example, about 10% by weight or less, specifically 0.2 to 8% by weight, and more specifically about 0.4. It may be in the range of 5% by weight, but is not limited thereto, and may be changed according to the content (concentration) of the aromatic hydrocarbon in the medium, the type of temperature-sensitive material, the number of generations of the dendrimer, and the like.
  • the emulsion can be stabilized using a temperature-sensitive magnetic center dendrimer, and further, the emulsion (e.g., stabilized emulsion) can be demulsified (phase separated). Is as shown in FIG. 4.
  • an emulsion may be formed by mixing an oil phase and an aqueous phase, wherein oil droplets, which are discontinuous phases, are dispersed in the aqueous phase, which is a continuous phase.
  • the magnetic center dendrimer when the magnetic center dendrimer is added, the magnetic center dendrimer particles surround the oil droplets to form a stable interface with the aqueous phase.
  • the temperature of the emulsion is increased (for example, when the LCST of the temperature-sensitive magnetic center dendrimer is exceeded), the particle size of the magnetic center dendrimer decreases, and the phase is present in an agglomerated state between the oil phase and the aqueous phase. It leads to separation. Thereafter, the magnetic centered dendrimer remaining after separating each phase is separated and recovered using magnetism, and can be recycled through the regeneration procedure as described above.
  • the amount of the temperature-sensitive magnetic centered dendrimer used in the process of stabilizing or demulsifying the emulsion is, for example, about 2% by weight or less, specifically about 0.2 to 1.5% by weight, based on the emulsion. Specifically, it may be in the range of about 0.5 to 1% by weight, but is not limited thereto.
  • ammonium hydroxide and methanol Ethylenediamine, ⁇ -butyrolactone, N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, acetone, diethyl ether, and benzene were purchased from Daejunghwa Geum. All reagents and chemicals used in this example were used as they were obtained without separate purification.
  • Each of the amine group-terminated magnetic center dendrimer and the hydroxy group-terminated magnetic center dendrimer synthesizes an amine group-terminated magnetic center dendrimer, or subsequently replaces the amine group located at the end of the amine group-terminal magnetic center dendrimer with a hydroxy group.
  • the synthesis of the amine group-terminated magnetic centered dendrimer was achieved through generational growth of branches after generating magnetic nanoparticles.
  • MNP magnetic nanoparticles
  • the synthesized magnetic center dendrimer was washed 5 or more times with methanol, dispersed in 20 ml of methanol, 4 ml of ethylenediamine anhydride was added, stirred at room temperature for 3 hours, reacted, and washed with methanol.
  • an amine group-terminated first generation magnetic centered dendrimer G1-NH 2
  • the first-generation amine group-terminated magnetic dendrimer (G1-NH 2 ) before drying was well dispersed in 1 L of methanol, and then ⁇ -butyrolactone 5 ml was added and stirred at room temperature for 3 hours. Then, it was dried at 60° C. for 24 hours and used in the form of a powder.
  • PNIPAM N-isopropylacrylamide
  • PNIPAM poly(N-isopropylacrylamide; PNIPAM) was synthesized by polymerization reaction of the monomer NIPAM. After dissolving 20 g of NIPAM in 100 ml of benzene and adding 1.228 ml of thioglycolic acid, the mixture was bubbled with nitrogen for 30 minutes and heated to 65°C.
  • the carboxy group-terminated PNIPAM and the hydroxy group-terminated magnetic centered dendrimer were synthesized, respectively, and PNIPAM was attached to the end of the magnetic dendrimer through esterification of the carboxy group and the hydroxy group.
  • the synthesis reaction was carried out by setting an input amount of PNIPAM as much as 0.8 times the number of moles of ethylenediamine, which is the last reagent introduced in the synthesis of the magnetic center dendrimer. After dispersing 0.2 g of magnetic center dendrimer in 50 ml of deionized water and performing Sonication treatment for 30 minutes, PNIPAM 12.744 g and 100 ml of deionized water were added, and mixed at room temperature for 24 hours.
  • N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride reagent was added to the two materials and stirred at room temperature for 24 hours, and after the reaction, it was dried at room temperature for 2 days using a vacuum oven.
  • PNIPAM was attached to the end of the magnetic dendrimer through a peptide bond formation reaction between the previously prepared amine group-terminated magnetic center dendrimer and the carboxy group-terminated PNIPAM.
  • the synthesis reaction was carried out by setting an input amount of PNIPAM as much as 0.8 times the number of moles of ethylenediamine, which is the last reagent introduced in the synthesis of the magnetic center dendrimer. After dispersing 0.2 g of amine-terminated magnetic-centered dendrimer in 50 ml of deionized water and performing sonication treatment for 30 minutes, PNIPAM 12.744 g and 100 ml of deionized water were added, and mixed at room temperature for 24 hours. .
  • N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride reagent was added to the two materials and stirred at room temperature for 24 hours, and after the reaction, it was dried at room temperature for 2 days using a vacuum oven.
  • the bonding state was confirmed using FT-IR, and TGA, DLS, and XRD equipment were used to confirm its characteristics.
  • the IR analysis results are shown in FIG. 5A.
  • NIPAM was polymerized with PNIPAM, which was confirmed through amide II binding at 1385 cm -1 and amide I binding at 1634 cm -1.
  • the peak appeared at 1711 cm -1 which was not observed in NIPAM, indicates that the carboxy group was successfully synthesized in PNIPAM.
  • G1 it can be confirmed that the amine group has been changed to a hydroxy group through the peak shown at 3380 cm -1.
  • PNIPAM-COOH is the same as the value of the FT-IR peak described above, and PNIPAM in the amine group-terminal magnetic center dendrimer (G1-NH 2 ) through the peptide bond phase at 3276 cm -1 It can be seen that -COOH is successfully combined.
  • TEM photographs of the hydroxy group-terminated first-generation magnetic centered dendrimer (G1-OH) and temperature-sensitive material (PNIPAM), and SEM photographs of the temperature-sensitive magnetic-centered dendrimer (PNIPAM-g-G1) are respectively shown in FIGS. It is shown in 6c.
  • the size of the hydroxy group-terminated first generation magnetic centered dendrimer (G1) was approximately 10 to 12 nm, but increased to the level of 15 to 20 nm after being combined with PNIPAM (FIG. 6A and Fig. 6b).
  • PNIPAM-g-G1 the temperature-sensitive magnetic centered dendrimer
  • Fig. 7 shows the results of TGA analysis for each of magnetic nanoparticles (MNP), hydroxy group-terminated first generation magnetic centered dendrimers (G1) and temperature-sensitive magnetic centered dendrimers (PNIPAM-g-G1).
  • MNP magnetic nanoparticles
  • G1 hydroxy group-terminated first generation magnetic centered dendrimers
  • PNIPAM-g-G1 temperature-sensitive magnetic centered dendrimers
  • the size (hydrodynamic size) of the hydroxy group-terminated first generation magnetic centered dendrimer (G1) and temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) according to heating and cooling was measured through DLS equipment and shown in FIG.9. I got it. Referring to the drawing, in the case of G1, there was little change in size according to temperature, but the temperature-sensitive magnetic-centered dendrimer was about 185 nm at 25°C, but decreased to about 150 nm at 45°C.
  • the hydrodynamic size rapidly decreased between 30°C and 35°C, which indicates that there is a change in the properties of the temperature-sensitive magnetic centered dendrimer as the temperature increases, and the LCST of the material is about It was confirmed that it was 33°C.
  • the polydispersity has increased to 80% or more, it can be seen that a rapid size change has occurred depending on the temperature.
  • Example 1 In the synthesis of the first-generation magnetic-centered dendrimer (G1) in Example 1, as shown in Table 1 below, a temperature-sensitive magnetic-centered dendrimer was synthesized while changing the molar ratio of EDA: PNIPAM, and organic components contained therein through TGA analysis. The amount of was measured, and the optimal amount of PNIPAM was determined based on the measurement result. However, in the aforementioned synthesis procedure (after mixing for 24 hours, AIBN was added to initiate the reaction and synthesized for 24 hours), the mixing process over 24 hours was excluded.
  • Each resolution experiment was performed using a naphthalene solution and a benzene solution at a concentration of 2 mg/L, and the volume of the solution for each experiment was set to 25 ml.
  • the mixture was stirred at 25° C. for 3 hours using an incubator shaker so that naphthalene and benzene each easily entered into the temperature-sensitive moiety.
  • the temperature was divided into 25° C. and 45° C. over 3 hours, and the experiment was performed while stirring.
  • the first generation magnetic center dendrimer (G1) and temperature-sensitive magnetic center dendrimer were added in the range of 1 to 100 mg, respectively.
  • the first generation magnetic centered dendrimer (G1) and temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) were used to evaluate the emulsion stabilization or phase separation behavior according to temperature, and the results are shown in FIG.
  • the PNIPAM-terminal magnetic center dendrimer aggregates between the aqueous phase and the oil phase in the stabilized emulsion to phase-separate the emulsion, and then it can be separated through external magnetic field control. And it was confirmed that it can be reused.

Abstract

According to the present disclosure, disclosed are a temperature-sensitive magnetic-core dendrimer and a method for preparing same, the magnetic-core dendrimer having temperature-sensitive-material-derived moieties attached to the end thereof and thus being applicable to various fields, including water treatment, through temperature control.

Description

온도감응형 자성중심 덴드리머 및 이의 제조방법Temperature-sensitive magnetic centered dendrimer and its manufacturing method
본 개시 내용은 온도감응형 자성중심 덴드리머 및 이의 제조방법에 관한 것이다. 보다 구체적으로, 본 개시 내용은 자성중심 덴드리머의 말단에 온도감응형 물질로부터 유래하는 모이티가 부착되어 온도 조절을 통하여 수처리를 비롯한 다양한 분야에 적용 가능한 온도감응형 자성중심 덴드리머 및 이의 제조방법에 관한 것이다.The present disclosure relates to a temperature-sensitive magnetic centered dendrimer and a method of manufacturing the same. More specifically, the present disclosure relates to a temperature-sensitive magnetic-centered dendrimer applicable to various fields including water treatment through temperature control by attaching a moiety derived from a temperature-sensitive material to the end of the magnetic-centered dendrimer, and a method of manufacturing the same. will be.
덴드리머(dendrimer)는 규칙적인 가지(branch) 구조를 갖는 거대분자(올리고머 또는 고분자)를 의미할 수 있는데, 이의 분자량 분포는 1에 근접하고, 대략적으로 구형 형상을 갖고 있으며, 그리고 최외각(말단)에 다수의 작용기를 함유하고 있기 때문에 화학적 및/또는 물리적으로 특유한 성상을 나타낸다. 일반적으로, 덴드리머는 중심, 구성단위 및 말단기의 3가지 요소로 이루어진다. 덴드리머의 구성단위를 이루는 가지(branch) 부위는 반복적인 합성을 통하여 세대 성장할 수 있고, 말단 작용기를 용도에 따라 변형시킴으로써 다양하게 활용할 수 있다. 덴드리머의 대표적인 응용 분야로서, 첨가제, 분체 코팅, 약물 전달 시스템, 기능성 담체, 촉매, 센서, 다기능 가교제 등을 예시할 수 있다.Dendrimer can mean a macromolecule (oligomer or polymer) having a regular branch structure, its molecular weight distribution is close to 1, has an approximately spherical shape, and the outermost (end) Since it contains a large number of functional groups, it exhibits chemical and/or physically unique properties. In general, dendrimers consist of three elements: a center, a constituent unit and a terminal group. The branch site constituting the constituent unit of the dendrimer can be grown for generation through repetitive synthesis, and can be used in various ways by modifying the terminal functional group according to the purpose. Typical applications of the dendrimer include additives, powder coatings, drug delivery systems, functional carriers, catalysts, sensors, multifunctional crosslinking agents, and the like.
한편, 자성중심 덴드리머의 경우, 자성을 갖는 중심부에서 가지형 구조를 통하여 세대 성장을 함으로써 외부 자기장에 의하여 조절 가능한 특성을 갖는다. 예를 들면, 자성중심 덴드리머는 다수의 말단기를 가지고 있기 때문에 오염 물질과의 접촉 확률을 증가시켜 제거 효율을 높일 수 있고, 이와 동시에 풍부한 말단 가지 사이의 공간(cavity) 역시 오염물질 제거에 활용할 수 있다. 특히, 덴드리머의 경우, 일반적으로 약물전달 시스템 등에 활용되기는 하나, 자성중심 덴드리머의 경우에는 환경 분야, 예를 들면 오염물질의 흡착 분리 또는 광촉매 반응에 적용 가능한 장점을 갖는다(국내특허공개번호 제2012-140537호, 제2013-8373호 등).On the other hand, in the case of a magnetic-centered dendrimer, it has a characteristic that can be controlled by an external magnetic field by growing generation through a branch-shaped structure in the magnetic center. For example, since magnetic-centered dendrimers have a large number of terminal groups, the removal efficiency can be increased by increasing the probability of contact with contaminants, and at the same time, the abundant cavities between the terminal branches can also be utilized for removing contaminants. have. In particular, dendrimers are generally used in drug delivery systems, but magnetic-centered dendrimers have advantages that can be applied to environmental fields, for example, adsorption separation of pollutants or photocatalytic reactions (Korean Patent Publication No. 2012- 140537, 2013-8373, etc.).
환경 분야, 특히 수처리 분야에서 하폐수에 함유된 방향족 탄화수소 등의 오염물질을 제거하기 위하여 정수용 필터, 촉매를 이용하여 산화 제거하는 방법 등이 알려져 있으나, 필터는 재활용이 어렵고 촉매를 이용한 산화 방식은 금속 촉매를 사용하기 때문에 비경제적이다. 또한, 에멀션 안정화 및 해유화와 같은 계면화학 분야에 있어서, 에멀션의 안정화를 위하여 실리카, 고분자 전해질 등을 이용하는 한편, 해유화를 위하여는 pH, 온도 또는 빛과 같은 외부 자극에 의하여 성상이 변화하는 실리카 등이 활용되었으나, 이러한 물질은 재활용하는데 한계가 있다.In the environmental field, especially in the water treatment field, in order to remove pollutants such as aromatic hydrocarbons contained in wastewater, a filter for water purification and a method of removing oxidation using a catalyst are known, but the filter is difficult to recycle, and the oxidation method using a catalyst is a metal catalyst. It is uneconomical because it uses. In addition, in the field of interfacial chemistry such as emulsion stabilization and demulsification, silica, polymer electrolyte, etc. are used to stabilize the emulsion, while silica whose properties are changed by external stimuli such as pH, temperature, or light for demulsification. Etc. have been utilized, but there is a limit to the recycling of these materials.
본 개시 내용의 일 구체예에서는 자성중심 덴드리머를 기반으로 하되, 이의 말단에 온도감응형 물질(모이티)을 부착한 신규의 자성중심 덴드리머를 제공하고, 더 나아가 온도 조절을 통하여 온도감응형 자성중심 덴드리머의 성상을 변화시킴으로써, 예를 들면 하폐수 내 방향족 탄화수소의 분리, 에멀션 안정화 또는 해유화와 같이 종래 기술에서 구현하기 곤란한 용도에 효과적으로 적용하는 방안을 제공하고자 한다.In one embodiment of the present disclosure, a new magnetic-centered dendrimer is provided based on a magnetic-centered dendrimer, but a temperature-sensitive material (moiety) is attached to the terminal thereof, and furthermore, a temperature-sensitive magnetic-centered through temperature control By changing the properties of the dendrimer, it is intended to provide a method that is effectively applied to applications that are difficult to implement in the prior art, for example, separation of aromatic hydrocarbons in wastewater, emulsion stabilization or demulsification.
본 개시 내용의 제1 면에 따르면,According to the first aspect of this disclosure,
자성나노입자, 덴드리머 구성 유닛 및 상기 덴드리머 구성 유닛의 말단기를 포함하는 자성중심 덴드리머 구조 중 말단기의 적어도 일부에 온도 변화에 따라 가역적으로 크기가 변화하는 온도감응형 물질로부터 유래된 모이티가 부착되어 있는 온도감응형 자성중심 덴드리머가 제공된다. Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit. A temperature sensitive magnetic centered dendrimer is provided.
본 개시 내용의 제2 면에 따르면,According to the second aspect of this disclosure,
a) 아민기-말단 자성중심 덴드리머 또는 히드록시기-말단 자성중심 덴드리머를 제공하는 단계;a) providing an amine group-terminated magnetic centered dendrimer or a hydroxy group-terminated magnetic centered dendrimer;
b) 단계 a)와 별도로, 온도 변화에 따라 가역적으로 크기가 변화하는 카르복시기-함유 온도감응형 물질을 제공하는 단계; 및b) Apart from step a), providing a carboxy group-containing temperature-sensitive material whose size reversibly changes according to temperature change; And
c) 상기 아민기-말단 자성중심 덴드리머 또는 히드록시기-말단 자성중심 덴드리머와 상기 온도감응형 물질을 반응시켜 온도감응형 물질로부터 유래된 모이티를 자성중심 덴드리머의 말단에 부착시키는 단계;c) reacting the amine group-terminated magnetic centered dendrimer or the hydroxy group-terminated magnetic centered dendrimer with the temperature-sensitive material to attach a moiety derived from the temperature-sensitive material to the end of the magnetic centered dendrimer;
를 포함하는 온도감응형 자성중심 덴드리머의 제조방법이 제공된다.There is provided a method of manufacturing a temperature-sensitive magnetic centered dendrimer comprising a.
예시적 구체예에 따르면, 상기 단계 a)는 히드록시기-말단 자성중심 덴드리머를 제공하는 단계로서,According to an exemplary embodiment, step a) is a step of providing a hydroxy group-terminated magnetic centered dendrimer,
아민기 말단의 자성중심 덴드리머를 합성하는 단계; 및 Synthesizing a magnetic center dendrimer at the end of the amine group; And
상기 자성중심 덴드리머 말단의 아민기를 히드록시기로 치환하는 단계;Replacing the amine group at the end of the magnetic center dendrimer with a hydroxy group;
를 포함할 수 있다.It may include.
본 개시 내용의 제3 면에 따르면,According to the third aspect of this disclosure,
자성나노입자, 덴드리머 구성 유닛 및 상기 덴드리머 구성 유닛의 말단기를 포함하는 자성중심 덴드리머 구조 중 말단기의 적어도 일부에 온도 변화에 따라 가역적으로 크기가 변화하는 온도감응형 물질로부터 유래된 모이티가 부착되어 있는 온도감응형 자성중심 덴드리머를 제공하는 단계; 및Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit. Providing a temperature-sensitive magnetic centered dendrimer; And
상기 온도감응형 자성중심 덴드리머가 방향족 탄화수소-함유 수계 매질과 접촉된 상태에서 상기 온도감응형 물질의 LCST 이상으로 승온시킴으로써 상기 수계 매질 내 방향족 탄화수소를 캡슐화하는 단계;Encapsulating the aromatic hydrocarbon in the aqueous medium by raising the temperature above the LCST of the temperature-sensitive material in a state in which the temperature-sensitive magnetic centered dendrimer is in contact with the aromatic hydrocarbon-containing aqueous medium;
를 포함하는 방향족 탄화수소의 분리 방법이 제공된다.A method for separating an aromatic hydrocarbon comprising a is provided.
본 개시 내용의 제4 면에 따르면,According to the fourth aspect of this disclosure,
자성나노입자, 덴드리머 구성 유닛 및 상기 덴드리머 구성 유닛의 말단기를 포함하는 자성중심 덴드리머 구조 중 말단기의 적어도 일부에 온도 변화에 따라 가역적으로 크기가 변화하는 온도감응형 물질로부터 유래된 모이티가 부착되어 있는 온도감응형 자성중심 덴드리머를 제공하는 단계; 및Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit. Providing a temperature-sensitive magnetic centered dendrimer; And
(i) 온도감응형 자성중심 덴드리머를 온도감응형 물질의 LCST 미만에서 오일 상 및 수계 상을 포함하는 에멀션과 접촉시킴으로써 에멀션을 안정화하거나, 또는 (ii) 에멀션을 온도감응형 물질의 LCST 이상으로 승온시킴으로써 오일 상과 수계 상의 상 분리를 수행하는 단계;(i) Stabilizing the emulsion by contacting the temperature-sensitive magnetic centered dendrimer with an emulsion containing an oil phase and an aqueous phase below the LCST of the temperature-sensitive material, or (ii) raising the temperature above the LCST of the temperature-sensitive material. Thereby performing phase separation of the oil phase and the aqueous phase;
를 포함하는 에멀션의 안정화 또는 해유화 방법이 제공된다.There is provided a method for stabilizing or demulsifying an emulsion comprising a.
본 개시 내용의 구체예들에 따르면, 말단에 온도감응형 물질(모이티)이 부착된 자성중심 덴드리머는 기존의 자성 덴드리머에 열 응답성을 부여하여 온도 조절을 통하여 가역적인 크기 변화를 유도함으로써 수계 매질 내 방향족 탄화수소를 자성중심 덴드리머의 공간 내에 캡슐화하여 방향족 탄화수소를 분리(또는 제거)할 수 있고, 또한 오일 상 및 수계 상을 함유하는 에멀션 제조 시 에멀션의 안정화 및/또는 해유화(즉, 오일 상과 수계 상을 분리시킴)를 효과적으로 수행할 수 있다. 더 나아가, 자력을 이용하여 사용된 자성중심 덴드리머를 회수하거나, 재사용할 수 있는 만큼, 경제성 면에서도 유리하다.According to specific examples of the present disclosure, the magnetic-centered dendrimer with a temperature-sensitive material (moiety) attached to the end imparts thermal responsiveness to the existing magnetic dendrimer to induce a reversible size change through temperature control. It is possible to separate (or remove) aromatic hydrocarbons by encapsulating the aromatic hydrocarbons in the medium in the space of the magnetic center dendrimer, and to stabilize and/or demulsify the emulsion (i.e., oil phase) when preparing an emulsion containing an oil phase and an aqueous phase. Separating the and aqueous phase) can be carried out effectively. Furthermore, it is advantageous in terms of economical efficiency as it can recover or reuse the used magnetic-centered dendrimer using magnetic force.
도 1은 예시적 구체예에 따른 온도감응형 자성중심 덴드리머의 구조를 개략적으로 보여주는 도면이고;1 is a diagram schematically showing the structure of a temperature-sensitive magnetic centered dendrimer according to an exemplary embodiment;
도 2a 내지 도 2d는 본 개시 내용의 예시적 구체예에 따라 온도감응형 물질로서 폴리(N-이소프로필 아크릴아미드)[poly(N-isopropylacrylamide), pNIPAM]을 사용하여 온도감응형 자성중심 덴드리머를 합성하는 2가지 방식(히드록시기-말단 자성중심 덴드리머에 PNIPAM-COOH를 반응시키거나, 또는 아민기-말단 자성중심 덴드리머에 PNIPAM-COOH를 반응시킴)의 일련의 과정을 단계 별로 보여주는 반응식이고;2A to 2D illustrate a temperature-sensitive magnetic centered dendrimer using poly(N-isopropylacrylamide) [poly(N-isopropylacrylamide), pNIPAM] as a temperature-sensitive material according to an exemplary embodiment of the present disclosure. It is a reaction formula showing a series of processes of two methods of synthesis (reacting PNIPAM-COOH to a hydroxy group-terminated magnetic center dendrimer, or PNIPAM-COOH to an amine group-terminated magnetic center dendrimer) step by step;
도 3은 예시적 구체예에 따라, 온도감응형 자성중심 덴드리머를 이용하여 방향족 탄화수소를 캡슐화함으로써 분리하는 원리를 개략적으로 도시하는 도면이고;3 is a diagram schematically showing the principle of separation by encapsulating an aromatic hydrocarbon using a temperature-sensitive magnetocentric dendrimer, according to an exemplary embodiment;
도 4는 예시적 구체예에 따라, 온도감응형 자성중심 덴드리머를 이용하여 에멀션을 안정화하고, 더 나아가 안정화된 에멀션을 해유화(상 분리)시키는 일련의 과정을 개념적으로 보여주는 도면이고, 4 is a diagram conceptually showing a series of processes of stabilizing an emulsion using a temperature-sensitive magnetic centered dendrimer and further demulsifying the stabilized emulsion (phase separation) according to an exemplary embodiment,
도 5a는 실시예에서 합성된 히드록시기-말단 1세대 자성중심 덴드리머(G1-OH), 온도감응형 물질(PNIPAM-COOH) 및 이들을 반응시켜 합성된 온도감응형 자성중심 덴드리머(PNIPAM-g-MCD(magnetic-cored dendrimer)) 각각에 대한 FT-IR 분석 결과를 보여주는 그래프이고, 5A is a hydroxy group-terminated first-generation magnetic centered dendrimer (G1-OH), a temperature-sensitive material (PNIPAM-COOH) synthesized in Example, and a temperature-sensitive magnetic-centered dendrimer synthesized by reacting them (PNIPAM-g-MCD ( magnetic-cored dendrimer)) is a graph showing the results of FT-IR analysis,
도 5b는 실시예에서 합성된 아민기-말단 1세대 자성중심 덴드리머(G1-NH 2), 온도감응형물질(PNIPAM-COOH) 및 이들을 반응시켜 합성된 온도감응형 자성중심 덴드리머(PNIPAM-g-MCD(magnetic-cored dendrimer)) 각각에 대한 FT-IR 분석 결과를 보여주는 그래프이고 ;Figure 5b is an amine group-terminated first-generation magnetic centered dendrimer (G1-NH 2 ) synthesized in Example, a temperature-sensitive material (PNIPAM-COOH), and a temperature-sensitive magnetic-centered dendrimer synthesized by reacting them (PNIPAM-g- This is a graph showing the results of FT-IR analysis for each magnetic-cored dendrimer (MCD);
도 6a 및 도 6b는 각각 실시예에서 합성된 1세대 자성중심 덴드리머(G1) 및 열감응형 물질(PNIPAM)의 TEM 사진이고, 도 6c는 온도감응형 자성중심 덴드리머(PNIPAM-g-G1)의 SEM 사진이고;6A and 6B are TEM photographs of a first-generation magnetic centered dendrimer (G1) and a heat-sensitive material (PNIPAM) synthesized in Examples, and FIG. 6C is a temperature-sensitive magnetic-centered dendrimer (PNIPAM-g-G1). This is an SEM picture;
도 7은 실시예에 따라 MNP(magnetic nanoparticle), 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각에 대한 TGA 분석 결과를 보여주는 그래프이고;7 is a graph showing TGA analysis results for each of MNP (magnetic nanoparticle), first generation magnetic centered dendrimer (G1), and temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) according to an embodiment;
도 8은 실시예에서 합성된 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각의 XRD 분석 결과를 보여주는 그래프이고;8 is a graph showing the XRD analysis results of each of the first-generation magnetic centered dendrimers (G1) and temperature-sensitive magnetic centered dendrimers (PNIPAM-g-G1) synthesized in Examples;
도 9는 실시예에서 합성된 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각의 승온 및 냉각에 따른 크기 변화를 나타내는 그래프이고; 9 is a graph showing the size change of the first-generation magnetic centered dendrimer (G1) and the temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) synthesized in Example according to heating and cooling;
도 10a 및 도 10b 각각은 실시예에서 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각을 이용하여 온도에 따른 2가지 방향족 탄화수소(나프탈렌 및 벤젠)의 분리 테스트 결과를 보여주는 그래프(25℃ 및 45℃)이고; 그리고Each of FIGS. 10A and 10B shows the separation of two aromatic hydrocarbons (naphthalene and benzene) according to temperature using a first-generation magnetic-centered dendrimer (G1) and a temperature-sensitive magnetic-centered dendrimer (PNIPAM-g-G1) in Examples. It is a graph showing the test results (25° C. and 45° C.); And
도 11은 실시예에서 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각을 이용하여 온도에 따른 에멀션의 안정화 또는 해유화(상 분리) 거동을 보여주는 사진이다.11 is a photograph showing the stabilization or demulsification (phase separation) behavior of an emulsion according to temperature using a first-generation magnetic-centered dendrimer (G1) and a temperature-sensitive magnetic-centered dendrimer (PNIPAM-g-G1), respectively. .
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다. 또한, 첨부된 도면은 이해를 돕기 위한 것으로, 본 발명이 이에 한정되는 것은 아니며, 개별 구성에 관한 세부 사항은 후술하는 관련 기재의 구체적 취지에 의하여 적절히 이해될 수 있다.The present invention can all be achieved by the following description. The following description should be understood as describing preferred embodiments of the present invention, and the present invention is not necessarily limited thereto. In addition, the accompanying drawings are provided to aid understanding, and the present invention is not limited thereto, and details of individual configurations may be appropriately understood by the specific purpose of the related description to be described later.
"강자성"은 외부 자기장의 부존재 하에서도 자성을 나타내는 물질, 그리고 "초상자성"은 자기장 존재 시에만 강한 자성을 나타내는 특성을 의미할 수 있다."Ferromagnetic" may refer to a material that exhibits magnetism even in the absence of an external magnetic field, and "superparamagnetic" may refer to a property that exhibits strong magnetism only in the presence of a magnetic field.
"나노스케일"은 통상적으로 서브-마이크론 스케일, 예를 들면 약 100 nm 이하의 형태학적 특징(morphology)을 갖는 것을 의미할 수 있다. “Nanoscale” can typically mean a sub-micron scale, eg, having a morphology of about 100 nm or less.
어떠한 구성요소를 "포함"한다고 할 때, 이는 별도의 언급이 없는 한, 다른 구성요소를 더 포함할 수 있음을 의미한다. When a certain component is "included", it means that other components may be further included unless otherwise stated.
"상에" 및 "위에"라는 표현은 상대적인 위치 개념을 언급하기 위하여 사용되는 것으로서, 언급된 층에 다른 구성 요소 또는 층이 직접적으로 존재하는 경우뿐만 아니라, 그 사이에 다른 층(중간층) 또는 구성 요소가 개재되거나 존재할 수 있다. 이와 유사하게, "하측에", "하부에" 및 "아래에"라는 표현 및 "사이에"라는 표현 역시 위치에 대한 상대적 개념으로 이해될 수 있을 것이다. The expressions "on" and "on" are used to refer to the concept of a relative position, as well as when other elements or layers are directly present in the mentioned layer, as well as other layers (intermediate layers) or configurations therebetween. Elements may be intervening or present. Similarly, the expressions “below”, “lower” and “below” and the expressions “between” may also be understood as relative concepts of location.
온도감응형 자성중심 Temperature sensitive magnetic center 덴드리머Dendrimer
본 개시 내용의 일 구체예에 따르면, 온도감응형 물질로부터 유래된 모이티가 덴드리머 구성단위의 말단에 부착(결합)된 결과, 온도 변화에 따라 성상(구체적으로 입자 크기)가 변화하는 온도감응형 자성중심 덴드리머가 제공된다. 이와 관련하여, 온도감응형 자성중심 덴드리머의 예시적인 구조를 도 1에 도시하였다. According to one embodiment of the present disclosure, as a result of attaching (binding) a moiety derived from a temperature-sensitive material to the end of the dendrimer constituent unit, the property (specifically, the particle size) changes according to temperature change. A magnetocentric dendrimer is provided. In this regard, an exemplary structure of a temperature-sensitive magnetic centered dendrimer is shown in FIG. 1.
도 1을 참조하면, 온도감응형 자성중심 덴드리머는 크게 자성나노입자(MNP), 덴드리머 구성 유닛 및 상기 덴드리머 구성 유닛의 말단기의 적어도 일부에 온도감응형 물질로부터 유래된 모이티가 부착되어 있다. Referring to FIG. 1, in the temperature-sensitive magnetic centered dendrimer, a moiety derived from a temperature-sensitive material is attached to at least a part of a magnetic nanoparticle (MNP), a dendrimer constituent unit, and a terminal group of the dendrimer constituent unit.
이와 관련하여, 자성나노입자는 전형적으로 산화 철 입자일 수 있다. 산화 철은 산화 상태에 따라 크게 8가지 종류로 알려져 있다. 본 구체예의 경우, 자성(강자성 또는 초상자성)을 나타내는 산화 철, 대표적으로 헤마타이트(α-Fe 2O 3), 마그헤마이트(γ-Fe 2O 3) 및 자철석(마그네타이트, Fe 3O 4)을 사용할 수 있다. 마그네타이트와 마그헤마이트 결정형의 경우 강한 자성을 가지고 있는 철광석 결정형으로 자성 덴드리머의 사용 후, 자성을 이용한 회수에 유리하다.In this regard, the magnetic nanoparticles may typically be iron oxide particles. Iron oxide is known to be largely in eight types depending on the oxidation state. In the case of this embodiment, iron oxide exhibiting magnetism (ferromagnetic or superparamagnetic), typically hematite (α-Fe 2 O 3 ), maghemite (γ-Fe 2 O 3 ), and magnetite (magnetite, Fe 3 O 4 ) Can be used. In the case of magnetite and maghemite crystal form, it is an iron ore crystal form that has strong magnetism, and is advantageous for recovery using magnetism after use of a magnetic dendrimer.
예시적 구체예에 따르면, 산화 철 입자는, 선택적으로 망간(Mn), 코발트(Co), 니켈(Ni), 아연(Zn) 및 가돌리늄(Gd)으로부터 적어도 하나를 더 포함할 수 있다. 이중 자철석(Fe 3O 4)은 안료, MRI, 약물 전달 등과 같은 다양한 분야에서 사용 가능한 산화 철로서, 본 구체예에서는 시판 중인 것을 사용하거나, 또는 합성하여 사용할 수도 있다. 산화 철, 구체적으로 자철석(Fe 3O 4) 입자의 합성을 위하여, 당업계에 공지되어 있는 바, 예를 들면 공침법, 열분해법, 졸-겔법, 연소법, 수열 합성법, 마이크로파를 이용한 합성, 볼 밀링, 기계-화학적 공정, 유기금속 화합물의 열 분해법 등을 이용할 수 있다. According to an exemplary embodiment, the iron oxide particles may optionally further include at least one from manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and gadolinium (Gd). Among them, magnetite (Fe 3 O 4 ) is iron oxide that can be used in various fields such as pigments, MRI, drug delivery, and the like, and in the present embodiment, a commercially available one may be used or may be synthesized and used. For the synthesis of iron oxide, specifically magnetite (Fe 3 O 4 ) particles, as known in the art, for example, coprecipitation method, pyrolysis method, sol-gel method, combustion method, hydrothermal synthesis method, synthesis using microwave, ball Milling, mechanical-chemical processes, thermal decomposition of organometallic compounds, and the like can be used.
예시적 구체예에 따르면, 산화 철 입자의 형상은, 예를 들면 구형, 로드-형, 큐빅-형, 육각-형, 삼각-형, 중공-형, 꽃과 같은 구조-형 등일 수 있으나, 합성법, 표면 에너지의 안정성, 표면적을 고려하면 구형을 갖는 것이 유리할 수 있다. 다만, 이는 예시적 의미로 이해될 수 있다. 예시적 구체예에 따르면, 산화 철, 구체적으로 자철석(Fe 3O 4) 입자는 전형적으로 나노스케일의 입자로서, 예를 들면 약 100 nm 이하, 구체적으로 약 35 nm 이하, 보다 구체적으로 약 8 내지 11 nm 범위의 입도 범위를 가질 수 있고, 또한 초상자성을 나타낼 수 있다.According to an exemplary embodiment, the shape of the iron oxide particles may be, for example, spherical, rod-shaped, cubic-shaped, hexagonal-shaped, triangular-shaped, hollow-shaped, flower-like structure-shaped, etc., but the synthesis method Considering the stability of the surface energy and the surface area, it may be advantageous to have a spherical shape. However, this may be understood as an exemplary meaning. According to an exemplary embodiment, iron oxide, specifically magnetite (Fe 3 O 4 ) particles, are typically nanoscale particles, such as about 100 nm or less, specifically about 35 nm or less, more specifically about 8 to It may have a particle size range of 11 nm, and may also exhibit superparamagnetic properties.
한편, 온도감응형 물질은 외부 자극에 응답하여 가역적으로 변형(예를 들면, 수축 또는 팽창)되는 특성을 갖는 고분자일 수 있으며, 구체적으로 온도 변화에 따라 가역적으로 크기가 변화하는 고분자(하이드로겔 고분자)일 수 있다.On the other hand, the temperature-sensitive material may be a polymer having a property that is reversibly deformed (for example, contracted or expanded) in response to an external stimulus, and specifically, a polymer (hydrogel polymer) that reversibly changes in size according to temperature change. ) Can be.
이러한 온도감응형 물질의 예는 폴리(N-이소프로필 아크릴아미드)[poly(N-isopropylacrylamide), pNIPAM], 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isopropyl acrylamide-co-allylamine), poly(NIPAM-co-AA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 메타아크릴레이트)[poly(Nisopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸아크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필 아크릴아미드-co-아크릴산)[poly(N-isopropyl acrylamide-co-acrylic acid), poly(NIPAM-co-AAc)], 폴리(N-이소프로필 아크릴아미드-co-메타아크릴산)[poly(N-isopropyl acrylamide-co-methacrylic acid), poly(NIPAM-co-MAAc)], 폴리(N,N-디에틸아크릴아미드)[poly(N,N-diethylacrylamide)], 폴리(N-비닐카프롤락탐)[poly(N-vinlycaprolactam)], 폴리(에틸렌글리콜)[poly(ethylene glycol)], 폴리(에틸렌글리콜-b-프로필렌글리콜-b-에틸렌글리콜)[poly(ethylene glycol-b-propylene glycol-b-ethylene glycol)], 폴리비닐 메틸 에테르(polyvinyl methyl ether)로 이루어진 군에서 선택되는 적어도 하나일 수 있다. 보다 구체적으로, 상기 예시된 종류 중 카르복시기를 갖는 종류를 사용할 수 있으며, 특히 구체적으로 하기 화학식 1로 표시되는 폴리(N-이소프로필 아크릴아미드)(pNIPAM)일 수 있다.Examples of such temperature-sensitive substances include poly(N-isopropyl acrylamide) [poly(N-isopropylacrylamide), pNIPAM], poly(N-isopropyl acrylamide-co-allylamine)[poly(N-isopropyl acrylamide- co-allylamine), poly(NIPAM-co-AA)], poly(N-isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate)[poly(Nisopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethylacrylate)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], poly(N-isopropyl acrylamide-co-acrylic acid) [poly(N-isopropyl acrylamide-co-acrylic acid), poly(NIPAM-co-AAc)], Poly(N-isopropyl acrylamide-co-methacrylic acid)[poly(N-isopropyl acrylamide-co-methacrylic acid), poly(NIPAM-co-MAAc)], poly(N,N-diethylacrylamide)[ poly(N,N-diethylacrylamide)], poly(N-vinylcaprolactam)[poly(N-vinlycaprolactam)], poly(ethylene glycol)[poly(ethylene glycol)], poly(ethylene glycol-b-propylene glycol -b-ethylene glycol) [poly(ethylene glycol-b-propylene glycol-b-ethylene glycol)], and may be at least one selected from the group consisting of polyvinyl methyl ether. More specifically, among the exemplified types, a type having a carboxyl group may be used, and in particular, it may be poly(N-isopropyl acrylamide) (pNIPAM) represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Figure PCTKR2020012370-appb-img-000001
Figure PCTKR2020012370-appb-img-000001
상기 식에서, n은 중합도로서 적어도 90, 구체적으로 500 내지 1,0000,000, 보다 구체적으로 1000 내지 50,000의 범위일 수 있다.In the above formula, n is a degree of polymerization and may be in the range of at least 90, specifically 500 to 1,0000,000, and more specifically 1000 to 50,000.
상기 예시된 고분자는 온도 변화에 가역적인 응답성을 통하여 부피 팽창 또는 부피 수축을 통하여 전체 입자의 크기가 변화하게 된다. 구체적으로, 하이드로겔은 LCST(lower critical solution temperature)를 나타내는 바, LCST는 광의로는 고분자가 용매 내에서 용해될 수 있는 최대 온도이고, 협의로는 고분자가 수계 매질 내에서 용해도를 상실하는 온도를 의미할 수 있다. 이러한 성상의 고분자는 LCST 미만의 온도에서 고분자 사슬이 수화되어 팽윤됨으로써 팽창하는 반면, LCST 또는 이를 초과하는 온도에서는 탈수되어 수축된다.The exemplified polymer changes the size of the entire particle through volume expansion or volume contraction through a reversible response to temperature changes. Specifically, a hydrogel represents LCST (lower critical solution temperature), and in a broad sense, LCST is the maximum temperature at which a polymer can be dissolved in a solvent, and narrowly refers to the temperature at which a polymer loses solubility in an aqueous medium. It can mean. Polymers of this nature expand by hydration and swelling of the polymer chain at a temperature below LCST, while dehydration and contraction at a temperature above or above LCST.
상술한 거동에 따라, 온도감응형 자성중심 덴드리머와 수계 매질과의 접촉 온도를 일정 수준(예를 들면 LCST) 또는 그 이상으로 조절할 경우에는 해당 입자가 수축된다. 이와 관련하여, pNIPAM의 LCST는 대략 32℃일 수 있다.According to the above-described behavior, when the contact temperature between the temperature-sensitive magnetic centered dendrimer and the aqueous medium is controlled to a certain level (eg, LCST) or higher, the particles are contracted. In this regard, the LCST of pNIPAM may be approximately 32°C.
예시적 구체예에 따르면, 온도감응형 자성중심 덴드리머는 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.According to an exemplary embodiment, the temperature-sensitive magnetic centered dendrimer may be represented by the following Chemical Formula 2 or Chemical Formula 3.
[화학식 2][Formula 2]
Figure PCTKR2020012370-appb-img-000002
Figure PCTKR2020012370-appb-img-000002
[화학식 3][Formula 3]
Figure PCTKR2020012370-appb-img-000003
Figure PCTKR2020012370-appb-img-000003
상기 식에서, MNP는 자성 나노입자이며, m은 덴드리머의 세대수를 나타내는 1 이상의 정수이고, 그리고 n은 전술한 바와 같다. In the above formula, MNP is a magnetic nanoparticle, m is an integer of 1 or more representing the number of generations of the dendrimer, and n is as described above.
이처럼, 온도감응형 물질로부터 유래된 모이티가 자성중심 덴드리머의 말단에 위치함에 따라 온도를 조절하여 자성중심 덴드리머의 성상(치수)을 변화시킬 수 있다. 상술한 특성을 이용하여 특정 화합물을 변화된 자성중심 덴드리머 입자 내에 포획 또는 캡슐화할 수 있고, 또한 온도감응형 자성중심 덴드리머 입자 간 상호작용에 의한 분포 특성 등을 변경할 수 있다. In this way, as the moiety derived from the temperature-sensitive material is located at the end of the magnetic center dendrimer, the property (dimension) of the magnetic center dendrimer can be changed by controlling the temperature. By using the above-described properties, a specific compound can be captured or encapsulated in the changed magnetic center dendrimer particles, and the distribution characteristics, etc. due to the interaction between the temperature-sensitive magnetic center dendrimer particles can be changed.
예시적으로, 온도감응형 물질이 PNIPAM이고, 1세대 성장시켜 형성된 온도감응형 자성중심 덴드리머의 LCST 미만의 온도에서의 입자 사이즈는, 예를 들면 약 10 내지 50 nm, 구체적으로 약 12 내지 30 nm, 보다 구체적으로 약 15 내지 20 nm 범위일 수 있으나, 이는 예시적인 의미로 이해될 수 있다.Exemplarily, the temperature-sensitive material is PNIPAM, and the particle size of the temperature-sensitive magnetic centered dendrimer formed by growing the first generation at a temperature below LCST is, for example, about 10 to 50 nm, specifically about 12 to 30 nm. , More specifically, it may be in the range of about 15 to 20 nm, but this may be understood as an exemplary meaning.
온도감응형 자성중심 Temperature sensitive magnetic center 덴드리머Dendrimer 입자의 제조 Preparation of particles
본 개시 내용의 일 구체예에 따르면, 온도감응형 자성중심 덴드리머는 크게 자성나노입자를 제공하고, 이를 중심으로 하여 덴드리머 구조(가지)를 세대성장시킴으로써 자성중심 덴드리머를 합성하고, 성장된 덴드리머의 말단기에 온도감응형 물질로부터 유래하는 모이티를 부착하는 과정을 수행하는 방식으로 제조될 수 있다. According to one embodiment of the present disclosure, the temperature-sensitive magnetic centered dendrimer provides magnetic nanoparticles largely, and a dendrimer structure (branch) is grown generationally based on this to synthesize a magnetic centered dendrimer, and the grown dendrimer It can be prepared by performing a process of attaching a moiety derived from a temperature-sensitive material in a short time.
예시적 구체예에 따르면, 아민기-말단 자성중심 덴드리머를 합성하고, 이에 온도감응형 물질로부터 유래하는 모이티를 부착하기 위한 반응을 수행할 수 있다. According to an exemplary embodiment, a reaction for synthesizing an amine group-terminated magnetic centered dendrimer and attaching a moiety derived from a temperature-sensitive material thereto may be performed.
택일적 구체예에 따르면, 히드록시기-말단 자성중심 덴드리머를 합성하고, 이에 온도감응형 물질로부터 유래하는 모이티를 부착하기 위한 반응을 수행할 수 있다. 이 경우, 아민기 말단-자성중심 덴드리머를 합성한 후에, 자성중심 덴드리머 말단의 아민기를 히드록시기로 치환하는 단계를 수반할 수 있다. According to an alternative embodiment, a reaction for synthesizing a hydroxy group-terminated magnetic centered dendrimer and attaching a moiety derived from a temperature-sensitive material thereto may be performed. In this case, after synthesizing the amine group end-magnetic center dendrimer, a step of substituting the amine group at the end of the magnetic center dendrimer with a hydroxy group may be involved.
이와 관련하여, 자성나노입자의 표면을 기능성 분자, 즉 덴드리머와 결합(공유결합)시키기 위하여, 예를 들면 아미노-말단 실란으로 개질한다. 이러한 아미노-말단 실란으로서, 예를 들면 (3-aminopropyl) triethoxysilane(APTMS)을 사용할 수 있다. 그 다음, 세대 성장을 통하여 자성나노입자에 덴드리머 구조를 형성하는데, 앞서 개질된 자성나노입자의 표면에 존재하는 아미노기와 덴드리머 형성 화합물(예를 들면 메틸 아크릴레이트 등)을 반응시켜 적어도 하나의 가지 구조를 형성하고, 후속적으로 아민기를 함유하는 화합물(예를 들면, 에틸렌디아민(EDA))과 반응시킴으로써 하기 화학식 4와 같이 예시되는 아민기-말단 자성중심 덴드리머를 합성할 수 있다.In this regard, in order to bond (covalently bond) the surface of the magnetic nanoparticles to functional molecules, that is, dendrimers, it is modified with, for example, an amino-terminated silane. As such an amino-terminated silane, (3-aminopropyl) triethoxysilane (APTMS) can be used, for example. Next, a dendrimer structure is formed on the magnetic nanoparticles through generational growth, and at least one branched structure is made by reacting the amino group present on the surface of the previously modified magnetic nanoparticles with a dendrimer-forming compound (e.g., methyl acrylate, etc.) And subsequently reacting with a compound containing an amine group (eg, ethylenediamine (EDA)) to synthesize an amine group-terminated magnetic centered dendrimer exemplified as in Formula 4 below.
[화학식 4][Formula 4]
Figure PCTKR2020012370-appb-img-000004
Figure PCTKR2020012370-appb-img-000004
상기 식에서, MNP는 자성 나노입자이며, m은 전술한 바와 같다.In the above formula, MNP is a magnetic nanoparticle, and m is as described above.
상술한 아민기를 함유하는 화합물은 별도의 추가적인 전환 반응 없이 사용하거나(아민기-말단 자성중심 덴드리머), 또는 후속적으로 히드록시기로 변경할 수 있다(히드록시기-말단 자성중심 덴드리머).The above-described amine group-containing compound may be used without a separate conversion reaction (amine group-terminated magnetic centered dendrimer), or may be subsequently changed to a hydroxy group (hydroxy group-terminated magnetic centered dendrimer).
이와 같이 얻어진 자성중심 덴드리머의 말단에 위치하는 아민기 또는 히드록시기가 온도감응형 물질(구체적으로, 카르복시기-함유 온도감응형 물질)과 반응(펩티드 결합 또는 에스테르 결합 형성)하는 만큼, 궁극적으로 온도감응형 물질의 부착량에 영향을 미치게 된다. 이에 관하여는 하기에서 별도로 기술하기로 한다. As the amine group or hydroxy group located at the end of the magnetic centered dendrimer thus obtained reacts with a temperature-sensitive material (specifically, a carboxy group-containing temperature-sensitive material) (formation of a peptide bond or an ester bond), it is ultimately a temperature-sensitive It affects the amount of adhesion of the substance. This will be described separately below.
한편, 예시적 구체예에 따르면, 히드록시기-말단의 자성중심 덴드리머를 제조하는 경우, 앞서 합성된 자성중심 덴드리머 중 말단에 위치하는 아민기를 히드록시기로 전환시키기 위하여, 락톤계 화합물, 예를 들면 γ-부티로락톤(디하이드로퓨란-2(3H)-온), ε-카프로락톤, 발레로락톤 등으로부터 적어도 하나가 선택되는 화합물과 반응시킬 수 있다. 이때, 아민기-말단 자성중심 덴드리머에 투입되는 락톤계 화합물은, 1세대 자성중심 덴드리머 합성 시 투입된 아민기를 함유하는 화합물(구체적으로 에틸렌디아민) 1 몰을 기준으로, 예를 들면 약 0.8 내지 5 몰(구체적으로 약 1 내지 3 몰, 보다 구체적으로 약 1.2 내지 2 몰)에 상당하는 량으로 투입하여 반응시킬 수 있다. On the other hand, according to an exemplary embodiment, in the case of preparing a hydroxy group-terminated magnetic centered dendrimer, in order to convert the amine group located at the terminal of the previously synthesized magnetic centered dendrimer into a hydroxy group, a lactone-based compound, for example, γ-buty At least one selected from lolactone (dihydrofuran-2(3H)-one), ε-caprolactone, valerolactone, and the like can be reacted with a compound. At this time, the lactone-based compound added to the amine group-terminated magnetic center dendrimer is, for example, about 0.8 to 5 mol, based on 1 mol of the compound containing the amine group (specifically, ethylenediamine) added during the synthesis of the first generation magnetic center dendrimer. (Specifically, about 1 to 3 moles, more specifically about 1.2 to 2 moles) can be added and reacted.
전술한 단계와 별도로, 온도 변화에 따라 가역적으로 크기가 변화하는 카르복시기-함유 온도감응형 물질을 제공한다. 이러한 온도감응형 물질은 시판 중인 종류를 사용하거나, 또는 단량체를 중합 반응시켜 얻어진 고분자 생성물을 사용할 수도 있다. 온도감응형 물질의 제조 방법은 당업계에 공지된 만큼, 세부적인 설명은 생략하기로 한다.Apart from the above-described steps, a carboxy group-containing temperature-sensitive material that reversibly changes in size according to temperature changes is provided. As such a temperature-sensitive material, a commercially available type may be used, or a polymer product obtained by polymerization reaction of a monomer may be used. As the method of manufacturing a temperature-sensitive material is known in the art, detailed descriptions will be omitted.
그 다음, (i) 아민기-말단 자성중심 덴드리머, 또는 (ii) 히드록시기-말단 자성중심 덴드리머와 온도감응형 물질(구체적으로 카르복시기-함유 온도감응형 물질)을 반응(즉, 펩티드 결합 형성 반응 또는 에스테르 결합 형성 반응)시켜 덴드리머 구조의 말단에 온도감응형 모이티를 부착시킬 수 있다. 예를 들면, 아민기-말단 자성중심 덴드리머 또는 히드록시기-말단 자성중심 덴드리머의 수분산물을 제조한 후에 온도감응형 물질을 첨가하여 반응시킬 수 있다. 이와 관련하여, 앞서 아민기-말단 자성중심 덴드리머 제조 시 사용된 아민기를 함유하는 화합물(예를 들면 EDA 등) 1몰을 기준으로 예를 들면 약 0.4 내지 1.5 몰, 구체적으로 약 0.6 내지 1.2 몰, 보다 구체적으로 약 0.7 내지 0.9 몰의 카르복시기-함유 온도감응형 물질을 사용할 수 있다. 이때, 반응온도는, 예를 들면 약 20 내지 40℃, 구체적으로 약 22 내지 30℃, 보다 구체적으로 상온일 수 있으나, 반드시 이에 한정되는 것은 아니다. 이와 관련하여, 온도감응형 물질로서 폴리(N-이소프로필 아크릴아미드)[poly(N-isopropylacrylamide), pNIPAM]을 사용하여 온도감응형 자성중심 덴드리머를 합성하는 일련의 과정(2가지 방식)을 단계 별로 보여주는 반응식은 도 2a 내지 도 2d에 도시된 바와 같다.Then, (i) an amine group-terminated magnetic centered dendrimer, or (ii) a hydroxy group-terminated magnetic centered dendrimer and a temperature-sensitive material (specifically, a carboxy group-containing temperature-sensitive material) is reacted (i.e., a peptide bond formation reaction or Ester bond formation reaction) to attach a temperature-sensitive moiety to the end of the dendrimer structure. For example, after preparing an aqueous dispersion of an amine group-terminated magnetic centered dendrimer or a hydroxy group-terminated magnetic centered dendrimer, a temperature-sensitive material may be added and reacted. In this regard, for example, about 0.4 to 1.5 moles, specifically about 0.6 to 1.2 moles, based on 1 mole of a compound containing an amine group (e.g., EDA, etc.) used in the manufacture of the amine group-terminated magnetic center dendrimer, More specifically, about 0.7 to 0.9 moles of a carboxy group-containing temperature-sensitive material may be used. In this case, the reaction temperature may be, for example, about 20 to 40°C, specifically about 22 to 30°C, and more specifically room temperature, but is not limited thereto. In this regard, a series of processes (two methods) for synthesizing a temperature-sensitive magnetic-centered dendrimer using poly(N-isopropylacrylamide) [poly(N-isopropylacrylamide), pNIPAM] as a temperature-sensitive material are performed. The reaction equations shown by each are as shown in FIGS. 2A to 2D.
상술한 일련의 반응 과정을 거쳐 온도감응형 모이티가 말단에 부착된 자성중심 덴드리머를 제조할 수 있고, 선택적으로 건조 과정과 같은 통상의 후처리 절차를 수행하여 회수될 수 있다.A magnetic centered dendrimer having a temperature-sensitive moiety attached to the terminal may be prepared through a series of reaction processes described above, and may be selectively recovered by performing a conventional post-treatment procedure such as a drying process.
온도감응형 자성중심 Temperature sensitive magnetic center 덴드리머의Dendrimer 용도 Usage
본 개시 내용의 일 구체예에 따르면, 온도감응형 자성중심 덴드리머는 온도를 외부 자극원으로 하고, 온도 조절을 통하여 가역적으로 크기가 변화하게 된다. 이러한 특성을 이용하여 다양한 분야에 적용될 수 있다.According to one embodiment of the present disclosure, the temperature-sensitive magnetic-centered dendrimer uses temperature as an external stimulus source and reversibly changes its size through temperature control. Using these characteristics, it can be applied to various fields.
온도감응형 자성중심 덴드리머의 대표적인 적용 예는 수처리 분야이다. 구체적으로, 방향족 탄화수소가 함유되어 있는 하폐수 처리 시, 온도감응형 자성중심 덴드리머를 사용하고, 온도를 증가시켜 일정 온도(예를 들면, LCST)를 초과할 경우, 온도감응형 모이티가 급격히 수축하면서 매질 내에 존재하는 방향족 탄화수소를 캡슐화(포획)할 수 있다. 이와 관련하여, 온도감응형 자성중심 덴드리머를 이용하여 방향족 탄화수소를 캡슐화함으로써 분리하는 원리를 도 3에 개략적으로 도시하였다. 이와 같이 방향족 탄화수소가 캡슐화된 자성중심 덴드리머는 자성을 이용하여 분리 및 회수할 수 있다. A typical application example of a temperature-sensitive magnetic centered dendrimer is in the water treatment field. Specifically, when treating wastewater containing aromatic hydrocarbons, a temperature-sensitive magnetic-centered dendrimer is used, and when the temperature exceeds a certain temperature (eg, LCST) by increasing the temperature, the temperature-sensitive moiety rapidly shrinks. It is possible to encapsulate (capture) the aromatic hydrocarbons present in the medium. In this regard, the principle of separation by encapsulating an aromatic hydrocarbon using a temperature-sensitive magnetic center dendrimer is schematically illustrated in FIG. 3. The magnetically centered dendrimer in which the aromatic hydrocarbon is encapsulated in this way can be separated and recovered using magnetism.
이후, 회수된 자성중심 덴드리머는 온도를 낮추어 수축된 모이티가 수축 전 형태로 복귀하도록 하여 방향족 탄화수소를 탈착시키고, 그 다음 초음파처리를 통하여 모이티 사이에 잔류하는 방향족 탄화수소(예를 들면, 나프탈렌, 벤젠 등으로부터 선택되는 적어도 하나)를 분리할 수 있다. 이때, 간단한 세척 절차와 같은 오염 불질 제거 과정을 거쳐 재활용할 수 있다. 예시적 구체예에 따르면, 방향족 탄화수소 분리에 사용되는 온도감응형 자성중심 덴드리머의 사용량은, 수처리 매질 기준으로, 예를 들면 약 10 중량% 이하, 구체적으로 0.2 내지 8 중량%, 보다 구체적으로 약 0.4 내지 5 중량% 범위일 수 있으나, 반드시 이에 한정되는 것은 아니며, 매질 내 방향족 탄화수소의 함량(농도), 온도감응형 물질의 종류, 덴드리머의 세대 수 등에 따라 변경 가능하다. Thereafter, the recovered magnetic-centered dendrimer lowers the temperature so that the shrinked moiety returns to its pre-shrink form to desorb aromatic hydrocarbons, and then, through ultrasonic treatment, the aromatic hydrocarbons remaining between the moieties (e.g., naphthalene, At least one selected from benzene and the like) can be separated. At this time, it can be recycled through a process of removing contaminants such as a simple washing procedure. According to an exemplary embodiment, the amount of the temperature-sensitive magnetic centered dendrimer used for separation of aromatic hydrocarbons is, based on the water treatment medium, for example, about 10% by weight or less, specifically 0.2 to 8% by weight, and more specifically about 0.4. It may be in the range of 5% by weight, but is not limited thereto, and may be changed according to the content (concentration) of the aromatic hydrocarbon in the medium, the type of temperature-sensitive material, the number of generations of the dendrimer, and the like.
다른 예시적 구체예에 따르면, 온도감응형 자성중심 덴드리머를 이용하여 에멀션을 안정화하고, 더 나아가 에멀션(예를 들면, 안정화된 에멀션)을 해유화(상 분리)시킬 수 있는 바, 이러한 일련의 과정은 도 4에 도시된 바와 같다. According to another exemplary embodiment, the emulsion can be stabilized using a temperature-sensitive magnetic center dendrimer, and further, the emulsion (e.g., stabilized emulsion) can be demulsified (phase separated). Is as shown in FIG. 4.
상기 도면을 참조하면, 오일 상과 수계 상을 혼합하여 에멀션을 형성할 수 있는 바, 이때 불연속 상인 오일 액적이 연속상인 수계 상에 분산되어 있다. 이때, 자성중심 덴드리머를 첨가할 경우, 자성중심 덴드리머 입자가 오일 액적 주변을 둘러싸면서 수계 상과 안정적인 계면을 형성할 수 있다. 반면, 에멀션의 온도를 증가시킬 경우(예를 들면, 온도감응형 자성중심 덴드리머의 LCST를 초과할 경우)에는 자성중심 덴드리머 입자 크기가 감소하면서 오일 상과 수계 상 사이에 응집된 상태로 존재함으로써 상 분리를 유도하게 된다. 이후, 각각의 상을 분리하고 남은 자성중심 덴드리머는 자성을 이용하여 분리 회수하고, 전술한 바와 같이 재생 절차를 통하여 재활용 가능하다.Referring to the drawing, an emulsion may be formed by mixing an oil phase and an aqueous phase, wherein oil droplets, which are discontinuous phases, are dispersed in the aqueous phase, which is a continuous phase. At this time, when the magnetic center dendrimer is added, the magnetic center dendrimer particles surround the oil droplets to form a stable interface with the aqueous phase. On the other hand, when the temperature of the emulsion is increased (for example, when the LCST of the temperature-sensitive magnetic center dendrimer is exceeded), the particle size of the magnetic center dendrimer decreases, and the phase is present in an agglomerated state between the oil phase and the aqueous phase. It leads to separation. Thereafter, the magnetic centered dendrimer remaining after separating each phase is separated and recovered using magnetism, and can be recycled through the regeneration procedure as described above.
예시적 구체예에 따르면, 에멀션의 안정화 또는 해유화 과정에서 사용되는 온도감응형 자성중심 덴드리머의 사용량은, 에멀션을 기준으로 예를 들면 약 2 중량% 이하, 구체적으로 약 0.2 내지 1.5 중량%, 보다 구체적으로 약 0.5 내지 1 중량% 범위일 수 있으나, 반드시 이에 한정되는 것은 아니다.According to an exemplary embodiment, the amount of the temperature-sensitive magnetic centered dendrimer used in the process of stabilizing or demulsifying the emulsion is, for example, about 2% by weight or less, specifically about 0.2 to 1.5% by weight, based on the emulsion. Specifically, it may be in the range of about 0.5 to 1% by weight, but is not limited thereto.
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다. The present invention may be more clearly understood by the following examples, and the following examples are for illustrative purposes only and are not intended to limit the scope of the invention.
본 실시예에서 사용된 물질 및 장비는 하기와 같다.Materials and equipment used in this example are as follows.
- 염화제2철·6수화물(Ferric chloride hexahydrate, FeCl 3ㅇ6H 2O), 메틸아크릴레이트, 2,2'-Azobis(2-methylpropionitrile; AIBN)는 JUNSEI 사에서 구입하였으며, (3-Aminopropyl)triethoxysilane(APTES), 티오글리콜산(Thioglycolic acid)은 Sigma Aldrich사로부터 구입하였다. 황산제일철·7수화물(Iron(Ⅱ) Sulfate heptahydrate, FeSO 4ㅇ7H 2O)는 삼전순약공업의 제품을 사용하였으며, N-isopropylacrylamide (NIPAM)는 TCI사 제품을 사용하였다, 또한, 수산화암모늄, 메탄올, 에틸렌디아민, γ-부티로락톤, N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, 아세톤, 디에틸 에테르, 및 벤젠은 대정화금으로부터 구입하였다. 본 실시예에서 사용된 모든 시약 및 화학물질은 별도의 정제 없이 입수한 상태 그대로 사용하였다.-Ferric chloride hexahydrate (FeCl 3 ㅇ6H 2 O), methyl acrylate, 2,2'-Azobis (2-methylpropionitrile; AIBN) was purchased from JUNSEI, (3-Aminopropyl) Triethoxysilane (APTES) and thioglycolic acid were purchased from Sigma Aldrich. Ferrous sulfate heptahydrate (Iron(II) Sulfate heptahydrate, FeSO 4 ㅇ7H 2 O) was manufactured by Samjeon Pure Chemical Industries, and N-isopropylacrylamide (NIPAM) was manufactured by TCI. Also, ammonium hydroxide and methanol , Ethylenediamine, γ-butyrolactone, N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, acetone, diethyl ether, and benzene were purchased from Daejunghwa Geum. All reagents and chemicals used in this example were used as they were obtained without separate purification.
- FT-IR (Fourier transform infrared spectroscopy)은 PerkinElmer사의 제품명 Spectrum Two을 사용하였고, TGA는 TA Instruments사의 제품명 SDT Q600 (Auto-DSCQ20 System) 을 사용하였으며, 그리고 DLS는 Malvern사의 제품명 Zeta Sizer Nano-ZS90을 사용하였다. 또한, 합성된 입자의 결정구조 및 형상은 XRD(Rigaku사의 제품명 SmartLab), TEM (JEOL사의 제품명 JEM 2100F) 및 SEM(FEI사의 제품명 Nova Nano Sem 450)을 이용하여 분석하였다. -FT-IR (Fourier transform infrared spectroscopy) uses PerkinElmer's product name Spectrum Two, TGA uses TA Instruments' product name SDT Q600 (Auto-DSCQ20 System), and DLS uses Malvern's product name Zeta Sizer Nano-ZS90. Was used. In addition, the crystal structure and shape of the synthesized particles were analyzed using XRD (Rigaku's product name SmartLab), TEM (JEOL's product name JEM 2100F) and SEM (FEI's product name Nova Nano Sem 450).
실시예 1Example 1
- 아민기-말단 자성중심 덴드리머 및 히드록시기-말단 자성중심 덴드리머 각각의 합성(도 2a 참조)-Synthesis of amine group-terminal magnetic centered dendrimer and hydroxy group-terminal magnetic centered dendrimer (see Fig. 2a)
아민기-말단 자성중심 덴드리머 및 히드록시기-말단 자성중심 덴드리머 각각은 아민기-말단 자성중심 덴드리머를 합성하거나, 또는 후속적으로 아민기-말단 자성중심 덴드리머의 말단에 위치하는 아민기를 히드록시기로 치환하는 방식으로 제조하였다. 이때, 아민기-말단 자성중심 덴드리머의 합성은 자성을 갖는 나노입자를 생성한 후에, 이를 중심으로 가지의 세대성장을 통하여 이루어졌다. Each of the amine group-terminated magnetic center dendrimer and the hydroxy group-terminated magnetic center dendrimer synthesizes an amine group-terminated magnetic center dendrimer, or subsequently replaces the amine group located at the end of the amine group-terminal magnetic center dendrimer with a hydroxy group. Was prepared. At this time, the synthesis of the amine group-terminated magnetic centered dendrimer was achieved through generational growth of branches after generating magnetic nanoparticles.
먼저, 자성나노입자(MNP)를 합성하기 위하여 FeSO 4ㅇ7H 2O 시약 2.7g 및 FeCl 3ㅇ6H 2O 시약 5.7g을 100 ml의 탈이온수(DI water)에 용해시켜 5분 간 80 ℃에서 가열하였다. 이후, 수산화암모늄(Ammonium hydroxide)을 71.3ml 투입하여 용액을 pH 10으로 맞추고, 용액이 검은색으로 변한 것을 확인한 후에 80 ℃에서 30분 간 반응시켰다. First, in order to synthesize magnetic nanoparticles (MNP), 2.7 g of FeSO 4 ㅇ7H 2 O reagent and 5.7 g of FeCl 3 ㅇ6H 2 O were dissolved in 100 ml of DI water at 80° C. for 5 minutes. Heated. Thereafter, 71.3 ml of ammonium hydroxide was added to adjust the solution to pH 10, and after confirming that the solution turned black, it was reacted at 80° C. for 30 minutes.
그 다음, 탈이온수 및 메탄올로 각각 3회씩 세척 작업을 거친 후에 자성나노입자(MNP; 평균 직경 9 nm)을 수득하였다. MNP를 메탄올 200ml에 분산시킨 후, (3-Aminopropyl)triethoxysilane 10 ml를 가하고 60 ℃에서 7시간 동안 교반하였다. 메탄올로 5회 이상 세척 작업을 거친 후, 100 ml의 메탄올에 분산시켰고, 이에 메틸 아크릴레이트 20 ml를 가하여 상온에서 7시간 동안 교반하였다. 전술한 절차와 유사하게, 합성된 자성중심 덴드리머를 메탄올로 5회 이상 세척 작업을 거고, 메탄올 20 ml에 분산시킨 후에 4 ml의 에틸렌디아민 무수물을 첨가하여 상온에서 3시간 동안 교반하고 반응시키고 메탄올 세척 작업을 수행함으로써 아민기-말단 1세대 자성중심 덴드리머(G1-NH 2)를 수득하였다. Then, after washing three times with deionized water and methanol, respectively, magnetic nanoparticles (MNP; average diameter 9 nm) were obtained. After dispersing MNP in 200 ml of methanol, 10 ml of (3-Aminopropyl)triethoxysilane was added, followed by stirring at 60° C. for 7 hours. After five or more washing operations with methanol, it was dispersed in 100 ml of methanol, and 20 ml of methyl acrylate was added thereto, followed by stirring at room temperature for 7 hours. Similar to the above procedure, the synthesized magnetic center dendrimer was washed 5 or more times with methanol, dispersed in 20 ml of methanol, 4 ml of ethylenediamine anhydride was added, stirred at room temperature for 3 hours, reacted, and washed with methanol. By performing the operation, an amine group-terminated first generation magnetic centered dendrimer (G1-NH 2 ) was obtained.
히드록시기-말단 1세대 자성중심 덴드리머(G1-OH)를 제조하기 위하여, 건조 전의 1세대 아민기-말단 자성 덴드리머(G1-NH 2)를 메탄올 1 L에 잘 분산시킨 후, γ-부티로락톤 5 ml를 첨가하여 상온에서 3시간 동안 교반하였다. 이후 60 ℃에서 24시간 동안 건조하여 파우더 형태로 사용하였다.In order to prepare a hydroxy group-terminated first-generation magnetic centered dendrimer (G1-OH), the first-generation amine group-terminated magnetic dendrimer (G1-NH 2 ) before drying was well dispersed in 1 L of methanol, and then γ-butyrolactone 5 ml was added and stirred at room temperature for 3 hours. Then, it was dried at 60° C. for 24 hours and used in the form of a powder.
- 온도감응형 물질(PNIPAM)의 합성(도 2b 참조)-Synthesis of temperature-sensitive material (PNIPAM) (see Fig. 2b)
PNIPAM을 합성하기 위하여서 N-isopropylacrylamide (NIPAM) 시약을 사용하였으며, 단량체인 NIPAM을 중합 반응시켜 poly(N-isopropylacrylamide; PNIPAM)을 합성하였다. 벤젠 100 ml에 NIPAM 20g을 용해시키고 티오글리콜산 1.228 ml를 첨가한 후에 30분 간 질소로 버블링하며, 65℃까지 가열하였다. In order to synthesize PNIPAM, an N-isopropylacrylamide (NIPAM) reagent was used, and poly(N-isopropylacrylamide; PNIPAM) was synthesized by polymerization reaction of the monomer NIPAM. After dissolving 20 g of NIPAM in 100 ml of benzene and adding 1.228 ml of thioglycolic acid, the mixture was bubbled with nitrogen for 30 minutes and heated to 65°C.
그 다음, 중합개시제인 2,2'-Azobis(2-methylpropionitrile; AIBN) 시약을 0.144g 첨가하여 연쇄중합반응을 유도하였으며, 3시간 가량 질소 퍼징한 상태로 24시간 반응시켰다. 반응 후, 겔 형태의 물질을 아세톤에 충분히 용해시켰고, 디에틸 에테르를 이용하여 침전시킨 중합체를 수득하였다. 아세톤/디에틸에테르를 통한 용해 및 침전 과정을 5회 반복하여 순도를 높이는 과정을 거친 후에 2일 이상 상온의 진공 오븐에서 건조하였다. Then, 0.144 g of 2,2'-Azobis (2-methylpropionitrile; AIBN) reagent, which is a polymerization initiator, was added to induce a chain polymerization reaction, and the reaction was carried out for 24 hours under nitrogen purging for about 3 hours. After the reaction, the gel material was sufficiently dissolved in acetone, and a polymer precipitated with diethyl ether was obtained. After passing through the process of increasing the purity by repeating the dissolution and precipitation process through acetone/diethyl ether 5 times, it was dried in a vacuum oven at room temperature for 2 days or more.
- PNIPAM 말단의 온도감응형 자성중심 덴드리머의 합성(G1-OH 자성중심 덴드리머를 활용한 합성; 도 2c 참조)-Synthesis of temperature-sensitive magnetic centered dendrimer at the end of PNIPAM (synthesis using G1-OH magnetic centered dendrimer; see Fig. 2c)
전술한 바와 같이, 카르복시기-말단의 PNIPAM과 히드록시기-말단의 자성중심 덴드리머를 각각 합성하였으며, 카르복시기와 히드록시기의 에스테르화 반응 (Esterification)을 통하여 자성 덴드리머 말단에 PNIPAM을 부착하였다. As described above, the carboxy group-terminated PNIPAM and the hydroxy group-terminated magnetic centered dendrimer were synthesized, respectively, and PNIPAM was attached to the end of the magnetic dendrimer through esterification of the carboxy group and the hydroxy group.
자성중심 덴드리머 합성 시 마지막으로 투입한 시약인 에틸렌디아민의 투입 몰수의 0.8배 만큼의 PNIPAM 투입량을 설정하여 합성 반응을 수행하였다. 50 ml의 탈이온수에 0.2g의 자성중심 덴드리머를 분산시키고 30분간 초음파 조사(Sonication) 처리를 수행한 후에 PNIPAM 12.744 g 및 100 ml의 탈이온수에 투입하였고, 상온에서 24시간 동안 혼합하였다. The synthesis reaction was carried out by setting an input amount of PNIPAM as much as 0.8 times the number of moles of ethylenediamine, which is the last reagent introduced in the synthesis of the magnetic center dendrimer. After dispersing 0.2 g of magnetic center dendrimer in 50 ml of deionized water and performing Sonication treatment for 30 minutes, PNIPAM 12.744 g and 100 ml of deionized water were added, and mixed at room temperature for 24 hours.
그 다음, 2가지 물질에 N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 시약을 투입하여 상온에서 24시간 동안 교반하였고, 반응 후에는 진공오븐을 이용하여 상온에서 2일 동안 건조하였다.Then, N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride reagent was added to the two materials and stirred at room temperature for 24 hours, and after the reaction, it was dried at room temperature for 2 days using a vacuum oven.
- PNIPAM 말단의 온도감응형 자성중심 덴드리머의 합성(G1-NH 2 자성중심 덴드리머를 활용한 합성; 도 2d 참조)-Synthesis of temperature-sensitive magnetic centered dendrimer at the end of PNIPAM (synthesis using G1-NH 2 magnetic centered dendrimer; see Fig. 2d)
앞서 제조된 아민기-말단의 자성중심 덴드리머와 카르복시기-말단의 PNIPAM 간의 펩티드 결합 형성 반응을 통하여 자성 덴드리머 말단에 PNIPAM을 부착하였다. PNIPAM was attached to the end of the magnetic dendrimer through a peptide bond formation reaction between the previously prepared amine group-terminated magnetic center dendrimer and the carboxy group-terminated PNIPAM.
자성중심 덴드리머 합성 시 마지막으로 투입한 시약인 에틸렌디아민의 투입 몰수의 0.8배 만큼의 PNIPAM 투입량을 설정하여 합성 반응을 수행하였다. 50 ml의 탈이온수에 0.2g의 아민말단의 자성중심 덴드리머를 분산시키고 30분간 초음파 조사(Sonication) 처리를 수행한 후에 PNIPAM 12.744 g 및 100 ml의 탈이온수에 투입하였고, 상온에서 24시간 동안 혼합하였다. The synthesis reaction was carried out by setting an input amount of PNIPAM as much as 0.8 times the number of moles of ethylenediamine, which is the last reagent introduced in the synthesis of the magnetic center dendrimer. After dispersing 0.2 g of amine-terminated magnetic-centered dendrimer in 50 ml of deionized water and performing sonication treatment for 30 minutes, PNIPAM 12.744 g and 100 ml of deionized water were added, and mixed at room temperature for 24 hours. .
그 다음, 2가지 물질에 N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 시약을 투입하여 상온에서 24시간 동안 교반하였고, 반응 후에는 진공오븐을 이용하여 상온에서 2일 동안 건조하였다.Then, N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride reagent was added to the two materials and stirred at room temperature for 24 hours, and after the reaction, it was dried at room temperature for 2 days using a vacuum oven.
분석analysis
온도감응형 자성중심 덴드리머의 합성 유무를 확인하기 위하여 FT-IR을 이용하여 결합 상태를 확인하였고, 이의 특성을 확인하기 위하여 TGA, DLS 및 XRD 장비를 이용하였다. In order to confirm the synthesis of the temperature-sensitive magnetic centered dendrimer, the bonding state was confirmed using FT-IR, and TGA, DLS, and XRD equipment were used to confirm its characteristics.
1세대 자성중심 덴드리머(G1-OH), 온도감응형 물질(PNIPAM-COOH) 및 이들을 반응시켜 합성된 열감응형 자성중심 덴드리머(PNIPAM-g-MCD(magnetic-cored dendrimer)) 각각에 대한 FT-IR 분석 결과를 도 5a에 나타내었다. FT- for each of the first-generation magnetic-centered dendrimer (G1-OH), temperature-sensitive material (PNIPAM-COOH), and heat-sensitive magnetic-centered dendrimer (PNIPAM-g-MCD (magnetic-cored dendrimer)) synthesized by reacting them. The IR analysis results are shown in FIG. 5A.
상기 도면을 참조하면, NIPAM이 PNIPAM으로 중합되었고, 이는 1385 cm -1에서의 amideⅡ 결합, 1634 cm -1에서의 amideⅠ 결합을 통하여 확인하였다. 또한, NIPAM에서는 관찰되지 않았던 1711 cm -1에서 나타난 피크는 PNIPAM에 카르복시기가 성공적으로 합성되었음을 의미한다. G1의 경우 3380 cm -1에서 나타난 피크를 통하여 아민기가 히드록시기로 변경되었음을 확인할 수 있다. 또한, 1742cm -1에서의 피크는 C=O의 결합 형태를 나타내는 바, 이를 통하여 PNIPAM말단의 자성중심 덴드리머가 성공적으로 합성되었음을 확인할 수 있다. Referring to the drawing, NIPAM was polymerized with PNIPAM, which was confirmed through amide II binding at 1385 cm -1 and amide I binding at 1634 cm -1. In addition, the peak appeared at 1711 cm -1 , which was not observed in NIPAM, indicates that the carboxy group was successfully synthesized in PNIPAM. In the case of G1, it can be confirmed that the amine group has been changed to a hydroxy group through the peak shown at 3380 cm -1. In addition, the peak at 1742cm -1 indicates the bonded form of C=O, and through this, it can be confirmed that the magnetic center dendrimer at the end of PNIPAM was successfully synthesized.
또한, 아민기-말단 1세대 자성중심 덴드리머(G1-NH 2), 온도감응형 물질(PNIPAM-COOH) 및 이들을 반응시켜 합성된 열감응형 자성중심 덴드리머(PNIPAM-g-MCD(magnetic-cored dendrimer)) 각각에 대한 FT-IR 분석 결과를 도 5b에 나타내었다. In addition, the amine group-terminated first-generation magnetic-centered dendrimer (G1-NH 2 ), a temperature-sensitive material (PNIPAM-COOH), and a thermally-sensitive magnetic-centered dendrimer synthesized by reacting them (PNIPAM-g-MCD (magnetic-cored dendrimer)) )) The results of FT-IR analysis for each are shown in FIG. 5B.
상기 도면을 참조하면, PNIPAM-COOH는 상기 기술된 FT-IR 피크의 값과 동일하며, 3276 cm -1에서의 펩티드 결합 상을 통하여 아민기-말단의 자성중심 덴드리머(G1-NH 2) 에서도 PNIPAM-COOH가 성공적으로 결합되는 것을 확인할 수 있다.Referring to the drawing, PNIPAM-COOH is the same as the value of the FT-IR peak described above, and PNIPAM in the amine group-terminal magnetic center dendrimer (G1-NH 2 ) through the peptide bond phase at 3276 cm -1 It can be seen that -COOH is successfully combined.
한편, 히드록시기-말단 1세대 자성중심 덴드리머(G1-OH) 및 온도감응형 물질(PNIPAM)의 TEM 사진, 그리고 온도감응형 자성중심 덴드리머(PNIPAM-g-G1)의 SEM 사진을 각각 도 6a 내지 도 6c에 나타내었다. On the other hand, TEM photographs of the hydroxy group-terminated first-generation magnetic centered dendrimer (G1-OH) and temperature-sensitive material (PNIPAM), and SEM photographs of the temperature-sensitive magnetic-centered dendrimer (PNIPAM-g-G1) are respectively shown in FIGS. It is shown in 6c.
상기 도면에 따르면, 히드록시기-말단 1세대 자성중심 덴드리머(G1)의 사이즈는 대략 10 내지 12 nm이었으나, PNIPAM과 결합된 후에는 15 내지 20 nm 수준으로 크기가 증가하였음을 확인할 수 있다(도 6a 및 도 6b). 또한, TEM 및 SEM 분석 결과, 온도감응형 자성중심 덴드리머(PNIPAM-g-G1)는 구형 나노입자임이 관찰되었다.According to the drawing, it can be seen that the size of the hydroxy group-terminated first generation magnetic centered dendrimer (G1) was approximately 10 to 12 nm, but increased to the level of 15 to 20 nm after being combined with PNIPAM (FIG. 6A and Fig. 6b). In addition, as a result of TEM and SEM analysis, it was observed that the temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) is spherical nanoparticles.
MNP(magnetic nanoparticle), 히드록시기-말단 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각에 대한 TGA 분석 결과를 도 7에 나타내었다. 상기 도면을 참조하면, PNIPAM 말단의 자성중심 덴드리머의 경우에는 약 11.5%의 질량 감소율을 나타내었는 바, 1세대 자성중심 덴드리머(G1)에서의 감소 비율이 6.3%인 점에 비하여 현저히 높은 수준이다. 이는 탄소 형태의 중합체가 말단에 부착됨으로써 그 비율이 증가한 것으로 볼 수 있고, G1에 비하여 약 20% 많은 량의 유기성분이 말단에 부착되어 있는 붙어 있음을 지시한다. Fig. 7 shows the results of TGA analysis for each of magnetic nanoparticles (MNP), hydroxy group-terminated first generation magnetic centered dendrimers (G1) and temperature-sensitive magnetic centered dendrimers (PNIPAM-g-G1). Referring to the drawing, in the case of the magnetic center dendrimer at the end of the PNIPAM, a mass reduction rate of about 11.5% was exhibited, and the reduction ratio in the first generation magnetic center dendrimer (G1) was significantly higher than that of 6.3%. This can be seen as an increase in the ratio of the carbon-type polymer attached to the end, indicating that about 20% of the organic component is attached to the end compared to G1.
히드록시기-말단 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각의 XRD 분석 결과를 도 8에 나타내었다. 상기 도면에 따르면, 온도감응형 자성중심 덴드리머(PNIPAM-g-G1)는 마그네타이트 형태의 결정형을 가짐을 확인하였다.The results of XRD analysis of each of the hydroxy group-terminated first generation magnetic centered dendrimer (G1) and temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) are shown in FIG. 8. According to the drawing, it was confirmed that the temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) has a magnetite-shaped crystal form.
히드록시기-말단 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각의 승온 및 냉각에 따른 크기(수력학적 크기) 변화를 DLS 장비를 통하여 측정하여 도 9에 나타내었다. 상기 도면을 참조하면, G1의 경우에는 온도에 따른 크기 변화가 거의 없었으나, 온도감응형 자성중심 덴드리머는 25℃에서는 약 185 nm인 반면, 45℃에서는 약 150 nm로 감소하였다. 특히, 30 ℃ 및 35 ℃ 사이에서 수력학적 사이즈가 급격히 감소하였음을 확인할 수 있는 바, 이는 온도가 증가함에 따라 온도감응형 자성중심 덴드리머의 특성 변화가 존재함을 알 수 있고 상기 물질의 LCST는 약 33℃임을 확인하였다. 또한, 다분산성(polydispersity)이 80% 이상까지 증가한 것을 고려하면, 온도에 따라 급격한 크기 변화가 일어났음을 알 수 있다.The size (hydrodynamic size) of the hydroxy group-terminated first generation magnetic centered dendrimer (G1) and temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) according to heating and cooling was measured through DLS equipment and shown in FIG.9. I got it. Referring to the drawing, in the case of G1, there was little change in size according to temperature, but the temperature-sensitive magnetic-centered dendrimer was about 185 nm at 25°C, but decreased to about 150 nm at 45°C. In particular, it can be seen that the hydrodynamic size rapidly decreased between 30°C and 35°C, which indicates that there is a change in the properties of the temperature-sensitive magnetic centered dendrimer as the temperature increases, and the LCST of the material is about It was confirmed that it was 33°C. In addition, considering that the polydispersity has increased to 80% or more, it can be seen that a rapid size change has occurred depending on the temperature.
실시예 2Example 2
실시예 1에서 1세대 자성중심 덴드리머(G1)의 합성 시 하기 표 1에 나타낸 바와 같이 EDA : PNIPAM의 몰 비를 변화시키면서 온도감응형 자성중심 덴드리머를 합성하였고, TGA 분석을 통하여 이에 함유된 유기성분의 량을 측정하였고, 상기 측정 결과에 기초하여 PNIPAM의 최적 량을 결정하였다. 다만, 앞서 언급된 합성 절차(24시간 동안 혼합한 후에 AIBN을 투입하여 반응을 개시하여 24시간 동안 합성함)에 있어서, 24시간에 걸친 혼합 과정을 배제하였다.In the synthesis of the first-generation magnetic-centered dendrimer (G1) in Example 1, as shown in Table 1 below, a temperature-sensitive magnetic-centered dendrimer was synthesized while changing the molar ratio of EDA: PNIPAM, and organic components contained therein through TGA analysis. The amount of was measured, and the optimal amount of PNIPAM was determined based on the measurement result. However, in the aforementioned synthesis procedure (after mixing for 24 hours, AIBN was added to initiate the reaction and synthesized for 24 hours), the mixing process over 24 hours was excluded.
EDA : PNIPAM 몰 비EDA: PNIPAM molar ratio 중량 손실(%)Weight loss (%)
1 : 1.21: 1.2 11.4511.45
1: 11: 1 10.2710.27
1 : 0.81: 0.8 11.2511.25
1 : 0.61: 0.6 9.179.17
1 : 0.41: 0.4 8.518.51
1 : 0.21: 0.2 7.407.40
PNIPAM 함유하지 않음(G1-NH 2)Does not contain PNIPAM (G1-NH 2 ) 6.276.27
상기 표를 고려하면, 자성중심 덴드리머에 투입되는 EDA 기준 0.8배수에 상당하는 PNIPAM을 투입하여 합성하는 것이 바람직한 것으로 판단되었다. 실시예 3 Considering the above table, it was determined that it is preferable to synthesize by adding PNIPAM equivalent to 0.8 times the EDA standard that is added to the magnetic center dendrimer. Example 3
온도감응형 자성중심 덴드리머를 이용한 방향족 탄화수소의 분리Separation of Aromatic Hydrocarbons Using Temperature Sensitive Magnetic Centered Dendrimer
2 mg/L 농도의 나프탈렌 용액 및 벤젠 용액 각각을 이용하여 각각의 분리능 실험을 진행하였고, 각 실험별 용액의 체적 량은 25 ml로 정하였다. 먼저, 온도감응형 모이티 내부로 나프탈렌 및 벤젠 각각이 용이하게 들어가도록 인큐베이터 쉐이커를 이용하여 3시간 동안 25 ℃에서 교반시켰다. 그 다음, 3 시간에 걸쳐 온도를 25 ℃ 및 45 ℃로 각각 구분하여 교반시키면서 실험을 수행하였다. 이때, 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머를 각각 1 내지 100 mg 범위에서 투입하였다. 상기 절차를 통하여 방향족 탄화수소의 분리능을 평가하였는 바, 25 ℃ 및 45 ℃ 각각에서 1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머 각각의 첨가량에 따른 방향족 탄화수소의 농도 변화를 측정한 결과를 도 10a 및 도 10b에 각각 나타내었다.Each resolution experiment was performed using a naphthalene solution and a benzene solution at a concentration of 2 mg/L, and the volume of the solution for each experiment was set to 25 ml. First, the mixture was stirred at 25° C. for 3 hours using an incubator shaker so that naphthalene and benzene each easily entered into the temperature-sensitive moiety. Then, the temperature was divided into 25° C. and 45° C. over 3 hours, and the experiment was performed while stirring. At this time, the first generation magnetic center dendrimer (G1) and temperature-sensitive magnetic center dendrimer were added in the range of 1 to 100 mg, respectively. As a result of evaluating the separation ability of the aromatic hydrocarbon through the above procedure, the result of measuring the change in the concentration of the aromatic hydrocarbon according to the addition amount of each of the first generation magnetic centered dendrimer (G1) and the temperature-sensitive magnetic centered dendrimer at 25 ℃ and 45 ℃ respectively. It is shown in FIGS. 10A and 10B, respectively.
상기 도면에 따르면, G1의 경우에는 방향족 탄화수소가 거의 제거되지 않은 반면, 온도감응형 자성중심 덴드리머는 방향족 탄화수소를 캡슐화하여 분리 제거하는데 효과적임을 확인할 수 있다. According to the above drawing, it can be seen that in the case of G1, the aromatic hydrocarbons are hardly removed, whereas the temperature-sensitive magnetic-centered dendrimer is effective in encapsulating the aromatic hydrocarbons and removing them separately.
실시예 4Example 4
온도감응형 자성중심 덴드리머를 이용한 에멀션 안정화 및 해유화Emulsion stabilization and demulsification using a temperature-sensitive magnetic-centered dendrimer
1세대 자성중심 덴드리머(G1) 및 온도감응형 자성중심 덴드리머(PNIPAM-g-G1) 각각을 이용하여 온도에 따른 에멀션의 안정화 또는 상 분리 거동을 평가하였으며, 그 결과를 도 11에 나타내었다.The first generation magnetic centered dendrimer (G1) and temperature-sensitive magnetic centered dendrimer (PNIPAM-g-G1) were used to evaluate the emulsion stabilization or phase separation behavior according to temperature, and the results are shown in FIG.
상기 도면을 참조하면, 온도감응형 자성중심 덴드리머의 에멀션의 안정화 및 해유화 효과를 확인할 수 있다. 구체적으로, 먼저 50 mg의 온도감응형 자성중심 덴드리머가 균일하게 분산된 물 10 ml 및 오일(Trichloroethylene) 10 ml를 바이알에 투입한 후, 2분 동안 강하게 혼합하여 에멀션을 형성하였고, 수일이 경과한 후에도 에멀션이 안정적으로 유지됨을 확인하였다. Referring to the drawing, it is possible to confirm the effect of stabilizing and demulsifying the emulsion of the temperature-sensitive magnetic centered dendrimer. Specifically, first, 10 ml of water and 10 ml of oil (Trichloroethylene) in which 50 mg of a temperature-sensitive magnetic centered dendrimer was uniformly dispersed were added to the vial, and then strongly mixed for 2 minutes to form an emulsion. It was confirmed that the emulsion remained stable even afterwards.
한편, 45 ℃ 이상으로 승온시킬 경우, 안정화된 에멀션에서 수계 상과 오일 상의 사이에 PNIPAM-말단 자성중심 덴드리머가 응집되어 에멀션을 상 분리시키는 것을 관찰할 수 있고, 이후 외부 자기장 조절을 통하여 분리할 수 있고, 재사용 가능함을 확인하였다.On the other hand, when the temperature is raised to 45 °C or higher, it can be observed that the PNIPAM-terminal magnetic center dendrimer aggregates between the aqueous phase and the oil phase in the stabilized emulsion to phase-separate the emulsion, and then it can be separated through external magnetic field control. And it was confirmed that it can be reused.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily used by those of ordinary skill in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (20)

  1. 자성나노입자, 덴드리머 구성 유닛 및 상기 덴드리머 구성 유닛의 말단기를 포함하는 자성중심 덴드리머 구조 중 말단기의 적어도 일부에 온도 변화에 따라 가역적으로 크기가 변화하는 온도감응형 물질로부터 유래된 모이티가 부착되어 있는 온도감응형 자성중심 덴드리머.Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit. Temperature sensitive magnetic centered dendrimer.
  2. 제1항에 있어서, 상기 자성나노입자는 산화 철 입자로서 마그네타이트 및 마그헤마이트로 이루어진 군으로부터 적어도 하나가 선택되는 결정형을 갖는 것을 특징으로 하는 온도감응형 자성중심 덴드리머.The temperature-sensitive magnetic centered dendrimer according to claim 1, wherein the magnetic nanoparticles have a crystal form selected from the group consisting of magnetite and maghemite as iron oxide particles.
  3. 제2항에 있어서, 상기 산화 철 입자는 망간(Mn), 코발트(Co), 니켈(Ni), 아연(Zn) 및 가돌리늄(Gd)으로부터 적어도 하나를 더 포함하는 것을 특징으로 하는 온도감응형 자성중심 덴드리머.The method of claim 2, wherein the iron oxide particles further comprise at least one from manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn) and gadolinium (Gd). Central dendrimer.
  4. 제2항에 있어서, 상기 산화 철 입자는 100 nm 이하의 입도 범위를 갖는 것을 특징으로 하는 온도감응형 자성중심 덴드리머.The temperature-sensitive magnetic centered dendrimer according to claim 2, wherein the iron oxide particles have a particle size range of 100 nm or less.
  5. 제1항에 있어서, 상기 온도감응형 물질은 폴리(N-이소프로필 아크릴아미드)[poly(N-isopropylacrylamide), pNIPAM], 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isopropyl acrylamide-co-allylamine), poly(NIPAM-co-AA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 메타아크릴레이트)[poly(Nisopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸아크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필 아크릴아미드-co-아크릴산)[poly(N-isopropyl acrylamide-co-acrylic acid), poly(NIPAM-co-AAc)], 폴리(N-이소프로필 아크릴아미드-co-메타아크릴산)[poly(N-isopropyl acrylamide-co-methacrylic acid), poly(NIPAM-co-MAAc)], 폴리(N,N-디에틸아크릴아미드)[poly(N,N-diethylacrylamide)], 폴리(N-비닐카프롤락탐)[poly(N-vinlycaprolactam)], 폴리(에틸렌글리콜)[poly(ethylene glycol)], 폴리(에틸렌글리콜-b-프로필렌글리콜-b-에틸렌글리콜)[poly(ethylene glycol-b-propylene glycol-b-ethylene glycol)], 및 폴리비닐 메틸 에테르(polyvinyl methyl ether)로 이루어진 군에서 선택되는 적어도 하나인 것을 특징으로 하는 온도감응형 자성중심 덴드리머.The method of claim 1, wherein the temperature-sensitive material is poly(N-isopropylacrylamide) [poly(N-isopropylacrylamide), pNIPAM], poly(N-isopropyl acrylamide-co-allylamine)[poly(N -isopropyl acrylamide-co-allylamine), poly(NIPAM-co-AA)], poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl methacrylate)[poly(Nisopropylacrylamide-co-2- (dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate)[poly(N-isopropyl acrylamide-co-2- (dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], poly(N-isopropyl acrylamide-co-acrylic acid) [poly(N-isopropyl acrylamide-co-acrylic acid), poly(NIPAM-co- AAc)], poly(N-isopropyl acrylamide-co-methacrylic acid) [poly(N-isopropyl acrylamide-co-methacrylic acid), poly(NIPAM-co-MAAc)], poly(N,N-diethyl Acrylamide)[poly(N,N-diethylacrylamide)], poly(N-vinylcaprolactam)[poly(N-vinlycaprolactam)], poly(ethylene glycol)[poly(ethylene glycol)], poly(ethylene glycol- b-propylene glycol-b-ethylene glycol) [poly(ethylene glycol-b-propylene glycol-b-ethylene glycol)], and at least one selected from the group consisting of polyvinyl methyl ether A temperature-sensitive magnetic-centered dendrimer.
  6. 제5항에 있어서, 상기 온도감응형 물질은 카르복시기를 갖는 것을 특징으로 하는 온도감응형 자성중심 덴드리머.The temperature-sensitive magnetic centered dendrimer according to claim 5, wherein the temperature-sensitive material has a carboxyl group.
  7. 제6항에 있어서, 상기 온도감응형 물질은 하기 화학식 1로 표시되는 폴리(N-이소프로필 아크릴아미드)인 것을 특징으로 하는 온도감응형 자성중심 덴드리머:The temperature-sensitive magnetic centered dendrimer according to claim 6, wherein the temperature-sensitive material is poly(N-isopropyl acrylamide) represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2020012370-appb-img-000005
    Figure PCTKR2020012370-appb-img-000005
    상기 식에서, n은 중합도로서 적어도 90임.Wherein n is at least 90 as the degree of polymerization.
  8. 제1항에 있어서, 온도감응형 자성중심 덴드리머는 하기 화학식 2 또는 화학식 3으로 표시되는 것을 특징으로 하는 온도감응형 자성중심 덴드리머:The temperature-sensitive magnetic-centered dendrimer according to claim 1, wherein the temperature-sensitive magnetic-centered dendrimer is represented by the following formula (2) or (3):
    [화학식 2][Formula 2]
    Figure PCTKR2020012370-appb-img-000006
    Figure PCTKR2020012370-appb-img-000006
    [화학식 3][Formula 3]
    Figure PCTKR2020012370-appb-img-000007
    Figure PCTKR2020012370-appb-img-000007
    상기 식에서, MNP는 자성 나노입자이며, m은 덴드리머의 세대수를 나타내는 1 이상의 정수이고, 그리고 n은 중합도로서 적어도 90임.In the above formula, MNP is a magnetic nanoparticle, m is an integer greater than or equal to 1 representing the number of generations of the dendrimer, and n is at least 90 as the degree of polymerization.
  9. 제7항에 있어서, 1세대 성장시켜 형성된 온도감응형 자성중심 덴드리머의 LCST 미만의 온도에서의 입자 사이즈가 10 내지 50 nm 범위인 것을 특징으로 하는 온도감응형 자성중심 덴드리머,The temperature-sensitive magnetic-centered dendrimer according to claim 7, wherein the temperature-sensitive magnetic-centered dendrimer formed by growing the first generation has a particle size in the range of 10 to 50 nm at a temperature below LCST,
  10. a) 아민기-말단 자성중심 덴드리머 또는 히드록시기-말단 자성중심 덴드리머를 제공하는 단계;a) providing an amine group-terminated magnetic centered dendrimer or a hydroxy group-terminated magnetic centered dendrimer;
    b) 단계 a)와 별도로, 온도 변화에 따라 가역적으로 크기가 변화하는 카르복시기-함유 온도감응형 물질을 제공하는 단계; 및b) Apart from step a), providing a carboxy group-containing temperature-sensitive material whose size reversibly changes according to temperature change; And
    c) 상기 아민기-말단 자성중심 덴드리머 또는 히드록시기-말단 자성중심 덴드리머와 상기 온도감응형 물질을 반응시켜 온도감응형 물질로부터 유래된 모이티를 자성중심 덴드리머의 말단에 부착시키는 단계;c) reacting the amine group-terminated magnetic centered dendrimer or the hydroxy group-terminated magnetic centered dendrimer with the temperature-sensitive material to attach a moiety derived from the temperature-sensitive material to the end of the magnetic centered dendrimer;
    를 포함하는 온도감응형 자성중심 덴드리머의 제조방법.Method for producing a temperature-sensitive magnetic centered dendrimer comprising a.
  11. 제10항에 있어서, 상기 단계 a)는 히드록시기-말단 자성중심 덴드리머를 제공하는 단계로서,The method of claim 10, wherein step a) is a step of providing a hydroxy group-terminated magnetic centered dendrimer,
    아민기-말단 자성중심 덴드리머를 합성하는 단계; 및 Synthesizing an amine group-terminated magnetic center dendrimer; And
    상기 자성중심 덴드리머 말단의 아민기를 히드록시기로 치환하는 단계;Replacing the amine group at the end of the magnetic center dendrimer with a hydroxy group;
    를 포함하는 것을 특징으로 하는 온도감응형 자성중심 덴드리머의 제조방법.Method for producing a temperature-sensitive magnetic centered dendrimer comprising a.
  12. 제10항 또는 제11항에 있어서, 상기 아민기-말단 자성중심 덴드리머를 합성하는 단계는,The method of claim 10 or 11, wherein the step of synthesizing the amine group-terminated magnetic center dendrimer,
    자성나노입자의 표면을 아미노-말단 실란으로 개질하는 단계;Modifying the surface of the magnetic nanoparticles with amino-terminated silane;
    상기 개질된 자성나노입자의 표면에 존재하는 아미노기와 덴드리머 형성 화합물을 반응시켜 적어도 하나의 가지 구조를 형성하는 단계; 및Forming at least one branch structure by reacting an amino group present on the surface of the modified magnetic nanoparticles with a dendrimer-forming compound; And
    상기 자성나노입자에 형성된 적어도 하나의 가지 구조와 아민기를 함유하는 화합물과 반응시켜 하기 화학식 4로 표시되는 아민기-말단 자성중심 덴드리머를 형성하는 단계;Forming an amine group-terminated magnetic centered dendrimer represented by Formula 4 below by reacting with a compound containing at least one branch structure and an amine group formed on the magnetic nanoparticles;
    를 포함하는 온도감응형 자성중심 덴드리머의 제조방법:Method for producing a temperature-sensitive magnetic centered dendrimer comprising:
    [화학식 4][Formula 4]
    Figure PCTKR2020012370-appb-img-000008
    Figure PCTKR2020012370-appb-img-000008
    상기 식에서, MNP는 자성 나노입자이며, m은 m은 덴드리머의 세대수를 나타내는 1 이상의 정수임.In the above formula, MNP is a magnetic nanoparticle, and m is an integer of 1 or more representing the number of generations of the dendrimer.
  13. 제11항에 있어서, 상기 자성중심 덴드리머 말단의 아민기를 히드록시기로 치환하는 단계는, 상기 아민기-말단 자성중심 덴드리머를 락톤계 화합물과 반응시키는 것을 특징으로 하는 온도감응형 자성중심 덴드리머의 제조방법.The method of claim 11, wherein the substituting the amine group at the end of the magnetic center dendrimer with a hydroxy group comprises reacting the amine group-terminated magnetic center dendrimer with a lactone-based compound.
  14. 제13항에 있어서, 상기 아민기-말단 자성중심 덴드리머와 반응하는 락톤계 화합물의 량은 1세대 자성중심 덴드리머 합성 시 투입된 아민기를 함유하는 화합물 1 몰을 기준으로, 0.8 내지 5 몰의 범위인 것을 특징으로 하는 온도감응형 자성중심 덴드리머의 제조방법.The method of claim 13, wherein the amount of the lactone compound reacting with the amine group-terminated magnetic center dendrimer is in the range of 0.8 to 5 moles based on 1 mole of the compound containing the amine group introduced during synthesis of the first generation magnetic center dendrimer. A method of manufacturing a temperature-sensitive magnetic centered dendrimer, characterized in that.
  15. 제10항에 있어서, 상기 단계 c)는 아민기-말단 자성중심 덴드리머 또는 히드록시기-말단 자성중심 덴드리머의 수분산물을 제조한 후에 온도감응형 물질을 첨가하여 반응시키는 것을 포함하며,The method of claim 10, wherein the step c) comprises preparing an aqueous dispersion of an amine group-terminated magnetic centered dendrimer or a hydroxy group-terminated magnetic centered dendrimer, and then reacting by adding a temperature-sensitive material,
    여기서, 상기 아민기-말단 자성중심 덴드리머 제조 시 사용된 아민기를 함유하는 화합물 1 몰을 기준으로, 0.4 내지 1.5 몰의 카르복시기-함유 온도감응형 물질을 사용하는 것을 특징으로 하는 온도감응형 자성중심 덴드리머의 제조방법.Here, a temperature-sensitive magnetic-centered dendrimer, characterized in that 0.4 to 1.5 moles of a carboxy group-containing temperature-sensitive material is used based on 1 mole of the compound containing an amine group used in the manufacture of the amine group-terminated magnetic centered dendrimer. Method of manufacturing.
  16. 제15항에 있어서, 상기 아민기-말단 자성중심 덴드리머 또는 히드록시기-말단 자성중심 덴드리머의 수분산물을 제조한 후에 온도감응형 물질을 첨가하여 반응시키는 단계는 20 내지 40℃의 온도에서 수행되는 것을 특징으로 하는 온도감응형 자성중심 덴드리머의 제조방법.The method of claim 15, wherein the step of reacting by adding a temperature-sensitive material after preparing the aqueous dispersion of the amine group-terminated magnetic centered dendrimer or the hydroxy group-terminated magnetic centered dendrimer is carried out at a temperature of 20 to 40°C. Method for producing a temperature-sensitive magnetic centered dendrimer.
  17. 자성나노입자, 덴드리머 구성 유닛 및 상기 덴드리머 구성 유닛의 말단기를 포함하는 자성중심 덴드리머 구조 중 말단기의 적어도 일부에 온도 변화에 따라 가역적으로 크기가 변화하는 온도감응형 물질로부터 유래된 모이티가 부착되어 있는 온도감응형 자성중심 덴드리머를 제공하는 단계; 및Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit. Providing a temperature-sensitive magnetic centered dendrimer; And
    상기 온도감응형 자성중심 덴드리머가 방향족 탄화수소-함유 수계 매질과 접촉된 상태에서 상기 온도감응형 물질의 LCST 이상으로 승온시킴으로써 상기 수계 매질 내 방향족 탄화수소를 캡슐화하는 단계;Encapsulating the aromatic hydrocarbon in the aqueous medium by raising the temperature above the LCST of the temperature-sensitive material in a state in which the temperature-sensitive magnetic centered dendrimer is in contact with the aromatic hydrocarbon-containing aqueous medium;
    를 포함하는 방향족 탄화수소의 분리 방법.Separation method of aromatic hydrocarbons comprising a.
  18. 제17항에 있어서, 상기 방향족 탄화수소 분리에 사용되는 온도감응형 자성중심 덴드리머의 사용량은, 수계 매질 기준으로, 10 중량% 이하인 것을 특징으로 하는 방향족 탄화수소의 분리 방법.The method of claim 17, wherein the amount of the temperature-sensitive magnetic centered dendrimer used for separation of the aromatic hydrocarbon is 10% by weight or less based on an aqueous medium.
  19. 자성나노입자, 덴드리머 구성 유닛 및 상기 덴드리머 구성 유닛의 말단기를 포함하는 자성중심 덴드리머 구조 중 말단기의 적어도 일부에 온도 변화에 따라 가역적으로 크기가 변화하는 온도감응형 물질로부터 유래된 모이티가 부착되어 있는 온도감응형 자성중심 덴드리머를 제공하는 단계; 및Moieties derived from temperature-sensitive materials that reversibly change in size according to temperature change are attached to at least a part of the terminal groups of the magnetic nanoparticles, the dendrimer constituent unit, and the end groups of the dendrimer constituent unit. Providing a temperature-sensitive magnetic centered dendrimer; And
    (i) 온도감응형 자성중심 덴드리머를 온도감응형 물질의 LCST 미만에서 오일 상 및 수계 상을 포함하는 에멀션과 접촉시킴으로써 에멀션을 안정화하거나, 또는 (ii) 에멀션을 온도감응형 물질의 LCST 이상으로 승온시킴으로써 오일 상과 수계 상의 상 분리를 수행하는 단계;(i) Stabilizing the emulsion by contacting the temperature-sensitive magnetic centered dendrimer with an emulsion containing an oil phase and an aqueous phase below the LCST of the temperature-sensitive material, or (ii) raising the temperature above the LCST of the temperature-sensitive material. Thereby performing phase separation of the oil phase and the aqueous phase;
    를 포함하는 에멀션의 안정화 또는 해유화 방법.Stabilization or demulsification method of an emulsion comprising a.
  20. 제19항에 있어서, 상기 온도감응형 자성중심 덴드리머의 사용량은, 에멀션을 기준으로, 2 중량% 이하인 것을 특징으로 하는 에멀션의 안정화 또는 해유화 방법. The method of claim 19, wherein the amount of the temperature-sensitive magnetic centered dendrimer is 2% by weight or less based on the emulsion.
PCT/KR2020/012370 2019-09-19 2020-09-14 Temperature-sensitive magnetic-core dendrimer and method for preparing same WO2021054688A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0115131 2019-09-19
KR20190115131 2019-09-19
KR10-2019-0173662 2019-12-24
KR1020190173662A KR102357221B1 (en) 2019-09-19 2019-12-24 Thermosensitive Magnetic-cored Dendrimer and Method for Preparing the Same

Publications (1)

Publication Number Publication Date
WO2021054688A1 true WO2021054688A1 (en) 2021-03-25

Family

ID=74883571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012370 WO2021054688A1 (en) 2019-09-19 2020-09-14 Temperature-sensitive magnetic-core dendrimer and method for preparing same

Country Status (1)

Country Link
WO (1) WO2021054688A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989347A (en) * 2022-04-02 2022-09-02 四川大学 Temperature-sensitive photonic crystal gel microsphere with wide response range and high response rate and preparation method thereof
BE1029775A1 (en) 2021-09-21 2023-04-13 Voxelsensors Srl PERSISTENCE FILTERING AT SPD ARRAYS
WO2023213610A1 (en) 2022-05-02 2023-11-09 Voxelsensors Srl Method for simultaneous localization and mapping

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274252A (en) * 2009-05-27 2010-12-09 Hirotake Katayama Seawater desalination process based on extraction and removal of salt in seawater by aqueous two-phase extraction using temperature responsive polymer
KR101269045B1 (en) * 2010-07-06 2013-05-29 효림산업주식회사 Disposal apparatuse of waste water comprising magnetic nanoparticles
KR101904210B1 (en) * 2011-02-18 2018-11-13 삼성전자주식회사 Draw solute for forward osmosis, forward osmosis water treatment device, and forward osmosis method for water treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274252A (en) * 2009-05-27 2010-12-09 Hirotake Katayama Seawater desalination process based on extraction and removal of salt in seawater by aqueous two-phase extraction using temperature responsive polymer
KR101269045B1 (en) * 2010-07-06 2013-05-29 효림산업주식회사 Disposal apparatuse of waste water comprising magnetic nanoparticles
KR101904210B1 (en) * 2011-02-18 2018-11-13 삼성전자주식회사 Draw solute for forward osmosis, forward osmosis water treatment device, and forward osmosis method for water treatment

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
16 June 2019, . 6TH NANO TODAY CONFERENCE. 16-20 JUNE 2019. LISBON PORTUGAL., article HAN, Y. -L. ET AL.: "Thermosensitive poly(N-isopropylacrylamide) grafted magnetic cored dendrimers for removal of organic contaminants." *
3 July 2019, 17TH INTERNATIONAL NANOTECH SYMPOSIUM & EXHIBITION. NANO KOREA 2019. 03-05 JULY 2019. KINTEX, KOREA., article HAN, Y. -L. ET AL.: "Poly(N-isopropylacrylamide) grafted magnetic cored dendrimers as thermo-responsive copolymers to remove aromatic contaminants" *
CHO, K. Y., JAE-WOO CHOI, SANG-HYUP LEE, SEUNG SANG HWANG, KYUNG-YOUL BAEK: "Thermoresponsive amphiphilic star block copolymer photosensitizer: smart BTEX remover", POLYMER CHEMISTRY., vol. 4, no. 8, 1 January 2013 (2013-01-01), pages 2400 - 2405, XP055792397, DOI: 10.1039/c3py21153c *
HAN, Y. -L. et al. 11-12 October 2018. Utilization of Water Treatment Using Magnetism Center Dendrimer of Thermosensitive poly(N-isopropylacrylamide) Terminal. 2018 Korean Society of Soil and Groundwater Environment Fall Conference. Ara Convention Hall, Jeju National University. See entire document. ※This document is a document declaring exceptions to lack of novelty by the applicant. *
LEE EUN JU, KIM YOUNG HO: "Synthesis and thermo-responsive properties of chitosan-g-poly (N-isopropylacrylamide) and HTCC-g-poly(N-isopropylacrylamide) copolymers", FIBERS AND POLYMERS, SPRINGER NETHERLANDS, NL, vol. 11, no. 2, 1 April 2010 (2010-04-01), NL, pages 164 - 169, XP055792394, ISSN: 1229-9197, DOI: 10.1007/s12221-010-0164-z *
LÜ TING; ZHANG SHUANG; QI DONGMING; ZHANG DONG; ZHAO HONGTING: "Thermosensitive poly(N-isopropylacrylamide)-grafted magnetic nanoparticles for efficient treatment of emulsified oily wastewater", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 688, 28 July 2016 (2016-07-28), CH, pages 513 - 520, XP029738070, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2016.07.262 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1029775A1 (en) 2021-09-21 2023-04-13 Voxelsensors Srl PERSISTENCE FILTERING AT SPD ARRAYS
CN114989347A (en) * 2022-04-02 2022-09-02 四川大学 Temperature-sensitive photonic crystal gel microsphere with wide response range and high response rate and preparation method thereof
WO2023213610A1 (en) 2022-05-02 2023-11-09 Voxelsensors Srl Method for simultaneous localization and mapping

Similar Documents

Publication Publication Date Title
WO2021054688A1 (en) Temperature-sensitive magnetic-core dendrimer and method for preparing same
Shao et al. Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@ silica core/shell microspheres
JP5531232B2 (en) Polymer-coated inorganic fine particles and method for producing the same
CN110938282B (en) Composite material with covalent organic framework and core-shell structure and preparation method and application thereof
Rahman et al. Multi-stimuli responsive magnetic core–shell particles: synthesis, characterization and specific RNA recognition
Haldorai et al. Supercritical fluid mediated synthesis of poly (2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite
US9504256B2 (en) Fabrication of magnetic nanoparticles
WO2013176382A1 (en) Method for preparing cross-linked hyperbranched polyamidoamine particles using reverse phase suspension polymerization and precursor
Tanaka et al. Characterization of magnetic nanoparticles modified with thiol functionalized PAMAM dendron for DNA recovery
CN112375191B (en) Block copolymer, preparation method and application thereof
WO2011129562A2 (en) Method for the mass production of silver nanoparticles having a uniform size
Ma et al. Preparation and surface modification of non-porous micron-sized magnetic poly (methyl acrylate) microspheres
KR20190138780A (en) Polymer Beads and Their Applications
Rosu et al. Progress in silica polypeptide composite colloidal hybrids: from silica cores to fuzzy shells
Guimarães et al. Synthesis of double-responsive magnetic latex particles via seeded emulsion polymerization using macroRAFT block copolymers as stabilizers
Li et al. Synthesis of Fe3O4@ poly (methacrylic acid) core–shell submicrospheres via RAFT precipitation polymerization
WO2016114467A1 (en) Method for preparing multi-wall carbon nanotubes modified with methacrylate
KR20200055276A (en) Method for synthesizing recyclable thermo-responsive hydrate inhibitor and the inhibitor prepared therefrom
CN1232553C (en) Ferromagnetic microsphere medium made from urea-formaldehyde resin and its preparation method
CN110189882B (en) Carbon dioxide gas stimulus response magnetic nano material with western blot and preparation method thereof
CN108376608B (en) Magnetic nano particle and application thereof in preparing magnetic solid phase carrier
KR102357221B1 (en) Thermosensitive Magnetic-cored Dendrimer and Method for Preparing the Same
CN112300347A (en) Preparation method and application of magnetic ferroferric oxide nanoparticle-based photoresponse imprinted material
Yang et al. Preparation of polyamide 6/silica nanocomposites from silica surface initiated ring-opening anionic polymerization
CN111269369A (en) Polyolefin diblock copolymer with dual responses to magnetism and temperature and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866378

Country of ref document: EP

Kind code of ref document: A1