WO2021054676A1 - Prof를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 - Google Patents

Prof를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 Download PDF

Info

Publication number
WO2021054676A1
WO2021054676A1 PCT/KR2020/012245 KR2020012245W WO2021054676A1 WO 2021054676 A1 WO2021054676 A1 WO 2021054676A1 KR 2020012245 W KR2020012245 W KR 2020012245W WO 2021054676 A1 WO2021054676 A1 WO 2021054676A1
Authority
WO
WIPO (PCT)
Prior art keywords
current block
prediction
block
prof
mode
Prior art date
Application number
PCT/KR2020/012245
Other languages
English (en)
French (fr)
Inventor
박내리
남정학
장형문
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202080078522.7A priority Critical patent/CN114731428A/zh
Priority to KR1020227008627A priority patent/KR20220049018A/ko
Priority to JP2022517416A priority patent/JP7462740B2/ja
Publication of WO2021054676A1 publication Critical patent/WO2021054676A1/ko
Priority to US17/696,619 priority patent/US11516475B2/en
Priority to US17/970,124 priority patent/US11917157B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/527Global motion vector estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/54Motion estimation other than block-based using feature points or meshes

Definitions

  • the present disclosure relates to an image encoding/decoding method, an apparatus, and a method of transmitting a bitstream, and more particularly, an image encoding/decoding method, apparatus and video encoding of the present disclosure that perform Prediction Refinement with Optical Flow (PROF). It relates to a method of transmitting a bitstream generated by a method/apparatus.
  • PROF Prediction Refinement with Optical Flow
  • An object of the present disclosure is to provide a video encoding/decoding method and apparatus with improved encoding/decoding efficiency.
  • an object of the present disclosure is to provide a video encoding/decoding method and apparatus for performing PROF.
  • an object of the present disclosure is to provide a video encoding/decoding method and apparatus for performing PROF in consideration of the size of a current picture and a reference picture.
  • an object of the present disclosure is to provide a method for transmitting a bitstream generated by an image encoding method or apparatus according to the present disclosure.
  • an object of the present disclosure is to provide a recording medium storing a bitstream generated by an image encoding method or apparatus according to the present disclosure.
  • an object of the present disclosure is to provide a recording medium storing a bitstream that is received and decoded by an image decoding apparatus according to the present disclosure and used for restoring an image.
  • An image decoding method is an image decoding method performed by an image decoding apparatus, comprising: deriving a predicted sample of the current block based on motion information of the current block, RPR for the current block ( Deriving a Reference Picture Resampling) condition, determining whether to apply Prediction Refinement with Optical Flow (PROF) to the current block based on the RPR condition, and applying PROF to the current block to the current block. And deriving an improved prediction sample for.
  • RPR for the current block Deriving a Reference Picture Resampling
  • PROF Prediction Refinement with Optical Flow
  • the RPR condition may be derived based on the size of the reference picture of the current block and the size of the current picture.
  • the RPR condition when the size of the reference picture of the current block and the size of the current picture are different, the RPR condition is derived as a first value, and the size of the reference picture of the current block and the current picture If the size of is the same, the RPR condition may be derived as a second value.
  • the RPR condition when the RPR condition is a first value, it may be determined that PROF is not applied to the current block.
  • whether to apply PROF to the current block may be determined based on the size of the current block.
  • the product of the width w of the current block and the height h of the current block is less than 128, it may be determined not to apply PROF to the current block.
  • information indicating whether the current block is an affine merge mode may be parsed from a bitstream based on the size of the current block.
  • the information indicating whether the current block is an affine merge mode is that the width (w) of the current block and the height (h) of the current block are each 8 or more, and w*h is If it is 128 or more, it can be parsed from the bitstream.
  • information indicating whether the current block is an affine MVP mode may be parsed from a bitstream based on the size of the current block.
  • the information indicating whether the current block is an affine MVP mode is that the width (w) of the current block and the height (h) of the current block are each 8 or more, and w*h is If it is 128 or more, it can be parsed from the bitstream.
  • whether to apply PROF to the current block may be determined based on whether BCW or WP is applied to the current block.
  • An image decoding apparatus includes a memory and at least one processor, wherein the at least one processor derives a prediction sample of the current block based on motion information of the current block, and It is possible to derive an RPR condition, determine whether to apply PROF to the current block based on the RPR condition, and apply PROF to the current block to derive an improved prediction sample for the current block.
  • An image encoding method is an image encoding method performed by an image encoding apparatus, comprising: deriving a predicted sample of the current block based on motion information of the current block, RPR for the current block Deriving a condition, determining whether to apply PROF to the current block based on the RPR condition, and deriving an improved prediction sample for the current block by applying PROF to the current block. can do.
  • a transmission method may transmit a bitstream generated by the image encoding method and/or the image encoding apparatus of the present disclosure to the image decoding apparatus.
  • a computer-readable recording medium may store a bitstream generated by the image encoding method or image encoding apparatus of the present disclosure.
  • an image encoding/decoding method and apparatus with improved encoding/decoding efficiency may be provided.
  • an image encoding/decoding method and apparatus for performing PROF may be provided.
  • an image encoding/decoding method and apparatus for performing PROF in consideration of the size of a current picture and a size of a reference picture may be provided.
  • a method for transmitting a bitstream generated by an image encoding method or an apparatus according to the present disclosure may be provided.
  • a recording medium storing a bitstream generated by an image encoding method or apparatus according to the present disclosure may be provided.
  • a recording medium may be provided that stores a bitstream that is received and decoded by the image decoding apparatus according to the present disclosure and used for image restoration.
  • FIG. 1 is a diagram schematically illustrating a video coding system to which an embodiment according to the present disclosure can be applied.
  • FIG. 2 is a diagram schematically illustrating an image encoding apparatus to which an embodiment according to the present disclosure can be applied.
  • FIG. 3 is a schematic diagram of an image decoding apparatus to which an embodiment according to the present disclosure can be applied.
  • FIG. 4 is a flowchart illustrating a video/video encoding method based on inter prediction.
  • FIG. 5 is a diagram illustrating an exemplary configuration of an inter prediction unit 180 according to the present disclosure.
  • FIG. 6 is a flowchart illustrating a video/video decoding method based on inter prediction.
  • FIG. 7 is a diagram illustrating an exemplary configuration of an inter prediction unit 260 according to the present disclosure.
  • FIG. 8 is a diagram illustrating a motion that can be expressed in an affine mode by way of example.
  • 10 is a diagram for describing a method of generating an affine merge candidate list.
  • 11 is a diagram for explaining CPMV derived from neighboring blocks.
  • FIG. 12 is a diagram for explaining a neighboring block for deriving a merge candidate, which is an inheritance affine.
  • FIG. 13 is a diagram for describing neighboring blocks for deriving a merge candidate, which is a combination affine.
  • FIG. 14 is a diagram for describing a method of generating an affine MVP candidate list.
  • 15 is a diagram for describing neighboring blocks in a sub-block-based TMVP mode.
  • 16 is a diagram for describing a method of deriving a motion vector field according to a subblock-based TMVP mode.
  • 17 is a diagram illustrating an extended CU to perform BDOF.
  • FIG. 18 is a diagram showing the relationship between ⁇ v(i, j), v(i, j) and subblock motion vectors.
  • 19 is an example illustrating a process of determining whether to apply BDOF according to the present disclosure.
  • 20 is an example illustrating a process of determining whether to apply PROF according to the present disclosure.
  • 21 is a diagram for describing signaling of information indicating whether to apply a subblock merge mode according to an example of the present disclosure.
  • 22 is a diagram for describing signaling of information indicating whether or not to apply an affine MVP mode according to an example of the present disclosure.
  • FIG. 23 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • 24 is a diagram for describing signaling of information indicating whether to apply a subblock merge mode according to another embodiment of the present disclosure.
  • 25 is a diagram for describing signaling of information indicating whether to apply an affine MVP mode according to another embodiment of the present disclosure.
  • 26 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • FIG. 27 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • FIG. 28 is a diagram for describing a method of performing PROF according to the present disclosure.
  • 29 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • FIG. 30 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • FIG. 31 is a diagram illustrating a content streaming system to which an embodiment of the present disclosure can be applied.
  • a component when a component is said to be “connected”, “coupled” or “connected” with another component, it is not only a direct connection relationship, but also an indirect connection relationship in which another component exists in the middle. It can also include.
  • a certain component when a certain component “includes” or “have” another component, it means that other components may be further included rather than excluding other components unless otherwise stated. .
  • first and second are used only for the purpose of distinguishing one component from other components, and do not limit the order or importance of the components unless otherwise noted. Accordingly, within the scope of the present disclosure, a first component in one embodiment may be referred to as a second component in another embodiment, and similarly, a second component in one embodiment is referred to as a first component in another embodiment. It can also be called.
  • components that are distinguished from each other are intended to clearly describe each feature, and do not necessarily mean that the components are separated. That is, a plurality of components may be integrated into one hardware or software unit, or one component may be distributed to form a plurality of hardware or software units. Therefore, even if not stated otherwise, such integrated or distributed embodiments are also included in the scope of the present disclosure.
  • components described in various embodiments do not necessarily mean essential components, and some may be optional components. Accordingly, an embodiment consisting of a subset of components described in an embodiment is also included in the scope of the present disclosure. In addition, embodiments including other elements in addition to the elements described in the various embodiments are included in the scope of the present disclosure.
  • the present disclosure relates to encoding and decoding of an image, and terms used in the present disclosure may have a common meaning commonly used in the technical field to which the present disclosure belongs unless newly defined in the present disclosure.
  • a “picture” generally refers to a unit representing one image in a specific time period
  • a slice/tile is a coding unit constituting a part of a picture
  • one picture is one It may be composed of more than one slice/tile.
  • a slice/tile may include one or more coding tree units (CTU).
  • pixel or “pel” may mean a minimum unit constituting one picture (or image).
  • sample may be used as a term corresponding to a pixel.
  • a sample may generally represent a pixel or a value of a pixel, may represent only a pixel/pixel value of a luma component, or may represent only a pixel/pixel value of a chroma component.
  • unit may represent a basic unit of image processing.
  • the unit may include at least one of a specific area of a picture and information related to the corresponding area.
  • the unit may be used interchangeably with terms such as “sample array”, “block”, or “area” depending on the case.
  • the MxN block may include samples (or sample arrays) consisting of M columns and N rows, or a set (or array) of transform coefficients.
  • current block may mean one of “current coding block”, “current coding unit”, “coding object block”, “decoding object block”, or “processing object block”.
  • current block may mean “current prediction block” or “prediction target block”.
  • transformation inverse transformation
  • quantization inverse quantization
  • current block may mean “current transform block” or “transform target block”.
  • filtering is performed, “current block” may mean “block to be filtered”.
  • FIG. 1 shows a video coding system according to this disclosure.
  • a video coding system may include an encoding device 10 and a decoding device 20.
  • the encoding device 10 may transmit the encoded video and/or image information or data in a file or streaming format to the decoding device 20 through a digital storage medium or a network.
  • the encoding apparatus 10 may include a video source generator 11, an encoding unit 12, and a transmission unit 13.
  • the decoding apparatus 20 may include a receiving unit 21, a decoding unit 22, and a rendering unit 23.
  • the encoder 12 may be referred to as a video/image encoder, and the decoder 22 may be referred to as a video/image decoder.
  • the transmission unit 13 may be included in the encoding unit 12.
  • the receiving unit 21 may be included in the decoding unit 22.
  • the rendering unit 23 may include a display unit, and the display unit may be configured as a separate device or an external component.
  • the video source generator 11 may acquire a video/image through a process of capturing, synthesizing, or generating a video/image.
  • the video source generator 11 may include a video/image capturing device and/or a video/image generating device.
  • the video/image capture device may include, for example, one or more cameras, a video/image archive including previously captured video/images, and the like.
  • the video/image generating device may include, for example, a computer, a tablet and a smartphone, and may (electronically) generate a video/image.
  • a virtual video/image may be generated through a computer or the like, and in this case, a video/image capturing process may be substituted as a process of generating related data.
  • the encoder 12 may encode an input video/image.
  • the encoder 12 may perform a series of procedures such as prediction, transformation, and quantization for compression and encoding efficiency.
  • the encoder 12 may output encoded data (coded video/image information) in the form of a bitstream.
  • the transmission unit 13 may transmit the encoded video/image information or data output in the form of a bitstream to the reception unit 21 of the decoding apparatus 20 through a digital storage medium or a network in a file or streaming form.
  • Digital storage media may include various storage media such as USB, SD, CD, DVD, Blu-ray, HDD, and SSD.
  • the transmission unit 13 may include an element for generating a media file through a predetermined file format, and may include an element for transmission through a broadcast/communication network.
  • the receiving unit 21 may extract/receive the bitstream from the storage medium or network and transmit it to the decoding unit 22.
  • the decoder 22 may decode the video/image by performing a series of procedures such as inverse quantization, inverse transformation, and prediction corresponding to the operation of the encoder 12.
  • the rendering unit 23 may render the decoded video/image.
  • the rendered video/image may be displayed through the display unit.
  • FIG. 2 is a diagram schematically illustrating an image encoding apparatus to which an embodiment according to the present disclosure can be applied.
  • the image encoding apparatus 100 includes an image segmentation unit 110, a subtraction unit 115, a transformation unit 120, a quantization unit 130, an inverse quantization unit 140, and an inverse transformation unit ( 150), an addition unit 155, a filtering unit 160, a memory 170, an inter prediction unit 180, an intra prediction unit 185, and an entropy encoding unit 190.
  • the inter prediction unit 180 and the intra prediction unit 185 may be collectively referred to as a “prediction unit”.
  • the transform unit 120, the quantization unit 130, the inverse quantization unit 140, and the inverse transform unit 150 may be included in a residual processing unit.
  • the residual processing unit may further include a subtraction unit 115.
  • All or at least some of the plurality of constituent units constituting the image encoding apparatus 100 may be implemented as one hardware component (eg, an encoder or a processor) according to embodiments.
  • the memory 170 may include a decoded picture buffer (DPB), and may be implemented by a digital storage medium.
  • DPB decoded picture buffer
  • the image segmentation unit 110 may divide an input image (or picture, frame) input to the image encoding apparatus 100 into one or more processing units.
  • the processing unit may be referred to as a coding unit (CU).
  • the coding unit is a coding tree unit (CTU) or a largest coding unit (LCU) recursively according to a QT/BT/TT (Quad-tree/binary-tree/ternary-tree) structure ( It can be obtained by dividing recursively.
  • one coding unit may be divided into a plurality of coding units of a deeper depth based on a quad tree structure, a binary tree structure, and/or a ternary tree structure.
  • a quad tree structure may be applied first, and a binary tree structure and/or a ternary tree structure may be applied later.
  • the coding procedure according to the present disclosure may be performed based on the final coding unit that is no longer divided.
  • the largest coding unit may be directly used as the final coding unit, or a coding unit of a lower depth obtained by dividing the largest coding unit may be used as the final cornet unit.
  • the coding procedure may include a procedure such as prediction, transformation, and/or restoration, which will be described later.
  • the processing unit of the coding procedure may be a prediction unit (PU) or a transform unit (TU).
  • the prediction unit and the transform unit may be divided or partitioned from the final coding unit, respectively.
  • the prediction unit may be a unit of sample prediction
  • the transform unit may be a unit for inducing a transform coefficient and/or a unit for inducing a residual signal from the transform coefficient.
  • the prediction unit (inter prediction unit 180 or intra prediction unit 185) performs prediction on a block to be processed (current block), and generates a predicted block including prediction samples for the current block. Can be generated.
  • the prediction unit may determine whether intra prediction or inter prediction is applied in units of a current block or CU.
  • the prediction unit may generate various information on prediction of the current block and transmit it to the entropy encoding unit 190.
  • the information on prediction may be encoded by the entropy encoding unit 190 and output in the form of a bitstream.
  • the intra prediction unit 185 may predict the current block by referring to samples in the current picture.
  • the referenced samples may be located in a neighborhood of the current block or may be located away from each other according to an intra prediction mode and/or an intra prediction technique.
  • the intra prediction modes may include a plurality of non-directional modes and a plurality of directional modes.
  • the non-directional mode may include, for example, a DC mode and a planar mode (Planar mode).
  • the directional mode may include, for example, 33 directional prediction modes or 65 directional prediction modes, depending on the degree of detail of the prediction direction. However, this is an example, and more or less directional prediction modes may be used depending on the setting.
  • the intra prediction unit 185 may determine a prediction mode applied to the current block by using the prediction mode applied to the neighboring block.
  • the inter prediction unit 180 may derive a predicted block for the current block based on a reference block (reference sample array) specified by a motion vector on the reference picture.
  • motion information may be predicted in units of blocks, subblocks, or samples based on a correlation between motion information between a neighboring block and a current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the reference picture including the reference block and the reference picture including the temporal neighboring block may be the same or different from each other.
  • the temporal neighboring block may be referred to by a name such as a collocated reference block or a collocated CU (colCU).
  • a reference picture including the temporal neighboring block may be referred to as a collocated picture (colPic).
  • the inter prediction unit 180 constructs a motion information candidate list based on neighboring blocks, and provides information indicating which candidate is used to derive a motion vector and/or a reference picture index of the current block. Can be generated. Inter prediction may be performed based on various prediction modes.
  • the inter prediction unit 180 may use motion information of a neighboring block as motion information of a current block.
  • a residual signal may not be transmitted.
  • MVP motion vector prediction
  • a motion vector of a neighboring block is used as a motion vector predictor, and an indicator for a motion vector difference and a motion vector predictor ( indicator) to signal the motion vector of the current block.
  • the motion vector difference may mean a difference between a motion vector of a current block and a motion vector predictor.
  • the prediction unit may generate a prediction signal based on various prediction methods and/or prediction techniques to be described later.
  • the prediction unit may apply intra prediction or inter prediction for prediction of the current block, and may simultaneously apply intra prediction and inter prediction.
  • a prediction method in which intra prediction and inter prediction are applied simultaneously for prediction of the current block may be referred to as combined inter and intra prediction (CIIP).
  • the prediction unit may perform intra block copy (IBC) for prediction of the current block.
  • the intra block copy may be used for content image/movie coding such as games, such as, for example, screen content coding (SCC).
  • IBC is a method of predicting a current block by using a reference block in a current picture at a distance from the current block by a predetermined distance. When IBC is applied, the position of the reference block in the current picture may be encoded as a vector (block vector) corresponding to the predetermined distance.
  • the prediction signal generated through the prediction unit may be used to generate a reconstructed signal or may be used to generate a residual signal.
  • the subtraction unit 115 subtracts the prediction signal (predicted block, prediction sample array) output from the prediction unit from the input image signal (original block, original sample array), and subtracts a residual signal (remaining block, residual sample array). ) Can be created.
  • the generated residual signal may be transmitted to the converter 120.
  • the transform unit 120 may generate transform coefficients by applying a transform technique to the residual signal.
  • the transformation technique uses at least one of DCT (Discrete Cosine Transform), DST (Discrete Sine Transform), KLT (Karhunen-Loeve Transform), GBT (Graph-Based Transform), or CNT (Conditionally Non-linear Transform).
  • DCT Discrete Cosine Transform
  • DST Discrete Sine Transform
  • KLT Kerhunen-Loeve Transform
  • GBT Graph-Based Transform
  • CNT Supplementally Non-linear Transform
  • GBT refers to the transformation obtained from this graph when the relationship information between pixels is expressed in a graph.
  • CNT refers to a transformation obtained based on generating a prediction signal using all previously reconstructed pixels.
  • the conversion process may be applied to a block of pixels having the same size of a square, or may be applied to a block of variable size other than a square.
  • the quantization unit 130 may quantize the transform coefficients and transmit the quantization to the entropy encoding unit 190.
  • the entropy encoding unit 190 may encode a quantized signal (information on quantized transform coefficients) and output it as a bitstream. Information about the quantized transform coefficients may be called residual information.
  • the quantization unit 130 may rearrange the quantized transform coefficients in a block form into a one-dimensional vector form based on a coefficient scan order, and the quantized transform coefficients in the form of the one-dimensional vector It is also possible to generate information about transform coefficients.
  • the entropy encoding unit 190 may perform various encoding methods such as exponential Golomb, context-adaptive variable length coding (CAVLC), and context-adaptive binary arithmetic coding (CABAC).
  • the entropy encoding unit 190 may encode together or separately information necessary for video/image restoration (eg, values of syntax elements) in addition to quantized transform coefficients.
  • the encoded information (eg, encoded video/video information) may be transmitted or stored in a bitstream form in units of network abstraction layer (NAL) units.
  • the video/video information may further include information on various parameter sets, such as an adaptation parameter set (APS), a picture parameter set (PPS), a sequence parameter set (SPS), or a video parameter set (VPS).
  • the video/video information may further include general constraint information.
  • the signaling information, transmitted information, and/or syntax elements mentioned in the present disclosure may be encoded through the above-described encoding procedure and included in the bitstream.
  • the bitstream may be transmitted through a network or may be stored in a digital storage medium.
  • the network may include a broadcasting network and/or a communication network
  • the digital storage medium may include various storage media such as USB, SD, CD, DVD, Blu-ray, HDD, and SSD.
  • a transmission unit (not shown) for transmitting the signal output from the entropy encoding unit 190 and/or a storage unit (not shown) for storing may be provided as an internal/external element of the image encoding apparatus 100, or transmission The unit may be provided as a component of the entropy encoding unit 190.
  • the quantized transform coefficients output from the quantization unit 130 may be used to generate a residual signal.
  • a residual signal residual block or residual samples
  • inverse quantization and inverse transform residual transforms
  • the addition unit 155 adds the reconstructed residual signal to the prediction signal output from the inter prediction unit 180 or the intra prediction unit 185 to obtain a reconstructed signal (a reconstructed picture, a reconstructed block, and a reconstructed sample array). Can be generated.
  • a reconstructed signal (a reconstructed picture, a reconstructed block, and a reconstructed sample array).
  • the predicted block may be used as a reconstructed block.
  • the addition unit 155 may be referred to as a restoration unit or a restoration block generation unit.
  • the generated reconstructed signal may be used for intra prediction of the next processing target block in the current picture, and may be used for inter prediction of the next picture through filtering as described later.
  • LMCS luma mapping with chroma scaling
  • the filtering unit 160 may improve subjective/objective image quality by applying filtering to the reconstructed signal.
  • the filtering unit 160 may apply various filtering methods to the reconstructed picture to generate a modified reconstructed picture, and the modified reconstructed picture may be converted to the memory 170, specifically, the DPB of the memory 170. Can be saved on.
  • the various filtering methods may include, for example, deblocking filtering, sample adaptive offset, adaptive loop filter, bilateral filter, and the like.
  • the filtering unit 160 may generate various information about filtering and transmit it to the entropy encoding unit 190 as described later in the description of each filtering method. Information about filtering may be encoded by the entropy encoding unit 190 and output in the form of a bitstream.
  • the modified reconstructed picture transmitted to the memory 170 may be used as a reference picture in the inter prediction unit 180.
  • the image encoding apparatus 100 may avoid prediction mismatch between the image encoding apparatus 100 and the image decoding apparatus, and may improve encoding efficiency.
  • the DPB in the memory 170 may store a reconstructed picture modified to be used as a reference picture in the inter prediction unit 180.
  • the memory 170 may store motion information of a block from which motion information in a current picture is derived (or encoded) and/or motion information of blocks in a picture that have already been reconstructed.
  • the stored motion information may be transmitted to the inter prediction unit 180 in order to be used as motion information of a spatial neighboring block or motion information of a temporal neighboring block.
  • the memory 170 may store reconstructed samples of reconstructed blocks in the current picture, and may be transmitted to the intra prediction unit 185.
  • FIG. 3 is a schematic diagram of an image decoding apparatus to which an embodiment according to the present disclosure can be applied.
  • the image decoding apparatus 200 includes an entropy decoding unit 210, an inverse quantization unit 220, an inverse transform unit 230, an addition unit 235, a filtering unit 240, and a memory 250. ), an inter prediction unit 260 and an intra prediction unit 265.
  • the inter prediction unit 260 and the intra prediction unit 265 may be collectively referred to as a “prediction unit”.
  • the inverse quantization unit 220 and the inverse transform unit 230 may be included in the residual processing unit.
  • All or at least some of the plurality of constituent units constituting the image decoding apparatus 200 may be implemented as one hardware component (eg, a decoder or a processor) according to embodiments.
  • the memory 170 may include a DPB, and may be implemented by a digital storage medium.
  • the image decoding apparatus 200 receiving a bitstream including video/image information may reconstruct an image by performing a process corresponding to the process performed by the image encoding apparatus 100 of FIG. 1.
  • the image decoding apparatus 200 may perform decoding using a processing unit applied by the image encoding apparatus.
  • the processing unit of decoding may be, for example, a coding unit.
  • the coding unit may be a coding tree unit or may be obtained by dividing the largest coding unit.
  • the reconstructed image signal decoded and output through the image decoding apparatus 200 may be reproduced through a reproducing apparatus (not shown).
  • the image decoding apparatus 200 may receive a signal output from the image encoding apparatus of FIG. 1 in the form of a bitstream.
  • the received signal may be decoded through the entropy decoding unit 210.
  • the entropy decoding unit 210 may parse the bitstream to derive information (eg, video/video information) necessary for image restoration (or picture restoration).
  • the video/video information may further include information on various parameter sets, such as an adaptation parameter set (APS), a picture parameter set (PPS), a sequence parameter set (SPS), or a video parameter set (VPS).
  • the video/video information may further include general constraint information.
  • the image decoding apparatus may additionally use information on the parameter set and/or the general restriction information to decode an image.
  • the signaling information, received information, and/or syntax elements mentioned in the present disclosure may be obtained from the bitstream by decoding through the decoding procedure.
  • the entropy decoding unit 210 decodes information in the bitstream based on a coding method such as exponential Golomb coding, CAVLC, or CABAC, and a value of a syntax element required for image reconstruction, a quantized value of a transform coefficient related to a residual. Can be printed.
  • the CABAC entropy decoding method a bin corresponding to each syntax element is received in a bitstream, and information on the syntax element to be decoded, decoding information of a neighboring block and a block to be decoded, or information of a symbol/bin decoded in a previous step
  • the context model is determined by using and, according to the determined context model, the probability of occurrence of bins is predicted to perform arithmetic decoding of the bins to generate a symbol corresponding to the value of each syntax element.
  • the CABAC entropy decoding method may update the context model using information of the decoded symbol/bin for the context model of the next symbol/bin after the context model is determined.
  • information about prediction is provided to the prediction unit (inter prediction unit 260 and intra prediction unit 265), and the register on which entropy decoding is performed by the entropy decoding unit 210
  • the dual value that is, quantized transform coefficients and related parameter information may be input to the inverse quantization unit 220.
  • information about filtering among information decoded by the entropy decoding unit 210 may be provided to the filtering unit 240.
  • a receiving unit for receiving a signal output from the image encoding device may be additionally provided as an inner/outer element of the image decoding device 200, or the receiving unit is provided as a component of the entropy decoding unit 210 It could be.
  • the video decoding apparatus may include an information decoder (video/video/picture information decoder) and/or a sample decoder (video/video/picture sample decoder).
  • the information decoder may include an entropy decoding unit 210, and the sample decoder includes an inverse quantization unit 220, an inverse transform unit 230, an addition unit 235, a filtering unit 240, a memory 250, It may include at least one of the inter prediction unit 260 and the intra prediction unit 265.
  • the inverse quantization unit 220 may inverse quantize the quantized transform coefficients and output transform coefficients.
  • the inverse quantization unit 220 may rearrange the quantized transform coefficients in a two-dimensional block shape. In this case, the rearrangement may be performed based on a coefficient scan order performed by the image encoding apparatus.
  • the inverse quantization unit 220 may perform inverse quantization on quantized transform coefficients using a quantization parameter (eg, quantization step size information) and obtain transform coefficients.
  • a quantization parameter eg, quantization step size information
  • the inverse transform unit 230 may inverse transform the transform coefficients to obtain a residual signal (residual block, residual sample array).
  • the prediction unit may perform prediction on the current block and generate a predicted block including prediction samples for the current block.
  • the prediction unit may determine whether intra prediction or inter prediction is applied to the current block based on the prediction information output from the entropy decoding unit 210, and determine a specific intra/inter prediction mode (prediction technique). I can.
  • the prediction unit can generate the prediction signal based on various prediction methods (techniques) to be described later.
  • the intra prediction unit 265 may predict the current block by referring to samples in the current picture.
  • the description of the intra prediction unit 185 may be equally applied to the intra prediction unit 265.
  • the inter prediction unit 260 may derive a predicted block for the current block based on a reference block (reference sample array) specified by a motion vector on the reference picture.
  • motion information may be predicted in units of blocks, subblocks, or samples based on a correlation between motion information between a neighboring block and a current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the inter prediction unit 260 may construct a motion information candidate list based on neighboring blocks, and derive a motion vector and/or a reference picture index of the current block based on the received candidate selection information.
  • Inter prediction may be performed based on various prediction modes (techniques), and the information on prediction may include information indicating a mode (technique) of inter prediction for the current block.
  • the addition unit 235 is reconstructed by adding the obtained residual signal to the prediction signal (predicted block, prediction sample array) output from the prediction unit (including the inter prediction unit 260 and/or the intra prediction unit 265).
  • a signal (restored picture, reconstructed block, reconstructed sample array) can be generated.
  • the description of the addition unit 155 may be equally applied to the addition unit 235.
  • LMCS luma mapping with chroma scaling
  • the filtering unit 240 may improve subjective/objective image quality by applying filtering to the reconstructed signal.
  • the filtering unit 240 may apply various filtering methods to the reconstructed picture to generate a modified reconstructed picture, and the modified reconstructed picture may be converted to the memory 250, specifically, the DPB of the memory 250. Can be saved on.
  • the various filtering methods may include, for example, deblocking filtering, sample adaptive offset, adaptive loop filter, bilateral filter, and the like.
  • the reconstructed picture (modified) stored in the DPB of the memory 250 may be used as a reference picture in the inter prediction unit 260.
  • the memory 250 may store motion information of a block from which motion information in a current picture is derived (or decoded) and/or motion information of blocks in a picture that have already been reconstructed.
  • the stored motion information may be transmitted to the inter prediction unit 260 to be used as motion information of a spatial neighboring block or motion information of a temporal neighboring block.
  • the memory 250 may store reconstructed samples of reconstructed blocks in the current picture, and may be transmitted to the intra prediction unit 265.
  • embodiments described in the filtering unit 160, the inter prediction unit 180, and the intra prediction unit 185 of the encoding apparatus 100 are respectively The same or corresponding to the prediction unit 260 and the intra prediction unit 265 may be applied.
  • the image encoding/decoding apparatus may derive a prediction sample by performing inter prediction in block units.
  • Inter prediction may refer to a prediction technique derived in a method dependent on data elements of picture(s) other than the current picture.
  • a prediction block for the current block may be derived based on a reference block specified by a motion vector on a reference picture.
  • motion information of the current block may be derived based on the correlation of motion information between the neighboring block and the current block, and motion information in units of blocks, sub-blocks or samples Can be induced.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction type information.
  • the inter prediction type information may mean directional information of inter prediction.
  • the inter prediction type information may indicate that the current block is predicted using one of L0 prediction, L1 prediction, and Bi prediction.
  • the neighboring blocks of the current block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the reference picture including the reference block for the current block and the reference picture including the temporal neighboring block may be the same or different.
  • the temporal neighboring block may be referred to as a collocated reference block, a colCU, and the like, and a reference picture including the temporal neighboring block may be referred to as a collocated picture (colPic). I can.
  • a motion information candidate list may be constructed based on neighboring blocks of the current block.
  • a flag or index information indicating which candidate is used to derive a motion vector and/or a reference picture index of the current block is provided. Can be signaled.
  • the motion information may include L0 motion information and/or L1 motion information according to the inter prediction type.
  • the motion vector in the L0 direction may be defined as an L0 motion vector or MVL0
  • the motion vector in the L1 direction may be defined as an L1 motion vector or MVL1.
  • the prediction based on the L0 motion vector may be defined as L0 prediction
  • the prediction based on the L1 motion vector may be defined as the L1 prediction
  • the prediction based on both the L0 motion vector and the L1 motion vector is bi-prediction (Bi- prediction).
  • the motion vector L0 may mean a motion vector associated with the reference picture list L0
  • the motion vector L1 may mean a motion vector associated with the reference picture list L1.
  • the reference picture list L0 may include pictures prior to the current picture in an output order as reference pictures, and the reference picture list L1 may include pictures after the current picture in an output order.
  • previous pictures may be defined as forward (reference) pictures, and subsequent pictures may be defined as backward (reference) pictures.
  • the reference picture list L0 may further include pictures after the output order than the current picture.
  • previous pictures in the reference picture list L0 may be indexed first, and pictures afterwards may be indexed next.
  • the reference picture list L1 may further include previous pictures in output order than the current picture.
  • subsequent pictures in the reference picture list L1 may be indexed first, and previous pictures may be indexed next.
  • the output order may correspond to a picture order count (POC) order.
  • POC picture order count
  • FIG. 4 is a flowchart illustrating a video/video encoding method based on inter prediction.
  • FIG. 5 is a diagram illustrating an exemplary configuration of an inter prediction unit 180 according to the present disclosure.
  • the encoding method of FIG. 4 may be performed by the video encoding apparatus of FIG. 2. Specifically, step S410 may be performed by the inter prediction unit 180, and step S420 may be performed by the residual processing unit. Specifically, step S420 may be performed by the subtraction unit 115. Step S430 may be performed by the entropy encoding unit 190.
  • the prediction information of step S430 may be derived by the inter prediction unit 180, and the residual information of step S430 may be derived by the residual processing unit.
  • the residual information is information on the residual samples.
  • the residual information may include information on quantized transform coefficients for the residual samples.
  • the residual samples may be derived as transform coefficients through the transform unit 120 of the image encoding apparatus, and the transform coefficients may be derived as quantized transform coefficients through the quantization unit 130.
  • Information on the quantized transform coefficients may be encoded by the entropy encoding unit 190 through a residual coding procedure.
  • the image encoding apparatus may perform inter prediction on the current block (S410).
  • the image encoding apparatus may derive the inter prediction mode and motion information of the current block and generate prediction samples of the current block.
  • the procedure of determining the inter prediction mode, deriving motion information, and generating prediction samples may be performed simultaneously, or one procedure may be performed before another procedure.
  • the inter prediction unit 180 of the image encoding apparatus may include a prediction mode determination unit 181, a motion information derivation unit 182, and a prediction sample derivation unit 183. have.
  • a prediction mode determination unit 181 determines a prediction mode for the current block
  • a motion information derivation unit 182 derives motion information of the current block
  • a prediction sample derivation unit 183 predicts the current block. Samples can be derived.
  • the inter prediction unit 180 of the video encoding apparatus searches for a block similar to the current block within a predetermined area (search area) of reference pictures through motion estimation, and a difference between the current block and the current block. It is possible to derive a reference block that is less than the minimum or a certain criterion.
  • a reference picture index indicating a reference picture in which the reference block is located may be derived, and a motion vector may be derived based on a position difference between the reference block and the current block.
  • the image encoding apparatus may determine a mode applied to the current block from among various inter prediction modes.
  • the image encoding apparatus may compare a rate-distortion (RD) cost for the various prediction modes and determine an optimal inter prediction mode for the current block.
  • RD rate-distortion
  • the method of determining the inter prediction mode for the current block by the image encoding apparatus is not limited to the above example, and various methods may be used.
  • the inter prediction mode for the current block is a merge mode, a merge skip mode, an MVP mode (Motion Vector Prediction mode), a SMVD mode (Symmetric Motion Vector Difference), an affine mode, and Subblock-based merge mode, AMVR mode (Adaptive Motion Vector Resolution mode), HMVP mode (History-based Motion Vector Predictor mode), Pair-wise average merge mode, MMVD mode It may be determined at least one of (Merge mode with Motion Vector Differences mode), DMVR mode (Decoder side Motion Vector Refinement mode), CIIP mode (Combined Inter and Intra Prediction mode), and GPM (Geometric Partitioning mode).
  • the image encoding apparatus may derive merge candidates from neighboring blocks of the current block and construct a merge candidate list using the derived merge candidates.
  • the apparatus for encoding an image may derive a reference block in which a difference between the current block and the current block among reference blocks indicated by merge candidates included in the merge candidate list is a minimum or a predetermined reference or less.
  • a merge candidate associated with the derived reference block is selected, and merge index information indicating the selected merge candidate may be generated and signaled to the image decoding apparatus.
  • Motion information of the current block may be derived using motion information of the selected merge candidate.
  • the video encoding apparatus when the MVP mode is applied to the current block, derives motion vector predictor (MVP) candidates from neighboring blocks of the current block, and uses the derived MVP candidates to perform MVP. Can construct a candidate list.
  • the video encoding apparatus may use a motion vector of an MVP candidate selected from among MVP candidates included in the MVP candidate list as the MVP of the current block.
  • a motion vector indicating a reference block derived by the above-described motion estimation may be used as the motion vector of the current block, and among the MVP candidates, the difference between the motion vector of the current block and the current block is the smallest.
  • An MVP candidate having a motion vector may be the selected MVP candidate.
  • a motion vector difference which is a difference obtained by subtracting the MVP from the motion vector of the current block, may be derived.
  • index information indicating the selected MVP candidate and information about the MVD may be signaled to the video decoding apparatus.
  • the value of the reference picture index may consist of reference picture index information and may be separately signaled to the video decoding apparatus.
  • the image encoding apparatus may derive residual samples based on the prediction samples (S420).
  • the image encoding apparatus may derive the residual samples by comparing the original samples of the current block with the prediction samples. For example, the residual sample may be derived by subtracting a corresponding prediction sample from an original sample.
  • the image encoding apparatus may encode image information including prediction information and residual information (S430).
  • the image encoding apparatus may output the encoded image information in the form of a bitstream.
  • the prediction information is information related to the prediction procedure and may include prediction mode information (eg, skip flag, merge flag or mode index, etc.) and information about motion information.
  • the prediction mode information e.g, skip flag, merge flag or mode index, etc.
  • the skip flag is information indicating whether the skip mode is applied to the current block
  • the merge flag is information indicating whether the merge mode is applied to the current block.
  • the prediction mode information may be information indicating one of a plurality of prediction modes, such as a mode index. When the skip flag and the merge flag are each 0, it may be determined that the MVP mode is applied to the current block.
  • the information on the motion information may include candidate selection information (eg, merge index, mvp flag, or mvp index), which is information for deriving a motion vector.
  • candidate selection information eg, merge index, mvp flag, or mvp index
  • the merge index may be signaled when a merge mode is applied to the current block, and may be information for selecting one of merge candidates included in the merge candidate list.
  • the MVP flag or the MVP index may be signaled when the MVP mode is applied to the current block, and may be information for selecting one of MVP candidates included in the MVP candidate list.
  • the MVP flag may be signaled using the syntax element mvp_l0_flag or mvp_l1_flag.
  • the information on the motion information may include information on the above-described MVD and/or reference picture index information.
  • the information on the motion information may include information indicating whether L0 prediction, L1 prediction, or pair (Bi) prediction is applied.
  • the residual information is information on the residual samples.
  • the residual information may include information on quantized transform coefficients for the residual samples.
  • the output bitstream may be stored in a (digital) storage medium and transmitted to an image decoding device, or may be transmitted to an image decoding device through a network.
  • the image encoding apparatus may generate a reconstructed picture (a picture including reconstructed samples and a reconstructed block) based on the reference samples and the residual samples. This is because the video encoding apparatus derives the same prediction result as that performed by the video decoding apparatus, and coding efficiency can be improved through this. Accordingly, the apparatus for encoding an image may store a reconstructed picture (or reconstructed samples, and a reconstructed block) in a memory and use it as a reference picture for inter prediction. As described above, an in-loop filtering procedure or the like may be further applied to the reconstructed picture.
  • FIG. 6 is a flowchart illustrating a video/video decoding method based on inter prediction.
  • FIG. 7 is a diagram illustrating an exemplary configuration of an inter prediction unit 260 according to the present disclosure.
  • the image decoding apparatus may perform an operation corresponding to an operation performed by the image encoding apparatus.
  • the image decoding apparatus may perform prediction on the current block and derive prediction samples based on the received prediction information.
  • the decoding method of FIG. 6 may be performed by the video decoding apparatus of FIG. 3.
  • Steps S610 to S630 may be performed by the inter prediction unit 260, and the prediction information of step S610 and the residual information of step S640 may be obtained from the bitstream by the entropy decoding unit 210.
  • the residual processing unit of the image decoding apparatus may derive residual samples for the current block based on the residual information (S640).
  • the inverse quantization unit 220 of the residual processing unit derives transform coefficients by performing inverse quantization based on the quantized transform coefficients derived based on the residual information
  • the inverse transform unit of the residual processing unit ( 230) may derive residual samples for the current block by performing inverse transform on the transform coefficients.
  • Step S650 may be performed by the addition unit 235 or the restoration unit.
  • the image decoding apparatus may determine a prediction mode for the current block based on the received prediction information (S610).
  • the video decoding apparatus may determine which inter prediction mode is applied to the current block based on prediction mode information in the prediction information.
  • the skip mode is applied to the current block based on the skip flag.
  • one of various inter prediction mode candidates may be selected based on the mode index.
  • the inter prediction mode candidates may include a skip mode, a merge mode, and/or an MVP mode, or may include various inter prediction modes to be described later.
  • the image decoding apparatus may derive motion information of the current block based on the determined inter prediction mode (S620). For example, when a skip mode or a merge mode is applied to the current block, the video decoding apparatus may configure a merge candidate list to be described later, and select one merge candidate from among merge candidates included in the merge candidate list. The selection may be performed based on the aforementioned candidate selection information (merge index). Motion information of the current block may be derived using motion information of the selected merge candidate. For example, motion information of the selected merge candidate may be used as motion information of the current block.
  • the video decoding apparatus may configure an MVP candidate list and use a motion vector of an MVP candidate selected from among MVP candidates included in the MVP candidate list as the MVP of the current block. have.
  • the selection may be performed based on the aforementioned candidate selection information (mvp flag or mvp index).
  • the MVD of the current block may be derived based on the information on the MVD
  • a motion vector of the current block may be derived based on the MVP of the current block and the MVD.
  • a reference picture index of the current block may be derived based on the reference picture index information.
  • a picture indicated by the reference picture index in the reference picture list for the current block may be derived as a reference picture referenced for inter prediction of the current block.
  • the image decoding apparatus may generate prediction samples for the current block based on motion information of the current block (S630).
  • the reference picture may be derived based on the reference picture index of the current block, and prediction samples of the current block may be derived using samples of the reference block indicated on the reference picture by the motion vector of the current block.
  • a prediction sample filtering procedure may be further performed on all or part of the prediction samples of the current block.
  • the inter prediction unit 260 of the image decoding apparatus may include a prediction mode determination unit 261, a motion information derivation unit 262, and a prediction sample derivation unit 263. have.
  • the inter prediction unit 260 of the video decoding apparatus determines a prediction mode for the current block based on the prediction mode information received from the prediction mode determination unit 261, and motion information received from the motion information derivation unit 262.
  • the motion information (motion vector and/or reference picture index, etc.) of the current block may be derived based on the information about and prediction samples of the current block may be derived by the prediction sample derivation unit 263.
  • the image decoding apparatus may generate residual samples for the current block based on the received residual information (S640).
  • the image decoding apparatus may generate reconstructed samples for the current block based on the prediction samples and the residual samples, and generate a reconstructed picture based on the prediction samples (S650). Thereafter, as described above, an in-loop filtering procedure or the like may be further applied to the reconstructed picture.
  • the inter prediction procedure may include determining an inter prediction mode, deriving motion information according to the determined prediction mode, and performing prediction based on the derived motion information (generating a prediction sample).
  • the inter prediction procedure may be performed in an image encoding apparatus and an image decoding apparatus.
  • inter prediction may be performed using motion information of a current block.
  • the video encoding apparatus may derive optimal motion information for the current block through a motion estimation procedure. For example, the video encoding apparatus can search for a similar reference block with high correlation using the original block in the original picture for the current block in units of fractional pixels within a predetermined search range in the reference picture, and derive motion information through this. can do.
  • Block similarity can be calculated based on the sum of absolute differences (SAD) between the current block and the reference block.
  • SAD sum of absolute differences
  • motion information may be derived based on the reference block having the smallest SAD in the search area.
  • the derived motion information may be signaled to the video decoding apparatus according to various methods based on the inter prediction mode.
  • motion information of the current block is not directly transmitted, and motion information of the current block is derived using motion information of a neighboring block. Accordingly, motion information of the current prediction block may be indicated by transmitting flag information indicating that the merge mode has been used and candidate selection information indicating which neighboring blocks have been used as merge candidates (eg, merge index).
  • flag information indicating that the merge mode has been used
  • candidate selection information indicating which neighboring blocks have been used as merge candidates (eg, merge index).
  • the current block since the current block is a unit of performing prediction, the current block is used in the same meaning as the current prediction block, and the neighboring block may be used in the same meaning as the neighboring prediction block.
  • the video encoding apparatus may search for a merge candidate block used to induce motion information of a current block. For example, up to five merge candidate blocks may be used, but the number of merge candidate blocks is not limited thereto. The maximum number of merge candidate blocks may be transmitted in a slice header or a tile group header, but is not limited thereto.
  • the image encoding apparatus may generate a merge candidate list, and among them, a merge candidate block having the lowest RD cost may be selected as a final merge candidate block.
  • the merge candidate list may use, for example, five merge candidate blocks. For example, four spatial merge candidates and one temporal merge candidate can be used.
  • an Matte mode which is an example of the inter prediction mode
  • a conventional video encoding/decoding system only one motion vector is used to represent motion information of a current block (translation motion model).
  • the conventional method only expresses optimal motion information in units of blocks, but cannot express optimal motion information in units of pixels.
  • an affine motion model has been proposed that defines motion information of a block in units of pixels.
  • a motion vector for each pixel and/or sub-block unit of a block may be determined using 2 to 4 motion vectors related to the current block.
  • the existing motion information was expressed using the parallel movement (or displacement) of the pixel value
  • the existing motion information was expressed using the parallel movement (or displacement) of the pixel value
  • at least one of translation, scaling, rotation, and shear is used, and motion information for each pixel Can be expressed.
  • FIG. 8 is a diagram illustrating a motion that can be expressed in an affine mode by way of example.
  • an affine mode in which motion information for each pixel is expressed using displacement, scaling, and rotation may be defined as a similarity or simplified affine mode.
  • the affine mode may mean a similar or simplified affine mode.
  • Motion information in the Rane mode may be expressed using two or more Control Point Motion Vectors (CPMVs).
  • CPMVs Control Point Motion Vectors
  • the motion vector of a specific pixel position of the current block can be derived using CPMV.
  • a set of motion vectors for each pixel and/or for each sub-block of the current block may be defined as an affine motion vector field (Affine Motion Vector Field: Affine MVF).
  • the Matte MVF may be derived using one of a 4-parameter model and a 6-parameter model.
  • the 4-parameter model may mean a model type in which two CPMVs are used
  • a 6-parameter model may mean a model type in which three CPMVs are used.
  • 9(a) and 9(b) are diagrams showing CPMVs used in a 4-parameter model and a 6-parameter model, respectively.
  • a motion vector according to the pixel position may be derived according to Equation 1 or 2 below.
  • a motion vector according to a 4-parameter model may be derived according to Equation 1
  • a motion vector according to a 6-parameter model may be derived according to Equation 2.
  • W and H respectively correspond to the width and height of the current block
  • the affine MVF may be determined in units of pixels and/or in units of predefined sub-blocks.
  • a motion vector may be derived based on each pixel value.
  • a motion vector of the corresponding block may be derived based on a center pixel value of the sub-block.
  • the center pixel value may refer to a virtual pixel present in the center of the sub-block, or may refer to a lower right pixel among the four pixels present in the center.
  • the center pixel value may be a specific pixel in the sub-block and a pixel representing the sub-block.
  • the motion model applicable to the current block may include three types of a translational motion model, a 4-parameter affine motion model, and a 6-parameter affine motion model.
  • the translational motion model can represent a model in which an existing block-based motion vector is used
  • a 4-parameter affine motion model can represent a model in which two CPMVs are used
  • a 6-parameter affine motion model can represent a model in which three CPMVs are used.
  • the Rane mode may be classified into detailed modes according to a method of encoding/decoding motion information. As an example, the Rane mode may be subdivided into an Ricoe MVP mode and an Matte merge mode.
  • the CPMV When the Matte merge mode is applied to the current block, the CPMV may be derived from neighboring blocks of the current block encoded/decoded in the Matte mode.
  • the Matte merge mode When at least one of the neighboring blocks of the current block is encoded/decoded in the Matte mode, the Matte merge mode may be applied to the current block. That is, when the Matte merge mode is applied to the current block, the CPMVs of the current block may be derived using the CPMVs of the neighboring block. For example, the CPMVs of the neighboring block may be determined as the CPMVs of the current block, or the CPMV of the current block may be derived based on the CPMVs of the neighboring block.
  • CPMV of the current block is derived based on the CPMV of the neighboring block
  • at least one of the encoding parameters of the current block or the neighboring block may be used.
  • CPMVs of a neighboring block may be modified based on the size of the neighboring block and the size of the current block and used as the CPMVs of the current block.
  • an affine merge in which the MV is derived in units of subblocks it may be referred to as a subblock merge mode, which may be indicated by a merge_subblock_flag having a first value (eg, '1').
  • an affine merging candidate list to be described later may be referred to as a subblock merging candidate list.
  • the subblock merge candidate list may further include a candidate derived by SbTMVP, which will be described later.
  • the candidate derived by the sbTMVP may be used as a candidate for index 0 of the subblock merge candidate list.
  • the candidate derived by sbTMVP may be located in front of inherited affine merge candidates and constructed affine candidates, which will be described later, in the subblock merge candidate list.
  • an affine mode flag indicating whether the Ranc mode can be applied to the current block may be defined, which is at least one of a higher level of the current block such as a sequence, picture, slice, tile, tile group, brick, etc. It can be signaled at one level.
  • the affine mode flag may be named sps_affine_enabled_flag.
  • an Matte merge candidate list may be configured to induce CPMV of the current block.
  • the affine merge candidate list may include at least one of an inheritance affine merge candidate, a combination affine merge candidate, and a zero merge candidate.
  • the inheritance affine merge candidate may mean a candidate derived by using the CPMV of the neighboring block when the neighboring block of the current block is encoded/decoded in the affine mode.
  • the merge candidate which is a combination affine, may mean a candidate from which each CPMV is derived based on a motion vector of a block adjacent to each control point (CP).
  • the zero merge candidate may mean a candidate composed of CPMVs having a size of 0.
  • CP may mean a specific position of a block used to induce CPMV.
  • the CP may be the position of each vertex of the block.
  • 10 is a diagram for describing a method of generating an affine merge candidate list.
  • an affine merge candidate may be added to the affine merge candidate list in the order of an inheritance affine merge candidate (S1210), a combination affine merge candidate (S1220), and a zero merge candidate (S1230).
  • the zero merge candidate may be added when the number of candidates included in the candidate list does not meet the maximum number of candidates even though both the inherited affine merge candidate and the combined affine merge candidate are added to the affine merge candidate list. In this case, the zero merge candidate may be added until the number of candidates in the affine merge candidate list satisfies the maximum number of candidates.
  • 11 is a diagram for explaining CPMV derived from neighboring blocks.
  • each candidate may be derived based on at least one of left neighboring blocks and upper neighboring blocks.
  • FIG. 12 is a diagram for explaining a neighboring block for deriving a merge candidate, which is an inheritance affine.
  • the merge candidate an inheritance affine derived based on the left neighboring block
  • the merge candidate which is an inheritance affine derived based on the upper neighboring block
  • the neighboring block of FIG. It may be derived based on at least one of B0, B1 and B2.
  • the scanning order of each neighboring block may be from A0 to A1 and from B0 to B1 and B2, but is not limited thereto.
  • a merge candidate which is an inheritance, may be derived based on the first neighboring block available in the scan order. In this case, a redundancy check may not be performed between candidates derived from the left neighboring block and the upper neighboring block.
  • the inheritance affine merge candidate when the left neighboring block A is encoded/decoded in the Rane mode, at least one of motion vectors v2, v3, and v4 corresponding to the CP of the neighboring block A may be derived.
  • the inheritance affine merge candidate When the neighboring block A is encoded/decoded through the 4-parameter affine model, the inheritance affine merge candidate may be derived using v2 and v3.
  • the inheritance affine merge candidate when the neighboring block A is encoded/decoded through the 6-parameter affine model, the inheritance affine merge candidate can be derived using v2, v3, and v4.
  • FIG. 13 is a diagram for describing neighboring blocks for deriving a merge candidate, which is a combination affine.
  • the combination affine candidate may mean a candidate from which CPMV is derived by using a combination of general motion information of neighboring blocks. Motion information for each CP may be derived using a spatial neighboring block or a temporal neighboring block of the current block.
  • CPMVk may mean a motion vector representing the k-th CP.
  • CPMV1 may be determined as an available first motion vector among motion vectors of B2, B3, and A2, and the scan order may be in the order of B2, B3, and A2.
  • CPMV2 may be determined as an available first motion vector among motion vectors of B1 and B0, and the scan order at this time may be in the order of B1 and B0.
  • CPMV3 may be determined as the first motion vector available among the motion vectors of A1 and A0, and the scan order at this time may be in the order of A1 and A0.
  • CPMV4 may be determined as a motion vector of T, which is a temporal neighboring block.
  • a combination affine merge candidate may be derived based on these.
  • the merge candidate which is a combination affine, may be configured to include at least two or more motion vectors selected from four motion vectors for each derived CP.
  • combinatorial affine merge candidates are ⁇ CPMV1, CPMV2, CPMV3 ⁇ , ⁇ CPMV1, CPMV2, CPMV4 ⁇ , ⁇ CPMV1, CPMV3, CPMV4 ⁇ , ⁇ CPMV2, CPMV3, CPMV4 ⁇ , ⁇ CPMV1, CPMV2 ⁇ and ⁇ CPMV1 ⁇ It may be composed of at least one according to the order of CPMV3 ⁇ .
  • a combination affine candidate composed of three motion vectors may be a candidate for a 6-parameter affine model.
  • a combination affine candidate composed of two motion vectors may be a candidate for a 4-parameter affine model.
  • the combination of the related CPMVs is not used for derivation of the combination affine candidate and may be ignored.
  • the image encoding apparatus may derive two or more CPMV predictors and CPMVs for the current block, and derive CPMV differences based on this.
  • the CPMV difference may be signaled from the encoding device to the decoding device.
  • the image decoding apparatus may derive a CPMV predictor for the current block, restore the signaled CPMV difference, and then derive the CPMV of the current block based on the CPMV predictor and the CPMV difference.
  • the affine MVP mode may be applied to the current block.
  • the affine MVP mode may be expressed as an Arte CP MVP mode.
  • the affine MVP candidate list to be described later may be called a control point motion vectors predictor candidate list.
  • an affine MVP candidate list may be configured to induce CPMV for the current block.
  • the affine MVP candidate list may include at least one of an inheritance affine MVP candidate, a combination affine MVP candidate, a parallel movement affine MVP candidate, and a zero MVP candidate.
  • the MVP candidate which is an inheritance, may mean a candidate derived based on the CPMV of the neighboring block when the neighboring block of the current block is encoded/decoded in the affine mode.
  • the MVP candidate which is a combination affine, may mean a candidate derived by generating a CPMV combination based on a motion vector of a block adjacent to the CP.
  • the zero MVP candidate may mean a candidate composed of a CPMV having a value of 0. Since the derivation method and characteristics of the inherited affine MVP candidate and the combination affine MVP candidate are the same as those of the above-described inherited affine candidate and combination affine candidate, a description will be omitted.
  • the combination affine MVP candidate, the parallel movement affine MVP candidate, and the zero MVP candidate may be added when the current number of candidates is less than 2.
  • the MVP candidate, which is a parallel movement affine may be derived in the following order.
  • CPMV0 may be used as the affine MVP candidate. That is, an affine MVP candidate in which all motion vectors of CP0, CP1, and CP2 are CPMV0 may be added to the affine MVP candidate list.
  • CPMV1 may be used as the affine MVP candidate. That is, an affine MVP candidate in which all motion vectors of CP0, CP1, and CP2 are CPMV1 may be added to the affine MVP candidate list.
  • CPMV2 may be used as the affine MVP candidate. That is, an affine MVP candidate in which all motion vectors of CP0, CP1, and CP2 are CPMV2 may be added to the affine MVP candidate list.
  • TMVP temporal motion vector predictor
  • FIG. 14 is a diagram for describing a method of generating an affine MVP candidate list.
  • affine MVP candidate list in the order of an inheritance affine MVP (S1610), a combination affine MVP candidate (S1620), a parallel movement affine MVP candidate (S1630), and a zero MVP candidate (S1640).
  • S1620 a combination affine MVP candidate
  • S1630 parallel movement affine MVP candidate
  • S1640 a zero MVP candidate
  • steps S1620 to S1640 may be performed according to whether the number of candidates included in the affine MVP candidate list in each step is less than two.
  • the scanning order of the MVP candidate which is the inheritance affiliation, may be the same as the scan order of the merge candidate, which is the inheritance affine. However, in the case of an MVP candidate that is an inheritance affine, only neighboring blocks that refer to the same reference picture as the reference picture of the current block may be considered. When adding an inherited affine, an MVP candidate, to the affine MVP candidate list, the redundancy check may not be performed.
  • Only spatial neighboring blocks shown in FIG. 13 may be considered in order to derive an MVP candidate, which is a combination affine.
  • the scanning order of the combination affine MVP candidate may be the same as the scan order of the combination affine merge candidate.
  • a reference picture index of a neighboring block is checked, and in the scan order, a first neighboring block that is inter-coded and refers to the same reference picture as the reference picture of the current block may be used. .
  • a subblock-based TMVP mode which is an example of the inter prediction mode
  • a motion vector field (MVF) for a current block is derived, and a motion vector may be derived in units of sub-blocks.
  • a coding unit to which the sub-block-based TMVP mode is applied may encode/decode a motion vector in units of sub-coding units.
  • a temporal motion vector is derived from a collocated block in a co-located picture.
  • a motion vector field may be derived from a reference block within a co-located picture indicated by a motion vector derived from a neighboring block of the current block.
  • a motion vector derived from a neighboring block may be referred to as a motion shift or a representative motion vector of the current block.
  • 15 is a diagram for describing neighboring blocks in a sub-block-based TMVP mode.
  • a neighboring block for determining the motion shift may be determined.
  • scanning of neighboring blocks to determine motion shift may be performed in the order of blocks A1, B1, B0, and A0 of FIG. 15.
  • the neighboring block for determining the motion shift may be limited to a specific neighboring block of the current block.
  • a neighboring block for determining a motion shift may always be determined as an A1 block.
  • the corresponding motion vector may be determined as a motion shift.
  • the motion vector determined by the motion shift may be referred to as a temporal motion vector.
  • the motion shift may be set to (0,0).
  • 16 is a diagram for describing a method of deriving a motion vector field according to a subblock-based TMVP mode.
  • a reference block on the co-located picture indicated by the motion shift may be determined.
  • subblock-based motion information motion vector, reference picture index
  • motion vector motion vector
  • reference picture index a motion vector of the A1 block.
  • motion information of the corresponding subblock may be obtained from the center position of the corresponding subblock.
  • the center position may be the position of the lower right sample among the four samples located at the center of the corresponding subblock.
  • motion information of a specific subblock of the collocated block corresponding to the current block is not available, motion information of the central subblock of the collocated block may be determined as the motion information of the corresponding subblock.
  • the motion vector of the current subblock and the reference picture index may be converted. That is, when a subblock-based motion vector is derived, scaling of the motion vector may be performed in consideration of the POC of the reference picture of the reference block.
  • a subblock-based TMVP candidate for the current block may be derived using the motion vector field or motion information of the current block derived based on the subblock.
  • a merge candidate list configured in units of subblocks is defined as a merge candidate list in units of subblocks.
  • the above-described affine merge candidate and subblock-based TMVP candidate may be merged to form a subblock-based merge candidate list.
  • a subblock-based TMVP mode flag indicating whether the subblock-based TMVP mode can be applied to the current block may be defined, which is higher than the current block such as a sequence, picture, slice, tile, tile group, brick, etc. It may be signaled at at least one of the levels.
  • the subblock-based TMVP mode flag may be named sps_sbtmvp_enabled_flag.
  • the size of the subblock used for deriving the merge candidate list in units of subblocks may be signaled or may be preset to MxN.
  • MxN may be 8x8. Therefore, only when the size of the current block is 8x8 or more, the Ranten mode or the subblock-based TMVP mode can be applied to the current block.
  • step S410 of FIG. 4 or step S630 of FIG. 6.
  • a predicted block for the current block may be generated based on motion information derived according to the prediction mode.
  • the predicted block may include prediction samples (prediction sample array) of the current block.
  • prediction samples prediction sample array
  • an interpolation procedure may be performed, and through this, prediction samples of the current block are calculated based on the reference samples in the fractional sample unit within the reference picture. Can be derived.
  • prediction samples may be generated based on MV per sample/subblock.
  • prediction samples derived based on L0 prediction i.e., prediction using a reference picture in a reference picture list L0 and MVL0
  • L1 prediction i.e., a reference in a reference picture list L1
  • Prediction samples derived through a weighted sum (according to a phase) or a weighted average of prediction samples derived based on prediction using a picture and MVL1 may be used as prediction samples of the current block.
  • L0 prediction i.e., prediction using a reference picture in a reference picture list L0 and MVL0
  • L1 prediction i.e., a reference in a reference picture list L1
  • Prediction samples derived through a weighted sum (according to a phase) or a weighted average of prediction samples derived based on prediction using a picture and MVL1 may be used as prediction samples of the current block.
  • reconstructed samples and reconstructed pictures may be generated based on the derived prediction samples, and then a procedure such as in-loop filtering may be performed.
  • residual samples may be derived based on the derived prediction samples, and encoding of image information including prediction information and residual information may be performed.
  • a bi-prediction signal ie, bi-prediction samples
  • L0 prediction samples L0 prediction samples
  • L1 prediction samples L1 prediction samples
  • the bi-prediction samples were derived as an average of L0 prediction samples based on the L0 reference picture and MVL0, and L1 prediction samples based on the L1 reference picture and MVL1.
  • a bi-prediction signal may be derived through a weighted average of the L0 prediction signal and the L1 prediction signal as follows.
  • P bi-pred denotes a bi-prediction signal (a pair-prediction block) derived by a weighted average
  • P 0 and P 1 denote L0 prediction samples (L0 prediction block) and L1 prediction samples ( L1 prediction block).
  • (8-w) and w denote weights applied to P 0 and P 1, respectively.
  • the weight w may be selected from ⁇ -2,3,4,5,10 ⁇ .
  • the weight w may be determined in one of two ways. As a first of the above two methods, when the current CU is not in a merge mode (non-merge CU), a weight index may be signaled together with a motion vector difference. For example, the bitstream may include information about a weight index after information about a motion vector difference. As a second of the above two methods, when the current CU is in the merge mode (merge CU), the weight index may be derived from neighboring blocks based on the merge candidate index (merge index).
  • the generation of the bi-prediction signal by the weighted average may be limited to be applied only to a CU of a size including 256 or more samples (luma component samples). That is, bi-prediction based on the weighted average may be performed only for CUs in which the product of the width and height of the current block is 256 or more.
  • the weight w as described above, one of five weights may be used, or one of a different number of weights may be used. For example, according to the characteristics of the current image, five weights may be used for a low-delay picture and three weights may be used for a non-low-delay picture. In this case, the three weights may be ⁇ 3,4,5 ⁇ .
  • the image encoding apparatus may determine a weight index without significantly increasing complexity by applying a fast search algorithm.
  • the fast search algorithm can be summarized as follows.
  • the unequal weight may mean that the weights applied to P 0 and P 1 are not equal.
  • the equal weight may mean that the weights applied to P 0 and P 1 are equal.
  • the video encoding apparatus may perform affine motion estimation (ME) for each of the unequal weights.
  • ME affine motion estimation
  • the predetermined condition may be a condition based on a POC distance between a current picture and a reference picture, a quantization parameter (QP), a temporal level, and the like.
  • QP quantization parameter
  • the BCW weight index may be encoded using one context encoding bin and one or more subsequent bypass coded bins.
  • the first context encoding bin indicates whether or not equal weights are used. When unequal weights are used, additional bins may be bypass-coded and signaled. Additional bins may be signaled to indicate which weight is used.
  • Weighted prediction is a tool for efficiently encoding an image including fading.
  • a weighting parameter (weight and offset) may be signaled for each reference picture included in each of the reference picture lists L0 and L1. Thereafter, when motion compensation is performed, the weight(s) and the offset(s) may be applied to the corresponding reference picture(s).
  • Weighted prediction and BCW can be used for different types of images. In order to avoid interaction between weighted prediction and BCW, the BCW weight index may not be signaled for a CU using weighted prediction. In this case, the weight can be inferred as 4. That is, even weights can be applied.
  • the weight index may be inferred from neighboring blocks based on the merge candidate index. This can be applied to both the normal merge mode and the inheritance merge mode.
  • affine motion information may be configured based on motion information of up to three blocks.
  • the BCW weight index for the CU using the combined affine merge mode may be set as the BCW weight index of the first CP in the combination.
  • CIIP and BCW may not be applied to CU together. That is, BCW may not be applied to CUs encoded in the CIIP mode.
  • the BCW weight index of the CU encoded in the CIIP mode may be set to a value indicating an equal weight.
  • BDOF may be used to refine (improve) a bi-prediction signal.
  • BDOF is for generating prediction samples by calculating improved motion information when bi-prediction is applied to a current block (ex. CU). Accordingly, the process of calculating the improved motion information by applying the BDOF may be included in the motion information derivation step described above.
  • BDOF can be applied at the 4x4 subblock level. That is, BDOF may be performed in units of 4x4 subblocks in the current block.
  • BODF may be applied to a CU that satisfies at least one or all of the following conditions, for example.
  • BDOF can only be applied to the luma component.
  • the present invention is not limited thereto, and the BDOF may be applied only to the chroma component, or may be applied to both the luma component and the chroma component.
  • the BDOF mode is based on the concept of optical flow. That is, it is assumed that the movement of the object is smooth.
  • an improved motion vector motion refinement (v x , v y ) may be calculated for each 4x4 subblock.
  • the improved motion vector motion refinement
  • the improved motion vector can be calculated by minimizing the difference between the L0 prediction sample and the L1 prediction sample.
  • the improved motion vector motion refinement
  • the horizontal gradient of the two prediction signals And vertical gradient can be calculated.
  • k may be 0 or 1.
  • the gradient can be calculated by directly calculating the difference between two adjacent samples.
  • the gradient can be calculated as follows.
  • I (0) (i, j) refers to the sample value at the position (i, j) in the L0 prediction block
  • I (1) (i, j) refers to the (i, j) position in the L1 prediction block. It can mean a sample value.
  • the first shift amount shift1 may be determined based on the bit depth (bit depth) of the luma component. For example, when the bit depth of the luma component is referred to as bitDepth, shift1 may be determined as max(6, bitDepth-6).
  • n a and n b may be set to min(1, bitDepth-11) and min(4, bitDepth-8), respectively.
  • the motion refinement (v x , v y ) improved by using the auto-correlation and cross-correlation between gradients described above can be derived as follows.
  • n S2 may be 12. Based on the derived motion refinement and gradients, the following adjustment may be performed for each sample in a 4x4 subblock.
  • predicted samples (pred BDOF ) of a CU to which BDOF is applied may be calculated by adjusting the bi-prediction samples of the CU as follows.
  • n a , n b and n S2 may be 3, 6 and 12, respectively. These values may be selected so that the multiplier in the BDOF process does not exceed 15 bits, and the bit-width of intermediate parameters is maintained within 32 bits.
  • 17 is a diagram illustrating an extended CU to perform BDOF.
  • a row/column extended around a boundary of a CU may be used.
  • prediction samples in the extended area are generated using a bilinear filter, and the CU (gray area in FIG. 17) is used.
  • Region) prediction samples may be generated using a normal 8-tap motion compensation interpolation filter.
  • the sample values of the extended position can be used only for gradient calculation.
  • the nearest neighbor sample value and/or a gradient value may be padded (repeated) and used.
  • the CU When the width and/or height of the CU is greater than 16 luma samples, the CU may be divided into sub-blocks having a width and/or height of 16 luma samples.
  • the boundary of each sub-block may be treated the same as the CU boundary described above in the BDOF process.
  • the maximum unit size in which the BDOF process is performed may be limited to 16x16.
  • whether to perform BDOF may be determined. That is, the BDOF process for each subblock may be skipped. For example, when the SAD value between the initial LO prediction sample and the initial L1 prediction sample is less than a predetermined threshold, the BDOF process may not be applied to the corresponding subblock. At this time, when the width and height of the corresponding subblock are W and H, respectively, the predetermined threshold may be set to (8 * W*( H >> 1 ). In consideration of the complexity of additional SAD calculation, DMVR The SAD between the initial L0 prediction sample and the initial L1 prediction sample calculated in the process may be reused.
  • luma_weight_lx_flag may be information indicating whether weighting factors of WP for the luma component of lx prediction (x is 0 or 1) are present in the bitstream. Alternatively, it may be information indicating whether WP is applied to the luma component of the lx prediction.
  • SMVD symmetric MVD
  • CIIP CIIP
  • Prediction samples generated by performing sub-block based affine motion compensation may be improved based on the difference induced by the optical flow equation.
  • This improvement of the prediction sample may be referred to as prediction refinement with optical flow (PROF) in the present disclosure.
  • PROF can achieve inter prediction of pixel level granularity without increasing the bandwidth of the memory access.
  • the parameters of the affine motion model can be used to derive a motion vector of each pixel in the CU.
  • subblock-based affine motion compensation prediction may be performed.
  • the CU is divided into 4x4 subblocks, and a motion vector may be determined for each subblock.
  • the motion vector of each subblock can be derived from the CPMVs of the CU.
  • Subblock-based affine motion compensation has a trade-off relationship between coding efficiency and complexity, and bandwidth of memory access. Since motion vectors are derived in units of subblocks, the complexity and bandwidth of memory accesses are reduced, but prediction accuracy is lowered.
  • the luma prediction sample may be improved by adding the difference induced by the optical flow equation. More specifically, PROF may be performed in the following four steps.
  • Step 1) Subblock-based affine motion compensation is performed to generate a predicted subblock I(i, j).
  • Step 2 Spatial gradients g x (i, j) and g y (i, j) of the predicted subblock are calculated at each sample position.
  • a 3-tap filter may be used, and the filter coefficient may be [-1, 0, 1].
  • the spatial gradient can be calculated as follows.
  • the predicted subblock can be extended by 1 pixel on each side.
  • pixels of the extended boundary may be copied from the nearest integer pixel in the reference picture. Therefore, additional interpolation for the padding area may be omitted.
  • Step 3 The luma prediction refinement ( ⁇ I(i, j)) can be calculated by the optical flow equation.
  • the following equation may be used.
  • ⁇ v(i, j) is the pixel motion vector (pixel MV, v(i, j)) calculated at the sample position (i, j) and the subblock motion of the subblock to which the sample (i, j) belongs. It means the difference between vectors (sub-block MV).
  • FIG. 18 is a diagram showing the relationship between ⁇ v(i, j), v(i, j) and subblock motion vectors.
  • the difference between the motion vector v(i, j) at the upper left sample position of the current subblock and the motion vector v SB of the current subblock may be represented by a bold dotted arrow, and a bold dotted arrow
  • the vector represented by may correspond to ⁇ v(i, j).
  • ⁇ v(i, j) is calculated only for the first subblock, and can be reused for other subblocks in the same CU.
  • ⁇ v(x, y) can be derived as follows.
  • (v 0x , v 0y ), (v 1x , v 1y ) and (v 2x , v 2y ) correspond to the upper left CPMV, the upper right CPMV, and the lower left CPMV, and w and h represent the width and height of the CU. it means.
  • a final prediction block I'(i, j) may be generated based on the calculated improvement amount ⁇ I(i, j) of the luma prediction and the predicted subblock I(i, j).
  • the final prediction block I' may be generated as follows.
  • 19 is an example illustrating a process of determining whether to apply BDOF according to the present disclosure.
  • bdofFlag Whether or not BDOF is applied to the current CU may be indicated by a flag bdofFlag.
  • the bdofFlag of the first value (“True” or “1”) may indicate that BDOF is applied to the current CU.
  • the bdofFlag of the second value (“False” or “0”) may indicate that BDOF is not applied to the current CU.
  • bdofFlag may be derived based on, for example, various conditions shown in FIG. 19. As shown in FIG. 19, bdofFlag includes conditions regarding the size of a block (cbWidth, cbHeight).
  • bdofFlag may be set to a first value when both the block width (cbWidth) and the block height (cbHeight) are 8 (luma samples) or more, and cbHeight*cbWidth is 128 (luma samples) or more.
  • cbHeight*cbWidth may represent the number of luma samples included in the current CU.
  • bdofFlag is set to a second value for a CU of 8x8 size, and thus, BDOF is not applied.
  • BDOF is applied in the inter prediction process to improve the reference sample in the motion compensation process, thereby improving the compression performance of an image.
  • BDOF can be performed when the prediction mode of the current block is a normal mode (normal merge mode or normal AMVP mode). That is, when the prediction mode of the current block is an Accele mode, a GPM mode, a CIIP mode, or the like, BDOF is not applied.
  • PROF may be performed in a manner similar to that of BDOF. As described above, by improving the reference samples in each 4x4 subblock through PROF, it is possible to increase the compression performance of the video.
  • PROF according to the present disclosure may be performed for each prediction direction.
  • the prediction direction may include an L0 prediction direction and an L1 prediction direction.
  • the above-described PROF process may be applied to the L0 prediction sample to generate an improved L0 prediction sample.
  • the above-described PROF process may be applied to the L1 prediction sample to generate an improved L1 prediction sample. Therefore, whether or not PROF is applied can be derived for each of the L0 prediction direction and the L1 prediction direction.
  • the flag cbProfFlag indicating whether PROF is applied may include cbProfFlagL0 for the L0 prediction direction and cbProfFlagL1 for the L1 prediction direction.
  • PROF is applied to the current block CU may be determined for each of the L0 prediction direction and the L1 prediction direction based on cbProfFlagL0 and/or cbProfFlagL1.
  • cbProfFlagL0 and/or cbProfFlagL1 are first values, it may mean that PROF is performed in a corresponding prediction direction of the current CU. More specifically, PROF may be performed for the L0 prediction direction of the current CU for which cbProfFlagL0 is the first value. In addition, PROF may be performed for the L1 prediction direction of the current CU for which cbProfFlagL1 is the first value.
  • various conditions for inducing cbProfFlagLX may be conditions related to a corresponding prediction direction (LX).
  • 20 is an example illustrating a process of determining whether to apply PROF according to the present disclosure.
  • the cbProfFlag of the first value (“True” or “1") may indicate that PROF is applied to the current CU.
  • the cbProfFlag of the second value (“False” or "0") may indicate that PROF is not applied to the current CU.
  • the cbProfFlag may be derived based on various conditions shown in FIG. 20, for example. As shown in FIG. 20, cbProfFlag does not include a condition regarding the size of a block (cbWidth, cbHeight).
  • PROF can be applied to a block (affine block) coded in an affine mode
  • the size of a block to which PROF is applied may be limited by a block size condition for the affine block. Therefore, as described later, the block size conditions for each of PROF and BDOF are different.
  • 21 is a diagram for describing signaling of information indicating whether to apply a subblock merge mode according to an example of the present disclosure.
  • Whether the subblock merge mode (affine merge mode) is applied to the current CU may be determined based on information signaled through the bitstream (eg, merge_subblock_flag of FIG. 21 ).
  • the merge_subblock_flag of the first value (“True” or “1”) may indicate that the subblock merge mode is applied to the current CU.
  • an index indicating one of candidates included in the subblock merge candidate list eg, merge_subblock_idx in FIG. 21
  • the index information for selecting a candidate is not signaled and may be determined as a fixed value of 0. As shown in FIG.
  • the signaling condition of merge_subblock_flag includes a condition regarding a block size. Specifically, when both the width (cbWidth) and the height (cbHeight) of the current block are 8 or more, merge_subblock_flag may be signaled. That is, the subblock merge mode can be applied to a block having a size of 8x8 blocks or more. Therefore, the PROF for the affine merge block can be applied to a block having a size of 8x8 blocks or more.
  • 22 is a diagram for describing signaling of information indicating whether or not to apply an affine MVP mode according to an example of the present disclosure.
  • Whether the affine MVP mode (inter affine mode) is applied to the current CU may be determined based on information signaled through the bitstream (eg, inter_affine_flag of FIG. 22).
  • the inter_affine_flag of the first value (“True” or “1”) may indicate that the affine MVP mode is applied to the current CU.
  • an index indicating one of the candidates included in the affine MVP candidate list may be signaled.
  • the signaling condition of inter_affine_flag includes a condition regarding a block size. Specifically, when both the width cbWidth and the height cbHeight of the current block are 16 or more, inter_affine_flag may be signaled. That is, the affine MVP mode can be applied to a block having a size of 16x16 or more blocks. Therefore, the PROF for the affine MVP block can be applied to a block having a size of 16x16 or more blocks.
  • the block size to which the PROF can be applied is limited according to the block size to which the Rane merge mode and the Rane MVP mode can be applied. do.
  • the Rane merge mode may be applied to a block having a size of 8x8 blocks or more, and in this case, PROF may be applied to an 8x8 block.
  • the BDOF application condition includes a condition in which cbHeight*cbWidth is 128 samples or more, BDOF is not applied to an 8x8 block. Accordingly, the block size to which PROF is applied is different from the block size to which BDOF is applied.
  • the present disclosure provides various embodiments for matching the application conditions of PROF and BDOF. Specifically, the present disclosure provides various embodiments for matching a condition regarding a block size for PROF and BDOF. In addition, the present disclosure provides various embodiments for matching the application conditions of PROF and BDOF in consideration of BCW or WP. In addition, the present disclosure provides various embodiments including conditions related to a resolution of a current picture and a resolution of a reference picture as an application condition of the PROF.
  • FIG. 23 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • the embodiment of FIG. 23 may additionally include a block size condition as an application condition of the PROF. More specifically, as in the underlined part of FIG. 23, when cbHeight*cbWidth is less than 128 (luma samples), cbProfFlag may be set to a second value (“False” or “0”).
  • the embodiment of FIG. 23 it is possible to restrict the PROF from being applied to the 8x8 block to which the Matte merge mode is applied. That is, as in the embodiment of FIG. 23, by adding a condition regarding the block size to the application condition of the PROF, the condition regarding the block size to which the PROF and the BDOF can be applied can be matched.
  • conditions regarding the Rane MVP mode, the Rane merge mode, and block sizes of PROF and BDOF may be changed as shown in the table below.
  • w and h may mean the width and height of the current block, respectively.
  • 24 is a diagram for describing signaling of information indicating whether to apply a subblock merge mode according to another embodiment of the present disclosure.
  • the condition regarding the block size among the signaling conditions of merge_subblock_flag includes a condition in which both cbWidth and cbHeight are 8 or more.
  • the signaling condition of merge_subblock_flag may further include a condition in which cbWidth*cbHeight is 128 (luma samples) or more.
  • the antennae merge mode is a block having a size of 8 ⁇ 8 blocks or more, and can be applied only to a block including samples of 128 samples or more. That is, since the Rane merge mode is not applied to the 8x8 block, PROF may not be applied to the 8x8 block.
  • 25 is a diagram for describing signaling of information indicating whether to apply an affine MVP mode according to another embodiment of the present disclosure.
  • the condition regarding the block size among the signaling conditions of inter_affine_flag includes a condition in which both cbWidth and cbHeight are 16 or more.
  • the condition regarding the block size among the signaling conditions of inter_affine_flag may be changed to a condition in which both cbWidth and cbHeight are 16 or more and cbWidth*cbHeight is 128 (luma samples) or more.
  • the affine MVP mode is a block having a size of 8x8 blocks or more, and can be applied only to a block including samples of 128 or more samples. That is, according to the embodiment of FIG.
  • the block size condition for the affine MVP mode may match the block size condition for the BDOF. Accordingly, according to the embodiment of FIG. 25, since the Matte MVP mode is not applied to the 8x8 block, the PROF may not be applied to the 8x8 block.
  • the embodiment of FIG. 25 may be combined with the embodiment of FIG. 24. That is, the block size condition for the affine MVP mode may match all the block size conditions for the affine merge mode with the block size condition for BDOF. Accordingly, the block size condition of PROF that can be applied to the affine block can be matched with the block size condition of BDOF.
  • 26 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • BDOF uses the characteristics of the optical flow to determine the offset of the sample. Accordingly, when the brightness values between reference pictures are different, that is, when BCW or weighted prediction (WP) is applied, BDOF is not performed. However, the PROF can be performed without considering whether BCW or WP is applied, even though the offset of the sample is induced by using the characteristics of the optical flow.
  • WP weighted prediction
  • PROF may not be applied to a block to which BCW or WP is applied.
  • BcwIdx is not 0 or luma_weight_lX_flag[refIdxLX] (X is 0 or 1) is 1
  • cbProfFlagLX may be set to a second value (“False” or “0”).
  • BcwIdx is not 0, it means that BCW is applied to the current block, and when luma_weight_lX_flag[refIdxLX] is 1, it may mean that WP in the LX prediction direction is applied to the current block.
  • FIG. 27 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • the PROF application condition may further include conditions regarding resolutions of the current picture and the reference picture.
  • PROF similar to BDOF, is a method of improving prediction samples considering optical flow.
  • Optical flow is a technique that reflects the offset of motion when a moving object has the same pixel value and motion in both directions is constant. Therefore, when the resolutions of the current picture and the reference picture are different, it is necessary to restrict the PROF from being performed.
  • cbProfFlag is set to a second value ("False” or By setting it to "0"), it is possible to control not to apply PROF to the current block.
  • the reference picture may be a reference picture in the prediction direction of cbProfFlag.
  • the size of the L0 reference picture and the size of the current picture may be considered.
  • cbProfFlagL0 is set to a second value, and PROF for the L0 prediction sample may not be performed.
  • cbProfFlagL0 is set to a first value, and PROF is applied to the L0 prediction sample to generate an improved L0 prediction sample.
  • cbProfFlagL1 when cbProfFlagL1 is derived, the size of the L1 reference picture and the size of the current picture may be considered. When the width or height of the L1 reference picture is different from the width or height of the current picture, cbProfFlagL1 is set to a second value, and PROF for the L1 prediction sample may not be performed. In addition, when the width and height of the L1 reference picture are the same as the width and height of the current picture, cbProfFlagL1 is set to a first value, and PROF is applied to the L1 prediction sample to generate an improved L1 prediction sample.
  • the underlined condition of FIG. 27 may mean a Reference Picture Resampling (RPR) condition.
  • RPR Reference Picture Resampling
  • the RPR condition may have a first value (“True” or “1”).
  • the RPR condition of the first value may mean that resampling for the reference picture is required.
  • the RPR condition may have a second value (“False” or “0”).
  • the RPR condition of the second value may mean that resampling for the reference picture is not required. That is, when the RPR condition is the first value, PROF may not be applied.
  • FIG. 28 is a diagram for describing a method of performing PROF according to the present disclosure.
  • the method of FIG. 28 may be performed by the inter predictor 180 of the image encoding apparatus or the inter predictor 260 of the image decoding apparatus. More specifically, the method of FIG. 28 may be performed by the prediction sample derivation unit 183 in the inter prediction unit 180 of the image encoding apparatus or the prediction sample derivation unit 263 in the inter prediction unit 260 of the image decoding apparatus. have.
  • motion information of a current block may be determined (S2810).
  • Motion information of the current block may be determined based on various methods described in the present disclosure.
  • the video encoding apparatus may determine optimal motion information as motion information of the current block by calculating a rate-distortion cost (RD cost) based on various inter prediction modes and motion information.
  • RD cost rate-distortion cost
  • the image encoding apparatus may encode the determined inter prediction mode and motion information into the bitstream.
  • the video decoding apparatus may determine (derive) motion information of the current block by decoding information signaled through the bitstream.
  • prediction samples (prediction blocks) of the current block may be derived (S2820). Predicted samples of the current block can be derived based on various methods described in this disclosure.
  • a reference picture resampling (RPR) condition for the current block may be derived.
  • the RPR condition may be set to a first value (“True” or “1”).
  • the RPR condition may be set to a second value (“False” or “0”).
  • cbProfFlag indicating whether PROF is applied to the current block may be derived based on the RPR condition (S2840). For example, when the RPR condition is a first value, cbProfFlag may be set to a second value. That is, if the size of the current picture is different from the size of the reference picture, it may be determined that PROF is not applied. Also, when the RPR condition is the second value, cbProfFlag may be set to the first value. That is, when the size of the current picture is the same as the size of the reference picture, it may be determined that the PROF is applied.
  • Step S2840 has been described as inducing cbProfFlag based on the RPR condition, but this is for convenience of explanation, and the condition for inducing cbProfFlag is not limited to the RPR condition. That is, in order to induce cbProfFlag, in addition to the RPR condition, other conditions described in the present disclosure or other conditions not described in the present disclosure may be considered together.
  • Whether to perform PROF may be determined based on the cbProfFlag derived in step S2840 (S2850).
  • cbProfFlag is the first value ("True” or “1"
  • PROF may be performed on the prediction sample of the current block (S2860).
  • cbProfFlag is the second value (“False” or "0")
  • PROF is not performed on the prediction sample of the current block and may be skipped.
  • the PROF process of step S2860 may be performed according to the PROF process described in the present disclosure. More specifically, when PROF is applied to the current block, a differential motion vector for each sample position in the current block is derived, a gradient for each sample position in the current block is derived, and based on the differential motion vector and the gradient After deriving the PROF offset, an improved prediction sample for the current block may be derived based on the PROF offset.
  • the image encoding apparatus may derive a residual sample (residual block) for a current block based on the improved prediction sample (prediction block) and encode information about the residual sample into a bitstream.
  • the image decoding apparatus may reconstruct the current block based on the improved prediction sample (prediction block) and the residual sample (residual block) obtained by decoding the bitstream.
  • the RPR condition of step S2830 is not limited to being performed after step S2820.
  • the RPR condition is derived before deriving cbProfFlag (S2840), and an embodiment according to the present disclosure may include various examples of deriving the RPR condition before performing step S2840.
  • 29 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • the embodiment of FIG. 29 is an example of an embodiment in which the embodiment of FIG. 26 and the embodiment of FIG. 27 are combined.
  • the PROF may not be applied to the block to which BCW or WP is applied for harmony from the design point of view between the BDOF and the PROF.
  • PROF can also be applied in the case of uni-directional prediction. Therefore, when the WP of unidirectional prediction is applied, it is possible to prevent the PROF from being applied to the current block.
  • the PROF may not be applied to the current block.
  • cbProfFlag when the size of the reference picture in the L0 direction and the size of the current picture are different, or when the size of the reference picture in the L1 direction and the size of the current picture are different, cbProfFlag may be set so that PROF is not applied.
  • FIG. 30 is a diagram illustrating a process of determining whether to apply PROF according to another embodiment of the present disclosure.
  • the embodiment of FIG. 30 is another example of an embodiment in which the embodiment of FIG. 26 and the embodiment of FIG. 27 are combined.
  • PROF can also be applied in the case of unidirectional prediction. Therefore, when the WP of unidirectional prediction is applied, the PROF may not be applied to the corresponding direction. In addition, when the size of the reference picture for unidirectional prediction and the size of the current picture are different, the PROF may not be applied to the corresponding direction.
  • the exemplary methods of the present disclosure are expressed as a series of operations for clarity of description, this is not intended to limit the order in which steps are performed, and each step may be performed simultaneously or in a different order if necessary.
  • the exemplary steps may include additional steps, other steps may be included excluding some steps, or may include additional other steps excluding some steps.
  • an image encoding apparatus or an image decoding apparatus performing a predetermined operation may perform an operation (step) of confirming an execution condition or situation of a corresponding operation (step). For example, when it is described that a predetermined operation is performed when a predetermined condition is satisfied, the video encoding apparatus or the video decoding apparatus performs an operation to check whether the predetermined condition is satisfied, and then performs the predetermined operation. I can.
  • various embodiments of the present disclosure may be implemented by hardware, firmware, software, or a combination thereof.
  • one or more ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • general purpose It may be implemented by a processor (general processor), a controller, a microcontroller, a microprocessor, or the like.
  • the image decoding device and the image encoding device to which the embodiment of the present disclosure is applied include a multimedia broadcasting transmitting and receiving device, a mobile communication terminal, a home cinema video device, a digital cinema video device, a surveillance camera, a video chat device, and a real-time communication device such as video communication , Mobile streaming devices, storage media, camcorders, video-on-demand (VoD) service providers, OTT video (Over the top video) devices, Internet streaming service providers, three-dimensional (3D) video devices, video telephony video devices, and medical use. It may be included in a video device or the like, and may be used to process a video signal or a data signal.
  • an OTT video (Over the top video) device may include a game console, a Blu-ray player, an Internet-connected TV, a home theater system, a smartphone, a tablet PC, and a digital video recorder (DVR).
  • FIG. 31 is a diagram illustrating a content streaming system to which an embodiment of the present disclosure can be applied.
  • a content streaming system to which an embodiment of the present disclosure is applied may largely include an encoding server, a streaming server, a web server, a media storage device, a user device, and a multimedia input device.
  • the encoding server serves to generate a bitstream by compressing content input from multimedia input devices such as a smartphone, a camera, and a camcorder into digital data, and transmits it to the streaming server.
  • multimedia input devices such as smartphones, cameras, camcorders, etc. directly generate bitstreams
  • the encoding server may be omitted.
  • the bitstream may be generated by an image encoding method and/or an image encoding apparatus to which an embodiment of the present disclosure is applied, and the streaming server may temporarily store the bitstream while transmitting or receiving the bitstream.
  • the streaming server may transmit multimedia data to a user device based on a user request through a web server, and the web server may serve as an intermediary for notifying the user of a service.
  • the web server transmits the request to the streaming server, and the streaming server transmits multimedia data to the user.
  • the content streaming system may include a separate control server, and in this case, the control server may play a role of controlling a command/response between devices in the content streaming system.
  • the streaming server may receive content from a media storage and/or encoding server. For example, when content is received from the encoding server, the content may be received in real time. In this case, in order to provide a smooth streaming service, the streaming server may store the bitstream for a predetermined time.
  • Examples of the user device include a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation system, a slate PC, and Tablet PC (tablet PC), ultrabook (ultrabook), wearable device (e.g., smartwatch, glass terminal (smart glass), HMD (head mounted display)), digital TV, desktop There may be computers, digital signage, etc.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • slate PC slate PC
  • Tablet PC Tablet PC
  • ultrabook ultrabook
  • wearable device e.g., smartwatch, glass terminal (smart glass), HMD (head mounted display)
  • digital TV desktop There may be computers, digital signage, etc.
  • Each server in the content streaming system may be operated as a distributed server, and in this case, data received from each server may be distributedly processed.
  • the scope of the present disclosure is software or machine-executable instructions (e.g., operating systems, applications, firmware, programs, etc.) that cause an operation according to the method of various embodiments to be executed on a device or computer, and such software or It includes a non-transitory computer-readable medium (non-transitory computer-readable medium) which stores instructions and the like and is executable on a device or a computer.
  • a non-transitory computer-readable medium non-transitory computer-readable medium
  • An embodiment according to the present disclosure may be used to encode/decode an image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

영상 부호화/복호화 방법 및 장치가 제공된다. 본 개시에 따른 영상 복호화 방법은 영상 복호화 장치에 의해 수행되는 영상 복호화 방법으로서, 현재 블록의 움직임 정보에 기반하여 상기 현재 블록의 예측 샘플을 도출하는 단계, 상기 현재 블록에 대한 RPR(Reference Picture Resampling) 조건을 도출하는 단계, 상기 RPR 조건에 기반하여 상기 현재 블록에 PROF(Prediction Refinement with Optical Flow)를 적용할지 여부를 결정하는 단계, 및 상기 현재 블록에 PROF를 적용하여 상기 현재 블록에 대한 개선된 예측 샘플을 도출하는 단계를 포함할 수 있다.

Description

PROF를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
본 개시는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법에 관한 것으로서, 보다 상세하게는, PROF(Prediction Refinement with Optical Flow)를 수행하는 영상 부호화/복호화 방법, 장치 및 본 개시의 영상 부호화 방법/장치에 의해 생성된 비트스트림을 전송하는 방법에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하게 된다. 전송되는 정보량 또는 비트량의 증가는 전송 비용과 저장 비용의 증가를 초래한다.
이에 따라, 고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위한 고효율의 영상 압축 기술이 요구된다.
본 개시는 부호화/복호화 효율이 향상된 영상 부호화/복호화 방법 및 장치를 제공하는 것을 목적으로 한다.
또한, 본 개시는, PROF를 수행하는 영상 부호화/복호화 방법 및 장치를 제공하는 것을 목적으로 한다.
또한, 본 개시는, 현재 픽처의 크기와 참조 픽처의 크기를 고려하여 PROF를 수행하는 영상 부호화/복호화 방법 및 장치를 제공하는 것을 목적으로 한다.
또한, 본 개시는 본 개시에 따른 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 전송하는 방법을 제공하는 것을 목적으로 한다.
또한, 본 개시는 본 개시에 따른 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 저장한 기록 매체를 제공하는 것을 목적으로 한다.
또한, 본 개시는 본 개시에 따른 영상 복호화 장치에 의해 수신되고 복호화되어 영상의 복원에 이용되는 비트스트림을 저장한 기록 매체를 제공하는 것을 목적으로 한다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 일 양상에 따른 영상 복호화 방법은, 영상 복호화 장치에 의해 수행되는 영상 복호화 방법으로서, 현재 블록의 움직임 정보에 기반하여 상기 현재 블록의 예측 샘플을 도출하는 단계, 상기 현재 블록에 대한 RPR(Reference Picture Resampling) 조건을 도출하는 단계, 상기 RPR 조건에 기반하여 상기 현재 블록에 PROF(Prediction Refinement with Optical Flow)를 적용할지 여부를 결정하는 단계, 및 상기 현재 블록에 PROF를 적용하여 상기 현재 블록에 대한 개선된 예측 샘플을 도출하는 단계를 포함할 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 RPR 조건은 상기 현재 블록의 참조 픽처의 크기 및 현재 픽처의 크기에 기반하여 도출될 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록의 참조 픽처의 크기와 상기 현재 픽처의 크기가 상이한 경우, 상기 RPR 조건은 제1 값으로 도출되고, 상기 현재 블록의 참조 픽처의 크기와 상기 현재 픽처의 크기가 동일한 경우, 상기 RPR 조건은 제2 값으로 도출될 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 RPR 조건이 제1 값인 경우, 상기 현재 블록에 PROF를 적용하지 않는 것으로 결정할 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록에 PROF를 적용할지 여부는, 상기 현재 블록의 크기에 기반하여 결정될 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록의 너비(w)와 상기 현재 블록의 높이(h)의 곱이 128보다 작은 경우, 상기 현재 블록에 PROF를 적용하지 않는 것으로 결정할 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록이 어파인 머지 모드인지 여부를 나타내는 정보는 상기 현재 블록의 크기에 기반하여 비트스트림으로부터 파싱될 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록이 어파인 머지 모드인지 여부를 나타내는 정보는 상기 현재 블록의 너비(w)와 상기 현재 블록의 높이(h)가 각각 8 이상이고, w*h가 128 이상인 경우, 상기 비트스트림으로부터 파싱될 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록이 어파인 MVP 모드인지 여부를 나타내는 정보는 상기 현재 블록의 크기에 기반하여 비트스트림으로부터 파싱될 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록이 어파인 MVP 모드인지 여부를 나타내는 정보는 상기 현재 블록의 너비(w)와 상기 현재 블록의 높이(h)가 각각 8 이상이고, w*h가 128 이상인 경우, 상기 비트스트림으로부터 파싱될 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록에 PROF를 적용할지 여부는, 상기 현재 블록에 BCW 또는 WP가 적용되는지 여부에 기반하여 결정될 수 있다.
본 개시의 영상 복호화 방법에 있어서, 상기 현재 블록에 BCW 또는 WP가 적용되는 경우, 상기 현재 블록에 PROF를 적용하지 않는 것으로 결정할 수 있다.
본 개시의 다른 양상에 따른 영상 복호화 장치는 메모리 및 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는 현재 블록의 움직임 정보에 기반하여 상기 현재 블록의 예측 샘플을 도출하고, 상기 현재 블록에 대한 RPR 조건을 도출하고, 상기 RPR 조건에 기반하여 상기 현재 블록에 PROF를 적용할지 여부를 결정하고, 상기 현재 블록에 PROF를 적용하여 상기 현재 블록에 대한 개선된 예측 샘플을 도출할 수 있다.
본 개시의 또 다른 양상에 따른 영상 부호화 방법은, 영상 부호화 장치에 의해 수행되는 영상 부호화 방법으로서, 현재 블록의 움직임 정보에 기반하여 상기 현재 블록의 예측 샘플을 도출하는 단계, 상기 현재 블록에 대한 RPR 조건을 도출하는 단계, 상기 RPR 조건에 기반하여 상기 현재 블록에 PROF를 적용할지 여부를 결정하는 단계, 및 상기 현재 블록에 PROF를 적용하여 상기 현재 블록에 대한 개선된 예측 샘플을 도출하는 단계를 포함할 수 있다.
본 개시의 또 다른 양상에 따른 전송 방법은 본 개시의 영상 부호화 방법 및/또는 영상 부호화 장치에 의해 생성된 비트스트림을 영상 복호화 장치에 전송할 수 있다.
본 개시의 또 다른 양상에 따른 컴퓨터 판독 가능한 기록 매체는, 본 개시의 영상 부호화 방법 또는 영상 부호화 장치에 의해 생성된 비트스트림을 저장할 수 있다.
본 개시에 대하여 위에서 간략하게 요약된 특징들은 후술하는 본 개시의 상세한 설명의 예시적인 양상일 뿐이며, 본 개시의 범위를 제한하는 것은 아니다.
본 개시에 따르면, 부호화/복호화 효율이 향상된 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.
또한, 본 개시에 따르면, PROF를 수행하는 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.
또한, 본 개시에 따르면, 현재 픽처의 크기와 참조 픽처의 크기를 고려하여 PROF를 수행하는 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.
또한, 본 개시에 따르면, 본 개시에 따른 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 전송하는 방법이 제공될 수 있다.
또한, 본 개시에 따르면, 본 개시에 따른 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 저장한 기록 매체가 제공될 수 있다.
또한, 본 개시에 따르면, 본 개시에 따른 영상 복호화 장치에 의해 수신되고 복호화되어 영상의 복원에 이용되는 비트스트림을 저장한 기록 매체가 제공될 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 개시에 따른 실시예가 적용될 수 있는 비디오 코딩 시스템을 개략적으로 도시한 도면이다.
도 2는 본 개시에 따른 실시예가 적용될 수 있는 영상 부호화 장치를 개략적으로 도시한 도면이다.
도 3은 본 개시에 따른 실시예가 적용될 수 있는 영상 복호화 장치를 개략적으로 도시한 도면이다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법을 도시한 흐름도이다.
도 5는 본 개시에 따른 인터 예측부(180)의 구성을 예시적으로 도시한 도면이다.
도 6은 인터 예측 기반 비디오/영상 디코딩 방법을 도시한 흐름도이다.
도 7은 본 개시에 따른 인터 예측부(260)의 구성을 예시적으로 도시한 도면이다.
도 8은 어파인 모드에서 표현 가능한 움직임을 예시적으로 도시한 도면이다.
도 9는 어파인 모드의 파라미터 모델을 설명하기 위한 도면이다.
도 10은 어파인 머지 후보 리스트를 생성하는 방법을 설명하기 위한 도면이다.
도 11은 주변 블록으로부터 유도되는 CPMV를 설명하기 위한 도면이다.
도 12는 상속 어파인 머지 후보를 유도하기 위한 주변 블록을 설명하기 위한 도면이다.
도 13은 조합 어파인 머지 후보를 유도하기 위한 주변 블록을 설명하기 위한 도면이다.
도 14는 어파인 MVP 후보 리스트를 생성하는 방법을 설명하기 위한 도면이다.
도 15는 서브 블록 기반 TMVP 모드의 주변 블록을 설명하기 위한 도면이다.
도 16은 서브 블록 기반 TMVP 모드에 따라 움직임 벡터 필드를 유도하는 방법을 설명하기 위한 도면이다.
도 17은 BDOF를 수행하기 위해 확장된 CU를 도시한 도면이다.
도 18은 Δv(i, j), v(i, j) 및 서브블록 움직임 벡터의 관계를 도시한 도면이다.
도 19는 본 개시에 따른 BDOF의 적용 여부 결정 과정을 도시한 일 예이다.
도 20은 본 개시에 따른 PROF의 적용 여부 결정 과정을 도시한 일 예이다.
도 21은 본 개시의 일 예에 따라 서브블록 머지 모드의 적용 여부를 지시하는 정보의 시그널링을 설명하기 위한 도면이다.
도 22는 본 개시의 일 예에 따라 어파인 MVP 모드의 적용 여부를 지시하는 정보의 시그널링을 설명하기 위한 도면이다.
도 23은 본 개시의 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 24는 본 개시의 또 다른 실시예에 따라 서브블록 머지 모드의 적용 여부를 지시하는 정보의 시그널링을 설명하기 위한 도면이다.
도 25는 본 개시의 또 다른 실시예에 따라 어파인 MVP 모드의 적용 여부를 지시하는 정보의 시그널링을 설명하기 위한 도면이다.
도 26은 본 개시의 또 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 27은 본 개시의 또 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 28은 본 개시에 따라 PROF를 수행하는 방법을 설명하기 위한 도면이다.
도 29는 본 개시의 또 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 30은 본 개시의 또 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 31은 본 개시의 실시예가 적용될 수 있는 컨텐츠 스트리밍 시스템을 예시한 도면이다.
이하에서는 첨부한 도면을 참고로 하여 본 개시의 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 본 개시는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 개시의 실시예를 설명함에 있어서 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그에 대한 상세한 설명은 생략한다. 그리고, 도면에서 본 개시에 대한 설명과 관계없는 부분은 생략하였으며, 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 개시에 있어서, 어떤 구성요소가 다른 구성요소와 "연결", "결합" 또는 "접속"되어 있다고 할 때, 이는 직접적인 연결관계뿐만 아니라, 그 중간에 또 다른 구성요소가 존재하는 간접적인 연결관계도 포함할 수 있다. 또한 어떤 구성요소가 다른 구성요소를 "포함한다" 또는 "가진다"고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 배제하는 것이 아니라 또 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 개시에 있어서, 제1, 제2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되며, 특별히 언급되지 않는 한 구성요소들간의 순서 또는 중요도 등을 한정하지 않는다. 따라서, 본 개시의 범위 내에서 일 실시예에서의 제1 구성요소는 다른 실시예에서 제2 구성요소라고 칭할 수도 있고, 마찬가지로 일 실시예에서의 제2 구성요소를 다른 실시예에서 제1 구성요소라고 칭할 수도 있다.
본 개시에 있어서, 서로 구별되는 구성요소들은 각각의 특징을 명확하게 설명하기 위함이며, 구성요소들이 반드시 분리되는 것을 의미하지는 않는다. 즉, 복수의 구성요소가 통합되어 하나의 하드웨어 또는 소프트웨어 단위로 이루어질 수도 있고, 하나의 구성요소가 분산되어 복수의 하드웨어 또는 소프트웨어 단위로 이루어질 수도 있다. 따라서, 별도로 언급하지 않더라도 이와 같이 통합된 또는 분산된 실시예도 본 개시의 범위에 포함된다.
본 개시에 있어서, 다양한 실시예에서 설명하는 구성요소들이 반드시 필수적인 구성요소들은 의미하는 것은 아니며, 일부는 선택적인 구성요소일 수 있다. 따라서, 일 실시예에서 설명하는 구성요소들의 부분집합으로 구성되는 실시예도 본 개시의 범위에 포함된다. 또한, 다양한 실시예에서 설명하는 구성요소들에 추가적으로 다른 구성요소를 포함하는 실시예도 본 개시의 범위에 포함된다.
본 개시는 영상의 부호화 및 복호화에 관한 것으로서, 본 개시에서 사용되는 용어는, 본 개시에서 새롭게 정의되지 않는 한 본 개시가 속한 기술 분야에서 통용되는 통상의 의미를 가질 수 있다.
본 개시에서 "픽처(picture)"는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)은 픽처의 일부를 구성하는 부호화 단위로서, 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 또한, 슬라이스/타일은 하나 이상의 CTU(coding tree unit)를 포함할 수 있다.
본 개시에서 "픽셀(pixel)" 또는 "펠(pel)"은 하나의 픽처(또는 영상)를 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 "샘플(sample)"이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
본 개시에서 "유닛(unit)"은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 유닛은 경우에 따라서 "샘플 어레이", "블록(block)" 또는 "영역(area)" 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
본 개시에서 "현재 블록"은 "현재 코딩 블록", "현재 코딩 유닛", "부호화 대상 블록", "복호화 대상 블록" 또는 "처리 대상 블록" 중 하나를 의미할 수 있다. 예측이 수행되는 경우, "현재 블록"은 "현재 예측 블록" 또는 "예측 대상 블록"을 의미할 수 있다. 변환(역변환)/양자화(역양자화)가 수행되는 경우, "현재 블록"은 "현재 변환 블록" 또는 "변환 대상 블록"을 의미할 수 있다. 필터링이 수행되는 경우, "현재 블록"은 "필터링 대상 블록"을 의미할 수 있다.
본 개시에서 "/"와 ","는 "및/또는"으로 해석될 수 있다. 예를 들어, "A/B"와 "A, B"는 "A 및/또는 B"로 해석될 수 있다. 또한, "A/B/C"와 "A, B, C"는 "A, B 및/또는 C 중 적어도 하나"를 의미할 수 있다.
본 개시에서 "또는"은 "및/또는"으로 해석될 수 있다. 예를 들어, "A 또는 B"는, 1) "A" 만을 의미하거나 2) "B" 만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 또는, 본 개시에서 "또는"은 "추가적으로 또는 대체적으로(additionally or alternatively)"를 의미할 수 있다.
비디오 코딩 시스템 개요
도 1은 본 개시에 따른 비디오 코딩 시스템을 도시한다.
일 실시예에 따른 비디오 코딩 시스템은 부호화 장치(10) 및 복호화 장치(20)를 포함할 수 있다. 부호화 장치(10)는 부호화된 비디오(video) 및/또는 영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 복호화 장치(20)로 전달할 수 있다.
일 실시예에 따른 부호화 장치(10)는 비디오 소스 생성부(11), 부호화부(12), 전송부(13)를 포함할 수 있다. 일 실시예에 따른 복호화 장치(20)는 수신부(21), 복호화부(22) 및 렌더링부(23)를 포함할 수 있다. 상기 부호화부(12)는 비디오/영상 부호화부라고 불릴 수 있고, 상기 복호화부(22)는 비디오/영상 복호화부라고 불릴 수 있다. 전송부(13)는 부호화부(12)에 포함될 수 있다. 수신부(21)는 복호화부(22)에 포함될 수 있다. 렌더링부(23)는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스 생성부(11)는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스 생성부(11)는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
부호화부(12)는 입력 비디오/영상을 부호화할 수 있다. 부호화부(12)는 압축 및 부호화 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 부호화부(12)는 부호화된 데이터(부호화된 비디오/영상 정보)를 비트스트림(bitstream) 형태로 출력할 수 있다.
전송부(13)는 비트스트림 형태로 출력된 부호화된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 복호화 장치(20)의 수신부(21)로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부(13)는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부(21)는 상기 저장매체 또는 네트워크로부터 상기 비트스트림을 추출/수신하여 복호화부(22)로 전달할 수 있다.
복호화부(22)는 부호화부(12)의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 복호화할 수 있다.
렌더링부(23)는 복호화된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
영상 부호화 장치 개요
도 2는 본 개시에 따른 실시예가 적용될 수 있는 영상 부호화 장치를 개략적으로 도시한 도면이다.
도 2에 도시된 바와 같이, 영상 부호화 장치(100)는 영상 분할부(110), 감산부(115), 변환부(120), 양자화부(130), 역양자화부(140), 역변환부(150), 가산부(155), 필터링부(160), 메모리(170), 인터 예측부(180), 인트라 예측부(185) 및 엔트로피 인코딩부(190)를 포함할 수 있다. 인터 예측부(180) 및 인트라 예측부(185)는 합쳐서 "예측부"라고 지칭될 수 있다. 변환부(120), 양자화부(130), 역양자화부(140), 역변환부(150)는 레지듀얼(residual) 처리부에 포함될 수 있다. 레지듀얼 처리부는 감산부(115)를 더 포함할 수도 있다.
영상 부호화 장치(100)를 구성하는 복수의 구성부들의 전부 또는 적어도 일부는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어, 인코더 또는 프로세서)로 구현될 수 있다. 또한 메모리(170)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구현될 수 있다.
영상 분할부(110)는 영상 부호화 장치(100)에 입력된 입력 영상(또는, 픽처, 프레임)을 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)을 QT/BT/TT (Quad-tree/binary-tree/ternary-tree) 구조에 따라 재귀적으로(recursively) 분할함으로써 획득될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 코딩 유닛의 분할을 위해, 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 트리 구조가 나중에 적용될 수 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 개시에 따른 코딩 절차가 수행될 수 있다. 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 최대 코딩 유닛을 분할하여 획득한 하위 뎁스의 코딩 유닛이 최종 코닛 유닛으로 사용될 수도 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환 및/또는 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 코딩 절차의 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)일 수 있다. 상기 예측 유닛 및 상기 변환 유닛은 각각 상기 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
예측부(인터 예측부(180) 또는 인트라 예측부(185))는 처리 대상 블록(현재 블록)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 현재 블록의 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(190)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(190)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(185)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 인트라 예측 모드 및/또는 인트라 예측 기법에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라, 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(185)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(180)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 서로 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있다. 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수 있다. 예를 들어, 인터 예측부(180)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(180)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference) 및 움직임 벡터 예측자에 대한 지시자(indicator)를 부호화함으로써 현재 블록의 움직임 벡터를 시그널링할 수 있다. 움직임 벡터 차분은 현재 블록의 움직임 벡터와 움직임 벡터 예측자 간의 차이를 의미할 수 있다.
예측부는 후술하는 다양한 예측 방법 및/또는 예측 기법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 현재 블록의 예측을 위해 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 현재 블록의 예측을 위해 인트라 예측과 인터 예측을 동시에 적용하는 예측 방법은 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 현재 블록의 예측을 위해 인트라 블록 카피(intra block copy, IBC)를 수행할 수도 있다. 인트라 블록 카피는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 현재 블록으로부터 소정의 거리만큼 떨어진 위치의 현재 픽처 내 기복원된 참조 블록을 이용하여 현재 블록을 예측하는 방법이다. IBC가 적용되는 경우, 현재 픽처 내 참조 블록의 위치는 상기 소정의 거리에 해당하는 벡터(블록 벡터)로서 부호화될 수 있다.
예측부를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 감산부(115)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)로부터 예측부에서 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있다. 생성된 레지듀얼 신호는 변환부(120)로 전송될 수 있다.
변환부(120)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)을 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen-Loeve Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)을 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(130)는 변환 계수들을 양자화하여 엔트로피 인코딩부(190)로 전송할 수 있다. 엔트로피 인코딩부(190)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(130)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다.
엔트로피 인코딩부(190)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(190)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)를 더 포함할 수 있다. 본 개시에서 언급된 시그널링 정보, 전송되는 정보 및/또는 신택스 요소들은 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다.
상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(190)로부터 출력된 신호를 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 영상 부호화 장치(100)의 내/외부 엘리먼트로서 구비될 수 있고, 또는 전송부는 엔트로피 인코딩부(190)의 구성요소로서 구비될 수도 있다.
양자화부(130)로부터 출력된 양자화된 변환 계수들은 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(140) 및 역변환부(150)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다.
가산부(155)는 복원된 레지듀얼 신호를 인터 예측부(180) 또는 인트라 예측부(185)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(155)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 후술하는 바와 같이 픽처 인코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(160)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(160)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(170), 구체적으로 메모리(170)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(160)는 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(190)로 전달할 수 있다. 필터링에 관한 정보는 엔트로피 인코딩부(190)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(170)에 전송된 수정된 복원 픽처는 인터 예측부(180)에서 참조 픽처로 사용될 수 있다. 영상 부호화 장치(100)는 이를 통하여 인터 예측이 적용되는 경우, 영상 부호화 장치(100)와 영상 복호화 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(170) 내 DPB는 인터 예측부(180)에서의 참조 픽처로 사용하기 위해 수정된 복원 픽처를 저장할 수 있다. 메모리(170)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(180)에 전달될 수 있다. 메모리(170)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(185)에 전달할 수 있다.
영상 복호화 장치 개요
도 3은 본 개시에 따른 실시예가 적용될 수 있는 영상 복호화 장치를 개략적으로 도시한 도면이다.
도 3에 도시된 바와 같이, 영상 복호화 장치(200)는 엔트로피 디코딩부(210), 역양자화부(220), 역변환부(230), 가산부(235), 필터링부(240), 메모리(250), 인터 예측부(260) 및 인트라 예측부(265)를 포함하여 구성될 수 있다. 인터 예측부(260) 및 인트라 예측부(265)를 합쳐서 "예측부"라고 지칭될 수 있다. 역양자화부(220), 역변환부(230)는 레지듀얼 처리부에 포함될 수 있다.
영상 복호화 장치(200)를 구성하는 복수의 구성부들의 전부 또는 적어도 일부는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 또는 프로세서)로 구현될 수 있다. 또한 메모리(170)는 DPB를 포함할 수 있고, 디지털 저장 매체에 의하여 구현될 수 있다.
비디오/영상 정보를 포함하는 비트스트림을 수신한 영상 복호화 장치(200)는 도 1의 영상 부호화 장치(100)에서 수행된 프로세스에 대응하는 프로세스를 수행하여 영상을 복원할 수 있다. 예를 들어, 영상 복호화 장치(200)는 영상 부호화 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있다. 코딩 유닛은 코딩 트리 유닛이거나 또는 최대 코딩 유닛을 분할하여 획득될 수 있다. 그리고, 영상 복호화 장치(200)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치(미도시)를 통해 재생될 수 있다.
영상 복호화 장치(200)는 도 1의 영상 부호화 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있다. 수신된 신호는 엔트로피 디코딩부(210)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(210)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(예컨대, 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)를 더 포함할 수 있다. 영상 복호화 장치는 영상을 디코딩하기 위해 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 추가적으로 이용할 수 있다. 본 개시에서 언급된 시그널링 정보, 수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩됨으로써 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(210)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 블록 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)을 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(210)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(260) 및 인트라 예측부(265))로 제공되고, 엔트로피 디코딩부(210)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 역양자화부(220)로 입력될 수 있다. 또한, 엔트로피 디코딩부(210)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(240)로 제공될 수 있다. 한편, 영상 부호화 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 영상 복호화 장치(200)의 내/외부 엘리먼트로서 추가적으로 구비될 수 있고, 또는 수신부는 엔트로피 디코딩부(210)의 구성요소로서 구비될 수도 있다.
한편, 본 개시에 따른 영상 복호화 장치는 비디오/영상/픽처 복호화 장치라고 불릴 수 있다. 상기 영상 복호화 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및/또는 샘플 디코더(비디오/영상/픽처 샘플 디코더)를 포함할 수도 있다. 상기 정보 디코더는 엔트로피 디코딩부(210)를 포함할 수 있고, 상기 샘플 디코더는 역양자화부(220), 역변환부(230), 가산부(235), 필터링부(240), 메모리(250), 인터 예측부(260) 및 인트라 예측부(265) 중 적어도 하나를 포함할 수 있다.
역양자화부(220)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(220)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 영상 부호화 장치에서 수행된 계수 스캔 순서에 기반하여 수행될 수 있다. 역양자화부(220)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)을 획득할 수 있다.
역변환부(230)에서는 변환 계수들을 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득할 수 있다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(210)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드(예측 기법)를 결정할 수 있다.
예측부가 후술하는 다양한 예측 방법(기법)을 기반으로 예측 신호를 생성할 수 있음은 영상 부호화 장치(100)의 예측부에 대한 설명에서 언급된 바와 동일하다.
인트라 예측부(265)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 인트라 예측부(185)에 대한 설명은 인트라 예측부(265)에 대해서도 동일하게 적용될 수 있다.
인터 예측부(260)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(260)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드(기법)를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드(기법)를 지시하는 정보를 포함할 수 있다.
가산부(235)는 획득된 레지듀얼 신호를 예측부(인터 예측부(260) 및/또는 인트라 예측부(265) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 가산부(155)에 대한 설명은 가산부(235)에 대해서도 동일하게 적용될 수 있다.
한편, 후술하는 바와 같이 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(240)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(240)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(250), 구체적으로 메모리(250)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(250)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(260)에서 참조 픽처로 사용될 수 있다. 메모리(250)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(260)에 전달할 수 있다. 메모리(250)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(265)에 전달할 수 있다.
본 명세서에서, 인코딩 장치(100)의 필터링부(160), 인터 예측부(180) 및 인트라 예측부(185)에서 설명된 실시예들은 각각 영상 복호화 장치(200)의 필터링부(240), 인터 예측부(260) 및 인트라 예측부(265)에도 동일 또는 대응되도록 적용될 수 있다.
인터 예측 개요
영상 부호화/복호화 장치는 블록 단위로 인터 예측을 수행하여 예측 샘플을 도출할 수 있다. 인터 예측은 현재 픽처 이외의 픽처(들)의 데이터 요소들에 의존적인 방법으로 도출되는 예측 기법을 의미할 수 있다. 현재 블록에 대해 인터 예측이 적용되는 경우, 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록을 기반으로, 현재 블록에 대한 예측 블록이 유도될 수 있다.
이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해, 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 현재 블록의 움직임 정보가 유도될 수 있으며, 블록, 서브 블록 또는 샘플 단위로 움직임 정보가 유도될 수 있다. 이때, 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 움직임 정보는 인터 예측 타입 정보를 더 포함할 수 있다. 여기서 인터 예측 타입 정보는 인터 예측의 방향성 정보를 의미할 수 있다. 인터 예측 타입 정보는 현재 블록이 L0 예측, L1 예측, Bi 예측 중 하나를 이용하여 예측됨을 지시할 수 있다.
현재 블록에 대해 인터 예측이 적용되는 경우, 현재 블록의 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighbouring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighbouring block)을 포함할 수 있다. 이때, 현재 블록에 대한 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 부호화 유닛(colCU) 등으로 지칭될 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)로 지칭될 수 있다.
한편, 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트가 구성될 수 있고, 이때, 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 플래그 또는 인덱스 정보가 시그널링될 수 있다.
움직임 정보는 인터 예측 타입에 따라 L0 움직임 정보 및/또는 L1 움직임 정보를 포함할 수 있다. L0 방향의 움직임 벡터는 L0 움직임 벡터 또는 MVL0라고 정의될 수 있고, L1 방향의 움직임 벡터는 L1 움직임 벡터 또는 MVL1이라고 정의될 수 있다. L0 움직임 벡터에 기반한 예측은 L0 예측이라고 정의될 수 있고, L1 움직임 벡터에 기반한 예측을 L1 예측이라고 정의될 수 있고, 상기 L0 움직임 벡터 및 상기 L1 움직임 벡터 둘 다에 기반한 예측을 쌍예측(Bi-prediction)이라고 정의될 수 있다. 여기서 L0 움직임 벡터는 참조 픽처 리스트 L0에 연관된 움직임 벡터를 의미할 수 있고, L1 움직임 벡터는 참조 픽처 리스트 L1에 연관된 움직임 벡터를 의미할 수 있다.
참조 픽처 리스트 L0는 상기 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 포함할 수 있고, 참조 픽처 리스트 L1은 상기 현재 픽처보다 출력 순서상 이후 픽처들을 포함할 수 있다. 이때, 이전 픽처들은 순방향 (참조) 픽처라 정의할 수 있고, 상기 이후 픽처들은 역방향 (참조) 픽처라 정의할 수 있다. 한편, 참조 픽처 리스트 L0은 현재 픽처보다 출력 순서상 이후 픽처들을 더 포함할 수 있다. 이 경우 참조 픽처 리스트 L0 내에서 이전 픽처들이 먼저 인덱싱되고 이후 픽처들은 그 다음에 인덱싱될 수 있다. 참조 픽처 리스트 L1은 현재 픽처보다 출력 순서상 이전 픽처들을 더 포함할 수 있다. 이 경우 참조 픽처 리스트 L1 내에서 이후 픽처들이 먼저 인덱싱되고 이전 픽처들은 그 다음에 인덱싱 될 수 있다. 여기서 출력 순서는 POC(picture order count) 순서(order)에 대응될 수 있다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법을 도시한 흐름도이다.
도 5는 본 개시에 따른 인터 예측부(180)의 구성을 예시적으로 도시한 도면이다.
도 4의 인코딩 방법은 도 2의 영상 부호화 장치에 의해 수행될 수 있다. 구체적으로, 단계 S410은 인터 예측부(180)에 의하여 수행될 수 있고, 단계 S420은 레지듀얼 처리부에 의하여 수행될 수 있다. 구체적으로 단계 S420은 감산부(115)에 의하여 수행될 수 있다. 단계 S430은 엔트로피 인코딩부(190)에 의하여 수행될 수 있다. 단계 S430의 예측 정보는 인터 예측부(180)에 의하여 도출되고, 단계 S430의 레지듀얼 정보는 레지듀얼 처리부에 의하여 도출될 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다. 전술한 바와 같이 상기 레지듀얼 샘플들은 영상 부호화 장치의 변환부(120)를 통하여 변환 계수들로 도출되고, 상기 변환 계수들은 양자화부(130)를 통하여 양자화된 변환 계수들로 도출될 수 있다. 상기 양자화된 변환 계수들에 관한 정보가 레지듀얼 코딩 절차를 통하여 엔트로피 인코딩부(190)에서 인코딩될 수 있다.
영상 부호화 장치는 현재 블록에 대한 인터 예측을 수행할 수 있다(S410). 영상 부호화 장치는 현재 블록의 인터 예측 모드 및 움직임 정보를 도출하고, 상기 현재 블록의 예측 샘플들을 생성할 수 있다. 여기서 인터 예측 모드 결정, 움직임 정보 도출 및 예측 샘플들 생성 절차는 동시에 수행될 수도 있고, 어느 한 절차가 다른 절차보다 먼저 수행될 수도 있다. 예를 들어, 도 5에 도시된 바와 같이, 영상 부호화 장치의 인터 예측부(180)는 예측 모드 결정부(181), 움직임 정보 도출부(182), 예측 샘플 도출부(183)를 포함할 수 있다. 예측 모드 결정부(181)에서 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부(182)에서 상기 현재 블록의 움직임 정보를 도출하고, 예측 샘플 도출부(183)에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 예를 들어, 영상 부호화 장치의 인터 예측부(180)는 움직임 추정(motion estimation)을 통하여 참조 픽처들의 일정 영역(서치 영역) 내에서 상기 현재 블록과 유사한 블록을 서치하고, 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이를 기반으로 상기 참조 블록이 위치하는 참조 픽처를 가리키는 참조 픽처 인덱스를 도출하고, 상기 참조 블록과 상기 현재 블록의 위치 차이를 기반으로 움직임 벡터를 도출할 수 있다. 영상 부호화 장치는 다양한 인터 예측 모드들 중 상기 현재 블록에 대하여 적용되는 모드를 결정할 수 있다. 영상 부호화 장치는 상기 다양한 예측 모드들에 대한 율-왜곡 비용(Rate-Distortion (RD) cost)을 비교하고 상기 현재 블록에 대한 최적의 인터 예측 모드를 결정할 수 있다. 그러나, 영상 부호화 장치가 현재 블록에 대한 인터 예측 모드를 결정하는 방법은 상기 예로 한정되지 않으며, 다양한 방법들이 이용될 수 있다.
예컨대 현재 블록에 대한 인터 예측 모드는 머지 모드(merge mode), 머지 스킵 모드(skip mode), MVP 모드(Motion Vector Prediction mode), SMVD 모드(Symmetric Motion Vector Difference), 어파인 모드(affine mode), 서브 블록 기반 머지 모드(Subblock-based merge mode), AMVR 모드(Adaptive Motion Vector Resolution mode), HMVP 모드(History-based Motion Vector Predictor mode), 쌍예측 머지 모드(Pair-wise average merge mode), MMVD 모드(Merge mode with Motion Vector Differences mode), DMVR 모드(Decoder side Motion Vector Refinement mode), CIIP 모드(Combined Inter and Intra Prediction mode) 및 GPM(Geometric Partitioning mode) 중 적어도 하나로 결정될 수 있다.
예를 들어, 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 영상 부호화 장치는 상기 현재 블록의 주변 블록들로부터 머지 후보들을 유도하고, 유도된 머지 후보들을 이용하여 머지 후보 리스트를 구성할 수 있다. 또한, 영상 부호화 장치는 상기 머지 후보 리스트에 포함된 머지 후보들이 가리키는 참조 블록들 중 상기 현재 블록과 중 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이 경우 상기 도출된 참조 블록과 연관된 머지 후보가 선택되며, 상기 선택된 머지 후보를 가리키는 머지 인덱스 정보가 생성되어 영상 복호화 장치로 시그널링될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다.
다른 예로, 상기 현재 블록에 MVP 모드가 적용되는 경우, 영상 부호화 장치는 상기 현재 블록의 주변 블록들로부터 움직임 벡터 예측자 (MVP, Motion Vector Predictor) 후보들을 유도하고, 유도된 MVP 후보들을 이용하여 MVP 후보 리스트를 구성할 수 있다. 또한, 영상 부호화 장치는 상기 MVP 후보 리스트에 포함된 MVP 후보들 중 선택된 MVP 후보의 움직임 벡터를 상기 현재 블록의 MVP 로 이용할 수 있다. 이 경우, 예를 들어, 전술한 움직임 추정에 의하여 도출된 참조 블록을 가리키는 움직임 벡터가 상기 현재 블록의 움직임 벡터로 이용될 수 있으며, 상기 MVP 후보들 중 상기 현재 블록의 움직임 벡터와의 차이가 가장 작은 움직임 벡터를 갖는 MVP 후보가 상기 선택된 MVP 후보가 될 수 있다. 상기 현재 블록의 움직임 벡터에서 상기 MVP를 뺀 차분인 MVD(motion vector difference)가 도출될 수 있다. 이 경우 상기 선택된 MVP 후보를 가리키는 인덱스 정보 및 상기 MVD에 관한 정보가 영상 복호화 장치로 시그널링될 수 있다. 또한, MVP 모드가 적용되는 경우, 상기 참조 픽처 인덱스의 값은 참조 픽처 인덱스 정보로 구성되어 별도로 상기 영상 복호화 장치로 시그널링될 수 있다.
영상 부호화 장치는 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출할 수 있다(S420). 영상 부호화 장치는 상기 현재 블록의 원본 샘플들과 상기 예측 샘플들의 비교를 통하여 상기 레지듀얼 샘플들을 도출할 수 있다. 예컨대, 상기 레지듀얼 샘플은 원본 샘플로부터 대응하는 예측 샘플을 감산함으로써 도출될 수 있다.
영상 부호화 장치는 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 인코딩할 수 있다(S430). 영상 부호화 장치는 인코딩된 영상 정보를 비트스트림 형태로 출력할 수 있다. 상기 예측 정보는 상기 예측 절차에 관련된 정보들로 예측 모드 정보(ex. skip flag, merge flag or mode index 등) 및 움직임 정보에 관한 정보를 포함할 수 있다. 상기 예측 모드 정보 중 skip flag는 현재 블록에 대해 스킵 모드가 적용되는지 여부를 나타내는 정보이며, merge flag는 현재 블록에 대해 머지 모드가 적용되는지 여부를 나타내는 정보이다. 또는 예측 모드 정보는 mode index와 같이, 복수의 예측 모드들 중 하나를 지시하는 정보일 수도 있다. 상기 skip flag와 merge flag가 각각 0일 경우, 현재 블록에 대해 MVP 모드가 적용되는 것으로 결정될 수 있다. 상기 움직임 정보에 관한 정보는 움직임 벡터를 도출하기 위한 정보인 후보 선택 정보(ex. merge index, mvp flag or mvp index)를 포함할 수 있다. 상기 후보 선택 정보 중 merge index는 현재 블록에 대해 머지 모드가 적용되는 경우에 시그널링될 수 있으며, 머지 후보 리스트에 포함된 머지 후보들 중 하나를 선택하기 위한 정보일 수 있다. 상기 후보 선택 정보 중 MVP flag 또는 MVP index는 현재 블록에 대해 MVP 모드가 적용되는 경우에 시그널링될 수 있으며, MVP 후보 리스트에 포함된 MVP 후보들 중 하나를 선택하기 위한 정보일 수 있다. 구체적으로 MVP flag는 구문 요소 mvp_l0_flag 혹은 mvp_l1_flag를 이용하여 시그널링될 수 있다. 또한 상기 움직임 정보에 관한 정보는 상술한 MVD에 관한 정보 및/또는 참조 픽처 인덱스 정보를 포함할 수 있다. 또한 상기 움직임 정보에 관한 정보는 L0 예측, L1 예측, 또는 쌍(Bi) 예측이 적용되는지 여부를 나타내는 정보를 포함할 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다.
출력된 비트스트림은 (디지털) 저장매체에 저장되어 영상 복호화 장치로 전달될 수 있고, 또는 네트워크를 통하여 영상 복호화 장치로 전달될 수도 있다.
한편, 전술한 바와 같이 영상 부호화 장치는 상기 참조 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처(복원 샘플들 및 복원 블록을 포함하는 픽처)를 생성할 수 있다. 이는 영상 복호화 장치에서 수행되는 것과 동일한 예측 결과를 영상 부호화 장치에서 도출하기 위함이며, 이를 통하여 코딩 효율을 높일 수 있기 때문이다. 따라서, 영상 부호화 장치는 복원 픽처(또는 복원 샘플들, 복원 블록)를 메모리에 저장하고, 인터 예측을 위한 참조 픽처로 활용할 수 있다. 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
도 6은 인터 예측 기반 비디오/영상 디코딩 방법을 도시한 흐름도이다.
도 7는 본 개시에 따른 인터 예측부(260)의 구성을 예시적으로 도시한 도면이다.
영상 복호화 장치는 상기 영상 부호화 장치에서 수행된 동작과 대응되는 동작을 수행할 수 있다. 영상 복호화 장치는 수신된 예측 정보를 기반으로 현재 블록에 대한 예측을 수행하고 예측 샘플들을 도출할 수 있다.
도 6의 디코딩 방법은 도 3의 영상 복호화 장치에 의해 수행될 수 있다. 단계 S610 내지 S630은 인터 예측부(260)에 의하여 수행될 수 있고, 단계 S610의 예측 정보 및 단계 S640의 레지듀얼 정보는 엔트로피 디코딩부(210)에 의하여 비트스트림으로부터 획득될 수 있다. 영상 복호화 장치의 레지듀얼 처리부는 상기 레지듀얼 정보를 기반으로 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S640). 구체적으로 상기 레지듀얼 처리부의 역양자화부(220)는 상기 레지듀얼 정보를 기반으로 도출된 양자화된 변환 계수들을 기반으로, 역양자화를 수행하여 변환 계수들을 도출하고, 상기 레지듀얼 처리부의 역변환부(230)는 상기 변환 계수들에 대한 역변환을 수행하여 상기 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다. 단계 S650은 가산부(235) 또는 복원부에 의하여 수행될 수 있다.
구체적으로 영상 복호화 장치는 수신된 예측 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정할 수 있다(S610). 영상 복호화 장치는 상기 예측 정보 내의 예측 모드 정보를 기반으로 상기 현재 블록에 어떤 인터 예측 모드가 적용되는지 결정할 수 있다.
예를 들어, 상기 skip flag를 기반으로 상기 현재 블록에 상기 스킵 모드가 적용되지 여부를 결정할 수 있다. 또한, 상기 merge flag를 기반으로 상기 현재 블록에 상기 머지 모드가 적용되지 또는 MVP 모드가 결정되는지 여부를 결정할 수 있다. 또는 상기 mode index를 기반으로 다양한 인터 예측 모드 후보들 중 하나를 선택할 수 있다. 상기 인터 예측 모드 후보들은 스킵 모드, 머지 모드 및/또는 MVP 모드를 포함할 수 있고, 또는 후술하는 다양한 인터 예측 모드들을 포함할 수 있다.
영상 복호화 장치는 상기 결정된 인터 예측 모드를 기반으로 상기 현재 블록의 움직임 정보를 도출할 수 있다(S620). 예를 들어, 영상 복호화 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 후술하는 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들 중 하나의 머지 후보를 선택할 수 있다. 상기 선택은 전술한 후보 선택 정보(merge index)를 기반으로 수행될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다. 예컨대, 상기 선택된 머지 후보의 움직임 정보가 상기 현재 블록의 움직임 정보로 이용될 수 있다.
다른 예로, 영상 복호화 장치는 상기 현재 블록에 MVP 모드가 적용되는 경우, MVP 후보 리스트를 구성하고, 상기 MVP 후보 리스트에 포함된 MVP 후보들 중 선택된 MVP 후보의 움직임 벡터를 상기 현재 블록의 MVP로 이용할 수 있다. 상기 선택은 전술한 후보 선택 정보(mvp flag or mvp index)를 기반으로 수행될 수 있다. 이 경우 상기 MVD에 관한 정보를 기반으로 상기 현재 블록의 MVD를 도출할 수 있으며, 상기 현재 블록의 MVP 와 상기 MVD를 기반으로 상기 현재 블록의 움직임 벡터를 도출할 수 있다. 또한, 상기 참조 픽처 인덱스 정보를 기반으로 상기 현재 블록의 참조 픽처 인덱스를 도출할 수 있다. 상기 현재 블록에 관한 참조 픽처 리스트 내에서 상기 참조 픽처 인덱스가 가리키는 픽처가 상기 현재 블록의 인터 예측을 위하여 참조되는 참조 픽처로 도출될 수 있다.
영상 복호화 장치는 상기 현재 블록의 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성할 수 있다(S630). 이 경우 상기 현재 블록의 참조 픽처 인덱스를 기반으로 상기 참조 픽처를 도출하고, 상기 현재 블록의 움직임 벡터가 상기 참조 픽처 상에서 가리키는 참조 블록의 샘플들을 이용하여 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 경우에 따라 상기 현재 블록의 예측 샘플들 중 전부 또는 일부에 대한 예측 샘플 필터링 절차가 더 수행될 수 있다.
예를 들어, 도 7에 도시된 바와 같이, 영상 복호화 장치의 인터 예측부(260)는 예측 모드 결정부(261), 움직임 정보 도출부(262), 예측 샘플 도출부(263)를 포함할 수 있다. 영상 복호화 장치의 인터 예측부(260)는 예측 모드 결정부(261)에서 수신된 예측 모드 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부(262)에서 수신된 움직임 정보에 관한 정보를 기반으로 상기 현재 블록의 움직임 정보(움직임 벡터 및/또는 참조 픽처 인덱스 등)를 도출하고, 예측 샘플 도출부(263)에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다.
영상 복호화 장치는 수신된 레지듀얼 정보를 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 생성할 수 있다(S640). 영상 복호화 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있다(S650). 이후 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 전술한 바와 같다.
전술한 바와 같이 인터 예측 절차는 인터 예측 모드 결정 단계, 결정된 예측 모드에 따른 움직임 정보 도출 단계, 도출된 움직임 정보에 기반한 예측 수행(예측 샘플 생성) 단계를 포함할 수 있다. 상기 인터 예측 절차는 전술한 바와 같이 영상 부호화 장치 및 영상 복호화 장치에서 수행될 수 있다.
이하에서, 예측 모드에 따른 움직임 정보 도출 단계에 대해 보다 상세히 설명한다.
전술한 바와 같이, 인터 예측은 현재 블록의 움직임 정보를 이용하여 수행될 수 있다. 영상 부호화 장치는 움직임 추정(motion estimation) 절차를 통하여 현재 블록에 대한 최적의 움직임 정보를 도출할 수 있다. 예를 들어, 영상 부호화 장치는 현재 블록에 대한 원본 픽처 내 원본 블록을 이용하여 상관성이 높은 유사한 참조 블록을 참조 픽처 내의 정해진 탐색 범위 내에서 분수 픽셀 단위로 탐색할 수 있고, 이를 통하여 움직임 정보를 도출할 수 있다. 블록의 유사성은 현재 블록과 참조 블록 간 SAD(sum of absolute differences)를 기반으로 계산될 수 있다. 이 경우 탐색 영역 내 SAD가 가장 작은 참조 블록을 기반으로 움직임 정보를 도출할 수 있다. 도출된 움직임 정보는 인터 예측 모드 기반으로 여러 방법에 따라 영상 복호화 장치로 시그널링될 수 있다.
현재 블록에 대해 머지 모드(merge mode)가 적용되는 경우, 현재 블록의 움직임 정보가 직접적으로 전송되지 않고, 주변 블록의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보를 유도하게 된다. 따라서, 머지 모드를 이용하였음을 알려주는 플래그 정보 및 어떤 주변 블록을 머지 후보로서 이용하였는지를 알려주는 후보 선택 정보(예컨대, 머지 인덱스)를 전송함으로써 현재 예측 블록의 움직임 정보를 지시할 수 있다. 본 개시에서 현재 블록은 예측 수행의 단위이므로, 현재 블록은 현재 예측 블록과 같은 의미로 사용되고, 주변 블록은 주변 예측 블록과 같은 의미로 사용될 수 있다.
영상 부호화 장치는 머지 모드를 수행하기 위해서 현재 블록의 움직임 정보를 유도하기 위해 이용되는 머지 후보 블록(merge candidate block)을 서치할 수 있다. 예를 들어, 상기 머지 후보 블록은 최대 5개까지 이용될 수 있으나, 이에 한정되지 않는다. 상기 머지 후보 블록의 최대 개수는 슬라이스 헤더 또는 타일 그룹 헤더에서 전송될 수 있으나, 이에 한정되지 않는다. 상기 머지 후보 블록들을 찾은 후, 영상 부호화 장치는 머지 후보 리스트를 생성할 수 있고, 이들 중 RD cost가 가장 작은 머지 후보 블록을 최종 머지 후보 블록으로 선택할 수 있다.
상기 머지 후보 리스트는 예를 들어 5개의 머지 후보 블록을 이용할 수 있다. 예를 들어, 4개의 공간적 머지 후보(spatial merge candidate)와 1개의 시간적 머지 후보(temporal merge candidate)를 이용할 수 있다.
어파인(Affine) 모드 개요
이하, 인터 예측 모드의 일 예인 어파인 모드에 대해서 자세히 설명한다. 종래의 비디오 부호화/복호화 시스템에서는 현재 블록의 움직임 정보를 표현하기 위해 하나의 움직임 벡터만을 사용한다(translation motion model). 그러나, 종래 방법은 블록 단위의 최적의 움직임 정보를 표현할 뿐, 화소 단위의 최적의 움직임 정보를 표현하지 못한다. 이러한 문제점을 해결하기 위해, 화소 단위로 블록의 움직임 정보를 정의하는 어파인 모드(affine motion model)가 제안되었다. 어파인 모드에 따르면, 현재 블록에 연관된 2개 내지 4개의 움직임 벡터를 이용하여 블록의 화소 및/또는 서브 블록 단위 별 움직임 벡터가 결정될 수 있다.
기존 움직임 정보가 화소 값의 평행 이동(또는 변위)을 이용하여 표현되었던 것에 비하여, 어파인 모드에서는 평행 이동(translation), 스케일링, 회전, 기울임(shear) 중 적어도 하나를 이용하여, 화소 별 움직임 정보가 표현될 수 있다.
도 8은 어파인 모드에서 표현 가능한 움직임을 예시적으로 도시한 도면이다.
도 8에 도시된 움직임 중에서, 화소 별 움직임 정보가 변위, 스케일링, 회전을 이용하여 표현되는 어파인 모드를 유사(similarity) 혹은 간략화(simplified) 어파인 모드라 정의할 수 있다. 이하의 설명에서의 어파인 모드는 유사 혹은 간략화 어파인 모드를 의미할 수 있다.
어파인 모드에서의 움직임 정보는 2개 이상의 CPMV(Control Point Motion Vector)를 이용하여 표현될 수 있다. 현재 블록의 특정 화소 위치의 움직임 벡터는 CPMV를 이용하여 유도될 수 있다. 이때, 현재 블록의 화소 별 및/또는 서브 블록 별 움직임 벡터의 집합을 어파인 움직임 벡터 필드(Affine Motion Vector Field : Affine MVF)라 정의할 수 있다.
도 9는 어파인 모드의 파라미터 모델을 설명하기 위한 도면이다.
현재 블록에 대해 어파인 모드가 적용되는 경우, 4-파라미터 모델 및 6-파라미터 모델 중 하나를 이용하여 어파인 MVF가 유도될 수 있다. 이때, 4-파라미터 모델은 2개의 CPMV가 사용되는 모델 타입을 의미하고, 6-파라미터 모델은 3개의 CPMV가 사용되는 모델 타입을 의미할 수 있다. 도 9(a) 및 도 9(b)는 각각 4-파라미터 모델 및 6-파라미터 모델에 사용되는 CPMV를 도시화한 도면이다.
현재 블록의 위치를 (x, y)라 정의하는 경우, 화소 위치에 따른 움직임 벡터는 아래의 수학식 1 또는 2에 따라 유도될 수 있다. 예컨대, 4-파라미터 모델에 따른 움직임 벡터는 수학식 1에 따라 유도될 수 있고, 6-파라미터 모델에 따른 움직임 벡터는 수학식 2에 따라 유도될 수 있다.
Figure PCTKR2020012245-appb-M000001
Figure PCTKR2020012245-appb-M000002
수학식 1 및 수학식 2에서, mv0 = {mv_0x, mv_0y}는 현재 블록의 좌상단 코너 위치의 CPMV이고, mv1 = {mv_1x, mv_1y}는 현재 블록의 우상단 위치의 CPMV이며, mv2 = {mv_2x, mv_2y}는 현재 블록의 좌하단 위치의 CPMV일 수 있다. 이때, W 및 H는 각각 현재 블록의 너비 및 높이에 해당하며, mv = {mv_x, mv_y}는 화소 위치 {x, y}의 움직임 벡터를 의미할 수 있다.
부호화/복호화 과정에서 어파인 MVF는 화소 단위 및/또는 기 정의된 서브 블록 단위로 결정될 수 있다. 어파인 MVF가 화소 단위로 결정되는 경우, 각 화소 값을 기준으로 움직임 벡터가 유도될 수 있다. 한편, 어파인 MVF가 서브 블록 단위로 결정되는 경우, 서브 블록의 중앙 화소 값을 기준으로 해당 블록의 움직임 벡터가 유도될 수 있다. 중앙 화소 값은 서브 블록의 센터에 존재하는 가상의 화소를 의미하거나, 중앙에 존재하는 4개의 화소 중 우하단 화소를 의미할 수 있다. 또한, 중앙 화소 값은, 서브 블록 내의 특정 화소로서 해당 서브 블록을 대표하는 화소일 수 있다. 본 개시에서 어파인 MVF는 4x4 서브블록 단위로 결정되는 경우를 설명한다. 다만 이것은 설명의 편의를 위함이며 서브블록의 사이즈는 다양하게 변경될 수 있다.
즉, Affine 예측이 가용한 경우, 현재 블록에 적용가능한 움직임 모델은 Translational motion model(평행 이동 모델), 4-parameter affine motion model, 6-parameter affine motion model의 3가지를 포함할 수 있다. 여기서 Translational motion model은 기존의 블록 단위 움직임 벡터가 사용되는 모델을 나타낼 수 있고, 4-parameter affine motion model은 2개의 CPMV가 사용되는 모델을 나타낼 수 있고, 6-parameter affine motion model은 3개의 CPMV가 사용되는 모델을 나타낼 수 있다. 어파인 모드는 움직임 정보를 부호화/복호화하는 방법에 따라, 세부 모드로 구분될 수 있다. 일 예로, 어파인 모드는 어파인 MVP 모드와 어파인 머지 모드로 세분화될 수 있다.
현재 블록에 대해 어파인 머지 모드가 적용되는 경우, CPMV는 어파인 모드로 부호화/복호화된 현재 블록의 주변 블록으로부터 유도될 수 있다. 현재 블록의 주변 블록 중 적어도 하나가 어파인 모드로 부호화/복호화된 경우, 현재 블록에 대해 어파인 머지 모드가 적용될 수 있다. 즉, 현재 블록에 대해 어파인 머지 모드가 적용되는 경우, 주변 블록의 CPMV들을 이용하여 현재 블록의 CPMV들이 유도될 수 있다. 예컨대, 주변 블록의 CPMV들이 현재 블록의 CPMV들로 결정되거나, 주변 블록의 CPMV들을 기반으로 현재 블록의 CPMV가 유도될 수 있다. 주변 블록의 CPMV를 기반으로 현재 블록의 CPMV가 유도되는 경우, 현재 블록 혹은 주변 블록의 부호화 파라미터 중 적어도 하나가 사용될 수 있다. 예컨대, 주변 블록의 CPMV들이 상기 주변 블록의 사이즈 및 상기 현재 블록의 사이즈 등을 기반으로 수정되어 현재 블록의 CPMV들로 사용될 수 있다.
한편, 서브블록 단위로 MV가 도출되는 affine merge의 경우에는, 서브블록 머지 모드라고 불릴 수 있으며, 이는 제1 값(예컨대, '1')을 갖는 merge_subblock_flag에 의해 지시될 수 있다. 이 경우 후술하는 어파인 머지 후보 리스트(affine merging candidate list)는 서브블록 머지 후보 리스트(subblock merging candidate list)라고 불릴 수도 있다. 이 경우 상기 서브블록 머지 후보 리스트에는 후술하는 SbTMVP로 도출된 후보가 더 포함될 수 있다. 이 경우, 상기 sbTMVP로 도출된 후보는 상기 서브블록 머지 후보 리스트의 0번 인덱스의 후보로 이용될 수 있다. 다시 말하면, 상기 sbTMVP로 도출된 후보는 상기 서브블록 머지 후보 리스트 내에서 후술하는 상속 어파인 머지 후보(inherited affine candidates), 조합 어파인 머지 후보(constructed affine candidates)보다 앞에 위치할 수 있다.
일 예로, 현재 블록에 대해 어파인 모드가 적용될 수 있는지 여부를 지시하는 어파인 모드 플래그가 정의될 수 있으며, 이는 시퀀스, 픽처, 슬라이스, 타일, 타일 그룹, 브릭, 등 현재 블록의 상위 레벨 중 적어도 하나의 레벨에서 시그널링될 수 있다. 예컨대, 어파인 모드 플래그는 sps_affine_enabled_flag로 명명될 수 있다.
어파인 머지 모드가 적용되는 경우, 현재 블록의 CPMV 유도를 위해, 어파인 머지 후보 리스트가 구성될 수 있다. 이때, 어파인 머지 후보 리스트는 상속 어파인 머지 후보, 조합 어파인 머지 후보 및 제로 머지 후보 중 적어도 하나를 포함할 수 있다. 상속 어파인 머지 후보는 현재 블록의 주변 블록이 어파인 모드로 부호화/복호화된 경우, 해당 주변 블록의 CPMV를 이용하여 유도되는 후보를 의미할 수 있다. 조합 어파인 머지 후보는 각각의 CP(Control Point)의 주변 블록의 움직임 벡터를 기반으로 각각의 CPMV가 유도된 후보를 의미할 수 있다. 한편, 제로 머지 후보는 크기가 0인 CPMV들로 구성된 후보를 의미할 수 있다. 이하의 설명에서 CP란 CPMV를 유도하는데 이용되는 블록의 특정 위치를 의미할 수 있다. 예컨대, CP는 블록의 각 꼭지점 위치일 수 있다.
도 10은 어파인 머지 후보 리스트를 생성하는 방법을 설명하기 위한 도면이다.
도 10의 순서도를 참고하면, 상속 어파인 머지 후보(S1210), 조합 어파인 머지 후보(S1220), 제로 머지 후보(S1230) 순으로 어파인 머지 후보 리스트에 어파인 머지 후보가 추가될 수 있다. 제로 머지 후보는 어파인 머지 후보 리스트에 상속 어파인 머지 후보 및 조합 어파인 머지 후보가 모두 추가되었음에도 후보 리스트에 포함되는 후보의 개수가 최대 후보 개수를 충족하지 못하는 경우에 추가될 수 있다. 이때, 제로 머지 후보는 어파인 머지 후보 리스트의 후보 수가 최대 후보 개수를 충족할 때까지 추가될 수 있다.
도 11은 주변 블록으로부터 유도되는 CPMV를 설명하기 위한 도면이다.
일 예로, 최대 2개의 상속 어파인 머지 후보가 유도될 수 있으며, 각각의 후보는 좌측 주변 블록들 및 상단 주변 블록들 중 적어도 하나를 기반으로 유도될 수 있다.
도 12는 상속 어파인 머지 후보를 유도하기 위한 주변 블록을 설명하기 위한 도면이다.
좌측 주변 블록을 기반으로 유도된 상속 어파인 머지 후보는 도 12의 주변 블록 A0 및 A1 중 적어도 하나를 기반으로 유도되며, 상단 주변 블록을 기반으로 유도된 상속 어파인 머지 후보는 도 12의 주변 블록 B0, B1 및 B2 중 적어도 하나를 기반으로 유도될 수 있다. 이때, 각 주변 블록의 스캔 순서는 A0에서 A1 순 및 B0에서 B1, B2 순일 수 있으나, 이에 한정되지는 않는다. 좌측 및 상단의 각각에 대해 상기 스캔 순서 상 가용한 첫번째 주변 블록에 기반하여 상속 어파인 머지 후보가 유도될 수 있다. 이때, 좌측 주변 블록과 상단 주변 블록으로부터 유도된 후보들 간에는 중복성 검사가 수행되지 않을 수 있다.
일 예로, 도 11에 도시된 바와 같이, 좌측 주변 블록 A가 어파인 모드로 부호화/복호화된 경우, 주변 블록 A의 CP에 대응되는 움직임 벡터 v2, v3 및 v4 중 적어도 하나가 유도될 수 있다. 주변 블록 A가 4-파라미터 어파인 모델을 통해 부호화/복호화되는 경우, 상속 어파인 머지 후보는 v2 및 v3를 이용하여 유도될 수 있다. 반면, 주변 블록 A가 6-파라미터 어파인 모델을 통해 부호화/복호화된 경우, 상속 어파인 머지 후보는 v2, v3 및 v4를 이용하여 유도될 수 있다.
도 13은 조합 어파인 머지 후보를 유도하기 위한 주변 블록을 설명하기 위한 도면이다.
조합 어파인 후보는 주변 블록들의 일반적인 움직임 정보들의 조합을 이용하여 CPMV가 유도되는 후보를 의미할 수 있다. 각 CP 별 움직임 정보는 현재 블록의 공간적 주변 블록 혹은 시간적 주변 블록을 이용하여 유도될 수 있다. 이하의 설명에서 CPMVk는 k번째 CP를 대표하는 움직임 벡터를 의미할 수 있다. 일 예로, 도 13을 참조하면, CPMV1은 B2, B3 및 A2의 움직임 벡터 중 가용한 첫번째 움직임 벡터로 결정될 수 있으며, 이때의 스캔 순서는 B2, B3, A2 순일 수 있다. CPMV2는 B1 및 B0의 움직임 벡터 중 가용한 첫번째 움직임 벡터로 결정될 수 있으며, 이때의 스캔 순서는 B1, B0 순일 수 있다. CPMV3은 A1 및 A0의 움직임 벡터 중 가용한 첫번째 움직임 벡터로 결정될 수 있으며, 이때의 스캔 순서는 A1, A0 순일 수 있다. 현재 블록에 대해 TMVP 적용이 가능한 경우, CPMV4는 시간적 주변 블록인 T의 움직임 벡터로 결정될 수 있다.
각 CP에 대한 4개의 움직임 벡터가 유도된 다음, 이를 기초로 조합 어파인 머지 후보가 유도될 수 있다. 조합 어파인 머지 후보는 유도된 각 CP에 대한 4개의 움직임 벡터 중에서 선택된 적어도 2개 이상의 움직임 벡터를 포함하여 구성될 수 있다. 일 예로, 조합 어파인 머지 후보는 {CPMV1, CPMV2, CPMV3}, {CPMV1, CPMV2, CPMV4}, {CPMV1, CPMV3, CPMV4}, {CPMV2, CPMV3, CPMV4}, {CPMV1, CPMV2} 및 {CPMV1, CPMV3}의 순서에 따라 적어도 하나로 구성될 수 있다. 3개의 움직임 벡터로 구성되는 조합 어파인 후보는 6-파라미터 어파인 모델을 위한 후보일 수 있다. 반면, 2개의 움직임 벡터로 구성되는 조합 어파인 후보는 4-파라미터 어파인 모델을 위한 후보일 수 있다. 움직임 벡터의 스케일링 과정을 회피하기 위해, CP들의 참조 픽처 인덱스들이 상이한 경우, 관련된 CPMV들의 조합은 조합 어파인 후보의 유도에 이용되지 않고 무시될 수 있다.
현재 블록에 대해 어파인 MVP 모드가 적용되는 경우, 영상 부호화 장치는 현재 블록에 대한 2개 이상의 CPMV 예측자와 CPMV를 유도하여, 이를 바탕으로 CPMV 차분(differences)을 유도할 수 있다. 이때, CPMV 차분이 부호화 장치에서 복호화 장치로 시그널링될 수 있다. 영상 복호화 장치는 현재 블록에 대한 CPMV 예측자를 유도하고, 시그널링된 CPMV 차분을 복원한 후, CPMV 예측자와 CPMV 차분에 기반하여 현재 블록의 CPMV를 유도할 수 있다.
한편, 현재 블록에 대해 어파인 머지 모드 또는 서브 블록 기반 TMVP가 적용되지 않는 경우(예컨대, affine merge flag 또는 merge_subblock_flag의 값이 0인 경우), 현재 블록에 대해 어파인 MVP 모드가 적용될 수 있다. 또는, 예를 들어, inter_affine_flag의 값이 1인 경우, 현재 블록에 대해 어파인 MVP 모드가 적용될 수 있다. 한편, 어파인 MVP 모드는 어파인 CP MVP 모드라 표현될 수도 있다. 후술하는 어파인 MVP 후보 리스트(affine mvp candidate list)는 control point motion vectors predictor candidate list라고 불릴 수 있다.
현재 블록에 대해 어파인 MVP 모드가 적용되는 경우, 현재 블록에 대한 CPMV 유도를 위해, 어파인 MVP 후보 리스트가 구성될 수 있다. 이때, 어파인 MVP 후보 리스트는 상속 어파인 MVP 후보, 조합 어파인 MVP 후보, 평행 이동 어파인 MVP 후보 및 제로 MVP 후보 중 적어도 하나를 포함할 수 있다. 예를 들어, 어파인 MVP 후보 리스트는 최대 n개(ex. n=2)의 후보를 포함할 수 있다.
이때, 상속 어파인 MVP 후보는 현재 블록의 주변 블록이 어파인 모드로 부호화/복호화되는 경우, 주변 블록의 CPMV를 기반으로 유도되는 후보를 의미할 수 있다. 조합 어파인 MVP 후보는 CP 주변 블록의 움직임 벡터를 기반으로 CPMV 조합을 생성하여 유도되는 후보를 의미할 수 있다. 제로 MVP 후보는 값이 0인 CPMV로 구성되는 후보를 의미할 수 있다. 상속 어파인 MVP 후보, 조합 어파인 MVP 후보의 유도 방법 및 특징은 상술한 상속 어파인 후보 및 조합 어파인 후보와 동일하므로 설명을 생략한다.
어파인 MVP 후보 리스트의 최대 후보 개수가 2인 경우, 조합 어파인 MVP 후보, 평행 이동 어파인 MVP 후보 및 제로 MVP 후보는 현재 후보 개수가 2 미만인 경우에 추가될 수 있다. 특히, 평행 이동 어파인 MVP 후보는 다음의 순서에 따라 유도될 수 있다.
일 예로, 어파인 MVP 후보 리스트에 포함된 후보의 수가 2 미만이고, 조합 어파인 MVP 후보의 CPMV0가 유효한 경우, CPMV0가 어파인 MVP 후보로 사용될 수 있다. 즉, CP0, CP1, CP2의 움직임 벡터가 모두 CPMV0인 어파인 MVP 후보가 어파인 MVP 후보 리스트에 추가될 수 있다.
다음으로, 어파인 MVP 후보 리스트의 후보의 수가 2 미만이고, 조합 어파인 MVP 후보의 CPMV1가 유효한 경우, CPMV1이 어파인 MVP 후보로 사용될 수 있다. 즉, CP0, CP1, CP2의 움직임 벡터가 모두 CPMV1인 어파인 MVP 후보가 어파인 MVP 후보 리스트에 추가될 수 있다.
다음으로, 어파인 MVP 후보 리스트의 후보의 수가 2 미만이고, 조합 어파인 MVP 후보의 CPMV2가 유효한 경우, CPMV2가 어파인 MVP 후보로 사용될 수 있다. 즉, CP0, CP1, CP2의 움직임 벡터가 모두 CPMV2인 어파인 MVP 후보가 어파인 MVP 후보 리스트에 추가될 수 있다.
상술한 조건에도 불구하고, 어파인 MVP 후보 리스트의 후보의 수가 2 미만인 경우, 현재 블록의 TMVP(temporal motion vector predictor)가 어파인 MVP 후보 리스트에 추가될 수 있다. 상기에도 불구하고, 어파인 MVP 후보 리스트의 후보의 수가 2 미만인 경우, 제로 MVP 후보가 어파인 MVP 후보 리스트에 추가될 수 있다.
도 14는 어파인 MVP 후보 리스트를 생성하는 방법을 설명하기 위한 도면이다.
도 14의 순서도를 참고하면, 상속 어파인 MVP 후보(S1610), 조합 어파인 MVP 후보(S1620), 평행 이동 어파인 MVP 후보(S1630), 제로 MVP 후보(S1640) 순으로 어파인 MVP 후보 리스트에 후보가 추가될 수 있다. 상술한 바와 같이, 단계 S1620 내지 단계 S1640은 각 단계에서 어파인 MVP 후보 리스트에 포함된 후보의 개수가 2 미만인지 여부에 따라 수행될 수 있다.
상속 어파인 MVP 후보의 스캔 순서는 상속 어파인 머지 후보의 스캔 순서와 동일할 수 있다. 다만, 상속 어파인 MVP 후보의 경우, 현재 블록의 참조 픽처와 동일한 참조 픽처를 참조하는 주변 블록만이 고려될 수 있다. 상속 어파인 MVP 후보를 어파인 MVP 후보 리스트에 추가할 때, 중복성 체크는 수행되지 않을 수 있다.
조합 어파인 MVP 후보를 유도하기 위해 도 13에 도시된 공간적 주변 블록들만이 고려될 수 있다. 또한, 조합 어파인 MVP 후보의 스캔 순서는 조합 어파인 머지 후보의 스캔 순서와 동일할 수 있다. 또한, 조합 어파인 MVP 후보를 유도하기 위해, 주변 블록의 참조 픽처 인덱스가 체크되고, 상기 스캔 순서상, 인터 코딩되고 현재 블록의 참조 픽처와 동일한 참조 픽처를 참조하는 첫번째 주변 블록이 이용될 수 있다.
서브 블록 기반 TMVP(Subblock-based Temporal Motion Vector Prediction, SbTMVP) 모드 개요
이하, 인터 예측 모드의 일 예인 서브 블록 기반 TMVP 모드에 대해서 자세히 설명한다. 서브 블록 기반 TMVP 모드에 따르면, 현재 블록에 대한 움직임 벡터 필드(Motion Vector Field : MVF)가 유도되어, 서브 블록 단위로 움직임 벡터가 유도될 수 있다.
종래의 TMVP 모드가, 코딩 유닛 단위로 수행되는 것과 달리, 서브 블록 기반 TMVP 모드가 적용되는 코딩 유닛은 서브 코딩 유닛 단위로 움직임 벡터에 대한 부호화/복호화가 수행될 수 있다. 또한, 종래의 TMVP 모드에 따르면 동일 위치 픽처 내의 동일 위치 블록(collocated block)으로부터 시간적 움직임 벡터가 유도된다. 반면, 서브 블록 기반 TMVP 모드는 현재 블록의 주변 블록으로부터 유도된 움직임 벡터가 지시하는 동일 위치 픽처 내 참조 블록으로부터 움직임 벡터 필드가 유도될 수 있다. 이하, 주변 블록으로부터 유도된 움직임 벡터를 현재 블록의 움직임 쉬프트(motion shift) 혹은 대표 움직임 벡터라고 지칭할 수 있다.
도 15는 서브 블록 기반 TMVP 모드의 주변 블록을 설명하기 위한 도면이다.
현재 블록에 대해 서브 블록 기반 TMVP 모드가 적용되는 경우, 움직임 쉬프트를 결정하기 위한 주변 블록이 결정될 수 있다. 일 예로, 움직임 쉬프트를 결정하기 위한 주변 블록에 대한 스캔은 도 15의 A1, B1, B0, A0 블록 순으로 수행될 수 있다. 다른 예로, 움직임 쉬프트를 결정하기 위한 주변 블록은 현재 블록의 특정 주변 블록으로 제한될 수 있다. 예컨대, 움직임 쉬프트를 결정하기 위한 주변 블록은 언제나 A1 블록으로 결정될 수 있다. 주변 블록이 콜 픽처를 참조하는 움직임 벡터를 갖는 경우, 해당 움직임 벡터가 움직임 쉬프트로 결정될 수 있다. 움직임 쉬프트로 결정된 움직임 벡터는 시간적 움직임 벡터로 지칭될 수도 있다. 한편, 주변 블록으로부터 상술한 움직임 벡터가 유도될 수 없는 경우, 움직임 쉬프트는 (0,0)으로 설정될 수 있다.
도 16은 서브 블록 기반 TMVP 모드에 따라 움직임 벡터 필드를 유도하는 방법을 설명하기 위한 도면이다.
다음으로, 움직임 쉬프트가 지시하는 동일 위치 픽처 상의 참조 블록이 결정될 수 있다. 예컨대, 현재 블록의 좌표에 움직임 쉬프트를 가산함으로써 콜 픽처로부터 서브블록 기반 움직임 정보(움직임 벡터, 참조 픽처 인덱스)를 획득할 수 있다. 도 16에 도시된 예에서, 움직임 쉬프트는 A1 블록의 움직임 벡터인 것으로 가정한다. 현재 블록에 움직임 쉬프트를 적용함으로써 현재 블록을 구성하는 각 서브블록에 대응하는 콜 픽처 내 서브블록(콜 서브블록)을 특정할 수 있다. 이후, 콜 픽처의 대응 서브블록(콜 서브블록)의 움직임 정보를 이용하여, 현재 블록의 각 서브블록의 움직임 정보가 유도될 수 있다. 예컨대, 대응 서브블록의 중앙 위치로부터 대응 서브블록의 움직임 정보가 획득될 수 있다. 이때, 중앙 위치는 대응 서브블록의 중앙에 위치하는 4개의 샘플들 중 우하단 샘플의 위치일 수 있다. 만약, 현재 블록에 대응하는 콜 블록의 특정 서브블록의 움직임 정보가 가용하지 않은 경우, 콜 블록의 중심 서브블록의 움직임 정보가 해당 서브블록의 움직임 정보로 결정될 수 있다. 대응 서브블록의 움직임 정보가 유도되면, 상술한 TMVP 과정과 유사하게 현재 서브블록의 움직임 벡터와 참조 픽처 인덱스로 전환될 수 있다. 즉, 서브블록 기반 움직임 벡터가 유도되는 경우, 참조 블록의 참조 픽처의 POC를 고려하여 움직임 벡터의 스케일링이 수행될 수 있다.
위와 같이, 서브블록 기반으로 유도된 현재 블록의 움직임 벡터 필드 또는 움직임 정보를 이용하여 현재 블록에 대한 서브블록 기반 TMVP 후보가 유도될 수 있다.
이하에서, 서브블록 단위로 구성되는 머지 후보 리스트를 서브블록 단위 머지 후보 리스트라 정의한다. 상술한 어파인 머지 후보 및 서브블록 기반 TMVP 후보가 병합되어 서브블록 단위 머지 후보 리스트가 구성될 수 있다.
한편, 현재 블록에 대해 서브블록 기반 TMVP 모드가 적용될 수 있는지 여부를 지시하는 서브블록 기반 TMVP 모드 플래그가 정의될 수 있으며, 이는 시퀀스, 픽처, 슬라이스, 타일, 타일 그룹, 브릭, 등 현재 블록의 상위 레벨 중 적어도 하나의 레벨에서 시그널링될 수 있다. 예컨대, 서브블록 기반 TMVP 모드 플래그는 sps_sbtmvp_enabled_flag로 명명될 수 있다. 현재 블록에 대해 서브블록 기반 TMVP 모드의 적용이 가능한 경우, 서브블록 단위 머지 후보 리스트에 서브블록 기반 TMVP 후보가 먼저 추가될 수 있으며, 이후 어파인 머지 후보가 서브블록 단위 머지 후보 리스트에 추가될 수 있다. 한편, 서브블록 단위 머지 후보 리스트에 포함될 수 있는 최대 후보의 개수가 시그널링될 수 있다. 일 예로, 서브블록 단위 머지 후보 리스트에 포함될 수 있는 최대 후보의 개수는 5일 수 있다.
서브블록 단위 머지 후보 리스트 유도에 사용되는 서브블록의 크기는 시그널링 되거나 MxN으로 기 설정될 수 있다. 예컨대, MxN은 8x8일 수 있다. 따라서, 현재 블록의 크기가 8x8이상인 경우에만, 현재 블록에 대해 어파인 모드 또는 서브블록 기반 TMVP 모드가 적용될 수 있다.
이하에서, 본 개시의 예측 수행 방법의 일 실시예에 대해 설명한다. 이하의 예측 수행 방법은 도 4의 단계 S410 또는 도 6의 단계 S630에서 수행될 수 있다.
예측 모드에 따라 도출된 움직임 정보를 기반으로 현재 블록에 대한 예측된 블록을 생성할 수 있다. 상기 예측된 블록(예측 블록)은 상기 현재 블록의 예측 샘플들(예측 샘플 어레이)를 포함할 수 있다. 현재 블록의 움직임 벡터가 분수 샘플(fractional sample) 단위를 가리키는 경우, 보간(interpolation) 절차가 수행될 수 있으며, 이를 통하여 참조 픽처 내에서 분수 샘플 단위의 참조 샘플들을 기반으로 상기 현재 블록의 예측 샘플들이 도출될 수 있다. 현재 블록에 Affine 인터 예측이 적용되는 경우, 샘플/서브블록 단위 MV를 기반으로 예측 샘플들을 생성할 수 있다. 쌍예측(bi-prediction)이 적용되는 경우, L0 예측(즉, 참조 픽처 리스트 L0 내 참조 픽처와 MVL0를 이용한 예측)을 기반으로 도출된 예측 샘플들과 L1 예측(즉, 참조 픽처 리스트 L1 내 참조 픽처와 MVL1을 이용한 예측)을 기반으로 도출된 예측 샘플들의 (위상에 따른) 가중합 또는 가중평균을 통하여 도출된 예측 샘플들이 현재 블록의 예측 샘플들로 이용될 수 있다. 쌍예측이 적용되는 경우, L0 예측에 이용된 참조 픽처와 L1 예측에 이용된 참조 픽처가 현재 픽처를 기준으로 서로 다른 시간적 방향에 위치하는 경우, (즉, 쌍예측이면서 양방향 예측에 해당하는 경우) 이를 true(참) 쌍예측이라고 부를 수 있다.
영상 복호화 장치에서, 도출된 예측 샘플들을 기반으로 복원 샘플들 및 복원 픽처가 생성될 수 있고, 이후 인루프 필터링 등의 절차가 수행될 수 있다. 또한, 영상 부호화 장치에서, 도출된 예측 샘플들을 기반으로 레지듀얼 샘플들이 도출되고 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보의 인코딩이 수행될 수 있다.
CU 레벨의 가중치를 이용한 양방향 예측(Bi-prediction with CU-level weight, BCW)
상술한 바와 같이 현재 블록에 쌍예측이 적용되는 경우, 가중평균(weighted average)을 기반으로 예측 샘플들을 도출할 수 있다. 기존에는 쌍예측 신호(즉, 쌍예측 샘플들)는 L0 예측 신호(L0 예측 샘플들)과 L1 예측 신호(L1 예측 샘플들)의 단순 평균을 통하여 도출될 수 있었다. 즉, 쌍예측 샘플들은 L0 참조 픽처 및 MVL0에 기반한 L0 예측 샘플들과 L1 참조 픽처 및 MVL1에 기반한 L1 예측 샘플들의 평균으로 도출되었다. 그러나, 본 개시에 따르면, 쌍예측이 적용되는 경우 다음과 같이 L0 예측 신호와 L1 예측 신호의 가중평균을 통하여 쌍예측 신호(쌍예측 샘플들)을 도출할 수 있다.
Figure PCTKR2020012245-appb-M000003
상기 수학식 3에서, Pbi-pred는 가중평균에 의해 도출된 쌍예측 신호(쌍예측 블록)를 나타내고, P0와 P1은 각각 L0 예측 샘플들(L0 예측 블록)과 L1 예측 샘플들(L1 예측 블록)을 나타낸다. 또한, (8-w)와 w는 각각 P0와 P1에 적용되는 가중치를 나타낸다.
가중평균에 의한 쌍예측 신호의 생성에 있어, 5개의 가중치가 허용될 수 있다. 예컨대, 가중치 w는 {-2,3,4,5,10}로부터 선택될 수 있다. 쌍예측된 CU의 각각에 대해, 가중치 w는 두가지 방법 중 하나로 결정될 수 있다. 상기 두가지 방법 중 첫번째로서, 현재 CU가 머지 모드가 아닌 경우(non-merge CU), 움직임 벡터 차분과 함께 가중치 인덱스(weight index)가 시그널링될 수 있다. 예컨대, 비트스트림은 움직임 벡터 차분에 관한 정보의 이후에 가중치 인덱스에 관한 정보를 포함할 수 있다. 상기 두가지 방법 중 두번째로서, 현재 CU가 머지 모드인 경우(merge CU), 가중치 인덱스는 머지 후보 인덱스(머지 인덱스)에 기반하여 주변 블록들로부터 유도될 수 있다.
가중평균에 의한 쌍예측 신호의 생성은 256개 이상의 샘플(루마 성분 샘플)을 포함하는 크기의 CU에 대해서만 적용되도록 제한될 수 있다. 즉, 현재 블록의 너비(width)와 높이(height)의 곱이 256 이상인 CU에 대해서만 가중평균에 의한 쌍예측이 수행될 수 있다. 또한, 가중치 w는 상술한 바와 같이 5개의 가중치 중 하나가 사용될 수도 있고, 다른 개수의 가중치 중 하나가 사용될 수도 있다. 예컨대, 현재 영상의 특성에 따라, low-delay picture에 대해서는 5개의 가중치가 사용되고, non-low-delay picture에 대해서는 3개의 가중치가 사용될 수 있다. 이때, 3개의 가중치는 {3,4,5}일 수 있다.
영상 부호화 장치는 fast search algorithm을 적용하여 복잡도를 크게 증가시키지 않고 가중치 인덱스를 결정할 수 있다. 이때, 상기 fast search algorithm은 다음과 같이 요약될 수 있다. 이하에서 불균등 가중치(unequal weight)란 P0와 P1에 적용되는 가중치가 균등하지 않은 것을 의미할 수 있다. 또한 균등 가중치(equal weight)란 P0와 P1에 적용되는 가중치가 균등한 것을 의미할 수 있다.
- 움직임 벡터의 해상도가 적응적으로 변경되는 AMVR 모드가 함께 적용되는 경우, 현재 픽처가 low-delay picture이면, 1-pel 움직임 벡터 해상도와 4-pel 움직임 벡터 해상도의 각각에 대해 불균등 가중치만이 조건적으로 체크될 수 있다.
- 어파인 모드가 함께 적용되고, 어파인 모드가 현재 블록의 최적의 모드로서 선택된 경우, 영상 부호화 장치는 불균등 가중치의 각각에 대해 affine ME(motion estimation)을 수행할 수 있다.
- 쌍예측에 사용되는 2개의 참조 픽처가 동일할 경우, 불균등 가중치만이 조건적으로 체크될 수 있다.
- 불균등 가중치는 소정 조건이 만족되는 경우, 체크되지 않을 수 있다. 상기 소정 조건은 현재 픽처와 참조 픽처 사이의 POC 거리(POC distance), 양자화 파라미터(QP), 시간적 레벨(temporal level) 등에 기반한 조건일 수 있다.
BCW의 가중치 인덱스는 하나의 문맥 부호화 빈(bin)과 후속하는 하나 이상의 바이패스 부호화 빈들(bypass coded bins)을 이용하여 부호화될 수 있다. 첫번째 문맥 부호화 빈은 균등 가중치(equal weight)가 사용되는지 여부를 지시한다. 불균등 가중치가 사용되는 경우, 추가적인 빈들이 바이패스 부호화되어 시그널링될 수 있다. 추가적인 빈들은 어떠한 가중치가 사용되는지 여부를 지시하기 위해 시그널링될 수 있다.
가중 예측(Weighted prediction, WP)은 페이딩(fading)을 포함하는 영상을 효율적으로 부호화하기 위한 도구이다. 가중 예측에 따르면, 참조 픽처 리스트 L0와 L1의 각각에 포함된 각 참조 픽처에 대해 웨이팅 파라미터(가중치와 오프셋)가 시그널링될 수 있다. 이후 움직임 보상이 수행될 때, 가중치(들)와 오프셋(들)이 대응하는 참조 픽처(들)에 적용될 수 있다. 가중 예측과 BCW는 서로 다른 타입의 영상에 대해 사용될 수 있다. 가중 예측과 BCW 사이의 상호 작용을 피하기 위해, 가중 예측을 사용하는 CU에 대해서는 BCW 가중치 인덱스는 시그널링되지 않을 수 있다. 이 경우, 가중치는 4로 추론될 수 있다. 즉, 균등 가중치가 적용될 수 있다.
머지 모드가 적용된 CU의 경우, 가중치 인덱스는 머지 후보 인덱스에 기반하여 주변 블록들로부터 추론될 수 있다. 이것은 보통의 머지 모드와 상속 어파인 머지 모드의 모두에 대해 적용될 수 있다.
조합 어파인 머지 모드의 경우, 최대 3개 블록들의 움직임 정보에 기반하여 어파인 움직임 정보가 구성될 수 있다. 조합 어파인 머지 모드를 사용하는 CU에 대한 BCW 가중치 인덱스는 조합내 첫번째 CP의 BCW 가중치 인덱스로 설정될 수 있다. CIIP와 BCW는 CU에 함께 적용되지 않을 수 있다. 즉, CIIP 모드로 부호화된 CU에 대해서는 BCW가 적용되지 않을 수 있다. 예컨대, CIIP 모드로 부호화된 CU의 BCW 가중치 인덱스는 균등 가중치를 지시하는 값으로 설정될 수 있다.
Bi-directional optical flow (BDOF)
본 개시에 따르면, 쌍예측(bi-prediction) 신호를 리파인(개선)하기 위하여 BDOF가 사용될 수 있다. BDOF는 현재 블록(ex. CU)에 쌍예측이 적용되는 경우 개선된 움직임 정보를 계산하여 예측 샘플들을 생성하기 위한 것이다. 따라서, BDOF를 적용하여 개선된 움직임 정보를 계산하는 과정은 상술한 움직임 정보 도출 단계에 포함될 수도 있다.
예를 들어, BDOF는 4x4 서브블록 레벨에서 적용될 수 있다. 즉, BDOF는 현재 블록 내 4x4 서브블록 단위로 수행될 수 있다.
BODF는 예를 들어 다음과 같은 조건을 적어도 하나 또는 모두 만족하는 CU에 대하여 적용될 수 있다.
- CU가 true 쌍예측 모드로 부호화된 경우, 즉, 두 개의 참조 픽처들 중 하나는 디스플레이 순서가 현재 픽처에 선행하고, 나머지 하나는 디스플레이 순서가 현재 픽처에 후행하는 경우
- CU가 어파인 모드 또는 ATMVP 머지 모드가 아닌 경우
- CU가 64개보다 많은 루마 샘플을 갖는 경우
- CU의 높이(height) 및 너비(width)가 8 루마 샘플 이상인 경우
- BCW 가중치 인덱스가 균등 가중치를 지시하는 경우, 즉, L0 예측 샘플과 L1 예측 샘플에 동일한 가중치가 적용되는 것을 지시하는 경우
- 현재 CU에 대해 가중 예측(WP, Weighted Prediction)이 적용되지 않는 경우
- 현재 CU에 대해 CIIP 모드가 사용되지 않는 경우
또한, BDOF는 루마 성분에 대하여만 적용될 수 있다. 그러나 이에 한정되지 않으며, BDOF는 크로마 성분에 대하여만 적용되거나, 루마 성분 및 크로마 성분의 모두에 대하여 적용될 수도 있다.
BDOF 모드는 광학적 흐름(optical flow)의 개념에 기초한다. 즉, 객체의 움직임이 스무스(smooth)한 것을 가정한다. BDOF가 적용되는 경우, 각각의 4x4 서브블록에 대해, 개선된 움직임 벡터(motion refinement) (vx, vy)가 계산될 수 있다. 개선된 움직임 벡터(motion refinement)는 L0 예측 샘플과 L1 예측 샘플 사이의 차이를 최소화함으로써 계산될 수 있다. 개선된 움직임 벡터(motion refinement)는 4x4 서브 블록 내 쌍예측된 샘플 값들을 조정(adjust)하는데 이용될 수 있다.
이하, BDOF가 수행되는 과정을 보다 구체적으로 설명한다.
먼저, 2개의 예측 신호들의 수평 그래디언트(gradient)
Figure PCTKR2020012245-appb-I000001
와 수직 그래디언트
Figure PCTKR2020012245-appb-I000002
가 계산될 수 있다. 이 때, k는 0 또는 1일 수 있다. 상기 그래디언트는 2개의 인접한 샘플들 사이의 차이를 직접 계산함으로써 계산될 수 있다. 예컨대, 상기 그래디언트는 아래와 같이 계산될 수 있다.
Figure PCTKR2020012245-appb-M000004
상기 수학식 4에서, I(k)(i, j)는 리스트 k (k = 0, 1) 내 예측 신호의 좌표 (i, j)의 샘플값을 의미한다. 예컨대, I(0)(i, j)는 L0 예측 블록 내 (i, j) 위치의 샘플값을 의미하고, I(1)(i, j)는 L1 예측 블록 내 (i, j) 위치의 샘플값을 의미할 수 있다. 상기 수학식 4에서, 제1 쉬프트량(shift1)은 루마 성분의 비트 뎁스(비트 깊이)에 기초하여 결정될 수 있다. 예컨대, 루마 성분의 비트 뎁스를 bitDepth라 할 때, shift1은 max(6, bitDepth-6)으로 결정될 수 있다.
상술한 바와 같이 그래디언트가 계산된 후, 그래디언트간 자기상관관계(auto-correlation) 및 교차상관관계(cross-correlation) S1, S2, S3, S5 및 S6이 아래와 같이 계산될 수 있다.
Figure PCTKR2020012245-appb-M000005
상기 수학식 5에서, na 및 nb 는 각각 min( 1, bitDepth-11 ) 및 min( 4, bitDepth-8)으로 설정될 수 있다.
상술한 그래디언트간 자기상관관계 및 교차상관관계를 이용하여 개선된 움직임 벡터(motion refinement) (vx, vy)가 아래와 같이 유도될 수 있다.
Figure PCTKR2020012245-appb-M000006
상기 수학식 6에서, nS2는 12일 수 있다. 상기 유도된 개선된 움직임 벡터(motion refinement) 및 그래디언트들에 기초하여, 4x4 서브블록 내 각 샘플들에 대해 다음과 같은 조정이 수행될 수 있다.
Figure PCTKR2020012245-appb-M000007
최종적으로, CU의 쌍예측 샘플들을 아래와 같이 조정함으로써 BDOF가 적용된 CU의 예측 샘플들(predBDOF)을 계산할 수 있다.
Figure PCTKR2020012245-appb-M000008
상기 수학식들에 있어서, na, nb및 nS2는 각각 3, 6 및 12일 수 있다. 이 값들은 BDOF 과정에서의 승수(multiplier)가 15 비트를 초과하지 않고, 중간 파라미터들(intermediate parameters)의 비트너비(bit-width)가 32 비트 이내로 유지될 수 있도록 선택될 수 있다.
그래디언트 값을 유도하기 위해, 현재 CU의 외부에 존재하는 리스트 k (k=0, 1) 내 예측 샘플들 I(k)(i, j)이 생성될 수 있다. 도 17은 BDOF를 수행하기 위해 확장된 CU를 도시한 도면이다.
도 17에 도시된 바와 같이, BDOF를 수행하기 위해, CU의 경계 주변으로 확장된 행/열이 사용될 수 있다. 경계 바깥의 예측 샘플들을 생성하기 위한 계산의 복잡도를 제어하기 위해, 확장된 영역(도 17의 흰색 영역) 내 예측 샘플들은 양선형 필터(bilinear filter)를 사용하여 생성되고, CU(도 17의 회색 영역) 내 예측 샘플들은 보통의 8-tap 움직임 보상 보간 필터(normal 8-tap motion compensation interpolation filter)를 사용하여 생성될 수 있다. 상기 확장된 위치의 샘플 값들은 그래디언트 계산에만 사용될 수 있다. BDOF 과정의 나머지 단계들을 수행하기 위해, CU 경계의 바깥에 위치하는 샘플 값 및/또는 그래디언트 값이 필요한 경우, 가장 인접한 이웃 샘플 값 및/또는 그래디언트 값을 패딩(반복)하여 사용할 수 있다.
CU의 너비 및/또는 높이가 16 루마 샘플보다 큰 경우, 해당 CU는 너비 및/또는 높이가 16 루마 샘플인 서브 블록들로 분할될 수 있다. 각 서브 블록들의 경계는 BDOF 과정에서 상술한 CU 경계와 동일하게 취급될 수 있다. BDOF 과정이 수행되는 최대 유닛 크기는 16x16으로 제한될 수 있다.
각각의 서브블록에 대해, BDOF 수행 여부가 결정될 수 있다. 즉, 각각의 서브블록에 대한 BDOF 과정은 스킵될 수 있다. 예컨대, 초기(initial) LO 예측 샘플과 초기 L1 예측 샘플 사이의 SAD 값이 소정의 임계치보다 작은 경우, BDOF 과정은 해당 서브블록에 적용되지 않을 수 있다. 이때, 해당 서브블록의 너비와 높이가 각각 W 및 H일 때, 상기 소정의 임계치는 (8 * W*( H >> 1 )로 설정될 수 있다. 부가적인 SAD 계산의 복잡도를 고려하여, DMVR 과정에서 계산된 초기L0 예측 샘플과 초기 L1 예측 샘플 사이의 SAD가 재사용될 수 있다.
현재 블록에 대해 BCW가 가용한 경우, 예컨대, BCW 가중치 인덱스가 불균등 가중치를 지시하는 경우, BDOF는 적용되지 않을 수 있다. 유사하게, 현재 블록에 대해 WP가 가용한 경우, 예컨대, 2개의 참조 픽처들 중 적어도 하나에 대한 luma_weight_lx_flag가 1인 경우, BDOF는 적용되지 않을 수 있다. 이때, luma_weight_lx_flag는 lx 예측(x는 0 또는 1)의 루마 성분에 대한 WP의 가중치 팩터(weighting factors)가 비트스트림에 존재하는지 여부를 지시하는 정보일 수 있다. 또는, lx 예측의 루마 성분에 대해 WP가 적용되는지 여부를 지시하는 정보일 수 있다. CU가 Symmetric MVD(SMVD) 모드 또는 CIIP 모드로 부호화된 경우, BDOF는 적용되지 않을 수 있다.
Prediction refinement with optical flow (PROF)
이하, 광학적 흐름(optical flow)을 적용하여 서브블록 기반 어파인 움직임 보상 예측된 블록을 개선하는 방법을 설명한다. 서브블록 기반 어파인 움직임 보상(sub-block based affine motion compensation)이 수행되어 생성된 예측 샘플들은 광학적 흐름 방정식에 의해 유도된 차이에 기반하여 개선될 수 있다. 이러한 예측 샘플의 개선은 본 개시에서 광학적 흐름을 이용한 예측 개선(prediction refinement with optical flow (PROF))으로 호칭될 수 있다. PROF는 메모리 액세스의 대역폭을 증가시킴없이 픽셀 레벨 입도(granularity)의 인터 예측을 달성할 수 있다.
어파인 움직임 모델의 파라미터들은 CU 내 각 픽셀의 움직임 벡터를 유도하는데 이용될 수 있다. 그러나, 픽셀 기반의 어파인 움직임 보상 예측은 높은 복잡도와 메모리 액세스의 대역폭 증가를 야기하므로, 서브블록 기반의 어파인 움직임 보상 예측이 수행될 수 있다. 서브블록 기반의 어파인 움직임 보상 예측이 수행되는 경우, CU는 4x4 서브블록들로 분할되고, 각 서브블록마다 움직임 벡터가 결정될 수 있다. 이 때 각 서브블록의 움직임 벡터는 CU의 CPMV들로부터 유도될 수 있다. 서브블록 기반의 어파인 움직임 보상은 부호화 효율과 복잡도 및 메모리 액세스의 대역폭 사이에 트레이드 오프 관계를 가진다. 서브블록 단위로 움직임 벡터를 유도하므로 복잡도 및 메모리 액세스의 대역폭은 감소하지만 예측 정확도가 낮아진다.
따라서, 서브블록 기반의 어파인 움직임 보상 예측에 광학적 흐름을 적용하여 개선함으로써, 향상된 입도의 움직임 보상을 달성할 수 있다.
상술한 바와 같이, 서브블록 기반의 어파인 움직임 보상이 수행된 후, 광학적 흐름 방정식에 의해 유도된 차이를 더해줌으로써 루마 예측 샘플이 개선될 수 있다. 보다 구체적으로, PROF는 아래의 4 단계로 수행될 수 있다.
단계 1) 서브블록 기반의 어파인 움직임 보상이 수행되어 예측된 서브블록 I(i, j)가 생성된다.
단계 2) 예측된 서브블록의 공간적 그래디언트(spatial gradients) gx(i, j) 및 gy(i, j)가 각 샘플 위치에서 계산된다. 이 때, 3 탭 필터가 사용될 수 있고, 핕터 계수는 [-1, 0, 1]일 수 있다. 예컨대, 공간적 그래디언트는 아래와 같이 계산될 수 있다.
Figure PCTKR2020012245-appb-M000009
그래디언트를 계산하기 위해, 예측된 서브블록은 각각의 측면에서 1 픽셀만큼 확장될 수 있다. 이때, 메모리 대역폭과 복잡도를 낮추기 위해, 확장된 경계의 픽셀들은 참조 픽처 내의 가장 가까운 정수 픽셀로부터 복사될 수 있다. 따라서, 패딩 영역에 대한 부가적인 보간은 생략될 수 있다.
단계 3) 루마 예측의 개선량(luma prediction refinement)(ΔI(i, j))이 광학적 흐름 방정식에 의해 계산될 수 있다. 예컨대, 아래의 수학식이 이용될 수 있다.
Figure PCTKR2020012245-appb-M000010
상기 수학식에서, Δv(i, j)는 샘플 위치 (i, j)에서 계산된 픽셀 움직임 벡터(pixel MV, v(i, j))와 샘플 (i, j)가 속하는 서브블록의 서브블록 움직임 벡터(sub-block MV) 사이의 차이를 의미한다.
도 18은 Δv(i, j), v(i, j) 및 서브블록 움직임 벡터의 관계를 도시한 도면이다.
도 18에 도시된 예에서, 예컨대, 현재 서브블록의 좌상단 샘플 위치의 움직임 벡터 v(i, j)와 현재 서브블록의 움직임 벡터 vSB의 차이가 굵은 점선 화살표로 나타내어질 수 있으며, 굵은 점선 화살표가 나타내는 벡터가 Δv(i, j)에 대응될 수 있다.
어파인 모델 파라미터와, 서브블록의 중심으로부터의 픽셀 위치는 변경되지 않는다. 따라서, Δv(i, j)는 첫번째 서브 블록에 대해서만 계산되고, 동일 CU 내 다른 서브블록들에 대해 재사용될 수 있다. 픽셀 위치로부터 서브블록의 중심까지의 수평 오프셋 및 수직 오프셋을 각각 x 및 y라 할 때, Δv(x, y)는 아래와 같이 유도될 수 있다.
Figure PCTKR2020012245-appb-M000011
상기에서, (v0x, v0y), (v1x, v1y) 및 (v2x, v2y)는 좌상단 CPMV, 우상단 CPMV 및 좌하단 CPMV에 해당하며, w 및 h는 CU의 너비 및 높이를 의미한다.
단계 4) 마지막으로, 계산된 루마 예측의 개선량 ΔI(i, j)과 예측된 서브블록 I(i, j)에 기반하여 최종 예측 블록 I'(i, j)을 생성할 수 있다. 예컨대, 최종 예측 블록 I'는 아래와 같이 생성될 수 있다.
Figure PCTKR2020012245-appb-M000012
도 19는 본 개시에 따른 BDOF의 적용 여부 결정 과정을 도시한 일 예이다.
현재 CU에 BDOF가 적용되는지 여부는 플래그 bdofFlag로 나타낼 수 있다. 제1 값("True" 또는 "1")의 bdofFlag는 현재 CU에 BDOF가 적용됨을 나타낼 수 있다. 제2 값("False" 또는 "0")의 bdofFlag는 현재 CU에 BDOF가 적용되지 않음을 나타낼 수 있다. bdofFlag는 예컨대, 도 19에 도시된 다양한 조건에 기반하여 도출될 수 있다. 도 19에 도시된 바와 같이, bdofFlag는 블록의 크기(cbWidth, cbHeight)에 관한 조건을 포함한다. 보다 구체적으로, bdofFlag는 블록의 너비(cbWidth)와 블록의 높이(cbHeight)가 모두 8 (루마 샘플) 이상이고, cbHeight*cbWidth가 128 (루마 샘플) 이상일 때 제1 값으로 설정될 수 있다. 이때, cbHeight*cbWidth는 현재 CU에 포함된 루마 샘플들의 개수를 나타낼 수 있다. 도 19에 도시된 예에 따르면, 8x8 크기의 CU에 대해서는 bdofFlag가 제2 값으로 설정되고, 따라서, BDOF가 적용되지 않는다.
상술한 바와 같이, 인터 예측 과정에서 BDOF가 적용되어 움직임 보상 과정에서 참조 샘플을 개선함으로써 영상의 압축 성능을 높일 수 있다. BDOF는 현재 블록의 예측 모드가 일반 모드(정규 머지 모드 또는 정규 AMVP 모드)일 때 수행될 수 있다. 즉, 현재 블록의 예측 모드가 어파인 모드, GPM 모드, CIIP 모드 등일 경우, BDOF는 적용되지 않는다.
어파인 모드로 부호화된 블록에 대해서는 BDOF와 유사한 방법으로서 PROF가 수행될 수 있다. 상술한 바와 같이, PROF를 통해 각 4x4 서브블록 내의 참조 샘플을 개선함으로써 영상의 압축 성능을 높일 수 있다.
본 개시에 따른 PROF는 예측 방향 별로 수행될 수 있다. 상기 예측 방향은 L0 예측 방향과 L1 예측 방향을 포함할 수 있다. PROF가 L0 예측 방향에 대해 수행되는 경우, 상술한 PROF 과정은 L0 예측 샘플에 적용되어, 개선된 L0 예측 샘플을 생성할 수 있다. PROF가 L1 예측 방향에 대해 수행되는 경우, 상술한 PROF 과정은 L1 예측 샘플에 적용되어, 개선된 L1 예측 샘플을 생성할 수 있다. 따라서, PROF의 적용 여부는 L0 예측 방향 및 L1 예측 방향의 각각에 대해 유도될 수 있다. 예컨대, PROF의 적용 여부를 나타내는 플래그 cbProfFlag는 L0 예측 방향에 관한 cbProfFlagL0 및 L1 예측 방향에 관한 cbProfFlagL1을 포함할 수 있다. 현재 블록(CU)에 PROF가 적용되는지 여부는 cbProfFlagL0 및/또는 cbProfFlagL1에 기반하여, L0 예측 방향 및 L1 예측 방향의 각각에 대해 결정될 수 있다. 본 개시에서, cbProfFlagL0 및/또는cbProfFlagL1이 제1 값일 때, 현재 CU의 해당 예측 방향에 PROF가 수행됨을 의미할 수 있다. 보다 구체적으로, cbProfFlagL0가 제1 값일 현재 CU의 L0 예측 방향에 대해 PROF가 수행될 수 있다. 또한, cbProfFlagL1가 제1 값일 현재 CU의 L1 예측 방향에 대해 PROF가 수행될 수 있다. 본 개시에서 현재 CU에 PROF가 적용된다는 것은 cbProfFlagLX(X=0 및/또는 1)가 제1 값을 갖는 것을 의미할 수 있다. 본 개시의 다양한 실시예에 있어서, cbProfFlagLX를 유도하기 위한 다양한 조건들은 해당 예측 방향(LX)에 관한 조건일 수 있다.
도 20은 본 개시에 따른 PROF의 적용 여부 결정 과정을 도시한 일 예이다.
현재 CU에 PROF가 적용되는지 여부는 플래그 cbProfFlagLX(X=0 또는 1)로 나타낼 수 있다. 제1 값("True" 또는 "1")의 cbProfFlag는 현재 CU에 PROF가 적용됨을 나타낼 수 있다. 제2 값("False" 또는 "0")의 cbProfFlag는 현재 CU에 PROF가 적용되지 않음을 나타낼 수 있다. cbProfFlag는 예컨대, 도 20에 도시된 다양한 조건에 기반하여 도출될 수 있다. 도 20에 도시된 바와 같이, cbProfFlag는 블록의 크기(cbWidth, cbHeight)에 관한 조건을 포함하지 않는다.
PROF는 어파인 모드로 부호화된 블록(어파인 블록)에 적용될 수 있으므로, PROF가 적용되는 블록의 크기는 어파인 블록에 대한 블록 크기 조건에 의해 제약될 수 있다. 따라서, 후술하는 바와 같이, PROF와 BDOF의 각각에 대한 블록 크기 조건이 상이하게 된다.
도 21은 본 개시의 일 예에 따라 서브블록 머지 모드의 적용 여부를 지시하는 정보의 시그널링을 설명하기 위한 도면이다.
현재 CU에 대해 서브블록 머지 모드(어파인 머지 모드)가 적용되는지 여부는 비트스트림을 통해 시그널링되는 정보(예컨대, 도 21의 merge_subblock_flag)에 기반하여 결정될 수 있다. 제1 값("True" 또는 "1")의 merge_subblock_flag는 현재 CU에 대해 서브블록 머지 모드가 적용됨을 지시할 수 있다. 이 경우, 서브블록 머지 후보 리스트에 포함된 후보들 중 하나를 지시하는 인덱스(예컨대, 도 21의 merge_subblock_idx)가 시그널링될 수 있다. 서브블록 머지 후보 리스트에 후보가 1개인 경우(MaxNumSubblockMergeCand가 1인 경우), 후보를 선택하기 위한 상기 인덱스 정보는 시그널링되지 않고, 고정된 값 0으로 결정될 수 있다. 도 21에 도시된 바와 같이, merge_subblock_flag의 시그널링 조건은 블록 크기에 관한 조건을 포함한다. 구체적으로, 현재 블록의 너비(cbWidth)와 높이(cbHeight)가 모두 8 이상인 경우, merge_subblock_flag가 시그널링될 수 있다. 즉, 서브블록 머지 모드는 8x8 블록 이상의 크기를 갖는 블록에 대해 적용될 수 있다. 따라서, 어파인 머지 블록에 대한 PROF는 8x8 블록 이상의 크기를 갖는 블록에 대해 적용될 수 있다.
도 22는 본 개시의 일 예에 따라 어파인 MVP 모드의 적용 여부를 지시하는 정보의 시그널링을 설명하기 위한 도면이다.
현재 CU에 대해 어파인 MVP 모드(인터 어파인 모드)가 적용되는지 여부는 비트스트림을 통해 시그널링되는 정보(예컨대, 도 22의 inter_affine_flag)에 기반하여 결정될 수 있다. 제1 값("True" 또는 "1")의 inter_affine_flag는 현재 CU에 대해 어파인 MVP 모드가 적용됨을 지시할 수 있다. 이 경우, 어파인 MVP 후보 리스트에 포함된 후보들 중 하나를 지시하는 인덱스가 시그널링될 수 있다. 도 22에 도시된 바와 같이, inter_affine_flag의 시그널링 조건은 블록 크기에 관한 조건을 포함한다. 구체적으로, 현재 블록의 너비(cbWidth)와 높이(cbHeight)가 모두 16 이상인 경우, inter_affine_flag가 시그널링될 수 있다. 즉, 어파인 MVP 모드는 16x16 블록 이상의 크기를 갖는 블록에 대해 적용될 수 있다. 따라서, 어파인 MVP 블록에 대한 PROF는 16x16 블록 이상의 크기를 갖는 블록에 대해 적용될 수 있다.
도 20 내지 도 22를 참조하여 설명한 바와 같이, PROF는 블록 크기에 관한 조건을 포함하지 않으므로, PROF가 적용될 수 있는 블록 크기는 어파인 머지 모드 및 어파인 MVP 모드가 적용될 수 있는 블록 크기에 따라 제한된다. 예컨대, 어파인 머지 모드는 8x8 블록 이상의 크기를 갖는 블록에 대해 적용될 수 있으며, 이 경우, PROF는 8x8 블록에 대해 적용될 수 있다. 그러나, BDOF의 적용 조건은 cbHeight*cbWidth가 128 샘플 이상인 조건을 포함하므로, BDOF는 8x8 블록에 대해 적용되지 않는다. 따라서, PROF가 적용되는 블록 크기는 BDOF가 적용되는 블록 크기와 상이하게 된다.
본 개시는 PROF와 BDOF의 적용 조건을 일치시키기 위한 다양한 실시예들을 제공한다. 구체적으로, 본 개시는 PROF와 BDOF에 대한 블록 크기에 관한 조건을 일치시키기 위한 다양한 실시예들을 제공한다. 또한, 본 개시는 BCW 또는 WP를 고려하여 PROF와 BDOF의 적용 조건을 일치시키기 위한 다양한 실시예들을 제공한다. 또한, 본 개시는 PROF의 적용 조건으로서, 현재 픽처의 해상도와 참조 픽처의 해상도에 관한 조건을 포함하는 다양한 실시예들을 제공한다.
도 23은 본 개시의 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 20의 예와 비교하여, 도 23의 실시예는 PROF의 적용 조건으로서 블록 크기에 관한 조건을 추가적으로 포함할 수 있다. 보다 구체적으로, 도 23의 밑줄친 부분과 같이, cbHeight*cbWidth가 128 (루마 샘플)보다 작을 때, cbProfFlag는 제2 값("False" 또는 "0")으로 설정될 수 있다.
따라서, 도 23의 실시예에 따르면, 어파인 머지 모드가 적용된 8x8 블록에 대해서는 PROF가 적용되지 않도록 제한할 수 있다. 즉, 도 23의 실시예와 같이, PROF의 적용 조건에 블록 크기에 관한 조건을 추가함으로써, PROF와 BDOF가 적용될 수 있는 블록 크기에 관한 조건을 일치시킬 수 있다.
도 23의 실시예에 따르면, 어파인 MVP 모드, 어파인 머지 모드, PROF 및 BDOF의 블록 크기에 관한 조건은 아래 표와 같이 변경될 수 있다.
Figure PCTKR2020012245-appb-T000001
상기 표 1에서, w와 h는 각각 현재 블록의 너비(width) 및 높이(height)를 의미할 수 있다.
도 24는 본 개시의 또 다른 실시예에 따라 서브블록 머지 모드의 적용 여부를 지시하는 정보의 시그널링을 설명하기 위한 도면이다.
도 21의 예에서, merge_subblock_flag의 시그널링 조건 중 블록 크기에 관한 조건은 cbWidth 및 cbHeight가 모두 8 이상인 조건을 포함한다. 도 24의 실시예에 따르면, merge_subblock_flag의 시그널링 조건은 cbWidth*cbHeight가 128 (루마 샘플) 이상인 조건을 추가적으로 더 포함할 수 있다. 도 24의 실시예에 따르면, 어파인 머지 모드는 8x8 블록 이상의 크기를 갖는 블록으로서, 128 샘플 이상의 샘플을 포함하는 블록에 대해서만 적용될 수 있다. 즉, 8x8 블록에 대해서는 어파인 머지 모드가 적용되지 않으므로, PROF도 8x8 블록에 대해서 적용되지 않을 수 있다.
도 24의 실시예에 따르면, 어파인 MVP 모드, 어파인 머지 모드, PROF 및 BDOF의 블록 크기에 관한 조건은 아래 표와 같이 변경될 수 있다.
Figure PCTKR2020012245-appb-T000002
도 25는 본 개시의 또 다른 실시예에 따라 어파인 MVP 모드의 적용 여부를 지시하는 정보의 시그널링을 설명하기 위한 도면이다.
도 22의 예에서, inter_affine_flag의 시그널링 조건 중 블록 크기에 관한 조건은 cbWidth 및 cbHeight가 모두 16 이상인 조건을 포함한다. 도 25의 실시예에 따르면, inter_affine_flag의 시그널링 조건 중 블록 크기에 관한 조건은 cbWidth 및 cbHeight가 모두 16 이상이고, cbWidth*cbHeight가 128 (루마 샘플) 이상인 조건으로 변경될 수 있다. 도 25의 실시예에 따르면, 어파인 MVP 모드는 8x8 블록 이상의 크기를 갖는 블록으로서, 128 샘플 이상의 샘플을 포함하는 블록에 대해서만 적용될 수 있다. 즉, 도 25의 실시예에 따르면, 어파인 MVP 모드에 대한 블록 크기 조건은 BDOF에 대한 블록 크기 조건과 일치될 수 있다. 따라서, 도 25의 실시예에 따르면, 8x8 블록에 대해서는 어파인 MVP 모드가 적용되지 않으므로, PROF도 8x8 블록에 대해서 적용되지 않을 수 있다.
또한, 도 25의 실시예는 도 24의 실시예와 조합될 수 있다. 즉, 어파인 MVP 모드에 대한 블록 크기 조건 어파인 머지 모드에 대한 블록 크기 조건을 모두 BDOF에 대한 블록 크기 조건과 일치시킬 수 있다. 이로써, 어파인 블록에 적용될 수 있는 PROF의 블록 크기 조건을 BDOF의 블록 크기 조건과 일치시킬 수 있다.
도 24 및 도 25의 실시예에 따르면, 어파인 MVP 모드, 어파인 머지 모드, PROF 및 BDOF의 블록 크기에 관한 조건은 아래 표와 같이 변경될 수 있다.
Figure PCTKR2020012245-appb-T000003
도 26은 본 개시의 또 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
BDOF는 광학적 흐름의 특징을 이용하여 샘플의 오프셋을 결정한다. 따라서, 참조 픽처들 간의 밝기 값이 다른 경우, 즉, BCW 또는 WP(weighted prediction)가 적용되는 경우 BDOF를 수행하지 않는다. 그러나 PROF는 광학적 흐름의 특징을 이용하여 샘플의 오프셋을 유도함에도 불구하고 BCW 또는 WP의 적용 여부를 고려하지 않고 수행될 수 있다.
도 26의 실시예에 따르면, BDOF와 PROF 사이의 디자인 관점에서의 조화를 위해 BCW 또는 WP가 적용되는 블록에 대해 PROF를 적용하지 않을 수 있다. 예컨대, BcwIdx가 0이 아니거나 또는 luma_weight_lX_flag[refIdxLX] (X는 0 또는 1)이 1일 때, cbProfFlagLX를 제2 값("False" 또는 "0")으로 설정할 수 있다. BcwIdx가 0이 아닌 것은 현재 블록에 BCW가 적용됨을 의미하고, luma_weight_lX_flag[refIdxLX]가 1인 것은 현재 블록에 LX 예측 방향의 WP가 적용됨을 의미할 수 있다. 본 개시에서 BcwIdx가 0인 것은 균등 가중치가 적용됨을 의미하며, 즉, L0 예측 블록과 L1 예측 블록의 평균(average sum)으로 쌍방향 예측 블록이 생성됨을 의미할 수 있다. 따라서, cbProfFlagLX를 유도할 때, 상기 조건을 추가함으로써 현재 블록에 BCW 또는 WP가 적용되는 경우, PROF가 적용되지 않도록 제어할 수 있다.
도 27은 본 개시의 또 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 27의 실시예에 따르면, PROF 적용 조건은 현재 픽처와 참조 픽처의 해상도에 관한 조건을 더 포함할 수 있다. PROF는 BDOF와 유사하게 광학적 흐름을 고려한 예측 샘플의 개선 방법이다. 광학적 흐름은 움직이는 객체가 동일한 화소값을 갖고 양방향의 움직임이 일정할 때, 그 움직임의 오프셋을 반영하는 기술이다. 따라서, 현재 픽처와 참조 픽처의 해상도(resolution)가 상이할 때, PROF를 수행하지 않도록 제한할 필요가 있다.
도 27에 도시된 바와 같이, 참조 픽처의 너비(pic_width_in_luma_samples)가 현재 픽처의 너비와 상이하거나, 참조 픽처의 높이(pic_height_in_luma_samples)가 현재 픽처의 높이와 상이한 경우, cbProfFlag를 제2 값("False" 또는 "0")으로 설정함으로써, 현재 블록에 PROF가 적용되지 않도록 제어할 수 있다.
이 때, 참조 픽처는 cbProfFlag의 예측 방향의 참조 픽처일 수 있다. 구체적으로, cbProfFlagL0를 유도하는 경우, L0 참조 픽처의 크기와 현재 픽처의 크기가 고려될 수 있다. L0 참조 픽처의 너비 또는 높이가 현재 픽처의 너비 또는 높이와 상이한 경우, cbProfFlagL0는 제2 값으로 설정되고, L0 예측 샘플에 대한 PROF는 수행되지 않을 수 있다. 또한, L0 참조 픽처의 너비 및 높이가 현재 픽처의 너비 및 높이와 동일한 경우, cbProfFlagL0는 제1 값으로 설정되고, L0 예측 샘플에 대해 PROF가 적용되어 개선된 L0 예측 샘플이 생성될 수 있다.
유사하게, cbProfFlagL1를 유도하는 경우, L1 참조 픽처의 크기와 현재 픽처의 크기가 고려될 수 있다. L1 참조 픽처의 너비 또는 높이가 현재 픽처의 너비 또는 높이와 상이한 경우, cbProfFlagL1는 제2 값으로 설정되고, L1 예측 샘플에 대한 PROF는 수행되지 않을 수 있다. 또한, L1 참조 픽처의 너비 및 높이가 현재 픽처의 너비 및 높이와 동일한 경우, cbProfFlagL1는 제1 값으로 설정되고, L1 예측 샘플에 대해 PROF가 적용되어 개선된 L1 예측 샘플이 생성될 수 있다.
도 27의 밑줄친 조건은 RPR(Reference Picture Resampling) 조건을 의미할 수 있다. 참조 픽처의 크기와 현재 픽처의 크기가 상이할 때 RPR 조건은 제1 값("True" 또는 "1")을 가질 수 있다. 제1 값의 RPR 조건은 참조 픽처에 대한 resampling이 필요한 것을 의미할 수 있다. 또한, 참조 픽처의 크기와 현재 픽처의 크기가 동일할 때 RPR 조건은 제2 값("False" 또는 "0")을 가질 수 있다. 제2 값의 RPR 조건은 참조 픽처에 대한 resampling이 필요하지 않은 것을 의미할 수 있다. 즉, RPR 조건이 제1 값인 경우, PROF가 적용되지 않을 수 있다.
도 28은 본 개시에 따라 PROF를 수행하는 방법을 설명하기 위한 도면이다.
도 28의 방법은 영상 부호화 장치의 인터 예측부(180) 또는 영상 복호화 장치의 인터 예측부(260)에서 수행될 수 있다. 보다 구체적으로, 도 28의 방법은 영상 부호화 장치의 인터 예측부(180) 내 예측 샘플 도출부(183) 또는 영상 복호화 장치의 인터 예측부(260) 내 예측 샘플 도출부(263)에서 수행될 수 있다.
도 28에 따르면, 현재 블록의 움직임 정보가 결정될 수 있다(S2810). 현재 블록의 움직임 정보는 본 개시에 기재된 다양한 방법에 기반하여 결정될 수 있다. 영상 부호화 장치는 다양한 인터 예측 모드 및 움직임 정보에 기반하여 율-왜곡 비용(RD cost)을 계산함으로써 최적의 움직임 정보를 현재 블록의 움직임 정보로서 결정할 수 있다. 영상 부호화 장치는 결정된 인터 예측 모드 및 움직임 정보를 비트스트림에 부호화할 수 있다. 영상 복호화 장치는 비트스트림을 통해 시그널링된 정보를 복호화함으로써 현재 블록의 움직임 정보를 결정(도출)할 수 있다.
단계 S2810에서 결정된 현재 블록의 움직임 정보에 기반하여, 현재 블록의 예측 샘플들(예측 블록)이 도출될 수 있다(S2820). 현재 블록의 예측 샘플들은 본 개시에 기재된 다양한 방법에 기반하여 도출될 수 있다.
단계 S2830에서, 현재 블록에 대한 RPR(Reference Picture Resampling) 조건이 도출될 수 있다. 예컨대, 현재 블록의 참조 픽처의 너비 또는 높이가 현재 픽처의 너비 또는 높이와 상이할 경우, RPR 조건은 제1 값("True" 또는 "1")으로 설정될 수 있다. 또한, 현재 블록의 참조 픽처의 너비 및 높이가 현재 픽처의 너비 및 높이와 각각 동일할 경우, RPR 조건은 제2 값("False" 또는 "0")으로 설정될 수 있다.
현재 블록에 PROF가 적용되는지 여부를 나타내는 정보 cbProfFlag는 상기 RPR 조건에 기반하여 유도될 수 있다(S2840). 예컨대, RPR 조건이 제1 값인 경우, cbProfFlag는 제2 값으로 설정될 수 있다. 즉, 현재 픽처의 크기가 참조 픽처의 크기와 상이한 경우, PROF는 적용되지 않는 것으로 결정될 수 있다. 또한, RPR 조건이 제2 값인 경우, cbProfFlag는 제1 값으로 설정될 수 있다. 즉, 현재 픽처의 크기가 참조 픽처의 크기와 동일한 경우, PROF는 적용되는 것으로 결정될 수 있다. 단계 S2840은 RPR 조건에 기반하여 cbProfFlag를 유도하는 것으로 설명되었으나, 이는 설명의 편의를 위한 것이며, cbProfFlag를 유도하는 조건은 RPR 조건으로 한정되지 않는다. 즉, cbProfFlag를 유도하기 위해 RPR 조건 이외에 본 개시에 기재된 다른 조건 또는 본 개시에 기재되지 않은 다른 조건이 함께 고려될 수 있다.
단계 S2840에서 유도된 cbProfFlag에 기반하여, PROF 수행 여부가 결정될 수 있다(S2850). cbProfFlag가 제1 값("True" 또는 "1")인 경우, 현재 블록의 예측 샘플에 대해 PROF가 수행될 수 있다(S2860). cbProfFlag가 제2 값("False" 또는 "0")인 경우, 현재 블록의 예측 샘플에 대해 PROF가 수행되지 않고, 스킵될 수 있다.
단계 S2860의 PROF 과정은 본 개시에 기재된 PROF 과정에 따라 수행될 수 있다. 보다 구체적으로, 현재 블록에 PROF가 적용되는 경우, 현재 블록 내 각 샘플 위치에 대한 차분 움직임 벡터를 도출하고, 현재 블록 내 각 샘플 위치에 대한 그래디언트를 도출하고, 상기 차분 움직임 벡터 및 상기 그래디언트에 기반하여 PROF 오프셋을 도출한 후, 상기 PROF 오프셋에 기반하여 상기 현재 블록에 대한 개선된 예측 샘플을 도출할 수 있다.
영상 부호화 장치는 상기 개선된 예측 샘플(예측 블록)에 기반하여 현재 블록에 대한 레지듀얼 샘플(잔차 블록)을 유도하고, 레지듀얼 샘플에 관한 정보를 비트스트림에 부호화할 수 있다. 영상 복호화 장치는 상기 개선된 예측 샘플(예측 블록) 및 비트스트림을 복호화하여 획득한 레지듀얼 샘플(잔차 블록)에 기반하여 현재 블록을 복원할 수 있다.
도 28에 도시된 예에서, 단계 S2830의 RPR 조건은 단계 S2820 이후에 수행되는 것으로 한정되지 않는다. 예컨대, RPR 조건은 cbProfFlag를 유도(S2840)하기 전에 도출되는 것으로 충분하며, 본 개시에 따른 실시예는 단계 S2840의 수행 전에 RPR 조건을 도출하는 다양한 예를 포함할 수 있다.
도 29는 본 개시의 또 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 29의 실시예는 도 26의 실시예 및 도 27의 실시예를 조합한 실시예의 일 예이다. 상술한 바와 같이, BDOF와 PROF 사이의 디자인 관점에서의 조화를 위해 BCW 또는 WP가 적용되는 블록에 대해 PROF를 적용하지 않을 수 있다. PROF는 BDOF와 달리 단방향 예측(uni-directional prediction)의 경우에도 적용될 수 있다. 따라서, 단방향 예측의 WP가 적용되는 경우, 현재 블록에 대해 PROF가 적용되지 않도록 할 수 있다. 또한, 단방향 예측의 참조 픽처의 크기와 현재 픽처의 크기가 상이한 경우, 현재 블록에 대해 PROF가 적용되지 않도록 할 수 있다.
도 29에 따르면, L0 방향의 WP가 적용되거나(ex, luma_weight_l0_flag == 1), L1 방향의 WP가 적용되는 경우(ex, luma_weight_l1_flag == 1), PROF가 적용되지 않도록 cbProfFlag를 설정할 수 있다. 또한, L0 방향의 참조 픽처의 크기와 현재 픽처의 크기가 상이하거나, L1 방향의 참조 픽처의 크기와 현재 픽처의 크기가 상이한 경우, PROF가 적용되지 않도록 cbProfFlag를 설정할 수 있다.
도 30은 본 개시의 또 다른 실시예에 따른 PROF의 적용 여부 결정 과정을 도시한 도면이다.
도 30의 실시예는 도 26의 실시예 및 도 27의 실시예를 조합한 실시예의 다른 예이다. 상술한 바와 같이, PROF는 BDOF와 달리 단방향 예측의 경우에도 적용될 수 있다. 따라서, 단방향 예측의 WP가 적용되는 경우, 해당 방향에 대해 PROF가 적용되지 않도록 할 수 있다. 또한, 단방향 예측의 참조 픽처의 크기와 현재 픽처의 크기가 상이한 경우, 해당 방향에 대해 PROF가 적용되지 않도록 할 수 있다.
도 30에 따르면, L0 방향의 WP가 적용되거나(ex, luma_weight_l0_flag == 1), L0 방향의 참조 픽처의 크기와 현재 픽처의 크기가 상이한 경우, L0 방향에 대해 PROF가 적용되지 않도록 cbProfFlagL0를 제2 값("False" 또는 "0")으로 설정할 수 있다. 또한, L1 방향의 WP가 적용되거나(ex, luma_weight_l1_flag == 1), L1 방향의 참조 픽처의 크기와 현재 픽처의 크기가 상이한 경우, L1 방향에 대해 PROF가 적용되지 않도록 cbProfFlagL1를 제2 값("False" 또는 "0")으로 설정할 수 있다.
본 개시에 기재된 다양한 실시예들은 각각 단독으로 구현될 수도 있고 다른 실시예들과 조합되어 구현될 수도 있다. 또는 예컨대, 한 실시예의 일부가 다른 실시예에 부가되거나, 한 실시예의 일부가 다른 실시예의 일부를 대체함으로써 구현될 수도 있다.
본 개시에 기재된 다양한 실시예들에 따르면, PROF의 적용 조건과 BDOF의 적용 조건의 일부를 일치시킴으로써, PROF와 BDOF의 디자인 관점에서의 조화를 기대할 수 있으며, 나아가 구현 복잡도가 감소될 수 있다.
본 개시의 예시적인 방법들은 설명의 명확성을 위해서 동작의 시리즈로 표현되어 있지만, 이는 단계가 수행되는 순서를 제한하기 위한 것은 아니며, 필요한 경우에는 각각의 단계가 동시에 또는 상이한 순서로 수행될 수도 있다. 본 개시에 따른 방법을 구현하기 위해서, 예시하는 단계에 추가적으로 다른 단계를 포함하거나, 일부의 단계를 제외하고 나머지 단계를 포함하거나, 또는 일부의 단계를 제외하고 추가적인 다른 단계를 포함할 수도 있다.
본 개시에 있어서, 소정의 동작(단계)을 수행하는 영상 부호화 장치 또는 영상 복호화 장치는 해당 동작(단계)의 수행 조건이나 상황을 확인하는 동작(단계)을 수행할 수 있다. 예컨대, 소정의 조건이 만족되는 경우 소정의 동작을 수행한다고 기재된 경우, 영상 부호화 장치 또는 영상 복호화 장치는 상기 소정의 조건이 만족되는지 여부를 확인하는 동작을 수행한 후, 상기 소정의 동작을 수행할 수 있다.
본 개시의 다양한 실시예는 모든 가능한 조합을 나열한 것이 아니고 본 개시의 대표적인 양상을 설명하기 위한 것이며, 다양한 실시예에서 설명하는 사항들은 독립적으로 적용되거나 또는 둘 이상의 조합으로 적용될 수도 있다.
또한, 본 개시의 다양한 실시예는 하드웨어, 펌웨어(firmware), 소프트웨어, 또는 그들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 범용 프로세서(general processor), 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
또한, 본 개시의 실시예가 적용된 영상 복호화 장치 및 영상 부호화 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
도 31은 본 개시의 실시예가 적용될 수 있는 컨텐츠 스트리밍 시스템을 예시한 도면이다.
도 31에 도시된 바와 같이, 본 개시의 실시예가 적용된 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다.
상기 비트스트림은 본 개시의 실시예가 적용된 영상 부호화 방법 및/또는 영상 부호화 장치에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 할 수 있다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송할 수 있다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 수행할 수 있다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다.
상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
본 개시의 범위는 다양한 실시예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다.
본 개시에 따른 실시예는 영상을 부호화/복호화하는데 이용될 수 있다.

Claims (15)

  1. 영상 복호화 장치에 의해 수행되는 영상 복호화 방법으로서, 상기 영상 복호화 방법은,
    현재 블록의 움직임 정보에 기반하여 상기 현재 블록의 예측 샘플을 도출하는 단계;
    상기 현재 블록에 대한 RPR(Reference Picture Resampling) 조건을 도출하는 단계;
    상기 RPR 조건에 기반하여 상기 현재 블록에 PROF(Prediction Refinement with Optical Flow)를 적용할지 여부를 결정하는 단계; 및
    상기 현재 블록에 PROF를 적용하여 상기 현재 블록에 대한 개선된 예측 샘플을 도출하는 단계를 포함하는 영상 복호화 방법.
  2. 제1항에 있어서,
    상기 RPR 조건은 상기 현재 블록의 참조 픽처의 크기 및 현재 픽처의 크기에 기반하여 도출되는 영상 복호화 방법.
  3. 제2항에 있어서,
    상기 현재 블록의 참조 픽처의 크기와 상기 현재 픽처의 크기가 상이한 경우, 상기 RPR 조건은 제1 값으로 도출되고,
    상기 현재 블록의 참조 픽처의 크기와 상기 현재 픽처의 크기가 동일한 경우, 상기 RPR 조건은 제2 값으로 도출되는 영상 복호화 방법.
  4. 제3항에 있어서,
    상기 RPR 조건이 제1 값인 경우, 상기 현재 블록에 PROF를 적용하지 않는 것으로 결정하는 영상 복호화 방법.
  5. 제1항에 있어서,
    상기 현재 블록에 PROF를 적용할지 여부는,
    상기 현재 블록의 크기에 기반하여 결정되는 영상 복호화 방법.
  6. 제5항에 있어서,
    상기 현재 블록의 너비(w)와 상기 현재 블록의 높이(h)의 곱이 128보다 작은 경우, 상기 현재 블록에 PROF를 적용하지 않는 것으로 결정하는 영상 복호화 방법.
  7. 제1항에 있어서,
    상기 현재 블록이 어파인 머지 모드인지 여부를 나타내는 정보는 상기 현재 블록의 크기에 기반하여 비트스트림으로부터 파싱되는 영상 복호화 방법.
  8. 제7항에 있어서,
    상기 현재 블록이 어파인 머지 모드인지 여부를 나타내는 정보는 상기 현재 블록의 너비(w)와 상기 현재 블록의 높이(h)가 각각 8 이상이고, w*h가 128 이상인 경우, 상기 비트스트림으로부터 파싱되는 영상 복호화 방법.
  9. 제1항에 있어서,
    상기 현재 블록이 어파인 MVP 모드인지 여부를 나타내는 정보는 상기 현재 블록의 크기에 기반하여 비트스트림으로부터 파싱되는 영상 복호화 방법.
  10. 제9항에 있어서,
    상기 현재 블록이 어파인 MVP 모드인지 여부를 나타내는 정보는 상기 현재 블록의 너비(w)와 상기 현재 블록의 높이(h)가 각각 8 이상이고, w*h가 128 이상인 경우, 상기 비트스트림으로부터 파싱되는 영상 복호화 방법.
  11. 제1항에 있어서,
    상기 현재 블록에 PROF를 적용할지 여부는,
    상기 현재 블록에 BCW 또는 WP가 적용되는지 여부에 기반하여 결정되는 영상 복호화 방법.
  12. 제11항에 있어서,
    상기 현재 블록에 BCW 또는 WP가 적용되는 경우, 상기 현재 블록에 PROF를 적용하지 않는 것으로 결정하는 영상 복호화 방법.
  13. 메모리 및 적어도 하나의 프로세서를 포함하는 영상 복호화 장치로서,
    상기 적어도 하나의 프로세서는
    현재 블록의 움직임 정보에 기반하여 상기 현재 블록의 예측 샘플을 도출하고, 상기 현재 블록에 대한 RPR 조건을 도출하고, 상기 RPR 조건에 기반하여 상기 현재 블록에 PROF를 적용할지 여부를 결정하고, 상기 현재 블록에 PROF를 적용하여 상기 현재 블록에 대한 개선된 예측 샘플을 도출하는 영상 복호화 장치.
  14. 영상 부호화 장치에 의해 수행되는 영상 부호화 방법으로서, 상기 영상 부호화 방법은,
    현재 블록의 움직임 정보에 기반하여 상기 현재 블록의 예측 샘플을 도출하는 단계;
    상기 현재 블록에 대한 RPR 조건을 도출하는 단계;
    상기 RPR 조건에 기반하여 상기 현재 블록에 PROF를 적용할지 여부를 결정하는 단계; 및
    상기 현재 블록에 PROF를 적용하여 상기 현재 블록에 대한 개선된 예측 샘플을 도출하는 단계를 포함하는 영상 부호화 방법.
  15. 제14항의 영상 부호화 방법에 의해 생성된 비트스트림을 전송하는 방법.
PCT/KR2020/012245 2019-09-19 2020-09-10 Prof를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 WO2021054676A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080078522.7A CN114731428A (zh) 2019-09-19 2020-09-10 用于执行prof的图像编码/解码方法和装置及发送比特流的方法
KR1020227008627A KR20220049018A (ko) 2019-09-19 2020-09-10 Prof를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
JP2022517416A JP7462740B2 (ja) 2019-09-19 2020-09-10 Profを行う画像符号化/復号化方法、装置、及びビットストリームを伝送する方法
US17/696,619 US11516475B2 (en) 2019-09-19 2022-03-16 Image encoding/decoding method and device for performing PROF, and method for transmitting bitstream
US17/970,124 US11917157B2 (en) 2019-09-19 2022-10-20 Image encoding/decoding method and device for performing PROF, and method for transmitting bitstream

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962902954P 2019-09-19 2019-09-19
US62/902,954 2019-09-19
US201962909153P 2019-10-01 2019-10-01
US62/909,153 2019-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/696,619 Continuation US11516475B2 (en) 2019-09-19 2022-03-16 Image encoding/decoding method and device for performing PROF, and method for transmitting bitstream

Publications (1)

Publication Number Publication Date
WO2021054676A1 true WO2021054676A1 (ko) 2021-03-25

Family

ID=74883577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012245 WO2021054676A1 (ko) 2019-09-19 2020-09-10 Prof를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법

Country Status (5)

Country Link
US (2) US11516475B2 (ko)
JP (1) JP7462740B2 (ko)
KR (1) KR20220049018A (ko)
CN (1) CN114731428A (ko)
WO (1) WO2021054676A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022257954A1 (en) * 2021-06-10 2022-12-15 Beijing Bytedance Network Technology Co., Ltd. Method, device, and medium for video processing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2022002916A (es) 2019-09-19 2022-04-06 Beijing Bytedance Network Tech Co Ltd Derivacion de posiciones de muestra de referencia en codificacion de video.
WO2021054676A1 (ko) * 2019-09-19 2021-03-25 엘지전자 주식회사 Prof를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
JP7391199B2 (ja) 2019-10-05 2023-12-04 北京字節跳動網絡技術有限公司 映像コーディングツールのレベルベースシグナリング
WO2021068956A1 (en) 2019-10-12 2021-04-15 Beijing Bytedance Network Technology Co., Ltd. Prediction type signaling in video coding
KR20220073740A (ko) 2019-10-13 2022-06-03 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 레퍼런스 픽처 리샘플링 및 비디오 코딩 툴 사이의 상호 작용
KR20220113379A (ko) 2019-12-27 2022-08-12 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 비디오 픽처 헤더의 슬라이스 유형의 시그널링
WO2024080778A1 (ko) * 2022-10-12 2024-04-18 엘지전자 주식회사 적응적으로 해상도를 변경하는 영상 부호화/복호화 방법, 장치, 및 비트스트림을 전송하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017156705A1 (en) * 2016-03-15 2017-09-21 Mediatek Inc. Affine prediction for video coding
WO2019070933A1 (en) * 2017-10-05 2019-04-11 Interdigital Vc Holdings, Inc. ENHANCED PREDICTORS FOR MOTION COMPENSATION

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3355581A4 (en) 2015-09-23 2019-04-17 LG Electronics Inc. BILDCODING / DECODING METHOD AND DEVICE THEREFOR
WO2021029972A1 (en) * 2019-08-09 2021-02-18 Alibaba Group Holding Limited Adaptive resolution change in video processing
WO2021054676A1 (ko) * 2019-09-19 2021-03-25 엘지전자 주식회사 Prof를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017156705A1 (en) * 2016-03-15 2017-09-21 Mediatek Inc. Affine prediction for video coding
WO2019070933A1 (en) * 2017-10-05 2019-04-11 Interdigital Vc Holdings, Inc. ENHANCED PREDICTORS FOR MOTION COMPENSATION

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
T.-S CHANG (ALIBABA-INC), Y.-C SUN (ALIBABA-INC), L. ZHU (ALIBABA-INC), J. LOU (ALIBABA), HENDRY (FUTUREWEI), S. HONG (FUTUREWEI),: "AHG8: Support for reference picture resampling - handling of resampling, TMVP, DMVR, and BDOF", 15. JVET MEETING; 20190703 - 20190712; GOTHENBURG; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), 30 June 2019 (2019-06-30), XP030218711 *
V. SEREGIN (QUALCOMM), M. COBAN, M. KARCZEWICZ (QUALCOMM): "AHG8: Enabling BDOF and DMVR for reference picture resampling", 15. JVET MEETING; 20190703 - 20190712; GOTHENBURG; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), 26 June 2019 (2019-06-26), XP030218948 *
Y. HE (INTERDIGITAL), Y. HE (INTERDIGITAL), A. HAMZA (INTERDIGITAL): "AHG8: On adaptive resolution change constraint", 15. JVET MEETING; 20190703 - 20190712; GOTHENBURG; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), 26 June 2019 (2019-06-26), XP030218774 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022257954A1 (en) * 2021-06-10 2022-12-15 Beijing Bytedance Network Technology Co., Ltd. Method, device, and medium for video processing

Also Published As

Publication number Publication date
US20230089062A1 (en) 2023-03-23
US20220272346A1 (en) 2022-08-25
JP2022548704A (ja) 2022-11-21
US11917157B2 (en) 2024-02-27
KR20220049018A (ko) 2022-04-20
CN114731428A (zh) 2022-07-08
US11516475B2 (en) 2022-11-29
JP7462740B2 (ja) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2021025451A1 (ko) 움직임 정보 후보를 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2021054676A1 (ko) Prof를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2021034123A1 (ko) 가중 예측을 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2020171444A1 (ko) Dmvr 기반의 인터 예측 방법 및 장치
WO2020004990A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2020184848A1 (ko) Dmvr 기반의 인터 예측 방법 및 장치
WO2019194514A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2020189893A1 (ko) Bdof 기반의 인터 예측 방법 및 장치
WO2020184847A1 (ko) Dmvr 및 bdof 기반의 인터 예측 방법 및 장치
WO2020055161A1 (ko) 영상 코딩 시스템에서 서브 블록 단위의 움직임 예측에 기반한 영상 디코딩 방법 및 장치
WO2020262931A1 (ko) 비디오/영상 코딩 시스템에서 머지 데이터 신택스의 시그널링 방법 및 장치
WO2019216714A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2021006579A1 (ko) 머지 후보의 양방향 예측을 위한 가중치 인덱스를 유도하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2020032609A1 (ko) 영상 코딩 시스템에서 어파인 머지 후보 리스트를 사용하는 어파인 움직임 예측에 기반한 영상 디코딩 방법 및 장치
WO2020262930A1 (ko) 머지 데이터 신택스에서 중복적인 신택스의 제거 방법 및 장치
WO2020251257A1 (ko) 예측 샘플을 생성하기 위한 가중치 인덱스 정보를 도출하는 영상 디코딩 방법 및 그 장치
WO2020251258A1 (ko) 쌍 예측이 적용되는 경우 가중 평균을 위한 가중치 인덱스 정보를 도출하는 영상 디코딩 방법 및 그 장치
WO2020009447A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2021060834A1 (ko) 서브픽처 기반 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2021141477A1 (ko) 머지 후보들의 최대 개수 정보를 포함하는 시퀀스 파라미터 세트를 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2020231144A1 (ko) 어파인 tmvp를 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2020256492A1 (ko) 비디오/영상 코딩 시스템에서 중복 시그널링 제거 방법 및 장치
WO2020256487A1 (ko) 움직임 예측에 기반한 영상 코딩 방법 및 장치
WO2020262929A1 (ko) 비디오/영상 코딩 시스템에서 신택스 시그널링 방법 및 장치
WO2020262962A1 (ko) 크로마 변환 블록의 최대 크기 제한을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227008627

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022517416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864932

Country of ref document: EP

Kind code of ref document: A1