WO2021053721A1 - 蓄電池装置 - Google Patents

蓄電池装置 Download PDF

Info

Publication number
WO2021053721A1
WO2021053721A1 PCT/JP2019/036397 JP2019036397W WO2021053721A1 WO 2021053721 A1 WO2021053721 A1 WO 2021053721A1 JP 2019036397 W JP2019036397 W JP 2019036397W WO 2021053721 A1 WO2021053721 A1 WO 2021053721A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
management unit
value
current
assembled
Prior art date
Application number
PCT/JP2019/036397
Other languages
English (en)
French (fr)
Inventor
黒田 和人
菊地 祐介
亮 野澤
康太 淺見
知秀 吉川
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201980095907.1A priority Critical patent/CN113785429A/zh
Priority to EP19945830.8A priority patent/EP4033584A4/en
Priority to JP2021546082A priority patent/JP7146106B2/ja
Priority to PCT/JP2019/036397 priority patent/WO2021053721A1/ja
Publication of WO2021053721A1 publication Critical patent/WO2021053721A1/ja
Priority to US17/654,851 priority patent/US20220200316A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage battery device.
  • a storage battery device that combines multiple storage battery modules is used for various purposes.
  • studies have been made to make the communication between the storage battery module and the management device wireless by radio waves.
  • An embodiment of the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly reliable storage battery device that communicates by radio waves.
  • the storage battery device includes a plurality of battery modules including an assembled battery including a plurality of battery cells, and a battery monitoring unit for measuring the voltage of the battery cells and the temperature of at least one of the assembled batteries.
  • the battery management unit includes a battery management unit that communicates with a plurality of the battery monitoring units by radio waves and periodically receives a measured value of the voltage of the battery cell and a measured value of the temperature of the assembled battery.
  • the rechargeable current of the assembled battery corresponds to at least the communication cycle while prolonging the communication cycle with the battery monitoring unit. Set the value of and the value of the dischargeable current, and notify the higher-level device of the set value.
  • FIG. 1 is a diagram schematically showing a configuration example of a storage battery device according to an embodiment.
  • FIG. 2 is a diagram for explaining an example of the operation of the storage battery device of one embodiment.
  • FIG. 3 is a flowchart for explaining an example of the operation of the battery management unit in the storage battery device of one embodiment.
  • FIG. 4A is a diagram showing an example of chargeable current and dischargeable current values corresponding to the communication cycle between the battery monitoring unit and the battery management unit, the SOC and SOH of the assembled battery, and the temperature of the assembled battery. .. FIG.
  • FIG. 4B is a diagram showing an example of chargeable current and dischargeable current values corresponding to the communication cycle between the battery monitoring unit and the battery management unit, the SOC and SOH of the assembled battery, and the temperature of the assembled battery.
  • FIG. 4C is a diagram showing an example of chargeable current and dischargeable current values corresponding to the communication cycle between the battery monitoring unit and the battery management unit, the SOC and SOH of the assembled battery, and the temperature of the assembled battery.
  • FIG. 4D is a diagram showing an example of chargeable current and dischargeable current values corresponding to the communication cycle between the battery monitoring unit and the battery management unit, the SOC and SOH of the assembled battery, and the temperature of the assembled battery. .. FIG. FIG.
  • FIG. 5A is a diagram showing an example of chargeable current and dischargeable current values corresponding to the communication cycle between the battery monitoring unit and the battery management unit, the SOC and SOH of the assembled battery, and the temperature of the assembled battery.
  • FIG. 5B is a diagram showing an example of chargeable current and dischargeable current values corresponding to the communication cycle between the battery monitoring unit and the battery management unit, the SOC and SOH of the assembled battery, and the temperature of the assembled battery.
  • FIG. 6 is a diagram for explaining an example of a wireless communication method performed between the battery monitoring unit and the battery management unit.
  • FIG. 7 is a diagram for explaining an example of a wireless communication method performed between the battery monitoring unit and the battery management unit in the storage battery device of the second embodiment.
  • FIG. 8 is a flowchart for explaining another example of the operation of the battery management unit in the storage battery device of one embodiment.
  • FIG. 1 is a diagram schematically showing a configuration example of a storage battery device according to an embodiment.
  • the storage battery device of the present embodiment includes a plurality of battery modules MDL, a battery management unit (BMU: Battery Management Unit) 20, a current sensor SS, and electromagnetic contactors CP and CM.
  • BMU Battery Management Unit
  • CP and CM electromagnetic contactors
  • the battery module MDL includes an assembled battery BT including a plurality of battery cells (not shown), and a battery monitoring unit (CMU: Cell Monitoring Unit) 10.
  • the assembled battery BT includes, for example, a plurality of battery cells of lithium ion batteries connected in series or in parallel.
  • the battery monitoring unit 10 can perform wireless communication by radio waves between the battery management unit 20 and a measurement circuit that detects the voltage of each of the plurality of battery cells and the temperature of at least one of the assembled battery BTs.
  • a wireless transmission / reception circuit (not shown) is provided, and the measured value can be periodically transmitted to the battery management unit 20.
  • the battery monitoring unit 10 equalizes the voltages of a plurality of battery cells (cell balance) based on the control signal received from the battery management unit 20.
  • the battery monitoring unit 10 may be configured by, for example, hardware, software, or a combination of hardware and software.
  • the battery monitoring unit 10 is a circuit that includes, for example, at least one processor such as a CPU or MPU, and a memory in which a program executed by the processor is recorded, and realizes the above operation by software.
  • a total of 300 battery cells are connected in series by connecting a plurality of battery modules MDL in series, and the main circuit on the high potential side and the main circuit on the low potential side when fully charged.
  • the voltage between and is set to 10 kV.
  • the current sensor SS detects the value of the current flowing through the main circuit on the high potential side and supplies the detected value to the battery management unit 20.
  • the electromagnetic contactor CN is interposed in the main circuit connecting between the terminal on the lowest potential side of the plurality of battery modules MDL and the negative electrode terminal, and can switch the electrical connection between the plurality of battery module MDLs and the negative electrode terminal. it can.
  • the operation of opening and closing the contact of the magnetic contactor CN is controlled by a control signal from the battery management unit 20.
  • the electromagnetic contactor CP is interposed in the main circuit connecting between the terminal on the highest potential side of the plurality of battery modules MDL and the positive electrode terminal, and can switch the electrical connection between the plurality of battery module MDLs and the positive electrode terminal. it can.
  • the operation of opening and closing the contacts of the magnetic contactor CP is controlled by a control signal from the battery management unit 20.
  • the battery management unit 20 can communicate with each of the plurality of battery monitoring units 10 and the host control circuit (not shown).
  • the battery management unit 20 is a communication circuit capable of performing wireless communication by radio waves with a plurality of battery monitoring units 10 and performing wired communication with a higher-level control circuit. It has.
  • the battery management unit 20 can receive various control signals from the host control circuit and control the operations of the plurality of battery monitoring units 10 and the electromagnetic contactors CN and CP based on the received information.
  • the battery management unit 20 periodically receives the voltage detection value of the plurality of battery cells (or the assembled battery BT) and the temperature detection value of the assembled battery BT from each of the plurality of battery monitoring units 10 from the current sensor SS. The detected values of the currents flowing through the plurality of assembled battery BTs are periodically received.
  • the battery management unit 20 can calculate the charge state (SOC: state of charge) and the deterioration state (SOH: state of health) of the assembled battery BT (or battery cell) based on the received value.
  • the battery management unit 20 monitors the voltage of a plurality of battery cells and the current flowing through the plurality of assembled battery BTs, and controls the battery monitoring unit 10 so as to equalize the voltages of the plurality of battery cells.
  • the battery management unit 20 controls the operation of the battery system so that, for example, the battery cell does not become an abnormal state such as overcharging or overdischarging.
  • the battery management unit 20 may be configured by hardware, may be configured by software, or may be configured by a combination of hardware and software.
  • the battery management unit 20 may include, for example, at least one processor and a memory for recording a program executed by the processor.
  • FIG. 2 is a diagram for explaining an example of the operation of the storage battery device of one embodiment.
  • the battery management unit 20 receives the operation permission notification or the stop notification from the host device (step SA1), the battery management unit 20 transmits a measurement value data output command and a cell balance command to the plurality of battery monitoring units 10 (step SA2). ).
  • the battery management unit 20 may transmit a data output command and a cell balance command to the plurality of battery monitoring units 10, and sequentially transmit commands to the plurality of battery monitoring units 10 at different timings. May be good.
  • the battery monitoring unit 10 Upon receiving the data output command and the cell balance command from the battery management unit 20, the battery monitoring unit 10 measures the voltages of the plurality of battery cells and the temperature of at least one of the assembled battery BTs (step SA3). ), The measured value is transmitted to the battery management unit 20 (step SA4).
  • the battery management unit 20 and the battery monitoring unit 10 repeat the above steps SA2 to SA4. That is, when the battery management unit 20 receives the measured voltage value and the measured temperature value from the battery monitoring unit 10, it updates the cell balance command based on the received voltage value, and updates the cell balance command, and the data output command and the cell balance command. Is transmitted to a plurality of battery monitoring units 10 (step SA2).
  • the period from the time when the battery management unit 20 performs step SA2 to the time when the battery management unit 20 performs step SA2 is defined as the communication cycle between the battery management unit 20 and the battery monitoring unit 10.
  • the battery monitoring unit 10 updates the state of the cell balance circuit (not shown) so as to equalize the voltages of the plurality of battery cells according to the cell balance command received from the battery management unit 20 (step SA5). ).
  • the battery monitoring unit 10 switches the switching element of the cell balance circuit (not shown) so as to discharge the battery cell having a large voltage difference with other battery cells according to the cell balance command received from the battery management unit 20. ..
  • the battery management unit 20 receives the measured value of the voltage and the measured value of the temperature from the plurality of battery monitoring units 10, and then receives the detected value of the current flowing from the current sensor SS to the main circuit on the high potential side (step SA6). ..
  • the battery management unit 20 receives the measured values of voltage and temperature from the battery monitoring unit 10 and then receives the measured values of current from the current sensor SS. May be reversed, and the operation of receiving the measured values of voltage and temperature from the battery monitoring unit 10 and the operation of receiving the measured values of current from the current sensor SS may be performed in parallel.
  • the battery management unit 20 has a communication cycle with the battery monitoring unit 10 and an assembled battery BT based on the voltage and temperature values received from the battery monitoring unit 10 and the values received from the current sensor SS. Calculations are performed to set the permissible currents (chargeable current and dischargeable current) of (step SA7).
  • the battery management unit 20 determines whether or not a failure due to interference has occurred when communicating with the plurality of battery monitoring units 10, and when the interference is received, the communication cycle with the battery monitoring unit 10 To lengthen.
  • the battery management unit 20 lengthens the communication cycle with the battery monitoring unit 10, for example, when the retransmission due to a communication failure reaches a predetermined number of times or more in a predetermined period.
  • the battery management unit 20 sets the values of the rechargeable current and the dischargeable current according to the communication cycle, the SOC and SOH of the assembled battery BT, and the temperature of the assembled battery BT, and sends the battery BT to the assembled battery BT. Notify the set value to a device that charges and discharges (for example, a host device).
  • the battery management unit 20 also determines whether or not to allow charging and discharging of the assembled battery BT, and notifies whether or not to allow charging and discharging together with the values of the chargeable current and the dischargeable current (). Step SA8).
  • FIG. 3 is a flowchart for explaining an example of the operation of the battery management unit in the storage battery device of one embodiment. Here, an example of the operation of the battery management unit 20 in step 8A will be described.
  • the battery management unit 20 counts the number of times of retransmission as a result of attempting communication with a plurality of battery monitoring units 10 within a predetermined period (step SB1), and whether the count number exceeds a predetermined threshold value. Whether or not it is determined (step SB2).
  • the battery management unit 20 shortens the communication cycle with the battery monitoring unit 10 when the count number is equal to or less than a predetermined threshold value. That is, the battery management unit 20 shortens the communication cycle by one step in the range between the standard value and the lower limit value so that the number of communications in a predetermined period increases.
  • the battery management unit 20 can change the communication cycle stepwise in a range of the lower limit value or more and the upper limit value or less.
  • the time width of one step when the battery management unit 20 stepwise lengthens or shortens the communication cycle may be adjusted according to the SOC and temperature of the assembled battery BT. At this time, when the communication cycle with the battery monitoring unit 10 is set to a predetermined standard value, the battery management unit 20 does not change the communication cycle. (Step SB4).
  • step SB2 When it is determined in step SB2 that the count number exceeds a predetermined threshold value, the battery management unit 20 prolongs the communication cycle with the battery monitoring unit 10. That is, the battery management unit 20 lengthens the communication cycle by one step in the range between the standard value and the upper limit value so that the number of communications in the predetermined period is reduced (step SB3).
  • step SB3 and step SB4 the battery management unit 20 sets the value of the rechargeable current and the value of the rechargeable current of the assembled battery BT using the communication cycle with the battery monitoring unit 10 (step SB5).
  • the communication cycle (standard value) in the normal state (when no communication failure has occurred) is set to, for example, 0.1 seconds, and the upper limit value of the communication cycle is set to, for example, 1 second.
  • the battery management unit 20 determines in step SB2 that the count number exceeds a predetermined threshold value when the currently set communication cycle is 0.1 seconds, the battery management unit 20 sets the communication cycle to 0.1.
  • the communication cycle is lengthened from seconds to, for example, 0.5 seconds.
  • step SB2 When the battery management unit 20 determines in step SB2 that the count number exceeds a predetermined threshold value when the currently set communication cycle is 1 second, the battery management unit 20 extends the communication cycle. Instead, the host device may be notified to prohibit charging and discharging.
  • FIGS. 4A-4D show an example of chargeable current and dischargeable current values corresponding to the communication cycle between the battery monitoring unit and the battery management unit, the SOC and SOH of the assembled battery, and the temperature of the assembled battery. It is a figure. Here, an example of the values of the chargeable current and the dischargeable current of the assembled battery BT when the SOH of the assembled battery BT is equal to or higher than a predetermined threshold value (the degree of deterioration is small) is shown.
  • a predetermined threshold value the degree of deterioration is small
  • FIG. 4A shows the value of the rechargeable current corresponding to the communication cycle and the SOC of the assembled battery BT when the SOH of the assembled battery BT is equal to or higher than a predetermined threshold value and the temperature of the assembled battery BT is 25 ° C. ing.
  • FIG. 4B shows the value of the dischargeable current corresponding to the communication cycle and the SOC of the assembled battery BT when the SOH of the assembled battery BT is equal to or higher than a predetermined threshold value and the temperature of the assembled battery BT is 25 ° C. ing.
  • FIG. 4C shows the value of the rechargeable current corresponding to the communication cycle and the SOC of the assembled battery BT when the SOH of the assembled battery BT is equal to or higher than a predetermined threshold value and the temperature of the assembled battery BT is ⁇ 30 ° C.
  • FIG. 4D shows the value of the dischargeable current corresponding to the communication cycle and the SOC of the assembled battery BT when the SOH of the assembled battery BT is equal to or higher than a predetermined threshold value and the temperature of the assembled battery BT is ⁇ 30 ° C. Shown.
  • the battery management unit 20 has, for example, a chargeable current value and a dischargeable current corresponding to the SOC and SOH of the assembled battery BT, the temperature of the assembled battery BT, and the communication cycle shown in FIGS. 4A to 4D. It may have a plurality of tables in which values are stored. At this time, the battery management unit 20 selects a corresponding table from the SOH and temperature of the assembled battery BT, and obtains the value of the rechargeable current and the value of the dischargeable current corresponding to the communication cycle and the SOC of the assembled battery BT. Can be done.
  • the battery management unit 20 does not need to include a table for continuous values of the temperature of the assembled battery BT, and uses the table for the value closest to the temperature of the assembled battery BT to correct the error of the obtained value and charge the battery.
  • the value of the possible current and the value of the dischargeable current may be obtained.
  • the battery management unit 20 can calculate the SOH of the plurality of assembled batteries BT based on, for example, the measured values of the voltage and temperature received from the plurality of battery monitoring units 10 and the values of the current received from the current sensor SS. it can.
  • the battery management unit 20 determines the value of the rechargeable current corresponding to the SOH, temperature, SOC, and communication cycle of the assembled battery BT having the highest degree of deterioration.
  • the value of the dischargeable current can be the value of the plurality of assembled batteries BT.
  • the communication cycle is set from 0.1 seconds to 0.5 seconds to reduce the number of communications per unit time
  • the SOH of the plurality of assembled battery BTs is equal to or higher than a predetermined threshold value
  • the temperature of the assembled battery BT is 25 ° C.
  • the battery management unit 20 can calculate the value of the rechargeable current and the value of the dischargeable current from the relationship between the SOC of the assembled battery BT shown in FIGS. 4A and 4B and the communication cycle.
  • the rechargeable current is 3 It [A] and the discharge current is 3 It [A] over the entire SOC of the assembled battery BT. .. It [A] is the rated current [Ah / h] per unit time.
  • the battery management unit 20 can calculate the value of the rechargeable current and the value of the dischargeable current from the relationship between the SOC of the assembled battery BT shown in FIGS. 4C and 4D and the communication cycle.
  • the rechargeable current is 1 It [A] when the SOC of the assembled battery BT is 50% or more, and the SOC of the assembled battery BT is less than 50%.
  • the rechargeable current is 3 It [A].
  • the dischargeable current is 3 It [A] when the SOC of the assembled battery BT is 10% or more, and the SOC of the assembled battery BT is less than 10%.
  • the dischargeable current is 1 It [A].
  • the battery management unit 20 determines the value of the rechargeable current and the dischargeable current of the assembled battery BT based on the temperature and SOC of the assembled battery BT and the communication cycle. The value can be calculated.
  • 5A and 5B show an example of chargeable current and dischargeable current values corresponding to the communication cycle between the battery monitoring unit and the battery management unit, the SOC and SOH of the assembled battery, and the temperature of the assembled battery. It is a figure.
  • FIG. 5A shows the value of the rechargeable current corresponding to the communication cycle and the SOC of the assembled battery BT when the SOH of the assembled battery BT is less than a predetermined threshold value and the temperature of the assembled battery BT is 25 ° C. ing.
  • FIG. 5B shows the value of the dischargeable current corresponding to the communication cycle and the SOC of the assembled battery BT when the SOH of the assembled battery BT is less than a predetermined threshold value and the temperature of the assembled battery BT is 25 ° C. ing.
  • the battery management unit 20 communicates with, for example, the SOC and SOH of the assembled battery BT, the temperature of the assembled battery BT, and the temperature shown in FIGS. 5A and 5B.
  • a plurality of tables storing the values of the chargeable current and the values of the dischargeable current corresponding to the period may be provided.
  • the battery management unit 20 selects a corresponding table from the SOH and temperature of the assembled battery BT, and obtains the value of the rechargeable current and the value of the dischargeable current corresponding to the communication cycle and the SOC of the assembled battery BT. Can be done.
  • the communication cycle is set from 0.1 seconds to 0.5 seconds to reduce the number of communications per unit time, the SOH of the plurality of assembled battery BTs is less than a predetermined threshold value, and the temperature of the assembled battery BT is 25 ° C.
  • the battery management unit 20 can calculate the value of the rechargeable current and the value of the dischargeable current from the relationship between the SOC of the assembled battery BT shown in FIGS. 5A and 5B and the communication cycle.
  • the rechargeable current is 1 It [A] when the SOC of the assembled battery BT is 80% or more, and the SOC of the assembled battery BT is less than 80%.
  • the rechargeable current is 3 It [A].
  • the dischargeable current is 3 It [A] when the SOC of the assembled battery BT is 15% or more, and the SOC of the assembled battery BT is less than 15%.
  • the dischargeable current is 1 It [A].
  • the battery management unit 20 notifies the host device of the value of the rechargeable current and the value of the dischargeable current obtained as described above (step SB6).
  • the battery management unit 20 acquires the current value from the current sensor SS (step SB7). At this time, the battery management unit 20 acquires the current value from the current sensor SS at a predetermined sampling rate over a predetermined period.
  • the battery management unit 20 determines whether or not the discharge current of the assembled battery BT continuously exceeds the limit value (discharge current limit value) for a predetermined period from the current value for a predetermined period acquired from the current sensor SS (step SB8). ).
  • the limit value of the discharge current is an upper limit value of the current that can be continuously and safely discharged, and may be the same as the value of the dischargeable current.
  • the battery management unit 20 When the value of the discharge current does not exceed the limit value continuously for a predetermined period, the battery management unit 20 notifies the higher-level device that the discharge is permitted (step SB9). When the value of the discharge current exceeds the limit value continuously for a predetermined period, the battery management unit 20 notifies the host device of the request to stop the discharge (step SB10).
  • the battery management unit 20 determines whether or not the charging current of the assembled battery BT continuously exceeds the limit value (charging current limit value) for a predetermined period from the current value for a predetermined period acquired from the current sensor SS ( Step SB11).
  • the limit value of the charging current is the upper limit value of the current that can be continuously and safely charged, and may be the same as the value of the rechargeable current.
  • the battery management unit 20 When the value of the charging current does not exceed the limit value continuously for a predetermined period, the battery management unit 20 notifies the host device that charging is permitted (step SB12). When the value of the charging current exceeds the limit value continuously for a predetermined period, the battery management unit 20 notifies the host device of the request to stop charging (step SB13).
  • the battery management unit 20 is assembled. Requests the host device to stop charging or discharging (or both charging and discharging) the battery BT. As a result, the safety of the storage battery device can be ensured.
  • the SOC of the assembled battery BT is high, the battery management unit 20 does not need to request to stop the discharge of the assembled battery BT. Further, when the SOC of the assembled battery BT is low, the battery management unit 20 does not need to request to stop charging the assembled battery BT.
  • the availability of the storage battery device can be enhanced by the battery management unit 20 making a determination according to the SOC value of the assembled battery BT for each of the charging and discharging of the assembled battery BT.
  • the voltage of the battery cell is continuously measured by reducing the communication frequency between the battery management unit 20 and the battery monitoring unit 10. It is avoided that the value and the measured value of the temperature of the assembled battery BT are not received.
  • the storage battery device may stop even if the assembled battery BT is normal. is there. When the storage battery device is stopped, the power supply to the load device is cut off, which contributes to a decrease in the reliability of the storage battery device.
  • the storage battery device of the present embodiment when the assembled battery BT is normal, communication between the battery management unit 20 and the battery monitoring unit 10 becomes temporarily difficult due to a communication failure. , Prevents the storage battery device from stopping and ensures the reliability of the storage battery device. That is, according to the storage battery device of the present embodiment, it is possible to provide a highly reliable storage battery device that communicates by radio waves.
  • the storage battery device of the present embodiment is the same as the first embodiment described above in that wireless communication is performed between the battery management unit 20 and the battery monitoring unit 10 by radio waves, but a communication method for switching a plurality of channels is used. It is different from the above-described first embodiment in that it is adopted.
  • FIG. 6 is a diagram for explaining an example of a wireless communication method performed between the battery monitoring unit and the battery management unit.
  • wireless communication is performed between the battery management unit 20 and the battery monitoring unit 10 by a communication method (for example, Bluetooth (registered trademark)) for switching a plurality of channels by frequency hopping (FH) or the like.
  • a communication method for example, Bluetooth (registered trademark)
  • FH frequency hopping
  • one channel is shared by a plurality of battery monitoring units 10.
  • FIG. 6 an example of a channel used by the first module group MDL1 including a plurality of battery monitoring units 10 and a channel used by the second module group MDL2 including a plurality of other battery monitoring units 10 is shown in chronological order. It is shown by.
  • the shading in the frequency direction indicates the intensity of the electromagnetic wave. The dark part indicates that the electromagnetic wave is strong, and the lightly displayed part indicates that the electromagnetic wave is weak.
  • the region CHA shown in FIG. 6 is a frequency band of electromagnetic waves that are greatly affected by disturbing radio waves. If a channel that overlaps with the area CHA is used, it becomes difficult to perform communication due to a communication failure.
  • FIG. 7 is a diagram for explaining an example of a wireless communication method performed between the battery monitoring unit and the battery management unit in the storage battery device of the second embodiment.
  • a channel overlapping with the area CHA is selected in the communication between the battery management unit 20 and the plurality of battery monitoring units 10. I skip it and use it.
  • the plurality of module groups MDL1 and MDL2 communicate using a limited channel, and there is a possibility that the communication cannot be established due to congestion. is there.
  • the battery management unit 20 prolongs the communication cycle with the battery monitoring unit 10 (the number of communications per unit time is increased). (Reduce), and set the value of chargeable current and the value of dischargeable current corresponding to the communication cycle to limit the charge / discharge current.
  • FIG. 8 is a flowchart for explaining another example of the operation of the battery management unit in the storage battery device of one embodiment.
  • an example of the operation of the battery management unit 20 in step 8A in the storage battery device of the first embodiment will be described.
  • the battery management unit 20 acquires information on the number of channels that cannot be used due to disturbed radio waves (step SC1), and determines whether or not the number of unusable channels exceeds a predetermined threshold value (step SC2).
  • the battery management unit 20 sets the chargeable current and the dischargeable current of the assembled battery BT to the maximum rated values, and transmits the set values to the higher-level device (step). SC3).
  • the battery management unit 20 sets the communication cycle with the battery monitoring unit 10 to a value at the normal time (predetermined standard value) (step SC4).
  • the normal value of the communication cycle with the battery monitoring unit 10 is 0.1 seconds.
  • the battery management unit 20 sets the communication cycle with the battery monitoring unit 10, for example, as in step SB5 of the first embodiment described above.
  • the values of the chargeable current and the dischargeable current are set according to the communication cycle, the SOC and SOH of the assembled battery BT, and the temperature of the assembled battery BT (step SC5).
  • Steps SC6 to SC13 are the same as steps SB6 to SB13 of the first embodiment described above.
  • the storage battery device of the present embodiment when the communication state is poor, the communication frequency between the battery management unit 20 and the battery monitoring unit 10 is reduced, so that the available channels are congested. It is avoided that the measured value of the temperature of the assembled battery BT is not received. That is, according to the storage battery device of the present embodiment, it is possible to provide a highly reliable storage battery device that communicates by radio waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

実施形態による蓄電池装置は、電波による通信を行う信頼性の高い蓄電池装置を提供するものであって、複数の電池セルを含む組電池と、前記電池セルの電圧と前記組電池の少なくとも1か所の温度とを測定する電池監視ユニットと、を備えた電池モジュールを複数と、複数の前記電池監視ユニットと電波による通信を行い、前記電池セルの電圧の測定値と前記組電池の温度の測定値とを周期的に受信する電池管理ユニットと、を備え、前記電池管理ユニットは、複数の前記電池監視ユニットとの通信が妨害されていると判断したときに、前記電池監視ユニットとの通信周期を長くするとともに、少なくとも前記通信周期に対応する、前記組電池の充電可能電流の値および放電可能電流の値を設定し、設定した値を上位装置へ通知する。

Description

蓄電池装置
 本発明は、蓄電池装置に関する。
 複数の蓄電池モジュールを組み合わせた蓄電池装置は、様々な用途で利用されている。近年、蓄電池装置の構成の簡素化を目的に、蓄電池モジュールと管理装置との間の通信を電波により無線化する検討がされている。
 一方で、電波による無線通信は、妨害により障害が発生する可能性があるため、従来、例えば複数の伝送手段を設ける等の対策により通信の信頼性を担保することが提案されている。
 しかしながら、電波通信を行う際には妨害による障害発生の可能性を完全に排除することはできないため、妨害を受けた場合であっても蓄電池装置を動作させ、蓄電池装置の可用性を高める対策が望まれていた。
国際公開第2014/103008号公報 日本国特開2018-81837号公報 国際公開第2015/189898号公報
 本発明の実施形態は上記事情を鑑みて成されたものであって、電波による通信を行う信頼性の高い蓄電池装置を提供することを目的とする。
 実施形態による蓄電池装置は、複数の電池セルを含む組電池と、前記電池セルの電圧と前記組電池の少なくとも1か所の温度とを測定する電池監視ユニットと、を備えた電池モジュールを複数と、複数の前記電池監視ユニットと電波による通信を行い、前記電池セルの電圧の測定値と前記組電池の温度の測定値とを周期的に受信する電池管理ユニットと、を備え、前記電池管理ユニットは、複数の前記電池監視ユニットとの通信が妨害されていると判断したときに、前記電池監視ユニットとの通信周期を長くするとともに、少なくとも前記通信周期に対応する、前記組電池の充電可能電流の値および放電可能電流の値を設定し、設定した値を上位装置へ通知する。
図1は、一実施形態の蓄電池装置の構成例を概略的に示す図である。 図2は、一実施形態の蓄電池装置の動作の一例を説明するための図である。 図3は、一実施形態の蓄電池装置における電池管理ユニットの動作の一例を説明するためのフローチャートである。 図4Aは、電池監視ユニットと電池管理ユニットとの通信周期と、組電池のSOCおよびSOHと、組電池の温度とに対応する、充電可能電流および放電可能電流の値の一例を示す図である。 図4Bは、電池監視ユニットと電池管理ユニットとの通信周期と、組電池のSOCおよびSOHと、組電池の温度とに対応する、充電可能電流および放電可能電流の値の一例を示す図である。 図4Cは、電池監視ユニットと電池管理ユニットとの通信周期と、組電池のSOCおよびSOHと、組電池の温度とに対応する、充電可能電流および放電可能電流の値の一例を示す図である。 図4Dは、電池監視ユニットと電池管理ユニットとの通信周期と、組電池のSOCおよびSOHと、組電池の温度とに対応する、充電可能電流および放電可能電流の値の一例を示す図である。 図5Aは、電池監視ユニットと電池管理ユニットとの通信周期と、組電池のSOCおよびSOHと、組電池の温度とに対応する、充電可能電流および放電可能電流の値の一例を示す図である。 図5Bは、電池監視ユニットと電池管理ユニットとの通信周期と、組電池のSOCおよびSOHと、組電池の温度とに対応する、充電可能電流および放電可能電流の値の一例を示す図である。 図6は、電池監視ユニットと電池管理ユニットと間で行われる無線通信の方式の一例について説明するための図である。 図7は、第2実施形態の蓄電池装置における電池監視ユニットと電池管理ユニットと間で行われる無線通信の方式の一例について説明するための図である。 図8は、一実施形態の蓄電池装置における電池管理ユニットの動作の他の例を説明するためのフローチャートである。
実施形態
 以下に、第1実施形態の蓄電池装置の一構成例について図面を参照して詳細に説明する。
 図1は、一実施形態の蓄電池装置の構成例を概略的に示す図である。
 本実施形態の蓄電池装置は、複数の電池モジュールMDLと、電池管理ユニット(BMU:Battery Management Unit)20と、電流センサSSと、電磁接触器CP、CMと、を備えている。
 電池モジュールMDLは、複数の電池セル(図示せず)を含む組電池BTと、電池監視ユニット(CMU:Cell Monitoring Unit)10と、を備えている。
 組電池BTは、例えば、直列又は並列に接続されたリチウムイオン電池の電池セルを複数備えている。
 電池監視ユニット10は、複数の電池セルそれぞれの電圧と、組電池BTの少なくとも1か所の温度とを検出する測定回路と、電池管理ユニット20との間で電波による無線通信を行うことが可能な無線送受信回路(図示せず)を備え、周期的に電池管理ユニット20へ測定値を送信することができる。
 また、電池監視ユニット10は、電池管理ユニット20から受信した制御信号に基づいて、複数の電池セルの電圧の均等化(セルバランス)を行う。
 電池監視ユニット10は、例えばハードウエアにより構成されてもよく、ソフトウエアにより構成されてもよく、ハードウエアとソフトウエアを組み合わせて構成されてもよい。電池監視ユニット10は、例えば、CPUやMPUなどのプロセッサを少なくとも1つと、プロセッサにより実行されるプログラムが記録されたメモリと、を備え、ソフトウエアにより上記動作を実現する回路である。
 本実施形態の蓄電池装置は、複数の電池モジュールMDLを直列に接続することにより合計300個の電池セルを直列に接続させて、満充電時における高電位側の主回路と低電位側の主回路との間の電圧を10kVとしている。
 電流センサSSは、高電位側の主回路に流れる電流の値を検出し、電池管理ユニット20へ検出値を供給する。
 電磁接触器CNは、複数の電池モジュールMDLの最も低電位側の端子と負極端子との間を接続する主回路に介在し、複数の電池モジュールMDLと負極端子との電気的接続を切替えることができる。電磁接触器CNは、電池管理ユニット20からの制御信号により、接点を開閉する動作を制御される。
 電磁接触器CPは、複数の電池モジュールMDLの最も高電位側の端子と正極端子との間を接続する主回路に介在し、複数の電池モジュールMDLと正極端子との電気的接続を切替えることができる。電磁接触器CPは、電池管理ユニット20からの制御信号により、接点を開閉する動作を制御される。
 電池管理ユニット20は、複数の電池監視ユニット10、および、上位制御回路(図示せず)のそれぞれと通信可能である。なお、本実施形態の蓄電池装置では、電池管理ユニット20は、複数の電池監視ユニット10との間で電波による無線通信を行い、上位制御回路との間で有線通信を行うことが可能な通信回路を備えている。
 電池管理ユニット20は、上位制御回路から各種制御信号を受信し、受信した情報に基づいて複数の電池監視ユニット10、および、電磁接触器CN、CPの動作を制御することが可能である。
 電池管理ユニット20は、複数の電池監視ユニット10それぞれから複数の電池セル(又は組電池BT)の電圧の検出値と組電池BTの温度の検出値とを周期的に受信し、電流センサSSから複数の組電池BTに流れる電流の検出値を周期的に受信する。電池管理ユニット20は、受信した値に基づいて、組電池BT(又は電池セル)の充電状態(SOC:state of charge)および劣化状態(SOH:state of health)を演算することができる。組電池BTのSOCは、例えば、組電池BTの満充電時の容量[Ah]に対する、組電池BTの現在の容量[Ah]の割合(=(現在の容量/満充電時の容量)×100)である。組電池BTのSOHは、例えば、組電池BTの満充電時の容量の初期値[Ah]に対する、現在の満充電時の容量[Ah]の割合(=(満充電時の容量の初期値/現在の満充電時の容量)×100)である。
 電池管理ユニット20は、複数の電池セルの電圧や複数の組電池BTに流れる電流を監視し、複数の電池セルの電圧を均等化するよう電池監視ユニット10を制御する。電池管理ユニット20は、例えば、電池セルが過充電や過放電などの異常な状態とならないよう電池システムの動作を制御する。
 電池管理ユニット20は、ハードウエアにより構成されてもよく、ソフトウエアにより構成されてもよく、ハードウエアとソフトウエアとの組み合わせにより構成されてもよい。電池管理ユニット20は、例えば、プロセッサを少なくとも1つと、プロセッサにより実行されるプログラムを記録したメモリと、を備えていてもよい。
 次に、本実施形態の蓄電池装置の動作の一例について説明する。
 図2は、一実施形態の蓄電池装置の動作の一例を説明するための図である。
 電池管理ユニット20は、上位装置から運転許可通知若しくは停止通知を受信すると(ステップSA1)、複数の電池監視ユニット10に対して測定値のデータの出力指令とセルバランス指令とを送信する(ステップSA2)。
 なお、電池管理ユニット20は、複数の電池監視ユニット10へデータの出力指令とセルバランス指令とを送信してもよい、タイミングをずらして複数の電池監視ユニット10へ、順次、指令を送信してもよい。
 電池監視ユニット10は、電池管理ユニット20からデータの出力指令とセルバランス指令とを受信すると、複数の電池セルの電圧と、組電池BTの少なくとも1か所の温度と、を測定し(ステップSA3)、測定値を電池管理ユニット20へ送信する(ステップSA4)。
 電池管理ユニット20と電池監視ユニット10とは、上記ステップSA2乃至ステップSA4を繰り返し行う。すなわち、電池管理ユニット20は、電池監視ユニット10から電圧の測定値と温度の測定値とを受信すると、受信した電圧値に基づいて、セルバランス指令を更新し、データの出力指令とセルバランス指令とを複数の電池監視ユニット10へ送信する(ステップSA2)。なお、本実施形態では、電池管理ユニット20がステップSA2を行ってから次にステップSA2を行うまでの期間を、電池管理ユニット20と電池監視ユニット10との通信周期とする。
 続いて、電池監視ユニット10は、電池管理ユニット20から受信したセルバランス指令に従って複数の電池セルの電圧の均等化を行うように、セルバランス回路(図示せず)の状態を更新する(ステップSA5)。例えば、電池監視ユニット10は、電池管理ユニット20から受信したセルバランス指令に従って、他の電池セルとの電圧差が大きい電池セルを放電させるようにセルバランス回路(図示せず)のスイッチング素子を切り替える。
 電池管理ユニット20は、複数の電池監視ユニット10から電圧の測定値と温度の測定値を受信した後に、電流センサSSから高電位側の主回路に流れる電流の検出値を受信する(ステップSA6)。
 なお、図2に示す例では、電池管理ユニット20は、電池監視ユニット10から電圧および温度の測定値を受信した後に、電流センサSSから電流の測定値を受信しているが、上記動作の順序は逆であってもよく、電池監視ユニット10から電圧および温度の測定値を受信する動作と、電流センサSSから電流の測定値を受信する動作とを並列に行っても構わない。
 続いて、電池管理ユニット20は、電池監視ユニット10から受信した電圧および温度の値、および、電流センサSSから受信した値に基づいて、電池監視ユニット10との間の通信周期と、組電池BTの許容電流(充電可能電流および放電可能電流)とを設定するための演算を行う(ステップSA7)。
 本実施形態では、電池管理ユニット20は、複数の電池監視ユニット10との通信に際し、妨害による障害が発生しているか否か判断し、妨害を受けているときに電池監視ユニット10との通信周期を長くする。電池管理ユニット20は、例えば、通信の失敗による再送信が所定期間において所定回数以上に達したときに、電池監視ユニット10との間の通信周期を長くする。
 このとき、電池管理ユニット20は、通信周期と、組電池BTのSOC、SOHと、組電池BTの温度とに応じて、充電可能電流および放電可能電流の値を設定して、組電池BTへ充電および放電を行う装置(例えば上位装置)に対して設定値を通知する。また、電池管理ユニット20は、組電池BTへの充電および放電を許可するか否かについても判断し、充電可能電流および放電可能電流の値とともに、充放電を許可するか否かを通知する(ステップSA8)。
 図3は、一実施形態の蓄電池装置における電池管理ユニットの動作の一例を説明するためのフローチャートである。ここでは、電池管理ユニット20の上記ステップ8Aの動作の一例について説明する。
 電池管理ユニット20は、所定期間内において、複数の電池監視ユニット10との間で通信を試みた結果、再送信を行った回数をカウントし(ステップSB1)、カウント数が所定の閾値を超えたか否か判断する(ステップSB2)。
 電池管理ユニット20は、カウント数が所定の閾値以下であるときには、電池監視ユニット10との通信周期を短くする。すなわち、電池管理ユニット20は、所定期間における通信回数が増えるように、標準値と下限値との間の範囲において通信周期を一段階短くする。電池管理ユニット20は、下限値以上、上限値以下の範囲で通信周期を段階的に変更することができる。なお、電池管理ユニット20が通信周期を段階的に長く若しくは短くするときの一段階の時間幅は、組電池BTのSOCや温度などに応じて調整されてもよい。このとき、電池監視ユニット10との通信周期が所定の標準値に設定されている場合には、電池管理ユニット20は、通信周期を変更しない。(ステップSB4)。
 ステップSB2にてカウント数が所定の閾値を超えていると判断したときには、電池管理ユニット20は、電池監視ユニット10との通信周期を長くする。すなわち、電池管理ユニット20は、所定期間における通信回数が減るように、標準値と上限値との間の範囲において通信周期を一段階長くする(ステップSB3)。
 電池管理ユニット20は、ステップSB3およびステップSB4の後、電池監視ユニット10との通信周期を用いて、組電池BTの充電可能電流の値および放電可能電流の値を設定する(ステップSB5)。
 本実施形態の蓄電池装置では、通常時(通信の障害が発生していないとき)における通信周期(標準値)を例えば0.1秒とし、通信周期の上限値を例えば1秒としている。電池管理ユニット20は、現在設定されている通信周期が0.1秒であるときに、ステップSB2にてカウント数が所定の閾値を超えていると判断した場合には、通信周期を0.1秒から例えば0.5秒として通信周期を長くする。
 なお、電池管理ユニット20は、現在設定されている通信周期が1秒であるときに、ステップSB2にてカウント数が所定の閾値を超えていると判断した場合には、通信周期を長くすることなく、充電および放電を禁止させるように上位装置へ通知してもよい。
 図4A-図4Dは、電池監視ユニットと電池管理ユニットとの通信周期と、組電池のSOCおよびSOHと、組電池の温度とに対応する、充電可能電流および放電可能電流の値の一例を示す図である。ここでは、組電池BTのSOHが所定の閾値以上である(劣化の度合いが小さい)ときの、組電池BTの充電可能電流および放電可能電流の値の一例を示している。
 図4Aは、組電池BTのSOHが所定の閾値以上であって、組電池BTの温度が25℃であるときの、通信周期と組電池BTのSOCとに対応する充電可能電流の値を示している。
 図4Bは、組電池BTのSOHが所定の閾値以上であって、組電池BTの温度が25℃であるときの、通信周期と組電池BTのSOCとに対応する放電可能電流の値を示している。
 図4Cは、組電池BTのSOHが所定の閾値以上であって、組電池BTの温度が-30℃であるときの、通信周期と組電池BTのSOCとに対応する充電可能電流の値を示している。
 図4Dは、組電池BTのSOHが所定の閾値以上であって、組電池BTの温度が-30℃であるときの、通信周期と組電池BTのSOCとに対応する放電可能電流の値を示している。
 電池管理ユニット20は、例えば、図4A-図4Dに示す、組電池BTのSOCおよびSOHと、組電池BTの温度と、通信周期とに対応する、充電可能電流の値と放電可能電流との値を格納した複数のテーブルを備えていてもよい。このとき、電池管理ユニット20は、組電池BTのSOHと温度とから対応するテーブルを選択し、通信周期と組電池BTのSOCに対応する充電可能電流の値および放電可能電流の値を求めることができる。電池管理ユニット20は、組電池BTの温度の連続する値に対するテーブルを備える必要はなく、組電池BTの温度に最も近い値に対するテーブルを用いて、得られた値の誤差を修正して、充電可能電流の値および放電可能電流の値を求めてもよい。
 電池管理ユニット20は、例えば、複数の電池監視ユニット10から受信した電圧および温度の測定値と、電流センサSSから受信した電流の値に基づいて、複数の組電池BTのSOHを演算することができる。複数の組電池BTのSOHにばらつきがある場合には、電池管理ユニット20は、最も劣化度が大きい組電池BTのSOH、温度、SOC、および、通信周期に対応する、充電可能電流の値と放電可能電流の値とを、複数の組電池BTの値とすることができる。
 例えば、通信周期を0.1秒から0.5秒として単位時間当たりの通信回数を減らし、複数の組電池BTのSOHが所定の閾値以上であって、組電池BTの温度が25℃であるとき、電池管理ユニット20は、図4Aおよび図4Bに示す組電池BTのSOCと通信周期との関係から、充電可能電流の値と放電可能電流の値とを演算することができる。図4Aおよび図4Bによれば、通信周期が0.5秒であるときには、組電池BTのSOCの全域にわたって、充電可能電流は3It[A]であり、放電可能電流は3It[A]である。なお、It[A]は、単位時間当たりの定格電流[Ah/h]である。
 例えば、通信周期を0.1秒から1秒として単位時間あたりの通信回数を減らし、複数の組電池BTのSOHが所定の閾値以上であって、組電池BTの温度が-30℃であるとき、電池管理ユニット20は、図4Cおよび図4Dに示す組電池BTのSOCと通信周期との関係から、充電可能電流の値と放電可能電流の値とを演算することができる。図4Cによれば、通信周期が1秒であるときには、組電池BTのSOCが50%以上であるときに充電可能電流は1It[A]であり、組電池BTのSOCが50%未満であるときに充電可能電流は3It[A]である。図4Dによれば、通信周期が1秒であるときには、組電池BTのSOCが10%以上であるときに放電可能電流は3It[A]であり、組電池BTのSOCが10%未満であるときに放電可能電流は1It[A]である。
 電池管理ユニット20は、組電池BTのSOHが所定の閾値未満であるときには、組電池BTの温度およびSOCと、通信周期とに基づいて、組電池BTの充電可能電流の値および放電可能電流の値を演算することができる。
 図5Aおよび図5Bは、電池監視ユニットと電池管理ユニットとの通信周期と、組電池のSOCおよびSOHと、組電池の温度とに対応する、充電可能電流および放電可能電流の値の一例を示す図である。
 図5Aは、組電池BTのSOHが所定の閾値未満であって、組電池BTの温度が25℃であるときの、通信周期と組電池BTのSOCとに対応する充電可能電流の値を示している。
 図5Bは、組電池BTのSOHが所定の閾値未満であって、組電池BTの温度が25℃であるときの、通信周期と組電池BTのSOCとに対応する放電可能電流の値を示している。
 組電池BTのSOCが所定の閾値以上であるときと同様に、電池管理ユニット20は、例えば、図5Aおよび図5Bに示す、組電池BTのSOCおよびSOHと、組電池BTの温度と、通信周期とに対応する、充電可能電流の値と放電可能電流との値を格納した複数のテーブルを備えていてもよい。このとき、電池管理ユニット20は、組電池BTのSOHと温度とから対応するテーブルを選択し、通信周期と組電池BTのSOCに対応する充電可能電流の値および放電可能電流の値を求めることができる。
 例えば、通信周期を0.1秒から0.5秒として単位時間あたりの通信回数を減らし、複数の組電池BTのSOHが所定の閾値未満であって、組電池BTの温度が25℃であるとき、電池管理ユニット20は、図5Aおよび図5Bに示す組電池BTのSOCと通信周期との関係から、充電可能電流の値と放電可能電流の値とを演算することができる。図5Aによれば、通信周期が0.5秒であるときには、組電池BTのSOCが80%以上であるときに充電可能電流は1It[A]であり、組電池BTのSOCが80%未満であるときに充電可能電流は3It[A]である。図5Bによれば、通信周期が0.5秒であるときには、組電池BTのSOCが15%以上であるときに放電可能電流は3It[A]であり、組電池BTのSOCが15%未満であるときに放電可能電流は1It[A]である。
 電池管理ユニット20は、上記のように求められた充電可能電流の値と放電可能電流の値とを、上位装置へ通知する(ステップSB6)。
 続いて、電池管理ユニット20は、電流センサSSから電流値を取得する(ステップSB7)。このとき、電池管理ユニット20は、所定期間にわたって所定のサンプリングレートで電流センサSSから電流値を取得する。
 電池管理ユニット20は、電流センサSSから取得した所定期間の電流値から、組電池BTの放電電流が所定期間連続して制限値(放電電流制限値)を超えているか否か判断する(ステップSB8)。このとき、放電電流の制限値は、連続して安全に放電することができる電流の上限値であり、放電可能電流の値と同じであってもよい。
 放電電流の値が、所定期間連続して制限値を超えていないときには、電池管理ユニット20は、放電を許可する旨を上位装置へ通知する(ステップSB9)。
 放電電流の値が、所定期間連続して制限値を超えているときには、電池管理ユニット20は、放電を停止する要求を上位装置へ通知する(ステップSB10)。
 また、電池管理ユニット20は、電流センサSSから取得した所定期間の電流値から、組電池BTの充電電流が所定期間連続して制限値(充電電流制限値)を超えているか否か判断する(ステップSB11)。このとき、充電電流の制限値は、連続して安全に充電することができる電流の上限値であり、充電可能電流の値と同じであってもよい。
 充電電流の値が、所定期間連続して制限値を超えていないときには、電池管理ユニット20は、充電を許可する旨を上位装置へ通知する(ステップSB12)。
 充電電流の値が所定の期間連続して制限値を超えているときには、電池管理ユニット20は、充電を停止する要求を上位装置へ通知する(ステップSB13)。
 上記のように、上位装置が充電電流制限値または放電電流制限値を逸脱して、組電池BTの充電または放電を行う場合、蓄電池装置の安全性を担保できないため、電池管理ユニット20は、組電池BTの充電または放電(若しくは充電と放電との両方)を停止するように上位装置へ要求する。このことにより蓄電池装置の安全を確保できる。なお、組電池BTのSOCが高いときには、電池管理ユニット20は、組電池BTの放電を停止する要求をする必要はない。また、組電池BTのSOCが低いときには、電池管理ユニット20は、組電池BTの充電を停止する要求をする必要はない。電池管理ユニット20が、組電池BTの充電時と放電時とのそれぞれについて、組電池BTのSOCの値に応じた判断を行うことにより、蓄電池装置の可用性を高められる。
 上記のように、本実施形態の蓄電池装置では、通信状態が悪いときに、電池管理ユニット20と電池監視ユニット10との間での通信頻度を下げることにより、継続的に電池セルの電圧の測定値および組電池BTの温度の測定値が受信されないことを回避している。
 例えば、所定期間、電池管理ユニット20にて、通信障害により組電池BTの電圧および温度を監視することができない場合には、組電池BTが正常であっても、蓄電池装置が停止する可能性がある。蓄電池装置が停止すると、負荷装置への電力供給がなくなるため、蓄電池装置の信頼性が低下する一因となる。
 これに対し、本実施形態の蓄電池装置では、組電池BTが正常であるときに、通信障害により電池管理ユニット20と電池監視ユニット10との間で一時的に通信が難しい状況となった場合に、蓄電池装置が停止することを防ぎ、蓄電池装置の信頼性を担保している。
 すなわち、本実施形態の蓄電池装置によれば、電波による通信を行う信頼性の高い蓄電池装置を提供することができる。
 次に、第2実施形態の蓄電池装置について図面を参照して詳細に説明する。
 本実施形態の蓄電池装置では、電池管理ユニット20と電池監視ユニット10との間で、電波による無線通信を行う点は上述の第1実施形態と同様であるが、複数のチャンネルを切り換える通信方式を採用している点が上述の第1実施形態と異なっている。
 図6は、電池監視ユニットと電池管理ユニットと間で行われる無線通信の方式の一例について説明するための図である。
 本実施形態の蓄電池装置では、電池管理ユニット20と電池監視ユニット10との間で、周波数ホッピング(FH)等により複数のチャンネルを切り換える通信方式(例えばBluetooth(登録商標))による無線通信を行っている。
 この例では、複数の電池監視ユニット10にて1つのチャンネルが共有される。図6では、複数の電池監視ユニット10を含む第1モジュール群MDL1により用いられるチャンネルと、他の複数の電池監視ユニット10を含む第2モジュール群MDL2とにより用いられるチャンネルとの一例を、時系列で示している。なお、図6において、周波数方向における濃淡は電磁波の強度を示している。濃く表示されている部分は電磁波が強く、薄く表示されている部分は電磁波が弱いことを示す。
 図6に示す領域CHAは、妨害電波の影響が大きい電磁波の周波数帯域である。領域CHAと重複しているチャネルを用いると、通信障害により通信を行うことが困難になる。
 図7は、第2実施形態の蓄電池装置における電池監視ユニットと電池管理ユニットと間で行われる無線通信の方式の一例について説明するための図である。
 上記のように妨害電波による通信障害を回避するために、本実施形態の蓄電池装置では、電池管理ユニット20と複数の電池監視ユニット10との間の通信において、領域CHAと重複しているチャンネルをスキップして用いている。この場合、妨害電波による影響を回避することができる一方で、複数のモジュール群MDL1、MDL2が限られたチャンネルを利用して通信を行うこととなり、通信が輻輳することにより成立できなくなる可能性がある。
 そこで、本実施形態の蓄電池装置では、妨害電波により使用できないチャンネル数が所定の閾値を超えたときに、電池管理ユニット20は電池監視ユニット10との通信周期を長く(単位時間当たりの通信回数を減少)させ、その通信周期に対応した充電可能電流の値および放電可能電流の値を設定して充放電電流を制限する。
 以下に、本実施形態の蓄電池装置の電池管理ユニットの動作の一例について説明する。
 図8は、一実施形態の蓄電池装置における電池管理ユニットの動作の他の例を説明するためのフローチャートである。ここでは、上述の第1実施形態の蓄電池装置における、電池管理ユニット20の上記ステップ8Aの動作の一例について説明する。
 電池管理ユニット20は、妨害電波により利用できないチャンネル数の情報を取得し(ステップSC1)、利用できないチャンネル数が所定の閾値を超えたか否か判断する(ステップSC2)。
 電池管理ユニット20は、利用できないチャンネル数が所定の閾値以下であるときには、組電池BTの充電可能電流および放電可能電流を定格の最大値に設定して、上位装置へ設定値を送信する(ステップSC3)。
 続いて、電池管理ユニット20は、電池監視ユニット10との通信周期を通常時の値(所定の標準値)に設定する(ステップSC4)。本実施形態では、電池監視ユニット10との通信周期の通常時の値は、0.1秒である。
 ステップSC2にて利用できないチャンネル数が所定の閾値を超えていると判断したときには、電池管理ユニット20は、例えば上述の第1実施形態のステップSB5と同様に、電池監視ユニット10との通信周期を長くして、通信周期と、組電池BTのSOCおよびSOHと、組電池BTの温度とに応じて、充電可能電流および放電可能電流の値を設定する(ステップSC5)。
 ステップSC6乃至ステップSC13は、上述の第1実施形態のステップSB6乃至ステップSB13と同様である。
 上記のように、本実施形態の蓄電池装置では、通信状態が悪いときに、電池管理ユニット20と電池監視ユニット10との間での通信頻度を下げることにより、利用できるチャンネルに通信が輻輳することを回避し、組電池BTの温度の測定値が受信されないことを回避している。
 すなわち、本実施形態の蓄電池装置によれば、電波による通信を行う信頼性の高い蓄電池装置を提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (5)

  1.  複数の電池セルを含む組電池と、前記電池セルの電圧と前記組電池の少なくとも1か所の温度とを測定する電池監視ユニットと、を備えた電池モジュールを複数と、
     複数の前記電池監視ユニットと電波による通信を行い、前記電池セルの電圧の測定値と前記組電池の温度の測定値とを周期的に受信する電池管理ユニットと、を備え、
     前記電池管理ユニットは、複数の前記電池監視ユニットとの通信が妨害されていると判断したときに、前記電池監視ユニットとの通信周期を長くするとともに、少なくとも前記通信周期に対応する、前記組電池の充電可能電流の値および放電可能電流の値を設定し、設定した値を上位装置へ通知する、蓄電池装置。
  2.  前記電池管理ユニットは、複数の前記電池監視ユニットとの間で前記通信の失敗による再送信を行った回数をカウントし、所定期間における再送信の回数が所定の閾値を超えたときに、複数の前記電池監視ユニットとの前記通信が妨害されていると判断する、請求項1記載の蓄電池装置。
  3.  前記電池管理ユニットは、複数の前記電池監視ユニットとの間で複数のチャンネルを切り替える方式による前記通信を行い、妨害により前記通信に使用できないチャンネル数が所定の閾値を超えたときに、複数の前記電池監視ユニットとの前記通信が妨害されていると判断する、請求項1記載の蓄電池装置。
  4.  前記電池管理ユニットにより設定される前記組電池の充電可能電流の値および放電可能電流の値は、前記通信周期と、前記組電池のSOHおよびSOCと、前記組電池の少なくとも1か所の温度と、に対応する値である、請求項1乃至請求項3のいずれか1項記載の蓄電池装置。
  5.  複数の前記組電池に流れる電流を検出する電流センサを更に備え、
     前記電池管理ユニットは、前記電流センサにより検出された電流の値を取得し、前記組電池の充電電流の値が充電電流制限値を所定期間連続して超えたときに、前記組電池の充電を停止する要求を前記上位装置へ送信し、前記組電池の放電電流の値が放電電流制限値を所定期間連続して超えたときに、前記組電池の放電を停止する要求を前記上位装置へ送信する、請求項1乃至請求項4のいずれか1項記載の蓄電池装置。
PCT/JP2019/036397 2019-09-17 2019-09-17 蓄電池装置 WO2021053721A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980095907.1A CN113785429A (zh) 2019-09-17 2019-09-17 蓄电池装置
EP19945830.8A EP4033584A4 (en) 2019-09-17 2019-09-17 STORAGE BATTERY DEVICE
JP2021546082A JP7146106B2 (ja) 2019-09-17 2019-09-17 蓄電池装置
PCT/JP2019/036397 WO2021053721A1 (ja) 2019-09-17 2019-09-17 蓄電池装置
US17/654,851 US20220200316A1 (en) 2019-09-17 2022-03-15 Storage battery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036397 WO2021053721A1 (ja) 2019-09-17 2019-09-17 蓄電池装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/654,851 Continuation US20220200316A1 (en) 2019-09-17 2022-03-15 Storage battery apparatus

Publications (1)

Publication Number Publication Date
WO2021053721A1 true WO2021053721A1 (ja) 2021-03-25

Family

ID=74884027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036397 WO2021053721A1 (ja) 2019-09-17 2019-09-17 蓄電池装置

Country Status (5)

Country Link
US (1) US20220200316A1 (ja)
EP (1) EP4033584A4 (ja)
JP (1) JP7146106B2 (ja)
CN (1) CN113785429A (ja)
WO (1) WO2021053721A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147735A1 (zh) * 2022-02-07 2023-08-10 华为技术有限公司 一种通信方法、装置及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103008A1 (ja) 2012-12-28 2014-07-03 株式会社日立製作所 組電池システム、蓄電池システム、及び組電池システムの監視制御方法
WO2015189898A1 (ja) 2014-06-09 2015-12-17 日立オートモティブシステムズ株式会社 電池システム
JP2018081837A (ja) 2016-11-17 2018-05-24 株式会社オートネットワーク技術研究所 車両用のバッテリ監視装置及び車両用のバッテリ監視システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682916B2 (ja) * 2005-10-11 2011-05-11 株式会社デンソー 通信システム及び通信装置
EP2413420B1 (en) * 2009-03-27 2018-11-21 Hitachi, Ltd. Electric storage device
JP5755540B2 (ja) * 2011-09-20 2015-07-29 株式会社東芝 蓄電池装置及び蓄電池装置の運転方法
WO2014040760A1 (en) * 2012-09-14 2014-03-20 Siemens Aktiengesellschaft Method and apparatus for performing energy management in a power supply grid
US10193932B2 (en) * 2014-11-11 2019-01-29 Solarcity Corporation Real-time energy data publishing systems and methods
US9882401B2 (en) * 2015-11-04 2018-01-30 Powin Energy Corporation Battery energy storage system
US20190074556A1 (en) * 2016-03-15 2019-03-07 Kabushiki Kaisha Toshiba Storage battery device, storage battery device control method, and program
TWI627813B (zh) * 2016-12-20 2018-06-21 財團法人工業技術研究院 電池管理系統及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103008A1 (ja) 2012-12-28 2014-07-03 株式会社日立製作所 組電池システム、蓄電池システム、及び組電池システムの監視制御方法
WO2015189898A1 (ja) 2014-06-09 2015-12-17 日立オートモティブシステムズ株式会社 電池システム
JP2018081837A (ja) 2016-11-17 2018-05-24 株式会社オートネットワーク技術研究所 車両用のバッテリ監視装置及び車両用のバッテリ監視システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033584A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147735A1 (zh) * 2022-02-07 2023-08-10 华为技术有限公司 一种通信方法、装置及***

Also Published As

Publication number Publication date
EP4033584A1 (en) 2022-07-27
CN113785429A (zh) 2021-12-10
JPWO2021053721A1 (ja) 2021-03-25
JP7146106B2 (ja) 2022-10-03
US20220200316A1 (en) 2022-06-23
EP4033584A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
KR101973054B1 (ko) 배터리 팩 및 배터리 팩의 제어 방법
US7535199B2 (en) Battery pack
JP5363740B2 (ja) 充電制御回路、電池パック、及び充電システム
KR101668971B1 (ko) 배터리 팩의 사이클 수명 용량을 개선하기 위한 방법 및 장치
JP5425777B2 (ja) 絶縁キャパシタを用いたバッテリーセル電圧測定装置及び方法
US10775443B2 (en) Secondary battery degradation determination device
JP2000295776A (ja) バッテリー状態監視回路及びバッテリー装置
JP2009106117A (ja) 充電装置
JP2010097760A (ja) 蓄電システム
US11158888B2 (en) Management device and power storage system
JP2009301941A (ja) 二次電池パック
JPWO2019220804A1 (ja) 管理装置、蓄電システム
EP3961234A1 (en) Apparatus and method for diagnosing abnormal degradation of battery cell
WO2021053721A1 (ja) 蓄電池装置
US20180175461A1 (en) Method for controlling charge capacity of ups battery
JP3249261B2 (ja) パック電池
JP2014050269A (ja) 組電池の均等充電システム
JP2010009840A (ja) 組電池およびそれを備えた電池システム
JP5165405B2 (ja) 充電制御回路、電池パック、及び充電システム
KR20200027326A (ko) 배터리의 고장을 진단하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리팩
US20210351605A1 (en) Battery Charge/Discharge Control Device and Battery Management Device
JP4117467B2 (ja) 組電池システム
JP7073821B2 (ja) 電池装置および電池システム
JPH06231805A (ja) 電池の過充電過放電防止方法
WO2013008397A1 (ja) 電池パック、充電制御システムおよび充電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019945830

Country of ref document: EP

Effective date: 20220419