WO2021052266A1 - 车载固态车壳型光伏电源半导体调温装置 - Google Patents

车载固态车壳型光伏电源半导体调温装置 Download PDF

Info

Publication number
WO2021052266A1
WO2021052266A1 PCT/CN2020/114935 CN2020114935W WO2021052266A1 WO 2021052266 A1 WO2021052266 A1 WO 2021052266A1 CN 2020114935 W CN2020114935 W CN 2020114935W WO 2021052266 A1 WO2021052266 A1 WO 2021052266A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power supply
photovoltaic power
state
semiconductor temperature
Prior art date
Application number
PCT/CN2020/114935
Other languages
English (en)
French (fr)
Inventor
赵中红
Original Assignee
赵中红
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵中红 filed Critical 赵中红
Publication of WO2021052266A1 publication Critical patent/WO2021052266A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the invention belongs to the technical field of motor vehicle ancillary facilities, and in particular relates to a vehicle-mounted solid-state car shell type photovoltaic power semiconductor temperature regulating device.
  • the existing vehicle air-conditioning equipment fuel-based vehicles cannot work when the engine is turned off; if the fuel-based vehicle is parked, if the environmental conditions are ignored, the engine is turned on for a long time and the air-conditioning equipment is used.
  • the semiconductor temperature control device adopts the method of mechanical ventilation cycle temperature adjustment;
  • the photovoltaic circuit is coupled with the on-board circuit. Due to the day and night, cloudy and sunny weather, it is impossible to avoid problems such as power loss and accidental failure of the on-board power circuit. This results in a combination of silicon photovoltaic power supply and semiconductor temperature control device, which is attached to the vehicle. In practical applications in the field of facility technology, so far there is no vehicle in the world that can meet the practical requirements of commercial general-purpose mass production.
  • the semiconductor temperature control device adopts a mechanical ventilation cycle temperature adjustment method.
  • the photovoltaic power supply The power circuit is connected to the vehicle-mounted circuit. Due to the weather, day and night, cloudy and sunny, the output of the photovoltaic power supply voltage changes from time to time. It is impossible to avoid the problems of the vehicle power supply and unexpected failures such as the fan drive motor. Therefore, it is difficult to meet the industrial application. Sexual requirements, to achieve the purpose of commercial general-purpose mass production.
  • the technical solution provided by the present invention is: a vehicle-mounted solid-state car shell-type photovoltaic power semiconductor temperature regulating device; the device consists of a vehicle-mounted solid-state car shell-type silicon photovoltaic power source, a semiconductor temperature regulating device, a load switch, a control component, and electric heating It is composed of the car body shell part and the body surface of the car body. It does not need to be retracted or adjusted in real time. Instead, it is installed and fixed in the factory when it is mass-produced.
  • the photovoltaic power supply components on the surface, side and glass surface of the motor vehicle, the electrical energy generated by sunlight when the motor vehicle is parked or driving, the photovoltaic power circuit can be selected by manual control and can not be connected and coupled with the on-board circuit, through solid-state semiconductor
  • the temperature adjustment device is a semiconductor refrigeration chip, which uses the Peltier effect and adopts a non-mechanical rotating ventilation convection method, that is, an energy exchange method of thermodynamic convection conduction to adjust the temperature in the vehicle body.
  • the invention can effectively meet the needs of functions such as cooling and heating in the temperature adjustment of the interior space of the motor vehicle when the engine is stalled and running. It can provide a cool and comfortable vehicle when the engine stalls in the high-temperature season of small cars and large buses.
  • the internal space temperature can be changed to a heating mode in winter, which can effectively reduce the energy loss of the main air conditioner when driving; the invention adopts a mode in which the photovoltaic power supply can be connected and coupled to the on-board power supply circuit and work completely independently, thus realizing no need for personnel and
  • the on-board computer controls and intervenes in real time, strong sunshine is strong, weak sunshine is weak, no cooling at night, cloudy and rainy days, to meet the fully autonomous working mode of several days, months and even unlimited time periods, avoiding the parking period of the car power supply, several days or even several days.
  • the photovoltaic power supply When the power is charged for a long time in the month, the photovoltaic power supply is exhausted due to the lack of power output at night, rainy, and many other unsafe factors; when the ambient temperature is suitable, the driver can control and select in real time, and the semiconductor temperature control device can exit the working state and remove the car shell.
  • the type silicon photovoltaic power circuit is switched to the power output module to deliver electric energy to the vehicle power circuit, charge the battery and use it for vehicle electrical equipment, which can well meet the requirements of industrial practicability and achieve the purpose of commercial general mass production.
  • Figure 1- The principle block diagram of the vehicle-mounted solid-state car shell-type photovoltaic power semiconductor temperature control device.
  • FIG. 1 Figure 2-Schematic diagram of the vehicle-mounted solid-state car shell-type silicon photovoltaic power supply and the car body with heat dissipation gap installation and semiconductor temperature control device layout.
  • Figure 4- The second block diagram of the principle diagram of the vehicle-mounted solid-state car shell-type photovoltaic power semiconductor temperature regulating device.
  • the vehicle-mounted solid-state car-shell-type photovoltaic power semiconductor temperature control device includes a vehicle-mounted solid-state car-shell-type silicon photovoltaic power supply 1, a semiconductor temperature control device 2, a heat dissipation gap 3, and a vehicle-mounted solid state Car shell type silicon photovoltaic power supply front vent 4, vehicle solid car shell type silicon photovoltaic power supply side vent 5, vehicle solid car shell type silicon photovoltaic power source rear vent 6 and load switch, control components; vehicle solid car shell type silicon
  • the photovoltaic power supply 1 is only installed on the top of the body shell 11, and the heat dissipation gap 3 is used to install the combination; prevent direct sunlight from directly irradiating the semiconductor temperature control device and the outer surface of the upper body of the body, which seriously affects the cooling condition of the semiconductor temperature control device due to the temperature rise effect And increase the vehicle body temperature; the front, side, and back of the heat dissipation gap 3 are left with vehicle solid-state car shell-type silicon photo
  • the strong sunlight will result in strong cooling power. If the sun is weak, the cooling power is weak, and if there is no sun, there is no cooling. It is in a fully automatic working mode without human control intervention, and can be put into work for several days, months or even unlimited time.
  • Example 2 As shown in Figure 1 and Figure 3, the vehicle-mounted solid-state car shell-type silicon photovoltaic power supply 1 is installed and combined with the surface of the car body structure in a way without heat dissipation gap, which can reduce the wind resistance of the vehicle and reduce the production and manufacturing cost; the device includes the vehicle Solid-state car shell type silicon photovoltaic power supply 1, semiconductor temperature control device 2, semiconductor temperature control device hood 7, semiconductor temperature control device hood front vent 8, semiconductor temperature control device hood side vent 9, semiconductor temperature control device shading The vent 10 and the load switch and control components behind the cover; the semiconductor temperature control device 2 is installed in the reserved position of the car shell-type silicon photovoltaic power supply 1 in an inlaid manner, and the semiconductor temperature control device light shield 7 is installed outside to prevent direct sunlight Illuminate the outer surface of the semiconductor temperature control device to form a temperature rise effect that affects the cooling conditions of the semiconductor temperature control device; there are air convection channels 8, 9, and 10 on the front, side and back of the light shield of the semiconductor temperature control device, which are diss
  • the cooling power is strong, and the sun is bright. If it is weak, the cooling power is weak, and there is no cooling if there is no sunlight. It is in a fully automatic working mode without human control intervention, and it can be put into work for several days, months or even unlimited time.
  • the vehicle-mounted solid-state car shell-type photovoltaic power semiconductor temperature control device includes a vehicle-mounted solid-state car shell-type silicon photovoltaic power supply 1, a semiconductor temperature control device 2, a heat dissipation gap 3, and a vehicle-mounted solid-state car shell type.
  • the cooling power is strong, if the sun is weak, the cooling power is weak, and there is no cooling if there is no sun. It is in a fully automatic operation without human control intervention.
  • the working mode can be put into work for several days, months or even unlimited time.
  • Example 4 is shown in Figure 1.
  • the vehicle-mounted solid-state car shell-shaped The output circuit of the silicon photovoltaic power supply 1 is directly connected to various electric heaters installed in the car body to increase and adjust the temperature in the car body to obtain the best electric energy thermal energy conversion efficiency, that is, choose not to connect and couple with the on-board power supply circuit. Fully independent electric heating mode. At this time, the input power parameters of the electric heater device are directly matched with the output power parameters of the car shell silicon photovoltaic power supply circuit to form a connection.
  • the heating power is strong, and if the sun is weak, the heating is The power is weak, and there is no heating if there is no sunlight. It is in a fully automatic working mode without human control and intervention, and it can be put into work for several days, months or even unlimited time.
  • Embodiment 5 is shown in Figure 1.
  • the ambient temperature is suitable for the drivers and passengers
  • the drivers and passengers use the control components and load switches to switch the on-board solid-state car shell silicon photovoltaic power supply 1
  • the electric energy is switched to the power output module, and the battery is charged through the on-board power supply or used by various on-board electrical equipment.
  • Example 6 As shown in Figure 4, the electric energy generated by the vehicle-mounted solid-state car shell-type silicon photovoltaic power supply 1 is first connected to the power output module, and then the load switch is controlled by the control component, and the semiconductor temperature regulating device 2 and the vehicle power supply are respectively selected according to needs. , The electric heating device is connected to facilitate the matching of the output voltage of the power supply and the various electrical parameters of the load circuit to build the circuit.
  • Example 7 is shown in Figure 1. After the semiconductor temperature control device is used to input the positive and negative power, the semiconductor temperature control device 2 immediately becomes hot end and the hot end becomes cold end. The characteristics of the semiconductor temperature control device 2 are changed according to the environmental temperature. , Load switch, control and switch the positive and negative direction of the input power of the semiconductor temperature control device 2, determine the cooling or heating of the semiconductor temperature control device, and adjust the temperature in the car.
  • Example 8 The vehicle-mounted solid-state car shell-type silicon photovoltaic power supply must be powered by a load switch or power output module through a silicon unidirectional conducting diode, and then connected to the vehicle power circuit, electric heater, and other circuits that have common intersections to prevent the vehicle from being connected. When the power supply circuit is working, the current feedback flows back to the on-board solid-state car shell silicon photovoltaic power supply or power output module and other circuits.
  • the output power of the on-board solid-state car shell silicon photovoltaic power supply is greater than the cooling power required by the semiconductor temperature control device 3
  • the output power of the car-shell silicon photovoltaic power supply is not allowed to consume the capacity of the on-board power supply when the output is zero due to the weather, day and night, overcast and rainy; 4After the photovoltaic temperature control device is put into use, it does not need to be manually adjusted and controlled in real time. Continuously self-adapting to the weather status and independent work in an unlimited time period; the vehicle-mounted solid-state car shell-type silicon photovoltaic power semiconductor temperature control device provided by the present invention can fully meet the above conditions. See the following analysis for details.
  • cooling power room area ⁇ 140W ⁇ 180W (this is the living room, The value for the restaurant, the living room is lower than this value)
  • This formula is calculated based on a room with a floor height of 2.5 meters, that is, about 140W ⁇ 180W cooling power per 2.5m 3 space, and about 56W ⁇ 72W cooling power per 1m 3 space. .
  • the car body has different sizes. Although the space inside the car body will inevitably increase, the surface area of the car body, that is, the light-receiving area will also increase in proportion to it, that is, the solid car shell type of the car. The surface area of the power generation components of the silicon photovoltaic power supply and the photovoltaic power generation also increase proportionally, and the input power provided to the semiconductor refrigeration device also increases linearly and proportionally. Therefore, although the analysis below is based on ordinary SUV models, the other categories are not listed one by one.
  • Ordinary SUV car body space is about: 1.8m (length) ⁇ 1.1m (width) ⁇ 1.2m (height) ⁇ 2.376m 3 ; because the body is affected by the natural environment more than the house, the following analysis calculates the required amount of cooling power For the upper limit calculation, about 2.376m 3 ⁇ 72W ⁇ 171.07W is required.
  • the theoretical efficiency of the battery is still 20%-22% under the AM0 spectral conditions, and later modified to 25% (AM1.0 spectral conditions)
  • the photoelectric conversion efficiency of commercial monocrystalline silicon solar cells and light-transmitting film solar cells, industrial Practical common type is about 17%, up to 24%, and the service life is generally up to 15 years, up to 25 years, which is more cost-effective than polysilicon solar cells with a conversion efficiency of only about 12%; the area of commercial solar panels / General calculation formula for output power: 1000W/m 2 ⁇ 17-22% (photoelectric conversion efficiency) ⁇ 170-220W; the efficiency can be calculated as an intermediate value of 19% during analysis and calculation.
  • the present invention strictly considers the calculation by pressing the limit value of 17%. That is, the output power of 1m 2 is 1000W/m 2 ⁇ 17% ⁇ 170W.
  • SUV car's top-view projection light-receiving area and available photovoltaic power hood 1.2m (length) ⁇ 1.0m (width) ⁇ 1.2m 2 ; car top 1.9m (length) ⁇ 1.2m (width) ⁇ 2.28m 2 , the total is about 3.48m 2 ; Available photovoltaic power: 3.48m 2 ⁇ 170W ⁇ 591.6W.
  • the comprehensive light-receiving area (top view plus side) of the SUV vehicle in the natural environment can provide photovoltaic power: the photovoltaic power on the side of the car body, the door photovoltaic module plus the side glass glued light-transmitting film type photovoltaic module, the area is about 1.8m 2 ⁇ 2; consider the above, In the afternoon, the sun irradiates the car body according to the photovoltaic power provided by the top and one side of the light, then the vehicle-mounted solid-state car shell-type silicon photovoltaic power supply can obtain a total photovoltaic power power of about (3.48m 2 +1.8m 2 ) ⁇ 170W ⁇ 897.6W.
  • Photovoltaic power is converted into cooling output power by a commercial semiconductor temperature control device, that is, a semiconductor refrigeration sheet: for example, the input power of the xx type semiconductor temperature control device, that is, a semiconductor refrigeration sheet, has an input power of 231W and a cooling power of 128W.
  • the conversion efficiency is generally about 0.5541.
  • the on-board solid-state car shell-type photovoltaic power semiconductor temperature control device can effectively meet the conditions of engine shutdown and vehicle parking and driving under the conditions of looking down and looking down and single-side comprehensive light reception. It can also provide a cool and comfortable interior space temperature when the engine of large buses is turned off and parked, which can effectively reduce the energy loss of mechanical main air-conditioning when driving.
  • the vehicle-mounted solid-state car shell-type silicon photovoltaic power supply is installed and combined with certain parts of the car body structure surface part with a certain heat dissipation gap to prevent direct sunlight from directly irradiating the outer surface of the semiconductor temperature control device, forming a temperature rise effect that seriously affects the semiconductor adjustment Cooling conditions of the temperature control device; there are ventilation holes on the front, side and back of the heat dissipation gap, and the air convection channel formed by the heat dissipation gap dissipates the heat from the hot end of the semiconductor temperature control device to ensure reliable operation of the semiconductor temperature control device; Sunlight directly illuminates the surface of the car body, causing the temperature rise effect in the car body, indirectly preventing the temperature of the engine part in the car body from being too high, and inducing unsafe phenomena such as fire and spontaneous combustion of gasoline vehicles.
  • the on-board solid-state car shell-type silicon photovoltaic power supply and the car body are installed and combined without a heat dissipation gap.
  • the semiconductor temperature control device is installed in the on-board solid-state car shell-type silicon photovoltaic power supply reserved in a mosaic manner.
  • the light shield of the semiconductor temperature control device is installed outside to prevent direct sunlight from irradiating the outer surface of the semiconductor temperature control device, forming a temperature rise effect that seriously affects the cooling conditions of the semiconductor temperature control device; the front, side, and side surfaces of the semiconductor temperature control device light shield An air convection channel is left behind to dissipate the heat generated by the hot end of the semiconductor temperature control device through air convection.
  • the vehicle-mounted solid-state car shell-type silicon photovoltaic power output circuit is directly connected to the input circuit of the semiconductor temperature control device through the control component and load switch; the vehicle-mounted solid-state car shell-type silicon photovoltaic
  • the output voltage, current and power parameters of the power supply circuit are matched and connected according to the parameters of the input power of the semiconductor temperature control device to form the circuit, that is, it can choose to use the mode of completely independent work without connecting and coupling with the on-board power supply circuit, so as to achieve real-time control intervention without personnel, sunshine Strong refrigeration, weak sunshine, weak refrigeration, no refrigeration at night, rainy days, and fully autonomous working mode for days, months or even unlimited time, avoiding long-term charging and power consumption during vehicle power parking periods, days or even months We should wait for many unsafe factors to better meet the requirements of industrial practicability and achieve the purpose of commercial general-purpose mass production.
  • the output circuit of the on-board solid-state car shell-type photovoltaic power supply is directly connected to the control component and load switch.
  • Various electric heating devices installed in the car body increase and adjust the temperature of the car body and the seat cushion to obtain the best electric heat conversion efficiency, that is, the electric heating mode that is not connected to the car power circuit and works independently in its own circuit. Realize a fully autonomous working mode without human real-time control intervention and unlimited time period, so as to better meet the requirements of industrial practicability and achieve the purpose of commercial general-purpose mass production.
  • the semiconductor temperature control device After the semiconductor temperature control device is used to input the positive and negative power of the power supply, the semiconductor temperature control device immediately changes the characteristics of the cold end to the hot end and the hot end to the cold end. According to the environmental temperature, the semiconductor temperature control device is controlled to switch through the control components and load switches. Input the positive and negative directions of the power supply to determine the cooling or heating of the semiconductor thermostat, and adjust the temperature in the car.
  • the electrical energy of the on-board solid-state car shell photovoltaic power supply is switched to the power output module through the control component and load switch, and the battery is charged through the on-board power circuit Or for various on-board electrical equipment.
  • the circuit of the vehicle-mounted solid-state car-shell silicon photovoltaic power supply is powered by the load switch and the power output module through a silicon unidirectional conducting diode, and then connected to the vehicle power supply circuit, electric heater and other circuits with common intersections to prevent the vehicle power supply.
  • the current feedback flows back to the on-board solid-state car shell silicon photovoltaic power supply or power output module and other circuits.
  • the electric energy generated by the on-board solid-state car shell silicon photovoltaic power supply is first connected to the power output module, and then connected with the semiconductor temperature control device, electric heating device, and on-board power supply. , The storage battery and the on-board electrical equipment are connected.
  • the vehicle-mounted solid-state car shell-type photovoltaic power supply is assembled and connected with monocrystalline silicon, polysilicon, and light-transmitting film solar photovoltaic cell components; the side glass surface of the car body is assembled and connected with light-transmitting film solar photovoltaic cell components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种车载固态车壳型光伏电源半导体调温装置,具体涉及机动车辆附属设施技术领域,该车载固态车壳型光伏电源半导体调温装置由安装在车辆及其玻璃表面上与车身壳体(11)同型的光伏电源(1),靠阳光照射产生电能,通过半导体调温装置(2)利用珀尔帖(Peltier)效应,采用热力学对流传导的能量交换方式,调节车体内温度;不使用车载即时安装收放式光伏电源和机械通风调温;可以不与车载电源连接,能够不限车辆状态独立的调节车内温度,从根本上解决了车辆驻停阳光照射车体,车内温度过高所带来的极度不适。该车载固态车壳型光伏电源半导体调温装置也可用于船只、轨道交通车辆、房屋建筑等内部温度调整。

Description

车载固态车壳型光伏电源半导体调温装置 技术领域
本发明属于机动车辆附属设施技术领域,具体涉及一种车载固态车壳型光伏电源半导体调温装置。
背景技术
目前已有的车载空调设备,燃油型车辆在发动机熄火时不能制冷工作;燃油型车辆在驻停期间如果不顾及环境条件,长时间开启发动机投入空调设备,在空气对流变化转弱或无风天气时,容易发生因汽车尾气环裹车辆造成人员窒息伤亡的事故;电动型车辆在长时间驻停期间,如开启空调设备电能损耗很大,严重影响甚至丧失单次充电后可行驶的里程数;各种车辆在行驶中开启空调设备,燃油或电能损耗都会明显增加;尽管清洁能源硅光伏电源和半导体调温装置两项技术问世由来已久,而且与此相关的车辆空调技术方案、方法繁多,但是皆因难以满足商业实用性通用量产应用的要求,例如采用机动车辆光伏电源即时安装收放的方式、机械旋转支撑调整的方式;半导体调温装置采用机械通风循环调温的方式;在长时间驻停期间内,光伏电路与车载电路连接耦合,因天气昼夜、阴晴变化,无法避免车载电源电路失电和意外故障等问题,造成硅光伏电源和半导体调温装置组合装置,在车辆附属设施技术领域实际应用中,截止目前为止世界上尚无能满足商业化通用量产实用性要求的车辆问世。
技术问题
目前已有发明车载光伏电源采用即时安装收放的方式,机械旋转支撑调整的方式附着于车体;半导体调温装置采用机械通风循环调温的方式,在车辆长时间驻停的期间内,光伏电源电路与车载电路连接耦合,因天气昼夜、阴晴变化,光伏电源电压的输出从有到无时常变化,无法避免车载电源失电和风扇驱动电机等意外故障的问题,因此都难以满足工业实用性要求,达到商业化通用量产的目的。
技术解决方案
本发明所提供的技术解决方案是:一种车载固态车壳型光伏电源半导体调温装置;该装置由车载固态车壳型硅光伏电源、半导体调温装置、负荷切换开关、控制组件、电加热器、电源输出模块、车载电源、蓄电池和车载电器设备构建组成;依靠属于车体外壳部分与车体外表面同型,不用即时收放、调整的方式,而是采用在工厂量产时即安装固定在机动车壳体表面、侧面、玻璃表面上的光伏电源组件,在机动车驻停或行驶时靠太阳光照射产生的电能, 由人工控制选择光伏电源电路可以不与车载电路连接耦合,通过固态半导体调温装置即半导体制冷片,利用珀尔帖(Peltier)效应,采用非机械旋转通风对流的方式,即热力学对流传导的能量交换方式,调节车体内温度。
有益效果
本发明可以有效满足机动车辆发动机熄火驻停和行驶时,车内空间温度调整即制冷与加热等功能的需求,当小轿车和大型公交车辆高温季节发动机熄火驻停时,可提供清凉舒适的车内空间温度,冬季可变为加热升温工作模式,行驶时可以有效降低主空调能源损耗;本发明由于采用了光伏电源可以不与车载电源电路连接耦合,完全独立工作的模式,因此实现无需人员和车载计算机实时控制干预,日照强制冷强,日照弱制冷弱,夜间、阴雨天不制冷,满足数日数月乃至不限时间段的全自主的工作模式,避免车载电源驻停期间,数日乃至数月长时间带电,光伏电源因夜间、阴雨无电能输出,造成电源耗尽等诸多不安全因素;当环境温度适宜时,通过驾驶人员实时控制选择,半导体调温装可以退出工作状态,将车壳型硅光伏电源回路,切换至电源输出模块,将电能输送至车载电源回路,给蓄电池充电并供车载电器设备使用,能很好的满足工业实用性要求,达到商业化通用量产的目的。
附图说明
图1-车载固态车壳型光伏电源半导体调温装置原理框图一。
图2-车载固态车壳型硅光伏电源与车体采用有散热间隙安装及半导体调温装置布置示意图。
图3-车载固态车壳型硅光伏电源与车体采用无散热间隙安装及半导体调温装置和半导体调温装置遮光罩布置示意图。
图4-车载固态车壳型光伏电源半导体调温装置原理框图二。
图中标号:1-车载固态车壳型硅光伏电源,2-半导体调温装置,3-散热间隙,4-车载固态车壳型硅光伏电源前面通风口,5-车载固态车壳型硅光伏电源侧面通风口,6-车载固态车壳型硅光伏电源后面通风口,7-半导体调温装置遮光罩,8-半导体调温装置遮光罩前面通风口,9-半导体调温装置遮光罩侧面通风口,10-半导体调温装置遮光罩后面通风口,11-车身壳体。
本发明的最佳实施方式
实施例1如图1、图2、图3所示,车载固态车壳型光伏电源半导体调温装置,包括车载固态车壳型硅光伏电源1、半导体调温装置2、散热间隙3、车载固态车壳型硅光伏电源前面通风口4、车载固态车壳型硅光伏电源侧面通风口5、车载固态车壳型硅光伏电源后面通风 口6和负荷切换开关、控制组件;车载固态车壳型硅光伏电源1仅在车身壳体11的顶部,采用设置散热间隙3的方式安装组合;防止阳光直接照射半导体调温装置和车身上部外表面,因温升效应严重影响半导体调温装置的制冷工况和增加车体内温度;散热间隙3的前面、侧面、后面留有车载固态车壳型硅光伏电源通风口4、5、6,通过散热间隙形成的空气对流通道,消散半导体调温装置热端的热量,保证半导体调温装置正常工作;车载固态车壳型硅光伏电源1的电能,由控制组件控制负荷开关,直接连接至半导体调温装置2,不与车载电源电路连接,处于闭环独立工作的模式;在机动车驻停或行驶时靠太阳光照射产生的电能,通过固态半导体调温装置即半导体制冷片,利用珀尔帖(Peltier)效应,采用热力学对流传导的能量交换方式,不采用电动机械旋转通风对流的方式,调节车体内温度;此时车载固态车壳型硅光伏电源电路的输出功率参数与半导体调温装置的输入功率参数直接匹配组建连接,太阳光照强,则制冷功率强,太阳光照弱,则制冷功率弱,无太阳光照则不制冷,处于无需人员控制干预的完全自动的工作模式,作到可以数日数月乃至不限时间段的投入工作的状态。
本发明的实施方式
实施例2如图1、图3所示,车载固态车壳型硅光伏电源1,与车体结构表面采用无散热间隙的方式安装组合,可减少车辆行驶风阻和降低生产制造成本;装置包括车载固态车壳型硅光伏电源1、半导体调温装置2、半导体调温装置遮光罩7、半导体调温装置遮光罩前面通风口8、半导体调温装置遮光罩侧面通风口9、半导体调温装置遮光罩后面通风口10和负荷切换开关、控制组件;半导体调温装置2以镶嵌方式,安装在车载壳型硅光伏电源1的预留位置,其外部安装半导体调温装置遮光罩7,防止阳光直接照射半导体调温装置外表面,形成温升效应影响半导体调温装置的制冷工况;半导体调温装置遮光罩的前面、侧面、后面留有空气对流通道8、9、10,通过空气对流消散半导体调温装置工作时热端产生的热量;车壳型硅光伏电源1的电能,通过控制组件控制负荷开关,直接连接至半导体调温装置2,不与车载电源电路连接,处于闭环独立工作模式;在机动车驻停或行驶时靠太阳光照射产生电能,通过固态半导体调温装置即半导体制冷片,利用珀尔帖(Peltier)效应,采用热力学对流传导的能量交换方式,不采用电动机械旋转通风对流的方式,调节车体内温度;此时车载固态车壳型硅光伏电源电路的输出功率参数与半导体调温装置的输入功率参数直接匹配组建连接,太阳光照强,则制冷功率强,太阳光照弱,则制冷功率弱,无太阳光照则不制冷,处于无需人员控制干预的完全自动的工作模式,作到可以数日数月乃至不限时间段的投入工作的状态。
实施例3如图1、图2所示,车载固态车壳型光伏电源半导体调温装置,包括车载固态车壳型硅光伏电源1、半导体调温装置2、散热间隙3、车载固态车壳型硅光伏电源前面通 风口4、车载固态车壳型硅光伏电源侧面通风口5、车载固态车壳型硅光伏电源后面通风口6和负荷切换开关、控制组件;车载固态车壳型硅光伏电源1,在车身壳体11顶部和引擎盖上部,采用设置散热间隙3的方式安装组合;防止阳光直接照射半导体调温装置外表面,形成温升效应影响半导体调温装置的制冷工况;散热间隙3的前面、侧面、后面留有车载固态车壳型硅光伏电源通风口4、5、6,通过散热间隙形成的空气对流通道,消散半导体调温装置热端的热量,保证半导体调温装置可靠工作;同时防止阳光直接照射车体表面,造成车体内温升效应,间接防止车体内发动机部位温度过高,诱发汽油车起火自燃等不安全现象;车载固态车壳型光伏电源1的电能,由控制组件控制负荷开关,直接连接至半导体调温装置2,不与车载电源电路连接,处于闭环独立工作的模式;在机动车驻停或行驶时靠太阳光照射产生的电能,通过固态半导体调温装置即半导体制冷片,利用珀尔帖(Peltier)效应,采用热力学对流传导的能量交换方式,不采用电动机械旋转通风对流的方式,调节车体内温度;此时车载固态车壳型光伏电源电路的输出功率参数与半导体调温装置的输入功率参数直接匹配组建连接,太阳光照强,则制冷功率强,太阳光照弱,则制冷功率弱,无太阳光照则不制冷,处于无需人员控制干预的完全自动的工作模式,作到可以数日数月乃至不限时间段的投入工作的状态。
实施例4如图1所示,为提高车载固态车壳型硅光伏电源电能转换为热能的效率,当环境温度低于使用人员预期值时,通过控制组件、负荷开关,将车载固态车壳型硅光伏电源1的输出电路,直接连接至安装在车体内的各种电加热器,增加调整车体内的温度,以求获得最佳电能热能转换效率,即选择采用不与车载电源电路连接耦合,完全独立工作的电加热模式,此时电加热器装置的输入功率参数直接与车壳型硅光伏电源电路输出的功率参数匹配组建连接,太阳光照强,则加热功率强,太阳光照弱,则加热功率弱,无太阳光照则不加热,处于无需人员控制干预完全自动的工作模式,作到可以数日数月乃至不限时间段的投入工作的状态。
实施例5如图1所示,当环境温度适宜驾乘人员时,在车辆行驶、驻停或发动机熄火时,驾乘人员通过控制组件、负荷开关,将车载固态车壳型硅光伏电源1的电能,切换至电源输出模块,通过车载电源给蓄电池充电或供各种车载电器设备使用。
实施例6如图4所示,车载固态车壳型硅光伏电源1产生的电能,首先接入电源输出模块,然后通过控制组件控制负荷开关,根据需要分别选择与半导体调温装置2、车载电源、电加热器件连接,便于电源输出电压与负载电路的各种电气参数匹配吻合组建电路。
实施例7如图1所示,利用半导体调温装置输入电源正负反向后,半导体调温装置2 随即冷端变热端、热端变冷端的特性,根据环境温度高低不同,通过控制组件、负荷开关,控制切换半导体调温装置2的输入电源正负方向,决定半导体调温装置制冷或加热,调整车内温度。
实施例8车载固态车壳型硅光伏电源,通过负荷开关或电源输出模块供电需经过硅单向导通二极管后,再与车载电源电路、电加热器等有公共交集连接点的电路连接,防止车载电源电路工作时,电流反馈倒流至车载固态车壳型硅光伏电源或电源输出模块等电路。
工业实用性
本发明是否能满足工业实用性要求,达到商业化通用量产的目的,在采用上述技术方案的同时,取决于下述条件是否成立能否满足,①两个相互关联的关键因素a、b的条件是否成立:a.半导体调温装置的制冷输出功率是否大于车体内部空间温度调整所需要的制冷功率;b.车载固态车壳型硅光伏电源的输出功率是否大于半导体调温装置制冷所需要的输入功率;③车壳型硅光伏电源的输出功率因天气昼夜、阴雨变化输出为零时不允许消耗车载电源电能的容量;④光伏调温装置投入使用后,不需人工实时调整控制,可以不限时间段连续自适应天气的状态独立工作;本发明提供的车载固态车壳型硅光伏电源半导体调温装置,能充分满足上述条件,详见下述分析。
一般通用性制冷功率与制冷空间标准的技术参数要求:一般房间每平方米所需的制冷功率(w/m 2)参考依照下面公式计算:制冷功率=房间面积×140W~180W(此为客厅、餐厅取值,居室低于此值)此公式系按楼层高2.5米的房间计算,即每2.5m 3空间约需140W~180W制冷功率,换算至每1m 3空间约需56W~72W左右制冷功率。
车体内空间所需制冷功率分析:车体有大小不同之分,虽然车体大车体内空间也必然增大,但是其车体表面积即受光面积也随之正比例增大,即车载固态车壳型硅光伏电源的发电组件的表面积和光伏发电功率也正比例增大,提供给半导体制冷装置的输入功率也成线性正比例增大,因此下边虽然以普通SUV车型进行分析,但其余类同不一一列举;普通SUV车体内空间约:1.8m(长)×1.1m(宽)×1.2m(高)≈2.376m 3;由于车体受自然环境影响大于房屋,所以下述分析计算制冷功率需用量取上限值计算,约需2.376m 3×72W≈171.07W。
车载固态车壳型硅光伏电源发电功率分析(鉴于光伏功率与电功率与制冷功率换算至焦耳能量值基本相等,仅表达式符号不同,即1Wp≈1W等,为叙述方便,下面计算公式直接引用电功率单位W论述)一般通用类型,层压太阳能电池板组件,即太阳能电池板输出功率,20世纪70年代,华尔夫(M.Wolf)在现代条件下通过再次实验及详尽的讨论,得到硅 太阳能电池的理论效率在AM0光谱条件下仍然为20%~22%,以后又把它修改为25%(AM1.0光谱条件)商用单晶硅太阳能电池与透光膜太阳能电池的光电转换效率,工业实用普通型为17%左右,最高达到了24%,使用寿命一般可达15年,最高达25年,比转换效率仅12%左右的多晶硅太阳能电池的综合性价比高;商用太阳能电池板的面积/输出功率通用计算公式:1000W/m 2×17-22%(光电转换效率)≈170-220W;分析计算时效率可以取中间值19%计算,本发明从严考虑按下限值17%计算,即1m 2输出功率1000W/m 2×17%≈170W。
SUV车俯视投影受光面积及可提供光伏功率:引擎盖1.2m(长)×1.0m(宽)≈1.2m 2;车顶部1.9m(长)×1.2m(宽)≈2.28m 2,合计约3.48m 2;可获得光伏电源功率:3.48m 2×170W≈591.6W。
SUV车自然环境下综合受光面积(俯视加侧面)可提供光伏功率:车体侧面的光伏功率,车门光伏组件加侧面玻璃粘贴透光膜型光伏组件,面积约1.8m 2×2;考虑上、下午阳光照射车体按顶部和单侧面受光提供光伏功率计算,则车载固态车壳型硅光伏电源总共可获得光伏电源功率约为(3.48m 2+1.8m 2)×170W≈897.6W。
光伏功率通过商用半导体调温装置即半导体制冷片转换成制冷输出功率的分析:如xx型半导体调温装置即半导体制冷片输入功率231W,制冷功率128W,转换效率一般约为0.5541。
SUV车在自然环境下俯视和综合受光(俯视加单侧面受光)光伏电源输出功率转换为制冷功率与车体内空间所需制冷功率分析:①俯视光伏电源输出功率591.6W×0.5541(制冷转换率)≈327.8W(制冷功率),与车体内空间所需制冷功率比值:327.8W÷171.07W≈1.916倍;②综合受光面积光伏输出功率897.6W×0.5541(制冷转换率)≈497.3W(制冷功率),与车体内空间所需制冷功率比值:497.3W÷171.07W≈2.92倍。
通过上述分析可以得出,SUV车在自然环境下,车载固态车壳型光伏电源半导体调温装置,在俯视和俯视加单侧面综合受光条件下,均可有效满足发动机熄火车辆驻停时和行驶时车体内空间调温制冷需求,包括大型公交车辆发动机熄火驻停时也可以提供清凉舒适的车内空间温度,行驶时可以有效降低机械式主空调能源损耗。
车载固态车壳型硅光伏电源,采用与车体结构表面部分的某些部位,预置一定散热间隙的方式安装组合,防止阳光直接照射半导体调温装置外表面,形成温升效应严重影响半导体调温装置的制冷工况;散热间隙的前面、侧面、后面留有通风孔道,通过散热间隙形成的空气对流通道,消散半导体调温装置热端的热量,保证半导体调温装置能可靠工作;同时防止阳光直接照射车体表面,造成车体内温升效应,间接防止车体内发动机部位温度过高,诱 发汽油车起火自燃等不安全现象。
为降低生产制造成本,减少行车风阻,车载固态车壳型硅光伏电源与车体采用无散热间隙的方式安装组合,半导体调温装置以镶嵌方式安装在车载固态车壳型硅光伏电源预留的位置中间,其外部安装半导体调温装置遮光罩,防止阳光直接照射半导体调温装置外表面,形成温升效应严重影响半导体调温装置的制冷工况;半导体调温装置遮光罩的前面、侧面、后面留有空气对流通道,通过空气对流消散半导体调温装置工作时热端产生的热量。
为使半导体调温装置获得较高的电源输入功率,车载固态车壳型硅光伏电源输出回路,通过控制组件、负荷开关切换,直接与半导体调温装置输入回路连接;车载固态车壳型硅光伏电源电路的输出电压、电流、功率参数按半导体调温装置输入功率的参数匹配连接组建电路,即可以选择采用不与车载电源电路连接耦合,完全独立工作的模式,实现无需人员实时控制干预,日照强制冷强,日照弱制冷弱,夜间、阴雨天不制冷,满足数日数月乃至不限时间段的全自主的工作模式,避免车载电源驻停期间,数日乃至数月长时间带电,电源耗尽等诸多不安全因素,以便能较好的满足工业实用性要求,达到商业化通用量产的目的。
为提高车载固态车壳型硅光伏电源电能转换为热能的效率,当环境温度低于使用人员预期值时,通过控制组件、负荷开关,将车载固态车壳型光伏电源的输出电路,直接连接至安装在车体内的各种电加热器件,增加调整车体内和座垫的温度,以求获得最佳电热转换效率,即采用不与车载电源电路连接耦合,自成回路独立工作的电加热模式,实现无需人员实时控制干预,不限时间段的全自主的工作模式,以便能较好的满足工业实用性的要求,达到商业化通用量产的目的。
利用半导体调温装置输入电源正负反向后,半导体调温装置随即冷端变热端、热端变冷端的特性,根据环境温度高低不同,通过控制组件、负荷开关,控制切换半导体调温装输入电源正负方向,决定半导体调温装置制冷或加热,调整车内温度。
当环境温度适宜驾乘人员时,在车辆行驶、驻停或发动机熄火时,通过控制组件、负荷开关,将车载固态车壳型光伏电源的电能切换至电源输出模块,通过车载电源回路给蓄电池充电或供各种车载电器设备使用。
车载固态车壳型硅光伏电源的电路,通过负荷开关和电源输出模块供电需经过硅单向导通二极管后,再与车载电源电路、电加热器等有公共交集连接点的电路连接,防止车载电源电路工作时,电流反馈倒流至车载固态车壳型硅光伏电源或电源输出模块等电路。
为便于电源输出电路与负载电路的各种电气参数匹配吻合组建电路,车载固态车壳型硅光伏电源产生的电能,首先接入电源输出模块,然后与半导体调温装置、电加热器件、车 载电源、蓄电池和车载电器设备连接。
车载固态车壳型光伏电源选用单晶硅、多晶硅、透光膜型太阳能光伏电池组件组装连接;车体侧面玻璃表面选用透光膜型太阳能光伏电池组件组装连接。
上述电路中各种电气部件、设备,目前市面商业流通领域适用型号、规格、功能等品种齐全,可以充分满足电路构建组成的需要,本专利不限定具体型号选择要求。
序列表自由内容
为了使本发明所实现的技术手段及达成目的与功效易于明白和了解,本说明列举了具体实施方式和以车体上部安装四件套半导体调温装置为例,结合图示,对本发明的原理和特征进行了描述,应该理解所举具体实施例只用于解释本发明,并非用于限定本发明的范围,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种车载固态车壳型光伏电源半导体调温装置,其特征是包括车载固态车壳型硅光伏电源、半导体调温装置、负荷切换开关、控制组件、电加热器、电源输出模块、车载电源、蓄电池及车载电器,车载固态车壳型硅光伏电源与车体外表面同型,安装固定在机动车壳体上表面、侧面、玻璃表面,靠太阳光照射产生电能,通过固态半导体调温装置即半导体制冷片,采用热力学对流传导的能量交换方式,调节车体内温度,当环境温度适宜时,将电能输送至车载电源回路,给蓄电池充电供车载电器设备使用。
  2. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,车载固态车壳型硅光伏电源采用与车体结构表面部分的某些部位设置一定散热间隙的方式安装组合,散热间隙的前面、侧面、后面留有通风孔道,通过散热间隙形成的空气对流通道,消散半导体调温装置热端的热量,防止阳光直接照射车体表面,造成车体内温升效应。
  3. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,车载固态车壳型硅光伏电源采用与车体结构表面无散热间隙的方式安装组合,半导体调温装置以镶嵌方式安装在车载固态车壳型硅光伏电源预留位置中间,其外部安装半导体调温装置遮光罩,半导体调温装置遮光罩的前面、侧面、后面留有空气对流通道,通过空气对流消散半导体调温装置工作时热端产生的热量。
  4. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,车载固态车壳型硅光伏电源输出回路直接与半导体调温装置输入回路连接,车载固态车壳型硅光伏电源电路的输出电压、电流、功率参数按半导体调温装置输入功率的参数匹配连接组建电路,可以不与车载电源电路连接耦合,采用完全独立的模式工作。
  5. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,当环境温度低于使用人员预期值时,车载固态车壳型硅光伏电源的输出电路,通过控制组件控制负荷切换开关直接连接至安装在车体内的电加热器件,车载固态车壳型硅光伏电源电路的输出电压、电流、功率参数按车体内的电加热器件装置的输入功率的参数匹配连接组建电路,可以不与车载电源电路连接耦合,采用独立的自成回路的模式工作。
  6. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,当环境温度适宜驾乘人员时,通过控制组件控制负荷切换开关,将车载固态车壳型硅光伏电源的电能切换至电源输出模块,通过车载电源回路给蓄电池充电,供车载电器设备使用。
  7. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,车载固态车壳型硅光伏电源的电能由电源输出模块输出,供半导体调温装置,加热器,车载电源,蓄电池和车载电器等设备使用。
  8. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,通过控制组件,切换半导体调温装输入电源正负方向,决定半导体调温装置制冷或加热。
  9. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,车载固态车壳型硅光伏电源电路,通过硅单向导通二极管后,再与车载电源电路、电加热器等有公共交集连接点的电路连接。
  10. 根据权利要求1所述的一种车载固态车壳型光伏电源半导体调温装置其特征在于,车载固态车壳型硅光伏电源组件选用单晶硅、多晶硅、透光膜型太阳能光伏组件连接组装,车体侧面、后面玻璃表面选用透光膜型太阳能光伏组件连接组装。
PCT/CN2020/114935 2019-09-16 2020-09-13 车载固态车壳型光伏电源半导体调温装置 WO2021052266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921534287.0U CN210970589U (zh) 2019-09-16 2019-09-16 车载固态车壳型光伏电源半导体调温装置
CN201921534287.0 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021052266A1 true WO2021052266A1 (zh) 2021-03-25

Family

ID=71457518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114935 WO2021052266A1 (zh) 2019-09-16 2020-09-13 车载固态车壳型光伏电源半导体调温装置

Country Status (2)

Country Link
CN (1) CN210970589U (zh)
WO (1) WO2021052266A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605951A (zh) * 2019-09-16 2019-12-24 赵中红 车载固态车壳型光伏电源半导体调温装置***及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134571A (ja) * 2005-11-11 2007-05-31 Kyocera Corp 光電変換モジュール
CN102476591A (zh) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 具有透明薄膜太阳能板的汽车
CN205632037U (zh) * 2016-04-06 2016-10-12 南京航空航天大学 基于半导体制冷技术的太阳能车用降温***
CN206653895U (zh) * 2017-03-22 2017-11-21 陕西天益教育科技有限公司 一种纯电动车降温装置
CN107719064A (zh) * 2017-10-11 2018-02-23 东北大学 一种车载智能温控***
CN208134011U (zh) * 2018-04-25 2018-11-23 北京汉能光伏投资有限公司 一种车内温度调节装置及车辆
CN110605951A (zh) * 2019-09-16 2019-12-24 赵中红 车载固态车壳型光伏电源半导体调温装置***及使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134571A (ja) * 2005-11-11 2007-05-31 Kyocera Corp 光電変換モジュール
CN102476591A (zh) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 具有透明薄膜太阳能板的汽车
CN205632037U (zh) * 2016-04-06 2016-10-12 南京航空航天大学 基于半导体制冷技术的太阳能车用降温***
CN206653895U (zh) * 2017-03-22 2017-11-21 陕西天益教育科技有限公司 一种纯电动车降温装置
CN107719064A (zh) * 2017-10-11 2018-02-23 东北大学 一种车载智能温控***
CN208134011U (zh) * 2018-04-25 2018-11-23 北京汉能光伏投资有限公司 一种车内温度调节装置及车辆
CN110605951A (zh) * 2019-09-16 2019-12-24 赵中红 车载固态车壳型光伏电源半导体调温装置***及使用方法

Also Published As

Publication number Publication date
CN210970589U (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
CN107199847B (zh) 一种基于太阳能光伏的汽车驾驶室智能温控装置及方法
US20180208015A1 (en) System and method for controlling temperature of vehicle
CN102322695B (zh) 光伏驱动太阳能空气集热器
CN101734124A (zh) 汽车太阳能半导体温度调节装置
CN113071288B (zh) 一种太阳能车载辅助空调***
CN201246832Y (zh) 汽车用太阳能制冷辅助空调装置
WO2009089667A1 (fr) Régulateur thermique à énergie solaire pour automobile
CN105059087A (zh) 用于汽车空调的节能转换***
WO2021052266A1 (zh) 车载固态车壳型光伏电源半导体调温装置
CN208134011U (zh) 一种车内温度调节装置及车辆
CN203246285U (zh) 一种汽车用制冷降温***
CN211106838U (zh) 一种汽车停车用太阳能热电式空调***
CN201604496U (zh) 汽车温度调节装置
CN110605951A (zh) 车载固态车壳型光伏电源半导体调温装置***及使用方法
CN205202659U (zh) 用于汽车空调的节能转换***
CN206953935U (zh) 一种基于太阳能光伏的汽车驾驶室智能温控装置
CN208343897U (zh) 以太阳能为能源的半导体制冷加热汽车车窗恒温***
CN202254378U (zh) 光伏驱动太阳能空气集热器
CN108340750A (zh) 一种车载预调节空调***及其制作方法
JPS6078809A (ja) 電子機器を備えた自動車
CN108437767B (zh) 以太阳能为能源的半导体制冷加热汽车车窗恒温***
TWI485079B (zh) 結合車外軌道滑動太陽能面板的充電蓄電裝置
CN206374511U (zh) 一种车载多能源驱动的空调***
KR20110127545A (ko) 열전반도체를 이용한 대체에너지 전용 냉.온풍기
CN206703893U (zh) 一种汽车太阳能半导体制冷空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866243

Country of ref document: EP

Kind code of ref document: A1