WO2021051731A1 - 送风装置和家用电器 - Google Patents

送风装置和家用电器 Download PDF

Info

Publication number
WO2021051731A1
WO2021051731A1 PCT/CN2020/072144 CN2020072144W WO2021051731A1 WO 2021051731 A1 WO2021051731 A1 WO 2021051731A1 CN 2020072144 W CN2020072144 W CN 2020072144W WO 2021051731 A1 WO2021051731 A1 WO 2021051731A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan blade
output shaft
blade assembly
assembly
fan
Prior art date
Application number
PCT/CN2020/072144
Other languages
English (en)
French (fr)
Inventor
叶似锦
Original Assignee
广东美的环境电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的环境电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的环境电器制造有限公司
Publication of WO2021051731A1 publication Critical patent/WO2021051731A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
    • F04D29/646Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • This application relates to the technical field of fans, and in particular to an air supply device and household appliances.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • an object of the present application is to provide an air blowing device.
  • Another object of the present application is to provide a household appliance.
  • the first aspect of the technical solution of the present application provides an air supply device, including: a dual-shaft motor, the dual-shaft motor has a first output shaft and a second output shaft extending in the same direction, and the first output The shaft is provided with a hollow part penetrating in the axial direction, and the second output shaft passes through the hollow part; the first fan blade assembly is sleeved on the first output shaft to rotate under the drive of the first output shaft; the second fan The blade assembly is sleeved on the second output shaft to rotate under the drive of the second output shaft, wherein one of the first fan blade assembly and the second fan blade assembly is arranged on the inner side of the other in the radial direction.
  • the air supply device includes a dual-axis motor, a first fan blade assembly and a second fan blade assembly, and the first fan blade assembly and the second fan blade assembly are driven to rotate independently by the dual-axis motor.
  • the dual-shaft motor has a first output shaft and a second output shaft extending in the same direction, and the first output shaft is provided with a hollow part penetrating in the axial direction, and the second output shaft passes through the hollow of the first output shaft.
  • the first output shaft extends outward from the extension end of the first output shaft, and the first output shaft and the second output shaft do not interfere with each other, and can operate independently; the first fan blade assembly is sleeved on the first output shaft , The second fan blade assembly is sleeved on the second output shaft, so that when the two-axis motor is running, the first output shaft and the second output shaft drive the first fan blade assembly and the second fan blade assembly to rotate, and the first fan The blade assembly and the second fan blade assembly can rotate in the same direction or in the opposite direction, and the rotation speeds can be the same or different; in addition, one of the first fan blade assembly and the second fan blade assembly is located along the diameter of the other.
  • the radial dimensions of the first fan blade assembly and the second fan blade assembly are different, so that the outlet airflow of the air supply device forms a nested form of multiple different wind shapes, and the mutual disturbance between the outlet airflow is relatively high.
  • the air supply device in the above technical solution provided by this application may also have the following additional technical features:
  • the first fan blade assembly includes: a first fan blade support and a first fan blade, the first fan blade support is sleeved on the first output shaft, and the first fan blade is circumferentially provided on the first fan blade support The outer side wall surface and/or the inner side wall surface;
  • the second fan blade assembly includes: a second fan blade support and a second fan blade, the second fan blade support is sleeved on the second output shaft, and the second fan blade is circumferentially provided on the second The outer side wall surface and/or the inner side wall surface of the fan blade bracket.
  • the first fan blade assembly includes a first fan blade support and a first fan blade arranged on the first fan blade support, and the first fan blade is supported by the first fan blade support, wherein the first fan blade
  • the fan blade bracket is sleeved on the first output shaft to rotate with the first output shaft when the first output shaft rotates, and drives the first fan blade to rotate, thereby agitating the air through the first fan blade to form an air flow;
  • the first fan blade support is located inside, the first fan blade extends outward along the radial direction of the first fan blade support, and the first fan blade is arranged on the first fan blade in the circumferential direction
  • the first fan blade support is located on the outside, and the first fan blade extends inwardly along the radial direction of the first fan blade support.
  • the second fan blade assembly includes a second fan blade support and a second fan blade arranged on the second fan blade support, and the second fan blade is supported by the second fan blade support, wherein the second fan blade support It is sleeved on the second output shaft so as to rotate with the second output shaft when the second output shaft rotates, and drives the second fan blade to rotate, thereby agitating the air through the second fan blade to form an air flow;
  • the second fan blade is arranged in the circumferential direction
  • the second fan blade support is located on the inner side, the second fan blade extends outward along the radial direction of the second fan blade support, and the second fan blade is circumferentially arranged on the second fan blade support
  • the second fan blade holder is located on the outside, and the second fan blade extends inward along the radial direction of the second fan blade holder.
  • the first fan blade support has a ring shape
  • the second fan blade assembly is arranged on the inner side of the first fan blade support in the radial direction.
  • the first fan blade support is ring-shaped
  • the second fan blade assembly is arranged on the inner side of the first fan blade support in the radial direction, so that the air outlet surface of the first fan blade and the outlet of the second fan blade The wind surface does not overlap, so that the airflow generated by the first fan blade is cylindrical, and the airflow generated by the second fan blade is cylindrical, and the cylindrical airflow flows along the hollow part of the cylindrical airflow, thereby moving in the same direction Simultaneously send out airflows of different wind shapes.
  • one end of the first fan blade bracket close to the biaxial motor is sleeved on the first output shaft and fixedly connected with the first output shaft, and the second fan blade assembly is arranged on the inner side of the first fan blade support in the axial direction.
  • the radial inner side of the first fan blade bracket is a hollow structure, and the end of the first fan blade bracket close to the biaxial motor is sleeved on the first output shaft and is fixedly connected to the first output shaft.
  • One end of the fan blade bracket away from the dual-axis motor is open, and the second fan blade assembly extends from the end of the first fan blade bracket away from the dual-axis motor into the first fan blade bracket, so that the first fan blade assembly and the second fan blade
  • the fan blade components form an inner and outer nesting structure, which effectively reduces the axial size of the air supply device and reduces the space occupation.
  • At least one air passage is provided on the end surface of the first fan blade support near one end of the biaxial motor, and the air passage is corresponding to the second fan blade.
  • At least one air passage is provided on the end surface of the first fan blade bracket close to the biaxial motor, so that the air can flow through the first fan blade support in the axial direction.
  • the second fan blade is correspondingly arranged to ensure that the air on the inlet side is not blocked when the second fan blade rotates. It can be understood that if the end surface of the first fan blade bracket close to the biaxial motor is a closed structure, it will block the air flow on the air inlet side of the second fan blade, which will seriously affect the normal air outlet of the air supply device.
  • the air passage can be in the shape of holes, grilles or other shapes.
  • the distance between the inner edge and the outer edge of the second fan blade is greater than the distance between the inner edge and the outer edge of the first fan blade.
  • the distance between the inner edge and the outer edge of the second fan blade is greater than the distance between the inner edge and the outer edge of the first fan blade, that is, the distance from the root to the tip of the second fan blade
  • the size is larger than the size from the root to the tip of the first fan blade, so as to strengthen the air flow of the second fan blade, so that the inner air volume of the overall air flow of the air supply device is greater than the outer air volume, so as to avoid the inner air flow when the outer air volume is large Cause impact and cause turbulence in the air flow.
  • the second fan blade support has a ring shape
  • the first fan blade assembly is arranged on the inner side of the second fan blade support in the radial direction.
  • the second fan blade support is ring-shaped
  • the first fan blade assembly is arranged on the inner side of the second fan blade support in the radial direction, so that the air outlet surface of the second fan blade and the outlet of the first fan blade The wind surface does not overlap, so that the airflow generated by the second fan blade is cylindrical, and the airflow generated by the first fan blade is cylindrical, and the cylindrical airflow flows along the hollow part of the cylindrical airflow, thereby moving in the same direction Simultaneously send out airflows of different wind shapes.
  • the end of the second fan blade bracket away from the biaxial motor is sleeved on the second output shaft and is fixedly connected with the second output shaft, and the first fan blade assembly is arranged on the inner side of the second fan blade bracket in the axial direction.
  • the inner side of the second fan blade holder in the radial direction is a hollow structure, and the end of the second fan blade holder away from the biaxial motor is sleeved on the second output shaft and fixedly connected with the second output shaft.
  • the end of the two-blade bracket close to the dual-axis motor is an open structure, and the first fan-blade assembly extends from the end of the second fan-blade bracket close to the dual-axis motor into the second fan-blade bracket, so that the first fan-blade assembly and the second fan-blade
  • the fan blade components form an inner and outer nesting structure, which effectively reduces the axial size of the air supply device and reduces the space occupation.
  • At least one air passage is provided on the end surface of the second fan blade bracket away from the biaxial motor, and the air passage is corresponding to the first fan blade assembly.
  • At least one air passage is provided on the end face of the second fan blade support away from the biaxial motor, so that air can flow through the second fan blade support in the axial direction.
  • the first fan blades are correspondingly arranged to ensure that the air on the air outlet side is not blocked when the first fan blades rotate. It can be understood that if the end surface of the second fan blade bracket away from the biaxial motor is a closed structure, the air flow on the air outlet side of the first fan blade will be blocked, and the normal air outlet of the air supply device will be seriously affected.
  • the air passage can be in the shape of holes, grilles or other shapes.
  • the distance between the inner edge and the outer edge of the first fan blade is greater than the distance between the inner edge and the outer edge of the second fan blade.
  • the distance between the inner edge and the outer edge of the first fan blade is greater than the distance between the inner edge and the outer edge of the second fan blade, that is, the distance from the root to the tip of the first fan blade
  • the size is larger than the size from the root to the tip of the second fan blade, thereby strengthening the air flow of the first fan blade, so that the inner air volume of the overall air flow of the air supply device is greater than the outer air volume, so as to avoid air flow to the inner side when the outer air volume is large Cause impact and cause turbulence in the air flow.
  • the air outlet surface of the first fan blade assembly and the air outlet surface of the second fan blade assembly are in the same plane.
  • the air outlet surface of the first fan blade assembly and the air outlet surface of the second fan blade assembly are defined to be on the same plane.
  • the air flow out of the first fan blade assembly and the air flow out of the second fan blade assembly can be sent from the same starting point, so as to avoid mutual disturbance. It can be understood that the outlet air flow will spread to a certain extent during the flow process. If the outlet surface of the first fan blade assembly and the outlet surface of the second fan blade assembly are not on the same plane, the outlet surface will be close to the dual-axis motor.
  • the outflow airflow will interfere with the formation of the outflow airflow on the air outlet surface away from the dual-axis motor, especially when there is an axial distance between the first fan blade assembly and the second fan blade assembly, it will cause it to approach the dual-axis motor
  • One of the fan blade components disturbs the inlet air flow of a fan blade component away from the biaxial motor.
  • the air inlet surface of the first fan blade assembly and the air inlet surface of the second fan blade assembly are in the same plane.
  • the air inlet surface of the first fan blade assembly and the air inlet surface of the second fan blade assembly are defined to be on the same plane. Inside, the air inlet air flow of the first fan blade assembly and the air inlet air flow of the second fan blade assembly can respectively enter the two fan blade assemblies from the same starting point, so as to avoid mutual interference. It can be understood that there is a certain suction force on the air inlet surface of the fan blade assembly. If the air inlet surface of the first fan blade assembly and the air inlet surface of the second fan blade assembly are not in the same plane, it is easy to cause two fan blades under the action of suction.
  • the dual-axis motor includes: a first drive assembly, including a first stator structure and a first rotor structure, the first output shaft is fixedly connected to the first rotor structure; a second drive assembly, including a second stator structure And the second rotor structure, the second output shaft is fixedly connected with the second rotor structure, wherein the first output shaft and the second output shaft are respectively driven by the first drive assembly and the second drive assembly to independently rotate.
  • the dual-shaft motor includes a first drive assembly and a second drive assembly, where the first drive assembly includes a first stator structure, a first rotor structure, and a first output shaft, and the first output shaft is used to connect The first fan blade assembly, and the first output shaft is fixedly connected with the first rotor structure, so that when the first drive assembly is energized, the first stator structure drives the first rotor structure to rotate, and drives the first output shaft to rotate to achieve driving The first fan blade assembly rotates; the second drive assembly includes a second stator structure, a second rotor structure and a second output shaft, the second output shaft is used to connect the second fan blade assembly, and the second output shaft and the second rotor structure It is fixedly connected so that when the second drive assembly is energized, the second stator structure drives the second rotor structure to rotate and drives the second output shaft to rotate, so as to drive the second fan blade assembly to rotate.
  • the second output shaft extends from one end of the first output shaft and extends from the other end to form a mutually nested structure, so that the first output shaft and the second output shaft are located between the first drive assembly and the second drive assembly, respectively. Driven to rotate independently to drive the first fan blade assembly and the second fan blade assembly to rotate independently, thereby providing a differentiated wind shape.
  • the axis of the first output shaft coincides with the axis of the second output shaft.
  • the axis of the first output shaft to coincide with the axis of the second output shaft, that is, the first output shaft and the second output shaft are coaxially arranged, and the rotation center line of the first drive assembly is the same as that of the second drive.
  • the rotation centerlines of the components coincide.
  • the distance between any angle of the outer side wall of the second output shaft in the radial direction and the inner side of the first output shaft can be equal to prevent the first output shaft and the second output shaft from interacting with each other during the rotation.
  • Interference facilitates the radial positioning of the first fan blade assembly and the second fan blade assembly.
  • the axes of the two output shafts coincide, it is also beneficial to the installation and arrangement of the first drive assembly, the second drive assembly and other connecting structures.
  • the air supply device further includes a casing, one end of the casing is provided with a through hole, the biaxial motor is arranged in the casing, and the first output shaft and the second output shaft extend outward through the through hole, The first fan blade assembly and the second fan blade assembly are arranged outside the casing.
  • the air supply device includes a casing, and the dual-axis motor is arranged in the casing to protect the dual-axis motor through the casing, so as to prevent the dual-axis motor from contacting external objects.
  • the motor The shell can also play a role in dust prevention.
  • One end of the casing is provided with a through hole.
  • the first output shaft and the second output shaft extend through the through hole to connect with the first fan blade assembly and the second fan blade assembly outside the casing, and drive The first fan blade assembly and the second fan blade assembly rotate.
  • the air supply device further includes: a first mesh cover, which is arranged on the end of the casing with a through hole, the first mesh cover and the casing are detachably connected; and the second mesh cover is arranged on the first mesh The side of the cover away from the casing, the second mesh cover and the first mesh cover are detachably connected, and an accommodating cavity is formed inside after the first mesh cover and the second mesh cover are connected, the first fan blade assembly and the second fan blade The component is arranged in the containing cavity.
  • the air supply device further includes a first mesh cover and a second mesh cover that are detachably connected.
  • the first mesh cover is arranged at an end close to the casing and is detachably connected to the casing for position fixation.
  • the second mesh cover is arranged at the end far away from the casing to form an accommodating cavity inside after the first mesh cover and the second mesh cover are connected to accommodate the first fan blade assembly and the second fan blade assembly, and the first mesh cover and the second mesh cover
  • the two screens are of mesh grid structure, which will not block the air flow and can ensure that the air flow passes through normally.
  • the first net cover and the second net cover play a safety protection function for the first fan blade assembly and the second fan blade assembly, preventing the fan blade from contacting or colliding with external objects to cause damage, and also preventing the fan blade from rotating during the rotation process. In contact with the human body, a safety accident is caused.
  • the technical solution of the second aspect of the present application provides a household appliance, including: the air supply device of any one of the technical solutions of the first aspect; the household appliance is a table fan, a floor fan, a ceiling fan, a wall fan, a tower fan, Cooling fan or heater.
  • the household appliance includes the air supply device of any one of the above-mentioned technical solutions of the first aspect, and thus has all the beneficial effects of the air supply device of any one of the above-mentioned technical solutions of the first aspect.
  • the air supply device of the present application can have multiple uses, so the household appliances of the present application can be table fans, floor fans, ceiling fans, wall fans, tower fans, cooling fans, or heaters, all of which can be differentiated according to the needs of users.
  • the shape of the wind is not be repeated here.
  • Figure 1 shows a cross-sectional view of an air blowing device according to an embodiment of the present application
  • Figure 2 shows an exploded view of the air supply device according to an embodiment of the present application
  • Figure 3 shows a cross-sectional view of a dual-shaft motor according to an embodiment of the present application
  • Fig. 4 shows a cross-sectional view of a floor fan according to an embodiment of the present application.
  • this embodiment provides an air supply device 71, which includes a dual-axis motor 1, a first fan blade assembly 2 and a second fan blade assembly 3, wherein the dual-axis motor 1 has a first output shaft 11 And the second output shaft 12, the first output shaft 11 is a hollow shaft with a hollow part penetrating in the axial direction, and the first output shaft 11 extends from the inside of the biaxial motor 1 to one end, and the second output shaft 12 is outside The diameter is smaller than the inner diameter of the first output shaft 11, and the length of the second output shaft 12 is greater than the length of the first output shaft 11.
  • One end of the second output shaft 12 passes through the hollow part of the first output shaft 11 and is output by the first The protruding end of the shaft 11 protrudes outward, and the axis of the first output shaft 11 coincides with the axis of the second output shaft 12.
  • the first fan blade assembly 2 is sleeved on the protruding end of the first output shaft 11
  • the second fan blade assembly 3 is sleeved on the protruding end of the second output shaft 12
  • the second fan blade assembly 3 is provided on the first fan
  • the first fan blade assembly 2 includes a first fan blade 21 and a first fan blade support 22.
  • the first fan blade support 22 is sleeved on the first output shaft 11, and the first fan blade 21 is circumferentially provided on the first fan.
  • the outer side wall surface of the blade holder 22 extends outward along the radial direction of the first blade holder 22;
  • the second fan blade assembly 3 includes a second fan blade 31 and a second fan blade support 32, and the second fan blade support 32 is sleeved On the second output shaft 12, the first fan blade 21 is axially disposed on the outer side wall surface of the second fan blade support 32 and extends radially outward from the second fan blade support 32.
  • this embodiment provides an air supply device 71, which includes a dual-axis motor 1, a first fan blade assembly 2 and a second fan blade assembly 3, wherein the dual-axis motor 1 has a first output shaft 11 And the second output shaft 12, the first output shaft 11 is a hollow shaft with a hollow part penetrating in the axial direction, and the first output shaft 11 extends from the inside of the biaxial motor 1 to one end, and the second output shaft 12 is outside
  • the diameter is smaller than the inner diameter of the first output shaft 11, and the length of the second output shaft 12 is greater than the length of the first output shaft 11.
  • One end of the second output shaft 12 passes through the hollow part of the first output shaft 11 and is output by the first The protruding end of the shaft 11 protrudes outward.
  • the first fan blade assembly 2 is sleeved on the protruding end of the first output shaft 11, and the second fan blade assembly 3 is sleeved on the protruding end of the second output shaft 12. Further, the first fan blade assembly 2 includes a first The fan blade 21 and the first fan blade bracket 22, the first fan blade bracket 22 is sleeved on the first output shaft 11, and the first fan blade 21 is circumferentially arranged on the outer side wall surface of the first fan blade bracket 22 and runs along the first fan blade.
  • the blade support 22 extends radially outward; the second fan blade assembly 3 includes a second fan blade 31 and a second fan blade support 32.
  • the second fan blade support 32 is sleeved on the second output shaft 12, and the first fan blade 21 is arranged on the outer side wall surface of the second fan blade support 32 along the axial direction, and extends outward from the radial direction of the second fan blade support 32.
  • the first fan blade support 22 is annular
  • the second fan blade assembly 3 is integrally arranged on the inner side of the first fan support 22 in the radial direction, and the end of the first fan support 22 close to the biaxial motor 1 is sleeved on the first fan support 22.
  • An output shaft 11 is fixedly connected to the first output shaft 11, and the second fan blade assembly 3 is integrally arranged on the inner side of the first fan blade bracket 22 in the axial direction, that is, the first fan blade assembly 2 and the second fan blade assembly 3
  • a nesting structure is formed so that the airflow of the first fan blade assembly 2 and the second fan blade assembly 3 form an inner and outer nesting form.
  • the first fan blade assembly 2 and the second fan blade assembly 3 are respectively located on the first output shaft Driven by 11 and the second output shaft 12, they rotate independently to provide a differentiated wind shape.
  • this embodiment provides an air supply device 71, which includes a dual-axis motor 1, a first fan blade assembly 2 and a second fan blade assembly 3, wherein the dual-axis motor 1 has a first output shaft 11 And the second output shaft 12, the first output shaft 11 is a hollow shaft with a hollow part penetrating in the axial direction, and the first output shaft 11 extends from the inside of the biaxial motor 1 to one end, and the second output shaft 12 is outside The diameter is smaller than the inner diameter of the first output shaft 11, and the length of the second output shaft 12 is greater than the length of the first output shaft 11.
  • One end of the second output shaft 12 passes through the hollow part of the first output shaft 11 and is output by the first
  • the protruding end of the shaft 11 protrudes outward, and the axis of the first output shaft 11 coincides with the axis of the second output shaft 12.
  • the first fan blade assembly 2 is sleeved on the protruding end of the first output shaft 11, and the second fan blade assembly 3 is sleeved on the protruding end of the second output shaft 12,
  • the first fan blade assembly 2 includes a first fan blade and a first fan blade bracket 22.
  • the first fan blade bracket 22 is sleeved on the first output shaft 11, and the first fan blade 21 is circumferentially provided on the first fan blade.
  • the outer wall surface of the bracket 22 extends outward along the radial direction of the first fan blade bracket 22;
  • the second fan blade assembly 3 includes a second fan blade 31 and a second fan blade support 32, and the second fan blade support 32 is sleeved on On the second output shaft 12, the first fan blade 21 is axially disposed on the outer side wall surface of the second fan blade support 32 and extends radially outward from the second fan blade support 32.
  • the first fan blade assembly 2 and the second fan blade assembly 3 are driven by the first output shaft 11 and the second output shaft 12 to independently rotate to provide a differentiated wind shape.
  • the first fan blade bracket 22 has a ring shape. Further, one end of the first fan blade bracket 22 close to the biaxial motor 1 is sleeved on the first output shaft 11 and fixed to the first output shaft 11. Connected, one end of the first fan blade support 22 away from the biaxial motor 1 is open, and the second fan blade assembly 3 extends from the open end of the first fan support 22 into the first fan support 22 and is integrally arranged in the first fan support 22.
  • the inner side of a fan blade bracket 22 in the radial direction and the axial direction, that is, the first fan blade assembly 2 and the second fan blade assembly 3 form a nested structure, so that the first fan blade assembly 2 and the second fan blade assembly 3
  • the outflow airflow forms a nested form inside and outside.
  • One end of the first fan blade support 22 close to the biaxial motor 1 is provided with a plurality of air passages 4 along the radial direction.
  • the multiple air passages 4 are evenly arranged around the circumference of the first output shaft 11 and are aligned with the first output shaft 11 in the axial direction.
  • the two fan blades are arranged correspondingly, so that the airflow on the air inlet side of the second fan blade 31 can flow through the air passage 4 normally.
  • the distance between the inner edge and the outer edge of the second fan blade is greater than the distance between the inner edge and the outer edge of the first fan blade 21, that is, the distance from the root to the tip of the second fan blade 31 is greater than that of the first fan blade.
  • the distance from the root to the tip of the fan blade 21 is used to increase the air outlet area of the second fan blade 31.
  • This embodiment provides an air supply device 71, which includes a dual-axis motor 1, a first fan blade assembly 2 and a second fan blade assembly 3.
  • the dual-axis motor 1 has a first output shaft 11 and a second output shaft 12.
  • the first output shaft 11 is a hollow shaft with a hollow part penetrating in the axial direction, and the first output shaft 11 extends from the inside of the biaxial motor 1 to one end, and the outer diameter of the second output shaft 12 is smaller than that of the first output shaft 11, and the length of the second output shaft 12 is greater than the length of the first output shaft 11.
  • One end of the second output shaft 12 passes through the hollow part of the first output shaft 11 and is formed by the protruding end of the first output shaft 11.
  • the axis of the first output shaft 11 coincides with the axis of the second output shaft 12.
  • the first fan blade assembly 2 is sleeved on the protruding end of the first output shaft 11
  • the second fan blade assembly 3 is sleeved on the protruding end of the second output shaft 12
  • the first fan blade assembly 2 is provided on the second fan The inner side of the leaf assembly 3 in the radial direction.
  • the first fan blade assembly 2 includes a first fan blade 21 and a first fan blade support 22.
  • the first fan blade support 22 is sleeved on the first output shaft 11, and the first fan blade 21 is circumferentially provided on the first fan.
  • the outer side wall surface of the blade holder 22 extends outward along the radial direction of the first blade holder 22;
  • the second fan blade assembly 3 includes a second fan blade 31 and a second fan blade support 32, and the second fan blade support 32 is sleeved On the second output shaft 12, the first fan blade 21 is axially disposed on the outer side wall surface of the second fan blade support 32 and extends radially outward from the second fan blade support 32.
  • the first fan blade assembly 2 and the second fan blade assembly 3 are driven by the first output shaft 11 and the second output shaft 12 to independently rotate to provide a differentiated wind shape.
  • the second fan blade support 32 is ring-shaped. Further, the end of the second fan blade support 32 away from the biaxial motor 1 is sleeved on the second output shaft 12 and is fixedly connected to the second output shaft 12, and the second fan blade The end of the bracket 32 close to the biaxial motor 1 is open.
  • the first fan blade assembly 2 extends from the open end of the second fan blade support 32 into the second fan blade support 32, and is integrally arranged along the second fan blade support 32.
  • the inner side of the radial direction and the axial direction, that is, the first fan blade assembly 2 and the second fan blade assembly 3 form a nested structure, so that the air flow out of the first fan blade assembly 2 and the second fan blade assembly 3 is formed inside and outside Nested form.
  • One end of the second fan blade support 32 away from the dual-axis motor 1 is provided with a plurality of air passages 4 along the radial direction, and the plurality of air passages 4 are evenly arranged around the circumference of the second output shaft 12 and are aligned with the first in the axial direction.
  • a fan blade 21 is correspondingly arranged, so that the airflow on the air outlet side of the first fan blade 21 can flow through the air passage 4 normally.
  • the distance between the inner edge and the outer edge of the first fan blade 21 is greater than the distance between the inner edge and the outer edge of the second fan blade 31, that is, the distance from the root to the tip of the first fan blade 21 is greater than that of the first fan blade 21.
  • the distance from the root to the tip of the two fan blades 31 is used to increase the air outlet area of the first fan blade 21.
  • this embodiment provides an air supply device 71, which includes a dual-axis motor 1, a first fan blade assembly 2 and a second fan blade assembly 3, wherein the dual-axis motor 1 has a first output shaft 11 And the second output shaft 12, the first output shaft 11 is a hollow shaft with a hollow part penetrating in the axial direction, and the first output shaft 11 extends from the inside of the biaxial motor 1 to one end, and the second output shaft 12 is outside The diameter is smaller than the inner diameter of the first output shaft 11, and the length of the second output shaft 12 is greater than the length of the first output shaft 11.
  • One end of the second output shaft 12 passes through the hollow part of the first output shaft 11 and is output by the first
  • the protruding end of the shaft 11 protrudes outward, and the axis of the first output shaft 11 coincides with the axis of the second output shaft 12.
  • the first fan blade assembly 2 is sleeved on the protruding end of the first output shaft 11, and the second fan blade assembly 3 is sleeved on the protruding end of the second output shaft 12.
  • the first fan blade assembly 2 includes a first The fan blade 21 and the first fan blade bracket 22, the first fan blade bracket 22 is sleeved on the first output shaft 11, and the first fan blade 21 is circumferentially arranged on the outer side wall surface of the first fan blade bracket 22 and runs along the first fan blade.
  • the blade support 22 extends radially outward;
  • the second fan blade assembly 3 includes a second fan blade 31 and a second fan blade support 32.
  • the second fan blade support 32 is sleeved on the second output shaft 12, and the first fan blade 21 is arranged on the outer side wall surface of the second fan blade support 32 along the axial direction, and extends outward from the radial direction of the second fan blade support 32.
  • the first fan blade assembly 2 and the second fan blade assembly 3 are driven by the first output shaft 11 and the second output shaft 12 to independently rotate to provide a differentiated wind shape.
  • the first fan blade bracket 22 has a ring shape. Further, one end of the first fan blade bracket 22 close to the biaxial motor 1 is sleeved on the first output shaft 11 and fixed to the first output shaft 11. Connected, one end of the first fan blade support 22 away from the biaxial motor 1 is open, and the second fan blade assembly 3 extends from the open end of the first fan support 22 into the first fan support 22 and is integrally arranged in the first fan support 22.
  • the inner side of a fan blade bracket 22 in the radial direction and the axial direction, that is, the first fan blade assembly 2 and the second fan blade assembly 3 form a nested structure, so that the first fan blade assembly 2 and the second fan blade assembly 3
  • the outflow airflow forms a nested form inside and outside.
  • One end of the first fan blade support 22 close to the biaxial motor 1 is provided with a plurality of air passages 4 along the radial direction.
  • the multiple air passages 4 are evenly arranged around the circumference of the first output shaft 11 and are aligned with the first output shaft 11 in the axial direction.
  • the two fan blades 31 are correspondingly arranged, so that the airflow on the air inlet side of the second fan blade 31 can flow through the air passage 4 normally.
  • the air outlet surface of the first fan blade assembly 2 and the air outlet surface of the second fan blade assembly 3 are in the same plane, that is, the two air outlet surfaces are flush in the vertical direction;
  • the air inlet surface and the air inlet surface of the second fan blade assembly 3 are on the same plane, that is, the two air inlet surfaces are level in the vertical direction, and at the same time, the first fan blade 21 and the second fan blade 31 of the air blowing device 71
  • the sizes along the axial direction are the same.
  • the air inlet surface and the air outlet surface of the air supply device 71 as a whole remain relatively stable, reducing mutual disturbance.
  • the air supply device 71 includes a biaxial motor 1, a first fan blade assembly 2 and a second fan blade assembly 3, wherein the biaxial motor 1 has a first output shaft 11 and the second output shaft 12, the first output shaft 11 is a hollow shaft with a hollow part penetrating in the axial direction, and the first output shaft 11 extends from the inside of the biaxial motor 1 to one end, and the second output shaft 12
  • the outer diameter is smaller than the inner diameter of the first output shaft 11, and the length of the second output shaft 12 is greater than the length of the first output shaft 11.
  • the extension end of the output shaft 11 extends outward, and the axis of the first output shaft 11 coincides with the axis of the second output shaft 12.
  • the first fan blade assembly 2 is sleeved on the protruding end of the first output shaft 11, and the second fan blade assembly 3 is sleeved on the protruding end of the second output shaft 12. Further, the first fan blade assembly 2 includes a first The fan blade 21 and the first fan blade bracket 22, the first fan blade bracket 22 is sleeved on the first output shaft 11, and the first fan blade 21 is circumferentially arranged on the outer side wall surface of the first fan blade bracket 22 and runs along the first fan blade.
  • the blade support 22 extends radially outward; the second fan blade assembly 3 includes a second fan blade 31 and a second fan blade support 32.
  • the second fan blade support 32 is sleeved on the second output shaft 12, and the first fan blade 21 is arranged on the outer side wall surface of the second fan blade support 32 along the axial direction, and extends outward from the radial direction of the second fan blade support 32.
  • the first fan blade assembly 2 and the second fan blade assembly 3 are respectively driven by the first output shaft 11 and the second output shaft 12 to independently rotate to provide a differentiated wind shape.
  • the biaxial motor 1 specifically includes a first drive assembly 13 and a second drive assembly 14. Further, the first drive assembly 13 further includes a first stator structure 131, a first rotor structure 132, and a first cover 133.
  • the first cover 133 is a hollow structure with an opening at one end.
  • the first stator structure 131 is provided in the hollow part of the first cover 133
  • the first rotor structure 132 is provided on the inner surface of the first cover 133 in the circumferential direction.
  • the end surface of the other end is provided with a through hole that matches the first output shaft 11.
  • the end of the first output shaft 11 close to the second drive assembly 14 extends into the through hole of the first cover 133 and is connected to the first cover 133.
  • the first rotor structure 132 is fixedly connected with the first output shaft 11 through the first cover 133, so as to drive the first output shaft 11 to rotate during the rotation of the first rotor structure 132, thereby driving the first fan
  • the leaf assembly 2 rotates.
  • the second drive assembly 14 further includes a second stator structure 141, a second rotor structure 142, and a second cover 143.
  • the second cover 143 is a hollow structure with an opening at one end.
  • the second stator structure 141 is provided in the hollow part of the second cover body 143, the second rotor structure 142 is provided on the inner surface of the second cover body 143 in the circumferential direction, and the second cover body 143 is other
  • a through hole matching the second output shaft 12 is provided on the end surface of one end.
  • One end of the second output shaft 12 passes through the through hole of the second cover body 143 and is fixedly connected to the second cover body 143.
  • the second output shaft 12 passes through the hollow part of the first output shaft 11 through one end of the second cover 143 and protrudes outwards, the second rotor structure 142 is fixedly connected with the second output shaft 12 through the second cover 143, In order to drive the second output shaft 12 to rotate during the rotation of the second rotor structure 142, and thereby drive the second fan blade assembly 3 to rotate.
  • this embodiment provides an air supply device 71, which includes a dual-axis motor 1, a first fan blade assembly 2 and a second fan blade assembly 3, wherein the dual-axis motor 1 has a first output shaft 11 And the second output shaft 12, the first output shaft 11 is a hollow shaft with a hollow part penetrating in the axial direction, and the first output shaft 11 extends from the inside of the biaxial motor 1 to one end, and the second output shaft 12 is outside The diameter is smaller than the inner diameter of the first output shaft 11, and the length of the second output shaft 12 is greater than the length of the first output shaft 11.
  • One end of the second output shaft 12 passes through the hollow part of the first output shaft 11 and is output by the first
  • the protruding end of the shaft 11 protrudes outward, and the axis of the first output shaft 11 coincides with the axis of the second output shaft 12.
  • the first fan blade assembly 2 is sleeved on the protruding end of the first output shaft 11, and the second fan blade assembly 3 is sleeved on the protruding end of the second output shaft 12.
  • the first fan blade assembly 2 includes a first The fan blade 21 and the first fan blade bracket 22, the first fan blade bracket 22 is sleeved on the first output shaft 11, and the first fan blade 21 is circumferentially arranged on the outer side wall surface of the first fan blade bracket 22 and runs along the first fan blade.
  • the blade support 22 extends radially outward;
  • the second fan blade assembly 3 includes a second fan blade 31 and a second fan blade support 32.
  • the second fan blade support 32 is sleeved on the second output shaft 12, and the first fan blade 21 is arranged on the outer side wall surface of the second fan blade support 32 along the axial direction, and extends outward from the radial direction of the second fan blade support 32.
  • the first fan blade assembly 2 and the second fan blade assembly 3 are driven by the first output shaft 11 and the second output shaft 12 to independently rotate to provide a differentiated wind shape.
  • the first fan blade bracket 22 has a ring shape. Further, one end of the first fan blade bracket 22 close to the biaxial motor 1 is sleeved on the first output shaft 11 and fixed to the first output shaft 11. Connected, one end of the first fan blade support 22 away from the biaxial motor 1 is open, and the second fan blade assembly 3 extends from the open end of the first fan support 22 into the first fan support 22 and is integrally arranged in the first fan support 22.
  • the inner side of a fan blade bracket 22 in the radial direction and the axial direction, that is, the first fan blade assembly 2 and the second fan blade assembly 3 form a nested structure, so that the first fan blade assembly 2 and the second fan blade assembly 3
  • the outflow airflow forms a nested form inside and outside.
  • One end of the first fan blade bracket 22 close to the dual-axis motor 1 is provided with a plurality of air passages 4 along the radial direction.
  • the plurality of air passages 4 are evenly arranged around the circumference of the first output shaft 11 and are aligned with the first output shaft 11 in the axial direction.
  • the two fan blades 31 are correspondingly arranged, so that the airflow on the air inlet side of the second fan blade 31 can flow through the air passage 4 normally.
  • the air blowing device 71 further includes a casing 5, a first mesh cover 61 and a second mesh cover 62.
  • the biaxial motor 1 is arranged in the casing 5, one end of the casing 5 is provided with a through hole, and the first output shaft 11 and the second output shaft 12 of the biaxial motor 1 extend through the through hole of the casing 5. It is connected to the first fan blade assembly 2 and the second fan blade assembly 3 outside the casing 5 respectively.
  • the first net cover 61 is arranged between the casing 5 and the first fan blade assembly 2 in the axial direction, and is detachably connected to the end of the casing 5 facing the first fan blade assembly 2; the second net cover 62 is arranged at the first fan blade assembly 2.
  • a net cover 61 is far away from the end of the casing 5.
  • the second net cover 62 is detachably connected to the first net cover 61, and an accommodating cavity is formed inside the second net cover 62 and the first net cover 61.
  • the fan blade assembly 2 and the second fan blade assembly 3 are accommodated in the accommodating space.
  • Both the first mesh cover 61 and the second mesh cover 62 are provided with grilles that are radially shaped so that the airflow can pass through the first mesh cover 61 and the second mesh cover 62 normally.
  • this embodiment provides an air supply device 71, which includes a dual-axis motor 1, a first fan blade assembly 2 and a second fan blade assembly 3, wherein the dual-axis motor 1 has a first output shaft 11 And the second output shaft 12, the first output shaft 11 is a hollow shaft with a hollow part penetrating in the axial direction, and the first output shaft 11 extends from the inside of the biaxial motor 1 to one end, and the second output shaft 12 is outside The diameter is smaller than the inner diameter of the first output shaft 11, and the length of the second output shaft 12 is greater than the length of the first output shaft 11.
  • One end of the second output shaft 12 passes through the hollow part of the first output shaft 11 and is output by the first
  • the protruding end of the shaft 11 protrudes outward, and the axis of the first output shaft 11 coincides with the axis of the second output shaft 12.
  • the first fan blade assembly 2 is sleeved on the protruding end of the first output shaft 11, and the second fan blade assembly 3 is sleeved on the protruding end of the second output shaft 12.
  • the first fan blade assembly 2 includes a first The fan blade 21 and the first fan blade bracket 22, the first fan blade bracket 22 is sleeved on the first output shaft 11, and the first fan blade 21 is circumferentially arranged on the outer side wall surface of the first fan blade bracket 22 and runs along the first fan blade.
  • the blade support 22 extends radially outward;
  • the second fan blade assembly 3 includes a second fan blade 31 and a second fan blade support 32.
  • the second fan blade support 32 is sleeved on the second output shaft 12, and the first fan blade 21 is arranged on the outer side wall surface of the second fan blade support 32 along the axial direction, and extends outward from the radial direction of the second fan blade support 32.
  • the first fan blade bracket 22 has a ring shape. Further, one end of the first fan blade bracket 22 close to the biaxial motor 1 is sleeved on the first output shaft 11 and fixed to the first output shaft 11. Connected, one end of the first fan blade support 22 away from the biaxial motor 1 is open, and the second fan blade assembly 3 extends from the open end of the first fan support 22 into the first fan support 22 and is integrally arranged in the first fan support 22.
  • the inner side of a fan blade bracket 22 in the radial direction and the axial direction, that is, the first fan blade assembly 2 and the second fan blade assembly 3 form a nested structure, so that the first fan blade assembly 2 and the second fan blade assembly 3
  • the outflow airflow forms a nested form inside and outside.
  • One end of the first fan blade bracket 22 close to the biaxial motor 1 is provided with a plurality of air passages 4 along the radial direction.
  • the plurality of air passages 4 are evenly arranged around the circumference of the first output shaft 11 and are aligned with the first output shaft 11 in the axial direction.
  • the two fan blades 31 are correspondingly arranged, so that the airflow on the air inlet side of the second fan blade 31 can flow through the air passage 4 normally.
  • the distance between the inner edge and the outer edge of the second fan blade 31 is greater than the distance between the inner edge and the outer edge of the first fan blade 21, that is, the distance from the root to the tip of the second fan blade 31 is greater than that of the first fan blade 31.
  • the distance from the root to the tip of one fan blade 21 is used to increase the air outlet area of the second fan blade 31.
  • the air outlet surface of the first fan blade assembly 2 and the air outlet surface of the second fan blade assembly 3 are in the same plane, that is, the two air outlet surfaces are flush in the vertical direction; the air inlet surface of the first fan blade assembly 2 It is on the same plane as the air inlet surface of the second fan blade assembly 3, that is, the two air inlet surfaces are flush in the vertical direction, and at the same time, the first fan blade 21 and the second fan blade 31 of the air blowing device 71 are axially aligned. During the rotation, the air inlet and outlet surfaces of the air supply device 71 as a whole remain relatively stable, reducing mutual disturbance.
  • the biaxial motor 1 specifically includes a first drive assembly 13 and a second drive assembly 14.
  • the first drive assembly 13 further includes a first stator structure 131, a first rotor structure 132, and a first cover 133.
  • the first cover 133 is a hollow structure with an opening at one end.
  • the first stator structure 131 is provided in the hollow part of the first cover 133
  • the first rotor structure 132 is provided on the inner surface of the first cover 133 in the circumferential direction.
  • the end surface of the other end is provided with a through hole that matches the first output shaft 11.
  • the end of the first output shaft 11 close to the second drive assembly 14 extends into the through hole of the first cover 133 and is connected to the first cover 133.
  • the first rotor structure 132 is fixedly connected with the first output shaft 11 through the first cover 133, so as to drive the first output shaft 11 to rotate during the rotation of the first rotor structure 132, thereby driving the first fan
  • the leaf assembly 2 rotates.
  • the second drive assembly 14 further includes a second stator structure 141, a second rotor structure 142, and a second cover 143.
  • the second cover 143 is a hollow structure with an opening at one end.
  • the second stator structure 141 is provided in the hollow part of the second cover body 143, the second rotor structure 142 is provided on the inner surface of the second cover body 143 in the circumferential direction, and the second cover body 143 is other
  • a through hole matching the second output shaft 12 is provided on the end surface of one end.
  • One end of the second output shaft 12 passes through the through hole of the second cover body 143 and is fixedly connected to the second cover body 143.
  • the second output shaft 12 passes through the hollow part of the first output shaft 11 through one end of the second cover 143 and protrudes outwards, the second rotor structure 142 is fixedly connected with the second output shaft 12 through the second cover 143, In order to drive the second output shaft 12 to rotate during the rotation of the second rotor structure 142, and thereby drive the second fan blade assembly 3 to rotate.
  • the air blowing device 71 further includes a casing 5, a first net cover 61 and a second net cover 62.
  • the biaxial motor 1 is arranged in the casing 5, one end of the casing 5 is provided with a through hole, and the first output shaft 11 and the second output shaft 12 of the biaxial motor 1 extend through the through hole of the casing 5. It is connected to the first fan blade assembly 2 and the second fan blade assembly 3 outside the casing 5 respectively.
  • the first net cover 61 is arranged between the casing 5 and the first fan blade assembly 2 in the axial direction, and is detachably connected to the end of the casing 5 facing the first fan blade assembly 2; the second net cover 62 is arranged at the first fan blade assembly 2.
  • a net cover 61 is far away from the end of the casing 5.
  • the second net cover 62 is detachably connected to the first net cover 61, and an accommodating cavity is formed inside the second net cover 62 and the first net cover 61.
  • the fan blade assembly 2 and the second fan blade assembly 3 are accommodated in the accommodating space.
  • Both the first mesh cover 61 and the second mesh cover 62 are provided with grilles that are radially shaped so that the airflow can pass through the first mesh cover 61 and the second mesh cover 62 normally.
  • this embodiment provides a household appliance.
  • the household appliance is a floor fan 7, which includes the air supply device 71 and the supporting base 72 in any of the above-mentioned embodiments.
  • the air supply device 71 provides support so that the air supply device 71 is located at a suitable air supply height.
  • the two-axis motor 1 of the air supply device 71 drives the first fan blade assembly 2 and the second fan blade assembly 3 to operate independently, thereby passing Adjust the speed and direction of rotation of the first fan blade assembly 2 and the second fan blade assembly 3 to provide a differentiated wind shape.
  • the air flow out of the air blowing device 71 is the inner air flow and the wind speed is less than The air volume and wind speed of the outside air flow, and the outlet air flow gradually spreads to the outside during the flow process, which can expand the radiation range of the outlet air flow.
  • the air flow of the air blowing device 71 is that the air volume and wind speed of the inner air flow are greater than that of the outer air flow. The air volume and wind speed, and the outflow airflow gradually converges during the flow process, which can make the outflow airflow relatively concentrated.
  • the rotation process of the two fan blades is close to the rotation of one fan blade, which is beneficial to the fusion of the outlet air flow during the flow process, and the outlet air flow is relatively Stable, can reduce the mutual impact and disturbance between the inner airflow and the outer airflow.
  • the disturbance of the contact surface between the inner air flow and the outer air flow of the air blowing device 71 is small.
  • the difference between the inner airflow and the outer airflow of the air blowing device 71 There is a certain mutual impact and disturbance between them, which reduces the intensity of the airflow and gradually spreads outward, expands the radiation range, and makes the airflow softer.
  • the household appliances in this application are not limited to floor fans, and can also be table fans, ceiling fans, wall fans, tower fans, cooling fans or warming fans.
  • the first fan blade assembly and the second fan blade assembly can be independently rotated to meet the needs of users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

送风装置和家用电器。送风装置(71)包括双轴电机(1),双轴电机(1)具有向同一方向伸出的第一输出轴(11)和第二输出轴(12),第一输出轴(11)内设有沿轴向贯通的空心部,第二输出轴(12)穿过空心部;第一扇叶组件(2)套设于第一输出轴(11)上,以在第一输出轴(11)的带动下转动;第二扇叶组件(3)套设于第二输出轴(12)上,以在第二输出轴(12)的带动下转动,第一扇叶组件(2)和第二扇叶组件(3)中的一个设于另一个沿径向的内侧。该送风装置能够根据用户需求对第一扇叶组件和第二扇叶组件的转动方向和转速进行调整,满足用户的差异性需求。

Description

送风装置和家用电器
本申请要求于2019年09月16日提交中国国家知识产权局、申请号为“2019108718268”、申请名称为“送风装置和家用电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及风扇技术领域,具体而言,涉及一种送风装置和家用电器。
背景技术
目前,常用的风扇多通过单个电机驱动单个风轮,或单个电机驱动多个风轮,因风轮的转速和转向固定,所形成的风形较为单一,无法满足不同应用场景下的用户需求。现有技术中提供了一种风扇,通过两个电机驱动两个相对设置的风轮转动,以使两个风轮的出风气流相互扰动形成新的出风气流,但该风扇限于结构限制,两个风轮分别设于电机的两端,两个风轮的出风气流之间需通过相互扰动才能提供不同的风形,且两个风轮之间存在轴向间距,不利于风扇的整体结构设置。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的一个目的在于提供一种送风装置。
本申请的另一个目的在于提供一种家用电器。
为了实现上述目的,本申请的第一方面技术方案提供了一种送风装置,包括:双轴电机,双轴电机具有向同一方向伸出的第一输出轴和第二输出轴,第一输出轴内设有沿轴向贯通的空心部,第二输出轴穿过空心部;第一扇叶组件,套设于第一输出轴上,以在第一输出轴的带动下转动;第二扇叶组件,套设于第二输出轴上,以在第二输出轴的带动下转动,其中,第一扇叶组件和第二扇叶组件中的一个设于另一个沿径向的内侧。
根据本申请的第一方面技术方案,送风装置包括双轴电机、第一扇叶组件 和第二扇叶组件,通过双轴电机驱动第一扇叶组件和第二扇叶组件分别独立转动。其中,双轴电机具有向同一方向伸出的第一输出轴和第二输出轴,且第一输出轴内设有沿轴向贯通的空心部,第二输出轴穿过第一输出轴的空心部并由第一输出轴的伸出端向外伸出,第一输出轴与第二输出轴之间不产生相互干扰,可分别独立运行;第一扇叶组件套设于第一输出轴上,第二扇叶组件套设于第二输出轴上,以在双轴电机运行时,第一输出轴和第二输出轴分别带动第一扇叶组件和第二扇叶组件转动,第一扇叶组件与第二扇叶组件可以同向转动,也可以反向转动,转动速度可以相同也可以不相同;此外,第一扇叶组件和第二扇叶组件中的一个设于另一个沿径向的内侧,即第一扇叶组件和第二扇叶组件的径向尺寸不同,以使送风装置的出风气流形成多层不同风形嵌套形式,出风气流之间的相互扰动较小,有利于对风形的控制,从而根据用户的需求对第一扇叶组件和第二扇叶组件的转动方向和转速进行调整,以提供不同形式的风形,满足用户的差异化的需求。
另外,本申请提供的上述技术方案中的送风装置还可以具有如下附加技术特征:
在上述技术方案中,第一扇叶组件包括:第一扇叶支架和第一扇叶,第一扇叶支架套设于第一输出轴上,第一扇叶沿周向设于第一扇叶支架的外侧壁面和/或内侧壁面;第二扇叶组件包括:第二扇叶支架和第二扇叶,第二扇叶支架套设于第二输出轴上,第二扇叶沿周向设于第二扇叶支架的外侧壁面和/或内侧壁面。
在该技术方案中,第一扇叶组件包括第一扇叶支架以及设于第一扇叶支架上的第一扇叶,通过第一扇叶支架对第一扇叶形成支撑,其中,第一扇叶支架套设于第一输出轴上,以在第一输出轴转动时随第一输出轴一同转动,并带动第一扇叶转动,从而通过第一扇叶搅动空气形成气流;第一扇叶沿周向设于第一扇叶支架的外侧壁面时,第一扇叶支架位于内侧,第一扇叶沿第一扇叶支架的径向向外延伸,第一扇叶沿周向设于第一扇叶支架的内侧壁面时,第一扇叶支架位于外侧,第一扇叶沿第一扇叶支架的径向向内延伸。
同样地,第二扇叶组件包括第二扇叶支架以及设于第二扇叶支架上的第二扇叶,通过第二扇叶支架对第二扇叶形成支撑,其中,第二扇叶支架套设于第 二输出轴上,以在第二输出轴转动时随第二输出轴一同转动,并带动第二扇叶转动,从而通过第二扇叶搅动空气形成气流;第二扇叶沿周向设于第二扇叶支架的外侧壁面时,第二扇叶支架位于内侧,第二扇叶沿第二扇叶支架的径向向向外延伸,第二扇叶沿周向设于第二扇叶支架的内侧壁面时,第二扇叶支架位于外侧,第二扇叶沿第二扇叶支架的径向向内延伸。
在上述技术方案中,第一扇叶支架为环形,第二扇叶组件设于第一扇叶支架沿径向方向的内侧。
在该技术方案中,第一扇叶支架为环形,通过第二扇叶组件设于第一扇叶支架沿径向方向的内侧,使得第一扇叶的出风面与第二扇叶的出风面不产生重叠,进而使第一扇叶产生的气流为圆筒状,第二扇叶产生的气流为圆柱状,且圆柱状的气流沿圆筒状气流的中空部分流动,从而向同一方向同时送出不同风形的气流。
进一步地,第一扇叶支架靠近双轴电机的一端套设于第一输出轴上并与第一输出轴固定连接,第二扇叶组件设于第一扇叶支架沿轴向的内侧。
在该技术方案中,第一扇叶支架沿径向的内侧为中空结构,且第一扇叶支架靠近双轴电机的一端套设于第一输出轴上并与第一输出轴固定连接,第一扇叶支架远离双轴电机的一端呈开口状,第二扇叶组件由第一扇叶支架远离双轴电机的一端伸入第一扇叶支架内,从而使第一扇叶组件与第二扇叶组件形成内外嵌套结构,有效缩减了送风装置的轴向尺寸,减少了空间占用。
在上述技术方案中,第一扇叶支架靠近双轴电机的一端端面上设有至少一个过风通道,过风通道与第二扇叶对应设置。
在该技术方案中,通过在第一扇叶支架靠近双轴电机的一端端面上设有至少一个过风通道,以使空气可以沿轴向穿过第一扇叶支架正常流动,过风通道与第二扇叶对应设置,以在第二扇叶转动时确保进风侧的空气不被阻挡。可以理解,若第一扇叶支架靠近双轴电机的一端端面为封闭结构,将阻挡第二扇叶进风侧的空气流动,严重影响送风装置的正常出风。
进一步地,过风通道可以是孔状、格栅装或其他形状。
在上述技术方案中,第二扇叶的内缘与外缘之间的距离大于第一扇叶的内缘与外缘之间的距离。
在该技术方案中,通过限定第二扇叶的内缘与外缘之间的距离大于第一扇叶的内缘与外缘之间的距离,即第二扇叶的叶根至叶尖的尺寸大于第一扇叶的叶根至叶尖的尺寸,从而加强第二扇叶的出风气流,使送风装置整体出风气流的内侧风量大于外侧风量,以免外侧风量较大时对内侧气流造成冲击,造成出风气流紊乱。
在上述技术方案中,第二扇叶支架为环形,第一扇叶组件设于第二扇叶支架沿径向方向的内侧。
在该技术方案中,第二扇叶支架为环形,通过第一扇叶组件设于第二扇叶支架沿径向方向的内侧,使得第二扇叶的出风面与第一扇叶的出风面不产生重叠,进而使第二扇叶产生的气流为圆筒状,第一扇叶产生的气流为圆柱状,且圆柱状的气流沿圆筒状气流的中空部分流动,从而向同一方向同时送出不同风形的气流。
进一步地,第二扇叶支架远离双轴电机的一端套设于第二输出轴上并与第二输出轴固定连接,第一扇叶组件设于第二扇叶支架沿轴向的内侧。
在该技术方案中,第二扇叶支架沿径向的内侧为中空结构,且第二扇叶支架远离双轴电机的一端套设于第二输出轴上并与第二输出轴固定连接,第二扇叶支架靠近双轴电机的一端为开口结构,第一扇叶组件由第二扇叶支架靠近双轴电机的一端伸入第二扇叶支架内,从而使第一扇叶组件与第二扇叶组件形成内外嵌套结构,有效缩减了送风装置的轴向尺寸,减少了空间占用。
在上述技术方案中,第二扇叶支架远离双轴电机的一端端面上设有至少一个过风通道,过风通道与第一扇叶组件对应设置。
在该技术方案中,通过在第二扇叶支架远离双轴电机的一端端面上设有至少一个过风通道,以使空气可以沿轴向穿过第二扇叶支架正常流动,过风通道与第一扇叶对应设置,以在第一扇叶转动时确保出风侧的空气不被阻挡。可以理解,若第二扇叶支架远离双轴电机的一端端面为封闭结构,将阻挡第一扇叶出风侧的空气流动,严重影响送风装置的正常出风。
进一步地,过风通道可以是孔状、格栅装或其他形状。
在上述技术方案中,第一扇叶内缘与外缘之间的距离大于第二扇叶的内缘与外缘之间的距离。
在该技术方案中,通过限定第一扇叶的内缘与外缘之间的距离大于第二扇叶的内缘与外缘之间的距离,即第一扇叶的叶根至叶尖的尺寸大于第二扇叶的叶根至叶尖的尺寸,从而加强第一扇叶的出风气流,使送风装置整体出风气流的内侧风量大于外侧风量,以免外侧风量较大时对内侧气流造成冲击,造成出风气流紊乱。
在上述技术方案中,第一扇叶组件的出风面与第二扇叶组件的出风面在同一平面内。
在该技术方案中,在第一扇叶组件和第二扇叶组件中的一个呈环形结构时,通过限定第一扇叶组件的出风面与第二扇叶组件的出风面在同一平面内,可使第一扇叶组件的出风气流与第二扇叶组件的出风气流由同一起点送出,以免相互之间产生扰动。可以理解,出风气流在流动过程中会有一定地扩散,若第一扇叶组件的出风面与第二扇叶组件的出风面不在同一平面,会使出风面靠近双轴电机的出风气流对出风面远离双轴电机的出风气流的形成产生一定地干扰,尤其是在第一扇叶组件与第二扇叶组件之间存在轴向间距时,会导致靠近双轴电机的一个扇叶组件对远离双轴电机的一个扇叶组件的进风气流形成扰动。
在上述技术方案中,第一扇叶组件的进风面与第二扇叶组件的进风面在同一平面内。
在该技术方案中,在第一扇叶组件和第二扇叶组件中的一个呈环形结构时,通过限定第一扇叶组件的进风面与第二扇叶组件的进风面在同一平面内,可使第一扇叶组件的进风气流与第二扇叶组件的进风气流由同一起点分别进入两个扇叶组件,以免相互之间产生干扰。可以理解,在扇叶组件的进风面存在一定的吸力,若第一扇叶组件的进风面与第二扇叶组件的进风面不在同一平面,容易在吸力作用下造成两个扇叶组件的进风量的相互影响,而在第一扇叶组件与第二扇叶组件存在轴向间距时,还会造成靠近双轴电机的一个扇叶组件对远离双轴电机的一个扇叶组件的进风气流形成扰动。
在上述技术方案中,双轴电机包括:第一驱动组件,包括第一定子结构和第一转子结构,第一输出轴与第一转子结构固定连接;第二驱动组件,包括第二定子结构和第二转子结构,第二输出轴与第二转子结构固定连接,其中,第 一输出轴和第二输出轴分别在第一驱动组件和第二驱动组件的驱动下独立转动。
在该技术方案中,双轴电机包括第一驱动组件和第二驱动组件,其中,第一驱动组件包括第一定子结构、第一转子结构和第一输出轴,第一输出轴用于连接第一扇叶组件,且第一输出轴与第一转子结构固定连接,以在第一驱动组件通电时,第一定子结构驱动第一转子结构旋转,并带动第一输出轴转动,实现驱动第一扇叶组件转动;第二驱动组件包括第二定子结构、第二转子结构和第二输出轴,第二输出轴用于连接第二扇叶组件,且第二输出轴与第二转子结构固定连接,以在第二驱动组件通电时,第二定子结构驱动第二转子结构旋转,并带动第二输出轴转动,实现驱动第二扇叶组件转动。通过第二输出轴由第一输出轴的一端伸入并由另一端伸出,形成相互嵌套的结构,使得第一输出轴和第二输出轴分别在第一驱动组件和第二驱动组件的驱动下独立转动,以驱动第一扇叶组件和第二扇叶组件分别独立转动,从而提供差异化的风形。
在上述技术方案中,第一输出轴的轴线与第二输出轴的轴线重合。
在该技术方案中,通过限定第一输出轴的轴线与第二输出轴的轴线重合,即第一输出轴与第二输出轴同轴设置,且第一驱动组件的转动中心线与第二驱动组件的转动中心线重合,一方面可使第二输出轴的外侧壁沿径向的任意角度至第一输出轴的内侧的距离相等,防止第一输出轴与第二输出轴转动过程中发生相互干涉,另一方面有利于第一扇叶组件和第二扇叶组件的径向定位。此外,由于两个输出轴的轴线重合,还有利于第一驱动组件和第二驱动组件以及其他连接结构的安装和设置。
在上述技术方案中,送风装置还包括机壳,机壳的一端设有通孔,双轴电机设于机壳内,第一输出轴和第二输出轴穿过通孔向外伸出,第一扇叶组件和第二扇叶组件设于机壳外。
在该技术方案中,送风装置好包括机壳,双轴电机设于机壳内,以通过机壳对双轴电机起到安全保护作用,以免双轴电机与外界物体发生接触,同时,机壳还可起到防尘作用。机壳的一端设有通孔,第一输出轴和第二输出轴穿过通孔向外伸出,以在机壳外分别与第一扇叶组件和第二扇叶组件相连接,并驱动第一扇叶组件和第二扇叶组件转动。
在上述技术方案中,送风装置还包括:第一网罩,设于机壳上设有通孔的一端,第一网罩与机壳可拆卸连接;第二网罩,设于第一网罩远离机壳的一侧,第二网罩与第一网罩可拆卸连接,且在第一网罩与第二网罩连接后内部形成容纳空腔,第一扇叶组件和第二扇叶组件设于容纳空腔内。
在该技术方案中,送风装置还包括可拆卸连接的第一网罩和第二网罩,第一网罩设于靠近机壳的一端并与机壳可拆卸连接,以进行位置固定,第二网罩设于远离机壳的一端,以在第一网罩和第二网罩连接后内部形成容纳空腔,容纳第一扇叶组件和第二扇叶组件,且第一网罩和第二网罩均为网状格栅结构,不会对气流造成阻挡,可确保气流正常穿过。通过第一网罩和第二网罩对第一扇叶组件和第二扇叶组件起到安全保护作用,防止扇叶与外界物体防止接接触或碰撞造成损坏,同时也防止在扇叶转动过程中与人体接触造成安全事故。
本申请的第二方面技术方案中提供了一种家用电器,包括:上述第一方面技术方案中任一项的送风装置;家用电器是台扇、落地扇、吊扇、壁扇、塔扇、冷风扇或暖风机。
根据本申请的第二方面技术方案,家用电器包括上述第一方面技术方案中任一项的送风装置,因而具有上述第一方面技术方案中任一项的送风装置的全部有益效果,在此不再赘述。此外,本申请的送风装置可以有多种用途,因而本申请的家用电器可以是台扇、落地扇、吊扇、壁扇、塔扇、冷风扇或暖风机,均可根据用户的需求提供差异化的风形。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的送风装置的剖视图;
图2示出了根据本申请的一个实施例的送风装置的分解图;
图3示出了根据本申请的一个实施例的双轴电机的剖视图;
图4示出了根据本申请的一个实施例的落地扇的剖视图。
其中,图1至图4中附图标记与部件名称之间的对应关系为:
1双轴电机,11第一输出轴,12第二输出轴,13第一驱动组件,131第一定子结构,132第一转子结构,133第一罩体,14第二驱动组件,141第二定子结构,142第二转子结构,143第二罩体,2第一扇叶组件,21第一扇叶,22第一扇叶支架,3第二扇叶组件,31第二扇叶,32第二扇叶支架,4过风通道,5机壳,61第一网罩,62第二网罩,7落地扇,71送风装置,72支撑底座。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图4描述本申请一些实施例的送风装置和家用电器。
实施例一
如图1所示,本实施例提供了一种送风装置71,包括双轴电机1、第一扇叶组件2和第二扇叶组件3,其中,双轴电机1具有第一输出轴11和第二输出轴12,第一输出轴11为空心轴,内设有沿轴向贯通的空心部,且第一输出轴11由双轴电机1内向一端伸出,第二输出轴12的外径小于第一输出轴11的内径,且第二输出轴12的长度大于第一输出轴11的长度,第二输出轴12的一端穿过第一输出轴11的空心部,并由第一输出轴11的伸出端向外伸出,第一输出轴11的轴线与第二输出轴12的轴线重合。第一扇叶组件2套设于第一输出轴11的伸出端,第二扇叶组件3套设于第二输出轴12的伸出端,且第二扇叶组件3设于第一扇叶组件2沿径向的内侧,以使第一扇叶组件2和第二扇叶组件3的出风气流形成内外嵌套的形式,从而提供差异化的风形。进一步地,第一扇叶组件2包括第一扇叶21和第一扇叶支架22,第一扇叶支架22套设于第一输出轴11上,第一扇叶21沿周向设于第一扇叶支架22的外侧壁 面,并沿第一扇叶支架22的径向向外延伸;第二扇叶组件3包括第二扇叶31和第二扇叶支架32,第二扇叶支架32套设于第二输出轴12上,第一扇叶21沿轴向设于第二扇叶支架32的外侧壁面,并由第二扇叶支架32的径向向外延伸。
实施例二
如图1所示,本实施例提供了一种送风装置71,包括双轴电机1、第一扇叶组件2和第二扇叶组件3,其中,双轴电机1具有第一输出轴11和第二输出轴12,第一输出轴11为空心轴,内设有沿轴向贯通的空心部,且第一输出轴11由双轴电机1内向一端伸出,第二输出轴12的外径小于第一输出轴11的内径,且第二输出轴12的长度大于第一输出轴11的长度,第二输出轴12的一端穿过第一输出轴11的空心部,并由第一输出轴11的伸出端向外伸出。第一扇叶组件2套设于第一输出轴11的伸出端,第二扇叶组件3套设于第二输出轴12的伸出端,进一步地,第一扇叶组件2包括第一扇叶21和第一扇叶支架22,第一扇叶支架22套设于第一输出轴11上,第一扇叶21沿周向设于第一扇叶支架22的外侧壁面,并沿第一扇叶支架22的径向向外延伸;第二扇叶组件3包括第二扇叶31和第二扇叶支架32,第二扇叶支架32套设于第二输出轴12上,第一扇叶21沿轴向设于第二扇叶支架32的外侧壁面,并由第二扇叶支架32的径向向外延伸。其中,第一扇叶支架22为环形,第二扇叶组件3整体设于第一扇叶支架22沿径向方向的内侧,第一扇叶支架22靠近双轴电机1的一端套设于第一输出轴11上且与第一输出轴11固定连接,第二扇叶组件3整体设于第一扇叶支架22沿轴向的内侧,即第一扇叶组件2与第二扇叶组件3形成嵌套结构,以使第一扇叶组件2和第二扇叶组件3的出风气流形成内外嵌套的形式,第一扇叶组件2和第二扇叶组件3分别在第一输出轴11和第二输出轴12的带动下独立转动,以提供差异化的风形。
实施例三
如图1所示,本实施例提供了一种送风装置71,包括双轴电机1、第一扇叶组件2和第二扇叶组件3,其中,双轴电机1具有第一输出轴11和第二输出轴12,第一输出轴11为空心轴,内设有沿轴向贯通的空心部,且第一输出轴11由双轴电机1内向一端伸出,第二输出轴12的外径小于第一输出轴 11的内径,且第二输出轴12的长度大于第一输出轴11的长度,第二输出轴12的一端穿过第一输出轴11的空心部,并由第一输出轴11的伸出端向外伸出,第一输出轴11的轴线与第二输出轴12的轴线重合。第一扇叶组件2套设于第一输出轴11的伸出端,第二扇叶组件3套设于第二输出轴12的伸出端,
进一步地,第一扇叶组件2包括第一扇叶和第一扇叶支架22,第一扇叶支架22套设于第一输出轴11上,第一扇叶21沿周向设于第一扇叶支架22的外侧壁面,并沿第一扇叶支架22的径向向外延伸;第二扇叶组件3包括第二扇叶31和第二扇叶支架32,第二扇叶支架32套设于第二输出轴12上,第一扇叶21沿轴向设于第二扇叶支架32的外侧壁面,并由第二扇叶支架32的径向向外延伸。第一扇叶组件2和第二扇叶组件3分别在第一输出轴11和第二输出轴12的带动下独立转动,以提供差异化的风形。
其中,如图2所示,第一扇叶支架22为环形,进一步地,第一扇叶支架22靠近双轴电机1的一端套设于第一输出轴11上且与第一输出轴11固定连接,第一扇叶支架22远离双轴电机1的一端呈开口状,第二扇叶组件3由第一扇叶支架22的开口一端伸入第一扇叶支架22内,并整体设于第一扇叶支架22沿径向方向和轴向方向的内侧,即第一扇叶组件2与第二扇叶组件3形成嵌套结构,以使第一扇叶组件2和第二扇叶组件3的出风气流形成内外嵌套的形式。第一扇叶支架22靠近双轴电机1的一端沿径向设有多个过风通道4,多个过风通道4绕第一输出轴11的周向均匀设置且在轴向方向上与第二扇叶对应设置,以使第二扇叶31的进风侧的气流可穿过过风通道4正常流动。
此外,第二扇叶的内缘与外缘之间的距离大于第一扇叶21的内缘与外缘之间的距离,即第二扇叶31的叶根至叶尖的距离大于第一扇叶21的叶根至叶尖的距离,以增大第二扇叶31的出风面积。
实施例四
本实施例提供了一种送风装置71,包括双轴电机1、第一扇叶组件2和第二扇叶组件3,其中,双轴电机1具有第一输出轴11和第二输出轴12,第一输出轴11为空心轴,内设有沿轴向贯通的空心部,且第一输出轴11由双轴电机1内向一端伸出,第二输出轴12的外径小于第一输出轴11的内径,且第二输出轴12的长度大于第一输出轴11的长度,第二输出轴12的一端穿过第 一输出轴11的空心部,并由第一输出轴11的伸出端向外伸出,第一输出轴11的轴线与第二输出轴12的轴线重合。第一扇叶组件2套设于第一输出轴11的伸出端,第二扇叶组件3套设于第二输出轴12的伸出端,且第一扇叶组件2设于第二扇叶组件3沿径向的内侧。
进一步地,第一扇叶组件2包括第一扇叶21和第一扇叶支架22,第一扇叶支架22套设于第一输出轴11上,第一扇叶21沿周向设于第一扇叶支架22的外侧壁面,并沿第一扇叶支架22的径向向外延伸;第二扇叶组件3包括第二扇叶31和第二扇叶支架32,第二扇叶支架32套设于第二输出轴12上,第一扇叶21沿轴向设于第二扇叶支架32的外侧壁面,并由第二扇叶支架32的径向向外延伸。第一扇叶组件2和第二扇叶组件3分别在第一输出轴11和第二输出轴12的带动下独立转动,以提供差异化的风形。其中,第二扇叶支架32为环形,进一步地,第二扇叶支架32远离双轴电机1的一端套设于第二输出轴12上且与第二输出轴12固定连接,第二扇叶支架32靠近双轴电机1的一端呈开口状,第一扇叶组件2由第二扇叶支架32的开口一端伸入第二扇叶支架32内,并整体设于第二扇叶支架32沿径向方向和轴向方向的内侧,即第一扇叶组件2与第二扇叶组件3形成嵌套结构,以使第一扇叶组件2和第二扇叶组件3的出风气流形成内外嵌套的形式。第二扇叶支架32远离双轴电机1的一端沿径向设有多个过风通道4,多个过风通道4绕第二输出轴12的周向均匀设置且在轴向方向上与第一扇叶21对应设置,以使第一扇叶21的出风侧的气流可穿过过风通道4正常流动。
此外,第一扇叶21的内缘与外缘之间的距离大于第二扇叶31的内缘与外缘之间的距离,即第一扇叶21的叶根至叶尖的距离大于第二扇叶31的叶根至叶尖的距离,以增大第一扇叶21的出风面积。
实施例五
如图1所示,本实施例提供了一种送风装置71,包括双轴电机1、第一扇叶组件2和第二扇叶组件3,其中,双轴电机1具有第一输出轴11和第二输出轴12,第一输出轴11为空心轴,内设有沿轴向贯通的空心部,且第一输出轴11由双轴电机1内向一端伸出,第二输出轴12的外径小于第一输出轴11的内径,且第二输出轴12的长度大于第一输出轴11的长度,第二输出轴 12的一端穿过第一输出轴11的空心部,并由第一输出轴11的伸出端向外伸出,第一输出轴11的轴线与第二输出轴12的轴线重合。第一扇叶组件2套设于第一输出轴11的伸出端,第二扇叶组件3套设于第二输出轴12的伸出端,进一步地,第一扇叶组件2包括第一扇叶21和第一扇叶支架22,第一扇叶支架22套设于第一输出轴11上,第一扇叶21沿周向设于第一扇叶支架22的外侧壁面,并沿第一扇叶支架22的径向向外延伸;第二扇叶组件3包括第二扇叶31和第二扇叶支架32,第二扇叶支架32套设于第二输出轴12上,第一扇叶21沿轴向设于第二扇叶支架32的外侧壁面,并由第二扇叶支架32的径向向外延伸。第一扇叶组件2和第二扇叶组件3分别在第一输出轴11和第二输出轴12的带动下独立转动,以提供差异化的风形。
其中,如图2所示,第一扇叶支架22为环形,进一步地,第一扇叶支架22靠近双轴电机1的一端套设于第一输出轴11上且与第一输出轴11固定连接,第一扇叶支架22远离双轴电机1的一端呈开口状,第二扇叶组件3由第一扇叶支架22的开口一端伸入第一扇叶支架22内,并整体设于第一扇叶支架22沿径向方向和轴向方向的内侧,即第一扇叶组件2与第二扇叶组件3形成嵌套结构,以使第一扇叶组件2和第二扇叶组件3的出风气流形成内外嵌套的形式。第一扇叶支架22靠近双轴电机1的一端沿径向设有多个过风通道4,多个过风通道4绕第一输出轴11的周向均匀设置且在轴向方向上与第二扇叶31对应设置,以使第二扇叶31的进风侧的气流可穿过过风通道4正常流动。
进一步地,第一扇叶组件2的出风面与第二扇叶组件3的出风面在同一平面内,即两个出风面在竖直方向上平齐;第一扇叶组件2的进风面与第二扇叶组件3的进风面在同一平面,即两个进风面在竖直方向上平齐,同时使得送风装置71的第一扇叶21与第二扇叶31沿轴向的尺寸大小相等,在转动过程中,送风装置71整体的进风面和出风面保持相对稳定,减少相互之间的扰动。
实施例六
如图1和图2所示,本实施例提供的送风装置71,包括双轴电机1、第一扇叶组件2和第二扇叶组件3,其中,双轴电机1具有第一输出轴11和第二输出轴12,第一输出轴11为空心轴,内设有沿轴向贯通的空心部,且第一输出轴11由双轴电机1内向一端伸出,第二输出轴12的外径小于第一输出轴 11的内径,且第二输出轴12的长度大于第一输出轴11的长度,第二输出轴12的一端穿过第一输出轴11的空心部,并由第一输出轴11的伸出端向外伸出,第一输出轴11的轴线与第二输出轴12的轴线重合。第一扇叶组件2套设于第一输出轴11的伸出端,第二扇叶组件3套设于第二输出轴12的伸出端,进一步地,第一扇叶组件2包括第一扇叶21和第一扇叶支架22,第一扇叶支架22套设于第一输出轴11上,第一扇叶21沿周向设于第一扇叶支架22的外侧壁面,并沿第一扇叶支架22的径向向外延伸;第二扇叶组件3包括第二扇叶31和第二扇叶支架32,第二扇叶支架32套设于第二输出轴12上,第一扇叶21沿轴向设于第二扇叶支架32的外侧壁面,并由第二扇叶支架32的径向向外延伸。其中,第一扇叶组件2和第二扇叶组件3分别在第一输出轴11和第二输出轴12的带动下独立转动,以提供差异化的风形。
如图3所示,双轴电机1具体包括第一驱动组件13和第二驱动组件14。进一步地,第一驱动组件13进一步包括第一定子结构131、第一转子结构132和第一罩体133,第一罩体133为一端设有开口的中空结构,第一罩体133的开口朝向第一扇叶组件2,第一定子结构131设于第一罩体133内的中空部分,第一转子结构132沿周向设于第一罩体133的内侧面上,第一罩体133的另一端的端面上设有与第一输出轴11相匹配的通孔,第一输出轴11靠近第二驱动组件14的一端伸入第一罩体133的通孔内并与第一罩体133固定连接,通过第一罩体133实现第一转子结构132与第一输出轴11之间的固定连接,以在第一转子结构132旋转过程中带动第一输出轴11转动,进而带动第一扇叶组件2旋转。同样地,第二驱动组件14进一步包括第二定子结构141、第二转子结构142和第二罩体143,第二罩体143为一端设有开口的中空结构,第二罩体143的开口背向第一扇叶组件2,第二定子结构141设于第二罩体143内的中空部分,第二转子结构142沿周向设于第二罩体143的内侧面上,第二罩体143的另一端的端面上设有与第二输出轴12相匹配的通孔,第二输出轴12的一端穿过第二罩体143的通孔内并与第二罩体143固定连接,第二输出轴12穿过第二罩体143的一端穿过第一输出轴11的空心部并向外伸出,通过第二罩体143实现第二转子结构142与第二输出轴12之间的固定连接,以在第二转子结构142旋转过程中带动第二输出轴12转动,进 而带动第二扇叶组件3旋转。
实施例七
如图1所示,本实施例提供了一种送风装置71,包括双轴电机1、第一扇叶组件2和第二扇叶组件3,其中,双轴电机1具有第一输出轴11和第二输出轴12,第一输出轴11为空心轴,内设有沿轴向贯通的空心部,且第一输出轴11由双轴电机1内向一端伸出,第二输出轴12的外径小于第一输出轴11的内径,且第二输出轴12的长度大于第一输出轴11的长度,第二输出轴12的一端穿过第一输出轴11的空心部,并由第一输出轴11的伸出端向外伸出,第一输出轴11的轴线与第二输出轴12的轴线重合。第一扇叶组件2套设于第一输出轴11的伸出端,第二扇叶组件3套设于第二输出轴12的伸出端,进一步地,第一扇叶组件2包括第一扇叶21和第一扇叶支架22,第一扇叶支架22套设于第一输出轴11上,第一扇叶21沿周向设于第一扇叶支架22的外侧壁面,并沿第一扇叶支架22的径向向外延伸;第二扇叶组件3包括第二扇叶31和第二扇叶支架32,第二扇叶支架32套设于第二输出轴12上,第一扇叶21沿轴向设于第二扇叶支架32的外侧壁面,并由第二扇叶支架32的径向向外延伸。第一扇叶组件2和第二扇叶组件3分别在第一输出轴11和第二输出轴12的带动下独立转动,以提供差异化的风形。
其中,如图2所示,第一扇叶支架22为环形,进一步地,第一扇叶支架22靠近双轴电机1的一端套设于第一输出轴11上且与第一输出轴11固定连接,第一扇叶支架22远离双轴电机1的一端呈开口状,第二扇叶组件3由第一扇叶支架22的开口一端伸入第一扇叶支架22内,并整体设于第一扇叶支架22沿径向方向和轴向方向的内侧,即第一扇叶组件2与第二扇叶组件3形成嵌套结构,以使第一扇叶组件2和第二扇叶组件3的出风气流形成内外嵌套的形式。第一扇叶支架22靠近双轴电机1的一端沿径向设有多个过风通道4,多个过风通道4绕第一输出轴11的周向均匀设置且在轴向方向上与第二扇叶31对应设置,以使第二扇叶31的进风侧的气流可穿过过风通道4正常流动。
此外,如图2所示,送风装置71还包括机壳5、第一网罩61和第二网罩62。双轴电机1设于机壳5内,机壳5的一端设有通孔,双轴电机1的第一输出轴11和第二输出轴12穿过机壳5的通孔向外伸出,并在机壳5外分别与第 一扇叶组件2和第二扇叶组件3相连接。第一网罩61沿轴向设于机壳5与第一扇叶组件2之间,并与机壳5朝向第一扇叶组件2的一端可拆卸地连接;第二网罩62设于第一网罩61远离机壳5的一端,第二网罩62与第一网罩61可拆卸地连接,且在第二网罩62与第一网罩61连接后内部形成容纳空腔,第一扇叶组件2和第二扇叶组件3容置于该容纳空间内。第一网罩61和第二网罩62均设有沿径向呈辐射状的格栅,以使气流可以正常穿过第一网罩61和第二网罩62。
实施例八
如图1所示,本实施例提供了一种送风装置71,包括双轴电机1、第一扇叶组件2和第二扇叶组件3,其中,双轴电机1具有第一输出轴11和第二输出轴12,第一输出轴11为空心轴,内设有沿轴向贯通的空心部,且第一输出轴11由双轴电机1内向一端伸出,第二输出轴12的外径小于第一输出轴11的内径,且第二输出轴12的长度大于第一输出轴11的长度,第二输出轴12的一端穿过第一输出轴11的空心部,并由第一输出轴11的伸出端向外伸出,第一输出轴11的轴线与第二输出轴12的轴线重合。第一扇叶组件2套设于第一输出轴11的伸出端,第二扇叶组件3套设于第二输出轴12的伸出端,进一步地,第一扇叶组件2包括第一扇叶21和第一扇叶支架22,第一扇叶支架22套设于第一输出轴11上,第一扇叶21沿周向设于第一扇叶支架22的外侧壁面,并沿第一扇叶支架22的径向向外延伸;第二扇叶组件3包括第二扇叶31和第二扇叶支架32,第二扇叶支架32套设于第二输出轴12上,第一扇叶21沿轴向设于第二扇叶支架32的外侧壁面,并由第二扇叶支架32的径向向外延伸。
其中,如图2所示,第一扇叶支架22为环形,进一步地,第一扇叶支架22靠近双轴电机1的一端套设于第一输出轴11上且与第一输出轴11固定连接,第一扇叶支架22远离双轴电机1的一端呈开口状,第二扇叶组件3由第一扇叶支架22的开口一端伸入第一扇叶支架22内,并整体设于第一扇叶支架22沿径向方向和轴向方向的内侧,即第一扇叶组件2与第二扇叶组件3形成嵌套结构,以使第一扇叶组件2和第二扇叶组件3的出风气流形成内外嵌套的形式。第一扇叶支架22靠近双轴电机1的一端沿径向设有多个过风通道4, 多个过风通道4绕第一输出轴11的周向均匀设置且在轴向方向上与第二扇叶31对应设置,以使第二扇叶31的进风侧的气流可穿过过风通道4正常流动。
此外,第二扇叶31的内缘与外缘之间的距离大于第一扇叶21的内缘与外缘之间的距离,即第二扇叶31的叶根至叶尖的距离大于第一扇叶21的叶根至叶尖的距离,以增大第二扇叶31的出风面积。第一扇叶组件2的出风面与第二扇叶组件3的出风面在同一平面内,即两个出风面在竖直方向上平齐;第一扇叶组件2的进风面与第二扇叶组件3的进风面在同一平面,即两个进风面在竖直方向上平齐,同时使得送风装置71的第一扇叶21与第二扇叶31沿轴向的尺寸大小相等,在转动过程中,送风装置71整体的进风面和出风面保持相对稳定,减少相互之间的扰动。
其中,第一扇叶组件2和第二扇叶组件3分别在第一输出轴11和第二输出轴12的带动下独立转动,以提供差异化的风形。如图3所示,双轴电机1具体包括第一驱动组件13和第二驱动组件14。进一步地,第一驱动组件13进一步包括第一定子结构131、第一转子结构132和第一罩体133,第一罩体133为一端设有开口的中空结构,第一罩体133的开口朝向第一扇叶组件2,第一定子结构131设于第一罩体133内的中空部分,第一转子结构132沿周向设于第一罩体133的内侧面上,第一罩体133的另一端的端面上设有与第一输出轴11相匹配的通孔,第一输出轴11靠近第二驱动组件14的一端伸入第一罩体133的通孔内并与第一罩体133固定连接,通过第一罩体133实现第一转子结构132与第一输出轴11之间的固定连接,以在第一转子结构132旋转过程中带动第一输出轴11转动,进而带动第一扇叶组件2旋转。同样地,第二驱动组件14进一步包括第二定子结构141、第二转子结构142和第二罩体143,第二罩体143为一端设有开口的中空结构,第二罩体143的开口背向第一扇叶组件2,第二定子结构141设于第二罩体143内的中空部分,第二转子结构142沿周向设于第二罩体143的内侧面上,第二罩体143的另一端的端面上设有与第二输出轴12相匹配的通孔,第二输出轴12的一端穿过第二罩体143的通孔内并与第二罩体143固定连接,第二输出轴12穿过第二罩体143的一端穿过第一输出轴11的空心部并向外伸出,通过第二罩体143实现第二转子结构142与第二输出轴12之间的固定连接,以在第二转子结构142旋转 过程中带动第二输出轴12转动,进而带动第二扇叶组件3旋转。
另外,如图2所示,送风装置71还包括机壳5、第一网罩61和第二网罩62。双轴电机1设于机壳5内,机壳5的一端设有通孔,双轴电机1的第一输出轴11和第二输出轴12穿过机壳5的通孔向外伸出,并在机壳5外分别与第一扇叶组件2和第二扇叶组件3相连接。第一网罩61沿轴向设于机壳5与第一扇叶组件2之间,并与机壳5朝向第一扇叶组件2的一端可拆卸地连接;第二网罩62设于第一网罩61远离机壳5的一端,第二网罩62与第一网罩61可拆卸地连接,且在第二网罩62与第一网罩61连接后内部形成容纳空腔,第一扇叶组件2和第二扇叶组件3容置于该容纳空间内。第一网罩61和第二网罩62均设有沿径向呈辐射状的格栅,以使气流可以正常穿过第一网罩61和第二网罩62。
实施例九
如图4所示,本实施例提供了一种家用电器,进一步地,家用电器为一种落地扇7,包括上述任一实施例中的送风装置71以及支撑底座72,通过支撑底座72对送风装置71提供支撑,使送风装置71位于合适的送风高度,同时通过送风装置71的双轴电机1驱动第一扇叶组件2和第二扇叶组件3分别独立运行,从而通过调整第一扇叶组件2和第二扇叶组件3的转速以及转动方向,提供差异化的风形。
进一步地,在第二扇叶组件3设于第一扇叶组件2沿径向的内侧且第一扇叶组件2的转速大于第二扇叶组件3的转速时,或者在第一扇叶组件2设于第二扇叶组件3沿径向的内侧且第一扇叶组件2的转速小于第二扇叶组件3的转速时,送风装置71的出风气流为内侧气流的风量和风速小于外侧气流的风量和风速,出风气流在流动过程中逐渐向外侧扩散,可使出风气流的辐射范围扩大。而在第二扇叶组件3设于第一扇叶组件2沿径向的内侧且第一扇叶组件2的转速小于第二扇叶组件3的转速时,或者第一扇叶组件2设于第二扇叶组件3沿径向的内侧且第一扇叶组件2的转速大于第二扇叶组件3的转速时,送风装置71的出风气流为内侧气流的风量和风速大于外侧气流的风量和风速,出风气流在流动过程中逐渐聚拢,可使出风气流相对集中。在第一扇叶组件2的转速等于第二扇叶组件3的转速时,两个扇叶的旋转过程接近于一个扇叶旋 转,有利于出风气流在流动过程中的融合,出风气流相对稳定,可减少内侧气流与外侧气流之间的相互冲击和扰动。
进一步地,在送风装置71的第一扇叶组件2与第二扇叶组件3的旋转方向相同时,送风装置71出风气流的内侧气流与外侧气流之间的接触面的扰动小,有利于内侧气流与外侧气流的融合;在送风装置71的第一扇叶组件2与第二扇叶组件3的旋转方向相反时,送风装置71的出风气流的内侧气流与外侧气流之间产生一定地相互冲击和扰动,使得出风气流的强度下降,并逐渐向外扩散,辐射范围扩大,出风气流更加柔和。
需要说明的是,本实施例仅为本申请的优选方案之一,本申请中的家用电器并不限于落地扇,还可以是台扇、吊扇、壁扇、塔扇、冷风扇或暖风机。
以上结合附图详细说明了本申请的技术方案,通过第一输出轴和第二输出轴的嵌套结构,可实现第一扇叶组件和第二扇叶组件分别独立转动,以根据用户的需求提供差异化的风形,出风气流内部的扰动小,便于送风装置整体的结构设置。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种送风装置,其中,包括:
    双轴电机,所述双轴电机具有向同一方向伸出的第一输出轴和第二输出轴,所述第一输出轴内设有沿轴向贯通的空心部,所述第二输出轴穿过所述空心部;
    第一扇叶组件,套设于所述第一输出轴上,以在所述第一输出轴的带动下转动;
    第二扇叶组件,套设于所述第二输出轴上,以在所述第二输出轴的带动下转动,
    其中,所述第一扇叶组件和所述第二扇叶组件中的一个设于另一个沿径向的内侧。
  2. 根据权利要求1所述的送风装置,其中,
    所述第一扇叶组件包括:第一扇叶支架和第一扇叶,所述第一扇叶支架套设于所述第一输出轴上,所述第一扇叶沿周向设于所述第一扇叶支架的外侧壁面和/或内侧壁面;
    所述第二扇叶组件包括:第二扇叶支架和第二扇叶,所述第二扇叶支架套设于所述第二输出轴上,所述第二扇叶沿周向设于所述第二扇叶支架的外侧壁面和/或内侧壁面。
  3. 根据权利要求2所述的送风装置,其中,
    所述第一扇叶支架为环形,所述第二扇叶组件设于所述第一扇叶支架沿径向方向的内侧。
  4. 根据权利要求3所述的送风装置,其中,所述第一扇叶支架靠近所述双轴电机的一端套设于所述第一输出轴上并与所述第一输出轴固定连接,所述第二扇叶组件设于所述第一扇叶支架沿轴向的内侧。
  5. 根据权利要求4所述的送风装置,其中,
    所述第一扇叶支架靠近所述双轴电机的一端端面上设有至少一个过风通道,所述过风通道与所述第二扇叶对应设置。
  6. 根据权利要求5所述的送风装置,其中,所述第二扇叶的内缘与外缘 之间的距离大于所述第一扇叶的内缘与外缘之间的距离。
  7. 根据权利要求2所述的送风装置,其中,
    所述第二扇叶支架为环形,所述第一扇叶组件设于所述第二扇叶支架沿径向方向的内侧。
  8. 根据权利要求7所述的送风装置,其中,
    所述第二扇叶支架远离所述双轴电机的一端套设于所述第二输出轴上并与所述第二输出轴固定连接,所述第一扇叶组件设于所述第二扇叶支架沿轴向的内侧。
  9. 根据权利要求8所述的送风装置,其中,
    所述第二扇叶支架远离所述双轴电机的一端端面上设有至少一个过风通道,所述过风通道与所述第一扇叶组件对应设置。
  10. 根据权利要求9所述的送风装置,其中,所述第一扇叶内缘与外缘之间的距离大于所述第二扇叶的内缘与外缘之间的距离。
  11. 根据权利要求1至10中任一项所述的送风装置,其中,
    所述第一扇叶组件的出风面与所述第二扇叶组件的出风面在同一平面内。
  12. 根据权利要求1至10中任一项所述的送风装置,其中,
    所述第一扇叶组件的进风面与所述第二扇叶组件的进风面在同一平面内。
  13. 根据权利要求1至10中任一项所述的送风装置,其中,所述双轴电机包括:
    第一驱动组件,包括第一定子结构和第一转子结构,所述第一输出轴与所述第一转子结构固定连接;
    第二驱动组件,包括第二定子结构和第二转子结构,所述第二输出轴与所述第二转子结构固定连接,
    其中,所述第一输出轴和所述第二输出轴分别在所述第一驱动组件和所述第二驱动组件的驱动下独立转动。
  14. 根据权利要求13所述的送风装置,其中,所述第一输出轴的轴线与所述第二输出轴的轴线重合。
  15. 根据权利要求14所述的送风装置,其中,还包括:
    机壳,所述机壳的一端设有通孔,所述双轴电机设于所述机壳内,所述第 一输出轴和所述第二输出轴穿过所述通孔向外伸出,所述第一扇叶组件和所述第二扇叶组件设于所述机壳外。
  16. 根据权利要求15所述的送风装置,其中,还包括:
    第一网罩,设于所述机壳上设有所述通孔的一端,所述第一网罩与所述机壳可拆卸连接;
    第二网罩,设于所述第一网罩远离所述机壳的一端,所述第二网罩与所述第一网罩可拆卸连接,且在所述第一网罩与所述第二网罩连接后内部形成容纳空腔,所述第一扇叶组件和所述第二扇叶组件设于所述容纳空腔内。
  17. 一种家用电器,其中,包括:
    上述权利要求1至16中任一项所述的送风装置;
    所述家用电器是台扇、落地扇、吊扇、壁扇、塔扇、冷风扇或暖风机。
PCT/CN2020/072144 2019-09-16 2020-01-15 送风装置和家用电器 WO2021051731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910871826.8A CN112503006B (zh) 2019-09-16 2019-09-16 送风装置和家用电器
CN201910871826.8 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021051731A1 true WO2021051731A1 (zh) 2021-03-25

Family

ID=74883420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072144 WO2021051731A1 (zh) 2019-09-16 2020-01-15 送风装置和家用电器

Country Status (2)

Country Link
CN (1) CN112503006B (zh)
WO (1) WO2021051731A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114554813A (zh) * 2022-04-14 2022-05-27 深圳市润联环保科技有限公司 一种工业自动化控制设备多功能降温装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645106C1 (ru) * 2017-04-03 2018-02-15 Закрытое акционерное общество "РИМЕРА" Устройство для гидравлической защиты погружного маслозаполненного электродвигателя
CN208364446U (zh) * 2018-07-03 2019-01-11 广东威灵电机制造有限公司 风扇
CN208364445U (zh) * 2018-07-03 2019-01-11 广东威灵电机制造有限公司 风机
CN208707464U (zh) * 2018-07-26 2019-04-05 深圳威枫豪斯新能源科技有限公司 双轴输出电机结构
CN208885552U (zh) * 2018-08-30 2019-05-21 珠海格力电器股份有限公司 轴流送风装置、风扇或空调

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670518A (ja) * 1991-08-12 1994-03-11 Shiroo Uchida 同心多軸機構のモーター
DE60124332D1 (de) * 2000-03-07 2006-12-21 Matsushita Electric Ind Co Ltd Flüssigkeitsspender
DE10109621B4 (de) * 2001-02-28 2006-07-06 Delta Electronics, Inc. Serieller Lüfter
GB0804220D0 (en) * 2008-03-06 2008-04-16 Itw Ltd Bi-axial electromagnetic actuator
TWM522048U (zh) * 2015-11-10 2016-05-21 Xun-Tian Chen 多功能運動健身器
CN107040087B (zh) * 2016-02-03 2020-06-09 日本电产株式会社 螺旋桨式推力产生装置
CN209053810U (zh) * 2018-10-15 2019-07-02 广东美的白色家电技术创新中心有限公司 风扇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645106C1 (ru) * 2017-04-03 2018-02-15 Закрытое акционерное общество "РИМЕРА" Устройство для гидравлической защиты погружного маслозаполненного электродвигателя
CN208364446U (zh) * 2018-07-03 2019-01-11 广东威灵电机制造有限公司 风扇
CN208364445U (zh) * 2018-07-03 2019-01-11 广东威灵电机制造有限公司 风机
CN208707464U (zh) * 2018-07-26 2019-04-05 深圳威枫豪斯新能源科技有限公司 双轴输出电机结构
CN208885552U (zh) * 2018-08-30 2019-05-21 珠海格力电器股份有限公司 轴流送风装置、风扇或空调

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114554813A (zh) * 2022-04-14 2022-05-27 深圳市润联环保科技有限公司 一种工业自动化控制设备多功能降温装置
CN114554813B (zh) * 2022-04-14 2023-05-05 深圳市联智通达智能有限公司 一种工业自动化控制设备多功能降温装置

Also Published As

Publication number Publication date
CN112503006B (zh) 2022-07-12
CN112503006A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
AU2012378838B2 (en) Fan
CN206785668U (zh) 风机***以及电动器具
WO2021208155A1 (zh) 空气循环装置、空气净化机、空气加湿器
JP2013185440A (ja) 遠心ファン
WO2021051731A1 (zh) 送风装置和家用电器
WO2013155837A1 (zh) 空调室内机
KR101101201B1 (ko) 양방향 송풍유닛 및 이를 포함하는 환기장치
CN209180067U (zh) 对旋风扇
KR101647382B1 (ko) 선풍기
WO2021031544A1 (zh) 出风装置
JP2022076034A (ja) 回転自在の吹出シェルによる多方向同時送風装置
CN112503005A (zh) 送风装置和家用电器
CN112503007A (zh) 送风装置和家用电器
CN205977816U (zh) 导流圈、离心风机及空调
JP2011127497A (ja) 天井扇
CN211573813U (zh) 一种一体式高速风机
CN108105122B (zh) 一种双扇叶换气扇
KR102029556B1 (ko) 천장형 공기조화기
CN102278318A (zh) 一种低转速增压叶轮的无扇叶风扇
CN207920925U (zh) 一种全角风扇
CN211525132U (zh) 出风角度可调的离心风扇
CN211370823U (zh) 用于吸油烟机的螺母组件及应用有该螺母组件的吸油烟机
WO2024041104A1 (zh) 风机及空调
CN218991923U (zh) 循环风扇
CN214711011U (zh) 吹风机驱动结构及包括该吹风机驱动结构的吹风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865721

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20865721

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20865721

Country of ref document: EP

Kind code of ref document: A1