WO2021049330A1 - Processing liquid, processing method - Google Patents

Processing liquid, processing method Download PDF

Info

Publication number
WO2021049330A1
WO2021049330A1 PCT/JP2020/032679 JP2020032679W WO2021049330A1 WO 2021049330 A1 WO2021049330 A1 WO 2021049330A1 JP 2020032679 W JP2020032679 W JP 2020032679W WO 2021049330 A1 WO2021049330 A1 WO 2021049330A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
treatment liquid
compound
metal
acid
Prior art date
Application number
PCT/JP2020/032679
Other languages
French (fr)
Japanese (ja)
Inventor
智美 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021545217A priority Critical patent/JPWO2021049330A1/ja
Publication of WO2021049330A1 publication Critical patent/WO2021049330A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/08Liquid soap, e.g. for dispensers; capsuled
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/34Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/36Organic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/04Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors
    • C23G1/06Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to a treatment liquid and a treatment method.
  • CCD Charge-Coupled Device
  • semiconductor devices such as memories are manufactured by forming fine electronic circuit patterns on a substrate using photolithography technology.
  • a substrate, a metal layer formed on the substrate as a wiring material, an etching stop layer formed on the metal layer, and an interlayer insulating film formed on the etching stop layer are used between layers.
  • a dry etching step is performed on a laminate containing a metal hard mask formed on an insulating film using the metal hard mask as a mask, and each member is etched so that the surface of the metal layer is exposed.
  • a method of providing a metal hard mask, an interlayer insulating film, and a hole penetrating the etching stop layer can be mentioned.
  • a process of removing an unnecessary portion (removal target object) from such a laminated body may be performed.
  • a residue (dry etching residue) of each member may be attached to at least one of the metal layer constituting the hole and the interlayer insulating film. Therefore, a treatment for removing the residue of each member as a removal target may be performed using a treatment liquid.
  • Patent Document 1 discloses "an aqueous cleaning composition containing at least one kind of corrosion inhibitor, water ... in some cases, at least one kind of etchant ... (Claim 1)". .. Hydrofluoric acid and the like have been proposed as the etchant in the aqueous cleaning composition (treatment liquid) (claim 4).
  • the laminate that has undergone the dry etching step contains a cobalt-containing substance (Co-containing substance), a copper-containing substance (Cu-containing substance), or the like as a metal layer
  • the purpose of removal is to use a treatment liquid.
  • Co-containing substance a cobalt-containing substance
  • Cu-containing substance copper-containing substance
  • the purpose of removal is to use a treatment liquid.
  • the present invention includes one or more first metals selected from the group consisting of Co and Cu while having excellent removability of the object to be removed (for example, dry etching residue and / or metal hard mask).
  • An object of the present invention is to provide a treatment liquid capable of suppressing etching of a first metal-containing material and a treatment method.
  • Etchant and With organic solvent Contains anticorrosive agents, The content of the organic solvent is 80% by mass or more with respect to the total mass of the treatment liquid.
  • a treatment liquid in which the anticorrosive agent is one or more compounds selected from the group consisting of compound X, compound Y, and compound Z.
  • Compound X One substituent XA which is a group represented by any of the general formulas (XA1) to (XA3) and a substituent which is a group represented by any of the general formulas (XB1) to (XB7).
  • * represents a bonding position.
  • R independently represents a hydrogen atom or an alkyl group.
  • Compound Y A compound represented by the general formula (Y). Y Q- COOH (Y) In the general formula (Y), Y Q represents an aromatic ring group having an oxyphosphonate group, an aromatic ring group having a boronate group, or a phosphonic acid group-alkylene group.
  • Compound Z One or more compounds selected from the group consisting of mellitic acid and oxalic acid.
  • the above etchant is selected from the group consisting of hydrogen fluoride, ammonium fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride, tetrabutylammonium fluoride, hexafluorosilicic acid, hexafluorophosphoric acid, and tetrafluoroboric acid.
  • the treatment solution according to [1] or [2] which is one or more compounds to be treated.
  • the organic solvents are ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, hexanol, 1-octanol, 2-octanol, and 2-ethylhexanol.
  • the object to be treated further contains a second metal-containing material containing one or more second metals selected from the group consisting of Zr, Ti, Hf, and Ta.
  • a treatment method comprising a step of bringing the treatment liquid according to any one of [1] to [9] into contact with the object to be treated to remove the second metal-containing substance.
  • the object to be treated further contains a dry etching residue
  • a treatment method comprising a step of bringing the treatment liquid according to any one of [1] to [9] into contact with the object to be processed to remove the dry etching residue.
  • the treatment method according to any one of [10] to [12], wherein the removal rate of the first metal-containing substance when the treatment liquid is brought into contact with the object to be treated is 10 ⁇ / min or less.
  • a treatment liquid capable of suppressing etching of a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu, while having excellent removability of the object to be removed, and A processing method can be provided.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the term "preparation” means not only preparing a specific material by synthesizing or blending it, but also procuring a predetermined material by purchasing or the like.
  • 1 ⁇ corresponds to 0.1 nm.
  • the group not described as substituted or unsubstituted includes a group containing a substituent as well as a group containing no substituent as long as the effect of the present invention is not impaired.
  • the "hydrocarbon group” includes not only a hydrocarbon group containing no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group containing a substituent (substituted hydrocarbon group). This is also synonymous with each compound.
  • the "pH” in the present invention is a value measured at 23 ° C. using a pH meter (product name “pH Meter F-51", manufactured by HORIBA, Ltd.). The value read after starting the measurement and stabilizing the displayed value is defined as pH.
  • the treatment liquid of the present invention is a treatment liquid used for treating an object to be treated containing a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu. , Etchant, organic solvent, and anticorrosive agent.
  • the content of the organic solvent is 80% by mass or more with respect to the total mass of the treatment liquid.
  • the anticorrosive agent is one or more compounds selected from the group consisting of Compound X described later, Compound Y described later, and Compound Z described later.
  • an etchant and a predetermined anticorrosive agent are present in a high-concentration organic solvent.
  • etching of the first metal-containing material is suppressed (corrosion prevention) by a predetermined anticorrosive agent while enabling removal of the object to be removed mainly by etching.
  • the above-mentioned anticorrosive agent can realize a particularly good anticorrosive action in a high concentration organic solvent, and such a feature realizes the effect of the present invention.
  • the treatment liquid of the present invention has good corrosion resistance against aluminum-based materials such as Al or Al 2 O 3.
  • examples of the object to be removed include a metal hard mask and an etching residue.
  • any one of corrosion resistance to the first metal-containing material for example, corrosion resistance to the Co-containing material and corrosion resistance to the Cu-containing material
  • corrosion resistance to the aluminum-based material for example, corrosion resistance to the Co-containing material and corrosion resistance to the Cu-containing material
  • removal property to the object to be removed for example, corrosion resistance to the aluminum-based material
  • the effect of the present invention is more excellent when it is more excellent than the above.
  • the treatment liquid of the present invention contains an etchant.
  • the etchant has a function of removing (dissolving) objects to be removed (metal hard mask, etching residue, etc.).
  • the etchant is preferably a halogen-containing compound (a compound containing a halogen atom in the compound), and more preferably a fluorine-containing compound.
  • the fluorine-containing compound is not particularly limited as long as the compound contains a fluorine atom, and a known fluorine-containing compound can be used. Among them, as the fluorine-containing compound, a compound that dissociates in the treatment liquid and releases fluoride ions is also preferable.
  • fluorine-containing compound examples include hydrogen fluoride (HF), ammonium fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride, tetrabutylammonium fluoride, hexafluorosilicic acid, hexafluorophosphate, and tetrafluoroboric acid. , Ammonium hexafluorophosphate, ammonium hexafluorosilicate and the like.
  • the fluorine-containing compound is hydrogen fluoride (HF), ammonium fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride, tetrabutylammonium fluoride, hexafluorosilicic acid, because the effect of the present invention is more excellent.
  • HF hydrogen fluoride
  • ammonium fluoride tetramethylammonium fluoride
  • tetraethylammonium fluoride tetrabutylammonium fluoride
  • hexafluorosilicic acid because the effect of the present invention is more excellent.
  • Hexafluorophosphoric acid or tetrafluoroboric acid is preferable, and hydrogen fluoride is more preferable.
  • the content of the etchant (preferably a fluorine-containing compound) in the treatment liquid is preferably 0.01% by mass or more, preferably 0.05% by mass, based on the total mass of the treatment liquid.
  • the above is more preferable, and 0.1% by mass or more is further preferable.
  • the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less.
  • the etchant (preferably a fluorine-containing compound) may be used alone or in combination of two or more. When two or more kinds of etchants (preferably fluorine-containing compounds) are used, the total content is preferably within the above range.
  • the treatment liquid of the present invention contains an organic solvent.
  • the content of the organic solvent (preferably an alcohol solvent) in the treatment liquid of the present invention is 80% by mass or more, preferably 80 to 99.9% by mass, and 80 to 99% by mass, based on the total mass of the treatment liquid.
  • the mass% is more preferable, and 90 to 98% by mass is further preferable.
  • the organic solvent may be used alone or in combination of two or more. When two or more kinds of organic solvents are used, the total content is preferably within the above range.
  • the organic solvent any known organic solvent can be used, but a hydrophilic organic solvent is preferable.
  • the hydrophilic organic solvent means an organic solvent that can be uniformly mixed with water in any ratio.
  • examples of the organic solvent include alcohol-based solvents, ketone-based solvents, ester-based solvents, ether-based solvents (for example, glycol diether), sulfone-based solvents, sulfoxide-based solvents, nitrile-based solvents, and amide-based solvents. Be done. It is also preferable that these organic solvents are hydrophilic organic solvents.
  • the organic solvent is preferably an alcohol solvent.
  • the alcohol-based solvent examples include alkanediol (including, for example, alkylene glycol), alkoxyalcohol (including, for example, glycol monoether), saturated aliphatic monohydric alcohol, unsaturated non-aromatic monohydric alcohol, and ring. Examples thereof include low molecular weight alcohols containing a structure. Among them, the alcohol solvent is preferably glycol monoether or saturated aliphatic monohydric alcohol.
  • alkanediol examples include glycol, 2-methyl-1,3-propanediol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,4-butanediol, and 1,3.
  • -Butanediol, 1,2-butanediol, 2,3-butanediol, pinacol, alkylene glycol and the like can be mentioned.
  • alkylene glycol examples include ethylene glycol, propylene glycol, hexylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol and tetraethylene glycol.
  • alkoxy alcohol examples include 3-methoxy-3-methyl-1-butanol, 3-methoxy-1-butanol, 1-methoxy-2-butanol, glycol monoether and the like.
  • glycol monoether examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether.
  • Triethylene glycol monomethyl ether Triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, 1-methoxy-2-propanol, 2-methoxy-1-propanol, 1-ethoxy-2-propanol, 2-ethoxy-1- Propanol, propylene glycol mono-n-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monomethyl ether and ethylene glycol mono Benzyl ether and diethylene glycol monobenzyl ether, 1-octanol, 2-octanol, 2-ethylhexanol and the like can be mentioned.
  • Saturated aliphatic monohydric alcohols include, for example, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 2-pentanol, t-pentyl alcohol, and , Hexanol and the like.
  • unsaturated non-aromatic monohydric alcohols examples include allyl alcohol, propargyl alcohol, 2-butenyl alcohol, 3-butenyl alcohol, 4-pentene-2-ol and the like.
  • low molecular weight alcohols containing a ring structure examples include tetrahydrofurfuryl alcohol, furfuryl alcohol, and 1,3-cyclopentanediol.
  • ketone solvent examples include acetone, propanone, cyclobutanone, cyclopentanone, cyclohexanone, diacetone alcohol, 2-butanone, 5-hexanedione, 1,4-cyclohexanedione, 3-hydroxyacetphenone, and 1,3-cyclohexane.
  • dione and cyclohexanone examples include dione and cyclohexanone.
  • ester solvent examples include glycol monoesters such as ethyl acetate, ethylene glycol monoacetate and diethylene glycol monoacetate, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate.
  • glycol monoether monoesters such as ethylene glycol monoethyl ether acetate.
  • ethylene glycol monobutyl ether, tri (propylene glycol) methyl ether, and diethylene glycol monoethyl ether are preferable.
  • sulfone solvent examples include sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane and the like.
  • sulfoxide solvent examples include dimethyl sulfoxide and the like.
  • nitrile solvent examples include acetonitrile and the like.
  • amide solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, and N.
  • -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like can be mentioned.
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, hexanol, 1-octanol, 2-octanol, and 2-ethylhexanol.
  • One or more compounds selected from are preferred.
  • the organic solvent it is preferable to use a high-purity organic solvent having a reduced metal ion content, and it may be further purified and used.
  • the purification method is not particularly limited, but known methods such as filtration, ion exchange, distillation, adsorption purification, recrystallization, reprecipitation, sublimation, and purification using a column can be used, and these can be applied in combination. You may.
  • the treatment liquid of the present invention contains an anticorrosive agent.
  • the anticorrosive agent is one or more compounds selected from the group consisting of compound X, compound Y, and compound Z.
  • the above-mentioned anticorrosive agent may be used alone or in combination of two or more.
  • the two or more kinds of the above-mentioned anticorrosive agents may be compound X alone, compound Y alone, or compound Z alone, among compound X, compound Y, and compound Z. 2 or 3 types may be used.
  • compound X, compound Y, and compound Z will be described in detail.
  • Compound X is "one substituent XA, which is a group represented by any of the general formulas (XA1) to (XA3), and a group represented by any of the general formulas (XB1) to (XB7).
  • substituent XA which is a group represented by any of the general formulas (XA1) to (XA3), and a group represented by any of the general formulas (XB1) to (XB7).
  • One or more compounds selected from the group consisting of "a compound containing one or more substituents XB (Compound X1)” and "a compound containing two or more substituents XA (Compound X2)". is there.
  • R in the general formulas (XA1), (XA2), (XB4), and (XB5) independently represents a hydrogen atom or an alkyl group.
  • the alkyl group may be linear or branched, and may have a wholly or partially cyclic structure.
  • the alkyl group preferably has 1 to 6 carbon atoms, and more preferably 1.
  • the alkyl group is preferably unsubstituted.
  • R is preferably a hydrogen atom in that the etching of the first metal-containing material can be further suppressed.
  • the substituent XA is a group represented by the general formula (XA1), a group represented by the general formula (XA2), and R is a hydrogen atom, in that the etching of the first metal-containing material can be further suppressed.
  • a group represented by the general formula (XA3) is preferable.
  • the substituent XB is not a group contained in the substituent XA. That is, when examining whether the partial structure in the compound contains either the substituent XA or the substituent XB, first, it is examined whether or not the partial structure contains the substituent XA, and the case where the substituent XA is not contained is examined. Next, it is examined whether or not the substituent XB is contained. In other words, the substituent XB can only be present in the partial structure in which the group corresponding to the substituent XA in the compound is absent.
  • the carboxyhydroxymethyl group corresponds to the substituent XA (group represented by the general formula (XA3)), and the above carboxy -OH as a part of the hydroxymethyl group does not correspond to the substituent XB (group represented by the general formula (XB1)).
  • the group represented by the general formula (XB1) is neither a group contained in the group represented by the general formula (XB2) nor a group contained in the group represented by the general formula (XB6).
  • -OH which is a part of such -COOH corresponds to the group represented by the general formula (XB1).
  • the group represented by the general formula (XB1) is preferably other than -OH, which is a part of -COOH.
  • the group represented by the general formula (XB1) is preferably bonded to a carbon atom (preferably a carbon atom other than the carbonyl carbon atom, more preferably a sp3 carbon atom). From the viewpoint that the effect of the present invention is more excellent, the substituent XB is preferably a group represented by any of the general formulas (XB1) and (XB3) to (XB7).
  • Compound X1 which is a form of compound X, has one substituent XA represented by any of the general formulas (XA1) to (XA3) and is represented by any of the general formulas (XB1) to (XB7). It is a compound containing one or more substituents XB.
  • the number of substituents XA contained in compound X1 is 1.
  • the number of substituents XB contained in compound X1 is preferably 1 to 10. When a plurality of substituents XB are present, the plurality of substituents XB may be the same or different from each other.
  • Compound X2 which is a form of compound X, is a compound containing two or more substituents XA represented by any of the general formulas (XA1) to (XA3).
  • the number of substituents XA contained in compound X2 is preferably 2 to 10, and more preferably 2.
  • the plurality of substituents XA may be the same or different from each other.
  • Compound X2 may contain a substituent XB. When the compound X2 contains a substituent XB, the number of the substituents XB contained in the compound X2 is preferably 1 to 10. When a plurality of substituents XB are present, the plurality of substituents XB may be the same or different from each other.
  • the compound X is preferably a compound represented by the following general formula (X).
  • X A represents a substituent XA (a group represented by any of the general formulas (XA1) to (XA3)).
  • X AB is a substituent XA (a group represented by any of the general formulas (XA1) to (XA3)) or a substituent XB (general formulas (XB1) to (XB7)). Represents a group represented by either.
  • XAB the substituent XB is preferable.
  • X C represents a single bond or an alkylene group.
  • one or more (preferably 1 to 5) of -CH 2- constituting the alkylene chain may be replaced with -CO- and / or -S-.
  • -CO- does not bond continuously.
  • the alkylene group may be linear or branched. Further, the alkylene group may be partially or wholly cyclic.
  • the alkylene group is preferably linear.
  • the alkylene group may contain a substituent, and the substituent is preferably a hydroxyl group. It is also preferable that the alkylene group does not contain a substituent other than a hydroxyl group.
  • the alkylene group preferably has 1 to 10 carbon atoms.
  • the number of carbon atoms includes the number of carbon atoms in -CH 2 -replaced with -S-.
  • X C is "- (L X) mx -" group represented by are preferred.
  • "- (L X) mx -" in, mx represents an integer of 0 to 10. If mx is 0, "- (L X) mx -" is a single bond.
  • "- (L X) mx -" in, L X is, -CR X 2 -, - CO- , or represents -S-. However, -CO- does not bond continuously.
  • -CR X 2 - represents two R X are each independently a hydrogen atom or a substituent of the medium (preferably hydroxyl groups).
  • One -CR X 2 - 2 one R X medium is preferably one or both are hydrogen atoms. If there are a plurality, -CR X 2 there are a plurality of - - L X in -CR X 2 to may each be the same or different.
  • X A and X AB in the general formula (X) include, for example, “XA1 / XB2", “XA1 / XB3", “XA1 / XB6", “XA1 / XB7", and “XA1 /”.
  • "XA1”, “XA2 / XB3", “XA2 / XB4", “XA2 / XB5", or "XA3 / XB1" is preferable, and "XA1 / XB3", “XA1 / XB6", “XA1 / XB7", “"XA2 / XB4" or "XA2 / XB5" is more preferable.
  • XA1 / XB2 means a combination in which X A is a group represented by the general formula (XA1) and X AB is a group represented by the general formula (XB2). Other similar descriptions have the same meaning.
  • X A is a group represented by the general formula (XA1) and X AB is a group represented by the general formula (XB7)
  • X C is a single bond or an alkylene group having 1 to 3 carbon atoms. Is also preferable.
  • the compound X is preferably a compound containing 1 to 5 partial structures represented by ⁇ COOH, and more preferably a compound containing only one.
  • the partial structure represented by -COOH is intended for all -COOH present in the compound.
  • -COOH which exists as a part of the substituent XA, is also counted as a partial structure represented by -COOH.
  • Compound X may be used alone or in combination of two or more. When two or more kinds of compounds X are used, two or more kinds of compounds X may be only compound X1 or both may be only compound X2, and both compound X1 and compound X2 may be used. There may be.
  • Compound Y is a compound represented by the general formula (Y). Y Q- COOH (Y)
  • Y Q represents an aromatic ring group having a phosphonate oxy group (-OPO (OH) 2 ), an aromatic ring group having a boronic acid group (-B (OH) 2 ), or a phosphonic acid group-alkylene group. ..
  • the aromatic ring group having an oxyphosphonate group and the aromatic ring group in the aromatic ring group having a boronate group may be independently an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and may be an aromatic hydrocarbon ring. Groups are preferred.
  • the aromatic ring group may be monocyclic or polycyclic, and a monocyclic ring is preferable.
  • the number of ring members of the aromatic ring group is preferably 5 to 15, and more preferably 6.
  • the COOH specified in the general formula (Y) directly bonds with the ring member atom of the aromatic ring group. Further, in the aromatic ring group having a phosphonate oxy group, the phosphonate oxy group and COOH specified in the general formula (Y) are directly bonded to the ring member atom of the aromatic ring group.
  • the aromatic ring group having a phosphonate oxy group may or may not contain a substituent other than these, and is preferably not contained.
  • the boronic acid group and COOH specified in the general formula (Y) are directly bonded to the ring member atom of the aromatic ring group.
  • the aromatic ring group having a boronic acid group may or may not contain a substituent other than these, and preferably does not contain it.
  • the alkylene group in the "phosphonic acid group-alkylene group-" may be linear or branched, and the number of carbon atoms is preferably 1 to 10.
  • the phosphonic acid group and COOH specified in the general formula (Y) are directly bonded to the carbon atom constituting the alkylene chain of the alkylene group.
  • the "phosphonic acid group-alkylene group-” may or may not contain a substituent other than these, and is preferably not contained.
  • Compound Z is one or more compounds selected from the group consisting of mellitic acid (benzenehexacarboxylic acid) and oxalic acid (HOOC-COOH). Compound Z may be used alone or in combination of two.
  • anti-corrosion agent in the present invention L- cysteic acid, O- carboxyphenyl boronic acid, creatine, N- acetyl glycine (acetamido acetate), homoarginine, N 6 - (aminocarbonyl) -L- lysine (homocitrulline) , LO-phosphoserine, 2-phosphonooxybenzoic acid, melitonic acid, oxalic acid, gluconic acid, L-citrulin, DL-alanylglycine, d-cystine, and dl-diencoric acid.
  • More than a species of compound is preferred and is selected from the group consisting of L-cysteine acid, gluconic acid, homoarginine, L-citrulin, DL-alanylglycine, O-carboxyphenylboronic acid, melitonic acid, and oxalic acid 1 More than a species of compound is more preferred.
  • the content of the anticorrosive agent in the treatment liquid is preferably 0.01 to 7% by mass, preferably 0.01, based on the total mass of the treatment liquid. It is more preferably ⁇ 5% by mass, further preferably 0.05 to 3% by mass, and particularly preferably 0.07 to 3% by mass. Above all, the content of compound Y is particularly preferably 0.07% by mass or more and less than 1% by mass with respect to the total mass of the treatment liquid.
  • the treatment liquid of the present invention may further contain water.
  • the water is not particularly limited, but it is preferable to use ultrapure water used for semiconductor production, and it is more preferable to use water obtained by further purifying the ultrapure water to reduce inorganic anions, metal ions and the like. ..
  • the purification method is not particularly limited, but purification using a filtration membrane or an ion exchange membrane and purification by distillation are preferable. Further, for example, it is preferable to carry out purification by the method described in JP-A-2007-254168.
  • the content of water in the treatment liquid is preferably 0.01 to 18% by mass, more preferably 0.05 to 14% by mass, still more preferably 0.1 to 9% by mass, based on the total mass of the treatment liquid. ..
  • the treatment liquid of the present invention may contain a pH adjuster.
  • the pH adjuster is a component other than the above-mentioned components.
  • a quaternary ammonium salt such as choline, an alkali hydroxide or alkaline earth salt such as potassium hydroxide, 2-aminoethanol, and an amino compound such as guanidine can be used to raise the pH. ..
  • metal ions for example, ammonium hydroxide, choline compounds, monoamines, imines (eg, 1,8-diazabicyclo [5.4.0] undecane-7-.
  • a hydroxylamine salt is preferable from the viewpoint of remarkably obtaining the desired effect of the present application.
  • examples of lowering the pH include inorganic acids and organic acids such as carboxylic acids and organic sulfuric acids.
  • the inorganic acid include hydrochloric acid, sulfuric acid, carbonic acid, hypophosphorous acid, phosphoric acid, phosphoric acid and the like.
  • Specific examples of carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-.
  • Heptanoic acid 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, glutaric acid, adipic acid, pimelli acid, maleic acid, phthalic acid, malic acid, tartrate acid , Lactic acid, diglycolic acid, 2-furancarboxylic acid, 2,5-furandicarboxylic acid, 3-furancarboxylic acid, 2-tetracarboxylic acid, methoxyacetic acid, methoxyphenylacetic acid, phenoxyacetic acid and the like.
  • Specific examples of the organic sulfuric acid include methanesulfonic acid, ethanesulfonic acid, isethionic acid and the like.
  • the pH adjuster may be used alone or in combination of two or more.
  • the content of the pH adjuster is not particularly limited, and may be appropriately determined so that the pH of the treatment liquid is within a predetermined range, for example.
  • the pH of the treatment liquid is preferably 5.0 or less, more preferably 4.0 or less, further preferably 0.00 to 4.0, and particularly preferably 0.05 or more and less than 3.5.
  • the treatment liquid of the present invention does not substantially contain coarse particles.
  • the coarse particles refer to particles having a diameter of 0.2 ⁇ m or more, for example, when the shape of the particles is regarded as a sphere.
  • the fact that coarse particles are not substantially contained means that when the treatment liquid is measured using a commercially available measuring device in the light scattering type in-liquid particle measurement method, particles of 0.2 ⁇ m or more in 1 mL of the treatment liquid are measured. Is 10 or less.
  • the coarse particles contained in the treatment liquid include particles such as dust, dust, organic solids and inorganic solids contained as impurities in the raw material, and dust and dirt brought in as contaminants during the preparation of the treatment liquid.
  • the amount of coarse particles present in the treatment liquid can be measured in the liquid phase by using a commercially available measuring device in the light scattering type liquid particle measurement method using a laser as a light source. Examples of the method for removing coarse particles include processing such as filtering described later.
  • the treatment liquid of the present invention may contain other components as components other than those described above.
  • Other components include, for example, anticorrosive agents other than those described above (anticorrosive agents that do not fall under any of compounds X, Y, Z), surfactants, oxidizing agents, chelating agents, defoaming agents, rust preventives, and , Preservatives and the like.
  • the treatment liquid of the present invention is, for example, based on the total mass of the treatment liquid.
  • the etchant is contained in an amount of 0.01 to 10% by mass (more preferably 0.05 to 5% by mass, still more preferably 0.1 to 3% by mass).
  • the organic solvent is contained in an amount of 80 to 99.9% by mass (more preferably 80 to 99% by mass, still more preferably 90 to 99% by mass).
  • the anticorrosive agent is contained in an amount of 0.01 to 5% by mass (more preferably 0.05 to 3% by mass, still more preferably 0.07 to 3% by mass).
  • a treatment liquid containing 0.01 to 18% by mass (more preferably 0.05 to 14% by mass, still more preferably 0.1 to 9% by mass) of water is preferable.
  • the treatment liquid may contain components (pH adjuster, etc.) other than the components (etchant, organic solvent, anticorrosive agent, and water) listed in the examples.
  • the treatment liquid of the present invention is typically a treatment liquid for semiconductor devices used in the manufacture of semiconductor devices.
  • “for semiconductor devices” means that it is used in the manufacture of semiconductor devices.
  • the treatment liquid of the present invention can be used in any step for manufacturing a semiconductor device, in addition to removing a metal hard mask and an etching residue.
  • the treatment liquid is a pre-wet liquid, a solution used for removing a permanent film (for example, a color filter, a transparent insulating film, a resin lens) or the like from a semiconductor substrate (for example, a removing liquid and a stripping liquid). It may also be used as a pCMP (after chemical mechanical polishing) cleaning solution or the like. Since the semiconductor substrate after the removal of the permanent film may be used again for the use of the semiconductor device, the removal of the permanent film is included in the manufacturing process of the semiconductor device. The specific application method of the treatment liquid of the present invention will be described later.
  • the treatment liquid of the present invention may be a kit obtained by dividing the raw material into a plurality of parts. Further, the treatment liquid may be prepared as a concentrated liquid. In this case, it can be diluted with water and / or an organic solvent at the time of use.
  • the treatment liquid of the present invention is a kit or a concentrated liquid, it can be stored, transported, and / or used by filling it in an arbitrary container as long as corrosiveness does not matter.
  • a container having a high degree of cleanliness in the container and less elution of impurities is preferable for semiconductor applications. Examples of the container that can be used include, but are not limited to, the "clean bottle” series manufactured by Aicello Chemical Corporation and the "pure bottle” manufactured by Kodama Resin Industry.
  • the inner wall of this container is made of one or more resins selected from the group consisting of polyethylene resin, polypropylene resin and polyethylene-polypropylene resin, or a resin different from this, or stainless steel, hasteloy, inconel, monel, etc., for rust prevention and It is preferably formed from a metal that has been subjected to a metal elution prevention treatment.
  • a fluororesin (perfluororesin) can be preferably used.
  • ethylene or propylene oligomer is eluted as compared with the case where a container whose inner wall is a polyethylene resin, a polypropylene resin, or a polyethylene-polypropylene resin is used.
  • the occurrence of defects can be suppressed.
  • Specific examples of such a container whose inner wall is a fluororesin include a FluoroPure PFA composite drum manufactured by Entegris.
  • the metal material used for producing the electropolished metal material contains at least one selected from the group consisting of chromium and nickel, and the total content of chromium and nickel is 25 with respect to the total mass of the metal material.
  • Metallic materials having a mass% of more than% are preferable, and examples thereof include stainless steel and nickel-chromium alloys.
  • the total content of chromium and nickel in the metal material is preferably 25% by mass or more, more preferably 30% by mass or more, based on the total mass of the metal material.
  • the upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
  • the stainless steel is not particularly limited, and known stainless steel can be used. Among them, an alloy containing 8% by mass or more of nickel is preferable, and an austenitic stainless steel containing 8% by mass or more of nickel is more preferable.
  • austenitic stainless steels include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), and SUS316 ( Ni content 10% by mass, Cr content 16% by mass), SUS316L (Ni content 12% by mass, Cr content 16% by mass) and the like.
  • the nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Of these, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable. Examples of the nickel-chromium alloy include Hastelloy (trade name, the same shall apply hereinafter), Monel (trade name, the same shall apply hereinafter), Inconel (trade name, the same shall apply hereinafter) and the like.
  • Hastelloy C-276 Ni content 63% by mass, Cr content 16% by mass
  • Hastelloy-C Ni content 60% by mass, Cr content 17% by mass
  • Hastelloy C-22 Ni content 61% by mass, Cr content 22% by mass
  • the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt and the like in addition to the above alloys, if necessary.
  • the method for electrolytically polishing a metal material is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the methods described in paragraphs [0011] to [0014] of JP2015-227501 and paragraphs [0036] to [0042] of JP2008-264929 can be used.
  • the content of chromium in the passivation layer on the surface of the metal material is higher than the content of chromium in the matrix by electropolishing. Therefore, since metal elements do not easily flow out into the treatment liquid from the inner wall coated with the electrolytically polished metal material, a chemical liquid for semiconductors having a low content of specific metal elements such as Ca atom, Fe atom and Na atom is used. It is presumed that it will be obtained.
  • the metal material is preferably buffed.
  • the method of buffing is not particularly limited, and a known method can be used.
  • the size of the abrasive grains used for finishing the buffing is not particularly limited, but # 400 or less is preferable because the unevenness on the surface of the metal material tends to be smaller.
  • the buffing is preferably performed before the electrolytic polishing.
  • the metal material may be a material processed by combining one or more of a plurality of stages of buffing, acid cleaning, magnetic fluid polishing, etc., which are performed by changing the count such as the size of abrasive grains. ..
  • the container containing the container and the treatment liquid contained in the container may be referred to as a treatment liquid container.
  • the liquid may be appropriately selected depending on the intended use, but contains at least one of the treatment liquid of the present invention itself, a liquid obtained by diluting the treatment liquid of the present invention, or a component added to the treatment liquid of the present invention. When it is a liquid, the effect of the present invention can be remarkably obtained.
  • the treatment liquid of the present invention may be bottling, transported, and stored in a container such as a gallon bottle or a coated bottle after production.
  • the inside of the container may be replaced with an inert gas (chisso, argon, etc.) having a purity of 99.99995% by volume or more for the purpose of preventing changes in the components in the treatment liquid during storage.
  • an inert gas chisso, argon, etc.
  • a gas having a low water content is preferable.
  • the temperature may be at room temperature, but in order to prevent deterioration, the temperature may be controlled in the range of ⁇ 20 ° C. to 20 ° C.
  • ⁇ Clean room> It is preferable that the production of the treatment liquid of the present invention, the opening and / or cleaning of the storage container, the handling including the filling of the treatment liquid, the treatment analysis, and the measurement are all performed in a clean room.
  • the clean room preferably meets the ISO (International Organization for Standardization) 14644-1 clean room standard. It is preferable to satisfy any one of ISO class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably ISO class 1 or ISO class 2, and even more preferably ISO class 1.
  • the treatment liquid of the present invention is preferably a filtered treatment liquid in order to remove foreign substances, coarse particles and the like.
  • the filter used for filtering can be used without particular limitation as long as it is a filter conventionally used for filtration purposes and the like.
  • the material constituting the filter include fluororesins such as PTFE (polytetrafluoroethylene), polyamide resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (high density and ultrahigh molecular weight). Including) and the like.
  • polyamide-based resin, PTFE, or polypropylene is preferable, and by using a filter formed of these materials, a highly polar foreign substance that easily causes residue defects and particle defects. Can be removed more effectively.
  • the lower limit value is preferably 70 mN / m or more, and the upper limit value is preferably 95 mN / m or less.
  • the critical surface tension of the filter is preferably 75 to 85 mN / m.
  • the value of the critical surface tension is the nominal value of the manufacturer.
  • the pore size of the filter is preferably about 0.001 to 1.0 ⁇ m, more preferably about 0.02 to 0.5 ⁇ m, and even more preferably about 0.01 to 0.1 ⁇ m.
  • different filters may be combined. At that time, the filtering by the first filter may be performed only once or twice or more. When different filters are combined and filtering is performed twice or more, each filter may be the same type of filter, different types of filters, or different types of filters. Is preferable. Typically, it is preferable that the first filter and the second filter differ in at least one of the pore diameter and the constituent material. It is preferable that the pore diameters of the second and subsequent filters are the same or smaller than the pore diameter of the first filtering. Further, first filters having different pore diameters within the above-mentioned range may be combined. For the hole diameter here, the nominal value of the filter manufacturer can be referred to.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Nippon Entegris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), KITZ Microfilter Co., Ltd.
  • P-nylon filter (pore diameter 0.02 ⁇ m, critical surface tension 77 mN / m) made of polyamide; (manufactured by Nippon Pole Co., Ltd.), "PE clean filter (pore diameter 0.02 ⁇ m)” made of high-density polyethylene; (Manufactured by Nippon Pole Co., Ltd.) and "PE / Clean Filter (hole diameter 0.01 ⁇ m)” made of high-density polyethylene; (manufactured by Nippon Pole Co., Ltd.) can also be used.
  • the second filter a filter made of the same material as the first filter described above can be used.
  • a filter having a pore diameter similar to that of the first filter described above can be used.
  • the ratio of the pore diameter of the second filter to the pore diameter of the first filter (the pore diameter of the second filter / the pore diameter of the first filter). ) Is preferably 0.01 to 0.99, more preferably 0.1 to 0.9, and even more preferably 0.3 to 0.9.
  • filtering with the first filter is performed with a mixed solution containing a part of the components of the treatment solution, and after mixing the remaining components with the mixed solution to prepare the treatment solution, filtering with the second filter is performed. May be done.
  • the filter used is treated before filtering the treatment liquid.
  • the liquid used for this treatment is not particularly limited, but the treatment liquid itself of the present invention, a liquid obtained by diluting the treatment liquid of the present invention, or a liquid containing a part of the components of the treatment liquid is desired in the present application. The effect of is remarkably obtained.
  • the upper limit of the temperature at the time of filtering is preferably room temperature (25 ° C.) or lower, more preferably 23 ° C. or lower, and even more preferably 20 ° C. or lower.
  • the lower limit of the temperature at the time of filtering is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and even more preferably 10 ° C. or higher. Filtering can remove particulate foreign matter and impurities, but when performed at the above temperature, the amount of particulate foreign matter and impurities dissolved in the treatment liquid is reduced, so filtering is performed more efficiently. ..
  • the treatment liquid of the present invention is used for treating an object to be treated containing a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu.
  • the object to be treated to which the treatment liquid of the present invention is applied is not limited as long as it contains a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu.
  • the object to be treated is a second metal-containing material containing one or more second metals selected from the group consisting of Zr, Ti, Hf, and Ta, and / or Al or Al 2 O 3 . It may contain an aluminum-based material. Further, the object to be treated may further contain a dry etching residue.
  • the first metal-containing material containing one or more first metals selected from the group consisting of Co (cobalt) and Cu (copper) contained in the object to be treated to which the treatment liquid of the present invention is applied may be a single substance of one kind of first metal, an alloy of first metals, or an alloy of one or more kinds of first metals and metals other than the first metal, and one or more kinds of first metals.
  • Oxide composite oxide
  • nitride composite nitride
  • oxynitride composite oxynitride
  • the first metal-containing material may be a Co-containing material in which the first metal is Co, or may be a Cu-containing material in which the first metal is Cu.
  • the Co-containing material is the same as the first metal-containing material except that the first metal is only Co and Cu is a metal other than the first metal.
  • the Cu-containing material is the same as the first metal-containing material except that the first metal is only Cu and Co is a metal other than the first metal.
  • the content of the first metal is preferably 50 to 100% by mass, more preferably 75 to 100% by mass, still more preferably 99 to 100% by mass, based on the total mass of the metal components contained in the first metal-containing material. ..
  • the first metal-containing material preferably contains at least Co, and it is also preferable that the first metal-containing material contains Co.
  • the first metal-containing material include Co and Cu, with Co being preferred.
  • the removal rate of the first metal-containing substance is preferably 10 ⁇ / min or less, more preferably 5 ⁇ / min or less. It is preferable, and 1 ⁇ / min or less is more preferable. The lower limit is not limited, but is, for example, 0.001 ⁇ / min or more.
  • the second metal-containing material containing the two metals may be, for example, one kind of the second metal alone or an alloy of the second metals, and one or more kinds of the second metal and a metal other than the second metal. It may be an alloy, or may be an oxide (composite oxide), a nitride (composite nitride), or an oxynitride (composite oxynitride) of one or more kinds of second metals, and may be with one or more kinds of second metals.
  • the second metal-containing material may be a Zr-containing material in which the second metal is Zr, a Ti-containing material in which the second metal is Ti, and an Hf-containing material in which the second metal is Hf. It may be a Ta-containing material in which the second metal is Ta.
  • the content of the second metal is preferably 50 to 100% by mass, more preferably 75 to 100% by mass, still more preferably 99 to 100% by mass, based on the total mass of the metal components contained in the second metal content. ..
  • the second metal-containing material examples include ZrOx (ZrO 2, etc.), Ti, TiN, HfOx, and TaOx.
  • the second metal-containing material may be a dry etching residue.
  • the second metal-containing material having such a dry etching residue include the residue of the metal hard mask produced by performing dry etching when the second metal-containing material is used as the metal hard mask. ..
  • the aluminum-based material that can be contained in the object to be treated to which the treatment liquid of the present invention is applied is Al (elemental substance) or Al 2 O 3 (alumina), and may be both Al and Al 2 O 3. .. If both of Al and Al 2 O 3, may be present in contact with Al and Al 2 O 3, may be present separately.
  • the removal rate of the aluminum-based material is preferably 10 ⁇ / min or less, more preferably 5 ⁇ / min or less, and 3 ⁇ or less. It is more preferably less than / minute.
  • the lower limit is not limited, but is, for example, 0.001 ⁇ / min or more.
  • the removal rate ratio ER1 / ER2 is It is preferably 0.5 to 1000, more preferably 0.8 to 800, and even more preferably 1 to 500.
  • the removal rate ratio ER1 / ER2 is within the above range, the effect of the present invention is more excellent.
  • the material to be treated is preferably a laminate for semiconductor devices.
  • the laminate includes, for example, a substrate, a third layer formed on the substrate, a second layer formed on the third layer, and a first layer formed on the second layer.
  • the third layer is preferably a material containing the first metal-containing material. It is also preferable that the third layer further contains an aluminum-based material (preferably Al).
  • the third layer is preferably a metal layer (wiring).
  • the second layer is preferably composed of a Si-containing substance containing Si (SiOx, SiOC, SiN, and / or SiON, etc.). Further, it is preferable that the first layer and the second layer are made of different materials.
  • the second layer is preferably an interlayer insulating film.
  • the first layer preferably contains a second metal-containing material.
  • the first layer is preferably a metal hard mask.
  • the second layer and / or the first layer may be omitted.
  • the laminated body may contain a layer other than the above-mentioned layer, and examples thereof include an etching stop layer and an antireflection layer.
  • the etching stop layer contains an aluminum-based material (preferably Al 2 O 3 ) and / or a first metal-containing substance (preferably a Co-containing substance, more preferably a simple substance of Co).
  • the metal layer may also function as an etching stop layer.
  • the laminate may further contain a dry etching residue. The dry etching residue is present, for example, adhering to the surface portion of the first layer, the second layer, and / or the third layer of the laminate.
  • the laminate includes a substrate, a metal layer (corresponding to the third layer), an interlayer insulating film (corresponding to the second layer), and a metal hard mask (corresponding to the first layer) in this order.
  • a metal layer corresponding to the third layer
  • an interlayer insulating film corresponding to the second layer
  • a metal hard mask corresponding to the first layer
  • Examples thereof include a laminate for a semiconductor device.
  • the laminate further contains holes formed from the surface (opening) of the metal hard mask toward the substrate so as to expose the surface of the metal layer by undergoing a dry etching step or the like.
  • the method for producing a laminate containing holes as described above is not particularly limited, but usually, the laminate before treatment containing a substrate, a metal layer, an interlayer insulating film, and a metal hard mask in this order.
  • a dry etching process is performed using a metal hard mask as a mask, and the interlayer insulating film is etched so that the surface of the metal layer is exposed, thereby forming holes penetrating the inside of the metal hard mask and the interlayer insulating film.
  • the method of providing is mentioned.
  • the method for producing the metal hard mask is not particularly limited. For example, first, a metal hard mask precursor layer containing a predetermined component is formed on an interlayer insulating film, and a resist film having a predetermined pattern is formed on the metal hard mask precursor layer. To do.
  • the laminated body may contain a layer other than the above-mentioned layer, and examples thereof include an etching stop layer and an antireflection layer.
  • FIG. 1 shows a schematic cross-sectional view showing an example of a laminated body for a semiconductor device to be processed.
  • the laminate 10 shown in FIG. 1 is provided with a metal layer 2, an etching stop layer 3, an interlayer insulating film 4, and a metal hard mask 5 in this order on a substrate 1, and is placed in a predetermined position after undergoing a dry etching step or the like.
  • a hole 6 is formed in which a part of the metal layer 2 is exposed. That is, the laminate 10 shown in FIG. 1 includes a substrate 1, a metal layer 2, an etching stop layer 3, an interlayer insulating film 4, and a metal hard mask 5 in this order, and an opening of the metal hard mask 5.
  • the inner wall 11 of the hole 6 is composed of a cross-sectional wall 11a made of an etching stop layer 3, an interlayer insulating film 4 and a metal hard mask 5, and a bottom wall 11b made of an exposed metal layer 2, and the dry etching residue 12 is formed. It is attached.
  • the treatment method of the present invention can be suitably used for cleaning for the purpose of removing these dry etching residues 12 and / or for removing the metal hard mask 5. That is, it is possible to suppress the etching of the inner wall 11 (for example, the metal layer 2 or the like) of the laminated body while excellent in the removal performance of the dry etching residue 12 and / or the metal hard mask 5.
  • the metal hard mask contains a second metal-containing material.
  • the metal hard mask may be the second metal-containing material itself.
  • the interlayer insulating film (sometimes referred to as an "insulating film” in the present specification) is preferably a material having a dielectric constant k of 3.0 or less, and more preferably a material having a dielectric constant k of 2.6 or less.
  • Specific examples of the interlayer insulating film material include Si-containing substances containing Si (SiOx, SiOC, SiN, and / or SiON, etc.).
  • x is a number represented by 1 to 3.
  • the material of the etching stop layer is not particularly limited.
  • Specific materials for the etching stop layer include an aluminum-based material, a first metal-containing substance (preferably a Co-containing substance, more preferably a simple substance of Co), TEOS (tetraethoxysilane), SiN, SiOC, poly-Si (preferably a Co-containing substance, more preferably a simple substance of Co). Polycrystalline silicon), a-Si (amorphous silicon), and the like.
  • Al 2 O 3 is preferable as the aluminum-based material constituting the etching stop layer.
  • the wiring material forming the metal layer contains a first metal-containing material.
  • the metal layer may be the first metal-containing material itself. It is also preferable that the metal layer contains an aluminum-based material. Al is preferable as the aluminum-based material constituting the metal layer.
  • the “substrate” here includes, for example, a semiconductor substrate made of a single layer and a semiconductor substrate made of multiple layers.
  • the material constituting the semiconductor substrate composed of a single layer is not particularly limited, and is generally preferably composed of a Group III-V compound such as silicon, silicon germanium, or GaAs, or any combination thereof.
  • the configuration is not particularly limited, and for example, an exposed integrated circuit such as an interconnect feature such as a metal wire and a dielectric material on the above-mentioned semiconductor substrate such as silicon. It may contain a structure.
  • Metals and alloys used in the interconnect structure include, but are not limited to, aluminum, aluminum alloyed with copper, copper, titanium, tantalum, cobalt, silicon, titanium nitride, tantalum nitride, and tungsten.
  • the semiconductor substrate may contain layers such as an interlayer dielectric layer, silicon oxide, silicon nitride, silicon carbide and carbon-doped silicon oxide.
  • the first embodiment of the treatment method of the present invention includes a first metal-containing material (the above-mentioned third layer (metal layer) and the like) and a second metal-containing material other than the dry etching residue (the above-mentioned first layer (the above-mentioned first layer (metal layer)).
  • the treatment liquid is brought into contact with the object to be treated containing the first metal-containing material (the above-mentioned third layer (metal layer) and the like) and the dry etching residue.
  • a treatment method including a step (step Bb) of removing the dry etching residue.
  • the dry etching residue may include a dry etching residue of a metal hard mask.
  • the metal hard mask is composed of a second metal-containing material, it can be said that the dry etching residue of the metal hard mask is also a form of the second metal-containing material.
  • a part or all of the dry etching residue may or may not be a second metal-containing substance.
  • both the first and second treatment methods may be carried out on one object to be treated, or the step Ba and the step Bb may be carried out at the same time.
  • the object to be processed is a first metal-containing material, a second metal-containing material other than the dry etching residue, and a dry etching residue (a dry etching residue which is a second metal-containing residue, and / or it.
  • the second metal-containing material other than the dry etching residue is obtained by contacting the treatment liquid with the object to be treated.
  • step Bc of simultaneously removing the dry etching residue (the dry etching residue which is the second metal-containing substance and / or the other dry etching residue) may be carried out.
  • the step Ba, the step Bb, and the step Bc are collectively referred to as a processing step B.
  • the treatment method of the present invention may include a step A for preparing the above-mentioned treatment liquid before the treatment step B.
  • a step A for preparing the above-mentioned treatment liquid before the treatment step B is shown as an example, but the present invention is not limited to this, and the treatment method of the present invention is prepared in advance. It may be carried out using the above-mentioned treatment liquid.
  • the second metal-containing substance other than the dry etching residue is removed, and the dry etching residue (the dry etching residue which is the second metal-containing substance and / or the other dry etching residue). ) Is removed at least one of them. Since the treatment method of the present invention uses the above-mentioned treatment liquid, it is excellent in removability of the object to be removed and can suppress etching of the first metal-containing material (preferably the metal layer). Further, when the object to be treated contains an aluminum-based material (preferably in the metal layer and / or the etching stop layer), etching on the aluminum-based material can also be suppressed.
  • the treatment liquid preparation step A is a step of preparing the above-mentioned treatment liquid.
  • Each component used in this step is as described above.
  • the procedure of this step is not particularly limited, and for example, a method of preparing a treatment liquid by adding an etchant, an anticorrosive agent, and other optional components to a solvent such as water and / or an organic solvent and stirring and mixing them. Can be mentioned.
  • a raw material used for preparing the treatment liquid it is preferable to use a raw material classified into a semiconductor grade or a raw material classified into a high-purity grade equivalent thereto. Further, it is preferable to use the raw material having a large amount of impurities after removing foreign substances by filtering and / or reducing the ionic component by an ion exchange resin or the like.
  • Process step B In the treatment step B, the treatment liquid is brought into contact with the object to be treated. As a result, at least one of cleaning for the purpose of removing the dry etching residue and removal of the metal hard mask (wet etching) are performed.
  • the method of bringing the treatment liquid into contact with the object to be treated is not particularly limited. A method of flowing the treatment liquid into the water, or any combination thereof can be mentioned.
  • the temperature of the treatment liquid when the treatment liquid is brought into contact with the object to be treated is preferably 90 ° C. or lower, more preferably 25 to 60 ° C.
  • the treatment time can be adjusted according to the contact method of the treatment liquid and the temperature of the treatment liquid.
  • the processing time is, for example, 60 minutes or less, preferably 1 to 60 minutes, and 3 to 3 to 60 minutes. 20 minutes is more preferable, and 4 to 15 minutes is even more preferable.
  • the processing time is, for example, 10 seconds to 5 minutes, preferably 15 seconds to 4 minutes, more preferably 15 seconds to 3 minutes, and even more preferably 20 seconds to 2 minutes.
  • a mechanical stirring method may be used in order to further increase the processing capacity of the processing liquid.
  • the mechanical stirring method include a method of circulating the treatment liquid on the object to be treated, a method of flowing or spraying the treatment liquid on the object to be treated, a method of stirring the treatment liquid by ultrasonic waves or megasonics, and the like. Can be mentioned.
  • the treatment method of the present invention may further include a step of rinsing and cleaning the object to be treated with a solvent (rinse step B2) after the treatment step B.
  • the rinsing step B2 is preferably performed continuously in the treatment step B and is a step of rinsing with a rinsing solvent (rinsing solution) for 5 seconds to 5 minutes.
  • the rinsing step B2 may be performed by using the above-mentioned mechanical stirring method.
  • rinsing solvent examples include, but are not limited to, deionized water, methanol, ethanol, isopropyl alcohol, N-methylpyrrolidinone, ⁇ -butyrolactone, dimethyl sulfoxide, ethyl lactate and propylene glycol monomethyl ether acetate.
  • An aqueous rinse solution having a pH> 8 (diluted aqueous ammonium hydroxide, etc.) may be used.
  • the rinsing solvent is preferably an aqueous solution of ammonium hydroxide, deionized water, methanol, ethanol, or isopropyl alcohol, more preferably an aqueous solution of ammonium hydroxide, deionized water, or isopropyl alcohol, and an aqueous solution of ammonium hydroxide or deionization. Water is more preferred.
  • a method of bringing the rinse solvent into contact with the object to be treated the above-mentioned method of bringing the treatment liquid into contact with the object to be treated can be similarly applied.
  • the temperature of the rinsing solvent in the rinsing step B2 is preferably 16 to 27 ° C.
  • the above-mentioned treatment liquid may be used as a rinsing solvent in the rinsing step B2.
  • the treatment method of the present invention may include a drying step B3 for drying the object to be treated after the rinsing step B2.
  • the drying method is not particularly limited. Examples of the drying method include a spin drying method, a method of flowing a dry gas over an object to be treated, a method of heating a substrate by a heating means such as a hot plate or an infrared lamp, a flatulence drying method, a rotagoni drying method, and an IPA. (Isopropyl alcohol) drying method and any combination thereof can be mentioned.
  • the drying time depends on the specific method used, but is generally preferably 30 seconds to several minutes.
  • the treatment method of the present invention may include a coarse particle removing step H for removing coarse particles in the treatment liquid before performing the treatment step B.
  • a coarse particle removing step H for removing coarse particles in the treatment liquid before performing the treatment step B.
  • the amount of coarse particles remaining on the object to be treated after the treatment step B can be reduced.
  • Specific methods for removing coarse particles include, for example, a method of filtering and purifying the treatment liquid that has undergone the treatment liquid preparation step A using a particle removal film having a predetermined particle removal diameter.
  • the definition of coarse particles is as described above.
  • Static elimination steps I, J water is used in the preparation of the treatment liquid in the treatment liquid preparation step A, and the static elimination step I and / / in which static elimination is performed on the water before the treatment liquid preparation step A.
  • a static elimination step J for statically eliminating the treated liquid may be contained after the treatment liquid preparation step A and before the treatment step B is performed.
  • the material of the wetted portion for supplying the treatment liquid to the object to be treated may be a resin having no metal elution with respect to the treatment liquid.
  • the static elimination method include a method in which water and / or a treatment liquid is brought into contact with a conductive material.
  • the contact time for contacting the water and / or the treatment liquid with the conductive material is preferably 0.001 to 1 second, more preferably 0.01 to 0.1 second.
  • the resin examples include high-density polyethylene (HDPE), high-density polypropylene (PP), 6,6-nylon, tetrafluoroethylene (PTFE), and a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether (PFA). ), Polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), ethylene / tetrafluoroethylene copolymer (ETFE), and tetrafluoroethylene / hexafluoride propylene co-weight. Coalescence (FEP) and the like can be mentioned.
  • the conductive material include stainless steel, gold, platinum, diamond, glassy carbon and the like.
  • the drainage of the treatment liquid used in the treatment step B can be reused and further used for cleaning other objects to be treated.
  • the treatment method of the present invention preferably comprises the following steps when the drainage of the treatment liquid is reused.
  • a drainage recovery step E for recovering the drainage of the treatment liquid used in the treatment step D, and a drainage recovery step E. Contains, It includes a step of repeating the above-mentioned processing step D and the above-mentioned drainage recovery step E.
  • the treatment step B has the same meaning as the treatment step B described in the above-described mode, and the same applies to the preferred mode. Further, even in the mode of reusing the drainage liquid, the coarse particle removing step H and the static elimination steps I and J may be contained. Further, the treatment liquid preparation step A described in the above-described embodiment may be contained before the treatment step B.
  • the treatment step D has the same meaning as the treatment step B in the above-described embodiment, and the preferred embodiment is also the same.
  • the drainage recovery means in the drainage recovery steps C and E is not particularly limited.
  • the collected drainage may be stored in the resin container described above in the static elimination step J, and at this time, the same static elimination step as in the static elimination step J may be performed. Further, a step of filtering the collected drainage liquid to remove impurities may be provided.
  • the pH adjuster should be an appropriate amount of either MSA or DBU (relative to the total mass in the treatment liquid) so that the pH of the treatment liquid becomes the value in the table. 1% by mass or less) was added. DBU was used only in the treatment liquid of Comparative Example 2, and MSA was used in the other treatment liquids.
  • a model film (each film of Co or Al 2 O 3 ) made of each material shown in Table 1 was prepared, and the etching property was evaluated based on the etching rate.
  • the film thickness of each model film is 1000 ⁇ .
  • Each model film was etched using each of the treatment solutions of Examples and Comparative Examples. Specifically, each model film was immersed in the treatment liquid at 25 ° C. for 10 minutes, and the etching rate ( ⁇ / min) was calculated based on the difference in film thickness of the model film before and after the immersion of the treatment liquid.
  • the model film was Co
  • the film thickness of the model film before and after the treatment was calculated by measuring the resistivity.
  • Lorester GP manufactured by Mitsubishi Chemical Corporation
  • the film thickness of the model film before and after the treatment is measured in a measurement range of 250 using ellipsometry (spectral ellipsometer, trade name "Vase", manufactured by JA Woolam Japan Co., Ltd.). The measurement was performed under the conditions of ⁇ 1000 nm and measurement angles of 70 degrees and 75 degrees.
  • the calculated etching rate was compared with the following categories to evaluate the corrosion resistance against Co and Al 2 O 3 (Co corrosion resistance and Al 2 O 3 corrosion resistance). Higher etching rate with respect to Co or Al 2 O 3 is small, it can be determined that the corrosion resistance of the treatment liquid to Co or Al 2 O 3 are excellent.
  • plasma etching using an etching gas containing nitrogen gas and halogen gas is performed using the first layer as a mask, and etching of the second layer is performed until the surface of the third layer is exposed.
  • etching gas containing nitrogen gas and halogen gas is performed using the first layer as a mask, and etching of the second layer is performed until the surface of the third layer is exposed.
  • Washing is less than 50% (residues confirmed by SEM before immersion, less than 50% removed after immersion)
  • Table 1 shows the formulation of the treatment liquid and the test results.
  • the "amount” column indicates the content (mass%) of each component.
  • the "XA” column under the “Compound X” column indicates the type of substituent XA contained in the anticorrosive agent when the anticorrosive agent used corresponds to the compound X.
  • the "XB” column under the “Compound X” column indicates the type of substituent XB contained in the anticorrosive agent when the anticorrosive agent used corresponds to the compound X.
  • the "COOH number” column under the “Compound X” column indicates the number of COOH partial structures contained in the anticorrosive agent when the anticorrosive agent used corresponds to the compound X.
  • the "YQ” column under the “Compound Y” column indicates the type of group represented by YQ contained in the anticorrosive agent when the anticorrosive agent used corresponds to the compound Y.
  • the description of "phosphon-O-Ar-” means “aromatic ring group having a phosphonate oxy group”
  • the description of "boron-Ar-” means “aromatic ring group having a boronate group”.
  • the “Amount of organic solvent (DEGBE) + pH adjuster (MSA or DBU)” column indicates the total content (mass%) of the organic solvent and the pH adjuster with respect to the total mass of the treatment agent in the treatment agent.
  • the content of the pH adjuster is adjusted so as to be the value shown in the "pH” column of the treatment liquid, and the specific content of any treatment liquid is based on the total mass of the treatment liquid. It was 1% by mass or less.
  • the treatment liquid of the present invention has good anticorrosion property against the first metal-containing substance (Co-containing substance). It was also confirmed that the treatment liquid of the present invention has good removability with respect to the object to be removed. Furthermore, it was confirmed that the treatment liquid of the present invention also has good anticorrosion properties against aluminum-based materials.
  • Example 6 a treatment liquid was prepared in the same manner except that the water content of 15.0% by mass was changed to 18.0% by mass, and evaluation was performed. As a result, the same results as in Example 6 were obtained. ..
  • Comparative Example 10 a treatment liquid was prepared in the same manner except that the water content of 25.0% by mass was changed to 19.2% by mass, and evaluation was performed. As a result, the same results as in Comparative Example 10 were obtained. ..
  • Example 10 a treatment liquid was prepared in the same manner except that the pH was changed from 3.5 to 3.8, and the evaluation was performed. As a result, the same result as in Example 10 was obtained.
  • Example 10 a treatment liquid was prepared in the same manner except that the pH was changed from 3.5 to 4.2, and the evaluation was performed. As a result, the same result as in Example 10 was obtained except that the removal performance was C. Obtained.
  • Example 8 a treatment liquid was prepared in the same manner except that HF was changed to ammonium fluoride, and the evaluation was performed. As a result, the same results as in Example 8 were obtained except that the removal performance was C.
  • Example 8 the content of L-cysteine is 1.0% by mass, and the total content of L-cysteine and O-carboxyphenylboronic acid is 1.0% by mass (L-cysteine / O-carboxyphenylboronic acid).
  • a treatment solution was prepared in the same manner except that the treatment solution was changed to 8/2 (mass ratio), and the evaluation was performed. As a result, the same result as in Example 8 was obtained.
  • Example 8 a treatment liquid was prepared in the same manner except that the L-cysteine content of 1.0% by mass was changed to 2.7% by mass, and evaluation was performed. As a result, the same results as in Example 8 were obtained. Was done.
  • Example 8 a treatment liquid was prepared in the same manner except that the L-cysteine content of 1.0% by mass was changed to 3.5% by mass, and the evaluation was performed. Obtained the same result as in Example 8.
  • Example 8 a treatment liquid was prepared in the same manner except that the L-cysteine content of 1.0% by mass was changed to 4.2% by mass, and the evaluation was performed. Obtained the same result as in Example 8.
  • Example 8 a treatment liquid was prepared in the same manner except that the L-cysteine content of 1.0% by mass was changed to 5.2% by mass, and the evaluation was performed. As a result, the removal performance was C. Obtained the same result as in Example 8.
  • ⁇ Test Y The above-mentioned ⁇ etching performance (corrosion resistance)> test was carried out using a Cu film as a model film. When the tests were carried out using the treatment solutions of Examples 1 to 36, all the treatment solutions showed good anticorrosion properties, and the results of the same tendency as when Co was used as the model film were confirmed.
  • ⁇ Test Z The test shown in ⁇ PER (Post Etching Resolution) removal performance> described above was carried out in the same manner except that the first layer (metal hard mask) was changed from ZrO 2 to TiN or TaO. (In this case, a dry etching residue containing Ti or Ta was observed on the surface of the laminate before immersion in the treatment liquid, not a dry etching residue containing Zr).
  • the metal hard mask was TiN or TaO, each treatment liquid showed good detergency (removal performance), and ZrO 2 was used as the metal hard mask. Results of the same tendency as when used were confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention provides a processing liquid that, while being excellent in terms of removability of an object to be removed, can suppress etching of a first metal-containing substance that contains one or more types of a first metal selected from the group consisting of Co and Cu, and a processing method. The processing liquid of the present invention is the processing liquid used for processing an object to be processed containing a first metal-containing substance that contains one or more types of the first metal selected from the group consisting of Co and Cu, and contains an etchant, an organic solvent, and an anticorrosive agent. The content of the organic solvent is 80 mass% or greater with respect to the total mass of the processing liquid, and the anticorrosive agent is one or more types of compound selected from the group consisting of a compound X, a compound Y, and a compound Z.

Description

処理液、処理方法Treatment liquid, treatment method
 本発明は、処理液、及び、処理方法に関する。 The present invention relates to a treatment liquid and a treatment method.
 CCD(Charge-Coupled Device)、及び、メモリー等の半導体デバイスは、フォトリソグラフィー技術を用いて、基板上に微細な電子回路パターンを形成して製造される。具体的には、例えば、基板と、基板上に形成された配線材料となる金属層と、金属層上に形成されたエッチング停止層と、エッチング停止層上に形成された層間絶縁膜と、層間絶縁膜上に形成されたメタルハードマスクと、を含有する積層体に対して、メタルハードマスクをマスクとして用いてドライエッチング工程を実施して、金属層の表面が露出するように各部材をエッチングすることにより、メタルハードマスク、層間絶縁膜及びエッチング停止層内を貫通するホールを設ける方法が挙げられる。 CCD (Charge-Coupled Device) and semiconductor devices such as memories are manufactured by forming fine electronic circuit patterns on a substrate using photolithography technology. Specifically, for example, a substrate, a metal layer formed on the substrate as a wiring material, an etching stop layer formed on the metal layer, and an interlayer insulating film formed on the etching stop layer are used between layers. A dry etching step is performed on a laminate containing a metal hard mask formed on an insulating film using the metal hard mask as a mask, and each member is etched so that the surface of the metal layer is exposed. By doing so, a method of providing a metal hard mask, an interlayer insulating film, and a hole penetrating the etching stop layer can be mentioned.
 このような積層体から、更に、不必要な部分(除去目的物)を除去する処理を行うことがある。
 例えば、ドライエッチング工程を経た積層体は、ホールを構成する金属層上及び層間絶縁膜上の少なくとも一方において、各部材の残渣物(ドライエッチング残渣物)が付着していることがある。そのため、処理液を用いて、各部材の残渣物を除去目的物として、除去する処理が行われることがある。
 このような処理液として、特許文献1には、「少なくとも1種類の腐食防止剤、水…場合により少なくとも1種類のエッチャント…等を含む水性洗浄組成物(請求項1)」が開示されている。上記水性洗浄組成物(処理液)における上記エッチャントとしてはフッ化水素酸等が提案されている(請求項4)。
Further, a process of removing an unnecessary portion (removal target object) from such a laminated body may be performed.
For example, in the laminate that has undergone the dry etching step, a residue (dry etching residue) of each member may be attached to at least one of the metal layer constituting the hole and the interlayer insulating film. Therefore, a treatment for removing the residue of each member as a removal target may be performed using a treatment liquid.
As such a treatment liquid, Patent Document 1 discloses "an aqueous cleaning composition containing at least one kind of corrosion inhibitor, water ... in some cases, at least one kind of etchant ... (Claim 1)". .. Hydrofluoric acid and the like have been proposed as the etchant in the aqueous cleaning composition (treatment liquid) (claim 4).
特表2013-533631号公報Japanese Patent Application Laid-Open No. 2013-533331
 上記ドライエッチング工程を経た積層体が、金属層として、コバルト含有物(Co含有物)、又は、銅含有物(Cu含有物)等を含有している場合等において、処理液を用いて除去目的物の除去を行う際に、除去を予定していない上記Co含有物(又はCu含有物)までもがエッチング(除去)されてしまうことがあった。 When the laminate that has undergone the dry etching step contains a cobalt-containing substance (Co-containing substance), a copper-containing substance (Cu-containing substance), or the like as a metal layer, the purpose of removal is to use a treatment liquid. When removing a substance, even the above-mentioned Co-containing substance (or Cu-containing substance) that is not scheduled to be removed may be etched (removed).
 そこで、本発明は、除去目的物(例えば、ドライエッチング残渣物及び/又はメタルハードマスク等)の除去性に優れつつ、Co及びCuからなる群から選択される1種以上の第1金属を含む第1金属含有物のエッチングを抑制できる処理液、及び、処理方法を提供することを課題とする。 Therefore, the present invention includes one or more first metals selected from the group consisting of Co and Cu while having excellent removability of the object to be removed (for example, dry etching residue and / or metal hard mask). An object of the present invention is to provide a treatment liquid capable of suppressing etching of a first metal-containing material and a treatment method.
 本発明者は、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the above problems, the present inventor has found that the above problems can be solved by the following configuration.
 〔1〕
 Co及びCuからなる群から選択される1種以上の第1金属を含む第1金属含有物を含有する被処理物を処理するのに使用される処理液であって、
 エッチャントと、
 有機溶剤と、
 防食剤とを含有し、
 上記有機溶剤の含有量が、上記処理液の全質量に対して80質量%以上であり、
 上記防食剤が、化合物X、化合物Y、及び、化合物Zからなる群から選択される1種以上の化合物である、処理液。
 化合物X:一般式(XA1)~(XA3)のいずれかで表される基である置換基XAを1つと、一般式(XB1)~(XB7)のいずれかで表される基である置換基XBを1つ以上とを含有する化合物、及び、上記置換基XAを2つ以上含有する化合物からなる群から選択される1種以上の化合物。
Figure JPOXMLDOC01-appb-C000002

 一般式(XA1)~(XA3)及び一般式(XB1)~(AB7)中、*は結合位置を表す。Rは、それぞれ独立に、水素原子又はアルキル基を表す。
 化合物Y:一般式(Y)で表される化合物。
  Y-COOH       (Y)
 一般式(Y)中、Yは、ホスホン酸オキシ基を有する芳香環基、ボロン酸基を有する芳香環基、又は、ホスホン酸基-アルキレン基-を表す。
化合物Z:メリト酸、及び、シュウ酸からなる群から選択される1種以上の化合物。
 〔2〕
 上記エッチャントが、含フッ素化合物である、〔1〕に記載の処理液。
 〔3〕
 上記エッチャントが、フッ化水素、フッ化アンモニウム、フッ化テトラメチルアンモニウム、フッ化テトラエチルアンモニウム、フッ化テトラブチルアンモニウム、ヘキサフルオロケイ酸、ヘキサフルオロリン酸、及び、テトラフルオロホウ酸からなる群から選択される1種以上の化合物である、〔1〕又は〔2〕に記載の処理液。
 〔4〕
 上記有機溶剤が、アルコール系溶剤を含有する、〔1〕~〔3〕のいずれかに記載の処理液。
 〔5〕
 上記有機溶剤が、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ヘキサノール、1-オクタノール、2-オクタノール、及び、2-エチルヘキサノールからなる群から選択される1種以上の化合物である、〔1〕~〔4〕のいずれかに記載の処理液。
 〔6〕
 上記化合物Xが、-COOHで表される部分構造を1つだけ含有する化合物である、〔1〕~〔5〕のいずれかに記載の処理液。
 〔7〕
 上記防食剤が、L-システイン酸、グルコン酸、ホモアルギニン、L-シトルリン、DL-アラニルグリシン、O-カルボキシフェニルボロン酸、メリト酸、及び、シュウ酸からなる群から選択される1種以上の化合物である、〔1〕~〔5〕のいずれかに記載の処理液。
 〔8〕
 上記処理液の全質量に対して、
 上記エッチャントを0.1~3質量%含有し、
 上記有機溶剤を80~99質量%含有し、
 上記防食剤を0.05~3.0質量%含有し、
 水を0.05~14質量%含有する、〔1〕~〔7〕のいずれかに記載の処理液。
 〔9〕
 pHが4.0以下である、〔1〕~〔8〕のいずれかに記載の処理液。
 〔10〕
 上記被処理物が、更に、Zr、Ti、Hf、及び、Taからなる群から選択される1種以上の第2金属を含む第2金属含有物を含有し、
 〔1〕~〔9〕のいずれかに記載の処理液を上記被処理物に接触させて、上記第2金属含有物を除去する工程を含有する、処理方法。
 〔11〕
 上記被処理物が、更に、ドライエッチング残渣物を含有し、
 〔1〕~〔9〕のいずれかに記載の処理液を上記被処理物に接触させて、上記ドライエッチング残渣物を除去する工程を含有する、処理方法。
 〔12〕
 上記第1金属含有物がCoを含む、〔10〕又は〔11〕に記載の処理方法。
 〔13〕
 上記処理液を上記被処理物に接触させた際の上記第1金属含有物の除去速度が10Å/分以下である、〔10〕~〔12〕のいずれかに記載の処理方法。
 〔14〕
 上記被処理物が、更に、Al又はAlであるアルミ系材料を含有する、〔10〕~〔13〕のいずれかに記載の処理方法。
 〔15〕
 上記処理液を上記被処理物に接触させた際の上記アルミ系材料の除去速度が10Å/分以下である、〔14〕に記載の処理方法。
 〔16〕
 上記処理液が25~60℃で用いられる、〔10〕~〔15〕のいずれかに記載の処理方法。
[1]
A treatment liquid used for treating an object to be treated containing a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu.
Etchant and
With organic solvent
Contains anticorrosive agents,
The content of the organic solvent is 80% by mass or more with respect to the total mass of the treatment liquid.
A treatment liquid in which the anticorrosive agent is one or more compounds selected from the group consisting of compound X, compound Y, and compound Z.
Compound X: One substituent XA which is a group represented by any of the general formulas (XA1) to (XA3) and a substituent which is a group represented by any of the general formulas (XB1) to (XB7). One or more compounds selected from the group consisting of a compound containing one or more XB and a compound containing two or more substituents XA.
Figure JPOXMLDOC01-appb-C000002

In the general formulas (XA1) to (XA3) and the general formulas (XB1) to (AB7), * represents a bonding position. R independently represents a hydrogen atom or an alkyl group.
Compound Y: A compound represented by the general formula (Y).
Y Q- COOH (Y)
In the general formula (Y), Y Q represents an aromatic ring group having an oxyphosphonate group, an aromatic ring group having a boronate group, or a phosphonic acid group-alkylene group.
Compound Z: One or more compounds selected from the group consisting of mellitic acid and oxalic acid.
[2]
The treatment solution according to [1], wherein the etchant is a fluorine-containing compound.
[3]
The above etchant is selected from the group consisting of hydrogen fluoride, ammonium fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride, tetrabutylammonium fluoride, hexafluorosilicic acid, hexafluorophosphoric acid, and tetrafluoroboric acid. The treatment solution according to [1] or [2], which is one or more compounds to be treated.
[4]
The treatment solution according to any one of [1] to [3], wherein the organic solvent contains an alcohol solvent.
[5]
The organic solvents are ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, hexanol, 1-octanol, 2-octanol, and 2-ethylhexanol. The treatment solution according to any one of [1] to [4], which is one or more compounds selected from the group consisting of.
[6]
The treatment solution according to any one of [1] to [5], wherein the compound X is a compound containing only one partial structure represented by −COOH.
[7]
One or more of the anticorrosive agents selected from the group consisting of L-cysteic acid, gluconic acid, homoarginine, L-citrulin, DL-alanylglycine, O-carboxyphenylboronic acid, melitonic acid, and oxalic acid. The treatment solution according to any one of [1] to [5], which is a compound of.
[8]
With respect to the total mass of the above treatment liquid
Contains 0.1 to 3% by mass of the above etchant,
Containing 80 to 99% by mass of the above organic solvent,
Contains 0.05 to 3.0% by mass of the above anticorrosive agent
The treatment solution according to any one of [1] to [7], which contains 0.05 to 14% by mass of water.
[9]
The treatment solution according to any one of [1] to [8], which has a pH of 4.0 or less.
[10]
The object to be treated further contains a second metal-containing material containing one or more second metals selected from the group consisting of Zr, Ti, Hf, and Ta.
A treatment method comprising a step of bringing the treatment liquid according to any one of [1] to [9] into contact with the object to be treated to remove the second metal-containing substance.
[11]
The object to be treated further contains a dry etching residue,
A treatment method comprising a step of bringing the treatment liquid according to any one of [1] to [9] into contact with the object to be processed to remove the dry etching residue.
[12]
The treatment method according to [10] or [11], wherein the first metal-containing material contains Co.
[13]
The treatment method according to any one of [10] to [12], wherein the removal rate of the first metal-containing substance when the treatment liquid is brought into contact with the object to be treated is 10 Å / min or less.
[14]
The treatment method according to any one of [10] to [13], wherein the object to be treated further contains an aluminum-based material which is Al or Al 2 O 3.
[15]
The treatment method according to [14], wherein the removal rate of the aluminum-based material when the treatment liquid is brought into contact with the object to be treated is 10 Å / min or less.
[16]
The treatment method according to any one of [10] to [15], wherein the treatment liquid is used at 25 to 60 ° C.
 本発明によれば、除去目的物の除去性に優れつつ、Co及びCuからなる群から選択される1種以上の第1金属を含む第1金属含有物のエッチングを抑制できる処理液、及び、処理方法を提供できる。 According to the present invention, a treatment liquid capable of suppressing etching of a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu, while having excellent removability of the object to be removed, and A processing method can be provided.
本発明の処理液の被処理物の一例を示す断面模式図である。It is sectional drawing which shows an example of the object to be processed of the processing liquid of this invention.
 以下に、本発明について説明する。
 なお、本発明において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
The present invention will be described below.
In the present invention, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
 また、本発明において「準備」というときには、特定の材料を合成ないし調合等して備えることのほか、購入等により所定の物を調達することを含む意味である。 Further, in the present invention, the term "preparation" means not only preparing a specific material by synthesizing or blending it, but also procuring a predetermined material by purchasing or the like.
 また、本発明において、1Å(オングストローム)は、0.1nmに相当する。 Further, in the present invention, 1 Å (angstrom) corresponds to 0.1 nm.
 また、本発明における基(原子群)の表記において、置換及び無置換を記していない基は、本発明の効果を損ねない範囲で、置換基を含有しない基と共に置換基を含有する基をも包含する。例えば、「炭化水素基」とは、置換基を含有しない炭化水素基(無置換炭化水素基)のみならず、置換基を含有する炭化水素基(置換炭化水素基)をも包含する。このことは、各化合物についても同義である。 Further, in the notation of the group (atomic group) in the present invention, the group not described as substituted or unsubstituted includes a group containing a substituent as well as a group containing no substituent as long as the effect of the present invention is not impaired. Include. For example, the "hydrocarbon group" includes not only a hydrocarbon group containing no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group containing a substituent (substituted hydrocarbon group). This is also synonymous with each compound.
 また、本発明における「pH」は、pHメータ(製品名「pH Meter F-51」、堀場製作所製)を用いて、23℃において測定した値である。測定を開始して、表示される値が安定してから読み取った値をpHとする。 The "pH" in the present invention is a value measured at 23 ° C. using a pH meter (product name "pH Meter F-51", manufactured by HORIBA, Ltd.). The value read after starting the measurement and stabilizing the displayed value is defined as pH.
[処理液]
 本発明の処理液は、Co及びCuからなる群から選択される1種以上の第1金属を含む第1金属含有物を含有する被処理物を処理するのに使用される処理液であって、エッチャントと、有機溶剤と、防食剤とを含有する。
 有機溶剤の含有量は、処理液の全質量に対して80質量%以上である。
 防食剤は、後述する化合物X、後述する化合物Y、及び、後述する化合物Zからなる群から選択される1種以上の化合物である。
 本発明の処理液が上記のような構成をとることで、本発明の課題が解決されるメカニズムは必ずしも明らかではないが、本発明者は、以下のように推測している。
 すなわち、本発明の処理液は、高濃度の有機溶剤中に、エッチャントと、所定の防食剤が存在している。処理液は、主にエッチャントによって除去目的物の除去を可能としつつ、所定の防食剤によって第1金属含有物に対してのエッチングを抑制(防食)している。上記防食剤は、高濃度の有機溶剤中で特に良好な防食作用を実現でき、このような特徴が、本発明の効果を実現していると推測している。
 また、本発明の処理液は、Al又はAlであるアルミ系材料に対する防食性も良好である。
 なお、本発明において、除去目的物としては、例えば、メタルハードマスク及びエッチング残渣物が挙げられる。
 以下、第1金属含有物に対する防食性(例えば、Co含有物に対する防食性、及び、Cu含有物に対する防食性)、アルミ系材料に対する防食性、並びに、除去目的物に対する除去性のいずれか1つ以上により優れることを、本発明の効果がより優れるとも言う。
[Treatment liquid]
The treatment liquid of the present invention is a treatment liquid used for treating an object to be treated containing a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu. , Etchant, organic solvent, and anticorrosive agent.
The content of the organic solvent is 80% by mass or more with respect to the total mass of the treatment liquid.
The anticorrosive agent is one or more compounds selected from the group consisting of Compound X described later, Compound Y described later, and Compound Z described later.
The mechanism by which the problem of the present invention is solved by the treatment liquid of the present invention having the above-mentioned structure is not always clear, but the present inventor speculates as follows.
That is, in the treatment liquid of the present invention, an etchant and a predetermined anticorrosive agent are present in a high-concentration organic solvent. In the treatment liquid, etching of the first metal-containing material is suppressed (corrosion prevention) by a predetermined anticorrosive agent while enabling removal of the object to be removed mainly by etching. It is presumed that the above-mentioned anticorrosive agent can realize a particularly good anticorrosive action in a high concentration organic solvent, and such a feature realizes the effect of the present invention.
In addition, the treatment liquid of the present invention has good corrosion resistance against aluminum-based materials such as Al or Al 2 O 3.
In the present invention, examples of the object to be removed include a metal hard mask and an etching residue.
Hereinafter, any one of corrosion resistance to the first metal-containing material (for example, corrosion resistance to the Co-containing material and corrosion resistance to the Cu-containing material), corrosion resistance to the aluminum-based material, and removal property to the object to be removed. It is also said that the effect of the present invention is more excellent when it is more excellent than the above.
<エッチャント>
 本発明の処理液は、エッチャントを含有する。
 エッチャントは、除去目的物(メタルハードマスク及びエッチング残渣物等)を除去(溶解)する機能を備える。
 エッチャントは、含ハロゲン化合物(化合物内にハロゲン原子を含有する化合物)が好ましく、含フッ素化合物がより好ましい。
 含フッ素化合物としては、化合物内にフッ素原子を含有していれば特に制限されず、公知の含フッ素化合物を使用できる。中でも、含フッ素化合物としては、処理液中で解離してフッ化物イオンを放出する化合物も好ましい。
 含フッ素化合物としては、例えば、フッ化水素(HF)、フッ化アンモニウム、フッ化テトラメチルアンモニウム、フッ化テトラエチルアンモニウム、フッ化テトラブチルアンモニウム、ヘキサフルオロケイ酸、ヘキサフルオロリン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸アンモニウム、及び、ヘキサフルオロケイ酸アンモニウム等が挙げられる。
 中でも、含フッ素化合物は、本発明の効果がより優れる点から、フッ化水素(HF)、フッ化アンモニウム、フッ化テトラメチルアンモニウム、フッ化テトラエチルアンモニウム、フッ化テトラブチルアンモニウム、ヘキサフルオロケイ酸、ヘキサフルオロリン酸、又は、テトラフルオロホウ酸が好ましく、フッ化水素がより好ましい。
<Echant>
The treatment liquid of the present invention contains an etchant.
The etchant has a function of removing (dissolving) objects to be removed (metal hard mask, etching residue, etc.).
The etchant is preferably a halogen-containing compound (a compound containing a halogen atom in the compound), and more preferably a fluorine-containing compound.
The fluorine-containing compound is not particularly limited as long as the compound contains a fluorine atom, and a known fluorine-containing compound can be used. Among them, as the fluorine-containing compound, a compound that dissociates in the treatment liquid and releases fluoride ions is also preferable.
Examples of the fluorine-containing compound include hydrogen fluoride (HF), ammonium fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride, tetrabutylammonium fluoride, hexafluorosilicic acid, hexafluorophosphate, and tetrafluoroboric acid. , Ammonium hexafluorophosphate, ammonium hexafluorosilicate and the like.
Among them, the fluorine-containing compound is hydrogen fluoride (HF), ammonium fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride, tetrabutylammonium fluoride, hexafluorosilicic acid, because the effect of the present invention is more excellent. Hexafluorophosphoric acid or tetrafluoroboric acid is preferable, and hydrogen fluoride is more preferable.
 本発明の効果がより優れる点から、処理液中のエッチャント(好ましくは含フッ素化合物)の含有量は、処理液の全質量に対して、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。上限としては10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 エッチャント(好ましくは含フッ素化合物)は、1種単独で使用してもよく、2種以上を使用してもよい。
 2種以上のエッチャント(好ましくは含フッ素化合物)を使用する場合には、合計含有量が上記範囲内であることが好ましい。
From the viewpoint that the effect of the present invention is more excellent, the content of the etchant (preferably a fluorine-containing compound) in the treatment liquid is preferably 0.01% by mass or more, preferably 0.05% by mass, based on the total mass of the treatment liquid. The above is more preferable, and 0.1% by mass or more is further preferable. The upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less.
The etchant (preferably a fluorine-containing compound) may be used alone or in combination of two or more.
When two or more kinds of etchants (preferably fluorine-containing compounds) are used, the total content is preferably within the above range.
<有機溶剤>
 本発明の処理液は、有機溶剤を含有する。
 本発明の処理液中、有機溶剤(好ましくはアルコール系溶剤)の含有量は、処理液の全質量に対して、80質量%以上であり、80~99.9質量%が好ましく、80~99質量%がより好ましく、90~98質量%が更に好ましい。
 有機溶剤は、1種単独で使用してもよく、2種以上を使用してもよい。
 2種以上の有機溶剤を使用する場合、合計含有量が上記範囲内であることが好ましい。
<Organic solvent>
The treatment liquid of the present invention contains an organic solvent.
The content of the organic solvent (preferably an alcohol solvent) in the treatment liquid of the present invention is 80% by mass or more, preferably 80 to 99.9% by mass, and 80 to 99% by mass, based on the total mass of the treatment liquid. The mass% is more preferable, and 90 to 98% by mass is further preferable.
The organic solvent may be used alone or in combination of two or more.
When two or more kinds of organic solvents are used, the total content is preferably within the above range.
 有機溶剤としては、公知の有機溶剤をいずれも使用できるが、親水性有機溶剤が好ましい。親水性有機溶剤とは、水といずれの比率においても均一に混合可能な有機溶剤のことを意味する。
 有機溶剤としては、例えば、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤(例えば、グリコールジエーテル)、スルホン系溶剤、スルホキシド系溶剤、ニトリル系溶剤、及び、アミド系溶剤等が挙げられる。これらの有機溶剤が、親水性有機溶剤であることも好ましい。
 有機溶剤は、アルコール系溶剤が好ましい。
As the organic solvent, any known organic solvent can be used, but a hydrophilic organic solvent is preferable. The hydrophilic organic solvent means an organic solvent that can be uniformly mixed with water in any ratio.
Examples of the organic solvent include alcohol-based solvents, ketone-based solvents, ester-based solvents, ether-based solvents (for example, glycol diether), sulfone-based solvents, sulfoxide-based solvents, nitrile-based solvents, and amide-based solvents. Be done. It is also preferable that these organic solvents are hydrophilic organic solvents.
The organic solvent is preferably an alcohol solvent.
 アルコール系溶剤としては、例えば、アルカンジオール(例えば、アルキレングリコールを含む)、アルコキシアルコール(例えば、グリコールモノエーテルを含む)、飽和脂肪族一価アルコール、不飽和非芳香族一価アルコール、及び、環構造を含有する低分子量のアルコール等が挙げられる。
 中でも、アルコール系溶剤は、グリコールモノエーテル又は飽和脂肪族一価アルコールが好ましい。
Examples of the alcohol-based solvent include alkanediol (including, for example, alkylene glycol), alkoxyalcohol (including, for example, glycol monoether), saturated aliphatic monohydric alcohol, unsaturated non-aromatic monohydric alcohol, and ring. Examples thereof include low molecular weight alcohols containing a structure.
Among them, the alcohol solvent is preferably glycol monoether or saturated aliphatic monohydric alcohol.
 アルカンジオールとしては、例えば、グリコール、2-メチル-1,3-プロパンジオール、1,3-プロパンジール、2,2-ジメチル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、ピナコール、及び、アルキレングリコール等が挙げられる。 Examples of the alkanediol include glycol, 2-methyl-1,3-propanediol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,4-butanediol, and 1,3. -Butanediol, 1,2-butanediol, 2,3-butanediol, pinacol, alkylene glycol and the like can be mentioned.
 アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、へキシレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール及びテトラエチレングリコール等が挙げられる。 Examples of the alkylene glycol include ethylene glycol, propylene glycol, hexylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol and tetraethylene glycol.
 アルコキシアルコールとしては、例えば、3-メトキシ-3-メチル-1-ブタノール、3-メトキシ-1-ブタノール、1-メトキシ-2-ブタノール、及び、グリコールモノエーテル等が挙げられる。 Examples of the alkoxy alcohol include 3-methoxy-3-methyl-1-butanol, 3-methoxy-1-butanol, 1-methoxy-2-butanol, glycol monoether and the like.
 グリコールモノエーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-プロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、2-メトキシ-1-プロパノール、1-エトキシ-2-プロパノール、2-エトキシ-1-プロパノール、プロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル及びエチレングリコールモノベンジルエーテル及びジエチレングリコールモノベンジルエーテル、1-オクタノール、2-オクタノール、及び、2-エチルヘキサノール等が挙げられる。 Examples of the glycol monoether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether. , Triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, 1-methoxy-2-propanol, 2-methoxy-1-propanol, 1-ethoxy-2-propanol, 2-ethoxy-1- Propanol, propylene glycol mono-n-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monomethyl ether and ethylene glycol mono Benzyl ether and diethylene glycol monobenzyl ether, 1-octanol, 2-octanol, 2-ethylhexanol and the like can be mentioned.
 飽和脂肪族一価アルコールとしては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、2-ペンタノール、t-ペンチルアルコール、及び、ヘキサノール等が挙げられる。 Saturated aliphatic monohydric alcohols include, for example, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 2-pentanol, t-pentyl alcohol, and , Hexanol and the like.
 不飽和非芳香族一価アルコールとしては、例えば、アリルアルコール、プロパルギルアルコール、2-ブテニルアルコール、3-ブテニルアルコール、及び、4-ペンテン-2-オール等が挙げられる。 Examples of unsaturated non-aromatic monohydric alcohols include allyl alcohol, propargyl alcohol, 2-butenyl alcohol, 3-butenyl alcohol, 4-pentene-2-ol and the like.
 環構造を含有する低分子量のアルコールとしては、例えば、テトラヒドロフルフリルアルコール、フルフリルアルコール、及び、1,3-シクロペンタンジオール等が挙げられる。 Examples of low molecular weight alcohols containing a ring structure include tetrahydrofurfuryl alcohol, furfuryl alcohol, and 1,3-cyclopentanediol.
 ケトン系溶剤としては、例えば、アセトン、プロパノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ジアセトンアルコール、2-ブタノン、5-ヘキサンジオン、1,4-シクロヘキサンジオン、3-ヒドロキシアセトフェノン、1,3-シクロヘキサンジオン、及び、シクロヘキサノン等が挙げられる。 Examples of the ketone solvent include acetone, propanone, cyclobutanone, cyclopentanone, cyclohexanone, diacetone alcohol, 2-butanone, 5-hexanedione, 1,4-cyclohexanedione, 3-hydroxyacetphenone, and 1,3-cyclohexane. Examples thereof include dione and cyclohexanone.
 エステル系溶剤としては、例えば、酢酸エチル、エチレングリコールモノアセタート、ジエチレングリコールモノアセタート等のグリコールモノエステル、及びプロピレングリコールモノメチルエーテルアセタート、エチレングリコールモノメチルエーテルアセタート、プロピレングリコールモノエチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート等のグリコールモノエーテルモノエステルが挙げられる。
 これらの中でも、エチレングリコールモノブチルエーテル、トリ(プロピレングリコール)メチルエーテル、及び、ジエチレングリコールモノエチルエーテルが好ましい。
Examples of the ester solvent include glycol monoesters such as ethyl acetate, ethylene glycol monoacetate and diethylene glycol monoacetate, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. Examples thereof include glycol monoether monoesters such as ethylene glycol monoethyl ether acetate.
Among these, ethylene glycol monobutyl ether, tri (propylene glycol) methyl ether, and diethylene glycol monoethyl ether are preferable.
 スルホン系溶剤としては、例えば、スルホラン、3-メチルスルホラン、及び、2,4-ジメチルスルホラン等が挙げられる。 Examples of the sulfone solvent include sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane and the like.
 スルホキシド系溶剤としては、例えば、ジメチルスルホキシド等が挙げられる。 Examples of the sulfoxide solvent include dimethyl sulfoxide and the like.
 ニトリル系溶剤としては、例えば、アセトニトリル等が挙げられる。 Examples of the nitrile solvent include acetonitrile and the like.
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、及び、ヘキサメチルホスホリックトリアミド等が挙げられる。 Examples of the amide solvent include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, and N. -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like can be mentioned.
 中でも、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ヘキサノール、1-オクタノール、2-オクタノール、及び、2-エチルヘキサノールからなる群から選択される1種以上の化合物が好ましい。 Among them, a group consisting of ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, hexanol, 1-octanol, 2-octanol, and 2-ethylhexanol. One or more compounds selected from are preferred.
 有機溶剤は、金属イオンの含有量が低減した高純度の有機溶剤を用いることも好ましく、更に精製して用いてもよい。
 精製方法としては、特に限定されないが、ろ過、イオン交換、蒸留、吸着精製、再結晶、再沈殿、昇華、及び、カラムを用いた精製等の公知の方法を使用でき、これらを組み合わせて適用してもよい。
As the organic solvent, it is preferable to use a high-purity organic solvent having a reduced metal ion content, and it may be further purified and used.
The purification method is not particularly limited, but known methods such as filtration, ion exchange, distillation, adsorption purification, recrystallization, reprecipitation, sublimation, and purification using a column can be used, and these can be applied in combination. You may.
<防食剤>
 本発明の処理液は防食剤を含有する。
 上記防食剤は、化合物X、化合物Y、及び、化合物Zからなる群から選択される1種以上の化合物である。
 上記防食剤は、1種単独で使用してもよく、2種以上使用してもよい。上記防食剤を2種以上使用する場合、2種以上の上記防食剤は、化合物Xのみでもよく、化合物Yのみでもよく、化合物Zのみでもよく、化合物X、化合物Y、及び、化合物Zのうちの2種又は3種でもよい。
 以下、化合物X、化合物Y、及び、化合物Zについて詳述する。
<Corrosion inhibitor>
The treatment liquid of the present invention contains an anticorrosive agent.
The anticorrosive agent is one or more compounds selected from the group consisting of compound X, compound Y, and compound Z.
The above-mentioned anticorrosive agent may be used alone or in combination of two or more. When two or more kinds of the above-mentioned anticorrosive agents are used, the two or more kinds of the above-mentioned anticorrosive agents may be compound X alone, compound Y alone, or compound Z alone, among compound X, compound Y, and compound Z. 2 or 3 types may be used.
Hereinafter, compound X, compound Y, and compound Z will be described in detail.
(化合物X)
 化合物Xは、「一般式(XA1)~(XA3)のいずれかで表される基である置換基XAを1つと、一般式(XB1)~(XB7)のいずれかで表される基である置換基XBを1つ以上とを含有する化合物(化合物X1)」、及び、「上記置換基XAを2つ以上含有する化合物(化合物X2)」からなる群から選択される1種以上の化合物である。
(Compound X)
Compound X is "one substituent XA, which is a group represented by any of the general formulas (XA1) to (XA3), and a group represented by any of the general formulas (XB1) to (XB7). One or more compounds selected from the group consisting of "a compound containing one or more substituents XB (Compound X1)" and "a compound containing two or more substituents XA (Compound X2)". is there.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(XA1)~(XA3)及び一般式(XB1)~(AB7)中、*は結合位置を表す。
 また、一般式(XA1)、(XA2)、(XB4)、及び、(XB5)におけるRは、それぞれ独立に、水素原子又はアルキル基を表す。上記アルキル基は直鎖状でも分岐鎖状でもよく、全体的又は部分的に環状構造であってもよい。上記アルキル基の炭素数は、1~6が好ましく、1がより好ましい。上記アルキル基は、無置換であることが好ましい。
In the general formulas (XA1) to (XA3) and the general formulas (XB1) to (AB7), * represents a bonding position.
Further, R in the general formulas (XA1), (XA2), (XB4), and (XB5) independently represents a hydrogen atom or an alkyl group. The alkyl group may be linear or branched, and may have a wholly or partially cyclic structure. The alkyl group preferably has 1 to 6 carbon atoms, and more preferably 1. The alkyl group is preferably unsubstituted.
 第1金属含有物のエッチングをより抑制できる点で、一般式(XA2)で表される基においては、Rは水素原子であるのが好ましい。
 第1金属含有物のエッチングをより抑制できる点で、置換基XAは、一般式(XA1)で表される基、一般式(XA2)で表される基であってRが水素原子である基、又は、一般式(XA3)で表される基が好ましい。
In the group represented by the general formula (XA2), R is preferably a hydrogen atom in that the etching of the first metal-containing material can be further suppressed.
The substituent XA is a group represented by the general formula (XA1), a group represented by the general formula (XA2), and R is a hydrogen atom, in that the etching of the first metal-containing material can be further suppressed. , Or a group represented by the general formula (XA3) is preferable.
 なお、置換基XBは、置換基XA中に含有される基ではない。
 つまり、化合物中の部分構造が置換基XA及び置換基XBのいずれかを含有するか検討する場合、まず、置換基XAを含有するか否かを検討し、置換基XAを含有しなかった場合に、次に、置換基XBを含有するか否かを検討する。
 言い換えると、置換基XBは、化合物中の置換基XAに該当する基が存在しない部分構造中にのみ存在し得る。
 例えば、化合物中にカルボキシヒドロキシメチル基(-CH(OH)-COOH)が存在する場合、上記カルボキシヒドロキシメチル基は置換基XA(一般式(XA3)で表される基)に該当し、上記カルボキシヒドロキシメチル基中の一部分としての-OHは、置換基XB(一般式(XB1)で表される基)には該当しない。
 また、一般式(XB1)で表される基は、一般式(XB2)で表される基に含有される基ではなく、一般式(XB6)で表される基に含有される基でもない。
 なお、「置換基XAの一部分としての-COOH」以外の-COOHが存在する場合、このような-COOHの一部分である-OHは、一般式(XB1)で表される基に該当する。一般式(XB1)で表される基は、-COOHの一部分である-OH以外が好ましい。
 一般式(XB1)で表される基は炭素原子(好ましくはカルボニル炭素原子以外の炭素原子、より好ましくはsp3炭素原子)に結合していることが好ましい。
 本発明の効果がより優れる点から、置換基XBは、一般式(XB1)、(XB3)~(XB7)のいずれかで表される基であることが好ましい。
The substituent XB is not a group contained in the substituent XA.
That is, when examining whether the partial structure in the compound contains either the substituent XA or the substituent XB, first, it is examined whether or not the partial structure contains the substituent XA, and the case where the substituent XA is not contained is examined. Next, it is examined whether or not the substituent XB is contained.
In other words, the substituent XB can only be present in the partial structure in which the group corresponding to the substituent XA in the compound is absent.
For example, when a carboxyhydroxymethyl group (-CH (OH) -COOH) is present in the compound, the carboxyhydroxymethyl group corresponds to the substituent XA (group represented by the general formula (XA3)), and the above carboxy -OH as a part of the hydroxymethyl group does not correspond to the substituent XB (group represented by the general formula (XB1)).
Further, the group represented by the general formula (XB1) is neither a group contained in the group represented by the general formula (XB2) nor a group contained in the group represented by the general formula (XB6).
When -COOH other than "-COOH as a part of the substituent XA" is present, -OH which is a part of such -COOH corresponds to the group represented by the general formula (XB1). The group represented by the general formula (XB1) is preferably other than -OH, which is a part of -COOH.
The group represented by the general formula (XB1) is preferably bonded to a carbon atom (preferably a carbon atom other than the carbonyl carbon atom, more preferably a sp3 carbon atom).
From the viewpoint that the effect of the present invention is more excellent, the substituent XB is preferably a group represented by any of the general formulas (XB1) and (XB3) to (XB7).
 化合物Xの一形態である化合物X1は、一般式(XA1)~(XA3)のいずれかで表される置換基XAを1つと、一般式(XB1)~(XB7)のいずれかで表される置換基XBを1つ以上とを含有する化合物である。
 化合物X1が含有する置換基XAの数は1である。
 化合物X1が含有する置換基XBの数は、1~10が好ましい。置換基XBが複数存在する場合、複数存在する置換基XBは、それぞれ同一でも異なっていてもよい。
Compound X1, which is a form of compound X, has one substituent XA represented by any of the general formulas (XA1) to (XA3) and is represented by any of the general formulas (XB1) to (XB7). It is a compound containing one or more substituents XB.
The number of substituents XA contained in compound X1 is 1.
The number of substituents XB contained in compound X1 is preferably 1 to 10. When a plurality of substituents XB are present, the plurality of substituents XB may be the same or different from each other.
 化合物Xの一形態である化合物X2は、一般式(XA1)~(XA3)のいずれかで表される置換基XAを2つ以上含有する化合物である。
 化合物X2が含有する置換基XAの数は、2~10が好ましく、2がより好ましい。複数存在する置換基XAは、それぞれ同一でも異なっていてもよい。
 化合物X2が置換基XBを含有してもよい。化合物X2が置換基XBを含有する場合、化合物X2が含有する置換基XBの数は、1~10が好ましい。置換基XBが複数存在する場合、複数存在する置換基XBは、それぞれ同一でも異なっていてもよい。
Compound X2, which is a form of compound X, is a compound containing two or more substituents XA represented by any of the general formulas (XA1) to (XA3).
The number of substituents XA contained in compound X2 is preferably 2 to 10, and more preferably 2. The plurality of substituents XA may be the same or different from each other.
Compound X2 may contain a substituent XB. When the compound X2 contains a substituent XB, the number of the substituents XB contained in the compound X2 is preferably 1 to 10. When a plurality of substituents XB are present, the plurality of substituents XB may be the same or different from each other.
 化合物Xは、下記一般式(X)で表される化合物が好ましい。
 X-X-XAB   (X)
The compound X is preferably a compound represented by the following general formula (X).
X A- X C- X AB (X)
 一般式(X)中、Xは、置換基XA(一般式(XA1)~(XA3)のいずれかで表される基)を表す。
 一般式(X)中、XABは、置換基XA(一般式(XA1)~(XA3)のいずれかで表される基)、又は、置換基XB(一般式(XB1)~(XB7)のいずれかで表される基)を表す。XABは、置換基XBが好ましい。
 一般式(X)中、Xは、単結合又はアルキレン基を表す。上記アルキレン基は、アルキレン鎖を構成する-CH-の1つ以上(好ましくは1~5つ)が、-CO-及び/又は-S-で置き換わっていてもよい。ただし、-CO-同士は連続して結合しない。
 上記アルキレン基は、直鎖状でも分岐鎖状でもよい。また、上記アルキレン基は、部分的又は全体的に環状であってもよい。上記アルキレン基は、直鎖状であることが好ましい。上記アルキレン基は置換基を含有していてもよく、置換基は水酸基が好ましい。上記アルキレン基は、水酸基以外の置換基を含有しないことも好ましい。
 上記アルキレン基の炭素数は、1~10が好ましい。なお、上記炭素数には、-S-で置き換えられた-CH-中の炭素原子の数を含む。
In the general formula (X), X A represents a substituent XA (a group represented by any of the general formulas (XA1) to (XA3)).
In the general formula (X), X AB is a substituent XA (a group represented by any of the general formulas (XA1) to (XA3)) or a substituent XB (general formulas (XB1) to (XB7)). Represents a group represented by either. As XAB , the substituent XB is preferable.
In the general formula (X), X C represents a single bond or an alkylene group. In the alkylene group, one or more (preferably 1 to 5) of -CH 2- constituting the alkylene chain may be replaced with -CO- and / or -S-. However, -CO- does not bond continuously.
The alkylene group may be linear or branched. Further, the alkylene group may be partially or wholly cyclic. The alkylene group is preferably linear. The alkylene group may contain a substituent, and the substituent is preferably a hydroxyl group. It is also preferable that the alkylene group does not contain a substituent other than a hydroxyl group.
The alkylene group preferably has 1 to 10 carbon atoms. The number of carbon atoms includes the number of carbon atoms in -CH 2 -replaced with -S-.
 中でも、Xは、「-(Lmx-」で表される基が好ましい。
 「-(Lmx-」中、mxは、0~10の整数を表す。mxが0の場合、「-(Lmx-」は単結合である。
 「-(Lmx-」中、Lは、-CR -、-CO-、又は、-S-を表す。ただし、-CO-同士は連続して結合しない。
 -CR -中の2つのRはそれぞれ独立に水素原子又は置換基(好ましくは水酸基)を表す。1つの-CR -中の2つのRは、一方又は両方が水素原子であることが好ましい。L中に-CR -が複数存在する場合、複数存在する-CR -は、それぞれ同一でも異なっていてもよい。
Among them, X C is "- (L X) mx -" group represented by are preferred.
"- (L X) mx -" in, mx represents an integer of 0 to 10. If mx is 0, "- (L X) mx -" is a single bond.
"- (L X) mx -" in, L X is, -CR X 2 -, - CO- , or represents -S-. However, -CO- does not bond continuously.
-CR X 2 - represents two R X are each independently a hydrogen atom or a substituent of the medium (preferably hydroxyl groups). One -CR X 2 - 2 one R X medium is preferably one or both are hydrogen atoms. If there are a plurality, -CR X 2 there are a plurality of - - L X in -CR X 2 to may each be the same or different.
 一般式(X)中のXとXABとの具体的な組み合わせとしては、例えば、「XA1/XB2」、「XA1/XB3」、「XA1/XB6」、「XA1/XB7」、「XA1/XA1」、「XA2/XB3」、「XA2/XB4」、「XA2/XB5」、又は、「XA3/XB1」が好ましく、「XA1/XB3」、「XA1/XB6」、「XA1/XB7」、「XA2/XB4」、又は、「XA2/XB5」がより好ましい。
 なお、上記において「XA1/XB2」との記載は、Xが一般式(XA1)で表される基であり、XABが一般式(XB2)で表される基である組み合わせを意味する。その他の同様の記載でも、同様の意味である。
 Xが一般式(XA1)で表される基であり、XABが一般式(XB7)で表される基である組み合わせの場合、Xは、単結合又は炭素数1~3のアルキレン基であるのも好ましい。
Specific combinations of X A and X AB in the general formula (X) include, for example, "XA1 / XB2", "XA1 / XB3", "XA1 / XB6", "XA1 / XB7", and "XA1 /". "XA1", "XA2 / XB3", "XA2 / XB4", "XA2 / XB5", or "XA3 / XB1" is preferable, and "XA1 / XB3", "XA1 / XB6", "XA1 / XB7", ""XA2 / XB4" or "XA2 / XB5" is more preferable.
In the above, the description "XA1 / XB2" means a combination in which X A is a group represented by the general formula (XA1) and X AB is a group represented by the general formula (XB2). Other similar descriptions have the same meaning.
In the case of a combination in which X A is a group represented by the general formula (XA1) and X AB is a group represented by the general formula (XB7), X C is a single bond or an alkylene group having 1 to 3 carbon atoms. Is also preferable.
 化合物Xは、-COOHで表される部分構造を、1~5つ含有する化合物が好ましく、1つだけ含有する化合物がより好ましい。
 -COOHで表される部分構造とは、化合物中に存在する全ての-COOHを意図する。例えば、置換基XA中の一部分として存在する-COOHも、-COOHで表される部分構造として計上される。
The compound X is preferably a compound containing 1 to 5 partial structures represented by −COOH, and more preferably a compound containing only one.
The partial structure represented by -COOH is intended for all -COOH present in the compound. For example, -COOH, which exists as a part of the substituent XA, is also counted as a partial structure represented by -COOH.
 化合物Xは1種単独で使用してもよく、2種以上使用してもよい。2種以上の化合物Xを使用する場合、2種以上の化合物Xが、いずれも化合物X1のみであってもよく、いずれも化合物X2のみであってもよく、化合物X1と化合物X2との両方であってもよい。 Compound X may be used alone or in combination of two or more. When two or more kinds of compounds X are used, two or more kinds of compounds X may be only compound X1 or both may be only compound X2, and both compound X1 and compound X2 may be used. There may be.
(化合物Y)
 化合物Yは、一般式(Y)で表される化合物である。
  Y-COOH       (Y)
(Compound Y)
Compound Y is a compound represented by the general formula (Y).
Y Q- COOH (Y)
 Yは、ホスホン酸オキシ基(-OPO(OH))を有する芳香環基、ボロン酸基(-B(OH))を有する芳香環基、又は、ホスホン酸基-アルキレン基-を表す。
 ホスホン酸オキシ基を有する芳香環基、及び、ボロン酸基を有する芳香環基における芳香環基は、それぞれ独立に、芳香族炭化水素環基でも芳香族複素環基でもよく、芳香族炭化水素環基が好ましい。上記芳香環基は単環でも多環でもよく、単環が好ましい。上記芳香環基の環員数は5~15が好ましく、6がより好ましい。
 一般式(Y)中に明示されるCOOHは上記芳香環基の環員原子と直接結合する。
 また、ホスホン酸オキシ基を有する芳香環基において、上記ホスホン酸オキシ基及び一般式(Y)中に明示されるCOOHは、上記芳香環基の環員原子と直接結合する。ホスホン酸オキシ基を有する芳香環基は、これら以外の置換基を含有しても含有しなくてもよく、含有しないことが好ましい。
 ボロン酸基を有する芳香環基において、上記ボロン酸基及び一般式(Y)中に明示されるCOOHは、上記芳香環基の環員原子と直接結合する。ボロン酸基を有する芳香環基は、これら以外の置換基を含有しても含有しなくてもよく、含有しないことが好ましい。
 「ホスホン酸基-アルキレン基-」における上記アルキレン基は直鎖状でも分岐鎖状でもよく、炭素数は1~10が好ましい。
 「ホスホン酸基-アルキレン基-」において、上記ホスホン酸基及び一般式(Y)中に明示されるCOOHは、上記アルキレン基のアルキレン鎖を構成する炭素原子と直接結合する。「ホスホン酸基-アルキレン基-」は、これら以外の置換基を含有しても含有しなくてもよく、含有しないことが好ましい。
Y Q represents an aromatic ring group having a phosphonate oxy group (-OPO (OH) 2 ), an aromatic ring group having a boronic acid group (-B (OH) 2 ), or a phosphonic acid group-alkylene group. ..
The aromatic ring group having an oxyphosphonate group and the aromatic ring group in the aromatic ring group having a boronate group may be independently an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and may be an aromatic hydrocarbon ring. Groups are preferred. The aromatic ring group may be monocyclic or polycyclic, and a monocyclic ring is preferable. The number of ring members of the aromatic ring group is preferably 5 to 15, and more preferably 6.
The COOH specified in the general formula (Y) directly bonds with the ring member atom of the aromatic ring group.
Further, in the aromatic ring group having a phosphonate oxy group, the phosphonate oxy group and COOH specified in the general formula (Y) are directly bonded to the ring member atom of the aromatic ring group. The aromatic ring group having a phosphonate oxy group may or may not contain a substituent other than these, and is preferably not contained.
In an aromatic ring group having a boronic acid group, the boronic acid group and COOH specified in the general formula (Y) are directly bonded to the ring member atom of the aromatic ring group. The aromatic ring group having a boronic acid group may or may not contain a substituent other than these, and preferably does not contain it.
The alkylene group in the "phosphonic acid group-alkylene group-" may be linear or branched, and the number of carbon atoms is preferably 1 to 10.
In the "phosphonic acid group-alkylene group-", the phosphonic acid group and COOH specified in the general formula (Y) are directly bonded to the carbon atom constituting the alkylene chain of the alkylene group. The "phosphonic acid group-alkylene group-" may or may not contain a substituent other than these, and is preferably not contained.
(化合物Z)
 化合物Zは、メリト酸(ベンゼンヘキサカルボン酸)、及び、シュウ酸(HOOC-COOH)からなる群から選択される1種以上の化合物である。
 化合物Zは1種単独で使用してもよく、2種使用してもよい。
(Compound Z)
Compound Z is one or more compounds selected from the group consisting of mellitic acid (benzenehexacarboxylic acid) and oxalic acid (HOOC-COOH).
Compound Z may be used alone or in combination of two.
 中でも、本発明における防食剤は、L-システイン酸、O-カルボキシフェニルボロン酸、クレアチン、N-アセチルグリシン(アセトアミド酢酸)、ホモアルギニン、N-(アミノカルボニル)-L-リシン(ホモシトルリン)、L-O-ホスホセリン、2-ホスホノオキシ安息香酸、メリト酸、シュウ酸、グルコン酸、L-シトルリン、DL-アラニルグリシン、d-シスチン、及び、dl-ジエンコル酸からなる群から選択される1種以上の化合物が好ましく、L-システイン酸、グルコン酸、ホモアルギニン、L-シトルリン、DL-アラニルグリシン、O-カルボキシフェニルボロン酸、メリト酸、及び、シュウ酸からなる群から選択される1種以上の化合物がより好ましい。 Among them, anti-corrosion agent in the present invention, L- cysteic acid, O- carboxyphenyl boronic acid, creatine, N- acetyl glycine (acetamido acetate), homoarginine, N 6 - (aminocarbonyl) -L- lysine (homocitrulline) , LO-phosphoserine, 2-phosphonooxybenzoic acid, melitonic acid, oxalic acid, gluconic acid, L-citrulin, DL-alanylglycine, d-cystine, and dl-diencoric acid. More than a species of compound is preferred and is selected from the group consisting of L-cysteine acid, gluconic acid, homoarginine, L-citrulin, DL-alanylglycine, O-carboxyphenylboronic acid, melitonic acid, and oxalic acid 1 More than a species of compound is more preferred.
 処理液中の防食剤の含有量(2種以上の防食剤を使用する場合、その合計含有量)は、処理液の全質量に対して、0.01~7質量%が好ましく、0.01~5質量%がより好ましく、0.05~3質量%が更に好ましく、0.07~3質量%が特に好ましい。
 中でも、化合物Yの含有量は、処理液の全質量に対して、0.07質量%以上1質量%未満が特に好ましい。
The content of the anticorrosive agent in the treatment liquid (when two or more kinds of anticorrosive agents are used, the total content thereof) is preferably 0.01 to 7% by mass, preferably 0.01, based on the total mass of the treatment liquid. It is more preferably ~ 5% by mass, further preferably 0.05 to 3% by mass, and particularly preferably 0.07 to 3% by mass.
Above all, the content of compound Y is particularly preferably 0.07% by mass or more and less than 1% by mass with respect to the total mass of the treatment liquid.
<水>
 本発明の処理液は、更に水を含有してもよい。
 水は、特に限定されないが、半導体製造に使用される超純水を用いることが好ましく、その超純水を更に精製し、無機陰イオン及び金属イオン等を低減させた水を用いることがより好ましい。精製方法は特に限定されないが、ろ過膜又はイオン交換膜を用いた精製、及び、蒸留による精製が好ましい。また、例えば、特開2007―254168号公報に記載されている方法により精製を行なうことが好ましい。
 処理液中の水の含有量は、処理液の全質量に対して、0.01~18質量%が好ましく、0.05~14質量%がより好ましく、0.1~9質量%が更に好ましい。
<Water>
The treatment liquid of the present invention may further contain water.
The water is not particularly limited, but it is preferable to use ultrapure water used for semiconductor production, and it is more preferable to use water obtained by further purifying the ultrapure water to reduce inorganic anions, metal ions and the like. .. The purification method is not particularly limited, but purification using a filtration membrane or an ion exchange membrane and purification by distillation are preferable. Further, for example, it is preferable to carry out purification by the method described in JP-A-2007-254168.
The content of water in the treatment liquid is preferably 0.01 to 18% by mass, more preferably 0.05 to 14% by mass, still more preferably 0.1 to 9% by mass, based on the total mass of the treatment liquid. ..
<pH調整剤>
 本発明の処理液は、pH調整剤を含有してもよい。
 pH調整剤は、上述の成分以外の成分である。
 pH調整剤としては、pHを上げるために、コリン等の第四級アンモニウム塩、水酸化カリウム等の水酸化アルカリ又はアルカリ土類塩、2-アミノエタノール、及び、グアニジン等のアミノ化合物を使用できる。限定はされないが、一般的に金属イオンを含有しないことが好ましく、例えば、水酸化アンモニウム、コリン化合物、モノアミン類、イミン類(例えば、1,8-ジアザビシクロ[5.4.0]ウンデカン-7-エン(ジアザビシクロウンデセン)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン)、1,4-ジアザビシクロ[2.2.2]オクタン、グアニジン塩類(例えば、炭酸グアニジン)、ヒドロキシルアミン、及び、ヒドロキシルアミン塩等が挙げられ、本願所望の効果を得るためにこれらのいずれも使用できる。中でも、水酸化アンモニウム、イミン類(例えば、1,8-ジアザビシクロ[5.4.0]ウンデカン-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン)、ヒドロキシルアミン、又は、ヒドロキシルアミン塩が本願所望の効果を顕著に得る観点から好ましい。
 pHを下げるためには、無機酸、並びに、カルボン酸及び有機硫酸等の有機酸が挙げられる。無機酸の具体例としては、塩酸、硫酸、炭酸、次亜リン酸、亜リン酸、及び、リン酸等が挙げられる。カルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、乳酸、ジグリコール酸、2-フランカルボン酸、2,5-フランジカルボン酸、3-フランカルボン酸、2-テトラヒドロフランカルボン酸、メトキシ酢酸、メトキシフェニル酢酸、及び、フェノキシ酢酸等が挙げられる。有機硫酸の具体例としては、メタンスルホン酸、エタンスルホン酸、及び、イセチオン酸等が挙げられる。
 pH調整剤は、単独でも2種類以上適宜組み合わせて用いてもよい。
<pH adjuster>
The treatment liquid of the present invention may contain a pH adjuster.
The pH adjuster is a component other than the above-mentioned components.
As the pH adjuster, a quaternary ammonium salt such as choline, an alkali hydroxide or alkaline earth salt such as potassium hydroxide, 2-aminoethanol, and an amino compound such as guanidine can be used to raise the pH. .. Although not limited, it is generally preferable that it does not contain metal ions, for example, ammonium hydroxide, choline compounds, monoamines, imines (eg, 1,8-diazabicyclo [5.4.0] undecane-7-. En (diazabicycloundecene), 1,5-diazabicyclo [4.3.0] nona-5-ene), 1,4-diazabicyclo [2.2.2] octane, guanidine salts (eg, guanidine carbonate) , Hydroxylamine, hydroxylamine salt and the like, and any of these can be used to obtain the desired effect of the present application. Among them, ammonium hydroxide, imines (for example, 1,8-diazabicyclo [5.4.0] undecane-7-ene, 1,5-diazabicyclo [4.3.0] nona-5-ene), hydroxylamine. , Or, a hydroxylamine salt is preferable from the viewpoint of remarkably obtaining the desired effect of the present application.
Examples of lowering the pH include inorganic acids and organic acids such as carboxylic acids and organic sulfuric acids. Specific examples of the inorganic acid include hydrochloric acid, sulfuric acid, carbonic acid, hypophosphorous acid, phosphoric acid, phosphoric acid and the like. Specific examples of carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-. Heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, glutaric acid, adipic acid, pimelli acid, maleic acid, phthalic acid, malic acid, tartrate acid , Lactic acid, diglycolic acid, 2-furancarboxylic acid, 2,5-furandicarboxylic acid, 3-furancarboxylic acid, 2-tetracarboxylic acid, methoxyacetic acid, methoxyphenylacetic acid, phenoxyacetic acid and the like. Specific examples of the organic sulfuric acid include methanesulfonic acid, ethanesulfonic acid, isethionic acid and the like.
The pH adjuster may be used alone or in combination of two or more.
 pH調整剤の含有量は、特に限定されず、例えば、処理液のpHを所定の範囲になるように適宜決定されればよい。
 処理液のpHは、5.0以下が好ましく、4.0以下がより好ましく、0.00~4.0が更に好ましく、0.05以上3.5未満が特に好ましい。
The content of the pH adjuster is not particularly limited, and may be appropriately determined so that the pH of the treatment liquid is within a predetermined range, for example.
The pH of the treatment liquid is preferably 5.0 or less, more preferably 4.0 or less, further preferably 0.00 to 4.0, and particularly preferably 0.05 or more and less than 3.5.
<粗大粒子>
 本発明の処理液は、粗大粒子を実質的に含有しないことも好ましい。
 粗大粒子とは、例えば、粒子の形状を球体とみなした場合において、直径0.2μm以上の粒子を指す。また、粗大粒子を実質的に含有しないとは、光散乱式液中粒子測定方式における市販の測定装置を用いた処理液の測定を行った際に、処理液1mL中の0.2μm以上の粒子が10個以下であることをいう。
 なお、処理液が含有する粗大粒子とは、原料に不純物として含有する塵、埃、有機固形物及び無機固形物などの粒子、並びに、処理液の調製中に汚染物として持ち込まれる塵、埃、有機固形物及び無機固形物などの粒子等であり、最終的に処理液中で溶解せずに粒子として存在する成分が該当する。
 処理液中に存在する粗大粒子の量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して液相で測定できる。
 粗大粒子の除去方法としては、例えば、後述するフィルタリング等の処理が挙げられる。
<Coarse particles>
It is also preferable that the treatment liquid of the present invention does not substantially contain coarse particles.
The coarse particles refer to particles having a diameter of 0.2 μm or more, for example, when the shape of the particles is regarded as a sphere. In addition, the fact that coarse particles are not substantially contained means that when the treatment liquid is measured using a commercially available measuring device in the light scattering type in-liquid particle measurement method, particles of 0.2 μm or more in 1 mL of the treatment liquid are measured. Is 10 or less.
The coarse particles contained in the treatment liquid include particles such as dust, dust, organic solids and inorganic solids contained as impurities in the raw material, and dust and dirt brought in as contaminants during the preparation of the treatment liquid. These include particles such as organic solids and inorganic solids, and are components that are finally present as particles without being dissolved in the treatment liquid.
The amount of coarse particles present in the treatment liquid can be measured in the liquid phase by using a commercially available measuring device in the light scattering type liquid particle measurement method using a laser as a light source.
Examples of the method for removing coarse particles include processing such as filtering described later.
<その他の成分>
 本発明の処理液は、上述した以外の成分として、その他の成分を含有してもよい。
 その他の成分としては、例えば、上述した以外の防食剤(化合物X、Y、Zのいずれにも該当しない防食剤)、界面活性剤、酸化剤、キレート剤、消泡剤、防錆剤、及び、防腐剤等が挙げられる。
<Other ingredients>
The treatment liquid of the present invention may contain other components as components other than those described above.
Other components include, for example, anticorrosive agents other than those described above (anticorrosive agents that do not fall under any of compounds X, Y, Z), surfactants, oxidizing agents, chelating agents, defoaming agents, rust preventives, and , Preservatives and the like.
<配合の例>
 本発明の処理液は、例えば、処理液の全質量に対して、
 エッチャントを、0.01~10質量%(より好ましくは0.05~5質量%、更に好ましくは0.1~3質量%)含有し、
 有機溶剤を、80~99.9質量%(より好ましくは80~99質量%、更に好ましくは90~99質量%)含有し、
 防食剤を、0.01~5質量%(より好ましくは0.05~3質量%、更に好ましくは0.07~3質量%)含有し、
 水を、0.01~18質量%(より好ましくは0.05~14質量%、更に好ましくは0.1~9質量%)含有する処理液が好ましい。
 なお、上記処理液は、所望に応じて、例に挙げた成分(エッチャント、有機溶剤、防食剤、及び、水)以外の成分(pH調整剤等)を含有してもよい。
<Example of formulation>
The treatment liquid of the present invention is, for example, based on the total mass of the treatment liquid.
The etchant is contained in an amount of 0.01 to 10% by mass (more preferably 0.05 to 5% by mass, still more preferably 0.1 to 3% by mass).
The organic solvent is contained in an amount of 80 to 99.9% by mass (more preferably 80 to 99% by mass, still more preferably 90 to 99% by mass).
The anticorrosive agent is contained in an amount of 0.01 to 5% by mass (more preferably 0.05 to 3% by mass, still more preferably 0.07 to 3% by mass).
A treatment liquid containing 0.01 to 18% by mass (more preferably 0.05 to 14% by mass, still more preferably 0.1 to 9% by mass) of water is preferable.
If desired, the treatment liquid may contain components (pH adjuster, etc.) other than the components (etchant, organic solvent, anticorrosive agent, and water) listed in the examples.
<用途>
 本発明の処理液は、典型的には、半導体デバイスの製造に用いられる、半導体デバイス用の処理液である。本発明においては、「半導体デバイス用」とは、半導体デバイスの製造の際に用いられるという意味である。本発明の処理液は、メタルハードマスクの除去、及び、エッチング残渣物の除去の他に、半導体デバイスを製造するためのいずれの工程にも使用できる。
 例えば、処理液は、プリウェット液、永久膜(例えば、カラーフィルタ、透明絶縁膜、樹脂製のレンズ)等を半導体基板から除去するために用いられる溶液(例えば、除去液及び剥離液等)、及び、pCMP(化学機械研磨後)洗浄液等としても用いてもよい。なお、永久膜の除去後の半導体基板は、再び半導体デバイスの使用に用いられることがあるため、永久膜の除去は、半導体デバイスの製造工程に含むこととする。
 本発明の処理液の具体的な適用方法については後述する。
<Use>
The treatment liquid of the present invention is typically a treatment liquid for semiconductor devices used in the manufacture of semiconductor devices. In the present invention, "for semiconductor devices" means that it is used in the manufacture of semiconductor devices. The treatment liquid of the present invention can be used in any step for manufacturing a semiconductor device, in addition to removing a metal hard mask and an etching residue.
For example, the treatment liquid is a pre-wet liquid, a solution used for removing a permanent film (for example, a color filter, a transparent insulating film, a resin lens) or the like from a semiconductor substrate (for example, a removing liquid and a stripping liquid). It may also be used as a pCMP (after chemical mechanical polishing) cleaning solution or the like. Since the semiconductor substrate after the removal of the permanent film may be used again for the use of the semiconductor device, the removal of the permanent film is included in the manufacturing process of the semiconductor device.
The specific application method of the treatment liquid of the present invention will be described later.
<キット及び濃縮液>
 本発明の処理液は、その原料を複数に分割したキットとしてもよい。
 また、処理液は、濃縮液として準備してもよい。この場合、使用時に水及び/又は有機溶剤で希釈して使用できる。
<Kit and concentrate>
The treatment liquid of the present invention may be a kit obtained by dividing the raw material into a plurality of parts.
Further, the treatment liquid may be prepared as a concentrated liquid. In this case, it can be diluted with water and / or an organic solvent at the time of use.
<容器(収容容器)>
 本発明の処理液は、キット及び濃縮液であるか否かに関わらず、腐食性等が問題とならない限り、任意の容器に充填して保管、運搬、及び/又は、使用できる。容器としては、半導体用途向けに、容器内のクリーン度が高く、不純物の溶出が少ない容器が好ましい。使用可能な容器としては、アイセロ化学(株)製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業製の「ピュアボトル」等が挙げられるが、これらに限定されない。この容器の内壁は、ポリエチレン樹脂、ポリプロピレン樹脂及びポリエチレン-ポリプロピレン樹脂からなる群より選択される1種以上の樹脂、またこれとは異なる樹脂、又は、ステンレス、ハステロイ、インコネル及びモネル等、防錆及び金属溶出防止処理が施された金属から形成されることが好ましい。
<Container (container)>
Regardless of whether the treatment liquid of the present invention is a kit or a concentrated liquid, it can be stored, transported, and / or used by filling it in an arbitrary container as long as corrosiveness does not matter. As the container, a container having a high degree of cleanliness in the container and less elution of impurities is preferable for semiconductor applications. Examples of the container that can be used include, but are not limited to, the "clean bottle" series manufactured by Aicello Chemical Corporation and the "pure bottle" manufactured by Kodama Resin Industry. The inner wall of this container is made of one or more resins selected from the group consisting of polyethylene resin, polypropylene resin and polyethylene-polypropylene resin, or a resin different from this, or stainless steel, hasteloy, inconel, monel, etc., for rust prevention and It is preferably formed from a metal that has been subjected to a metal elution prevention treatment.
 上記の異なる樹脂としては、フッ素系樹脂(パーフルオロ樹脂)を好ましく使用できる。このように、内壁がフッ素系樹脂である容器を用いることで、内壁が、ポリエチレン樹脂、ポリプロピレン樹脂、又は、ポリエチレン-ポリプロピレン樹脂である容器を用いる場合と比べて、エチレン又はプロピレンのオリゴマーの溶出という不具合の発生を抑制できる。
 このような内壁がフッ素系樹脂である容器の具体例としては、例えば、Entegris社製 FluoroPurePFA複合ドラム等が挙げられる。また、特表平3-502677号公報の第4頁等、国際公開第2004/016526号パンフレットの第3頁等、及び、国際公開第99/046309号パンフレットの第9頁及び16頁等に記載の容器も使用できる。
As the above-mentioned different resins, a fluororesin (perfluororesin) can be preferably used. In this way, by using a container whose inner wall is a fluororesin, it is said that ethylene or propylene oligomer is eluted as compared with the case where a container whose inner wall is a polyethylene resin, a polypropylene resin, or a polyethylene-polypropylene resin is used. The occurrence of defects can be suppressed.
Specific examples of such a container whose inner wall is a fluororesin include a FluoroPure PFA composite drum manufactured by Entegris. In addition, it is described on pages 4 of the special table No. 3-502677, page 3 of the pamphlet of International Publication No. 2004/016526, and pages 9 and 16 of the pamphlet of International Publication No. 99/046309. Containers can also be used.
 また、容器の内壁の材料としては、上述したフッ素系樹脂の他にも、例えば、石英及び電解研磨された金属材料(すなわち、電解研磨済みの金属材料)が挙げられる。
 上記電解研磨された金属材料の製造に用いられる金属材料は、クロム及びニッケルからなる群から選択される少なくとも1種を含有し、クロム及びニッケルの含有量の合計が金属材料全質量に対して25質量%超である金属材料が好ましく、例えば、ステンレス鋼及びニッケル-クロム合金等が挙げられる。
 金属材料におけるクロム及びニッケルの含有量の合計は、金属材料全質量に対して25質量%以上が好ましく、30質量%以上がより好ましい。
 なお、金属材料におけるクロム及びニッケルの含有量の合計の上限値としては特に制限されないが、一般的に90質量%以下が好ましい。
Further, as the material of the inner wall of the container, in addition to the above-mentioned fluororesin, for example, quartz and an electropolished metal material (that is, an electropolished metal material) can be mentioned.
The metal material used for producing the electropolished metal material contains at least one selected from the group consisting of chromium and nickel, and the total content of chromium and nickel is 25 with respect to the total mass of the metal material. Metallic materials having a mass% of more than% are preferable, and examples thereof include stainless steel and nickel-chromium alloys.
The total content of chromium and nickel in the metal material is preferably 25% by mass or more, more preferably 30% by mass or more, based on the total mass of the metal material.
The upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
 ステンレス鋼としては、特に制限されず、公知のステンレス鋼を使用できる。中でも、ニッケルを8質量%以上含有する合金が好ましく、ニッケルを8質量%以上含有するオーステナイト系ステンレス鋼がより好ましい。オーステナイト系ステンレス鋼としては、例えばSUS(Steel Use Stainless)304(Ni含有量8質量%、Cr含有量18質量%)、SUS304L(Ni含有量9質量%、Cr含有量18質量%)、SUS316(Ni含有量10質量%、Cr含有量16質量%)、及びSUS316L(Ni含有量12質量%、Cr含有量16質量%)等が挙げられる。 The stainless steel is not particularly limited, and known stainless steel can be used. Among them, an alloy containing 8% by mass or more of nickel is preferable, and an austenitic stainless steel containing 8% by mass or more of nickel is more preferable. Examples of austenitic stainless steels include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), and SUS316 ( Ni content 10% by mass, Cr content 16% by mass), SUS316L (Ni content 12% by mass, Cr content 16% by mass) and the like.
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金を使用できる。中でも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(商品名、以下同じ。)、モネル(商品名、以下同じ)、及びインコネル(商品名、以下同じ)等が挙げられる。より具体的には、ハステロイC-276(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、ハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)等が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及びコバルト等を含有していてもよい。
The nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Of these, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable.
Examples of the nickel-chromium alloy include Hastelloy (trade name, the same shall apply hereinafter), Monel (trade name, the same shall apply hereinafter), Inconel (trade name, the same shall apply hereinafter) and the like. More specifically, Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), Hastelloy C-22 ( Ni content 61% by mass, Cr content 22% by mass) and the like.
Further, the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt and the like in addition to the above alloys, if necessary.
 金属材料を電解研磨する方法としては特に制限されず、公知の方法を使用できる。例えば、特開2015-227501号公報の段落[0011]~[0014]、及び、特開2008-264929号公報の段落[0036]~[0042]等に記載された方法を使用できる。 The method for electrolytically polishing a metal material is not particularly limited, and a known method can be used. For example, the methods described in paragraphs [0011] to [0014] of JP2015-227501 and paragraphs [0036] to [0042] of JP2008-264929 can be used.
 金属材料は、電解研磨されることにより表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くなっていると推測される。そのため、電解研磨された金属材料で被覆された内壁からは、処理液中に金属元素が流出しにくいため、Ca原子、Fe原子及びNa原子等の特定金属元素の含有量が少ない半導体用薬液を得られると推測される。
 なお、金属材料はバフ研磨されていることが好ましい。バフ研磨の方法は特に制限されず、公知の方法を使用できる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましい。
 なお、バフ研磨は、電解研磨の前に行われることが好ましい。
 また、金属材料は、研磨砥粒のサイズ等の番手を変えて行われる複数段階のバフ研磨、酸洗浄、及び磁性流体研磨等を、1又は2以上組み合わせて処理された材料であってもよい。
It is presumed that the content of chromium in the passivation layer on the surface of the metal material is higher than the content of chromium in the matrix by electropolishing. Therefore, since metal elements do not easily flow out into the treatment liquid from the inner wall coated with the electrolytically polished metal material, a chemical liquid for semiconductors having a low content of specific metal elements such as Ca atom, Fe atom and Na atom is used. It is presumed that it will be obtained.
The metal material is preferably buffed. The method of buffing is not particularly limited, and a known method can be used. The size of the abrasive grains used for finishing the buffing is not particularly limited, but # 400 or less is preferable because the unevenness on the surface of the metal material tends to be smaller.
The buffing is preferably performed before the electrolytic polishing.
Further, the metal material may be a material processed by combining one or more of a plurality of stages of buffing, acid cleaning, magnetic fluid polishing, etc., which are performed by changing the count such as the size of abrasive grains. ..
 本発明においては、上記容器と、この容器内に収容された上記処理液と、を含有する容器を、処理液収容体という場合がある。 In the present invention, the container containing the container and the treatment liquid contained in the container may be referred to as a treatment liquid container.
 これらの容器は、充填前に容器内部を液体で洗浄することが好ましい。液体は、用途に応じて適宜選択すればよいが、本発明の処理液そのもの、本発明の処理液を希釈した液体、又は、本発明の処理液に添加している成分の少なくとも1種を含有する液体であると、本発明の効果が顕著に得られる。本発明の処理液は、製造後にガロン瓶やコート瓶等の容器にボトリングし、輸送し、保管されてもよい。 For these containers, it is preferable to wash the inside of the container with a liquid before filling. The liquid may be appropriately selected depending on the intended use, but contains at least one of the treatment liquid of the present invention itself, a liquid obtained by diluting the treatment liquid of the present invention, or a component added to the treatment liquid of the present invention. When it is a liquid, the effect of the present invention can be remarkably obtained. The treatment liquid of the present invention may be bottling, transported, and stored in a container such as a gallon bottle or a coated bottle after production.
 保管における処理液中の成分の変化を防ぐ目的で、容器内を純度99.99995体積%以上の不活性ガス(チッソ、又はアルゴン等)で置換しておいてもよい。特に、含水率が少ないガスが好ましい。また、輸送、保管に際しては、常温でもよいが、変質を防ぐため、-20℃から20℃の範囲に温度制御してもよい。 The inside of the container may be replaced with an inert gas (chisso, argon, etc.) having a purity of 99.99995% by volume or more for the purpose of preventing changes in the components in the treatment liquid during storage. In particular, a gas having a low water content is preferable. Further, during transportation and storage, the temperature may be at room temperature, but in order to prevent deterioration, the temperature may be controlled in the range of −20 ° C. to 20 ° C.
<クリーンルーム>
 本発明の処理液の製造、収容容器の開封及び/又は洗浄、処理液の充填等を含めた取り扱い、処理分析、及び、測定は、全てクリーンルームで行うことが好ましい。クリーンルームは、ISO(国際標準化機構)14644-1のクリーンルームの基準を満たすことが好ましい。ISOクラス1、ISOクラス2、ISOクラス3、及び、ISOクラス4のいずれかを満たすことが好ましく、ISOクラス1又はISOクラス2を満たすことがより好ましく、ISOクラス1を満たすことが更に好ましい。
<Clean room>
It is preferable that the production of the treatment liquid of the present invention, the opening and / or cleaning of the storage container, the handling including the filling of the treatment liquid, the treatment analysis, and the measurement are all performed in a clean room. The clean room preferably meets the ISO (International Organization for Standardization) 14644-1 clean room standard. It is preferable to satisfy any one of ISO class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably ISO class 1 or ISO class 2, and even more preferably ISO class 1.
<フィルタリング>
 本発明の処理液は、異物及び粗大粒子等を除去したりするために、フィルタリングされた処理液であることが好ましい。
 フィルタリングに使用されるフィルタは、従来からろ過用途等に用いられているフィルタであれば特に限定されることなく使用できる。フィルタを構成する材料としては、例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素系樹脂、ナイロン等のポリアミド系樹脂、並びに、ポリエチレン及びポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等が挙げられる。これらの中でも、ポリアミド系樹脂、PTFE、又は、ポリプロピレン(高密度ポリプロピレンを含む)が好ましく、これらの素材により形成されたフィルタを使用することで、残渣欠陥やパーティクル欠陥の原因となり易い極性の高い異物をより効果的に除去できる。
<Filtering>
The treatment liquid of the present invention is preferably a filtered treatment liquid in order to remove foreign substances, coarse particles and the like.
The filter used for filtering can be used without particular limitation as long as it is a filter conventionally used for filtration purposes and the like. Examples of the material constituting the filter include fluororesins such as PTFE (polytetrafluoroethylene), polyamide resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (high density and ultrahigh molecular weight). Including) and the like. Among these, polyamide-based resin, PTFE, or polypropylene (including high-density polypropylene) is preferable, and by using a filter formed of these materials, a highly polar foreign substance that easily causes residue defects and particle defects. Can be removed more effectively.
 フィルタの臨界表面張力として、下限値としては70mN/m以上が好ましく、上限値としては、95mN/m以下が好ましい。特に、フィルタの臨界表面張力は、75~85mN/mが好ましい。
 なお、臨界表面張力の値は、製造メーカーの公称値である。臨界表面張力が上記範囲のフィルタを使用することで、残渣欠陥やパーティクル欠陥の原因となり易い極性の高い異物をより効果的に除去できる。
As the critical surface tension of the filter, the lower limit value is preferably 70 mN / m or more, and the upper limit value is preferably 95 mN / m or less. In particular, the critical surface tension of the filter is preferably 75 to 85 mN / m.
The value of the critical surface tension is the nominal value of the manufacturer. By using a filter having a critical surface tension in the above range, it is possible to more effectively remove highly polar foreign substances that are likely to cause residue defects and particle defects.
 フィルタの孔径は、0.001~1.0μm程度が好ましく、0.02~0.5μm程度がより好ましく、0.01~0.1μm程度が更に好ましい。フィルタの孔径を上記範囲とすることで、ろ過詰まりを抑えつつ、処理液が含有する微細な異物を確実に除去することが可能となる。 The pore size of the filter is preferably about 0.001 to 1.0 μm, more preferably about 0.02 to 0.5 μm, and even more preferably about 0.01 to 0.1 μm. By setting the pore size of the filter within the above range, it is possible to reliably remove fine foreign substances contained in the treatment liquid while suppressing filtration clogging.
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合には、各フィルタは、互いに同じ種類のフィルタであってもよいし、互いに種類の異なるフィルタであってもよく、互いに種類の異なるフィルタであることが好ましい。典型的には、第1のフィルタと第2フィルタとは、孔径及び構成素材のうちの少なくとも一方が異なっていることが好ましい。
 1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は、小さい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照できる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択できる。また、ポリアミド製の「P-ナイロンフィルター(孔径0.02μm、臨界表面張力77mN/m)」;(日本ポール株式会社製)、高密度ポリエチレン製の「PE・クリーンフィルタ(孔径0.02μm)」;(日本ポール株式会社製)、及び高密度ポリエチレン製の「PE・クリーンフィルタ(孔径0.01μm)」;(日本ポール株式会社製)も使用できる。
When using filters, different filters may be combined. At that time, the filtering by the first filter may be performed only once or twice or more. When different filters are combined and filtering is performed twice or more, each filter may be the same type of filter, different types of filters, or different types of filters. Is preferable. Typically, it is preferable that the first filter and the second filter differ in at least one of the pore diameter and the constituent material.
It is preferable that the pore diameters of the second and subsequent filters are the same or smaller than the pore diameter of the first filtering. Further, first filters having different pore diameters within the above-mentioned range may be combined. For the hole diameter here, the nominal value of the filter manufacturer can be referred to. As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Nippon Entegris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), KITZ Microfilter Co., Ltd. In addition, "P-nylon filter (pore diameter 0.02 μm, critical surface tension 77 mN / m)" made of polyamide; (manufactured by Nippon Pole Co., Ltd.), "PE clean filter (pore diameter 0.02 μm)" made of high-density polyethylene; (Manufactured by Nippon Pole Co., Ltd.) and "PE / Clean Filter (hole diameter 0.01 μm)" made of high-density polyethylene; (manufactured by Nippon Pole Co., Ltd.) can also be used.
 第2のフィルタは、上述した第1のフィルタと同様の材料で形成されたフィルタを使用できる。上述した第1のフィルタと同様の孔径のフィルタが使用できる。第2のフィルタの孔径が第1のフィルタより小さいフィルタを用いる場合には、第2のフィルタの孔径と第1のフィルタの孔径との比(第2のフィルタの孔径/第1のフィルタの孔径)が0.01~0.99が好ましく、0.1~0.9がより好ましく、0.3~0.9が更に好ましい。第2フィルタの孔径を上記範囲とすることにより、処理液に混入している微細な異物がより確実に除去される。 As the second filter, a filter made of the same material as the first filter described above can be used. A filter having a pore diameter similar to that of the first filter described above can be used. When a filter having a pore diameter of the second filter smaller than that of the first filter is used, the ratio of the pore diameter of the second filter to the pore diameter of the first filter (the pore diameter of the second filter / the pore diameter of the first filter). ) Is preferably 0.01 to 0.99, more preferably 0.1 to 0.9, and even more preferably 0.3 to 0.9. By setting the pore diameter of the second filter within the above range, fine foreign substances mixed in the treatment liquid can be removed more reliably.
 例えば、第1のフィルタでのフィルタリングは、処理液の一部の成分を含有する混合液で行い、これに残りの成分を混合して処理液を調製した後で、第2のフィルタでのフィルタリングを行ってもよい。 For example, filtering with the first filter is performed with a mixed solution containing a part of the components of the treatment solution, and after mixing the remaining components with the mixed solution to prepare the treatment solution, filtering with the second filter is performed. May be done.
 また、使用されるフィルタは、処理液を濾過する前に処理することが好ましい。この処理に使用される液体は、特に限定されないが、本発明の処理液そのもの、本発明の処理液を希釈した液体、又は、処理液の一部の成分を含有する液体であると、本願所望の効果が顕著に得られる。 Further, it is preferable that the filter used is treated before filtering the treatment liquid. The liquid used for this treatment is not particularly limited, but the treatment liquid itself of the present invention, a liquid obtained by diluting the treatment liquid of the present invention, or a liquid containing a part of the components of the treatment liquid is desired in the present application. The effect of is remarkably obtained.
 フィルタリングを行う場合には、フィルタリング時の温度の上限値は、室温(25℃)以下が好ましく、23℃以下がより好ましく、20℃以下が更に好ましい。また、フィルタリング時の温度の下限値は、0℃以上が好ましく、5℃以上がより好ましく、10℃以上が更に好ましい。
 フィルタリングでは、粒子性の異物や不純物が除去できるが、上記温度で行われると、処理液中に溶解している粒子性の異物や不純物の量が少なくなるため、フィルタリングがより効率的に行われる。
When filtering, the upper limit of the temperature at the time of filtering is preferably room temperature (25 ° C.) or lower, more preferably 23 ° C. or lower, and even more preferably 20 ° C. or lower. The lower limit of the temperature at the time of filtering is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and even more preferably 10 ° C. or higher.
Filtering can remove particulate foreign matter and impurities, but when performed at the above temperature, the amount of particulate foreign matter and impurities dissolved in the treatment liquid is reduced, so filtering is performed more efficiently. ..
[処理方法]
 本発明の処理液は、Co及びCuからなる群から選択される1種以上の第1金属を含む第1金属含有物を含有する被処理物を処理するのに使用される。
[Processing method]
The treatment liquid of the present invention is used for treating an object to be treated containing a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu.
<被処理物>
 本発明の処理液が適用される被処理物は、Co及びCuからなる群から選択される1種以上の第1金属を含む第1金属含有物を含有すれば制限はない。
 被処理物は、更に、Zr、Ti、Hf、及び、Taからなる群から選択される1種以上の第2金属を含む第2金属含有物、及び/又は、Al又はAlであるアルミ系材料を含有していてもよい。
 また、被処理物は、更に、ドライエッチング残渣物含有していてもよい。
<Object to be processed>
The object to be treated to which the treatment liquid of the present invention is applied is not limited as long as it contains a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu.
The object to be treated is a second metal-containing material containing one or more second metals selected from the group consisting of Zr, Ti, Hf, and Ta, and / or Al or Al 2 O 3 . It may contain an aluminum-based material.
Further, the object to be treated may further contain a dry etching residue.
 なお、本発明の処理液が適用される被処理物が含有する、Co(コバルト)及びCu(銅)からなる群から選択される1種以上の第1金属を含む第1金属含有物としては、例えば、第1金属の1種の単体でもよく、第1金属同士の合金でもよく、1種以上の第1金属と第1金属以外の金属との合金でもよく、1種以上の第1金属の酸化物(複合酸化物)、窒化物(複合窒化物)、又は、酸窒化物(複合酸窒化物)でもよく、1種以上の第1金属と第1金属以外の金属との複合酸化物、複合窒化物、又は、複合酸窒化物でもよく、これらの混合物でもよい。
 第1金属含有物は、第1金属がCoであるCo含有物であってもよく、第1金属がCuであるCu含有物であってもよい。
 なお、Co含有物は、第1金属がCoのみであり、Cuが第1金属以外の金属となること以外は、第1金属含有物と同様である。Cu含有物は、第1金属がCuのみであり、Coが第1金属以外の金属となること以外は、第1金属含有物と同様である。
 第1金属含有物が含有する金属成分の全質量に対して、第1金属の含有量は、50~100質量%が好ましく、75~100質量%がより好ましく、99~100質量%が更に好ましい。
 第1金属含有物は少なくともCoを含むことが好ましく、第1金属含有物がCo含有物であることも好ましい。
 第1金属含有物としては、例えば、Co及びCuが挙げられ、Coが好ましい。
 処理液を、被処理物(後述する積層体等)に接触させた際の、第1金属含有物(好ましくはCo含有物)の除去速度は10Å/分以下が好ましく、5Å/分以下がより好ましく、1Å/分以下が更に好ましいい。下限は制限されないが、例えば、0.001Å/分以上である。
The first metal-containing material containing one or more first metals selected from the group consisting of Co (cobalt) and Cu (copper) contained in the object to be treated to which the treatment liquid of the present invention is applied For example, it may be a single substance of one kind of first metal, an alloy of first metals, or an alloy of one or more kinds of first metals and metals other than the first metal, and one or more kinds of first metals. Oxide (composite oxide), nitride (composite nitride), or oxynitride (composite oxynitride) may be used. , Composite nitrides, composite oxynitrides, or mixtures thereof.
The first metal-containing material may be a Co-containing material in which the first metal is Co, or may be a Cu-containing material in which the first metal is Cu.
The Co-containing material is the same as the first metal-containing material except that the first metal is only Co and Cu is a metal other than the first metal. The Cu-containing material is the same as the first metal-containing material except that the first metal is only Cu and Co is a metal other than the first metal.
The content of the first metal is preferably 50 to 100% by mass, more preferably 75 to 100% by mass, still more preferably 99 to 100% by mass, based on the total mass of the metal components contained in the first metal-containing material. ..
The first metal-containing material preferably contains at least Co, and it is also preferable that the first metal-containing material contains Co.
Examples of the first metal-containing material include Co and Cu, with Co being preferred.
When the treatment liquid is brought into contact with an object to be treated (such as a laminate described later), the removal rate of the first metal-containing substance (preferably Co-containing substance) is preferably 10 Å / min or less, more preferably 5 Å / min or less. It is preferable, and 1 Å / min or less is more preferable. The lower limit is not limited, but is, for example, 0.001 Å / min or more.
 本発明の処理液が適用される被処理物が含有し得る、Zr(ジルコニウム)、Ti(チタン)、Hf(ハフニウム)、及び、Ta(タンタル)からなる群から選択される1種以上の第2金属を含む第2金属含有物としては、例えば、第2金属の1種の単体でもよく、第2金属同士の合金でもよく、1種以上の第2金属と第2金属以外の金属との合金でもよく、1種以上の第2金属の酸化物(複合酸化物)、窒化物(複合窒化物)、又は、酸窒化物(複合酸窒化物)でもよく、1種以上の第2金属と第2金属以外の金属との複合酸化物、複合窒化物、又は、複合酸窒化物でもよく、これらの混合物でもよい。
 第2金属含有物は、第2金属がZrであるZr含有物であってもよく、第2金属がTiであるTi含有物であってもよく、第2金属がHfであるHf含有物であってもよく、第2金属がTaであるTa含有物であってもよい。
 第2金属含有物が含有する金属成分の全質量に対して、第2金属の含有量は、50~100質量%が好ましく、75~100質量%がより好ましく、99~100質量%が更に好ましい。
 第2金属含有物としては、例えば、ZrOx(ZrO等)、Ti、TiN、HfOx、及び、TaOxが挙げられる。xは、それぞれ、x=1~3で表される数である。
 また、第2金属含有物は、ドライエッチング残渣物でもよい。このようなドライエッチング残渣物ある第2金属含有物は、例えば、メタルハードマスクとして第2金属含有物を使用していた場合に、ドライエッチングを実施して生じる上記メタルハードマスクの残渣物挙げられる。
One or more kinds selected from the group consisting of Zr (zirconium), Ti (titanium), Hf (hafnium), and Ta (tantal), which can be contained in the object to be treated to which the treatment liquid of the present invention is applied. The second metal-containing material containing the two metals may be, for example, one kind of the second metal alone or an alloy of the second metals, and one or more kinds of the second metal and a metal other than the second metal. It may be an alloy, or may be an oxide (composite oxide), a nitride (composite nitride), or an oxynitride (composite oxynitride) of one or more kinds of second metals, and may be with one or more kinds of second metals. It may be a composite oxide, a composite nitride, or a composite oxynitride with a metal other than the second metal, or a mixture thereof.
The second metal-containing material may be a Zr-containing material in which the second metal is Zr, a Ti-containing material in which the second metal is Ti, and an Hf-containing material in which the second metal is Hf. It may be a Ta-containing material in which the second metal is Ta.
The content of the second metal is preferably 50 to 100% by mass, more preferably 75 to 100% by mass, still more preferably 99 to 100% by mass, based on the total mass of the metal components contained in the second metal content. ..
Examples of the second metal-containing material include ZrOx (ZrO 2, etc.), Ti, TiN, HfOx, and TaOx. x is a number represented by x = 1 to 3, respectively.
Further, the second metal-containing material may be a dry etching residue. Examples of the second metal-containing material having such a dry etching residue include the residue of the metal hard mask produced by performing dry etching when the second metal-containing material is used as the metal hard mask. ..
 本発明の処理液が適用される被処理物が含有し得るアルミ系材料は、Al(単体)又はAl(アルミナ)であり、AlとAlとの両方であってもよい。AlとAlとの両方である場合、AlとAlとは接触して存在していてもよいし、別々に存在していてもよい。
 処理液を、アルミ系材料を含有する被処理物(後述する積層体等)に接触させた際の、アルミ系材料の除去速度は10Å/分以下が好ましく、5Å/分以下がより好ましく、3Å/分以下が更に好ましい。下限は制限されないが、例えば、0.001Å/分以上である。
The aluminum-based material that can be contained in the object to be treated to which the treatment liquid of the present invention is applied is Al (elemental substance) or Al 2 O 3 (alumina), and may be both Al and Al 2 O 3. .. If both of Al and Al 2 O 3, may be present in contact with Al and Al 2 O 3, may be present separately.
When the treatment liquid is brought into contact with an object to be treated containing an aluminum-based material (such as a laminate described later), the removal rate of the aluminum-based material is preferably 10 Å / min or less, more preferably 5 Å / min or less, and 3 Å or less. It is more preferably less than / minute. The lower limit is not limited, but is, for example, 0.001 Å / min or more.
 本発明の処理液による第2金属含有物の除去速度をER1とし、本発明の処理液による第1金属含有物又はアルミ系材料の除去速度をER2とした場合、除去速度比ER1/ER2は、0.5~1000が好ましく、0.8~800がより好ましく、1~500が更に好ましい。
 除去速度比ER1/ER2が上記範囲内にあることで、本発明の効果がより優れる。
When the removal rate of the second metal-containing substance or the aluminum-based material by the treatment solution of the present invention is ER1 and the removal rate of the first metal-containing substance or the aluminum-based material by the treatment solution of the present invention is ER2, the removal rate ratio ER1 / ER2 is It is preferably 0.5 to 1000, more preferably 0.8 to 800, and even more preferably 1 to 500.
When the removal rate ratio ER1 / ER2 is within the above range, the effect of the present invention is more excellent.
 中でも、被処理物は半導体デバイス用の積層体が好ましい。
 上記積層体は、例えば、基板と、基板上に形成された第3層と、第3層上に形成された第2層と、第2層上に形成された第1層と、を備える。
 上記第3層は、第1金属含有物を含有する材料であることが好ましい。また、第3層が、更に、アルミ系材料(好ましくはAl)を含有することも好ましい。
 第3層は、金属層(配線)であることが好ましい。
 上記第2層は、Siを含むSi含有物(SiOx、SiOC、SiN、及び/又は、SiON等)から構成されていることが好ましい。また、第1層と第2層とは異なる材料から形成されていることが好ましい。
 第2層は、層間絶縁膜であることが好ましい。
 上記第1層は、第2金属含有物を含有することが好ましい。
 第1層は、メタルハードマスクであることが好ましい。
 なお、第2層及び/又は第1層は省略されてもよい。
 また、積層体は、上述の層以外の層を含有していてもよく、例えば、エッチング停止層、反射防止層等が挙げられる。上記エッチング停止層がアルミ系材料(好ましくはAl)及び/又は第1金属含有物(好ましくはCo含有物、より好ましくはCoの単体)を含有することも好ましい。金属層がエッチング停止層としての機能を兼ねてもよい。
 上記積層体は、更に、ドライエッチング残渣物を含有していてもよい。ドライエッチング残渣物は、例えば、積層体の第1層、第2層、及び/又は、第3層における表面部分に付着して存在する。
Above all, the material to be treated is preferably a laminate for semiconductor devices.
The laminate includes, for example, a substrate, a third layer formed on the substrate, a second layer formed on the third layer, and a first layer formed on the second layer.
The third layer is preferably a material containing the first metal-containing material. It is also preferable that the third layer further contains an aluminum-based material (preferably Al).
The third layer is preferably a metal layer (wiring).
The second layer is preferably composed of a Si-containing substance containing Si (SiOx, SiOC, SiN, and / or SiON, etc.). Further, it is preferable that the first layer and the second layer are made of different materials.
The second layer is preferably an interlayer insulating film.
The first layer preferably contains a second metal-containing material.
The first layer is preferably a metal hard mask.
The second layer and / or the first layer may be omitted.
Further, the laminated body may contain a layer other than the above-mentioned layer, and examples thereof include an etching stop layer and an antireflection layer. It is also preferable that the etching stop layer contains an aluminum-based material (preferably Al 2 O 3 ) and / or a first metal-containing substance (preferably a Co-containing substance, more preferably a simple substance of Co). The metal layer may also function as an etching stop layer.
The laminate may further contain a dry etching residue. The dry etching residue is present, for example, adhering to the surface portion of the first layer, the second layer, and / or the third layer of the laminate.
 上記積層体について、より具体的に説明する。
 上記積層体としては、具体的には、基板、金属層(上記第3層に相当)、層間絶縁膜(第2層に相当)、及び、メタルハードマスク(第1層に相当)をこの順に備える半導体デバイス用の積層体が挙げられる。
 積層体は、更に、ドライエッチング工程等を経たことにより、金属層の表面を露出するようにメタルハードマスクの表面(開口部)から基板に向かって形成されたホールを含有することが好ましい。
 上記のような、ホールを含有する積層体の製造方法は特に制限されないが、通常、基板と、金属層と、層間絶縁膜と、メタルハードマスクとをこの順で含有する処理前の積層体に対して、メタルハードマスクをマスクとして用いてドライエッチング工程を実施して、金属層の表面が露出するように層間絶縁膜をエッチングすることにより、メタルハードマスク及び層間絶縁膜内を貫通するホールを設ける方法が挙げられる。
 なお、メタルハードマスクの製造方法は特に制限されず、例えば、まず、層間絶縁膜上に所定の成分を含有するメタルハードマスク前駆層を形成して、その上に所定のパターンのレジスト膜を形成する。次に、レジスト膜をマスクとして用いて、メタルハードマスク前駆層をエッチングすることで、メタルハードマスク(すなわち、メタルハードマスク前駆層がパターニングされた膜)を製造する方法が挙げられる。
 また、積層体は、上述の層以外の層を含有していてもよく、例えば、エッチング停止層、及び、反射防止層等が挙げられる。
The laminated body will be described more specifically.
Specifically, the laminate includes a substrate, a metal layer (corresponding to the third layer), an interlayer insulating film (corresponding to the second layer), and a metal hard mask (corresponding to the first layer) in this order. Examples thereof include a laminate for a semiconductor device.
It is preferable that the laminate further contains holes formed from the surface (opening) of the metal hard mask toward the substrate so as to expose the surface of the metal layer by undergoing a dry etching step or the like.
The method for producing a laminate containing holes as described above is not particularly limited, but usually, the laminate before treatment containing a substrate, a metal layer, an interlayer insulating film, and a metal hard mask in this order. On the other hand, a dry etching process is performed using a metal hard mask as a mask, and the interlayer insulating film is etched so that the surface of the metal layer is exposed, thereby forming holes penetrating the inside of the metal hard mask and the interlayer insulating film. The method of providing is mentioned.
The method for producing the metal hard mask is not particularly limited. For example, first, a metal hard mask precursor layer containing a predetermined component is formed on an interlayer insulating film, and a resist film having a predetermined pattern is formed on the metal hard mask precursor layer. To do. Next, there is a method of producing a metal hard mask (that is, a film in which the metal hard mask precursor layer is patterned) by etching the metal hard mask precursor layer using a resist film as a mask.
Further, the laminated body may contain a layer other than the above-mentioned layer, and examples thereof include an etching stop layer and an antireflection layer.
 図1に、被処理物である半導体デバイス用の積層体の一例を示す断面模式図を示す。
 図1に示す積層体10は、基板1上に、金属層2、エッチング停止層3、層間絶縁膜4、及び、メタルハードマスク5をこの順に備え、ドライエッチング工程等を経たことで所定位置に金属層2の一部が露出するホール6が形成されている。つまり、図1に示す積層体10は、基板1と、金属層2と、エッチング停止層3と、層間絶縁膜4と、メタルハードマスク5と、をこの順で備え、メタルハードマスク5の開口部の位置において、その表面から金属層2の表面まで貫通するホール6が形成された積層体である。ホール6の内壁11は、エッチング停止層3、層間絶縁膜4及びメタルハードマスク5からなる断面壁11aと、露出された金属層2からなる底壁11bとで構成され、ドライエッチング残渣物12が付着している。
FIG. 1 shows a schematic cross-sectional view showing an example of a laminated body for a semiconductor device to be processed.
The laminate 10 shown in FIG. 1 is provided with a metal layer 2, an etching stop layer 3, an interlayer insulating film 4, and a metal hard mask 5 in this order on a substrate 1, and is placed in a predetermined position after undergoing a dry etching step or the like. A hole 6 is formed in which a part of the metal layer 2 is exposed. That is, the laminate 10 shown in FIG. 1 includes a substrate 1, a metal layer 2, an etching stop layer 3, an interlayer insulating film 4, and a metal hard mask 5 in this order, and an opening of the metal hard mask 5. It is a laminated body in which a hole 6 penetrating from the surface of the portion to the surface of the metal layer 2 is formed. The inner wall 11 of the hole 6 is composed of a cross-sectional wall 11a made of an etching stop layer 3, an interlayer insulating film 4 and a metal hard mask 5, and a bottom wall 11b made of an exposed metal layer 2, and the dry etching residue 12 is formed. It is attached.
 本発明の処理方法は、これらのドライエッチング残渣物12の除去を目的とした洗浄、及び/又は、メタルハードマスク5の除去に好適に使用できる。すなわち、ドライエッチング残渣物12、及び/又は、メタルハードマスク5の除去性能に優れつつ、積層体の内壁11(例えば、金属層2等)のエッチングを抑制できる。 The treatment method of the present invention can be suitably used for cleaning for the purpose of removing these dry etching residues 12 and / or for removing the metal hard mask 5. That is, it is possible to suppress the etching of the inner wall 11 (for example, the metal layer 2 or the like) of the laminated body while excellent in the removal performance of the dry etching residue 12 and / or the metal hard mask 5.
(メタルハードマスク)
 メタルハードマスクは、第2金属含有物を含有する。メタルハードマスクは、第2金属含有物そのものでもよい。
(Metal hard mask)
The metal hard mask contains a second metal-containing material. The metal hard mask may be the second metal-containing material itself.
(層間絶縁膜)
 層間絶縁膜(本明細書において「絶縁膜」という場合がある。)は、誘電率kが3.0以下の材料が好ましく、2.6以下の材料がより好ましい。
 具体的な層間絶縁膜の材料としては、例えば、Siを含むSi含有物(SiOx、SiOC、SiN、及び/又は、SiON等)が挙げられる。ここで、xは、1~3で表される数である。
(Interlayer insulating film)
The interlayer insulating film (sometimes referred to as an "insulating film" in the present specification) is preferably a material having a dielectric constant k of 3.0 or less, and more preferably a material having a dielectric constant k of 2.6 or less.
Specific examples of the interlayer insulating film material include Si-containing substances containing Si (SiOx, SiOC, SiN, and / or SiON, etc.). Here, x is a number represented by 1 to 3.
(エッチング停止層)
 エッチング停止層の材料は、特に限定されない。具体的なエッチング停止層の材料としては、アルミ系材料、第1金属含有物(好ましくはCo含有物、より好ましくはCoの単体)、TEOS(テトラエトキシシラン)、SiN、SiOC、poly-Si(多結晶シリコン)、及び、a-Si(アモルファスシリコン)等が挙げられる。
 エッチング停止層を構成するアルミ系材料はAlが好ましい。
(Etching stop layer)
The material of the etching stop layer is not particularly limited. Specific materials for the etching stop layer include an aluminum-based material, a first metal-containing substance (preferably a Co-containing substance, more preferably a simple substance of Co), TEOS (tetraethoxysilane), SiN, SiOC, poly-Si (preferably a Co-containing substance, more preferably a simple substance of Co). Polycrystalline silicon), a-Si (amorphous silicon), and the like.
Al 2 O 3 is preferable as the aluminum-based material constituting the etching stop layer.
(金属層)
 金属層を形成する配線材料は、第1金属含有物を含有する。金属層は、第1金属含有物そのものでもよい。
 また、金属層が、アルミ系材料が含有することも好ましい。金属層を構成するアルミ系材料はAlが好ましい。
(Metal layer)
The wiring material forming the metal layer contains a first metal-containing material. The metal layer may be the first metal-containing material itself.
It is also preferable that the metal layer contains an aluminum-based material. Al is preferable as the aluminum-based material constituting the metal layer.
(基板)
 ここでいう「基板」には、例えば、単層からなる半導体基板、及び、多層からなる半導体基板が含まれる。
 単層からなる半導体基板を構成する材料は特に限定されず、一般的に、シリコン、シリコンゲルマニウム、GaAsのような第III-V族化合物、又はそれらの任意の組み合わせから構成されることが好ましい。
 多層からなる半導体基板である場合には、その構成は特に限定されず、例えば、上述のシリコン等の半導体基板上に金属線及び誘電材料のような相互接続構造(interconnectfeatures)等の露出した集積回路構造を含有していてもよい。相互接続構造に用いられる金属及び合金としては、アルミニウム、銅と合金化されたアルミニウム、銅、チタン、タンタル、コバルト、シリコン、窒化チタン、窒化タンタル、及びタングステンが挙げられるが、これらに限定されない。また、半導体基板上に、層間誘電体層、酸化シリコン、窒化シリコン、炭化シリコン及び炭素ドープ酸化シリコン等の層を含有していてもよい。
(substrate)
The "substrate" here includes, for example, a semiconductor substrate made of a single layer and a semiconductor substrate made of multiple layers.
The material constituting the semiconductor substrate composed of a single layer is not particularly limited, and is generally preferably composed of a Group III-V compound such as silicon, silicon germanium, or GaAs, or any combination thereof.
In the case of a semiconductor substrate composed of multiple layers, the configuration is not particularly limited, and for example, an exposed integrated circuit such as an interconnect feature such as a metal wire and a dielectric material on the above-mentioned semiconductor substrate such as silicon. It may contain a structure. Metals and alloys used in the interconnect structure include, but are not limited to, aluminum, aluminum alloyed with copper, copper, titanium, tantalum, cobalt, silicon, titanium nitride, tantalum nitride, and tungsten. Further, the semiconductor substrate may contain layers such as an interlayer dielectric layer, silicon oxide, silicon nitride, silicon carbide and carbon-doped silicon oxide.
<各工程>
 本発明の処理方法の具体的な手順について説明する。
 本発明の処理方法の第1形態は、第1金属含有物(上述の第3層(金属層)等)、及び、ドライエッチング残渣物以外である第2金属含有物(上述の第1層(メタルハードマスク)等)、を含有する被処理物に、処理液を接触させて、上記ドライエッチング残渣物以外である第2金属含有物を除去する工程(工程Ba)を含有する処理方法である。
<Each process>
A specific procedure of the processing method of the present invention will be described.
The first embodiment of the treatment method of the present invention includes a first metal-containing material (the above-mentioned third layer (metal layer) and the like) and a second metal-containing material other than the dry etching residue (the above-mentioned first layer (the above-mentioned first layer (metal layer)). This is a treatment method including a step (step Ba) of bringing a treatment liquid into contact with an object to be treated containing (metal hard mask), etc.) to remove a second metal-containing substance other than the dry etching residue. ..
 本発明の処理方法の第2形態は、第1金属含有物(上述の第3層(金属層)等)、及び、ドライエッチング残渣物、を含有する被処理物に、処理液を接触させて、上記ドライエッチング残渣物を除去する工程(工程Bb)を含有する処理方法である。
 上記ドライエッチング残渣物は、メタルハードマスクのドライエッチング残渣物を含んでもよい。上記メタルハードマスクが第2金属含有物からなる場合、上記メタルハードマスクのドライエッチング残渣物も第2金属含有物の一形態であると言える。このように、本発明の処理方法の第2形態では、ドライエッチング残渣物の一部又は全部が第2金属含有物であってもよいし、そうでなくてもよい。
In the second aspect of the treatment method of the present invention, the treatment liquid is brought into contact with the object to be treated containing the first metal-containing material (the above-mentioned third layer (metal layer) and the like) and the dry etching residue. , A treatment method including a step (step Bb) of removing the dry etching residue.
The dry etching residue may include a dry etching residue of a metal hard mask. When the metal hard mask is composed of a second metal-containing material, it can be said that the dry etching residue of the metal hard mask is also a form of the second metal-containing material. As described above, in the second aspect of the treatment method of the present invention, a part or all of the dry etching residue may or may not be a second metal-containing substance.
 本発明の処理方法では、上記第1形態及び上記第2形態の処理方法が一の被処理物に対して両方が実施されてもよく、上記工程Baと上記工程Bbとが同時に実施されてもよい。例えば、被処理物が、第1金属含有物、ドライエッチング残渣物以外である第2金属含有物、及び、ドライエッチング残渣物(第2金属含有物であるドライエッチング残渣物、及び/又は、それ以外のドライエッチング残渣物)を含有する、上述したような形態の積層体である場合において、上記被処理物に、処理液を接触させて、上記ドライエッチング残渣物以外である第2金属含有物、及び、上記ドライエッチング残渣物(第2金属含有物であるドライエッチング残渣物、及び/又は、それ以外のドライエッチング残渣物)を同時に除去する工程(工程Bc)を実施してもよい。
 上記工程Ba、上記工程Bb、及び、上記工程Bcを総称して、単に処理工程Bとも言う。
In the treatment method of the present invention, both the first and second treatment methods may be carried out on one object to be treated, or the step Ba and the step Bb may be carried out at the same time. Good. For example, the object to be processed is a first metal-containing material, a second metal-containing material other than the dry etching residue, and a dry etching residue (a dry etching residue which is a second metal-containing residue, and / or it. In the case of a laminated body having a form as described above, which contains a dry etching residue other than the above, the second metal-containing material other than the dry etching residue is obtained by contacting the treatment liquid with the object to be treated. And, the step (step Bc) of simultaneously removing the dry etching residue (the dry etching residue which is the second metal-containing substance and / or the other dry etching residue) may be carried out.
The step Ba, the step Bb, and the step Bc are collectively referred to as a processing step B.
 本発明の処理方法は、処理工程Bの前に、上記処理液を調製する工程Aを含有していてもよい。
 以下の本発明の処理方法の説明においては、処理工程Bの前に処理液調製工程Aを実施する場合を一例として示すが、これに限定されず、本発明の処理方法は、予め準備された上記処理液を用いて行われてもよい。
The treatment method of the present invention may include a step A for preparing the above-mentioned treatment liquid before the treatment step B.
In the following description of the treatment method of the present invention, a case where the treatment liquid preparation step A is carried out before the treatment step B is shown as an example, but the present invention is not limited to this, and the treatment method of the present invention is prepared in advance. It may be carried out using the above-mentioned treatment liquid.
 処理工程Bでは、ドライエッチング残渣物以外である第2金属含有物の除去、及び、ドライエッチング残渣物(第2金属含有物であるドライエッチング残渣物、及び/又は、それ以外のドライエッチング残渣物)の除去の少なくとも一方が実施される。
 本発明の処理方法は、上述した処理液を使用しているので、除去目的物の除去性に優れ、かつ、第1金属含有物(好ましくは金属層)のエッチングを抑制できる。また、被処理物が、(好ましくは金属層及び/又はエッチング停止層において)アルミ系材料を含有する場合、アルミ系材料に対するエッチングも抑制できる。
In the treatment step B, the second metal-containing substance other than the dry etching residue is removed, and the dry etching residue (the dry etching residue which is the second metal-containing substance and / or the other dry etching residue). ) Is removed at least one of them.
Since the treatment method of the present invention uses the above-mentioned treatment liquid, it is excellent in removability of the object to be removed and can suppress etching of the first metal-containing material (preferably the metal layer). Further, when the object to be treated contains an aluminum-based material (preferably in the metal layer and / or the etching stop layer), etching on the aluminum-based material can also be suppressed.
 まず、処理液調製工程A及び処理工程Bについて、それぞれ詳述する。 First, the treatment liquid preparation step A and the treatment step B will be described in detail.
(処理液調製工程A)
 処理液調製工程Aは、上記処理液を調製する工程である。本工程で使用される各成分は、上述した通りである。
 本工程の手順は特に制限されず、例えば、エッチャント、防食剤、及び、その他の任意成分を、水及び/又は有機溶剤等の溶媒に添加して、撹拌混合することにより処理液を調製する方法が挙げられる。
 また、処理液の調製に使用される各原料は、半導体グレードに分類される原料、又は、それに準ずる高純度グレードに分類される原料を使用することが好ましい。また、不純物が多い原料に関しては、フィルタリングによる異物除去、及び/又は、イオン交換樹脂等によるイオン成分低減を行ってから使用することが好ましい。
(Treatment liquid preparation step A)
The treatment liquid preparation step A is a step of preparing the above-mentioned treatment liquid. Each component used in this step is as described above.
The procedure of this step is not particularly limited, and for example, a method of preparing a treatment liquid by adding an etchant, an anticorrosive agent, and other optional components to a solvent such as water and / or an organic solvent and stirring and mixing them. Can be mentioned.
Further, as each raw material used for preparing the treatment liquid, it is preferable to use a raw material classified into a semiconductor grade or a raw material classified into a high-purity grade equivalent thereto. Further, it is preferable to use the raw material having a large amount of impurities after removing foreign substances by filtering and / or reducing the ionic component by an ion exchange resin or the like.
(処理工程B)
 処理工程Bでは、被処理物に上記処理液を接触させる。これにより、ドライエッチング残渣物の除去を目的とした洗浄、及び、メタルハードマスクの除去(ウェットエッチング)の少なくとも一方が行われる。
 被処理物に処理液を接触させる方法は特に限定されないが、例えば、タンクに入れた処理液中に被処理物を浸漬する方法、被処理物上に処理液を噴霧する方法、被処理物上に処理液を流す方法、又はそれらの任意の組み合わせが挙げられる。
(Processing step B)
In the treatment step B, the treatment liquid is brought into contact with the object to be treated. As a result, at least one of cleaning for the purpose of removing the dry etching residue and removal of the metal hard mask (wet etching) are performed.
The method of bringing the treatment liquid into contact with the object to be treated is not particularly limited. A method of flowing the treatment liquid into the water, or any combination thereof can be mentioned.
 被処理物に処理液を接触させる際の処理液の温度は、90℃以下が好ましく、25~60℃がより好ましい。 The temperature of the treatment liquid when the treatment liquid is brought into contact with the object to be treated is preferably 90 ° C. or lower, more preferably 25 to 60 ° C.
 処理時間は、処理液の接触方法及び処理液の温度に応じて調整できる。
 浸漬バッチ方式(処理槽内で複数枚の被処理物を浸漬し処理するバッチ方式)で処理する場合には、処理時間は、例えば、60分以内であり、1~60分が好ましく、3~20分がより好ましく、4~15分が更に好ましい。
The treatment time can be adjusted according to the contact method of the treatment liquid and the temperature of the treatment liquid.
In the case of processing by the immersion batch method (batch method in which a plurality of objects to be processed are immersed and processed in the processing tank), the processing time is, for example, 60 minutes or less, preferably 1 to 60 minutes, and 3 to 3 to 60 minutes. 20 minutes is more preferable, and 4 to 15 minutes is even more preferable.
 枚葉方式で処理する場合には、処理時間は、例えば、10秒~5分であり、15秒~4分が好ましく、15秒~3分がより好ましく、20秒~2分が更に好ましい。 In the case of processing by the single-wafer method, the processing time is, for example, 10 seconds to 5 minutes, preferably 15 seconds to 4 minutes, more preferably 15 seconds to 3 minutes, and even more preferably 20 seconds to 2 minutes.
 更に、処理液の処理能力をより増進するために、機械的撹拌方法を用いてもよい。
 機械的撹拌方法としては、例えば、被処理物上で処理液を循環させる方法、被処理物上で処理液を流過又は噴霧させる方法、超音波又はメガソニックにて処理液を撹拌する方法等が挙げられる。
Further, a mechanical stirring method may be used in order to further increase the processing capacity of the processing liquid.
Examples of the mechanical stirring method include a method of circulating the treatment liquid on the object to be treated, a method of flowing or spraying the treatment liquid on the object to be treated, a method of stirring the treatment liquid by ultrasonic waves or megasonics, and the like. Can be mentioned.
(リンス工程B2)
 本発明の処理方法は、処理工程Bの後に、被処理物を溶剤ですすいで清浄する工程(リンス工程B2)を更に含有していてもよい。
 リンス工程B2は、処理工程Bに連続して行われ、リンス溶剤(リンス液)で5秒~5分にわたってすすぐ工程であることが好ましい。リンス工程B2は、上述の機械的撹拌方法を用いて行ってもよい。
(Rinse step B2)
The treatment method of the present invention may further include a step of rinsing and cleaning the object to be treated with a solvent (rinse step B2) after the treatment step B.
The rinsing step B2 is preferably performed continuously in the treatment step B and is a step of rinsing with a rinsing solvent (rinsing solution) for 5 seconds to 5 minutes. The rinsing step B2 may be performed by using the above-mentioned mechanical stirring method.
 リンス溶剤としては、例えば、脱イオン水、メタノール、エタノール、イソプロピルアルコール、N-メチルピロリジノン、γ-ブチロラクトン、ジメチルスルホキシド、乳酸エチル及びプロピレングリコールモノメチルエーテルアセテートが挙げられるが、これらに限定されない。pH>8の水性リンス液(希釈した水性の水酸化アンモニウム等)を利用してもよい。
 リンス溶剤は、水酸化アンモニウム水溶液、脱イオン水、メタノール、エタノール、又は、イソプロピルアルコールが好ましく、水酸化アンモニウム水溶液、脱イオン水、又は、イソプロピルアルコールがより好ましく、水酸化アンモニウム水溶液、又は、脱イオン水が更に好ましい。
 リンス溶剤を被処理物に接触させる方法としては、上述した処理液を被処理物に接触させる方法を同様に適用できる。
 リンス工程B2におけるリンス溶剤の温度は、16~27℃が好ましい。
 上述した処理液は、リンス工程B2のリンス溶剤として使用してもよい。
Examples of the rinsing solvent include, but are not limited to, deionized water, methanol, ethanol, isopropyl alcohol, N-methylpyrrolidinone, γ-butyrolactone, dimethyl sulfoxide, ethyl lactate and propylene glycol monomethyl ether acetate. An aqueous rinse solution having a pH> 8 (diluted aqueous ammonium hydroxide, etc.) may be used.
The rinsing solvent is preferably an aqueous solution of ammonium hydroxide, deionized water, methanol, ethanol, or isopropyl alcohol, more preferably an aqueous solution of ammonium hydroxide, deionized water, or isopropyl alcohol, and an aqueous solution of ammonium hydroxide or deionization. Water is more preferred.
As a method of bringing the rinse solvent into contact with the object to be treated, the above-mentioned method of bringing the treatment liquid into contact with the object to be treated can be similarly applied.
The temperature of the rinsing solvent in the rinsing step B2 is preferably 16 to 27 ° C.
The above-mentioned treatment liquid may be used as a rinsing solvent in the rinsing step B2.
(乾燥工程B3)
 本発明の処理方法は、リンス工程B2の後に被処理物を乾燥させる乾燥工程B3を含有していてもよい。
 乾燥方法としては、特に限定されない。乾燥方法としては、例えば、スピン乾燥法、被処理物上に乾性ガスを流過させる方法、ホットプレート若しくは赤外線ランプのような加熱手段によって基板を加熱する方法、マランゴニ乾燥法、ロタゴニ乾燥法、IPA(イソプロピルアルコール)乾燥法、及び、それらの任意の組み合わせが挙げられる。
 乾燥時間は、用いる特定の方法に依存するが、一般的には、30秒~数分が好ましい。
(Drying step B3)
The treatment method of the present invention may include a drying step B3 for drying the object to be treated after the rinsing step B2.
The drying method is not particularly limited. Examples of the drying method include a spin drying method, a method of flowing a dry gas over an object to be treated, a method of heating a substrate by a heating means such as a hot plate or an infrared lamp, a flatulence drying method, a rotagoni drying method, and an IPA. (Isopropyl alcohol) drying method and any combination thereof can be mentioned.
The drying time depends on the specific method used, but is generally preferably 30 seconds to several minutes.
(粗大粒子除去工程H)
 本発明の処理方法は、上記処理工程Bを行う前に、処理液中の粗大粒子を除去する粗大粒子除去工程Hを含有してもよい。
 処理液中の粗大粒子を低減又は除去することで、処理工程Bを経た後の被処理物上に残存する粗大粒子の量を低減できる。この結果、被処理物上の粗大粒子に起因したパターンダメージを抑制でき、デバイスの歩留まり低下及び信頼性低下への影響も抑制できる。
 粗大粒子を除去するための具体的な方法としては、例えば、処理液調製工程Aを経た処理液を所定の除粒子径の除粒子膜を用いて濾過精製する方法等が挙げられる。
 なお、粗大粒子の定義については、上述のとおりである。
(Coarse particle removal step H)
The treatment method of the present invention may include a coarse particle removing step H for removing coarse particles in the treatment liquid before performing the treatment step B.
By reducing or removing the coarse particles in the treatment liquid, the amount of coarse particles remaining on the object to be treated after the treatment step B can be reduced. As a result, pattern damage caused by coarse particles on the object to be processed can be suppressed, and the influence on the decrease in the yield and the decrease in the reliability of the device can also be suppressed.
Specific methods for removing coarse particles include, for example, a method of filtering and purifying the treatment liquid that has undergone the treatment liquid preparation step A using a particle removal film having a predetermined particle removal diameter.
The definition of coarse particles is as described above.
(除電工程I、J)
 本発明の処理方法は、上記処理液調製工程Aにおける上記処理液の調製の際に水を用いて、上記処理液調製工程Aの前に上記水に対して除電を行う除電工程I、及び/又は、上記処理液調製工程Aの後であって上記処理工程Bを行う前に、上記処理液に対して除電を行う除電工程Jを含有してもよい。
 被処理物へ処理液を供給するための接液部の材質は、処理液に対して金属溶出のない樹脂としてもよい。
 本発明の処理方法では、上述の除電工程I及び除電工程Jの少なくとも一方の工程を実施し、処理液の帯電電位を低減させることも好ましい。また、除電を行うことで、基板への異物(粗大粒子等)の付着や被処理物へのダメージ(腐食)をより抑制できる。
 除電方法としては、具体的には、水及び/又は処理液を導電性材料に接触させる方法が挙げられる。
 水及び/又は処理液を導電性材料に接触させる接触時間は、0.001~1秒が好ましく、0.01~0.1秒がより好ましい。
 樹脂の具体的な例としては、高密度ポリエチレン(HDPE)、高密度ポリプロピレン(PP)、6,6-ナイロン、テトラフルオロエチレン(PTFE)、テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、エチレン・四フッ化エチレン共重合体(ETFE)、及び、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)等が挙げられる。
 導電性材料としては、ステンレス鋼、金、白金、ダイヤモンド、及び、グラッシーカーボン等が挙げられる。
(Static elimination steps I, J)
In the treatment method of the present invention, water is used in the preparation of the treatment liquid in the treatment liquid preparation step A, and the static elimination step I and / / in which static elimination is performed on the water before the treatment liquid preparation step A. Alternatively, a static elimination step J for statically eliminating the treated liquid may be contained after the treatment liquid preparation step A and before the treatment step B is performed.
The material of the wetted portion for supplying the treatment liquid to the object to be treated may be a resin having no metal elution with respect to the treatment liquid.
In the treatment method of the present invention, it is also preferable to carry out at least one of the above-mentioned static elimination step I and static elimination step J to reduce the charging potential of the treatment liquid. Further, by removing static electricity, it is possible to further suppress the adhesion of foreign substances (coarse particles and the like) to the substrate and the damage (corrosion) to the object to be processed.
Specific examples of the static elimination method include a method in which water and / or a treatment liquid is brought into contact with a conductive material.
The contact time for contacting the water and / or the treatment liquid with the conductive material is preferably 0.001 to 1 second, more preferably 0.01 to 0.1 second.
Specific examples of the resin include high-density polyethylene (HDPE), high-density polypropylene (PP), 6,6-nylon, tetrafluoroethylene (PTFE), and a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether (PFA). ), Polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), ethylene / tetrafluoroethylene copolymer (ETFE), and tetrafluoroethylene / hexafluoride propylene co-weight. Coalescence (FEP) and the like can be mentioned.
Examples of the conductive material include stainless steel, gold, platinum, diamond, glassy carbon and the like.
 本発明の処理方法は、処理工程Bで用いた処理液の排液を再利用し、更に他の被処理物の洗浄に用いることが可能である。
 本発明の処理方法は、処理液の排液を再利用する態様である場合、下記の工程から構成されることが好ましい。
 上記処理工程Bと、
 上記処理工程Bで使用された上記処理液の排液を回収する排液回収工程Cと、
 回収された上記処理液の排液を用いて、新たに準備される被処理物を処理する処理工程Dと、
 上記処理工程Dで使用された上記処理液の排液を回収する排液回収工程Eと、
を含有し、
 上記処理工程Dと上記排液回収工程Eとを繰り返す工程とを含有する。
In the treatment method of the present invention, the drainage of the treatment liquid used in the treatment step B can be reused and further used for cleaning other objects to be treated.
The treatment method of the present invention preferably comprises the following steps when the drainage of the treatment liquid is reused.
The above processing step B and
A drainage recovery step C for recovering the drainage of the treatment liquid used in the treatment step B, and a drainage recovery step C.
A treatment step D in which a newly prepared object to be treated is treated by using the collected drainage of the treatment liquid, and a treatment step D.
A drainage recovery step E for recovering the drainage of the treatment liquid used in the treatment step D, and a drainage recovery step E.
Contains,
It includes a step of repeating the above-mentioned processing step D and the above-mentioned drainage recovery step E.
 上記排液を再利用する態様において、処理工程Bは、上述した態様で説明した処理工程Bと同義であり、また好ましい態様についても同じである。また、上記排液を再利用する態様においても、粗大粒子除去工程H、除電工程I、Jを含有していてもよい。また、処理工程Bの前に上述した態様で説明した処理液調製工程Aを含有していてもよい。 In the mode of reusing the drainage, the treatment step B has the same meaning as the treatment step B described in the above-described mode, and the same applies to the preferred mode. Further, even in the mode of reusing the drainage liquid, the coarse particle removing step H and the static elimination steps I and J may be contained. Further, the treatment liquid preparation step A described in the above-described embodiment may be contained before the treatment step B.
 処理工程Dは、上述した態様における処理工程Bと同義であり、好ましい態様も同様である。
 排液回収工程C、Eにおける排液回収手段は特に限定されない。回収した排液は、上記除電工程Jにおいて上述した樹脂製容器に保存されてもよく、この時に除電工程Jと同様の除電工程を行ってもよい。また、回収した排液に濾過等を実施し不純物を除去する工程を設けてもよい。
The treatment step D has the same meaning as the treatment step B in the above-described embodiment, and the preferred embodiment is also the same.
The drainage recovery means in the drainage recovery steps C and E is not particularly limited. The collected drainage may be stored in the resin container described above in the static elimination step J, and at this time, the same static elimination step as in the static elimination step J may be performed. Further, a step of filtering the collected drainage liquid to remove impurities may be provided.
 以下、実施例を用いて、本発明について詳細に説明する。ただし、本発明はこれに限定されない。なお、特に断りのない限り、「%」は質量基準である。 Hereinafter, the present invention will be described in detail with reference to Examples. However, the present invention is not limited to this. Unless otherwise specified, "%" is based on mass.
<<試験X>>
[処理液の調製]
<処理液の成分>
 下記に示す原料を用いて、実施例及び比較例の処理液を作製した。
<< Test X >>
[Preparation of treatment solution]
<Components of treatment liquid>
Using the raw materials shown below, the treatment solutions of Examples and Comparative Examples were prepared.
(エッチャント(含フッ素化合物))
HF:フッ化水素(関東化学社製)
(Echant (fluorine-containing compound))
HF: Hydrogen fluoride (manufactured by Kanto Chemical Co., Inc.)
(有機溶剤)
DEGBE:ジエチレングリコールモノブチルエーテル
(Organic solvent)
DEGBE: Diethylene glycol monobutyl ether
(水)
水:超純水
(water)
Water: Ultrapure water
(防食剤)
・化合物X、化合物Y、及び、化合物Zのいずれかに該当する防食剤
L-システイン酸
O-カルボキシフェニルボロン酸
クレアチン
N-アセチルグリシン (アセトアミド酢酸)
ホモアルギニン
-(アミノカルボニル)-L-リシン (ホモシトルリン)
L-O-ホスホセリン
2-ホスホノオキシ安息香酸
メリト酸
シュウ酸
グルコン酸
L-シトルリン
DL-アラニルグリシン
d-シスチン
dl-ジエンコル酸
(Corrosion inhibitor)
-Anticorrosive agent corresponding to any one of Compound X, Compound Y, and Compound Z L-Cysteinate O-carboxyphenylboronic Acid Creatin N-Acetylglycine (acetamide acetic acid)
Homoarginine N 6- (aminocarbonyl) -L-lysine (homocitrulline)
LO-phosphoserine 2-phosphonooxybenzoic acid oxalic acid oxalic acid L-citrulline DL-alanylglycine d-cystine dl-diencoric acid
・比較用防食剤
ベンゾトリアゾール
トリアゾール
酢酸
ラウリン酸
2-ヒドロキシオクタン酸
グリコール酸
-Comparative anticorrosive agent Benzotriazole Triazole Lauric acid 2-hydroxyoctanoic acid Glycolic acid
(pH調整剤)
MSA:メタンスルホン酸
DBU:ジアザビシクロウンデセン
 なお、pH調整剤は、処理液のpHが表中の値になるようにMSA及びDBUのいずれか一方を適量(処理液中の全質量に対して1質量%以下)加えた。
 なお、DBUは比較例2の処理液でのみ使用し、それ以外の処理液ではMSAを使用した。
(PH regulator)
MSA: Methanesulfonic acid DBU: Diazabicycloundecene The pH adjuster should be an appropriate amount of either MSA or DBU (relative to the total mass in the treatment liquid) so that the pH of the treatment liquid becomes the value in the table. 1% by mass or less) was added.
DBU was used only in the treatment liquid of Comparative Example 2, and MSA was used in the other treatment liquids.
<処理液の調製>
 後段に示す表1に示すように混合して、上述の原料を混合及び攪拌して、実施例及び比較例の各処理液を得た。
 なお、処理液に対してフッ化水素は、フッ化水素水溶液の状態で導入したが、表1中に示したHFの含有量は、フッ化水素水溶液としての量ではなく、処理液中に含有されるフッ化水素化合物の量(質量%)を示す。
<Preparation of treatment solution>
As shown in Table 1 shown in the latter part, the above-mentioned raw materials were mixed and stirred to obtain each treatment liquid of Examples and Comparative Examples.
Although hydrogen fluoride was introduced into the treatment liquid in the state of an aqueous hydrogen fluoride solution, the content of HF shown in Table 1 was not the amount as the aqueous hydrogen fluoride solution, but was contained in the treatment liquid. The amount (% by mass) of the hydrogen fluoride compound to be produced is shown.
[試験]
 得られた処理液を用いて下記の試験を実施した。
[test]
The following test was carried out using the obtained treatment liquid.
<エッチング性能(防食性)>
 第1表に記載の各材料からなるモデル膜(Co又はAlの各膜)を準備して、そのエッチングレートに基づいて、エッチング性の評価を行った。各モデル膜の膜厚は、1000Åの膜厚である。
 実施例及び比較例の各処理液を用いて、各モデル膜のエッチング処理をした。具体的には、25℃の処理液中に各モデル膜を10分間浸漬して、処理液の浸漬前後におけるモデル膜の膜厚差に基づいて、エッチングレート(Å/分)を算出した。
 なお、モデル膜がCoの場合、処理前後のモデル膜の膜厚は、抵抗率の測定により算出した。抵抗率の測定には四探針法を測定原理とするロレスターGP(三菱化学社製)を用いた。
 モデル膜がAlの場合、処理前後のモデル膜の膜厚は、エリプソメトリー(分光エリプソメーター、商品名「Vase」、ジェー・エー・ウーラム・ジャパン社製)を用いて、測定範囲250-1000nm、測定角度70度及び75度の条件で測定した。
<Etching performance (corrosion resistance)>
A model film (each film of Co or Al 2 O 3 ) made of each material shown in Table 1 was prepared, and the etching property was evaluated based on the etching rate. The film thickness of each model film is 1000 Å.
Each model film was etched using each of the treatment solutions of Examples and Comparative Examples. Specifically, each model film was immersed in the treatment liquid at 25 ° C. for 10 minutes, and the etching rate (Å / min) was calculated based on the difference in film thickness of the model film before and after the immersion of the treatment liquid.
When the model film was Co, the film thickness of the model film before and after the treatment was calculated by measuring the resistivity. For the resistivity measurement, Lorester GP (manufactured by Mitsubishi Chemical Corporation) based on the four-probe method was used.
When the model film is Al 2 O 3, the film thickness of the model film before and after the treatment is measured in a measurement range of 250 using ellipsometry (spectral ellipsometer, trade name "Vase", manufactured by JA Woolam Japan Co., Ltd.). The measurement was performed under the conditions of −1000 nm and measurement angles of 70 degrees and 75 degrees.
 算出されたエッチングレートを下記区分に照らして、Co及びAlに対する防食性(Co防食性及びAl防食性)を評価した。Co又はAlに対するエッチングレートが小さいほど、Co又はAlに対する処理液の防食性が優れると判断できる。 The calculated etching rate was compared with the following categories to evaluate the corrosion resistance against Co and Al 2 O 3 (Co corrosion resistance and Al 2 O 3 corrosion resistance). Higher etching rate with respect to Co or Al 2 O 3 is small, it can be determined that the corrosion resistance of the treatment liquid to Co or Al 2 O 3 are excellent.
(モデル膜がCoの場合)
A:エッチングレートが、1Å/分以下
B:エッチングレートが、1Å/分超、5Å/分以下
C:エッチングレートが、5Å/分超、10Å/分以下
D:エッチングレートが、10Å/分超
(When the model film is Co)
A: Etching rate is 1 Å / min or less B: Etching rate is more than 1 Å / min, 5 Å / min or less C: Etching rate is more than 5 Å / min, 10 Å / min or less D: Etching rate is more than 10 Å / min
(モデル膜がAlの場合)
A:エッチングレートが、3Å/分以下
B:エッチングレートが、3Å/分超、5Å/分以下
C:エッチングレートが、5Å/分超、10Å/分以下
D:エッチングレートが、10Å/分超
(When the model film is Al 2 O 3 )
A: Etching rate is 3 Å / min or less B: Etching rate is more than 3 Å / min, 5 Å / min or less C: Etching rate is more than 5 Å / min, 10 Å / min or less D: Etching rate is more than 10 Å / min
<PER(Post Etching Residue)除去性能>
 基板(Si)上に、第3層(Co)、その他の層(エッチング停止層:Al)、第2層(絶縁膜:SiO)、及び、所定の開口部を含有する第1層(メタルハードマスク:ZrO)を、この順で備える積層体(処理前の積層体に該当)を形成した。得られた積層体を使用し、第1層をマスクとして、窒素ガス及びハロゲンガスを含むエッチングガスを用いたプラズマエッチングを実施して、第3層の表面が露出するまで、第2層のエッチングを行い、ホールを形成し、試料1を製造した(図1参照)。この積層体の断面をSEM/EDX(エネルギー分散型X線解析装置付き走査型電子顕微鏡)で確認すると、積層体の表面上に、Zrを含有するドライエッチング残渣物が認められた。
 そして、下記の手順により、洗浄性能(除去性能)を評価した。まず、各処理液を50℃に加熱した後、処理液中に上記積層体を10分間浸漬させた。積層体の浸漬後における残渣物残り具合をSEM/EDXにて確認後、以下の基準により洗浄性能を評価した。
A:完全に洗浄(100%)が出来ている(浸漬前にSEMにて確認された残渣物、浸漬後に100%除去されている)
B:80%以上100%未満の洗浄が出来ている(浸漬前にSEMにて確認された残渣物、浸漬後に80%以上100%未満除去されている)
C:50%以上80%未満の洗浄が出来ている(浸漬前にSEMにて確認された残渣物、浸漬後に50%以上80%未満除去されている)
D:洗浄が50%未満(浸漬前にSEMにて確認された残渣物、浸漬後に50%未満除去されている)
<PER (Post Etching Resolution) removal performance>
A first layer containing a third layer (Co), another layer (etching stop layer: Al 2 O 3 ), a second layer (insulating film: SiO 2 ), and a predetermined opening on the substrate (Si). A laminated body (corresponding to the laminated body before treatment) having layers (metal hard mask: ZrO 2) in this order was formed. Using the obtained laminate, plasma etching using an etching gas containing nitrogen gas and halogen gas is performed using the first layer as a mask, and etching of the second layer is performed until the surface of the third layer is exposed. Was performed to form holes, and sample 1 was produced (see FIG. 1). When the cross section of the laminated body was confirmed by SEM / EDX (scanning electron microscope with an energy dispersive X-ray analyzer), a dry etching residue containing Zr was observed on the surface of the laminated body.
Then, the cleaning performance (removal performance) was evaluated by the following procedure. First, each treatment liquid was heated to 50 ° C., and then the laminate was immersed in the treatment liquid for 10 minutes. After confirming the residual condition of the residue after immersion of the laminate by SEM / EDX, the cleaning performance was evaluated according to the following criteria.
A: Completely washed (100%) (residue confirmed by SEM before immersion, 100% removed after immersion)
B: 80% or more and less than 100% cleaning is possible (residues confirmed by SEM before immersion, 80% or more and less than 100% are removed after immersion)
C: 50% or more and less than 80% can be washed (residues confirmed by SEM before immersion, 50% or more and less than 80% are removed after immersion)
D: Washing is less than 50% (residues confirmed by SEM before immersion, less than 50% removed after immersion)
[結果]
 表1に、処理液の配合と、試験の結果とを示す。
 表1中、「量」欄は、各成分の含有量(質量%)を示す。
 「化合物X」欄下の「XA」欄は、使用した防食剤が化合物Xに該当する場合に、上記防食剤が含有する置換基XAの種類を示す。マス中に「×2」の記載がある場合、防食剤が、マス中に示された置換基XAを2つ含有していることを示す。
 「化合物X」欄下の「XB」欄は、使用した防食剤が化合物Xに該当する場合に、上記防食剤が含有する置換基XBの種類を示す。
 「化合物X」欄下の「COOH数」欄は、使用した防食剤が化合物Xに該当する場合に、上記防食剤が含有するCOOH部分構造の数を示す。
 「化合物Y」欄下の「YQ」欄は、使用した防食剤が化合物Yに該当する場合に、上記防食剤が含有するYで表される基の種類を示す。「ホスホン-O-Ar-」の記載は「ホスホン酸オキシ基を有する芳香環基」を意味し、「ボロン-Ar-」の記載は「ボロン酸基を有する芳香環基」を意味する。
 「有機溶剤(DEGBE)+pH調整剤(MSA又はDBU)の量」欄は、処理剤中の、処理剤の全質量に対する、有機溶剤とpH調整剤との合計含有量(質量%)を示す。なお、pH調整剤の含有量は、処理液の「pH」欄に示す値になるように調整されており、具体的な含有量としては、いずれの処理液でも、処理液の全質量に対して1質量%以下であった。
[result]
Table 1 shows the formulation of the treatment liquid and the test results.
In Table 1, the "amount" column indicates the content (mass%) of each component.
The "XA" column under the "Compound X" column indicates the type of substituent XA contained in the anticorrosive agent when the anticorrosive agent used corresponds to the compound X. When there is a description of "x2" in the mass, it means that the anticorrosive agent contains two substituents XA shown in the mass.
The "XB" column under the "Compound X" column indicates the type of substituent XB contained in the anticorrosive agent when the anticorrosive agent used corresponds to the compound X.
The "COOH number" column under the "Compound X" column indicates the number of COOH partial structures contained in the anticorrosive agent when the anticorrosive agent used corresponds to the compound X.
The "YQ" column under the "Compound Y" column indicates the type of group represented by YQ contained in the anticorrosive agent when the anticorrosive agent used corresponds to the compound Y. The description of "phosphon-O-Ar-" means "aromatic ring group having a phosphonate oxy group", and the description of "boron-Ar-" means "aromatic ring group having a boronate group".
The "Amount of organic solvent (DEGBE) + pH adjuster (MSA or DBU)" column indicates the total content (mass%) of the organic solvent and the pH adjuster with respect to the total mass of the treatment agent in the treatment agent. The content of the pH adjuster is adjusted so as to be the value shown in the "pH" column of the treatment liquid, and the specific content of any treatment liquid is based on the total mass of the treatment liquid. It was 1% by mass or less.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表に示す結果より、本発明の処理液は、第1金属含有物(Co含有物)に対する防食性が良好であることが確認された。また、本発明の処理液は、除去目的物に対する除去性も良好であることが確認された。更に、本発明の処理液は、アルミ系材料に対する防食性も良好であることが確認された。 From the results shown in the table, it was confirmed that the treatment liquid of the present invention has good anticorrosion property against the first metal-containing substance (Co-containing substance). It was also confirmed that the treatment liquid of the present invention has good removability with respect to the object to be removed. Furthermore, it was confirmed that the treatment liquid of the present invention also has good anticorrosion properties against aluminum-based materials.
 処理液中、水の含有量が14質量%以下(より好ましくは9質量%以下)である場合、本発明の効果がより優れることが確認された(実施例2、4、5、6の比較等を参照)。 It was confirmed that the effect of the present invention was more excellent when the water content in the treatment liquid was 14% by mass or less (more preferably 9% by mass or less) (comparison of Examples 2, 4, 5 and 6). Etc.).
 防食剤が化合物Xの場合、防食剤の含有量が、処理液の全質量に対して0.07質量%以上であれば、本発明の効果がより優れることが確認された(実施例1、7、8の比較等を参照)。 When the anticorrosive agent was compound X, it was confirmed that the effect of the present invention was more excellent when the content of the anticorrosive agent was 0.07% by mass or more with respect to the total mass of the treatment liquid (Example 1, Example 1). See comparison of 7 and 8).
 防食剤が化合物Yの場合、防食剤の含有量が、処理液の全質量に対して0.07質量%以上1質量%未満であれば、本発明の効果がより優れることが確認された(実施例12、14、15の比較等を参照)。 When the anticorrosive agent was compound Y, it was confirmed that the effect of the present invention was more excellent when the content of the anticorrosive agent was 0.07% by mass or more and less than 1% by mass with respect to the total mass of the treatment liquid (). (See Comparison of Examples 12, 14 and 15).
 防食剤が化合物Xの場合、化合物Xが-COOHで表される部分構造を1つだけ含有する化合物であれば、Co含有物に対する防食性がより優れることが確認された(実施例35~36の結果等を参照)。 When the anticorrosive agent was compound X, it was confirmed that if the compound X is a compound containing only one partial structure represented by -COOH, the anticorrosive property against the Co-containing material is more excellent (Examples 35 to 36). See the results of).
 pHが3.0未満の場合、本発明の効果がより優れることが確認された(実施例1、9、10の比較等を参照)。 It was confirmed that when the pH was less than 3.0, the effect of the present invention was more excellent (see comparison of Examples 1, 9 and 10 and the like).
(追加試験)
 更に追加試験を行った。
 以降の追加試験の説明において、各成分の含有量に関する記載は、特段の断りがない限り、処理液の全質量に対する含有量を意味する。また、以降の追加試験において各成分の含有量を変更した場合、特段の断りがない限り、有機溶剤とpH調整剤との合計含有量を変更して、処理液中の全成分の合計含有量を100質量%に調整した。
(Additional test)
Further tests were conducted.
In the following description of the additional test, the description regarding the content of each component means the content of the treatment liquid with respect to the total mass unless otherwise specified. In addition, when the content of each component is changed in the subsequent additional tests, the total content of the organic solvent and the pH adjuster is changed unless otherwise specified, and the total content of all the components in the treatment liquid is changed. Was adjusted to 100% by mass.
 実施例6において、水の含有量15.0質量%を18.0質量%に変えた以外は同様にして処理液を作製し、評価を行ったところ、実施例6同様の結果が得られた。 In Example 6, a treatment liquid was prepared in the same manner except that the water content of 15.0% by mass was changed to 18.0% by mass, and evaluation was performed. As a result, the same results as in Example 6 were obtained. ..
比較例10において、水の含有量25.0質量%を19.2質量%に変えた以外は同様にして処理液を作製し、評価を行ったところ、比較例10同様の結果が得られた。 In Comparative Example 10, a treatment liquid was prepared in the same manner except that the water content of 25.0% by mass was changed to 19.2% by mass, and evaluation was performed. As a result, the same results as in Comparative Example 10 were obtained. ..
 実施例10において、pHを3.5から3.8に変えた以外は同様にして処理液を作製し、評価を行ったところ、実施例10同様の結果が得られた。 In Example 10, a treatment liquid was prepared in the same manner except that the pH was changed from 3.5 to 3.8, and the evaluation was performed. As a result, the same result as in Example 10 was obtained.
 実施例10において、pHを3.5から4.2に変えた以外は同様にして処理液を作製し、評価を行ったところ、除去性能がCになった以外は実施例10同様の結果が得られた。 In Example 10, a treatment liquid was prepared in the same manner except that the pH was changed from 3.5 to 4.2, and the evaluation was performed. As a result, the same result as in Example 10 was obtained except that the removal performance was C. Obtained.
 実施例8において、HFをフッ化アンモニウムに変えた以外は同様にして処理液を作製し、評価を行ったところ、除去性能がCになった以外は実施例8同様の結果が得られた。 In Example 8, a treatment liquid was prepared in the same manner except that HF was changed to ammonium fluoride, and the evaluation was performed. As a result, the same results as in Example 8 were obtained except that the removal performance was C.
 実施例8において、L-システインの含有量1.0質量%を、L-システインとO-カルボキシフェニルボロン酸との合計含有量が1.0質量%(L-システイン/O-カルボキシフェニルボロン酸=8/2(質量比))になるように変えた以外は同様にして処理液を作製し、評価を行ったところ、実施例8同様の結果が得られた。 In Example 8, the content of L-cysteine is 1.0% by mass, and the total content of L-cysteine and O-carboxyphenylboronic acid is 1.0% by mass (L-cysteine / O-carboxyphenylboronic acid). A treatment solution was prepared in the same manner except that the treatment solution was changed to 8/2 (mass ratio), and the evaluation was performed. As a result, the same result as in Example 8 was obtained.
 実施例8において、L-システインの含有量1.0質量%を2.7質量%に変えた以外は同様にして処理液を作製し、評価を行ったところ、実施例8同様の結果が得られた。 In Example 8, a treatment liquid was prepared in the same manner except that the L-cysteine content of 1.0% by mass was changed to 2.7% by mass, and evaluation was performed. As a result, the same results as in Example 8 were obtained. Was done.
 実施例8において、L-システインの含有量1.0質量%を3.5質量%に変えた以外は同様にして処理液を作製し、評価を行ったところ、除去性能がBになった以外は実施例8同様の結果が得られた。 In Example 8, a treatment liquid was prepared in the same manner except that the L-cysteine content of 1.0% by mass was changed to 3.5% by mass, and the evaluation was performed. Obtained the same result as in Example 8.
 実施例8において、L-システインの含有量1.0質量%を4.2質量%に変えた以外は同様にして処理液を作製し、評価を行ったところ、除去性能がBになった以外は実施例8同様の結果が得られた。 In Example 8, a treatment liquid was prepared in the same manner except that the L-cysteine content of 1.0% by mass was changed to 4.2% by mass, and the evaluation was performed. Obtained the same result as in Example 8.
 実施例8において、L-システインの含有量1.0質量%を5.2質量%に変えた以外は同様にして処理液を作製し、評価を行ったところ、除去性能がCになった以外は実施例8同様の結果が得られた。 In Example 8, a treatment liquid was prepared in the same manner except that the L-cysteine content of 1.0% by mass was changed to 5.2% by mass, and the evaluation was performed. As a result, the removal performance was C. Obtained the same result as in Example 8.
<<試験Y>>
 モデル膜としてCu膜を使用して上述した<エッチング性能(防食性)>の試験を実施した。実施例1~36の処理液を用いて試験したところ、各処理液はいずれも良好な防食性を示し、モデル膜としてCoを使用した場合と同様の傾向の結果が確認された。
<< Test Y >>
The above-mentioned <etching performance (corrosion resistance)> test was carried out using a Cu film as a model film. When the tests were carried out using the treatment solutions of Examples 1 to 36, all the treatment solutions showed good anticorrosion properties, and the results of the same tendency as when Co was used as the model film were confirmed.
<<試験Z>>
 第1層(メタルハードマスク)を、ZrOから、TiN又はTaOに変更した以外は同様にして、上述の<PER(Post Etching Residue)除去性能>に示した試験を実施した。
(この場合、処理液への浸漬前の積層体の表面には、Zrを含有するドライエッチング残渣物ではなく、Ti又はTaを含有するドライエッチング残渣物が認められた)
 実施例1~36の処理液を用いた試験の結果、メタルハードマスクがTiN又はTaOの場合でも、各処理液はいずれも良好な洗浄性(除去性能)を示し、メタルハードマスクとしてZrOを使用した場合と同様の傾向の結果が確認された。
<< Test Z >>
The test shown in <PER (Post Etching Resolution) removal performance> described above was carried out in the same manner except that the first layer (metal hard mask) was changed from ZrO 2 to TiN or TaO.
(In this case, a dry etching residue containing Ti or Ta was observed on the surface of the laminate before immersion in the treatment liquid, not a dry etching residue containing Zr).
As a result of the test using the treatment liquids of Examples 1 to 36, even when the metal hard mask was TiN or TaO, each treatment liquid showed good detergency (removal performance), and ZrO 2 was used as the metal hard mask. Results of the same tendency as when used were confirmed.
 1 基板
 2 金属層
 3 エッチング停止層
 4 層間絶縁膜
 5 メタルハードマスク
 6 ホール
 10 積層体
 11 内壁
 11a 断面壁
 11b 底壁
 12 ドライエッチング残渣物
1 Substrate 2 Metal layer 3 Etching stop layer 4 Interlayer insulating film 5 Metal hard mask 6 holes 10 Laminated body 11 Inner wall 11a Cross-section wall 11b Bottom wall 12 Dry etching residue

Claims (16)

  1.  Co及びCuからなる群から選択される1種以上の第1金属を含む第1金属含有物を含有する被処理物を処理するのに使用される処理液であって、
     エッチャントと、
     有機溶剤と、
     防食剤とを含有し、
     前記有機溶剤の含有量が、前記処理液の全質量に対して80質量%以上であり、
     前記防食剤が、化合物X、化合物Y、及び、化合物Zからなる群から選択される1種以上の化合物である、処理液。
     化合物X:一般式(XA1)~(XA3)のいずれかで表される基である置換基XAを1つと、一般式(XB1)~(XB7)のいずれかで表される基である置換基XBを1つ以上とを含有する化合物、及び、前記置換基XAを2つ以上含有する化合物からなる群から選択される1種以上の化合物。
    Figure JPOXMLDOC01-appb-C000001

     一般式(XA1)~(XA3)及び一般式(XB1)~(AB7)中、*は結合位置を表す。Rは、それぞれ独立に、水素原子又はアルキル基を表す。
     化合物Y:一般式(Y)で表される化合物。
      Y-COOH       (Y)
     一般式(Y)中、Yは、ホスホン酸オキシ基を有する芳香環基、ボロン酸基を有する芳香環基、又は、ホスホン酸基-アルキレン基-を表す。
    化合物Z:メリト酸、及び、シュウ酸からなる群から選択される1種以上の化合物。
    A treatment liquid used for treating an object to be treated containing a first metal-containing material containing one or more first metals selected from the group consisting of Co and Cu.
    Etchant and
    With organic solvent
    Contains anticorrosive agents,
    The content of the organic solvent is 80% by mass or more with respect to the total mass of the treatment liquid.
    A treatment liquid in which the anticorrosive agent is one or more compounds selected from the group consisting of compound X, compound Y, and compound Z.
    Compound X: One substituent XA which is a group represented by any of the general formulas (XA1) to (XA3) and a substituent which is a group represented by any of the general formulas (XB1) to (XB7). One or more compounds selected from the group consisting of a compound containing one or more XB and a compound containing two or more of the substituent XA.
    Figure JPOXMLDOC01-appb-C000001

    In the general formulas (XA1) to (XA3) and the general formulas (XB1) to (AB7), * represents a bonding position. R independently represents a hydrogen atom or an alkyl group.
    Compound Y: A compound represented by the general formula (Y).
    Y Q- COOH (Y)
    In the general formula (Y), Y Q represents an aromatic ring group having an oxyphosphonate group, an aromatic ring group having a boronate group, or a phosphonic acid group-alkylene group.
    Compound Z: One or more compounds selected from the group consisting of mellitic acid and oxalic acid.
  2.  前記エッチャントが、含フッ素化合物である、請求項1に記載の処理液。 The treatment solution according to claim 1, wherein the etchant is a fluorine-containing compound.
  3.  前記エッチャントが、フッ化水素、フッ化アンモニウム、フッ化テトラメチルアンモニウム、フッ化テトラエチルアンモニウム、フッ化テトラブチルアンモニウム、ヘキサフルオロケイ酸、ヘキサフルオロリン酸、及び、テトラフルオロホウ酸からなる群から選択される1種以上の化合物である、請求項1又は2に記載の処理液。 The etchant is selected from the group consisting of hydrogen fluoride, ammonium fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride, tetrabutylammonium fluoride, hexafluorosilicic acid, hexafluorophosphoric acid, and tetrafluoroboric acid. The treatment solution according to claim 1 or 2, which is one or more compounds to be treated.
  4.  前記有機溶剤が、アルコール系溶剤を含有する、請求項1~3のいずれか1項に記載の処理液。 The treatment liquid according to any one of claims 1 to 3, wherein the organic solvent contains an alcohol solvent.
  5.  前記有機溶剤が、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ヘキサノール、1-オクタノール、2-オクタノール、及び、2-エチルヘキサノールからなる群から選択される1種以上の化合物である、請求項1~4のいずれか1項に記載の処理液。 The organic solvent is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, hexanol, 1-octanol, 2-octanol, and 2-ethylhexanol. The treatment solution according to any one of claims 1 to 4, which is one or more compounds selected from the group consisting of.
  6.  前記化合物Xが、-COOHで表される部分構造を1つだけ含有する化合物である、請求項1~5のいずれか1項に記載の処理液。 The treatment solution according to any one of claims 1 to 5, wherein the compound X is a compound containing only one partial structure represented by -COOH.
  7.  前記防食剤が、L-システイン酸、グルコン酸、ホモアルギニン、L-シトルリン、DL-アラニルグリシン、O-カルボキシフェニルボロン酸、メリト酸、及び、シュウ酸からなる群から選択される1種以上の化合物である、請求項1~5のいずれか1項に記載の処理液。 One or more of the anticorrosive agents selected from the group consisting of L-cysteic acid, gluconic acid, homoarginine, L-citrulline, DL-alanylglycine, O-carboxyphenylboronic acid, melitonic acid, and oxalic acid. The treatment solution according to any one of claims 1 to 5, which is a compound of the above.
  8.  前記処理液の全質量に対して、
     前記エッチャントを0.1~3質量%含有し、
     前記有機溶剤を80~99質量%含有し、
     前記防食剤を0.05~3.0質量%含有し、
     水を0.05~14質量%含有する、請求項1~7のいずれか1項に記載の処理液。
    With respect to the total mass of the treatment liquid
    Contains 0.1 to 3% by mass of the etchant,
    Contains 80 to 99% by mass of the organic solvent,
    The anticorrosive agent is contained in an amount of 0.05 to 3.0% by mass.
    The treatment liquid according to any one of claims 1 to 7, which contains 0.05 to 14% by mass of water.
  9.  pHが4.0以下である、請求項1~8のいずれか1項に記載の処理液。 The treatment solution according to any one of claims 1 to 8, which has a pH of 4.0 or less.
  10.  前記被処理物が、更に、Zr、Ti、Hf、及び、Taからなる群から選択される1種以上の第2金属を含む第2金属含有物を含有し、
     請求項1~9のいずれか1項に記載の処理液を前記被処理物に接触させて、前記第2金属含有物を除去する工程を含有する、処理方法。
    The object to be treated further contains a second metal-containing material containing one or more second metals selected from the group consisting of Zr, Ti, Hf, and Ta.
    A treatment method comprising a step of bringing the treatment liquid according to any one of claims 1 to 9 into contact with the object to be treated to remove the second metal-containing substance.
  11.  前記被処理物が、更に、ドライエッチング残渣物を含有し、
     請求項1~9のいずれか1項に記載の処理液を前記被処理物に接触させて、前記ドライエッチング残渣物を除去する工程を含有する、処理方法。
    The object to be treated further contains a dry etching residue.
    A treatment method comprising a step of bringing the treatment liquid according to any one of claims 1 to 9 into contact with the object to be processed to remove the dry etching residue.
  12.  前記第1金属含有物がCoを含む、請求項10又は11に記載の処理方法。 The treatment method according to claim 10 or 11, wherein the first metal-containing material contains Co.
  13.  前記処理液を前記被処理物に接触させた際の前記第1金属含有物の除去速度が10Å/分以下である、請求項10~12のいずれか1項に記載の処理方法。 The treatment method according to any one of claims 10 to 12, wherein the removal rate of the first metal-containing substance when the treatment liquid is brought into contact with the object to be treated is 10 Å / min or less.
  14.  前記被処理物が、更に、Al又はAlであるアルミ系材料を含有する、請求項10~13のいずれか1項に記載の処理方法。 The treatment method according to any one of claims 10 to 13, wherein the object to be treated further contains an aluminum-based material which is Al or Al 2 O 3.
  15.  前記処理液を前記被処理物に接触させた際の前記アルミ系材料の除去速度が10Å/分以下である、請求項14に記載の処理方法。 The treatment method according to claim 14, wherein the removal rate of the aluminum-based material when the treatment liquid is brought into contact with the object to be treated is 10 Å / min or less.
  16.  前記処理液が25~60℃で用いられる、請求項10~15のいずれか1項に記載の処理方法。 The treatment method according to any one of claims 10 to 15, wherein the treatment liquid is used at 25 to 60 ° C.
PCT/JP2020/032679 2019-09-11 2020-08-28 Processing liquid, processing method WO2021049330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545217A JPWO2021049330A1 (en) 2019-09-11 2020-08-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019165317 2019-09-11
JP2019-165317 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021049330A1 true WO2021049330A1 (en) 2021-03-18

Family

ID=74867237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032679 WO2021049330A1 (en) 2019-09-11 2020-08-28 Processing liquid, processing method

Country Status (3)

Country Link
JP (1) JPWO2021049330A1 (en)
TW (1) TW202111104A (en)
WO (1) WO2021049330A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523546A (en) * 1998-08-18 2002-07-30 アーチ・スペシャルティ・ケミカルズ・インコーポレイテッド Non-corrosive stripping and cleaning compositions
JP2005522027A (en) * 2002-03-25 2005-07-21 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド PH buffer composition for semiconductor substrate cleaning
JP2012084917A (en) * 2008-10-28 2012-04-26 Avantor Performance Materials Inc Gluconic acid containing photoresist cleaning composition for multi-metal device processing
JP2013157516A (en) * 2012-01-31 2013-08-15 Advanced Technology Materials Inc Cleaning agent for copper wiring semiconductors
JP2015122496A (en) * 2013-12-20 2015-07-02 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Composition for titanium nitride hard mask and etch residue removal
JP2016021573A (en) * 2014-07-14 2016-02-04 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Copper corrosion inhibition systems
US20160351388A1 (en) * 2014-02-05 2016-12-01 Entegris, Inc. Non-amine post-cmp compositions and method of use
WO2017208749A1 (en) * 2016-06-02 2017-12-07 富士フイルム株式会社 Processing liquid, substrate cleaning method, and resist removal method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061670A1 (en) * 2016-09-29 2018-04-05 富士フイルム株式会社 Processing solution, and method for processing laminate
KR102160019B1 (en) * 2016-09-29 2020-09-28 후지필름 가부시키가이샤 Treatment liquid and treatment method of laminated body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523546A (en) * 1998-08-18 2002-07-30 アーチ・スペシャルティ・ケミカルズ・インコーポレイテッド Non-corrosive stripping and cleaning compositions
JP2005522027A (en) * 2002-03-25 2005-07-21 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド PH buffer composition for semiconductor substrate cleaning
JP2012084917A (en) * 2008-10-28 2012-04-26 Avantor Performance Materials Inc Gluconic acid containing photoresist cleaning composition for multi-metal device processing
JP2013157516A (en) * 2012-01-31 2013-08-15 Advanced Technology Materials Inc Cleaning agent for copper wiring semiconductors
JP2015122496A (en) * 2013-12-20 2015-07-02 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Composition for titanium nitride hard mask and etch residue removal
US20160351388A1 (en) * 2014-02-05 2016-12-01 Entegris, Inc. Non-amine post-cmp compositions and method of use
JP2016021573A (en) * 2014-07-14 2016-02-04 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Copper corrosion inhibition systems
WO2017208749A1 (en) * 2016-06-02 2017-12-07 富士フイルム株式会社 Processing liquid, substrate cleaning method, and resist removal method

Also Published As

Publication number Publication date
TW202111104A (en) 2021-03-16
JPWO2021049330A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6970675B2 (en) Treatment liquid and laminating body treatment method
KR102111307B1 (en) Process solution, substrate cleaning method and resist removal method
WO2018061670A1 (en) Processing solution, and method for processing laminate
TWI737798B (en) Process liquid, method for cleaning substrate, and method for manufacturing semiconductor device
KR102055154B1 (en) Treatment liquid and substrate cleaning method
KR20180137018A (en) Process liquid, substrate cleaning method, and resist removal method
TWI822694B (en) Cleaning methods for processing fluid, kits and substrates
JP7324290B2 (en) Processing liquid, kit, manufacturing method of processing liquid, cleaning method of substrate, processing method of substrate
KR20210062564A (en) Etching solution, method for manufacturing etching solution, method for processing object, and method for manufacturing ruthenium-containing wiring
KR20200125650A (en) Treatment liquid
WO2021049330A1 (en) Processing liquid, processing method
WO2021166571A1 (en) Treatment method and treatment solution for object of interest
WO2024070946A1 (en) Composition, method for treating substrate, method for producing semiconductor device, and compound
JP6895577B2 (en) Etching liquid, manufacturing method of etching liquid, treatment method of object to be treated, and manufacturing method of ruthenium-containing wiring
WO2022176663A1 (en) Cleaning liquid and method for cleaning semiconductor substrate
TWI841186B (en) Cleaning composition
CN114364779B (en) Treatment liquid and method for treating object to be treated
WO2021039701A1 (en) Treatment liquid
TW202248407A (en) Cleaning composition, method for cleaning semiconductor substrate, and method for producing semiconductor element
TW202344675A (en) Processing liquid of semiconductor substrates, processing method of the processed object, manufacturing method for electronic device
TW202403019A (en) Treating liquid, method for treating substrate, and method for manufacturing semiconductor device
TW202311516A (en) Composition for treating semiconductor, treating method for object to be treated
KR20230043703A (en) Chemical liquid, and processing method
CN114364779A (en) Treatment liquid and method for treating object to be treated

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862259

Country of ref document: EP

Kind code of ref document: A1