WO2021049306A1 - 成膜方法、成膜装置および成膜システム - Google Patents

成膜方法、成膜装置および成膜システム Download PDF

Info

Publication number
WO2021049306A1
WO2021049306A1 PCT/JP2020/032287 JP2020032287W WO2021049306A1 WO 2021049306 A1 WO2021049306 A1 WO 2021049306A1 JP 2020032287 W JP2020032287 W JP 2020032287W WO 2021049306 A1 WO2021049306 A1 WO 2021049306A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
film forming
etching
gas
pattern
Prior art date
Application number
PCT/JP2020/032287
Other languages
English (en)
French (fr)
Inventor
正 光成
宗仁 加賀谷
康介 山本
佳紀 森貞
剛 守屋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021049306A1 publication Critical patent/WO2021049306A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the following disclosure relates to a film forming method, a film forming apparatus and a film forming system.
  • Patent Document 1 describes that a substrate having a first base film and a second base film is heated to a predetermined temperature to adsorb a chlorine-containing gas on the surface, and a nitride film is formed using a raw material gas and a nitride gas. Therefore, a technique for selectively forming a nitride film on one of a first base film and a second base film will be disclosed.
  • the present disclosure provides a technique for taking over the shape of a pattern and forming a film on the upper part of the pattern.
  • the film forming method includes a first film forming step, a second film forming step, a first etching step, and a second etching step.
  • the first film is formed on the substrate on which the pattern is formed so that a thick film is formed on the upper part of the pattern.
  • the second film forming step a second film is formed on the upper surface of the first film.
  • etching is performed in which the selection ratio of the first film is higher than that of the second film. The second etching step etches the second film.
  • the shape of the pattern can be inherited and a film can be formed on the upper part of the pattern.
  • FIG. 1 is a flowchart showing an example of the flow of the film forming method according to the embodiment.
  • FIG. 2 is a diagram showing an example of changes in the substrate due to each step of the film forming method according to the embodiment.
  • FIG. 3 is a diagram showing an example of the film forming apparatus according to the embodiment.
  • FIG. 4 is a diagram schematically showing an example of a film forming system according to an embodiment.
  • FIG. 1 is a flowchart showing an example of the flow of the film forming method according to the embodiment.
  • FIG. 2 is a diagram showing an example of changes in the substrate due to each step of the film forming method according to the embodiment.
  • the substrate is a silicon wafer (hereinafter, referred to as “wafer”) and a three-dimensional transistor such as a FinFET is formed on the wafer will be described as an example.
  • a wafer W on which the uneven pattern P is formed on the silicon substrate 10 is prepared (step S1; FIG. 2A).
  • "Fin" standing vertically from the silicon substrate 10 is formed as the pattern P.
  • a hard mask material is applied to a portion corresponding to the upper surface of the film, and an area without the hard mask is etched to form irregularities on the surface of the film. Finally, it is formed by removing the hard mask.
  • an insulating film such as amorphous silicon or SiO2 is used depending on the application.
  • the first film 11 is formed on the wafer W on which the pattern P is formed so as to form a thick film on the upper part of the pattern P (step S2; FIG. 2B).
  • a TiO 2 film is formed by plasma CVD (chemical vapor deposition).
  • the TiO 2 film is formed by generating plasma while supplying a raw material gas, a reaction gas, and a gas for plasma generation.
  • the raw material gas examples include TiCl 4 , tetra (isopropoxy) titanium (TTIP), titanium tetrabromide (TiBr 4 ), titanium tetraiodide (TiI 4 ), tetrakisethylmethylaminotitanium (TEMAT), and tetrakisdimethylamino.
  • Ti-containing gases such as titanium (TDMAT) and tetrakisdiethylaminotitanium (TDEAT).
  • an oxidizing gas such as oxygen (O 2 ) gas can be used.
  • a rare gas such as Ar gas or He gas can be used.
  • the first film 11 is thickly formed on the upper part of the pattern P. Therefore, the pattern P on which the first film 11 is formed has a wider width at the upper part than at the lower part.
  • a second film 12 is formed on the upper surface of the first film 11 (step S3; FIG. 2C).
  • the second film 12 is preferably formed only on the upper surface of the first film 11.
  • a carbon-based protective film is formed as the second film 12 only on the upper surface of the TiO 2 film as the first film 11.
  • the carbon-based protective film include a carbon film.
  • the carbon-based protective film is formed by generating plasma while supplying a raw material gas and a gas for plasma generation.
  • the raw material gas include carbon such as hydrocarbons such as CH 4, C 3 H 6 (CxHy), fluorocarbons such as CF 4 (CxFy), and fluorinated hydrocarbons such as CH 2 F 2 (CxHyFz). Gas can be mentioned.
  • a rare gas such as Ar gas or He gas can be used.
  • the first film 11 is etched using the second film 12 as a mask (step S4; FIG. 2D). For example, etching is performed in which the selectivity of the TiO 2 film is higher than that of the carbon film. For example, while supplying ClF 3 gas, plasma is generated and etching is performed. As a result, in the first film 11, the second film 12 functions as a protective film, the upper surface is protected, and the first film 11 is etched from the side surface side. By adjusting the etching time and the like and performing etching appropriately, the first film 11 can be left on the upper part of the pattern P.
  • etching method As an etching method at this time, it is considered that a chemical method capable of etching both the material of the initial pattern P and the carbon-based material with selectivity is appropriate.
  • plasma etching using a mixed gas of F-based gas and oxygen gas represented by CxFy is used, but the carbon protective film is also scraped at the same time, and both the pattern P material and the TiO 2 film are used. The problem was that it was difficult to obtain the etching selectivity.
  • the TiO 2 film is thermally isotropically etched with ClF 3 gas.
  • ClF 3 gas is used when the pattern P is a SiO 2 oxide film.
  • the temperature is preferably 300 ° C. or lower, more preferably 200 ° C. or lower.
  • the TiO 2 film is thermally isotropically etched using HF gas. At that time, by appropriately controlling the temperature, it is possible to prevent the C film and the pattern P from being thinned.
  • HF is used when the pattern P is Si or amorphous Si.
  • the temperature is preferably 300 ° C. or lower, more preferably 200 ° C. or lower.
  • TiO 2 is etched by wet etching with buffered hydrofluoric acid.
  • the selection ratio of carbon and oxide film is determined by the difference in surface water repellency between the carbon film and the oxide film.
  • the wet etching rate has the selection ratio of wet etching in the order of TiO 2 > SiO 2 > Si, it is possible to etch TiO 2 while leaving the pattern P and the carbon film.
  • the second film 12 is etched and removed (step S5; FIG. 2E). For example, etching is performed in which the selection ratio of the carbon film is higher than that of the TiO 2 film. For example, while supplying H 2 gas, plasma is generated and etching is performed.
  • the carbon-based film may be removed by oxygen gas (O 2 ) plasma or ozone (O 3). As a result, the second film 12 is removed, and the shape of the pattern P is taken over to form the first film 11 on the upper part of the pattern P.
  • step S2 Temperature: 130 ° C Pressure: 2 Torr TiCl 4 gas: 10 sccm O 2 gas: 1000 sccm Ar gas: 1000 sccm Film formation time: 60 seconds
  • step S3 Temperature: 320 ° C Pressure: 1.0 Torr C 3 H 6 gas: 200 sccm Ar gas: 600 sccm Film formation time: 120 seconds
  • step S4 Temperature: 130 ° C Pressure: 2 Torr ClF 3 gas: 10 sccm Etching time: 20 seconds
  • step S5 Temperature: 130 ° C Pressure: 2 Torr O 2 gas: 500 sccm Etching time: 60 seconds
  • steps S2 to S5 are repeated predetermined times as necessary (step S6).
  • a first film 11 having a desired thickness can be formed on the upper part of the pattern P.
  • the film forming method according to the present embodiment can take over the shape of the pattern P and form the first film 11 on the upper part of the pattern P.
  • FIG. 3 is a diagram showing an example of the film forming apparatus according to the embodiment.
  • the film forming apparatus 100 has a substantially cylindrical chamber (processing container) 101.
  • the inner wall surface of the chamber 101 is made of aluminum that has been anodized with OGF (Out Gas Free), for example.
  • OGF Out Gas Free
  • An opening is formed in the center of the bottom of the chamber 101.
  • a cylindrical protrusion 101b is connected to the lower part of the opening.
  • the support member 103 is supported by the protrusion 101b.
  • the main body of the susceptor 102 is made of aluminum, and an insulating ring (not shown) is formed on the outer periphery thereof.
  • the susceptor 102 is provided with a temperature control mechanism 104 for controlling the temperature of the mounted wafer W.
  • the temperature control mechanism 104 can be adjusted to the temperature of the wafer W by, for example, passing a temperature-controlled temperature control medium through a flow path formed in the susceptor 102.
  • the susceptor 102 is provided with three elevating pins (not shown) for transporting the wafer W so as to be recessed from the surface of the susceptor 102.
  • An electrostatic chuck for electrostatically adsorbing the wafer W may be provided on the upper surface of the susceptor 102.
  • a shower head 105 is provided above the susceptor 102.
  • the shower head 105 has a disk-shaped shower plate 106 provided directly below the top wall 101a of the chamber 101 and in which a large number of gas discharge holes 107 are formed.
  • a shower plate 106 for example, a shower plate 106 having a thermal spray coating made of yttria formed on the surface of a main body made of aluminum is used.
  • the shower plate 106 and the chamber 101 are insulated by a ring-shaped insulating member 106a.
  • a gas introduction port 108 is provided in the center of the top wall 101a of the chamber 101.
  • a gas diffusion space 109 is formed between the top wall 101a and the shower plate 106.
  • the gas pipe 110a of the gas supply mechanism 110 is connected to the gas introduction port 108. Then, the gas supplied from the gas supply mechanism 110, which will be described later, is introduced from the gas introduction port 108, diffused into the gas diffusion space 109, and discharged into the chamber 101 from the gas discharge hole 107 of the shower plate 106.
  • the gas supply mechanism 110 has a gas supply source of various gases used for film formation by the film forming method according to the embodiment, and a plurality of gas supply pipes for supplying each gas from the plurality of gas supply sources. ing.
  • the gas supply mechanism 110 is a TiCl 4 gas, O 2 gas, Ar gas, C 3 H. It has a gas supply source that supplies 6 gas, ClF 3 gas, and H 2 gas (none of them are shown).
  • the gas supply mechanism 110 is provided with an on-off valve and a flow rate controller such as a mass flow controller in each gas supply pipe (neither of them is shown), which enables gas switching and gas flow rate control. ing.
  • the gas from these gas supply pipes is supplied to the shower head 105 via the gas pipe 110a described above.
  • a first high frequency power supply 113 is connected to the shower plate 106 via a matching unit 114.
  • High-frequency power is applied to the shower plate 106 from the first high-frequency power source 113 to the shower plate 106.
  • the shower plate 106 functions as an upper electrode
  • the susceptor 102 functions as a lower electrode
  • the shower plate 106 and the susceptor 102 form a pair of parallel plate electrodes.
  • Capacitively coupled plasma is generated in the chamber 101 by applying high frequency power to the shower plate 106.
  • the frequency of the high frequency power output from the first high frequency power supply 113 is preferably set to 450 kHz to 13.56 MHz, and for example, 450 kHz is used.
  • a second high frequency power supply 115 is connected to the susceptor 102 via a matching unit 116.
  • High-frequency power for bias is applied to the susceptor 102 from the second high-frequency power source 115.
  • the ions in the plasma generated in the chamber 101 are drawn into the wafer W.
  • Exhaust ports 121 and 122 are provided at the bottom of the chamber 101.
  • An exhaust mechanism 120 is connected to the exhaust ports 121 and 122.
  • the exhaust mechanism 120 includes a first exhaust pipe 123, a second exhaust pipe 124, a first pressure control valve 125, a dry pump 126, a second pressure control valve 127, and a turbo pump 128.
  • the first exhaust pipe 123 is connected to the exhaust port 121.
  • the second exhaust pipe 124 is connected to the exhaust port 122.
  • the first exhaust pipe 123 is provided with a first pressure control valve 125 and a dry pump 126.
  • the second exhaust pipe 124 is provided with a second pressure control valve 127 and a turbo pump 128.
  • the air is exhausted only by the dry pump 126.
  • the dry pump 126 and the turbo pump 128 are used in combination during the plasma treatment in which the inside of the chamber 101 is set to a low pressure.
  • the pressure control in the chamber 101 is performed by controlling the opening degree of the first pressure control valve 125 and the second pressure control valve 127 based on the detection value of the pressure sensor (not shown) provided in the chamber 101. ..
  • an carry-in outlet 130 for carrying in and out the wafer W to and from a vacuum transfer chamber (not shown) to which the chamber 101 is connected, and a gate valve G for opening and closing the carry-in outlet 130 are provided on the side wall of the chamber 101.
  • the wafer W is conveyed by a transfer mechanism (not shown) provided in the vacuum transfer chamber.
  • the film forming apparatus 100 has a control unit 140.
  • the control unit 140 includes a main control unit, an input device (keyboard, mouse, etc.), an output device (printer, etc.), a display device (display, etc.), and a storage device (storage medium).
  • the main control unit has a CPU (computer) and controls each component of the film forming apparatus 100.
  • the main control unit controls a valve of the gas supply mechanism 110, a mass flow controller, a first high frequency power supply 113, a second high frequency power supply 115, an exhaust mechanism 120, a temperature control mechanism 104, a transport mechanism, a gate valve G, and the like. ..
  • the main control unit of the control unit 140 executes a predetermined operation on the film forming apparatus 100 based on, for example, a processing recipe stored in a storage medium built in the storage device or a storage medium set in the storage device. Let me.
  • the film forming apparatus 100 opens the gate valve G.
  • the transfer mechanism (not shown) moves the wafer W, which is a structure in which the structure shown in FIG. 2A is formed on the entire surface, from the vacuum transfer chamber (not shown) through the carry-in outlet 130 into the chamber 101. And place it on the susceptor 102. After the transfer mechanism is retracted from the chamber 101, the film forming apparatus 100 closes the gate valve G.
  • the film forming apparatus 100 adjusts the pressure in the chamber 101 by the exhaust mechanism 120. Further, the film forming apparatus 100 adjusts the temperature of the wafer W by the temperature control mechanism 104 of the susceptor 102. Then, the film forming apparatus 100 supplies power from the first high-frequency power source 113 while supplying TiCl 4 gas, O 2 gas, and Ar gas from the gas supply mechanism 110 into the chamber 101 via the shower head 105. Plasma is generated to form a TiO 2 film. At this time, while the first high frequency power supply 113 is on, the second high frequency power supply 115 may be turned on for ion attraction.
  • the film forming apparatus 100 After the TiO 2 film is formed, the film forming apparatus 100 exhausts the inside of the chamber 101 by the exhaust mechanism 120.
  • the film forming apparatus 100 adjusts the pressure in the chamber 101 by the exhaust mechanism 120. Further, the film forming apparatus 100 adjusts the temperature of the wafer W by the temperature control mechanism 104 of the susceptor 102. Then, the film forming apparatus 100 supplies power from the first high-frequency power source 113 while supplying TiCl 4 gas, O 2 gas, and Ar gas from the gas supply mechanism 110 into the chamber 101 via the shower head 105. Plasma is generated to form a carbon film on the upper surface of the TiO 2 film.
  • the film forming apparatus 100 After the carbon film is formed, the film forming apparatus 100 exhausts the inside of the chamber 101 by the exhaust mechanism 120.
  • the film forming apparatus 100 adjusts the pressure in the chamber 101 by the exhaust mechanism 120. Further, the film forming apparatus 100 adjusts the temperature of the wafer W by the temperature control mechanism 104 of the susceptor 102. Further, the film forming apparatus 100 etches the TiO 2 film using the carbon film as a mask while supplying ClF 3 gas from the gas supply mechanism 110 into the chamber 101 via the shower head 105.
  • the film forming apparatus 100 After the etching of the TiO 2 film is completed, the film forming apparatus 100 exhausts the inside of the chamber 101 by the exhaust mechanism 120.
  • the film forming apparatus 100 adjusts the pressure in the chamber 101 by the exhaust mechanism 120. Further, the film forming apparatus 100 adjusts the temperature of the wafer W by the temperature control mechanism 104 of the susceptor 102. Then, also, the film forming apparatus 100, while supplying into the chamber 101 and H 2 gas from the gas supply mechanism 110 through the showerhead 105, and the plasma generated by supplying electric power from the first RF power source 113 Carbon Etch the film.
  • the film forming apparatus 100 can take over the shape of the pattern P on the wafer W and form a film on the upper part of the pattern P.
  • FIG. 4 is a diagram schematically showing an example of a film forming system according to the embodiment.
  • the film forming system 300 includes a first film forming apparatus 100a, a second film forming apparatus 100b, a first etching apparatus 100c, and a second etching apparatus 100d.
  • the first film forming apparatus 100a, the second film forming apparatus 100b, the first etching apparatus 100c, and the second etching apparatus 100d are connected to the four walls of the vacuum transfer chamber 301 having a heptagonal planar shape, respectively, via a gate valve G. Is connected.
  • the inside of the vacuum transfer chamber 301 is exhausted by a vacuum pump and maintained at a predetermined degree of vacuum.
  • the first film forming apparatus 100a, the second film forming apparatus 100b, the first etching apparatus 100c, and the second etching apparatus 100d are configured in the same manner as the above-mentioned film forming apparatus 100.
  • the first film forming apparatus 100a is an apparatus for forming a first film 11, for example, a TiO 2 film on the wafer W.
  • the second film forming apparatus 100b is an apparatus for forming a second film 12, for example, a carbon film on the wafer W.
  • the first etching apparatus 100c is an apparatus for etching the TiO 2 film on the wafer W using the carbon film as a mask.
  • the second etching apparatus 100d is an apparatus for etching the carbon film on the wafer W.
  • Three load lock chambers 302 are connected to the other three walls of the vacuum transfer chamber 301 via a gate valve G1.
  • An air transport chamber 303 is provided on the opposite side of the vacuum transport chamber 301 with the load lock chamber 302 in between.
  • the three load lock chambers 302 are connected to the air transport chamber 303 via a gate valve G2.
  • the load lock chamber 302 controls the pressure between the atmospheric pressure and the vacuum when the wafer W is transported between the atmospheric transport chamber 303 and the vacuum transport chamber 301.
  • the wall portion of the air transport chamber 303 opposite to the load lock chamber 302 mounting wall portion has three carrier mounting ports 305 for mounting a carrier (FOUP, etc.) C for accommodating the wafer W. Further, an alignment chamber 304 for aligning the wafer W is provided on the side wall of the air transfer chamber 303. A downflow of clean air is formed in the air transport chamber 303.
  • a transfer mechanism 306 is provided in the vacuum transfer chamber 301.
  • the transfer mechanism 306 transfers the wafer W to the first film forming apparatus 100a, the second film forming apparatus 100b, the first etching apparatus 100c, the second etching apparatus 100d, and the load lock chamber 302.
  • the transport mechanism 306 has two transport arms 307a and 307b that can move independently.
  • a transport mechanism 308 is provided in the atmospheric transport chamber 303.
  • the transfer mechanism 308 transfers the wafer W to the carrier C, the load lock chamber 302, and the alignment chamber 304.
  • the film forming system 300 has an overall control unit 310.
  • the overall control unit 310 includes a main control unit, an input device (keyboard, mouse, etc.), an output device (printer, etc.), a display device (display, etc.), and a storage device (storage medium).
  • the main control unit has a CPU (computer) and controls each component of the first film forming apparatus 100a, the second film forming apparatus 100b, the first etching apparatus 100c, and the second etching apparatus 100d. Further, the main control unit includes an exhaust mechanism and a transport mechanism 306 of the vacuum transport chamber 301, an exhaust mechanism and a gas supply mechanism of the load lock chamber 302, a transport mechanism 308 of the transport mechanism 308 of the atmospheric transport chamber 303, and gate valves G and G1.
  • the main control unit of the overall control unit 310 performs a predetermined operation on the film forming system 300 based on, for example, a storage medium built in the storage device or a processing recipe stored in the storage medium set in the storage device. Let it run.
  • the overall control unit 310 may be a higher-level control unit of the control unit of each unit such as the control unit 140.
  • the film forming system 300 takes out the wafer W from the carrier C connected to the atmospheric transport chamber 303 by the transport mechanism 308.
  • the film forming system 300 opens the gate valve G2 of one of the load lock chambers 302, and carries the wafer W into the load lock chamber 302 by the transfer mechanism 308.
  • the film forming system 300 retracts the transport mechanism 308 from the load lock chamber 302, closes the gate valve G2, and evacuates the inside of the load lock chamber 302.
  • the gate valve G1 is opened when the load lock chamber 302 carrying the wafer W reaches a predetermined degree of vacuum, and the transfer arm 307a or 307b of the transfer mechanism 306 is used to move the wafer W from the load lock chamber 302. Take out the wafer W.
  • the film forming system 300 opens the gate valve G of the first film forming apparatus 100a and carries the wafer W held by any of the conveying arms of the conveying mechanism 306 into the first film forming apparatus 100a.
  • the film forming system 300 returns the empty transfer arm to the vacuum transfer chamber 301, and closes the gate valve G of the first film forming apparatus 100a.
  • the first film forming apparatus 100a forms the first film 11 so as to form a thick film on the upper part of the pattern P with respect to the wafer W.
  • the film forming system 300 opens the gate valve G of the first film forming apparatus 100a, and the first film forming apparatus 100a is provided by either the conveying arm 307a or 307b of the conveying mechanism 306.
  • the wafer W is carried out from the inside.
  • the film forming system 300 opens the gate valve G of the second film forming apparatus 100b and carries the wafer W held by any of the conveying arms of the conveying mechanism 306 into the second film forming apparatus 100b.
  • the film forming system 300 returns the empty transfer arm to the vacuum transfer chamber 301, and closes the gate valve G of the second film forming apparatus 100b.
  • the second film forming apparatus 100b forms a second film 12 on the upper surface of the first film 11 of the wafer W.
  • the film forming system 300 opens the gate valve G of the second film forming apparatus 100b, and the second film forming apparatus 100b is used by either the conveying arm 307a or 307b of the conveying mechanism 306.
  • the wafer W is carried out from the inside.
  • the film forming system 300 opens the gate valve G of the first etching apparatus 100c and carries the wafer W held by any of the conveying arms of the conveying mechanism 306 into the first etching apparatus 100c.
  • the film forming system 300 returns the empty transfer arm to the vacuum transfer chamber 301, and closes the gate valve G of the first etching apparatus 100c.
  • the first etching apparatus 100c etches the first film 11 on the wafer W using the second film 12 as a mask.
  • the film forming system 300 opens the gate valve G of the first etching device 100c, and the transfer arm 307a or 307b of the transfer mechanism 306 is used to remove the gate valve G from the first etching device 100c.
  • the wafer W is carried out.
  • the film forming system 300 opens the gate valve G of the second etching apparatus 100d and carries the wafer W held by any of the conveying arms of the conveying mechanism 306 into the second etching apparatus 100d.
  • the film forming system 300 returns the empty transfer arm to the vacuum transfer chamber 301, and closes the gate valve G of the second etching apparatus 100d.
  • the second etching apparatus 100d etches the second film 12 on the wafer W.
  • the film forming system 300 opens the gate valve G of the second etching device 100d, and the transfer arm 307a or 307b of the transfer mechanism 306 is used to remove the second etching device 100d from the inside of the second etching device 100d.
  • the wafer W is carried out.
  • the film forming system 300 opens the gate valve G1 of any of the load lock chambers 302, and carries the wafer W on the transfer arm into the load lock chamber 302.
  • the film forming system 300 returns the inside of the load lock chamber 302 carrying the wafer W to the atmosphere, opens the gate valve G2, and returns the wafer W in the load lock chamber 302 to the carrier C by the transport mechanism 308.
  • the film forming system 300 performs the above processing on a plurality of wafers W in parallel to form a film on a predetermined number of wafers W.
  • the first film 11 is formed on the wafer W on which the pattern P is formed so as to form a thick film on the upper part of the pattern.
  • the film forming method is to form a second film 12 on the upper surface of the first film 11.
  • etching is performed in which the selection ratio of the first film 11 is higher than that of the second film 12.
  • the second film 12 is etched.
  • a TiO 2 film is formed as the first film 11 on the upper part of the pattern P by plasma CVD.
  • a carbon-based protective film is formed as a second film 12 on the upper surface of the TiO 2 film.
  • etching is performed in which the selection ratio of the TiO 2 film is higher than that of the carbon-based protective film.
  • the film forming method according to the present embodiment C 3 H 6 gas, the upper surface of the first film 11 to generate plasma while supplying Ar gas, as a second layer 12, forming a carbon film To do.
  • the upper surface of the first film 11 can be protected by the carbon film, and the first film 11 can be etched from the side surface side with a high selective ratio.
  • the film forming method according to the embodiment can be generally applied when it is desired to take over the shape of the pattern and form a film on the upper part of the pattern.
  • the present invention is not limited to this.
  • the first film 11 may be a different type of film from the pattern P.
  • the etching of the first film 11 the etching in which the selection ratio of the first film 11 is higher than that of the second film 12 and the pattern P is performed.
  • the film forming system 300 a case where the first film 11 and the second film 12 are separately formed by the first film forming apparatus 100a and the second film forming apparatus 100b will be described as an example. However, there is nothing limited to this.
  • the film formation of the first film 11 and the film formation of the second film 12 may be carried out by the same film forming apparatus.
  • the film forming system 300 may have one film forming apparatus, and the film forming apparatus may be used to form the first film 11 and the second film 12.
  • the film forming system 300 a case where the etching of the first film 11 and the etching of the second film 12 are separately performed by the first etching apparatus 100c and the second etching apparatus 100d has been described as an example. There is nothing limited. The etching of the first film 11 and the etching of the second film 12 may be performed by the same etching apparatus.
  • the film forming system 300 may have one etching apparatus, and the etching apparatus may perform etching of the first film 11 and etching of the second film 12.
  • the substrate may be any substrate such as a compound semiconductor, a glass substrate, and a ceramics substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

成膜方法は、第1成膜工程と、第2成膜工程と、第1エッチング工程と第2エッチング工程と、を有する。第1成膜工程は、パターンが形成された基板にパターンの上部で厚く成膜されるように第1の膜を成膜する。第2成膜工程は、第1の膜の上面に第2の膜を成膜する。第1エッチング工程は、第2の膜よりも第1の膜の選択比が高いエッチングを実施する。第2エッチング工程は、第2の膜をエッチングする。

Description

成膜方法、成膜装置および成膜システム
 以下の開示は、成膜方法、成膜装置および成膜システムに関する。
 特許文献1は、第1の下地膜と第2の下地膜を有する基板を所定温度に加熱して表面に塩素含有ガスを吸着させ、原料ガスおよび窒化ガスを用いて窒化膜を成膜することで、第1の下地膜および第2の下地膜の一方に選択的に窒化膜を形成する技術を開示する。
特開2017-174919号公報
 本開示は、パターンの形状を引き継いでパターンの上部に成膜する技術を提供する。
 本開示の一態様による成膜方法は、第1成膜工程と、第2成膜工程と、第1エッチング工程と、第2エッチング工程とを有する。第1成膜工程は、パターンが形成された基板に前記パターンの上部で厚く成膜されるように第1の膜を成膜する。第2成膜工程は、第1の膜の上面に第2の膜を成膜する。第1エッチング工程は、第2の膜よりも第1の膜の選択比が高いエッチングを実施する。第2エッチング工程は、第2の膜をエッチングする。
 本開示によれば、パターンの形状を引き継いでパターンの上部に成膜できる。
図1は、実施形態に係る成膜方法の流れの一例を示すフローチャートである。 図2は、実施形態に係る成膜方法の各工程による基板の変化の一例を示す図である。 図3は、実施形態に係る成膜装置の一例を示す図である。 図4は、実施形態に係る成膜システムの一例を概略的に示す図である。
 以下、図面を参照して本願の開示する成膜方法、成膜装置および成膜システムの実施形態について詳細に説明する。なお、本実施形態により、開示する成膜方法、成膜装置および成膜システムが限定されるものではない。
 ところで、露光光源の短波長化、液浸露光、ダブルパターニングといった技術によって、半導体の加工寸法の微細化が進んでいる。一方、露光によるパターニングコスト増加、配線層へのコンタクトホール形成時のアライメントエラー等が先端プロセスで問題となっている。
 そこで、パターニングコストの低減やアライメントエラーの防止を目的として、下地に形成されたパターンの形状を引き継いでパターンの上部に成膜する技術が期待されている。
 <成膜方法>
 最初に、実施形態に係る成膜方法について図1および図2を参照して説明する。図1は、実施形態に係る成膜方法の流れの一例を示すフローチャートである。図2は、実施形態に係る成膜方法の各工程による基板の変化の一例を示す図である。
 本実施形態では、基板をシリコンウエハ(以下、「ウエハ」と称する。)とし、ウエハにFinFETなどの3次元トランジスタを形成する場合を例に説明する。
 最初に、シリコン基体10上に凹凸のパターンPが形成されたウエハWを準備する(ステップS1;図2(a))。ウエハWは、パターンPとして、シリコン基体10から垂直に立った「Fin」が形成されている。パターンPは、例えば、ウエハW上にパターンPとなる膜を成膜した後、膜の上面にあたる部分にハードマスク素材を塗布し、ハードマスクのないエリアをエッチングして膜の表面に凹凸を作り、最後に、ハードマスクを除去することで形成する。パターンPの材料としてはアモルファスシリコンやSiO2等の絶縁膜が用途に応じて使用される。
 次に、パターンPが形成されたウエハWに対してパターンPの上部で厚く成膜されるように第1の膜11を成膜する(ステップS2;図2(b))。例えば、第1の膜11として、TiO膜をプラズマCVD(chemical vapor deposition)により成膜する。TiO膜は、原料ガスと、反応ガスと、プラズマ生成用のガスと供給しつつプラズマを生成して成膜する。原料ガスとしては、例えば、TiCl、テトラ(イソプロポキシ)チタン(TTIP)、四臭化チタン(TiBr)、四ヨウ化チタン(TiI)、テトラキスエチルメチルアミノチタン(TEMAT)、テトラキスジメチルアミノチタン(TDMAT)、テトラキスジエチルアミノチタン(TDEAT)等のTi含有ガスが挙げられる。反応ガスとしては、酸素(O)ガス等の酸化ガスを用いることができる。プラズマ生成用のガスとしては、Arガス、Heガス等の希ガスを用いることができる。第1の膜11は、パターンPの上部で厚く成膜される。このため、第1の膜11が成膜されたパターンPは、下部よりも上部で幅が広くなる。
 次に、第1の膜11の上面に第2の膜12を成膜する(ステップS3;図2(c))。第2の膜12は、第1の膜11の上面のみに成膜することが好ましい。例えば、プラズマCVDにより、第1の膜11としてのTiO膜の上面のみに、第2の膜12として、カーボン系保護膜を成膜する。カーボン系保護膜としては、例えば、カーボン膜が挙げられる。カーボン系保護膜は、原料ガスと、プラズマ生成用のガスと供給しつつプラズマを生成して成膜する。原料ガスとしては、例えば、CH4、等の炭化水素(CxHy)、CF等のフッ化炭素(CxFy)、CH等のフッ素化炭化水素(CxHyFz)等のカーボン含有ガスが挙げられる。プラズマ生成用のガスとしては、Arガス、Heガス等の希ガスを用いることができる。
 次に、第2の膜12をマスクとして第1の膜11をエッチングする(ステップS4;図2(d))。例えば、カーボン膜よりもTiO膜の選択比が高いエッチングを実施する。例えば、ClFガスを供給しつつ、プラズマを生成してエッチングを実施する。これにより、第1の膜11は、第2の膜12が保護膜として機能し、上面が保護され、側面側からエッチングされる。エッチング時間などを調整して適切にエッチングを実施することで、パターンPの上部に第1の膜11を残すことができる。
 この際のエッチング手法としては、初期パターンPの材料とカーボン系材料両方に選択性を持ってエッチングできる化学的手法が適当であると考えられる。従来手法の一例ではCxFyに代表されるF系ガスと酸素ガスの混合ガスによるプラズマエッチングが使用されるが、カーボン保護膜も同時に削れてしまうことや、パターンP材料・TiO膜の両方とのエッチング選択比を取ることが困難であることが課題であった。
 本研究の実施形態の一例では、ClFガスを用いてTiO膜を熱的に等方エッチングする。ClFガスはパターンPがSiO酸化膜である場合に用いられる。その際に温度を適切に制御することでC膜とパターンPの減膜を防ぐことができる。その温度として好ましくは300℃以下、さらに好ましくは200℃以下が選択される。
 また本研究の実施形態の一例では、HFガスを用いてTiO膜を熱的に等方エッチングする。その際に温度を適切に制御することでC膜とパターンPの減膜を防ぐことができる。HFはパターンPがSiあるいはアモルファスSiである場合に用いられる。その温度として好ましくは300℃以下、さらに好ましくは200℃以下が選択される。
 また本研究の実施形態の一例では、バッファードフッ化水素酸によるウェットエッチングを用いてTiOをエッチングする。この場合、カーボン膜と酸化膜の表面撥水性の違いによりカーボンと酸化膜の選択比が生じる。またウェットエッチングレートはTiO>SiO>Siの順にウェットエッチングの選択比を持つためパターンPとカーボン膜を残したままTiOのエッチングが可能である。
 次に、第2の膜12をエッチングして除去する(ステップS5;図2(e))。例えば、TiO膜よりもカーボン膜の選択比が高いエッチングを実施する。例えば、Hガスを供給しつつ、プラズマを生成してエッチングを実施する。なお、カーボン系膜は、酸素ガス(O)のプラズマやオゾン(O)により除去してもよい。これにより、第2の膜12が除去され、パターンPの形状を引き継いでパターンPの上部に第1の膜11が形成される。
 ここで、実施形態に係る成膜方法のプロセス条件の一例をまとめて以下に記載する。
・TiO膜の成膜(ステップS2)
温度:130℃
圧力:2Torr
TiClガス:10sccm
ガス:1000sccm
Arガス:1000sccm
成膜時間:60秒
・カーボン膜の成膜(ステップS3)
温度:320℃
圧力:1.0Torr
ガス:200sccm
Arガス:600sccm
成膜時間:120秒
・TiO膜のエッチング(ステップS4)
温度:130℃
圧力:2Torr
ClFガス:10sccm
エッチング時間:20秒
・カーボン膜のエッチング(ステップS5)
温度:130℃
圧力:2Torr
ガス:500sccm
エッチング時間:60秒
 本実施形態に係る成膜方法では、ステップS2~S5の処理を必要に応じて所定回繰り返す(ステップS6)。これによりパターンPの上部に所望の厚さの第1の膜11を形成できる。
 以上のように、本実施形態に係る成膜方法は、パターンPの形状を引き継いでパターンPの上部に第1の膜11を成膜できる。
 <成膜方法装置>
 次に、上記の成膜方法の実施に用いられる成膜装置の一例について説明する。図3は、実施形態に係る成膜装置の一例を示す図である。
 成膜装置100は、略円筒状のチャンバー(処理容器)101を有している。チャンバー101は、例えば内壁面がOGF(Out Gas Free)陽極酸化処理が施されたアルミニウムで構成されている。
 チャンバー101の内部には、図2(a)に示す構造が全面に形成された構造体であるウエハW(基板)を水平に支持するためのサセプタ102が、中央下部に設けられた円筒状の支持部材103により支持された状態で配置されている。チャンバー101の底部の中央には、開口部が形成されている。開口部の下部には、円筒状の突出部101bが接続されている。支持部材103は、突出部101bに支持されている。
 サセプタ102は、例えば、本体部がアルミニウムからなり、その外周に絶縁リング(図示せず)が形成されている。サセプタ102は、載置されたウエハWの温調を行うための温調機構104が内部に設けられている。温調機構104は、例えば、サセプタ102に形成された流路に温度制御された温調媒体を通流させることにより、ウエハWの温度に調整可能とされている。
 サセプタ102は、ウエハWを搬送するための3本の昇降ピン(図示せず)が、サセプタ102の表面に対して突没可能に設けられている。サセプタ102の上面に、ウエハWを静電吸着するための静電チャックが設けられていてもよい。
 チャンバー101は、シャワーヘッド105がサセプタ102の上部に設けられている。シャワーヘッド105は、チャンバー101の天壁101aの直下に設けられた、円盤状をなし、多数のガス吐出孔107が形成されたシャワープレート106を有している。シャワープレート106としては、例えば、アルミニウムからなる本体の表面にイットリアからなる溶射皮膜が形成されたものが用いられる。シャワープレート106とチャンバー101とは、リング状の絶縁部材106aにより絶縁されている。
 チャンバー101の天壁101aの中央には、ガス導入口108が設けられている。天壁101aとシャワープレート106との間は、ガス拡散空間109となっている。
 ガス導入口108には、ガス供給機構110のガス配管110aが接続されている。そして、後述するガス供給機構110から供給されたガスが、ガス導入口108から導入され、ガス拡散空間109内に拡散されてシャワープレート106のガス吐出孔107からチャンバー101内に吐出される。
 ガス供給機構110は、実施形態に係る成膜方法による成膜に用いる各種のガスのガス供給源と、これら複数のガス供給源から各ガスを供給するための複数のガス供給配管とを有している。例えば、第1の膜11としてTiO膜を成膜し、第2の膜12としてカーボン膜を成膜する場合、ガス供給機構110は、TiClガス、Oガス、Arガス、Cガス、ClFガス、Hガスを供給するガス供給源を有している(いずれも図示せず)。ガス供給機構110は、各ガス供給配管に、開閉バルブと、マスフローコントローラ等の流量制御器とが設けられ(いずれも図示せず)、これらによりガスの切り替え、およびガスの流量制御が可能とされている。これらのガス供給配管からのガスは、上述のガス配管110aを経てシャワーヘッド105に供給される。
 シャワープレート106には、整合器114を介して第1の高周波電源113が接続されている。シャワープレート106には、第1の高周波電源113からシャワープレート106に高周波電力が印加される。シャワープレート106が上部電極として機能し、サセプタ102が下部電極として機能して、シャワープレート106とサセプタ102が一対の平行平板電極を構成する。シャワープレート106に高周波電力が印加されることにより、チャンバー101内には、容量結合プラズマが生成される。第1の高周波電源113から出力される高周波電力の周波数は、450kHz~13.56MHzに設定されることが好ましく、例えば450kHzが用いられる。
 一方、サセプタ102には、整合器116を介して第2の高周波電源115が接続されている。サセプタ102には、第2の高周波電源115からサセプタ102にバイアス用の高周波電力が印加される。サセプタ102にバイアス用の高周波を印加することにより、チャンバー101内に生成されたプラズマ中のイオンがウエハWに引き込まれる。
 チャンバー101の底部には、排気口121、122が設けられている。排気口121、122には、排気機構120が接続されている。排気機構120は、第1排気配管123と、第2排気配管124と、第1圧力制御バルブ125と、ドライポンプ126と、第2圧力制御バルブ127と、ターボポンプ128とを有している。第1排気配管123は、排気口121に接続されている。第2排気配管124は、排気口122に接続されている。第1排気配管123には、第1圧力制御バルブ125およびドライポンプ126が設けられている。第2排気配管124には、第2圧力制御バルブ127およびターボポンプ128が設けられている。チャンバー101内が高圧に設定される成膜処理の際にはドライポンプ126のみで排気される。チャンバー101内が低圧に設定されるプラズマ処理の際にはドライポンプ126とターボポンプ128とが併用される。チャンバー101内の圧力制御は、チャンバー101に設けられた圧力センサー(図示せず)の検出値に基づいて第1圧力制御バルブ125および第2圧力制御バルブ127の開度を制御することによりなされる。
 チャンバー101の側壁には、チャンバー101が接続される図示しない真空搬送室との間でウエハWの搬入出を行うための搬入出口130と、この搬入出口130を開閉するゲートバルブGとが設けられている。ウエハWの搬送は、真空搬送室に設けられた搬送機構(図示せず)により行われる。
 成膜装置100は、制御部140を有している。制御部140は、主制御部と、入力装置(キーボード、マウス等)と、出力装置(プリンタ等)と、表示装置(ディスプレイ等)と、記憶装置(記憶媒体)とを有している。主制御部は、CPU(コンピュータ)を有し、成膜装置100の各構成部を制御する。例えば、主制御部は、ガス供給機構110のバルブやマスフローコントローラ、第1の高周波電源113、第2の高周波電源115、排気機構120、温調機構104、搬送機構、ゲートバルブG等を制御する。制御部140の主制御部は、例えば、記憶装置に内蔵された記憶媒体、または記憶装置にセットされた記憶媒体に記憶された処理レシピに基づいて、成膜装置100に、所定の動作を実行させる。
 次に、以上のように構成される成膜装置100の処理動作について説明する。以下の処理動作は制御部140における記憶媒体に記憶された処理レシピに基づいて実行される。
 成膜装置100は、ゲートバルブGを開ける。搬送機構(図示せず)は、真空搬送室(図示せず)から搬入出口130を介して、図2(a)のに示す構造が全面に形成された構造体であるウエハWをチャンバー101内に搬入し、サセプタ102上に載置する。搬送機構がチャンバー101から退避した後、成膜装置100は、ゲートバルブGを閉じる。
 成膜装置100は、排気機構120により、チャンバー101内の圧力を調整する。また、成膜装置100は、サセプタ102の温調機構104によりウエハWの温度を調整する。そして、成膜装置100は、ガス供給機構110からTiClガス、Oガス、Arガスをシャワーヘッド105を介してチャンバー101内に供給しつつ、第1の高周波電源113から電力を供給してプラズマ生成してTiO膜を成膜する。このとき、第1の高周波電源113をオンにしている間、イオン引き込みのために第2の高周波電源115をオンにしてもよい。
 TiO膜の成膜後、成膜装置100は、排気機構120によりチャンバー101内を排気する。
 排気終了後、成膜装置100は、排気機構120により、チャンバー101内の圧力を調整する。また、成膜装置100は、サセプタ102の温調機構104によりウエハWの温度を調整する。そして、成膜装置100は、ガス供給機構110からTiClガス、Oガス、Arガスをシャワーヘッド105を介してチャンバー101内に供給しつつ、第1の高周波電源113から電力を供給してプラズマ生成してTiO膜の上面にカーボン膜を成膜する。
 カーボン膜の成膜後、成膜装置100は、排気機構120によりチャンバー101内を排気する。
 排気終了後、成膜装置100は、排気機構120により、チャンバー101内の圧力を調整する。また、成膜装置100は、サセプタ102の温調機構104によりウエハWの温度を調整する。そして、また、成膜装置100は、ガス供給機構110からClFガスをシャワーヘッド105を介してチャンバー101内に供給しつつ、カーボン膜をマスクとしてTiO膜をエッチングする。
 TiO膜のエッチング終了後、成膜装置100は、排気機構120によりチャンバー101内を排気する。
 排気終了後、成膜装置100は、排気機構120により、チャンバー101内の圧力を調整する。また、成膜装置100は、サセプタ102の温調機構104によりウエハWの温度を調整する。そして、また、成膜装置100は、ガス供給機構110からHガスをシャワーヘッド105を介してチャンバー101内に供給しつつ、第1の高周波電源113から電力を供給してプラズマ生成してカーボン膜をエッチングする。
 これにより、実施形態に係る成膜装置100は、ウエハWに対して、パターンPの形状を引き継いでパターンPの上部に成膜できる。
 <成膜システム>
 次に、上記成膜装置100を備えた成膜システムについて説明する。
 図4は、実施形態に係る成膜システムの一例を概略的に示す図である。成膜システム300は、第1成膜装置100aと、第2成膜装置100bと、第1エッチング装置100cと、第2エッチング装置100dとを有する。第1成膜装置100a、第2成膜装置100b、第1エッチング装置100cおよび第2エッチング装置100dは、平面形状が七角形をなす真空搬送室301の4つの壁部にそれぞれゲートバルブGを介して接続されている。真空搬送室301内は、真空ポンプにより排気されて所定の真空度に保持される。
 第1成膜装置100a、第2成膜装置100b、第1エッチング装置100cおよび第2エッチング装置100dは、上述した成膜装置100と同様に構成されている。第1成膜装置100aは、ウエハWに第1の膜11、例えば、TiO膜を成膜する装置である。第2成膜装置100bは、ウエハWに第2の膜12、例えば、カーボン膜を成膜する装置である。第1エッチング装置100cは、ウエハWに対してカーボン膜をマスクとしてTiO膜のエッチングを実施する装置である。第2エッチング装置100dは、ウエハWに対してカーボン膜のエッチングを実施する装置である。
 真空搬送室301の他の3つの壁部には3つのロードロック室302がゲートバルブG1を介して接続されている。ロードロック室302を挟んで真空搬送室301の反対側には大気搬送室303が設けられている。3つのロードロック室302は、ゲートバルブG2を介して大気搬送室303に接続されている。ロードロック室302は、大気搬送室303と真空搬送室301との間でウエハWを搬送する際に、大気圧と真空との間で圧力制御するものである。
 大気搬送室303のロードロック室302取り付け壁部とは反対側の壁部にはウエハWを収容するキャリア(FOUP等)Cを取り付ける3つのキャリア取り付けポート305を有している。また、大気搬送室303の側壁には、ウエハWのアライメントを行うアライメントチャンバ304が設けられている。大気搬送室303内には清浄空気のダウンフローが形成されるようになっている。
 真空搬送室301内には、搬送機構306が設けられている。搬送機構306は、第1成膜装置100a、第2成膜装置100b、第1エッチング装置100c、第2エッチング装置100d、ロードロック室302に対してウエハWを搬送する。搬送機構306は、独立に移動可能な2つの搬送アーム307a、307bを有している。
 大気搬送室303内には、搬送機構308が設けられている。搬送機構308は、キャリアC、ロードロック室302、アライメントチャンバ304に対してウエハWを搬送するようになっている。
 成膜システム300は、全体制御部310を有している。全体制御部310は、主制御部と、入力装置(キーボード、マウス等)、出力装置(プリンタ等)、表示装置(ディスプレイ等)、記憶装置(記憶媒体)を有する。主制御部は、CPU(コンピュータ)を有し、第1成膜装置100aと、第2成膜装置100bと、第1エッチング装置100cと、第2エッチング装置100dの各構成部を制御する。また、主制御部は、真空搬送室301の排気機構や搬送機構306、ロードロック室302の排気機構やガス供給機構、大気搬送室303の搬送機構308の搬送機構308、ゲートバルブG、G1、G2の駆動系等を制御する。全体制御部310の主制御部は、例えば、記憶装置に内蔵された記憶媒体、または記憶装置にセットされた記憶媒体に記憶された処理レシピに基づいて、成膜システム300に、所定の動作を実行させる。なお、全体制御部310は、上記制御部140のような各ユニットの制御部の上位の制御部であってもよい。
 次に、以上のように構成される成膜システム300の動作について説明する。以下の処理動作は全体制御部310における記憶媒体に記憶された処理レシピに基づいて実行される。
 まず、成膜システム300は、搬送機構308により大気搬送室303に接続されたキャリアCからウエハWを取り出す。成膜システム300は、いずれかのロードロック室302のゲートバルブG2を開け、搬送機構308によりウエハWをロードロック室302内に搬入する。成膜システム300は、搬送機構308をロードロック室302から退避させ、ゲートバルブG2を閉じ、ロードロック室302内を真空排気する。
 成膜システム300は、ウエハWを搬入したロードロック室302が所定の真空度になった時点でゲートバルブG1を開けて、搬送機構306の搬送アーム307a、307bのいずれかによりロードロック室302からウエハWを取り出す。
 成膜システム300は、第1成膜装置100aのゲートバルブGを開けて、搬送機構306のいずれかの搬送アームが保持するウエハWを第1成膜装置100aに搬入する。成膜システム300は、空の搬送アームを真空搬送室301に戻し、第1成膜装置100aのゲートバルブGを閉じる。第1成膜装置100aは、ウエハWに対してパターンPの上部で厚く成膜されるように第1の膜11を成膜する。
 第1の膜11の成膜終了後、成膜システム300は、第1成膜装置100aのゲートバルブGを開け、搬送機構306の搬送アーム307a、307bのいずれかにより、第1成膜装置100aの中からウエハWを搬出する。成膜システム300は、第2成膜装置100bのゲートバルブGを開けて、搬送機構306のいずれかの搬送アームが保持するウエハWを第2成膜装置100bに搬入する。成膜システム300は、空の搬送アームを真空搬送室301に戻し、第2成膜装置100bのゲートバルブGを閉じる。第2成膜装置100bは、ウエハWの第1の膜11の上面に第2の膜12を成膜する。
 第2の膜12の成膜終了後、成膜システム300は、第2成膜装置100bのゲートバルブGを開け、搬送機構306の搬送アーム307a、307bのいずれかにより、第2成膜装置100bの中からウエハWを搬出する。成膜システム300は、第1エッチング装置100cのゲートバルブGを開けて、搬送機構306のいずれかの搬送アームが保持するウエハWを第1エッチング装置100cに搬入する。成膜システム300は、空の搬送アームを真空搬送室301に戻し、第1エッチング装置100cのゲートバルブGを閉じる。第1エッチング装置100cは、ウエハWに対して第2の膜12をマスクとして第1の膜11のエッチングを実施する。
 第1の膜11のエッチング終了後、成膜システム300は、第1エッチング装置100cのゲートバルブGを開け、搬送機構306の搬送アーム307a、307bのいずれかにより、第1エッチング装置100cの中からウエハWを搬出する。成膜システム300は、第2エッチング装置100dのゲートバルブGを開けて、搬送機構306のいずれかの搬送アームが保持するウエハWを第2エッチング装置100dに搬入する。成膜システム300は、空の搬送アームを真空搬送室301に戻し、第2エッチング装置100dのゲートバルブGを閉じる。第2エッチング装置100dは、ウエハWに対して第2の膜12のエッチングを実施する。
 第2の膜12のエッチング終了後、成膜システム300は、第2エッチング装置100dのゲートバルブGを開け、搬送機構306の搬送アーム307a、307bのいずれかにより、第2エッチング装置100dの中からウエハWを搬出する。成膜システム300は、いずれかのロードロック室302のゲートバルブG1を開け、搬送アーム上のウエハWをロードロック室302内に搬入する。成膜システム300は、ウエハWを搬入したロードロック室302内を大気に戻し、ゲートバルブG2を開けて、搬送機構308にてロードロック室302内のウエハWをキャリアCに戻す。
 成膜システム300は、以上のような処理を、複数のウエハWについて同時並行的に行って、所定枚数のウエハWに成膜を実施する。
 以上のように、本実施形態に係る成膜方法は、パターンPが形成されたウエハWにパターンの上部で厚く成膜されるように第1の膜11を成膜する。成膜方法は、第1の膜11の上面に第2の膜12を成膜する。成膜方法は、第2の膜12よりも第1の膜11の選択比が高いエッチングを実施する。第2の膜12をエッチングする。これにより、本実施形態に係る成膜方法は、パターンPの形状を引き継いでパターンPの上部に第1の膜を成膜できる。
 また、本実施形態に係る成膜方法は、プラズマCVDにより、パターンPの上部に、第1の膜11として、TiO膜を成膜する。成膜方法は、TiO膜の上面に、第2の膜12として、カーボン系保護膜を成膜する。成膜方法は、カーボン系保護膜よりもTiO膜の選択比が高いエッチングを実施する。これにより、本実施形態に係る成膜方法は、パターンPの形状を引き継いでパターンPの上部にTiO膜を成膜できる。
 また、本実施形態に係る成膜方法は、Cガス、Arガスを供給しつつプラズマを生成して第1の膜11の上面に、第2の膜12として、カーボン膜を成膜する。これにより、本実施形態に係る成膜方法は、カーボン膜により第1の膜11の上面を保護でき、第1の膜11を側面側から高い選択比でエッチングさせることができる。
 以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は、多様な形態で具現され得る。また、上記の実施形態は、請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 例えば、上記実施形態では、3次元トランジスタを形成する場合を例に説明したが、これに限定されるものはない。実施形態に係る成膜方法は、パターンの形状を引き継いでパターンの上部に成膜したい場合に全般に適用できる。
 また、上記実施形態では、第1の膜11として、パターンPと同種の膜を成膜する場合を例に説明したが、これに限定されるものはない。第1の膜11は、パターンPと異なる種類の膜であってもよい。この場合、第1の膜11のエッチングとしては、第2の膜12およびパターンPよりも第1の膜11の選択比が高いエッチングを実施する。
 さらに、上記の成膜システム300では、第1の膜11の成膜と第2の膜12の成膜を第1成膜装置100aと第2成膜装置100bで別に実施する場合を例に説明したが、これに限定されるものはない。第1の膜11の成膜と第2の膜12の成膜は、同じ成膜装置で実施してもよい。例えば、成膜システム300は、1台の成膜装置を有し、当該成膜装置で第1の膜11の成膜と第2の膜12の成膜を実施してもよい。また、成膜システム300では、第1の膜11のエッチングと第2の膜12のエッチングを第1エッチング装置100cと第2エッチング装置100dでそれぞれ別に実施する場合を例に説明したが、これに限定されるものはない。第1の膜11のエッチングと第2の膜12のエッチングは、同じエッチング装置で実施してもよい。例えば、成膜システム300は、1台のエッチング装置を有し、当該エッチング装置で第1の膜11のエッチングと第2の膜12のエッチングを実施してもよい。
 さらに、上記実施形態では基板としてシリコンウエハを用いた場合について示したが、これに限定されるものはない。基板は、化合物半導体、ガラス基板、セラミックス基板等、どのような基板であってもよい。
 10 シリコン基体
 11 第1の膜
 12 第2の膜
 100 成膜装置
 100a 第1成膜装置
 100b 第2成膜装置
 100c 第1エッチング装置
 100d 第2エッチング装置
 101 チャンバー
 102 サセプタ
 106 シャワープレート
 110 ガス供給機構
 113 第1の高周波電源
 115 第2の高周波電源
 120 排気機構
 140 制御部
 300 成膜システム
 P パターン
 W ウエハ

Claims (7)

  1.  パターンが形成された基板に前記パターンの上部で厚く成膜されるように第1の膜を成膜する第1成膜工程と、
     前記第1の膜の上面に第2の膜を成膜する第2成膜工程と、
     前記第2の膜よりも前記第1の膜の選択比が高いエッチングを実施する第1エッチング工程と、
     前記第2の膜をエッチングする第2エッチング工程と、
     を有する成膜方法。
  2.  前記第1成膜工程は、前記パターンの上部に、前記第1の膜として、金属酸化膜を成膜し、
     前記第2成膜工程は、前記金属酸化膜の上面に、前記第2の膜として、カーボン系保護膜を成膜し、
     前記第1エッチング工程は、前記カーボン系保護膜よりも前記金属酸化膜の選択比が高いエッチングを実施する
     請求項1に記載の成膜方法。
  3.  前記第1成膜工程は、プラズマCVD(chemical vapor deposition)により、前記パターンの上部に、前記第1の膜として、TiO膜を成膜し、
     前記第2成膜工程は、前記TiO膜の上面に、前記第2の膜として、カーボン膜を成膜し、
     前記第1エッチング工程は、前記カーボン膜よりも前記TiO膜の選択比が高いエッチングを実施する
     請求項1または2に記載の成膜方法。
  4.  前記第1エッチング工程は、プラズマを用いない熱的なエッチングあるいは水溶液を用いたウェットエッチングであることを特徴とする
     請求項1~3の何れか1つに記載の成膜方法。
  5.  前記第2成膜工程は、Cガス、Arガスを供給しつつプラズマを生成して前記第1の膜の上面に、前記第2の膜として、カーボン膜を成膜する
     請求項3に記載の成膜方法。
  6.  パターンが形成された基板を収容する処理容器と、
     前記処理容器内に所定の処理ガスを供給するガス供給機構と、
     前記処理容器内を排気する排気機構と、
     前記処理容器内にプラズマを生成するプラズマ生成機構と、
     前記ガス供給機構、前記排気機構、および前記プラズマ生成機構を制御する制御部とを有し、
     前記制御部は、請求項1~5のいずれか1つに記載の成膜方法が行われるように前記ガス供給機構、前記排気機構、および前記プラズマ生成機構を制御する
     成膜装置。
  7.  パターンが形成された基板に前記パターンの上部で厚く成膜されるように第1の膜を成膜し、前記第1の膜の上面に第2の膜を成膜する成膜装置と、
     前記第2の膜よりも前記第1の膜の選択比が高いエッチングを実施し、前記第2の膜をエッチングするエッチング装置と、
     を有する成膜システム。
PCT/JP2020/032287 2019-09-10 2020-08-27 成膜方法、成膜装置および成膜システム WO2021049306A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019164631A JP2021044351A (ja) 2019-09-10 2019-09-10 成膜方法、成膜装置および成膜システム
JP2019-164631 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021049306A1 true WO2021049306A1 (ja) 2021-03-18

Family

ID=74863111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032287 WO2021049306A1 (ja) 2019-09-10 2020-08-27 成膜方法、成膜装置および成膜システム

Country Status (2)

Country Link
JP (1) JP2021044351A (ja)
WO (1) WO2021049306A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224313A (ja) * 1985-03-29 1986-10-06 Hitachi Ltd 気相薄膜成長方法
JPH02166737A (ja) * 1988-12-21 1990-06-27 Matsushita Electric Ind Co Ltd 層間絶縁膜の形成方法
JPH04221826A (ja) * 1990-12-21 1992-08-12 Sharp Corp 半導体装置の製造方法
JP2008171906A (ja) * 2007-01-10 2008-07-24 Sony Corp 半導体装置の製造方法及びトランジスタの製造方法
JP2009158762A (ja) * 2007-12-27 2009-07-16 Fujitsu Microelectronics Ltd 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224313A (ja) * 1985-03-29 1986-10-06 Hitachi Ltd 気相薄膜成長方法
JPH02166737A (ja) * 1988-12-21 1990-06-27 Matsushita Electric Ind Co Ltd 層間絶縁膜の形成方法
JPH04221826A (ja) * 1990-12-21 1992-08-12 Sharp Corp 半導体装置の製造方法
JP2008171906A (ja) * 2007-01-10 2008-07-24 Sony Corp 半導体装置の製造方法及びトランジスタの製造方法
JP2009158762A (ja) * 2007-12-27 2009-07-16 Fujitsu Microelectronics Ltd 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2021044351A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
US20220415661A1 (en) Plasma processing apparatus and plasma processing method
US7862683B2 (en) Chamber dry cleaning
JP2023027173A (ja) エアギャップの形成方法
US7736942B2 (en) Substrate processing apparatus, substrate processing method and storage medium
US10428426B2 (en) Method and apparatus to prevent deposition rate/thickness drift, reduce particle defects and increase remote plasma system lifetime
KR101974715B1 (ko) 산화막 제거 방법 및 제거 장치, 및 콘택 형성 방법 및 콘택 형성 시스템
TWI775839B (zh) 具有選擇性阻隔層的結構
KR20070032938A (ko) Tera 층을 화학적으로 처리하는 처리 시스템 및 방법
TWI727992B (zh) 具有高產能之超高選擇性多晶矽蝕刻
JP6854600B2 (ja) プラズマエッチング方法、プラズマエッチング装置、および基板載置台
TW201919127A (zh) 改良之金屬接觸定位結構
JP7401593B2 (ja) 空隙を形成するためのシステム及び方法
US20230035732A1 (en) Efficient cleaning and etching of high aspect ratio structures
TWI750364B (zh) 形成鈦矽化物區域之方法
US11631590B2 (en) Substrate processing method, substrate processing apparatus and cleaning apparatus
KR20190011192A (ko) 실리콘 산화막을 제거하는 방법
TWI751326B (zh) 自對準通孔處理流程
WO2021049306A1 (ja) 成膜方法、成膜装置および成膜システム
US20210233778A1 (en) Etching method, substrate processing apparatus, and substrate processing system
US20220165567A1 (en) Systems and methods for deposition residue control
KR20210097045A (ko) 에칭 방법, 기판 처리 장치, 및 기판 처리 시스템
TWI774754B (zh) 自對準觸點與閘極處理流程
KR20210097044A (ko) 에칭 방법, 기판 처리 장치, 및 기판 처리 시스템
TWI758464B (zh) 含矽間隔物的選擇性形成
JP7220603B2 (ja) 膜をエッチングする方法及びプラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862432

Country of ref document: EP

Kind code of ref document: A1