WO2021049273A1 - Horizontal electric compressor - Google Patents

Horizontal electric compressor Download PDF

Info

Publication number
WO2021049273A1
WO2021049273A1 PCT/JP2020/031582 JP2020031582W WO2021049273A1 WO 2021049273 A1 WO2021049273 A1 WO 2021049273A1 JP 2020031582 W JP2020031582 W JP 2020031582W WO 2021049273 A1 WO2021049273 A1 WO 2021049273A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
rotating shaft
compression mechanism
storage chamber
electric compressor
Prior art date
Application number
PCT/JP2020/031582
Other languages
French (fr)
Japanese (ja)
Inventor
裕光 大野
隆久 戸部
和久 角田
芳夫 小和田
達也 大木
Original Assignee
サンデン・アドバンストテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・アドバンストテクノロジー株式会社 filed Critical サンデン・アドバンストテクノロジー株式会社
Publication of WO2021049273A1 publication Critical patent/WO2021049273A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a horizontal electric compressor, and more particularly to a horizontal electric compressor that can be suitably used as a compressor installed in a moving body such as an automobile.
  • the horizontal rotary compressor described in Patent Document 1 is known as an example of this type of horizontal electric compressor.
  • the inside of the closed container is partitioned by a partition member into an oil storage space where the compression mechanism is located and a space on the motor side where the motor is located.
  • the horizontal rotary compressor is an oil supply passage including a center hole provided in the rotating shaft, an oil guide hole for communicating the center hole and each sliding portion of the compression mechanism portion, and an oil suction pipe. have.
  • the oil supply passage is configured to suck up the lubricating oil in the oil storage space and supply it to each sliding portion of the compression mechanism by utilizing the pressure difference between the oil storage space and the center hole. There is.
  • the oil storage space and the motor side space communicate with each other through an oil communication hole provided in the lower part of the partition member. Therefore, for example, when the horizontal rotary compressor is tilted in a direction in which the space on the motor side is lower than that on the space side of the oil storage portion, the lubricating oil may be biased toward the space on the motor side. Further, in the horizontal rotary compressor, the oil storage portion space and the motor side space are filled with high-pressure gas through the gas communication hole, and the rotation between the compression mechanism portion and the electric motor portion. The end of the spindle supporting the shaft on the motor side is located in the space on the motor side where the high-pressure gas compressed by the compression mechanism is discharged. For this reason, a pressure difference cannot be obtained between the center hole and the main bearing, sufficient lubrication cannot be performed on the main bearing, and galling or seizure may occur in the main bearing.
  • the present invention can secure a sufficient amount of lubricating oil on the compression mechanism side even when tilted, and lubricate the bearing portion of the rotating shaft located between the motor portion and the compression mechanism portion. It is an object of the present invention to provide a horizontal electric compressor that can be sufficiently performed.
  • a horizontal electric compressor has an electric motor unit that rotates a rotating shaft in a housing and a compression mechanism unit that is driven via the rotating shaft. Further, in the horizontal electric compressor, a bearing portion of the rotating shaft that rotatably supports the rotating shaft is provided between the electric motor portion and the compression mechanism portion.
  • the horizontal electric compressor is integrally provided in the housing, accommodates the first storage chamber for accommodating the electric motor portion and the compression mechanism portion, and has a pressure higher than the pressure in the first storage chamber.
  • a partition wall portion that partitions the inside of the housing into the second storage chamber, and an oil supply passage for supplying lubricating oil to the bearing portion, one end of which is located in the second storage chamber and the other end.
  • the side communicates with the first accommodating chamber via the bearing portion, and the lubricating oil is supplied to the bearing portion by utilizing the pressure difference between the second accommodating chamber and the first accommodating chamber. It has the oil supply passage.
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG. It is a cross-sectional view of BB of FIG.
  • FIG. 3 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 5 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 5 is a cross-sectional view taken along the line EE of FIG. It is a figure which shows the flow of the refrigerant (gas) in the horizontal type electric compressor. It is a figure which shows the flow of the lubricating oil in the horizontal type electric compressor.
  • FIG. 1 is a cross-sectional view of a horizontal electric compressor according to an embodiment of the present invention.
  • the horizontal electric compressor (hereinafter, simply referred to as “electric compressor”) 100 has a housing 110.
  • the housing 110 has a cylindrical center housing 110a, a bottomed cylindrical front housing 110b whose open end side is joined to the front end (left end in FIG. 1) of the center housing 110a, and a rear end (open end side) of the center housing 110a (the open end side). Includes a bottomed cylindrical rear housing 110c joined to the right end in FIG. 1).
  • the inside of the housing 110 is divided into a first storage chamber 113 on the front housing 110b side and a second storage chamber 115 on the rear housing 110c side by a partition wall portion 111 integrally provided in the center housing 110a.
  • the first accommodation chamber 113 is formed by the center housing 110a and the front housing 110b
  • the second accommodation chamber 115 is formed by the center housing 110a and the rear housing 110c.
  • the partition wall portion 111 is integrally formed with the center housing 110a by, for example, casting. However, it is not limited to this.
  • the partition wall portion 111 may be integrated with the center housing 110a.
  • the partition wall portion 111 may be integrated with the center housing 110a by welding, or may be integrated with the center housing 110a by a joining technique other than welding.
  • a boss portion 111a projecting toward the first storage chamber 113 is formed at the radial center portion of the partition wall portion 111. Further, the partition wall portion 111 is formed with a first shaft hole 111b that penetrates from the tip surface of the boss portion 111a to the surface on the second accommodation chamber 115 side.
  • An intermediate portion of the rotating shaft 200 extending in the horizontal direction (front-back direction) is rotatably inserted into the first shaft hole 111b.
  • One end (front end) side of the rotating shaft 200 is located in the first accommodating chamber 113, and the other end (rear end) side of the rotating shaft 200 is located in the second accommodating chamber 115.
  • a minute gap (clearance) CL is formed between the inner peripheral surface of the first shaft hole 111b and the outer peripheral surface of the rotating shaft 200.
  • the minute gap CL is set so that the rotating shaft 200 can rotate and can be sealed by the lubricating oil O described later.
  • the electric motor unit 10 for rotating the rotating shaft 200 is housed in the first storage chamber 113. Further, the first accommodation chamber 113 communicates with the low pressure side of an external refrigerant circuit (not shown) via a suction port 117 formed in the front housing 110b.
  • the suction port 117 is located at a position opposite to the partition wall portion 111 across the electric motor portion 10 in the axial direction of the rotating shaft 200, and at a position corresponding to the rotating shaft 200 in the height (upper and lower) direction (that is, the rotating shaft). It is provided at a position (at almost the same height as 200).
  • the electric motor unit 10 includes a stator 11 and a rotor 12.
  • the stator 11 is fixed to the inner peripheral surface of the housing 110. Specifically, the stator 11 is fixed to the inner peripheral surface of a portion of the center housing 110a on the front housing 110b side of the partition wall portion 111.
  • the stator 11 has a stator core 11a formed of a magnetic material in a cylindrical shape, and a stator coil 11b wound around the stator core 11a (the teeth portion) by, for example, concentrated winding.
  • the rotor 12 is arranged with a predetermined gap inside the stator 11 in the radial direction.
  • a permanent magnet is incorporated in the rotor 12.
  • the rotor 12 is formed in a cylindrical shape, and is fixed to the rotating shaft 200 with the front end side of the rotating shaft 200 inserted through the hollow portion thereof.
  • the rotor 12 is rotated by supplying electric power to the stator 11 (stator coil 11b) via the airtight terminal portion 20 provided in the front housing 110b, whereby the rotating shaft 200 is rotated. It is configured in.
  • the second accommodating chamber 115 accommodates the compression mechanism unit 30 driven via the rotating shaft 200.
  • the compression mechanism unit 30 is configured as a rotary compressor. However, the present invention is not limited to this, and the compression mechanism unit 30 may be configured as a compressor other than the rotary compressor.
  • the second storage chamber 115 communicates with the high pressure side of the external refrigerant circuit via a discharge port 119 formed in the rear housing 110c.
  • the discharge port 119 is provided at a position on the partition wall 111 side of the discharge hole 53 described later in the axial direction of the rotary shaft 200, and at a position corresponding to the rotary shaft 200 in the height direction like the suction port 117. There is.
  • the bottom of the second storage chamber 115 constitutes a lubricating oil storage portion in which the lubricating oil O is stored.
  • the lubricating oil O is mainly stored in the second storage chamber 115, and is hardly stored in the first storage chamber 113.
  • the compression mechanism portion 30 has an outer diameter smaller than the inner diameter of the housing 110. Further, the lower portion of the compression mechanism portion 30 is immersed in the lubricating oil O (that is, it is located below the oil level of the lubricating oil O).
  • the compression mechanism unit 30 includes a first compression mechanism unit 30A and a second compression mechanism unit 30B arranged on both sides of the intermediate partition plate 40.
  • the first compression mechanism portion 30A is arranged on the partition wall portion 111 side (that is, the front side) of the intermediate partition plate 40
  • the second compression mechanism portion 30B is on the side opposite to the partition wall portion 111 side of the intermediate partition plate 40 (that is, the front side). That is, it is arranged on the rear side).
  • An insertion hole through which the rotating shaft 200 is inserted is formed in the radial center portion of the intermediate partition plate 40.
  • FIG. 2 is an enlarged view of a main part of FIG. 1, and mainly shows a compression mechanism part 30.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1 and mainly shows the configuration of the first compression mechanism portion 30A.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG. 1, and the configuration is mainly shown in the second compression mechanism portion 30B.
  • the first compression mechanism unit 30A includes a first cylinder 31A, a first eccentric roller 33A, and a first vane 35A.
  • the first cylinder 31A has a first cylinder chamber 37A having a circular cross section at the center in the radial direction.
  • the first eccentric roller 33A is attached to the first eccentric portion 201 of the rotating shaft 200 located in the first cylinder chamber 37A of the first cylinder 31A.
  • the first eccentric roller 33A eccentrically rotates in the first cylinder chamber 37A of the first cylinder 31A as the rotating shaft 200 rotates.
  • the first vane 35A is urged toward the first eccentric roller 33A by the first urging member (coil spring) 39A.
  • the first vane 35A abuts on the outer peripheral surface of the first eccentric roller 33A and divides the inside of the first cylinder chamber 37A into a low pressure chamber where the first suction port 41A is located and a high pressure chamber where the first discharge port 43A is located. (See FIG. 3).
  • the first suction port 41A and the first discharge port 43A are provided below the rotating shaft 200.
  • a first recess 111c is formed on the surface of the partition wall 111 on the side of the first storage chamber 113 so as to surround the boss portion 111a. Then, the opening of the first recess 111c is closed by the first closing plate 121 which is in close contact with the surface of the partition wall 111 on the side of the first storage chamber 113, whereby the first discharge sound deadening partitioned from the first storage chamber 113 is closed.
  • a chamber 45A is formed. That is, in the present embodiment, the partition wall portion 111 is provided with the first discharge muffling chamber 45A.
  • the first discharge muffling chamber 45A is a first discharge port 43A located in a high pressure chamber in the first cylinder chamber 37A of the first cylinder 31A through the first communication hole 111d formed in the partition wall portion 111 (see FIG. 3). ).
  • the second compression mechanism unit 30B has the same configuration as the first compression mechanism unit 30A. That is, the second compression mechanism unit 30B includes a second cylinder 31B, a second eccentric roller 33B, and a second vane 35B.
  • the second cylinder 31B has a second cylinder chamber 37B having a circular cross section at the center in the radial direction.
  • the second eccentric roller 33B is attached to the second eccentric portion 202 of the rotating shaft 200 located in the second cylinder chamber 37B of the second cylinder 31B.
  • the second eccentric roller 33B eccentrically rotates in the second cylinder chamber 37B of the second cylinder 31B as the rotating shaft 200 rotates.
  • the second eccentric portion 202 is provided on the rotating shaft 200 with a phase difference of about 180 ° (with a phase difference of about 180 °) with respect to the first eccentric portion 201.
  • the second vane 35B is urged toward the second eccentric roller 33B by the second urging member (coil spring) 39B.
  • the second vane 35B abuts on the outer peripheral surface of the second eccentric roller 33B and divides the inside of the second cylinder chamber 37B into a low pressure chamber where the second suction port 41B is located and a high pressure chamber where the second discharge port 43B is located. (See FIG. 4).
  • the second suction port 41B and the second discharge port 43B are provided below the rotation shaft 200, like the first suction port 41A and the first discharge port 43A.
  • a second shaft hole 47a is formed in the radial center portion of the discharge muffling chamber forming member 47.
  • the rear end portion of the rotating shaft 200 and its vicinity are rotatably inserted into the second shaft hole 47a. That is, the rotary shaft 200 is rotatably supported by the first shaft hole 111b formed in the partition wall 111 and the second shaft hole 47a formed in the discharge muffling chamber forming member 47, and these first shaft holes are rotatably supported.
  • 111b and the second shaft hole 47a each form a bearing portion of the rotating shaft 200.
  • a minute gap is formed between the inner peripheral surface of the second shaft hole 47a and the outer peripheral surface of the rotating shaft 200.
  • a second recess 47b is formed on the surface of the discharge sound deadening chamber forming member 47 opposite to the second cylinder 31B side (that is, the rear surface) so as to surround the second shaft hole 47a. ..
  • the second discharge muffling chamber 45B is formed by closing the second recess 47b with the second closing plate 49 which is in close contact with the surface of the discharge muffling chamber forming member 47 on the side opposite to the second cylinder 31B. ..
  • the second discharge muffling chamber 45B is connected to the second discharge port 43B located in the high pressure chamber in the second cylinder chamber 37B of the second cylinder 31B via the second communication hole 47c formed in the discharge muffling chamber forming member 47. Communicating.
  • the first closing plate 121, the first cylinder 31A, the intermediate partition plate 40, the second cylinder 31B, the discharge sound deadening chamber forming member 47, and the second closing plate 49 are a plurality of fastening members (for example, through). It is fastened by a bolt) 60 and fixed to the partition wall 111.
  • the compression mechanism portion 30 (first compression mechanism portion 30A, second compression mechanism portion 30B) is attached to and fixed to the partition wall portion 111.
  • FIG. 5 is a sectional view taken along the line CC of FIG. 3
  • FIG. 6 is a sectional view taken along the line DD of FIG. 5
  • FIG. 7 is a sectional view taken along the line EE of FIG.
  • the first discharge muffling chamber 45A and the second discharge muffling chamber 45B communicate with each other via a discharge communication passage 51 provided above the rotating shaft 200.
  • the discharge communication passage 51 forms the bottom wall portion of the first recess 111c forming the first discharge muffling chamber 45A, the first cylinder 31A, the intermediate partition plate 40, the second cylinder 31B, and the second discharge muffling chamber 45B. It is formed as a passage extending horizontally through the bottom wall portion of the second recess 47b.
  • the second discharge muffling chamber 45B communicates with the second accommodation chamber 115 via a discharge hole 53 formed in the second closing plate 49 (see FIGS. 5 and 6).
  • the first suction passage 55 extends from the first suction port 41A in the first cylinder 31A downward in the circumferential direction, and then horizontally extends in the vicinity of the bottom portion in the housing 110 in the partition wall portion 111 and the first closing plate 121. Is formed as a passage leading to the first accommodation chamber 113 (see FIGS. 2, 3, 5, and 7).
  • the opening end portion (entrance side end portion) 55a of the first suction passage 55 that opens to the first accommodation chamber 113 is located vertically below the first shaft hole 111b (see FIG. 7).
  • the second suction port 41B located in the low pressure chamber in the second cylinder chamber 37B of the second cylinder 31B extends from the second suction port 41B in the second cylinder 31B downward in the circumferential direction and then horizontally as an intermediate partition plate 40.
  • each slide of the bearing portion (first shaft hole 111b, second shaft hole 47a) and the compression mechanism portion 30 (first compression mechanism portion 30A, second compression mechanism portion 30B) of the rotating shaft 200 It has an oil supply passage 70 for supplying lubricating oil to the moving portion.
  • the oil supply passage 70 includes a first oil passage 71 formed inside the second closing plate 49, and a second oil passage 72 extending inside the rotating shaft 200 in the axial direction of the rotating shaft 200. Includes first to fourth oil guide holes 73 to 76 extending radially inside the rotating shaft 200 (see FIGS. 1, 2 and 6).
  • the first oil passage 71 opens to the bottom of the second closing plate 49 and extends upward, and then bends toward the rear end surface of the rotating shaft 200, and the other end (upper end) is the second shaft hole. It is formed as a passage that opens in 47a.
  • the first oil passage 71 has a vertical hole extending vertically from the bottom of the second closing plate 49 to a position corresponding to the rotation shaft 200, and a discharge muffling chamber of the second closing plate 49. It is composed of a horizontal hole extending horizontally from a portion of the surface on the member 47 side corresponding to the second shaft hole 47a and connecting to the vertical hole.
  • the one end (lower end) of the first oil passage 71 that is, the opening of the vertical hole is the lubricating oil stored in the vicinity of the bottom of the second storage chamber 115, more specifically, in the bottom of the second storage chamber 115. It is located below the liquid level of O and functions as an oil suction port.
  • One end of the second oil passage 72 opens to the rear end surface of the rotating shaft 200, and the position inside the rotating shaft 200 exceeds the first cylinder 31A along the axis of the rotating shaft 200 (in other words, the first shaft hole). It extends to a position corresponding to the inside of 111b) and the other end is closed.
  • the one end of the second oil passage 72 is connected to the other end (upper end) of the first oil passage 71, and the first oil passage 71 and the second oil passage 72 form one passage.
  • the second oil passage 72 corresponds to the "passage in the rotating shaft" of the present invention.
  • One end of the first oil guide hole 73 opens in the second oil passage 72 and the other end extends radially in the rotary shaft 200 and the other end opens in the outer peripheral surface of the rotary shaft 200 located in the second shaft hole 47a.
  • the other end of the first oil guide hole 73 is open to the outer peripheral surface of the rotating shaft 200 located at a portion adjacent to the second cylinder 31B in the second shaft hole 47a.
  • the first oil guide hole 73 communicates with the second oil passage 72 and a minute gap formed between the outer peripheral surface of the rotating shaft 200 and the inner peripheral surface of the second shaft hole 47a.
  • the portion where the other end of the first oil guide hole 73 opens is slightly reduced in diameter as compared with the other portions. Functions as a lubricating oil reservoir.
  • One end of the second oil guide hole 74 opens in the second oil passage 72 and extends radially inside the rotating shaft 200, and the other end opens on the outer peripheral surface of the second eccentric portion 202 of the rotating shaft 200.
  • the portion where the other end of the second oil guide hole 74 opens is a flat surface, and the outer peripheral surface of the second eccentric portion 202 and the second eccentric roller 33B A minute gap is formed between the inner peripheral surface of the surface and the inner peripheral surface of the surface. That is, the second oil guide hole 74 communicates the second oil passage 72 with the minute gap formed between the outer peripheral surface of the second eccentric portion 202 and the inner peripheral surface of the second eccentric roller 33B.
  • One end of the third oil guide hole 75 opens in the second oil passage 72 and extends radially inside the rotating shaft 200, and the other end opens on the outer peripheral surface of the first eccentric portion 201 of the rotating shaft 200.
  • the portion of the outer peripheral surface of the first eccentric portion 201 where the other end of the third oil guide hole 75 opens is a flat surface, and the first eccentric roller 33A A slight gap is formed between the inner peripheral surface of the surface and the inner peripheral surface of the surface. That is, the third oil guide hole 75 communicates the second oil passage 72 with the minute gap formed between the outer peripheral surface of the first eccentric portion 201 and the inner peripheral surface of the first eccentric roller 33A.
  • One end of the fourth oil guide hole 76 opens in the second oil passage 72 and the other end extends radially in the rotary shaft 200 and the other end opens in the outer peripheral surface of the rotary shaft 200 located in the first shaft hole 111b.
  • the other end of the fourth oil guide hole 76 is open to the outer peripheral surface of the rotating shaft 200 located at a portion adjacent to the first cylinder 31A in the first shaft hole 111b.
  • the fourth oil guide hole 76 communicates the second oil passage 72 with the minute gap CL formed between the outer peripheral surface of the rotating shaft 200 and the inner peripheral surface of the first shaft hole 111b. ing.
  • the portion where the other end of the fourth oil guide hole 76 opens is slightly reduced in diameter as compared with the other portions. Functions as a lubricating oil reservoir.
  • the fourth oil guide hole 76 corresponds to the "communication hole" of the present invention.
  • FIG. 8 shows the flow of the refrigerant (gas) in the electric compressor 100
  • FIG. 9 shows the flow of the lubricating oil O in the electric compressor 100.
  • the low-pressure side refrigerant (low-pressure refrigerant) of the external refrigerant circuit flows into the first storage chamber 113 that houses the electric motor unit 10 through the suction port 117 formed in the front housing 110b. That is, the first storage chamber 113 constitutes a "suction chamber" in which the low-pressure refrigerant flows in from the outside, and the pressure of the first storage chamber 113 is substantially the same as the pressure on the low-pressure side of the external refrigerant circuit.
  • the rotating shaft 200 rotates, the first eccentric roller 33A rotates eccentrically in the first cylinder chamber 37A of the first compression mechanism unit 30A, and the second cylinder of the second compression mechanism unit 30B. In the chamber 37B, the second eccentric roller 33B rotates eccentrically.
  • the low-pressure refrigerant that has flowed into the first storage chamber 113 from the suction port 117 passes through the gap between the stator 11 and the rotor 12 in the electric motor unit 10, whereby the electric motor unit 10 is moved. It is cooled. Then, the low-pressure refrigerant that has passed through the first suction passage 55 and the first suction port 41A (see FIG. 3) is sucked into the first cylinder chamber 37A from the first storage chamber 113, and the first suction passage 55 is sucked from the first storage chamber 113. , The low-pressure refrigerant that has passed through the second suction passage 56 and the second suction port 41B is sucked into the second cylinder chamber 37B. At this time, the lubricating oil O stored in the bottom of the first storage chamber 113 is also sucked into the first cylinder chamber 37A and the second cylinder chamber 37B together with the low-pressure refrigerant (see FIG. 9).
  • the low-pressure refrigerant sucked into the first cylinder chamber 37A is compressed in the first cylinder chamber 37A by the eccentric rotation of the first eccentric roller 33A to become a high-pressure refrigerant.
  • the high-pressure refrigerant is discharged from the first cylinder chamber 37A to the first discharge muffling chamber 45A through the first discharge port 43A (see FIG. 3) and the first communication hole 111d, as indicated by the arrows opened in FIG. After that, it passes through the discharge communication passage 51 and flows into the second discharge muffling chamber 45B.
  • the low-pressure refrigerant that has flowed into the second cylinder chamber 37B is compressed in the second cylinder chamber 37B by the eccentric rotation of the second eccentric roller 33B to become a high-pressure refrigerant, and the high-pressure refrigerant is discharged from the second cylinder chamber 37B to the second discharge port 43B ( (See FIG. 4) and the second discharge muffling chamber 45B is discharged through the second communication hole 47c.
  • the second storage chamber 115 constitutes a "discharge chamber" in which the high-pressure refrigerant compressed by the compression mechanism unit 30 is discharged, and the pressure of the second storage chamber 115 is the pressure of the high-pressure refrigerant (the external refrigerant). It is almost the same as the pressure on the high voltage side of the circuit (higher than the pressure in the first accommodation chamber 113).
  • the high-pressure refrigerant discharged into the second storage chamber 115 contacts and / or collides with the inner surface of the housing 110 or the like, whereby the lubricating oil O contained therein is separated from the high-pressure refrigerant.
  • the lubricating oil O separated from the high-pressure refrigerant moves downward mainly by gravity and is stored in the bottom of the second storage chamber 115.
  • the high-pressure refrigerant after the lubricating oil O is separated flows out to the high-pressure side of the external refrigerant circuit through the discharge port 119 formed in the rear housing 110c.
  • the oil supply passage 70 has a first oil passage 71 formed inside the second closing plate 49 and a second oil passage 71 extending inside the rotating shaft 200 in the axial direction of the rotating shaft 200. It includes an oil passage 72 and first to fourth oil guide holes 73 to 76 extending radially inside the rotating shaft 200.
  • One end (lower end) of the first oil passage 71 constituting one end of the oil supply passage 70 is a lubricating oil O stored in the second storage chamber 115, more specifically, in the bottom of the second storage chamber 115.
  • the fourth oil guide hole 76 forming the other end of the oil supply passage 70 is more specifically formed on the outer peripheral surface of the rotating shaft 200 and the first shaft hole 111b via the first shaft hole 111b. It communicates with the first storage chamber 113 via a minute gap CL formed between the inner peripheral surface and the inner peripheral surface.
  • the first storage chamber 113 constitutes a low-pressure chamber whose pressure is equivalent to that of the low-pressure refrigerant
  • the second storage chamber 115 constitutes a high-pressure chamber whose pressure is equivalent to that of the high-pressure refrigerant.
  • the pressure difference between the second accommodation chamber (discharge chamber (high pressure chamber)) 115 and the first accommodation chamber (suction chamber (low pressure chamber)) 113 causes the second accommodation chamber.
  • the lubricating oil O stored in the bottom of the 115 is sucked up through the first oil passage 71 and guided to the second oil passage 72.
  • the lubricating oil O guided to the second oil passage 72 passes through the fourth oil guide hole 76 to the first shaft hole 111b (bearing portion of the rotating shaft 200 located between the electric motor portion 10 and the compression mechanism portion 30). Is supplied to.
  • the lubricating oil O supplied to the first shaft hole 111b passes through the minute gap CL formed between the inner peripheral surface of the first shaft hole 111b and the outer peripheral surface of the rotating shaft 200 and enters the first storage chamber 113. leak.
  • the lubricating oil O that has flowed out to the first storage chamber 113 subsequently falls and is stored in the bottom of the first storage chamber 113, or is the first of the first compression mechanism unit 30A together with the low-pressure refrigerant in the first storage chamber 113. It is sucked into the second cylinder chamber 37B of the cylinder chamber 37A and the second compression mechanism unit 30B.
  • the lubricating oil O guided to the second oil passage 72 is supplied to the second shaft hole 47a (bearing portion of the rotating shaft 200 on the rear end side) via the first oil guide hole 73.
  • the lubricating oil O guided to the second oil passage 72 is guided to the inside of the second eccentric roller 33B through the second oil guide hole 74, and from there to each sliding portion of the second compression mechanism portion 30B. Supplied.
  • the lubricating oil O guided to the second oil passage 72 is guided to the inside of the first eccentric roller 33A through the third oil guide hole 75, and from there, each sliding portion of the first compression mechanism portion 30A. Is supplied to.
  • the inside of the housing 110 is divided into a first storage chamber 113 for accommodating the electric motor unit 10 and a second storage chamber 115 for accommodating the compression mechanism unit 30 by the partition wall portion 111.
  • the bottom of the second accommodating chamber 115 constitutes a lubricating oil storage portion for accommodating the lubricating oil O, and the lubricating oil O is placed between the first accommodating chamber 113 and the second accommodating chamber 115 in the partition wall portion 111.
  • the lubricating oil O hardly flows from the second storage chamber 115 into the first storage chamber 113, and a sufficient amount of the lubricating oil O is provided on the compression mechanism portion 30 side. Can be secured. Further, since there is almost no lubricating oil O that is agitated by the rotation of the electric motor unit 10, the amount of lubricating oil that flows out from the electric compressor 100 to the external refrigerant circuit together with the high-pressure refrigerant is also significantly reduced. Therefore, the lubricity and sealing property of the compression mechanism portion 30 can be ensured with a smaller amount of lubricating oil than in the past.
  • the partition wall portion 111 is integrally formed (provided) with the housing 110 (center housing 110a) by, for example, casting or welding. Therefore, it is not necessary to mount the partition wall 111 in the housing 110 when manufacturing the electric compressor 100, and the compression mechanism section 30 is stably and accurately mounted in the housing 110 by using the partition wall 111. It is also possible. Therefore, good assembly workability of the electric compressor 100 can be obtained.
  • the pressure of the second accommodation chamber 115 is higher than the pressure of the first accommodation chamber 113, and the oil supply passage 70 uses the pressure difference between the second accommodation chamber 115 and the first accommodation chamber 113 to perform the second accommodation. It is configured to suck up the lubricating oil O stored in the chamber 115 and supply it to the first shaft hole 111b (the bearing portion of the rotating shaft 200 located between the electric motor portion 10 and the compression mechanism portion 30). Therefore, during the operation of the electric compressor 100, lubrication to the first shaft hole 111b can be performed stably and reliably.
  • the first accommodation chamber 113 is configured as a suction chamber (low pressure chamber) in which a low-pressure refrigerant from the outside flows in through the suction port 117
  • the second accommodation chamber 115 is a compression mechanism unit 30. It is configured as a discharge chamber (high pressure chamber) in which the compressed high-pressure refrigerant is discharged. Therefore, the pressure difference becomes larger, and the first shaft hole 111b can be sufficiently refueled.
  • the suction passage (first suction) that guides the low-pressure refrigerant in the first storage chamber 113 to the compression mechanism section 30 (first compression mechanism section 30A, second compression mechanism section 30B).
  • the passage 55 and the second suction passage 56) are arranged below the rotation shaft 200. Therefore, the lubricating oil O stored in the bottom of the first storage chamber 113 can be sucked into the compression mechanism unit 30 together with the low-pressure refrigerant. Therefore, it is possible to prevent the lubricating oil O from staying in (the bottom portion of) the first storage chamber 113, and to secure a sufficient amount of the lubricating oil O on the compression mechanism portion 30 side.
  • the open end portion of the suction passage (open end portion 55a of the first suction passage 55) that opens into the first storage chamber 113 is located vertically below the first shaft hole 111b. Therefore, the lubricating oil O that has fallen after passing through the first shaft hole 111b and flowing into the first storage chamber 113 can be quickly sucked into the compression mechanism unit 30.
  • the suction port 117 is provided on the opposite side of the partition wall portion 111 with the electric motor portion 10 interposed therebetween and at a height position corresponding to the rotation shaft 200. Therefore, the low-pressure refrigerant flowing from the suction port 117 into the first storage chamber 113 can be used in a well-balanced manner for cooling the electric motor unit 10 and suppressing the retention of the lubricating oil O in the first storage chamber 113.
  • the outer peripheral surface of the rotating shaft 200 and the outer peripheral surface of the rotating shaft 200 are located on the inner peripheral surface of the first shaft hole 111b or on the outer peripheral surface of the rotating shaft 200 located in the first shaft hole 111b.
  • a spiral groove may be formed to move the lubricating oil O located between the inner peripheral surface and the lubricating oil O from the first storage chamber 113 side to the second storage chamber 115 side.
  • the first storage chamber 113 is configured as a suction chamber (low pressure chamber) into which the low pressure refrigerant flows from the outside, and the second storage chamber 115 contains the high pressure refrigerant compressed by the compression mechanism unit 30. It is configured as a discharge chamber (high pressure chamber) for discharge.
  • the pressure is not limited to this, and the pressure in the second storage chamber 115 may be higher than the pressure in the first storage chamber 113.
  • front housing, 110c ... rear housing, 111 ... partition wall portion, 111a ... boss portion, 111b ... first shaft hole (bearing portion), 113 ... first accommodation chamber, 115 ... second accommodation chamber 117 ... suction port , 119 ... Discharge port, 200 ... Rotating shaft, CL ... Micro gap, O ... Lubricating oil

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a horizontal electric compressor that, even when tilted or the like, can secure a sufficient amount of lubricating oil for a compression mechanism unit and supply enough oil to a bearing of a rotary shaft positioned between the compression mechanism unit and an electric motor unit. The horizontal electric compressor has: a partitioning wall (111) that is provided integrally with a housing (110) to divide the inside of the housing (110) into a first accommodation chamber (113) and a second accommodation chamber (115), the first accommodation chamber accommodating an electric motor unit (10) that rotates a rotary shaft (200) and the second accommodation chamber accommodating a compression mechanism unit (30) driven by the rotary shaft (200) and having a higher pressure than the first accommodation chamber (113); and an oil supply passage (70) configured to utilize the pressure difference between the second accommodation chamber (115) and the first accommodation chamber (113) to supply lubricating oil O stored in the second accommodation chamber (115) to a first shaft hole (111b), which is a bearing of the rotary shaft (200) and is positioned between the electric motor unit (10) and the compression mechanism unit (30).

Description

横置型電動圧縮機Horizontal electric compressor
 本発明は、横置型電動圧縮機に関し、特に、自動車などの移動体に設置される圧縮機として好適に用いられ得る横置型電動圧縮機に関する。 The present invention relates to a horizontal electric compressor, and more particularly to a horizontal electric compressor that can be suitably used as a compressor installed in a moving body such as an automobile.
 この種の横置型電動圧縮機の一例として特許文献1に記載された横形ロータリ圧縮機が知られている。前記横形ロータリ圧縮機において、密閉容器内は仕切り部材によって圧縮機構部が位置する油貯留部空間と電動機部が位置する電動機側空間とに仕切られている。また、前記横形ロータリ圧縮機は、回転軸に設けられたセンター孔と、前記センター孔と前記圧縮機構部の各摺動部とを連通する油案内孔と、油吸い上げ管と、からなる給油路を有している。前記給油路は、前記油貯留部空間と前記センター孔との圧力差を利用して前記油貯留部空間の潤滑油を吸い上げて前記圧縮機構部の各摺動部に供給するように構成されている。 The horizontal rotary compressor described in Patent Document 1 is known as an example of this type of horizontal electric compressor. In the horizontal rotary compressor, the inside of the closed container is partitioned by a partition member into an oil storage space where the compression mechanism is located and a space on the motor side where the motor is located. Further, the horizontal rotary compressor is an oil supply passage including a center hole provided in the rotating shaft, an oil guide hole for communicating the center hole and each sliding portion of the compression mechanism portion, and an oil suction pipe. have. The oil supply passage is configured to suck up the lubricating oil in the oil storage space and supply it to each sliding portion of the compression mechanism by utilizing the pressure difference between the oil storage space and the center hole. There is.
特開2004-60533号公報Japanese Unexamined Patent Publication No. 2004-60533
 しかし、前記横形ロータリ圧縮機においては、前記油貯留部空間と前記電動機側空間とは前記仕切り部材の下部に設けられた油連通孔を介して連通している。このため、例えば前記油貯留部空間側よりも前記電動機側空間が低くなる方向に前記横形ロータリ圧縮機が傾斜した場合、前記潤滑油が前記電動機側空間に偏ってしまうおそれがある。また、前記横形ロータリ圧縮機において、前記油貯留部空間と前記電動機側空間とは前記ガス連通孔を介して高圧ガスで満たされており、前記圧縮機構部と前記電動機部との間で前記回転軸を支持する主軸受けの前記電動機部側の端部は、前記圧縮機構部で圧縮された高圧ガスが放出される前記電動機側空間内に位置している。このため、前記センター孔と前記主軸受けとの間に圧力差が得られず、前記主軸受けに十分な給油が行えなくなり、前記主軸受けにおいてかじりや焼き付きが生じるおそれもある。 However, in the horizontal rotary compressor, the oil storage space and the motor side space communicate with each other through an oil communication hole provided in the lower part of the partition member. Therefore, for example, when the horizontal rotary compressor is tilted in a direction in which the space on the motor side is lower than that on the space side of the oil storage portion, the lubricating oil may be biased toward the space on the motor side. Further, in the horizontal rotary compressor, the oil storage portion space and the motor side space are filled with high-pressure gas through the gas communication hole, and the rotation between the compression mechanism portion and the electric motor portion. The end of the spindle supporting the shaft on the motor side is located in the space on the motor side where the high-pressure gas compressed by the compression mechanism is discharged. For this reason, a pressure difference cannot be obtained between the center hole and the main bearing, sufficient lubrication cannot be performed on the main bearing, and galling or seizure may occur in the main bearing.
 そこで、本発明は、傾斜時等においても圧縮機構部側に十分な量の潤滑油を確保することができると共に電動機部と圧縮機構部との間に位置する回転軸の軸受部への給油を十分に行うことができる横置型電動圧縮機を提供することを目的とする。 Therefore, the present invention can secure a sufficient amount of lubricating oil on the compression mechanism side even when tilted, and lubricate the bearing portion of the rotating shaft located between the motor portion and the compression mechanism portion. It is an object of the present invention to provide a horizontal electric compressor that can be sufficiently performed.
 本発明の一側面によると、横置型電動圧縮機が提供される。前記横置型電動圧縮機は、ハウジング内に回転軸を回転させる電動機部と前記回転軸を介して駆動される圧縮機構部とを有する。また、前記横置型電動圧縮機において、前記回転軸を回転自在に支持する前記回転軸の軸受部は、前記電動機部と前記圧縮機構部との間に設けられている。そして、前記横置型電動圧縮機は、前記ハウジングに一体に設けられ、前記電動機部を収容する第1収容室と前記圧縮機構部を収容すると共に前記第1収容室の圧力よりも高い圧力を有する第2収容室とに前記ハウジング内を区画する隔壁部と、前記軸受部に潤滑油を供給する油供給通路であって、一方の端部が前記第2収容室内に位置すると共に他方の端部側が前記軸受部を介して前記第1収容室に連通し、前記第2収容室と前記第1収容室との圧力差を利用して前記潤滑油を前記軸受部に供給するように構成された前記油供給通路と、を有する。 According to one aspect of the present invention, a horizontal electric compressor is provided. The horizontal electric compressor has an electric motor unit that rotates a rotating shaft in a housing and a compression mechanism unit that is driven via the rotating shaft. Further, in the horizontal electric compressor, a bearing portion of the rotating shaft that rotatably supports the rotating shaft is provided between the electric motor portion and the compression mechanism portion. The horizontal electric compressor is integrally provided in the housing, accommodates the first storage chamber for accommodating the electric motor portion and the compression mechanism portion, and has a pressure higher than the pressure in the first storage chamber. A partition wall portion that partitions the inside of the housing into the second storage chamber, and an oil supply passage for supplying lubricating oil to the bearing portion, one end of which is located in the second storage chamber and the other end. The side communicates with the first accommodating chamber via the bearing portion, and the lubricating oil is supplied to the bearing portion by utilizing the pressure difference between the second accommodating chamber and the first accommodating chamber. It has the oil supply passage.
 本発明の一側面によれば、傾斜時等においても圧縮機構部側に十分な量の潤滑油を確保することができると共に電動機部と圧縮機構部との間に位置する回転軸の軸受部への給油を十分に行うことができる横置型電動圧縮機を提供することができる。 According to one aspect of the present invention, it is possible to secure a sufficient amount of lubricating oil on the compression mechanism side even when tilted, and to the bearing portion of the rotating shaft located between the motor portion and the compression mechanism portion. It is possible to provide a horizontal electric compressor capable of sufficiently refueling.
本発明の一実施形態に係る横置型電動圧縮機の断面図Sectional drawing of horizontal electric compressor which concerns on one Embodiment of this invention 図1の要部拡大図である。It is an enlarged view of the main part of FIG. 図1のA-A断面図である。FIG. 1 is a cross-sectional view taken along the line AA of FIG. 図1のB-B断面図である。It is a cross-sectional view of BB of FIG. 図3のC-C断面図である。FIG. 3 is a cross-sectional view taken along the line CC of FIG. 図5のD-D断面図である。FIG. 5 is a cross-sectional view taken along the line DD of FIG. 図1のE-E断面図である。FIG. 5 is a cross-sectional view taken along the line EE of FIG. 前記横置型電動圧縮機における冷媒(ガス)の流れを示す図である。It is a figure which shows the flow of the refrigerant (gas) in the horizontal type electric compressor. 前記横置型電動圧縮機における潤滑油の流れを示す図である。It is a figure which shows the flow of the lubricating oil in the horizontal type electric compressor.
 以下、本発明の実施の形態を添付図面に基づいて説明する。
 図1は、本発明の一実施形態に係る横置型電動圧縮機の断面図である。実施形態に係る横置型電動圧縮機(以下単に「電動圧縮機」という)100は、ハウジング110を有している。ハウジング110は、円筒状のセンターハウジング110aと、開口端側がセンターハウジング110aの前端(図1における左端)に接合された有底円筒状のフロントハウジング110bと、開口端側がセンターハウジング110aの後端(図1における右端)に接合された有底円筒状のリアハウジング110cと、を含む。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of a horizontal electric compressor according to an embodiment of the present invention. The horizontal electric compressor (hereinafter, simply referred to as “electric compressor”) 100 according to the embodiment has a housing 110. The housing 110 has a cylindrical center housing 110a, a bottomed cylindrical front housing 110b whose open end side is joined to the front end (left end in FIG. 1) of the center housing 110a, and a rear end (open end side) of the center housing 110a (the open end side). Includes a bottomed cylindrical rear housing 110c joined to the right end in FIG. 1).
 ハウジング110内は、センターハウジング110aに一体に設けられた隔壁部111によって、フロントハウジング110b側の第1収容室113とリアハウジング110c側の第2収容室115とに区画されている。第1収容室113は、センターハウジング110aとフロントハウジング110bとによって形成され、第2収容室115は、センターハウジング110aとリアハウジング110cとによって形成されている。 The inside of the housing 110 is divided into a first storage chamber 113 on the front housing 110b side and a second storage chamber 115 on the rear housing 110c side by a partition wall portion 111 integrally provided in the center housing 110a. The first accommodation chamber 113 is formed by the center housing 110a and the front housing 110b, and the second accommodation chamber 115 is formed by the center housing 110a and the rear housing 110c.
 本実施形態において、隔壁部111は、例えば、鋳造によってセンターハウジング110aと一体に成形されている。しかし、これに限られるものではない。隔壁部111は、センターハウジング110aと一体化されていればよい。例えば、隔壁部111は、溶接によってセンターハウジング110aに一体化されてもよいし、溶接以外の接合技術によってセンターハウジング110aに一体化されてもよい。 In the present embodiment, the partition wall portion 111 is integrally formed with the center housing 110a by, for example, casting. However, it is not limited to this. The partition wall portion 111 may be integrated with the center housing 110a. For example, the partition wall portion 111 may be integrated with the center housing 110a by welding, or may be integrated with the center housing 110a by a joining technique other than welding.
 隔壁部111の径方向中央部には、第1収容室113側に突出するボス部111aが形成されている。また、隔壁部111には、ボス部111aの先端面から第2収容室115側の面まで貫通する第1軸孔111bが形成されている。 A boss portion 111a projecting toward the first storage chamber 113 is formed at the radial center portion of the partition wall portion 111. Further, the partition wall portion 111 is formed with a first shaft hole 111b that penetrates from the tip surface of the boss portion 111a to the surface on the second accommodation chamber 115 side.
 第1軸孔111bには、水平方向(前後方向)に延びる回転軸200の中間部が回転自在に挿通されている。回転軸200の一端(前端)側は第1収容室113内に位置し、回転軸200の他端(後端)側は第2収容室115内に位置している。第1軸孔111bの内周面と回転軸200の外周面との間には微小隙間(クリアランス)CLが形成されている。この微小隙間CLは、回転軸200が回転可能であり、且つ、後述する潤滑油Oによって密封(シール)され得るように設定されている。 An intermediate portion of the rotating shaft 200 extending in the horizontal direction (front-back direction) is rotatably inserted into the first shaft hole 111b. One end (front end) side of the rotating shaft 200 is located in the first accommodating chamber 113, and the other end (rear end) side of the rotating shaft 200 is located in the second accommodating chamber 115. A minute gap (clearance) CL is formed between the inner peripheral surface of the first shaft hole 111b and the outer peripheral surface of the rotating shaft 200. The minute gap CL is set so that the rotating shaft 200 can rotate and can be sealed by the lubricating oil O described later.
 第1収容室113には、回転軸200を回転させる電動機部10が収容されている。また、第1収容室113は、フロントハウジング110bに形成された吸入口117を介して図示省略の外部冷媒回路の低圧側に連通している。吸入口117は、回転軸200の軸線方向においては電動機部10を挟んで隔壁部111とは反対側の位置に、高さ(上下)方向においては回転軸200に対応する位置(すなわち、回転軸200とほぼ同じ高さの位置)に設けられている。 The electric motor unit 10 for rotating the rotating shaft 200 is housed in the first storage chamber 113. Further, the first accommodation chamber 113 communicates with the low pressure side of an external refrigerant circuit (not shown) via a suction port 117 formed in the front housing 110b. The suction port 117 is located at a position opposite to the partition wall portion 111 across the electric motor portion 10 in the axial direction of the rotating shaft 200, and at a position corresponding to the rotating shaft 200 in the height (upper and lower) direction (that is, the rotating shaft). It is provided at a position (at almost the same height as 200).
 電動機部10は、ステータ11とロータ12とを含む。 The electric motor unit 10 includes a stator 11 and a rotor 12.
 ステータ11は、ハウジング110の内周面に固定されている。具体的には、ステータ11は、センターハウジング110aの隔壁部111よりもフロントハウジング110b側の部位の内周面に固定されている。ステータ11は、磁性体で円筒状に形成されたステータコア11aと、ステータコア11a(のティース部)に例えば集中巻きで巻回されたステータコイル11bと、を有している。 The stator 11 is fixed to the inner peripheral surface of the housing 110. Specifically, the stator 11 is fixed to the inner peripheral surface of a portion of the center housing 110a on the front housing 110b side of the partition wall portion 111. The stator 11 has a stator core 11a formed of a magnetic material in a cylindrical shape, and a stator coil 11b wound around the stator core 11a (the teeth portion) by, for example, concentrated winding.
 ロータ12は、ステータ11の径方向内側に所定の隙間を有して配置されている。ロータ12には永久磁石が組み込まれている。ロータ12は、円筒状に形成されており、その中空部に回転軸200の前端側が挿通された状態で回転軸200に固定されている。 The rotor 12 is arranged with a predetermined gap inside the stator 11 in the radial direction. A permanent magnet is incorporated in the rotor 12. The rotor 12 is formed in a cylindrical shape, and is fixed to the rotating shaft 200 with the front end side of the rotating shaft 200 inserted through the hollow portion thereof.
 電動機部10は、フロントハウジング110bに設けられた気密端子部20を介してステータ11(ステータコイル11b)に電力が供給されることによってロータ12が回転し、これにより、回転軸200を回転させるように構成されている。 In the electric motor portion 10, the rotor 12 is rotated by supplying electric power to the stator 11 (stator coil 11b) via the airtight terminal portion 20 provided in the front housing 110b, whereby the rotating shaft 200 is rotated. It is configured in.
 第2収容室115には、回転軸200を介して駆動される圧縮機構部30が収容されている。圧縮機構部30はロータリ圧縮機として構成されている。但し、これに限られるものではなく、圧縮機構部30がロータリ圧縮機以外の圧縮機として構成されてもよい。第2収容室115は、リアハウジング110cに形成された吐出口119を介して前記外部冷媒回路の高圧側に連通している。吐出口119は、回転軸200の軸線方向においては後述する吐出孔53よりも隔壁部111側の位置に、高さ方向においては吸入口117と同様に回転軸200に対応する位置に設けられている。 The second accommodating chamber 115 accommodates the compression mechanism unit 30 driven via the rotating shaft 200. The compression mechanism unit 30 is configured as a rotary compressor. However, the present invention is not limited to this, and the compression mechanism unit 30 may be configured as a compressor other than the rotary compressor. The second storage chamber 115 communicates with the high pressure side of the external refrigerant circuit via a discharge port 119 formed in the rear housing 110c. The discharge port 119 is provided at a position on the partition wall 111 side of the discharge hole 53 described later in the axial direction of the rotary shaft 200, and at a position corresponding to the rotary shaft 200 in the height direction like the suction port 117. There is.
 第2収容室115の底部は、潤滑油Oが貯留される潤滑油貯留部を構成している。換言すれば、本実施形態において、潤滑油Oは主に第2収容室115に貯留され、第1収容室113にはほとんど貯留されないようになっている。 The bottom of the second storage chamber 115 constitutes a lubricating oil storage portion in which the lubricating oil O is stored. In other words, in the present embodiment, the lubricating oil O is mainly stored in the second storage chamber 115, and is hardly stored in the first storage chamber 113.
 圧縮機構部30は、ハウジング110の内径よりも小さい外径を有する。また、圧縮機構部30の下部は、潤滑油Oに浸漬されている(すなわち、潤滑油Oの油面よりも下方に位置している)。 The compression mechanism portion 30 has an outer diameter smaller than the inner diameter of the housing 110. Further, the lower portion of the compression mechanism portion 30 is immersed in the lubricating oil O (that is, it is located below the oil level of the lubricating oil O).
 圧縮機構部30は、中間仕切板40を挟んでその両側に配置された第1圧縮機構部30A及び第2圧縮機構部30Bを含む。第1圧縮機構部30Aは、中間仕切板40の隔壁部111側(すなわち、前側)に配置されており、第2圧縮機構部30Bは、中間仕切板40の隔壁部111側とは反対側(すなわち、後側)に配置されている。中間仕切板40の径方向中央部には、回転軸200が挿通される挿通孔が形成されている。 The compression mechanism unit 30 includes a first compression mechanism unit 30A and a second compression mechanism unit 30B arranged on both sides of the intermediate partition plate 40. The first compression mechanism portion 30A is arranged on the partition wall portion 111 side (that is, the front side) of the intermediate partition plate 40, and the second compression mechanism portion 30B is on the side opposite to the partition wall portion 111 side of the intermediate partition plate 40 (that is, the front side). That is, it is arranged on the rear side). An insertion hole through which the rotating shaft 200 is inserted is formed in the radial center portion of the intermediate partition plate 40.
 図2は、図1の要部拡大図であり、主に圧縮機構部30を示している。図3は、図1のA-A断面図であり、主に第1圧縮機構部30Aの構成を示している。図4は、図1のB-B断面図であり、主に第2圧縮機構部30Bに構成を示している。 FIG. 2 is an enlarged view of a main part of FIG. 1, and mainly shows a compression mechanism part 30. FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1 and mainly shows the configuration of the first compression mechanism portion 30A. FIG. 4 is a cross-sectional view taken along the line BB of FIG. 1, and the configuration is mainly shown in the second compression mechanism portion 30B.
 図2及び図3に示されるように、第1圧縮機構部30Aは、第1シリンダ31Aと、第1偏心ローラ33Aと、第1ベーン35Aと、を含む。 As shown in FIGS. 2 and 3, the first compression mechanism unit 30A includes a first cylinder 31A, a first eccentric roller 33A, and a first vane 35A.
 第1シリンダ31Aの一方の面(前側の面)は、隔壁部111の第2収容室115側の面に密着しており、第1シリンダ31Aの他方の面(後側の面)は、中間仕切板40に密着している。第1シリンダ31Aは、径方向中央部に断面円形の第1シリンダ室37Aを有している。 One surface (front surface) of the first cylinder 31A is in close contact with the surface of the partition wall 111 on the second accommodating chamber 115 side, and the other surface (rear surface) of the first cylinder 31A is medium. It is in close contact with the partition plate 40. The first cylinder 31A has a first cylinder chamber 37A having a circular cross section at the center in the radial direction.
 第1偏心ローラ33Aは、第1シリンダ31Aの第1シリンダ室37A内に位置する回転軸200の第1偏心部201に取り付けられている。第1偏心ローラ33Aは、回転軸200の回転に伴って第1シリンダ31Aの第1シリンダ室37A内を偏心回転する。 The first eccentric roller 33A is attached to the first eccentric portion 201 of the rotating shaft 200 located in the first cylinder chamber 37A of the first cylinder 31A. The first eccentric roller 33A eccentrically rotates in the first cylinder chamber 37A of the first cylinder 31A as the rotating shaft 200 rotates.
 第1ベーン35Aは、第1付勢部材(コイルスプリング)39Aによって第1偏心ローラ33Aに向かって付勢されている。第1ベーン35Aは、第1偏心ローラ33Aの外周面に当接して第1シリンダ室37A内を第1吸入ポート41Aが位置する低圧室と第1吐出ポート43Aが位置する高圧室とに区画する(図3参照)。第1吸入ポート41A及び第1吐出ポート43Aは、回転軸200よりも下方に設けられている。 The first vane 35A is urged toward the first eccentric roller 33A by the first urging member (coil spring) 39A. The first vane 35A abuts on the outer peripheral surface of the first eccentric roller 33A and divides the inside of the first cylinder chamber 37A into a low pressure chamber where the first suction port 41A is located and a high pressure chamber where the first discharge port 43A is located. (See FIG. 3). The first suction port 41A and the first discharge port 43A are provided below the rotating shaft 200.
 また、本実施形態において、隔壁部111の第1収容室113側の面には、ボス部111aを囲繞するように第1凹部111cが形成されている。そして、この第1凹部111cの開口が隔壁部111の第1収容室113側の面に密着する第1閉塞板121によって閉塞され、これによって、第1収容室113から区画された第1吐出消音室45Aが形成されている。すなわち、本実施形態においては、隔壁部111に第1吐出消音室45Aが設けられている。第1吐出消音室45Aは、隔壁部111に形成された第1連通孔111dを介して、第1シリンダ31Aの第1シリンダ室37A内の高圧室に位置する第1吐出ポート43A(図3参照)に連通している。 Further, in the present embodiment, a first recess 111c is formed on the surface of the partition wall 111 on the side of the first storage chamber 113 so as to surround the boss portion 111a. Then, the opening of the first recess 111c is closed by the first closing plate 121 which is in close contact with the surface of the partition wall 111 on the side of the first storage chamber 113, whereby the first discharge sound deadening partitioned from the first storage chamber 113 is closed. A chamber 45A is formed. That is, in the present embodiment, the partition wall portion 111 is provided with the first discharge muffling chamber 45A. The first discharge muffling chamber 45A is a first discharge port 43A located in a high pressure chamber in the first cylinder chamber 37A of the first cylinder 31A through the first communication hole 111d formed in the partition wall portion 111 (see FIG. 3). ).
 第2圧縮機構部30Bは、第1圧縮機構部30Aと同様の構成を有する。すなわち、第2圧縮機構部30Bは、第2シリンダ31Bと、第2偏心ローラ33Bと、第2ベーン35Bと、を含む。 The second compression mechanism unit 30B has the same configuration as the first compression mechanism unit 30A. That is, the second compression mechanism unit 30B includes a second cylinder 31B, a second eccentric roller 33B, and a second vane 35B.
 第2シリンダ31Bの一方の面(前側の面)は、中間仕切板40に密着している。第2シリンダ31Bの他方の側面(後側の面)には、吐出消音室形成部材47の一方の面が密着している。第2シリンダ31Bは、径方向中央部に断面円形の第2シリンダ室37Bを有している。 One surface (front surface) of the second cylinder 31B is in close contact with the intermediate partition plate 40. One surface of the discharge muffling chamber forming member 47 is in close contact with the other side surface (rear side surface) of the second cylinder 31B. The second cylinder 31B has a second cylinder chamber 37B having a circular cross section at the center in the radial direction.
 第2偏心ローラ33Bは、第2シリンダ31Bの第2シリンダ室37B内に位置する回転軸200の第2偏心部202に取り付けられている。第2偏心ローラ33Bは、回転軸200の回転に伴って第2シリンダ31Bの第2シリンダ室37B内を偏心回転する。なお、第2偏心部202は、第1偏心部201に対して回転軸200に軸線まわりに約180°ずらして(約180°の位相差を有して)設けられている。 The second eccentric roller 33B is attached to the second eccentric portion 202 of the rotating shaft 200 located in the second cylinder chamber 37B of the second cylinder 31B. The second eccentric roller 33B eccentrically rotates in the second cylinder chamber 37B of the second cylinder 31B as the rotating shaft 200 rotates. The second eccentric portion 202 is provided on the rotating shaft 200 with a phase difference of about 180 ° (with a phase difference of about 180 °) with respect to the first eccentric portion 201.
 第2ベーン35Bは、第2付勢部材(コイルスプリング)39Bによって第2偏心ローラ33Bに向かって付勢されている。第2ベーン35Bは、第2偏心ローラ33Bの外周面に当接して第2シリンダ室37B内を第2吸入ポート41Bが位置する低圧室と第2吐出ポート43Bが位置する高圧室とに区画する(図4参照)。第2吸入ポート41B及び第2吐出ポート43Bは、第1吸入ポート41A及び第1吐出ポート43Aと同様、回転軸200よりも下方に設けられている。 The second vane 35B is urged toward the second eccentric roller 33B by the second urging member (coil spring) 39B. The second vane 35B abuts on the outer peripheral surface of the second eccentric roller 33B and divides the inside of the second cylinder chamber 37B into a low pressure chamber where the second suction port 41B is located and a high pressure chamber where the second discharge port 43B is located. (See FIG. 4). The second suction port 41B and the second discharge port 43B are provided below the rotation shaft 200, like the first suction port 41A and the first discharge port 43A.
 吐出消音室形成部材47の径方向中央部には、第2軸孔47aが形成されている。第2軸孔47aには、回転軸200の後端部及びその近傍が回転自在に挿通されている。つまり、回転軸200は、隔壁部111に形成された第1軸孔111bと吐出消音室形成部材47に形成された第2軸孔47aとによって回転自在に支持されており、これら第1軸孔111b及び第2軸孔47aがそれぞれ回転軸200の軸受部を構成している。なお、第1軸孔111bの場合と同様、第2軸孔47aの内周面と回転軸200の外周面との間には微小隙間が形成されている。 A second shaft hole 47a is formed in the radial center portion of the discharge muffling chamber forming member 47. The rear end portion of the rotating shaft 200 and its vicinity are rotatably inserted into the second shaft hole 47a. That is, the rotary shaft 200 is rotatably supported by the first shaft hole 111b formed in the partition wall 111 and the second shaft hole 47a formed in the discharge muffling chamber forming member 47, and these first shaft holes are rotatably supported. 111b and the second shaft hole 47a each form a bearing portion of the rotating shaft 200. As in the case of the first shaft hole 111b, a minute gap is formed between the inner peripheral surface of the second shaft hole 47a and the outer peripheral surface of the rotating shaft 200.
 また、吐出消音室形成部材47の第2シリンダ31B側とは反対側の面(すなわち、後側の面)には、第2軸孔47aを囲繞するように第2凹部47bが形成されている。そして、この第2凹部47bが吐出消音室形成部材47の第2シリンダ31Bとは反対側の面に密着する第2閉塞板49によって閉塞されることによって第2吐出消音室45Bが形成されている。第2吐出消音室45Bは、吐出消音室形成部材47に形成された第2連通孔47cを介して、第2シリンダ31Bの第2シリンダ室37B内の高圧室に位置する第2吐出ポート43Bに連通している。 Further, a second recess 47b is formed on the surface of the discharge sound deadening chamber forming member 47 opposite to the second cylinder 31B side (that is, the rear surface) so as to surround the second shaft hole 47a. .. The second discharge muffling chamber 45B is formed by closing the second recess 47b with the second closing plate 49 which is in close contact with the surface of the discharge muffling chamber forming member 47 on the side opposite to the second cylinder 31B. .. The second discharge muffling chamber 45B is connected to the second discharge port 43B located in the high pressure chamber in the second cylinder chamber 37B of the second cylinder 31B via the second communication hole 47c formed in the discharge muffling chamber forming member 47. Communicating.
 ここで、本実施形態において、第1閉塞板121、第1シリンダ31A、中間仕切板40、第2シリンダ31B、吐出消音室形成部材47及び第2閉塞板49は、複数の締結部材(例えば通しボルト)60によって締結されると共に隔壁部111に固定されている。換言すれば、本実施形態において、圧縮機構部30(第1圧縮機構部30A、第2圧縮機構部30B)は、隔壁部111に取り付けられ且つ固定されている。 Here, in the present embodiment, the first closing plate 121, the first cylinder 31A, the intermediate partition plate 40, the second cylinder 31B, the discharge sound deadening chamber forming member 47, and the second closing plate 49 are a plurality of fastening members (for example, through). It is fastened by a bolt) 60 and fixed to the partition wall 111. In other words, in the present embodiment, the compression mechanism portion 30 (first compression mechanism portion 30A, second compression mechanism portion 30B) is attached to and fixed to the partition wall portion 111.
 図5は、図3のC-C断面図であり、図6は、図5のD-D断面図であり、図7は、図1のE-E断面図である。 FIG. 5 is a sectional view taken along the line CC of FIG. 3, FIG. 6 is a sectional view taken along the line DD of FIG. 5, and FIG. 7 is a sectional view taken along the line EE of FIG.
 本実施形態において、第1吐出消音室45Aと第2吐出消音室45Bとは、回転軸200よりも上方に設けられた吐出連通路51を介して連通している。吐出連通路51は、第1吐出消音室45Aを形成する第1凹部111cの底壁部、第1シリンダ31A、中間仕切板40、第2シリンダ31B、及び、第2吐出消音室45Bを形成する第2凹部47bの底壁部を水平方向に貫通して延びる通路として形成されている。また、第2吐出消音室45Bは、第2閉塞板49に形成された吐出孔53を介して第2収容室115に連通している(図5、図6参照)。 In the present embodiment, the first discharge muffling chamber 45A and the second discharge muffling chamber 45B communicate with each other via a discharge communication passage 51 provided above the rotating shaft 200. The discharge communication passage 51 forms the bottom wall portion of the first recess 111c forming the first discharge muffling chamber 45A, the first cylinder 31A, the intermediate partition plate 40, the second cylinder 31B, and the second discharge muffling chamber 45B. It is formed as a passage extending horizontally through the bottom wall portion of the second recess 47b. Further, the second discharge muffling chamber 45B communicates with the second accommodation chamber 115 via a discharge hole 53 formed in the second closing plate 49 (see FIGS. 5 and 6).
 第1シリンダ31Aの第1シリンダ室37A内の低圧室に位置する第1吸入ポート41Aは、回転軸200よりも下方に設けられた第1吸入通路55を介して第1収容室113に連通している。本実施形態において、第1吸入通路55は、第1吸入ポート41Aから第1シリンダ31A内を周方向下向きに延びた後にハウジング110内の底部近傍を水平方向に隔壁部111及び第1閉塞板121を貫通して第1収容室113に至る通路として形成されている(図2、図3、図5及び図7参照)。ここで、第1収容室113に開口する第1吸入通路55の開口端部(入口側端部)55aは、第1軸孔111bの鉛直下方に位置している(図7参照)。 The first suction port 41A located in the low pressure chamber in the first cylinder chamber 37A of the first cylinder 31A communicates with the first storage chamber 113 via the first suction passage 55 provided below the rotating shaft 200. ing. In the present embodiment, the first suction passage 55 extends from the first suction port 41A in the first cylinder 31A downward in the circumferential direction, and then horizontally extends in the vicinity of the bottom portion in the housing 110 in the partition wall portion 111 and the first closing plate 121. Is formed as a passage leading to the first accommodation chamber 113 (see FIGS. 2, 3, 5, and 7). Here, the opening end portion (entrance side end portion) 55a of the first suction passage 55 that opens to the first accommodation chamber 113 is located vertically below the first shaft hole 111b (see FIG. 7).
 第2シリンダ31Bの第2シリンダ室37B内の低圧室に位置する第2吸入ポート41Bは、第2吸入ポート41Bから第2シリンダ31B内を周方向下向きに延びた後に水平方向に中間仕切板40を貫通して第1吸入通路55に接続する第2吸入通路56と、第1吸入通路55と、を介して第1収容室113に連通している(図5及び図7参照)。 The second suction port 41B located in the low pressure chamber in the second cylinder chamber 37B of the second cylinder 31B extends from the second suction port 41B in the second cylinder 31B downward in the circumferential direction and then horizontally as an intermediate partition plate 40. The second suction passage 56 and the first suction passage 55, which penetrate the first suction passage 55 and connect to the first suction passage 55, communicate with the first storage chamber 113 (see FIGS. 5 and 7).
 また、電動圧縮機100は、回転軸200の軸受部(第1軸孔111b、第2軸孔47a)及び圧縮機構部30(第1圧縮機構部30A、第2圧縮機構部30B)の各摺動部に潤滑油を供給するための油供給通路70を有している。本実施形態において、油供給通路70は、第2閉塞板49の内部に形成された第1油通路71と、回転軸200の内部を回転軸200の軸線方向に延びる第2油通路72と、回転軸200の内部を径方向に延びる第1~第4油案内孔73~76と、を含む(図1、図2及び図6参照)。 Further, in the electric compressor 100, each slide of the bearing portion (first shaft hole 111b, second shaft hole 47a) and the compression mechanism portion 30 (first compression mechanism portion 30A, second compression mechanism portion 30B) of the rotating shaft 200 It has an oil supply passage 70 for supplying lubricating oil to the moving portion. In the present embodiment, the oil supply passage 70 includes a first oil passage 71 formed inside the second closing plate 49, and a second oil passage 72 extending inside the rotating shaft 200 in the axial direction of the rotating shaft 200. Includes first to fourth oil guide holes 73 to 76 extending radially inside the rotating shaft 200 (see FIGS. 1, 2 and 6).
 第1油通路71は、一端(下端)が第2閉塞板49の底部に開口すると共に上方に延びた後に回転軸200の後端面に向かって屈曲し、他端(上端)が第2軸孔47a内に開口する通路として形成されている。具体的には、本実施形態において、第1油通路71は、第2閉塞板49の底部から回転軸200に相当する位置まで垂直に延びる垂直穴と、第2閉塞板49の吐出消音室形成部材47側の面の第2軸孔47aに対応する部位から水平に延びて前記垂直穴に接続する水平穴と、で構成されている。第1油通路71の前記一端(下端)、すなわち、前記垂直穴の開口部は、第2収容室115の底部近傍、より具体的には、第2収容室115の底部に貯留された潤滑油Oの液面よりも下方に位置しており、油吸込口として機能する。 One end (lower end) of the first oil passage 71 opens to the bottom of the second closing plate 49 and extends upward, and then bends toward the rear end surface of the rotating shaft 200, and the other end (upper end) is the second shaft hole. It is formed as a passage that opens in 47a. Specifically, in the present embodiment, the first oil passage 71 has a vertical hole extending vertically from the bottom of the second closing plate 49 to a position corresponding to the rotation shaft 200, and a discharge muffling chamber of the second closing plate 49. It is composed of a horizontal hole extending horizontally from a portion of the surface on the member 47 side corresponding to the second shaft hole 47a and connecting to the vertical hole. The one end (lower end) of the first oil passage 71, that is, the opening of the vertical hole is the lubricating oil stored in the vicinity of the bottom of the second storage chamber 115, more specifically, in the bottom of the second storage chamber 115. It is located below the liquid level of O and functions as an oil suction port.
 第2油通路72は、一端が回転軸200の前記後端面に開口すると共に回転軸200内を回転軸200の軸線に沿って第1シリンダ31Aを超えた位置(換言すれば、第1軸孔111b内に相当する位置)まで延びて他端が閉塞されている。第2油通路72の前記一端は第1油通路71の前記他端(上端)に接続しており、第1油通路71と第2油通路72とは一つの通路を構成している。なお、第2油通路72が本発明の「回転軸内通路」に相当する。 One end of the second oil passage 72 opens to the rear end surface of the rotating shaft 200, and the position inside the rotating shaft 200 exceeds the first cylinder 31A along the axis of the rotating shaft 200 (in other words, the first shaft hole). It extends to a position corresponding to the inside of 111b) and the other end is closed. The one end of the second oil passage 72 is connected to the other end (upper end) of the first oil passage 71, and the first oil passage 71 and the second oil passage 72 form one passage. The second oil passage 72 corresponds to the "passage in the rotating shaft" of the present invention.
 第1油案内孔73は、一端が第2油通路72に開口すると共に回転軸200内を径方向に延びて他端が第2軸孔47a内に位置する回転軸200の外周面に開口している。より具体的には、第1油案内孔73の前記他端は、第2軸孔47a内における第2シリンダ31Bに隣接する部位に位置する回転軸200の外周面に開口している。換言すれば、第1油案内孔73は、第2油通路72と、回転軸200の外周面と第2軸孔47aの内周面との間に形成される微小隙間と、を連通している。ここで、第2軸孔47a内に位置する回転軸200の外周面のうち第1油案内孔73の前記他端が開口する部位は、他の部位に比べて僅かに縮径されており、潤滑油溜まり部として機能する。 One end of the first oil guide hole 73 opens in the second oil passage 72 and the other end extends radially in the rotary shaft 200 and the other end opens in the outer peripheral surface of the rotary shaft 200 located in the second shaft hole 47a. ing. More specifically, the other end of the first oil guide hole 73 is open to the outer peripheral surface of the rotating shaft 200 located at a portion adjacent to the second cylinder 31B in the second shaft hole 47a. In other words, the first oil guide hole 73 communicates with the second oil passage 72 and a minute gap formed between the outer peripheral surface of the rotating shaft 200 and the inner peripheral surface of the second shaft hole 47a. There is. Here, of the outer peripheral surface of the rotating shaft 200 located in the second shaft hole 47a, the portion where the other end of the first oil guide hole 73 opens is slightly reduced in diameter as compared with the other portions. Functions as a lubricating oil reservoir.
 第2油案内孔74は、一端が第2油通路72に開口すると共に回転軸200内を径方向に延びて他端が回転軸200の第2偏心部202の外周面に開口している。ここで、第2偏心部202の外周面のうち第2油案内孔74の前記他端が開口する部位は、平坦面になっており、第2偏心部202の外周面と第2偏心ローラ33Bの内周面との間には微小隙間が形成されている。すなわち、第2油案内孔74は、第2油通路72と、第2偏心部202の外周面と第2偏心ローラ33Bの内周面との間に形成される微小隙間と、を連通している。 One end of the second oil guide hole 74 opens in the second oil passage 72 and extends radially inside the rotating shaft 200, and the other end opens on the outer peripheral surface of the second eccentric portion 202 of the rotating shaft 200. Here, of the outer peripheral surface of the second eccentric portion 202, the portion where the other end of the second oil guide hole 74 opens is a flat surface, and the outer peripheral surface of the second eccentric portion 202 and the second eccentric roller 33B A minute gap is formed between the inner peripheral surface of the surface and the inner peripheral surface of the surface. That is, the second oil guide hole 74 communicates the second oil passage 72 with the minute gap formed between the outer peripheral surface of the second eccentric portion 202 and the inner peripheral surface of the second eccentric roller 33B. There is.
 第3油案内孔75は、一端が第2油通路72に開口すると共に回転軸200内を径方向に延びて他端が回転軸200の第1偏心部201の外周面に開口している。ここで、第2偏心部202と同様に、第1偏心部201の外周面のうち第3油案内孔75の前記他端が開口する部位は、平坦面になっており、第1偏心ローラ33Aの内周面との間に僅かな隙間が形成されている。すなわち、第3油案内孔75は、第2油通路72と、第1偏心部201の外周面と第1偏心ローラ33Aの内周面との間に形成される微小隙間と、を連通している。 One end of the third oil guide hole 75 opens in the second oil passage 72 and extends radially inside the rotating shaft 200, and the other end opens on the outer peripheral surface of the first eccentric portion 201 of the rotating shaft 200. Here, similarly to the second eccentric portion 202, the portion of the outer peripheral surface of the first eccentric portion 201 where the other end of the third oil guide hole 75 opens is a flat surface, and the first eccentric roller 33A A slight gap is formed between the inner peripheral surface of the surface and the inner peripheral surface of the surface. That is, the third oil guide hole 75 communicates the second oil passage 72 with the minute gap formed between the outer peripheral surface of the first eccentric portion 201 and the inner peripheral surface of the first eccentric roller 33A. There is.
 第4油案内孔76は、一端が第2油通路72に開口すると共に回転軸200内を径方向に延びて他端が第1軸孔111b内に位置する回転軸200の外周面に開口している。より具体的には、第4油案内孔76の前記他端は、第1軸孔111b内における第1シリンダ31Aに隣接する部位に位置する回転軸200の外周面に開口している。換言すれば、第4油案内孔76は、第2油通路72と、回転軸200の外周面と第1軸孔111bの内周面との間に形成される微小隙間CLと、を連通している。ここで、第1軸孔111b内に位置する回転軸200の外周面のうち第4油案内孔76の前記他端が開口する部位は、他の部位に比べて僅かに縮径されており、潤滑油溜まり部として機能する。なお、第4油案内孔76が本発明の「連通孔」に相当する。 One end of the fourth oil guide hole 76 opens in the second oil passage 72 and the other end extends radially in the rotary shaft 200 and the other end opens in the outer peripheral surface of the rotary shaft 200 located in the first shaft hole 111b. ing. More specifically, the other end of the fourth oil guide hole 76 is open to the outer peripheral surface of the rotating shaft 200 located at a portion adjacent to the first cylinder 31A in the first shaft hole 111b. In other words, the fourth oil guide hole 76 communicates the second oil passage 72 with the minute gap CL formed between the outer peripheral surface of the rotating shaft 200 and the inner peripheral surface of the first shaft hole 111b. ing. Here, of the outer peripheral surface of the rotating shaft 200 located in the first shaft hole 111b, the portion where the other end of the fourth oil guide hole 76 opens is slightly reduced in diameter as compared with the other portions. Functions as a lubricating oil reservoir. The fourth oil guide hole 76 corresponds to the "communication hole" of the present invention.
 次に、図8及び図9を参照しつつ電動圧縮機100の動作を説明する。図8は、電動圧縮機100における冷媒(ガス)の流れを示し、図9は、電動圧縮機100における潤滑油Oの流れを示している。 Next, the operation of the electric compressor 100 will be described with reference to FIGS. 8 and 9. FIG. 8 shows the flow of the refrigerant (gas) in the electric compressor 100, and FIG. 9 shows the flow of the lubricating oil O in the electric compressor 100.
 電動機部10を収容する第1収容室113には、前記外部冷媒回路の低圧側の冷媒(低圧冷媒)がフロントハウジング110bに形成された吸入口117を介して流入する。つまり、第1収容室113は、外部から低圧冷媒が流入する「吸入室」を構成しており、第1収容室113の圧力は、前記外部冷媒回路の低圧側の圧力とほぼ同等である。 The low-pressure side refrigerant (low-pressure refrigerant) of the external refrigerant circuit flows into the first storage chamber 113 that houses the electric motor unit 10 through the suction port 117 formed in the front housing 110b. That is, the first storage chamber 113 constitutes a "suction chamber" in which the low-pressure refrigerant flows in from the outside, and the pressure of the first storage chamber 113 is substantially the same as the pressure on the low-pressure side of the external refrigerant circuit.
 電動機部10に電力が供給されると回転軸200が回転し、第1圧縮機構部30Aの第1シリンダ室37Aでは第1偏心ローラ33Aが偏心回転し、第2圧縮機構部30Bの第2シリンダ室37Bでは第2偏心ローラ33Bが偏心回転する。 When power is supplied to the electric motor unit 10, the rotating shaft 200 rotates, the first eccentric roller 33A rotates eccentrically in the first cylinder chamber 37A of the first compression mechanism unit 30A, and the second cylinder of the second compression mechanism unit 30B. In the chamber 37B, the second eccentric roller 33B rotates eccentrically.
 図8において三角矢印で示されるように、吸入口117から第1収容室113に流入した低圧冷媒は、電動機部10におけるステータ11とロータ12との隙間を通過し、これによって、電動機部10が冷却される。そして、第1収容室113から第1吸入通路55及び第1吸入ポート41A(図3参照)を通過した低圧冷媒が第1シリンダ室37Aに吸入され、第1収容室113から第1吸入通路55、第2吸入通路56及び第2吸入ポート41Bを通過した低圧冷媒が第2シリンダ室37Bに吸入される。このとき、第1収容室113の底部に貯留されている潤滑油Oも低圧冷媒と共に第1シリンダ室37A及び第2シリンダ室37Bに吸入される(図9参照)。 As shown by the triangular arrows in FIG. 8, the low-pressure refrigerant that has flowed into the first storage chamber 113 from the suction port 117 passes through the gap between the stator 11 and the rotor 12 in the electric motor unit 10, whereby the electric motor unit 10 is moved. It is cooled. Then, the low-pressure refrigerant that has passed through the first suction passage 55 and the first suction port 41A (see FIG. 3) is sucked into the first cylinder chamber 37A from the first storage chamber 113, and the first suction passage 55 is sucked from the first storage chamber 113. , The low-pressure refrigerant that has passed through the second suction passage 56 and the second suction port 41B is sucked into the second cylinder chamber 37B. At this time, the lubricating oil O stored in the bottom of the first storage chamber 113 is also sucked into the first cylinder chamber 37A and the second cylinder chamber 37B together with the low-pressure refrigerant (see FIG. 9).
 第1シリンダ室37Aに吸入された低圧冷媒は、第1偏心ローラ33Aの偏心回転によって第1シリンダ室37A内で圧縮されて高圧冷媒となる。高圧冷媒は、図8において開いた矢印で示されるように、第1シリンダ室37Aから第1吐出ポート43A(図3参照)及び第1連通孔111dを介して第1吐出消音室45Aに吐出され、その後、吐出連通路51を通過して第2吐出消音室45Bに流入する。 The low-pressure refrigerant sucked into the first cylinder chamber 37A is compressed in the first cylinder chamber 37A by the eccentric rotation of the first eccentric roller 33A to become a high-pressure refrigerant. The high-pressure refrigerant is discharged from the first cylinder chamber 37A to the first discharge muffling chamber 45A through the first discharge port 43A (see FIG. 3) and the first communication hole 111d, as indicated by the arrows opened in FIG. After that, it passes through the discharge communication passage 51 and flows into the second discharge muffling chamber 45B.
 第2シリンダ室37Bに流入した低圧冷媒は、第2偏心ローラ33Bの偏心回転によって第2シリンダ室37B内で圧縮されて高圧冷媒となり、高圧冷媒が第2シリンダ室37Bから第2吐出ポート43B(図4参照)及び第2連通孔47cを介して第2吐出消音室45Bに吐出される。 The low-pressure refrigerant that has flowed into the second cylinder chamber 37B is compressed in the second cylinder chamber 37B by the eccentric rotation of the second eccentric roller 33B to become a high-pressure refrigerant, and the high-pressure refrigerant is discharged from the second cylinder chamber 37B to the second discharge port 43B ( (See FIG. 4) and the second discharge muffling chamber 45B is discharged through the second communication hole 47c.
 第1シリンダ室37Aから吐出された高圧冷媒及び第2シリンダ室37Bから吐出された高圧冷媒は第2吐出消音室45Bで合流し、合流した高圧冷媒が吐出孔53を介して第2収容室115に吐出される。つまり、第2収容室115は、圧縮機構部30で圧縮された高圧冷媒が吐出される「吐出室」を構成しており、第2収容室115の圧力は、高圧冷媒の圧力(前記外部冷媒回路の高圧側の圧力)とほぼ同等である(第1収容室113の圧力よりも高い)。 The high-pressure refrigerant discharged from the first cylinder chamber 37A and the high-pressure refrigerant discharged from the second cylinder chamber 37B merge in the second discharge muffling chamber 45B, and the merged high-pressure refrigerant passes through the discharge hole 53 to the second accommodation chamber 115. Is discharged to. That is, the second storage chamber 115 constitutes a "discharge chamber" in which the high-pressure refrigerant compressed by the compression mechanism unit 30 is discharged, and the pressure of the second storage chamber 115 is the pressure of the high-pressure refrigerant (the external refrigerant). It is almost the same as the pressure on the high voltage side of the circuit (higher than the pressure in the first accommodation chamber 113).
 第2収容室115に吐出された高圧冷媒は、ハウジング110の内面などに接触及び/又は衝突し、これによって、高圧冷媒からそこ含まれた潤滑油Oが分離される。高圧冷媒から分離された潤滑油Oは、主に重力によって下方に移動して第2収容室115の底部に貯留される。一方、潤滑油Oが分離された後の高圧冷媒は、リアハウジング110cに形成された吐出口119を介して前記外部冷媒回路の高圧側に流出する。 The high-pressure refrigerant discharged into the second storage chamber 115 contacts and / or collides with the inner surface of the housing 110 or the like, whereby the lubricating oil O contained therein is separated from the high-pressure refrigerant. The lubricating oil O separated from the high-pressure refrigerant moves downward mainly by gravity and is stored in the bottom of the second storage chamber 115. On the other hand, the high-pressure refrigerant after the lubricating oil O is separated flows out to the high-pressure side of the external refrigerant circuit through the discharge port 119 formed in the rear housing 110c.
 上述のように、本実施形態において、油供給通路70は、第2閉塞板49の内部に形成された第1油通路71と、回転軸200の内部を回転軸200の軸線方向に延びる第2油通路72と、回転軸200の内部を径方向に延びる第1~第4油案内孔73~76と、を含む。 As described above, in the present embodiment, the oil supply passage 70 has a first oil passage 71 formed inside the second closing plate 49 and a second oil passage 71 extending inside the rotating shaft 200 in the axial direction of the rotating shaft 200. It includes an oil passage 72 and first to fourth oil guide holes 73 to 76 extending radially inside the rotating shaft 200.
 油供給通路70の一方の端部を構成する第1油通路71の一端(下端)は、第2収容室115内に、さらに言えば、第2収容室115の底部に貯留された潤滑油O内に位置している。また、油供給通路70の他方の端部を構成する第4油案内孔76は、第1軸孔111bを介して、より具体的には、回転軸200の外周面と第1軸孔111bの内周面との間に形成される微小隙間CLを介して第1収容室113に連通している。そして、第1収容室113はその圧力が低圧冷媒と同等である低圧室を構成し、第2収容室115はその圧力が高圧冷媒と同等の圧力である高圧室を構成している。 One end (lower end) of the first oil passage 71 constituting one end of the oil supply passage 70 is a lubricating oil O stored in the second storage chamber 115, more specifically, in the bottom of the second storage chamber 115. Located inside. Further, the fourth oil guide hole 76 forming the other end of the oil supply passage 70 is more specifically formed on the outer peripheral surface of the rotating shaft 200 and the first shaft hole 111b via the first shaft hole 111b. It communicates with the first storage chamber 113 via a minute gap CL formed between the inner peripheral surface and the inner peripheral surface. The first storage chamber 113 constitutes a low-pressure chamber whose pressure is equivalent to that of the low-pressure refrigerant, and the second storage chamber 115 constitutes a high-pressure chamber whose pressure is equivalent to that of the high-pressure refrigerant.
 このため、図9において矢印で示されるように、第2収容室(吐出室(高圧室))115と第1収容室(吸入室(低圧室))113との圧力差によって、第2収容室115の底部に貯留されている潤滑油Oが第1油通路71を介して吸い上げられて第2油通路72に導かれる。第2油通路72に導かれた潤滑油Oは、第4油案内孔76を介して第1軸孔111b(電動機部10と圧縮機構部30との間に位置する回転軸200の軸受部)に供給される。第1軸孔111bに供給された潤滑油Oは、第1軸孔111bの内周面と回転軸200の外周面との間に形成される微小隙間CLを通過して第1収容室113に流出する。第1収容室113に流出した潤滑油Oは、その後に落下して第1収容室113の底部に貯留され、あるいは、第1収容室113内の低圧冷媒と共に第1圧縮機構部30Aの第1シリンダ室37A及び第2圧縮機構部30Bの第2シリンダ室37Bに吸入される。 Therefore, as shown by an arrow in FIG. 9, the pressure difference between the second accommodation chamber (discharge chamber (high pressure chamber)) 115 and the first accommodation chamber (suction chamber (low pressure chamber)) 113 causes the second accommodation chamber. The lubricating oil O stored in the bottom of the 115 is sucked up through the first oil passage 71 and guided to the second oil passage 72. The lubricating oil O guided to the second oil passage 72 passes through the fourth oil guide hole 76 to the first shaft hole 111b (bearing portion of the rotating shaft 200 located between the electric motor portion 10 and the compression mechanism portion 30). Is supplied to. The lubricating oil O supplied to the first shaft hole 111b passes through the minute gap CL formed between the inner peripheral surface of the first shaft hole 111b and the outer peripheral surface of the rotating shaft 200 and enters the first storage chamber 113. leak. The lubricating oil O that has flowed out to the first storage chamber 113 subsequently falls and is stored in the bottom of the first storage chamber 113, or is the first of the first compression mechanism unit 30A together with the low-pressure refrigerant in the first storage chamber 113. It is sucked into the second cylinder chamber 37B of the cylinder chamber 37A and the second compression mechanism unit 30B.
 また、第2油通路72に導かれた潤滑油Oは、第1油案内孔73を介して第2軸孔47a(後端側の回転軸200の軸受部)に供給される。 Further, the lubricating oil O guided to the second oil passage 72 is supplied to the second shaft hole 47a (bearing portion of the rotating shaft 200 on the rear end side) via the first oil guide hole 73.
 さらに、第2油通路72に導かれた潤滑油Oは、第2油案内孔74を介して第2偏心ローラ33Bの内側に導かれ、そこから第2圧縮機構部30Bの各摺動部に供給される。同様に、第2油通路72に導かれた潤滑油Oは、第3油案内孔75を介して第1偏心ローラ33Aの内側に導かれ、そこから第1圧縮機構部30Aの各摺動部に供給される。 Further, the lubricating oil O guided to the second oil passage 72 is guided to the inside of the second eccentric roller 33B through the second oil guide hole 74, and from there to each sliding portion of the second compression mechanism portion 30B. Supplied. Similarly, the lubricating oil O guided to the second oil passage 72 is guided to the inside of the first eccentric roller 33A through the third oil guide hole 75, and from there, each sliding portion of the first compression mechanism portion 30A. Is supplied to.
 本実施形態に係る電動圧縮機100によれば次のような効果が得られる。 According to the electric compressor 100 according to the present embodiment, the following effects can be obtained.
 本実施形態に係る電動圧縮機100において、ハウジング110内は、隔壁部111によって、電動機部10を収容する第1収容室113と圧縮機構部30を収容する第2収容室115とに区画されている。また、第2収容室115の底部が潤滑油Oを貯留する潤滑油貯留部を構成しており、隔壁部111には、潤滑油Oを第1収容室113と第2収容室115との間で流通させる油流通口等が設けられていない。このため、電動圧縮機100が傾斜等した場合でも潤滑油Oが第2収容室115から第1収容室113に流入することがほとんどなく、圧縮機構部30側に十分な量の潤滑油Oが確保され得る。また、電動機部10の回転によって攪拌される潤滑油Oもほとんどないため、電動圧縮機100から高圧冷媒と共に前記外部冷媒回路に流出する潤滑油の量も大幅に低減される。したがって、従来に比べて少ない量の潤滑油によって圧縮機構部30の潤滑性とシール性とが確保され得る。 In the electric compressor 100 according to the present embodiment, the inside of the housing 110 is divided into a first storage chamber 113 for accommodating the electric motor unit 10 and a second storage chamber 115 for accommodating the compression mechanism unit 30 by the partition wall portion 111. There is. Further, the bottom of the second accommodating chamber 115 constitutes a lubricating oil storage portion for accommodating the lubricating oil O, and the lubricating oil O is placed between the first accommodating chamber 113 and the second accommodating chamber 115 in the partition wall portion 111. There is no oil distribution port or the like for distribution in. Therefore, even when the electric compressor 100 is tilted or the like, the lubricating oil O hardly flows from the second storage chamber 115 into the first storage chamber 113, and a sufficient amount of the lubricating oil O is provided on the compression mechanism portion 30 side. Can be secured. Further, since there is almost no lubricating oil O that is agitated by the rotation of the electric motor unit 10, the amount of lubricating oil that flows out from the electric compressor 100 to the external refrigerant circuit together with the high-pressure refrigerant is also significantly reduced. Therefore, the lubricity and sealing property of the compression mechanism portion 30 can be ensured with a smaller amount of lubricating oil than in the past.
 また、隔壁部111は、例えば、鋳造や溶接によりハウジング110(センターハウジング110a)に一体に形成されて(設けられて)いる。このため、電動圧縮機100の製造時等に隔壁部111をハウジング110内に取り付ける必要がないことに加えて、隔壁部111を利用して圧縮機構部30を安定且つ精度よくハウジング110内に取り付けることも可能である。したがって、電動圧縮機100の良好な組立作業性が得られる。 Further, the partition wall portion 111 is integrally formed (provided) with the housing 110 (center housing 110a) by, for example, casting or welding. Therefore, it is not necessary to mount the partition wall 111 in the housing 110 when manufacturing the electric compressor 100, and the compression mechanism section 30 is stably and accurately mounted in the housing 110 by using the partition wall 111. It is also possible. Therefore, good assembly workability of the electric compressor 100 can be obtained.
 さらに、第2収容室115の圧力は、第1収容室113の圧力よりも高く、油供給通路70は、第2収容室115と第1収容室113との圧力差を利用して第2収容室115に貯留されている潤滑油Oを吸い上げて第1軸孔111b(電動機部10と圧縮機構部30との間に位置する回転軸200の軸受部)に供給するように構成されている。このため、電動圧縮機100の動作中、第1軸孔111bへの給油が安定且つ確実に行われ得る。 Further, the pressure of the second accommodation chamber 115 is higher than the pressure of the first accommodation chamber 113, and the oil supply passage 70 uses the pressure difference between the second accommodation chamber 115 and the first accommodation chamber 113 to perform the second accommodation. It is configured to suck up the lubricating oil O stored in the chamber 115 and supply it to the first shaft hole 111b (the bearing portion of the rotating shaft 200 located between the electric motor portion 10 and the compression mechanism portion 30). Therefore, during the operation of the electric compressor 100, lubrication to the first shaft hole 111b can be performed stably and reliably.
 特に、本実施形態において、第1収容室113は吸入口117を介して外部からの低圧冷媒が流入する吸入室(低圧室)として構成され、及び、第2収容室115は圧縮機構部30で圧縮された高圧冷媒が吐出される吐出室(高圧室)として構成されている。このため、前記圧力差がより大きくなり、第1軸孔111bへの給油が十分に行われ得る。 In particular, in the present embodiment, the first accommodation chamber 113 is configured as a suction chamber (low pressure chamber) in which a low-pressure refrigerant from the outside flows in through the suction port 117, and the second accommodation chamber 115 is a compression mechanism unit 30. It is configured as a discharge chamber (high pressure chamber) in which the compressed high-pressure refrigerant is discharged. Therefore, the pressure difference becomes larger, and the first shaft hole 111b can be sufficiently refueled.
 また、本実施形態に係る電動圧縮機100において、第1収容室113内の低圧冷媒を圧縮機構部30(第1圧縮機構部30A、第2圧縮機構部30B)に導く吸入通路(第1吸入通路55、第2吸入通路56)は、回転軸200よりも下方に配置されている。このため、第1収容室113の底部に貯留した潤滑油Oが低圧冷媒と共に圧縮機構部30に吸入され得る。したがって、第1収容室113(の底部)に潤滑油Oが滞留することが抑制され、圧縮機構部30側に十分な量の潤滑油Oが確保され得る。特に、本実施形態においては、第1収容室113に開口する前記吸入通路の開口端部(第1吸入通路55の開口端部55a)が第1軸孔111bの鉛直下方に位置している。このため、第1軸孔111bを通過して第1収容室113に流入した後に落下した潤滑油Oが速やかに圧縮機構部30に吸入され得る。 Further, in the electric compressor 100 according to the present embodiment, the suction passage (first suction) that guides the low-pressure refrigerant in the first storage chamber 113 to the compression mechanism section 30 (first compression mechanism section 30A, second compression mechanism section 30B). The passage 55 and the second suction passage 56) are arranged below the rotation shaft 200. Therefore, the lubricating oil O stored in the bottom of the first storage chamber 113 can be sucked into the compression mechanism unit 30 together with the low-pressure refrigerant. Therefore, it is possible to prevent the lubricating oil O from staying in (the bottom portion of) the first storage chamber 113, and to secure a sufficient amount of the lubricating oil O on the compression mechanism portion 30 side. In particular, in the present embodiment, the open end portion of the suction passage (open end portion 55a of the first suction passage 55) that opens into the first storage chamber 113 is located vertically below the first shaft hole 111b. Therefore, the lubricating oil O that has fallen after passing through the first shaft hole 111b and flowing into the first storage chamber 113 can be quickly sucked into the compression mechanism unit 30.
 さらに、吸入口117は、電動機部10を挟んで隔壁部111とは反対側であって且つ回転軸200に対応する高さ位置に設けられている。このため、吸入口117から第1収容室113に流入する低圧冷媒が、電動機部10の冷却と潤滑油Oの第1収容室113での滞留抑制とにバランスよく利用され得る。 Further, the suction port 117 is provided on the opposite side of the partition wall portion 111 with the electric motor portion 10 interposed therebetween and at a height position corresponding to the rotation shaft 200. Therefore, the low-pressure refrigerant flowing from the suction port 117 into the first storage chamber 113 can be used in a well-balanced manner for cooling the electric motor unit 10 and suppressing the retention of the lubricating oil O in the first storage chamber 113.
 なお、図示は省略するが、第1軸孔111b内の内周面に又は第1軸孔111b内に位置する回転軸200の外周面に、回転軸200の外周面と第1軸孔111bの内周面との間に位置する潤滑油Oを第1収容室113側から第2収容室115側へと移動させるスパイラル溝が形成されていてもよい。このようにすれば、潤滑油Oが回転軸200の外周面と第1軸孔111bの内周面との間に滞留する時間が長くなり、第1軸孔111bにおける潤滑油不足が効果的に防止され得る。 Although not shown, the outer peripheral surface of the rotating shaft 200 and the outer peripheral surface of the rotating shaft 200 are located on the inner peripheral surface of the first shaft hole 111b or on the outer peripheral surface of the rotating shaft 200 located in the first shaft hole 111b. A spiral groove may be formed to move the lubricating oil O located between the inner peripheral surface and the lubricating oil O from the first storage chamber 113 side to the second storage chamber 115 side. By doing so, the time for the lubricating oil O to stay between the outer peripheral surface of the rotating shaft 200 and the inner peripheral surface of the first shaft hole 111b becomes longer, and the lack of lubricating oil in the first shaft hole 111b is effective. Can be prevented.
 また、上述の実施形態において、第1収容室113は外部から低圧冷媒が流入する吸入室(低圧室)として構成され、及び、第2収容室115は圧縮機構部30で圧縮された高圧冷媒が吐出される吐出室(高圧室)として構成されている。しかし、これに限られるものではなく、第2収容室115の圧力が第1収容室113の圧力よりも高ければよい。 Further, in the above-described embodiment, the first storage chamber 113 is configured as a suction chamber (low pressure chamber) into which the low pressure refrigerant flows from the outside, and the second storage chamber 115 contains the high pressure refrigerant compressed by the compression mechanism unit 30. It is configured as a discharge chamber (high pressure chamber) for discharge. However, the pressure is not limited to this, and the pressure in the second storage chamber 115 may be higher than the pressure in the first storage chamber 113.
 以上、本発明の実施形態及びその変形例について説明したが、本発明は、上述の各実施形態やその変形例に制限されるものではなく、本発明の技術的思想に基づいてさらなる変形及び変更が可能であることはもちろんである。 Although the embodiments of the present invention and modified examples thereof have been described above, the present invention is not limited to the above-described embodiments and modified examples thereof, and further modifications and modifications are made based on the technical idea of the present invention. Of course it is possible.
 10…電動機部、11…ステータ、12…ロータ、30…圧縮機構部、30A…第1圧縮機構部、30B…第2圧縮機構部、55…第1吸入通路、55a…開口端部(入口側端部)、56…第2吸入通路、51…吐出連通路、53…吐出孔、70…油供給通路、71…第1油通路、72…第2油通路(回転軸内通路)、73…第1油案内孔、74…第2油案内孔、75…第3油案内孔、76…第4油案内孔(連通孔)、100…横置型電動圧縮機、110…ハウジング、110a…センターハウジング、110b…フロントハウジング、110c…リアハウジング、111…隔壁部、111a…ボス部、111b…第1軸孔(軸受部)、113…第1収容室、115…第2収容室、117…吸入口、119…吐出口、200…回転軸、CL…微小隙間、O…潤滑油 10 ... Electric unit, 11 ... Stator, 12 ... Rotor, 30 ... Compression mechanism, 30A ... First compression mechanism, 30B ... Second compression mechanism, 55 ... First suction passage, 55a ... Open end (entrance side) (End), 56 ... 2nd suction passage, 51 ... Discharge communication passage, 53 ... Discharge hole, 70 ... Oil supply passage, 71 ... 1st oil passage, 72 ... Second oil passage (passage in rotating shaft), 73 ... 1st oil guide hole, 74 ... 2nd oil guide hole, 75 ... 3rd oil guide hole, 76 ... 4th oil guide hole (communication hole), 100 ... horizontal electric compressor, 110 ... housing, 110a ... center housing , 110b ... front housing, 110c ... rear housing, 111 ... partition wall portion, 111a ... boss portion, 111b ... first shaft hole (bearing portion), 113 ... first accommodation chamber, 115 ... second accommodation chamber 117 ... suction port , 119 ... Discharge port, 200 ... Rotating shaft, CL ... Micro gap, O ... Lubricating oil

Claims (10)

  1.  ハウジング内に回転軸を回転させる電動機部と前記回転軸を介して駆動される圧縮機構部とを有し、前記回転軸を回転自在に支持する前記回転軸の軸受部が前記電動機部と前記圧縮機構部との間に設けられている横置型電動圧縮機であって、
     前記ハウジングに一体に設けられ、前記電動機部を収容する第1収容室と前記圧縮機構部を収容すると共に前記第1収容室の圧力よりも高い圧力を有する第2収容室とに前記ハウジング内を区画する隔壁部と、
     前記軸受部に潤滑油を供給する油供給通路であって、一方の端部が前記第2収容室内に位置すると共に他方の端部側が前記軸受部を介して前記第1収容室に連通し、前記第2収容室と前記第1収容室との圧力差を利用して前記潤滑油を前記軸受部に供給するように構成された前記油供給通路と、
     を有する、横置型電動圧縮機。
    The motor portion that rotates the rotating shaft and the compression mechanism portion that is driven via the rotating shaft are provided in the housing, and the bearing portion of the rotating shaft that rotatably supports the rotating shaft is the electric motor portion and the compression. It is a horizontal electric compressor installed between the mechanism and the mechanism.
    The inside of the housing is provided integrally with the housing, and the inside of the housing is provided in a first storage chamber for accommodating the electric motor portion and a second storage chamber for accommodating the compression mechanism portion and having a pressure higher than the pressure of the first accommodation chamber. The partition wall and the partition
    An oil supply passage for supplying lubricating oil to the bearing portion, one end of which is located in the second accommodating chamber and the other end side communicating with the first accommodating chamber via the bearing portion. The oil supply passage configured to supply the lubricating oil to the bearing portion by utilizing the pressure difference between the second accommodating chamber and the first accommodating chamber.
    Horizontal electric compressor.
  2.  前記軸受部は、前記隔壁部に設けられて前記回転軸が挿通される軸孔であり、
     前記油供給通路の前記他方の端部側は、前記回転軸の外周面と前記軸孔の内周面との間に形成される微小隙間を介して前記第1収容室に連通し、
     前記油供給通路は、前記潤滑油を前記微小隙間に供給するように構成されている、
     請求項1に記載の横置型電動圧縮機。
    The bearing portion is a shaft hole provided in the partition wall portion through which the rotating shaft is inserted.
    The other end side of the oil supply passage communicates with the first storage chamber through a minute gap formed between the outer peripheral surface of the rotating shaft and the inner peripheral surface of the shaft hole.
    The oil supply passage is configured to supply the lubricating oil to the minute gaps.
    The horizontal electric compressor according to claim 1.
  3.  前記油供給通路は、前記回転軸の内部を前記回転軸の軸線に沿って延びる回転軸内通路と、前記回転軸内通路と前記微小隙間とを連通する連通孔と、を含む、請求項2に記載の横置型電動圧縮機。 2. The oil supply passage includes a passage in a rotation shaft extending inside the rotation shaft along the axis of the rotation shaft, and a communication hole for communicating the passage in the rotation shaft and the minute gap. Horizontal electric compressor described in.
  4.  前記油供給通路は、前記回転軸内通路内の潤滑油を前記圧縮機構部の摺動部へと導くための案内孔をさらに含む、請求項3に記載の横置型電動圧縮機。 The horizontal electric compressor according to claim 3, wherein the oil supply passage further includes a guide hole for guiding the lubricating oil in the passage in the rotating shaft to the sliding portion of the compression mechanism portion.
  5.  前記軸孔の内周面又は前記軸孔内に位置する前記回転軸の外周面には、前記回転軸の回転によって前記微小隙間に位置する潤滑油を前記第1収容室側から前記第2収容室側に向けて移動させるスパイラル溝が形成されている、請求項2~4のいずれか一つに記載の横置型電動圧縮機。 Lubricating oil located in the minute gap is stored in the inner peripheral surface of the shaft hole or the outer peripheral surface of the rotating shaft located in the shaft hole from the first storage chamber side to the second storage chamber side due to the rotation of the rotating shaft. The horizontal electric compressor according to any one of claims 2 to 4, wherein a spiral groove for moving toward the room side is formed.
  6.  前記第1収容室は外部から吸入口を介して低圧冷媒が流入する吸入室として構成され、前記第2収容室は前記圧縮機構部で圧縮された高圧冷媒が吐出される吐出室として構成されている、請求項1~5のいずれか一つに記載の横置型電動圧縮機。 The first storage chamber is configured as a suction chamber in which a low-pressure refrigerant flows in from the outside through a suction port, and the second storage chamber is configured as a discharge chamber in which the high-pressure refrigerant compressed by the compression mechanism unit is discharged. The horizontal electric compressor according to any one of claims 1 to 5.
  7.  前記圧縮機構部は、吸入通路を介して前記第1収容室内の低圧冷媒を吸入し、圧縮して前記第2収容室内に吐出するように構成され、
     前記吸入通路は、前記回転軸よりも下方に配置されている、
     請求項6に記載の横置型電動圧縮機。
    The compression mechanism unit is configured to suck the low-pressure refrigerant in the first storage chamber through the suction passage, compress it, and discharge it into the second storage chamber.
    The suction passage is arranged below the axis of rotation.
    The horizontal electric compressor according to claim 6.
  8.  前記第1収容室に開口する前記吸入通路の入口側端部は、前記軸受部の鉛直下方に位置している、請求項7に記載の横置型電動圧縮機。 The horizontal electric compressor according to claim 7, wherein the inlet-side end of the suction passage that opens into the first storage chamber is located vertically below the bearing.
  9.  前記吸入口は、前記電動機部を挟んで前記隔壁部とは反対側であって且つ前記回転軸に対応する高さ位置に設けられている、請求項6又は7に記載の横置型電動圧縮機。 The horizontal electric compressor according to claim 6 or 7, wherein the suction port is provided on the side opposite to the partition wall portion across the electric motor portion and at a height position corresponding to the rotation shaft. ..
  10.  前記軸受部は、前記隔壁部に一体に形成され、
     前記圧縮機構部は、前記隔壁部に固定されている、
     請求項1~9のいずれか一つに記載の横置型電動圧縮機。
    The bearing portion is integrally formed with the partition wall portion.
    The compression mechanism portion is fixed to the partition wall portion.
    The horizontal electric compressor according to any one of claims 1 to 9.
PCT/JP2020/031582 2019-09-09 2020-08-21 Horizontal electric compressor WO2021049273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-163786 2019-09-09
JP2019163786A JP2021042687A (en) 2019-09-09 2019-09-09 Horizontal electric compressor

Publications (1)

Publication Number Publication Date
WO2021049273A1 true WO2021049273A1 (en) 2021-03-18

Family

ID=74862247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031582 WO2021049273A1 (en) 2019-09-09 2020-08-21 Horizontal electric compressor

Country Status (2)

Country Link
JP (1) JP2021042687A (en)
WO (1) WO2021049273A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110332114A (en) * 2019-06-10 2019-10-15 珠海格力节能环保制冷技术研究中心有限公司 A kind of compressor pump structure, assembly method and rotor compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833042B1 (en) * 1967-03-23 1973-10-11
JPH036092U (en) * 1989-06-06 1991-01-22
JP2006177214A (en) * 2004-12-21 2006-07-06 Mitsubishi Heavy Ind Ltd Electric compressor
JP2018127980A (en) * 2017-02-09 2018-08-16 株式会社豊田自動織機 Motor compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833042B1 (en) * 1967-03-23 1973-10-11
JPH036092U (en) * 1989-06-06 1991-01-22
JP2006177214A (en) * 2004-12-21 2006-07-06 Mitsubishi Heavy Ind Ltd Electric compressor
JP2018127980A (en) * 2017-02-09 2018-08-16 株式会社豊田自動織機 Motor compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110332114A (en) * 2019-06-10 2019-10-15 珠海格力节能环保制冷技术研究中心有限公司 A kind of compressor pump structure, assembly method and rotor compressor

Also Published As

Publication number Publication date
JP2021042687A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP4799437B2 (en) Fluid machinery
US10648471B2 (en) Scroll compressor
US8858205B2 (en) Compressor having an inlet port formed to overlap with a roller and a cylinder-type rotor for compressing a refrigerant
JP4542161B2 (en) Hermetic electric compressor
JP5080287B2 (en) Compressor motor
CN102076970A (en) Compressor
JP2010101188A (en) Scroll compressor
JP5445180B2 (en) Compressor
KR101038634B1 (en) Compressor
WO2021049273A1 (en) Horizontal electric compressor
US9181947B2 (en) Compressor
JP7119812B2 (en) compressor
US11692547B2 (en) Hermetic compressor having oil guide that surrounds rotating shaft
JP7135694B2 (en) compressor
JP7341003B2 (en) Horizontal electric compressor
JP2019094777A (en) Rotary compressor
WO2021193275A1 (en) Horizontal rotary compressor
WO2023003015A1 (en) Horizontal rotary compressor
JP7495813B2 (en) Compressor and refrigeration cycle device
JP5540577B2 (en) Scroll compressor
WO2022085443A1 (en) Compressor and refrigeration cycle device
JP5157148B2 (en) Compressor
JP4263047B2 (en) Horizontal type compressor
JP2010121583A (en) Hermetic electric compressor
JP2021173211A (en) Compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863111

Country of ref document: EP

Kind code of ref document: A1