WO2021047584A1 - SUBSTITUTED (2-AZABICYCLO [3.1.0] HEXAN-2-YL) PYRAZOLO [1, 5-a] PYRIMIDINE AND IMIDAZO [1, 2-b] PYRIDAZINE COMPOUNDS AS TRK KINASES INHIBITORS - Google Patents

SUBSTITUTED (2-AZABICYCLO [3.1.0] HEXAN-2-YL) PYRAZOLO [1, 5-a] PYRIMIDINE AND IMIDAZO [1, 2-b] PYRIDAZINE COMPOUNDS AS TRK KINASES INHIBITORS Download PDF

Info

Publication number
WO2021047584A1
WO2021047584A1 PCT/CN2020/114472 CN2020114472W WO2021047584A1 WO 2021047584 A1 WO2021047584 A1 WO 2021047584A1 CN 2020114472 W CN2020114472 W CN 2020114472W WO 2021047584 A1 WO2021047584 A1 WO 2021047584A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
cycloalkyl
aryl
independently selected
heteroaryl
Prior art date
Application number
PCT/CN2020/114472
Other languages
French (fr)
Inventor
Huajie Zhang
Chengxi HE
Rui Tan
Yue RONG
Weipeng Zhang
Zuwen ZHOU
Hongbin Liu
Zhifang Chen
Ling Chen
Lijun Yang
Yunling Wang
Xianlong WANG
Lihua Jiang
Shu Lin
Xingdong ZHAO
Weibo Wang
Original Assignee
Fochon Pharmaceuticals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fochon Pharmaceuticals, Ltd. filed Critical Fochon Pharmaceuticals, Ltd.
Priority to CN202080063781.2A priority Critical patent/CN114630829A/en
Publication of WO2021047584A1 publication Critical patent/WO2021047584A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • TRK family protein tyrosine kinases Provided are certain compounds or pharmaceutically acceptable salts thereof which can inhibit TRK family protein tyrosine kinases and may be useful for the treatment of hyper-proliferative diseases like cancer and inflammation, or immune and autoimmune diseases.
  • Hyper-proliferative diseases like cancer and inflammation are attracting the scientific community to provide therapeutic benefits. In this regard efforts have been made to identify and target specific mechanisms which play a role in proliferating the diseases.
  • TRKs The tropomyosin receptor kinases
  • NTRK neurotrophic tyrosine kinase receptor
  • TRK family includes three different members, namely TRKA, TRKB and TRKC, respectively encoded by the NTRK1, NTRK2 and NTRK3 genes.
  • the respective primary neurotrophic ligands for the three TRK isoforms are: nerve growth factor (NGF) which activates TRKA, brain-derived neurotrophic factor (BDNF) which activates TRKB, and neurotrophin-3 (NT-3) which activates TRKC.
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • NT-3 neurotrophin-3
  • TRKs are expressed primarily in neuronal tissues and regulate neuronal survival and differentiation of neuronal cells. Dysregulation of TRK pathway, including gene fusions, protein overexpression, and single nucleotide alterations, potentiate many aberrant physiological processes that negatively impact human health. It has been demonstrated that the inhibitors of the NT/TRK signaling pathway serve as effective treatment for multiple pre-clinical animal model of inflammation and pain.
  • altered TRK signaling pathway is associated with the poor prognosis of different solid malignancies, such as neuroblastoma, breast cancer, pancreatic cancer, melanoma, multiple myeloma, thyroid cancer, glioblastoma, colorectal cancer, sarcomas, cholangiocarcinoma, non-small cell lung cancer and etc.
  • solid malignancies such as neuroblastoma, breast cancer, pancreatic cancer, melanoma, multiple myeloma, thyroid cancer, glioblastoma, colorectal cancer, sarcomas, cholangiocarcinoma, non-small cell lung cancer and etc.
  • NTRK gene alterations can serve as predictive biomarker for targeted therapy.
  • the on-going clinical development of selective TRK inhibitors have been demonstrated to be beneficial among patients whose tumors harbor NTRK gene alterations.
  • TRK inhibitors were disclosed in the arts, e.g. WO 2006082392, many suffer from having short half-life or toxicity. Therefore, there is a need for new TRK inhibitors that have at least one advantageous property selected from potency, stability, selectivity, toxicity and pharmacodynamics properties as an alternative for the treatment of hyper-proliferative diseases.
  • a novel class of TRK inhibitors is provided herein.
  • R 1 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X ;
  • R 3 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X ;
  • each R A1 , R A2 , R B1 and R B2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X ;
  • each R E1 and R E2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2 , OR a1 , SR a1 , -S (O) r R a1 , -C (O) R a1 , C (O) OR a1 , -C (O) NR a1 R b1 and -S (O) r NR a1 R b1 , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted
  • each R a1 and each R b1 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y ;
  • R a1 and R b1 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R Y groups;
  • each R c1 and each R d1 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y ;
  • R c1 and R d1 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1, 2 or 3 R Y groups;
  • each R e1 is independently selected from hydrogen, deuterium, C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, CN, NO 2 , -OR a2 , -SR a2 , -S (O) r R a2 , -C (O) R a2 , -C (O) OR a2 , -S (O) r NR a2 R b2 and -C (O) NR a2 R b2 ;
  • each R a2 and each R b2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalkylamino,
  • R a2 and R b2 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
  • each R c2 and each R d2 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalky
  • R c2 and R d2 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
  • each R e2 is independently selected from hydrogen, deuterium, CN, NO 2 , C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, -C (O) C 1-4 alkyl, -C (O) C 3-10 cycloalkyl, -C (O) OC 1-4 alkyl, -C (O) OC 3-10 cycloalkyl, -C (O) N (C 1-4 alkyl) 2 , -C (O) N (C 3-10 cycloalkyl) 2 , -S (O) 2 C 1-4 alkyl, -S (O) 2 C 3-10 cycloalkyl, -S (O) 2 C 1-4 alkyl, -S (O) 2 C 3-10 cycloalkyl, -S (O) 2 N (C 1-4 alkyl) 2 and -
  • n is selected from 0, 1, 2, 3 and 4;
  • each r is independently selected from 0, 1 and 2;
  • each t is independently selected from 0, 1, 2, 3 and 4;
  • compositions comprising a compound of formula (I) or at least one pharmaceutically acceptable salt thereof and a pharmaceutically acceptable excipient.
  • the disclosure provides methods for modulating TRK, comprising administering to a system or a subject in need thereof, a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof or pharmaceutical compositions thereof, thereby modulating said TRK.
  • a method to treat, ameliorate or prevent a condition which responds to inhibition of TRK comprising administering to a system or subject in need of such treatment an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof or pharmaceutical compositions thereof, and optionally in combination with a second therapeutic agent, thereby treating said condition.
  • the present disclosure provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating a condition mediated by TRK.
  • the compounds of the disclosure may be used alone or in combination with a second therapeutic agent to treat a condition mediated by TRK.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof for treating a condition mediated by TRK is disclosed.
  • the condition herein includes but not limited to, an autoimmune disease, a transplantation disease, an infectious disease or a cell proliferative disorder.
  • the disclosure provides methods for treating a cell proliferative disorder, comprising administering to a system or subject in need of such treatment an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof or pharmaceutical compositions thereof, and optionally in combination with a second therapeutic agent, thereby treating said condition.
  • the present disclosure provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating a cell-proliferative disorder.
  • the compounds of the disclosure may be used alone or in combination with a chemotherapeutic agent to treat a cell proliferative disorder.
  • the cell proliferative disorder disclosed herein includes but not limited to, lymphoma, osteosarcoma, melanoma, or a tumor of breast, renal, prostate, colorectal, thyroid, ovarian, pancreatic, neuronal, lung, uterine or gastrointestinal tumor.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof may be administered to a system comprising cells or tissues, or to a subject including a mammalian subject such as a human or animal subject.
  • substituent groups are specified by their conventional chemical formulas, written from left to right, they equally encompass the chemically identical substituents that would result from writing the structure from right to left.
  • CH 2 O is equivalent to OCH 2 .
  • substituted means that a hydrogen atom is replaced by a substituent. It is to be understood that substitution at a given atom is limited by valency.
  • C i-j or “i-j membered” used herein means that the moiety has m-n carbon atoms or i-j atoms.
  • C 1-6 alkyl means said alkyl has 1-6 carbon atoms.
  • C 3-10 cycloalkyl means said cycloalkyl has 3-10 carbon atoms.
  • any variable e.g. R
  • R any variable
  • the group may be optionally substituted by at most two R and R has independent option at each case.
  • a combination of substituents and/or the variants thereof are allowed only if such a combination will result in a stable compound.
  • hetero means heteroatom or heteroatom radical (i.e. a radical containing heteroatom) , i.e. the atoms beyond carbon and hydrogen atoms or the radical containing such atoms.
  • the heteroatom (s) is independently selected from the group consisting of O, N, S, P and the like.
  • the two or more heteroatoms may be the same, or part or all of the two or more heteroatoms may be different.
  • alkyl refers to branched or straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms. Unless otherwise specified, “alkyl” refers to C l-10 alkyl. For example, C 1-6 , as in “C l-6 alkyl” is defined to include groups having 1, 2, 3, 4, 5, or 6 carbons in a linear or branched arrangement.
  • C l-8 alkyl includes but is not limited to methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, i-butyl, pentyl, hexyl, heptyl, and octyl.
  • cycloalkyl employed alone or in combination with other terms, refers to a monocyclic or bridged saturated hydrocarbon ring system.
  • the monocyclic cycloalkyl is a monocyclic hydrocarbon ring system containing 3-10 carbon atoms, zero heteroatoms and zero double bonds. Examples of monocyclic ring systems include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • the bridged cycloalkyl is a polycyclic ring system containing 3-10 carbon atoms, which contains one or two alkylene bridges, each alkylene bridge consisting of one, two, or three carbon atoms, each linking two non-adjacent carbon atoms of the ring system.
  • Cycloalkyl can be fused with aryl or heteroaryl group. In some embodiments, cycloalkyl is benzocondensed.
  • bridged cycloalkyl ring systems include, but are not limited to, bicyclo [3.1.1] heptane, bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, bicyclo [3.2.2] nonane, bicyclo [3.3.1] nonane, bicyclo [4.2.1] nonane, tricyclo [3.3.1.03, 7] nonane and tricyclo [3.3.1.13, 7] decane (adamantane) .
  • the monocyclic or bridged cycloalkyl can be attached to the parent molecular moiety through any substitutable atom contained within the ring system.
  • alkenyl refers to a non-aromatic hydrocarbon radical, straight, branched or cyclic, containing 2-10 carbon atoms and at least one carbon to carbon double bond. In some embodiments, one carbon to carbon double bond is present, and up to four non-aromatic carbon-carbon double bonds may be present.
  • C 2-6 alkenyl means an alkenyl radical having 2-6 carbon atoms.
  • Alkenyl groups include but are not limited to ethenyl, propenyl, butenyl, 2-methylbutenyl and cyclohexenyl. The straight, branched or cyclic portion of the alkenyl group may contain double bonds and may be substituted if a substituted alkenyl group is indicated.
  • alkynyl refers to a hydrocarbon radical, straight, branched or cyclic, containing 2-10 carbon atoms and at least one carbon to carbon triple bond. In some embodiments, up to three carbon-carbon triple bonds may be present.
  • C 2-6 alkynyl means an alkynyl radical having 2-6 carbon atoms.
  • Alkynyl groups include but are not limited to ethynyl, propynyl, butynyl, and 3-methylbutynyl.
  • the straight, branched or cyclic portion of the alkynyl group may contain triple bonds and may be substituted if a substituted alkynyl group is indicated.
  • halogen refers to fluorine, chlorine, bromine and iodine.
  • alkoxy refers to an alkyl as defined above, which is single bonded to an oxygen atom. The attachment point of an alkoxy radical to a molecule is through the oxygen atom. An alkoxy radical may be depicted as -O-alkyl.
  • C 1-10 alkoxy refers to an alkoxy radical containing 1-10 carbon atoms, having straight or branched moieties. Alkoxy group includes but is not limited to, methoxy, ethoxy, propoxy, isopropoxy, butoxy, pentyloxy, hexyloxy, and the like.
  • cycloalkoxy refers to cycloalkyl as defined above, which is single bonded to an oxygen atom. The attachment point of a cycloalkoxy radical to a molecule is through the oxygen atom. A cycloalkoxy radical may be depicted as -O-cycloalkyl. “C 3-10 cycloalkoxy” refers to a cycloalkoxy radical containing 3-10 carbon atoms. Cycloalkoxy can be fused with aryl or heteroaryl group. In some embodiments, cycloalkoxy is benzocondensed. Cycloalkoxy group includes but is not limited to, cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy, and the like.
  • alkylthio refers to an alkyl radical as defined above, which is single bonded to a sulfur atom. The attachment point of an alkylthio radical to a molecule is through the sulfur atom. An alkylthio radical may be depicted as -S-alkyl.
  • C 1-10 alkylthio refers to an alkylthio radical containing 1-10 carbon atoms, having straight or branched moieties.
  • Alkylthio group includes but is not limited to, methylthio, ethylthio, propylthio, isopropylthio, butylthio, hexylthio, and the like.
  • cycloalkylthio employed alone or in combination with other terms, refers to cycloalkyl as defined above, which is single bonded to a sulfur atom. The attachment point of a cycloalkylthio radical to a molecule is through the sulfur atom. A cycloalkylthio radical may be depicted as -S-cycloalkyl. “C 3-10 cycloalkylthio” refers to a cycloalkylthio radical containing 3-10 carbon atoms. Cycloalkylthio can be fused with aryl or heteroaryl group. In some embodiments, cycloalkylthio is benzocondensed. Cycloalkylthio group includes but is not limited to, cyclopropylthio, cyclobutylthio, cyclohexylthio, and the like.
  • alkylamino refers to an alkyl as defined above, which is single bonded to a nitrogen atom. The attachment point of an alkylamino radical to a molecule is through the nitrogen atom. An alkylamino radical may be depicted as -NH (alkyl) .
  • C 1-10 alkylamino refers to an alkylamino radical containing 1-10 carbon atoms, having straight or branched moieties.
  • Alkylamino group includes but is not limited to, methylamino, ethylamino, propylamino, isopropylamino, butylamino, hexylamoino, and the like.
  • cycloalkylamino employed alone or in combination with other terms, refers to cycloalkyl as defined above, which is single bonded to a nitrogen atom. The attachment point of a cycloalkylamino radical to a molecule is through the nitrogen atom.
  • a cycloalkylamino radical may be depicted as -NH (cycloalkyl) .
  • C 3-10 cycloalkylamino refers to a cycloalkylamino radical containing 3-10 carbon atoms.
  • Cycloalkylamino can be fused with aryl or heteroaryl group. In some embodiments, cycloalkylamino is benzocondensed. Cycloalkylamino group includes but is not limited to, cyclopropylamino, cyclobutylamino, cyclohexylamino, and the like.
  • di (alkyl) amino refers to two alkyl as defined above, which are single bonded to a nitrogen atom.
  • the attachment point of an di (alkyl) amino radical to a molecule is through the nitrogen atom.
  • a di (alkyl) amino radical may be depicted as -N (alkyl) 2 .
  • di (C 1-10 alkyl) amino refers to a di (C 1-10 alkyl) amino radical wherein the alkyl radicals each independently contains 1-10 carbon atoms, having straight or branched moieties.
  • aryl refers to a monovalent, monocyclic-, bicyclic-or tricyclic aromatic hydrocarbon ring system having 6, 7, 8, 9, 10, 11, 12, 13 or 14 carbon atoms (a “C 6-14 aryl” group) , particularly a ring having 6 carbon atoms (a “C 6 aryl” group) , e.g. a phenyl group; or a ring having 10 carbon atoms (a “C 10 aryl” group) , e.g. a naphthyl group; or a ring having 14 carbon atoms, (a “C 14 aryl” group) , e.g. an anthranyl group.
  • Aryl can be fused with cycloalkyl or heterocycle group.
  • Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals.
  • Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in “-yl” by removal of one hydrogen atom from the carbon atom with the free valence are named by removing “-yl” and adding “-idene” to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene.
  • heteroaryl refers to a monovalent, monocyclic-, bicyclic-or tricyclic aromatic ring system having 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 ring atoms (a “5-to 14-membered heteroaryl” group) , particularly 5 or 6 or 9 or 10 atoms, and which contains at least one heteroatom which may be identical or different, said heteroatom selected from N, O and S.
  • Heteroaryl can be fused with cycloalkyl or heterocycle group.
  • “heteroaryl” refers to
  • a 5-to 8-membered monocyclic aromatic ring containing one or more, for example, from 1 to 4, or, in some embodiments, from 1 to 3, heteroatoms selected from N, O and S, with the remaining ring atoms being carbon; or
  • a 8-to 12-membered bicyclic aromatic ring system containing one or more, for example, from 1 to 6, or, in some embodiments, from 1 to 4, or, in some embodiments, from 1 to 3, heteroatoms selected from N, O and S, with the remaining ring atoms being carbon; or
  • a 11-to 14-membered tricyclic aromatic ring system containing one or more, for example, from 1 to 8, or, in some embodiments, from 1 to 6, or, in some embodiments, from 1 to 4, or in some embodiments, from 1 to 3, heteroatoms selected from N, O and S, with the remaining ring atoms being carbon.
  • the total number of S and O atoms in the heteroaryl group exceeds 1, those heteroatoms are not adjacent to one another. In some embodiments, the total number of S and O atoms in the heteroaryl group is not more than 2. In some embodiments, the total number of S and O atoms in the aromatic heterocycle is not more than 1.
  • heteroaryl groups include, but are not limited to, pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, pyrazin-2-yl, pyrazin-3-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrimidin-6-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, pyridazinyl, triazinyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, triazolyl, tetrazolyl, thienyl, furyl.
  • heteroaryl groups include but are not limited to indolyl, benzothienyl, benzofuryl, benzoimidazolyl, benzotriazolyl, quinoxalinyl, quinolinyl, and isoquinolinyl.
  • Heteroaryl is also understood to include the N-oxide derivative of any nitrogen-containing heteroaryl.
  • Bivalent radicals derived from univalent heteroaryl radicals whose names end in “-yl” by removal of one hydrogen atom from the atom with the free valence are named by adding “-idene” to the name of the corresponding univalent radical, e.g., a pyridyl group with two points of attachment is a pyridylidene.
  • heterocycle employed alone or in combination with other terms, (and variations thereof such as “heterocyclic” , or “heterocyclyl” ) broadly refers to a saturated or unsartated mono-or multicyclic (e.g. bicyclic) aliphatic ring system, usually with 3 to 12 ring atoms, wherein at least one (e.g. 2, 3 or 4) ring atom is heteroatom independently selected from O, S, N and P (preferably O, S, N) .
  • a multicyclic heterocycle two or more rings can be fused or bridged or spiro together.
  • Heterocycle can be fused with aryl or heteroaryl group. In some embodiments, heterocycle is benzocondensed.
  • Heterocycle also includes ring systems substituted with one or more oxo or imino moieties.
  • the C, N, S and P atoms in the heterocycle ring are optionally substituted by oxo.
  • the C, S and P atoms in the heterocycle ring are optionally substituted by imino, and imino can be unsubstituted or substituted.
  • the point of the attachment may be carbon atom or heteroatom in the heterocyclic ring, provided that attachment results in the creation of a stable structure.
  • the heterocyclic ring has substituents, it is understood that the substituents may be attached to any atom in the ring, whether a heteroatom or a carbon atom, provided that a stable chemical structure result.
  • Suitable heterocycles include, for example, pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, imidazolidin-1-yl, imidazolidin-2-yl, imidazolidin-3-yl, imidazolidin-4-yl, imidazolidin-5-yl, pyrazolidin-1-yl, pyrazolidin-2-yl, pyrazolidin-3-yl, pyrazolidin-4-yl, pyrazolidin-5-yl, piperidin-1-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl, piperazin-2-yl, piperazin-3-yl, hexahydropyridazin-1-yl, hexahydropyridazin-3-yl and hexahydropyridazin-4-yl.
  • Morpholinyl groups are also contemplated, such as morpholin-1-yl, morpholin-2-yl and morpholin-3-yl.
  • heterocycle with one or more oxo moieties include but are not limited to, piperidinyl N-oxide, morpholinyl-N-oxide, 1-oxo-thiomorpholinyl and 1, 1-dioxo-thiomorpholinyl.
  • Bicyclic heterocycles include, for example:
  • aryl-alkyl refers to an alkyl moiety as defined above substituted by an aryl group as defined above.
  • exemplary aryl-alkyl groups include but are not limited to benzyl, phenethyl and naphthylmethyl groups. In some embodiments, aryl-alkyl groups have 7-20 or 7-11 carbon atoms.
  • C 1-4 refers to the alkyl portion of the moiety and does not describe the number of atoms in the aryl portion of the moiety.
  • heterocyclyl-alkyl refers to alkyl as defined above substituted by heterocyclyl as defined above.
  • C 1-4 alkyl refers to the alkyl portion of the moiety and does not describe the number of atoms in the heterocyclyl portion of the moiety.
  • cycloalkyl-alkyl refers to alkyl as defined above substituted by cycloalkyl as defined above.
  • C 3-10 cycloalkyl-C l-4 alkyl refers to the cycloalkyl portion of the moiety and does not describe the number of atoms in the alkyl portion of the moiety
  • C 1-4 refers to the alkyl portion of the moiety and does not describe the number of atoms in the cycloalkyl portion of the moiety.
  • heteroaryl-alkyl refers to alkyl as defined above substituted by heteroaryl as defined above.
  • C 1-4 refers to the alkyl portion of the moiety and does not describe the number of atoms in the heteroaryl portion of the moiety.
  • substitution of alkyl, cycloalkyl, heterocyclyl, aryl and/or heteroaryl refers to substitution of each of those groups individually as well as to substitutions of combinations of those groups. That is, if R is aryl-C l-4 alkyl and may be unsubstituted or substituted with at least one substituent, such as one, two, three, or four substituents, independently selected from R X , it should be understood that the aryl portion may be unsubstituted or substituted with at least one substituent, such as one, two, three, or four substituents, independently selected from R X and the alkyl portion may also be unsubstituted or substituted with at least one substituent, such as one, two, three, or four substituents, independently selected from R X .
  • salts derived from inorganic bases may be selected, for example, from aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium and zinc salts. Further, for example, the pharmaceutically acceptable salts derived from inorganic bases may be selected from ammonium, calcium, magnesium, potassium and sodium salts. Salts in the solid form may exist in one or more crystalline forms, or polymorphs, and may also be in the form of solvates, such as hydrates.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases may be selected, for example, from salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N, N'-dibenzylethylene-diamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine and tripropylamine, tromethamine.
  • basic ion exchange resins
  • salts may be prepared using at least one pharmaceutically acceptable non-toxic acid, selected from inorganic and organic acids.
  • acid may be selected, for example, from acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric and p-toluenesulfonic acids.
  • such acid may be selected, for example, from citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, fumaric and tartaric acids.
  • administering should be understood to mean providing a compound or a pharmaceutically acceptable salt thereof to the individual in recognized need of treatment.
  • the term “effective amount” means the amount of the a compound or a pharmaceutically acceptable salt that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.
  • composition as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • composition in relation to a pharmaceutical composition is intended to encompass a product comprising the active ingredient (s) and the inert ingredient (s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
  • pharmaceutically acceptable it is meant compatible with the other ingredients of the formulation and not unacceptably deleterious to the recipient thereof.
  • subject in reference to individuals suffering from a disorder, a condition, and the like, encompasses mammals and non-mammals.
  • mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like.
  • non-mammals include, but are not limited to, birds, fish and the like.
  • the mammal is a human.
  • treat, ” “treating” or “treatment, ” and other grammatical equivalents as used herein, include alleviating, abating or ameliorating a disease or condition, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, inhibiting the disease or condition, e.g., arresting the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or stopping the symptoms of the disease or condition, and are intended to include prophylaxis.
  • the terms further include achieving a therapeutic benefit and/or a prophylactic benefit.
  • therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated.
  • compositions may be administered to a patient at risk of developing a particular disease, or to a patient reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.
  • protecting group refers to a substituent that can be commonly employed to block or protect a certain functionality while reacting other functional groups on the compound.
  • an “amino-protecting group” is a substituent attached to an amino group that blocks or protects the amino functionality in the compound. Suitable amino-protecting groups include but are not limited to acetyl, trifluoroacetyl, t-butoxycarbonyl (BOC) , benzyloxycarbonyl (CBZ) and 9-fluorenylmethylenoxycarbonyl (Fmoc) .
  • a “hydroxy-protecting group” refers to a substituent of a hydroxy group that blocks or protects the hydroxy functionality.
  • Suitable protecting groups include but are not limited to acetyl and silyl.
  • a “carboxy-protecting group” refers to a substituent of the carboxy group that blocks or protects the carboxy functionality. Common carboxy-protecting groups include -CH 2 CH 2 SO 2 Ph, cyanoethyl, 2- (trimethylsilyl) ethyl, 2- (trimethylsilyl) ethoxymethyl, 2- (p-toluenesulfonyl) ethyl, 2- (p-nitrophenylsulfenyl) ethyl, 2- (diphenylphosphino) -ethyl, nitroethyl and the like.
  • protecting groups and their use see T. W. Greene, Protective Groups in Organic Synthesis, John Wiley &Sons, New York, 1991.
  • NH protecting group includes, but not limited to, trichloroethoxycarbonyl, tribromoethoxycarbonyl, benzyloxycarbonyl, para-nitrobenzylcarbonyl, ortho-bromobenzyloxycarbonyl, chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl, phenylacetyl, formyl, acetyl, benzoyl, tert-amyloxycarbonyl, tert-butoxycarbonyl, para-methoxybenzyloxycarbonyl, 3, 4-dimethoxybenzyl-oxycarbonyl, 4- (phenylazo) -benzyloxycarbonyl, 2-furfuryloxycarbonyl, diphenylmethoxycarbonyl, 1, 1-dimethylpropoxy-carbonyl, isopropoxycarbonyl, phthaloyl, succinyl, alanyl, leu
  • C (O) OH protecting group includes, but not limited to, methyl, ethyl, n-propyl, isopropyl, 1, 1-dimethylpropyl, n-butyl, tert-butyl, phenyl, naphthyl, benzyl, diphenylmethyl, triphenylmethyl, para-nitrobenzyl, para-methoxybenzyl, bis (para-methoxyphenyl) methyl, acetylmethyl, benzoylmethyl, para-nitrobenzoylmethyl, para-bromobenzoylmethyl, para-methanesulfonylbenzoylmethyl, 2-tetrahydropyranyl, 2-tetrahydrofuranyl, 2, 2, 2-trichloro-ethyl, 2- (trimethylsilyl) ethyl, acetoxymethyl, propionyloxymethyl, pivaloyloxymethyl, phthalimidomethyl, succinimid
  • OH or SH protecting group includes, but not limited to, benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 3, 4-dimethoxybenzyloxycarbonyl, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, 1, 1-dimethylpropoxycarbonyl, isopropoxycarbonyl, isobutyloxycarbonyl, diphenylmethoxycarbonyl, 2, 2, 2-trichloroethoxycarbonyl, 2, 2, 2-tribromoethoxycarbonyl, 2- (trimethylsilyl) ethoxycarbonyl, 2- (phenylsulfonyl) ethoxycarbonyl, 2- (triphenylphosphonio) ethoxycarbonyl, 2-furfuryloxycarbonyl, 1-adamantyloxycarbonyl, vinyloxycarbonyl, allyl
  • Geometric isomers may exist in the present compounds.
  • Compounds of this invention may contain carbon-carbon double bonds or carbon-nitrogen double bonds in the E or Z configuration, wherein the term “E” represents higher order substituents on opposite sides of the carbon-carbon or carbon-nitrogen double bond and the term “Z” represents higher order substituents on the same side of the carbon-carbon or carbon-nitrogen double bond as determined by the Cahn-Ingold-Prelog Priority Rules.
  • the compounds of this invention may also exist as a mixture of "E” and "Z” isomers. Substituents around a cycloalkyl or heterocycloalkyl are designated as being of cis or trans configuration.
  • the invention contemplates the various isomers and mixtures thereof resulting from the disposal of substituents around an adamantane ring system.
  • Two substituents around a single ring within an adamantane ring system are designated as being of Z or E relative configuration.
  • C.D. Jones, M. Kaselj, R.N. Salvatore, W.J. le Noble J. Org. Chem. 1998, 63, 2758-2760 See C.D. Jones, M. Kaselj, R.N. Salvatore, W.J. le Noble J. Org. Chem. 1998, 63, 2758-2760.
  • Compounds of this invention may contain asymmetrically substituted carbon atoms in the R or S configuration, in which the terms "R” and “S” are as defined by the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem. (1976) 45, 13-10.
  • Compounds having asymmetrically substituted carbon atoms with equal amounts of R and S configurations are racemic at those carbon atoms. Atoms with an excess of one configuration over the other are assigned the configuration present in the higher amount, preferably an excess of about 85-90%, more preferably an excess of about 95-99%, and still more preferably an excess greater than about 99%.
  • this invention includes racemic mixtures, relative and absolute stereoisomers, and mixtures of relative and absolute stereoisomers.
  • Compounds of the invention can exist in isotope-labeled or -enriched form containing one or more atoms having an atomic mass or mass number different from the atomic mass or mass number most abundantly found in nature.
  • Isotopes can be radioactive or non-radioactive isotopes.
  • Isotopes of atoms such as hydrogen, carbon, nitrogen, oxygen, phosphorous, sulfur, fluorine, chlorine and iodine include, but are not limited to, 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 32 P, 35 S, 18 F, 36 Cl and 125 I.
  • Compounds that contain other isotopes of these and/or other atoms are within the scope of this invention.
  • the isotope-labeled compounds contain deuterium ( 2 H) , tritium ( 3 H) or 14 C isotopes.
  • Isotope-labeled compounds of this invention can be prepared by the general methods well known to persons having ordinary skill in the art. Such isotope-labeled compounds can be conveniently prepared by carrying out the procedures disclosed in the Examples disclosed herein and Schemes by substituting a readily available isotope-labeled reagent for a non-labeled reagent.
  • compounds may be treated with isotope-labeled reagents to exchange a normal atom with its isotope, for example, hydrogen for deuterium can be exchanged by the action of a deuterated acid such as D 2 SO 4 /D 2 O.
  • a deuterated acid such as D 2 SO 4 /D 2 O.
  • the isotope-labeled compounds of the invention may be used as standards to determine the effectiveness of TRK inhibitors in binding assays.
  • Isotope containing compounds have been used in pharmaceutical research to investigate the in vivo metabolic fate of the compounds by evaluation of the mechanism of action and metabolic pathway of the nonisotope-labeled parent compound (Blake et al. J. Pharm. Sci. 64, 3, 367-391 (1975) ) .
  • Such metabolic studies are important in the design of safe, effective therapeutic drugs, either because the in vivo active compound administered to the patient or because the metabolites produced from the parent compound prove to be toxic or carcinogenic (Foster et al., Advances in Drug Research Vol. 14, pp.
  • non-radioactive isotope containing drugs such as deuterated drugs called “heavy drugs” can be used for the treatment of diseases and conditions related to TRK activity.
  • Increasing the amount of an isotope present in a compound above its natural abundance is called enrichment.
  • Examples of the amount of enrichment include but are not limited to from about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21, 25, 29, 33, 37, 42, 46, 50, 54, 58, 63, 67, 71, 75, 79, 84, 88, 92, 96, to about 100 mol %.
  • Stable isotope labeling of a drug can alter its physico-chemical properties such as pKa and lipid solubility. These effects and alterations can affect the pharmacodynamic response of the drug molecule if the isotopic substitution affects a region involved in a ligand-receptor interaction. While some of the physical properties of a stable isotope-labeled molecule are different from those of the unlabeled one, the chemical and biological properties are the same, with one important exception: because of the increased mass of the heavy isotope, any bond involving the heavy isotope and another atom will be stronger than the same bond between the light isotope and that atom. Accordingly, the incorporation of an isotope at a site of metabolism or enzymatic transformation will slow said reactions potentially altering the pharmacokinetic profile or efficacy relative to the non-isotopic compound.
  • this invention provides to a compound of formula (I) ,
  • R 1 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X ;
  • R 3 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X ;
  • each R A1 , R A2 , R B1 and R B2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X ;
  • each R E1 and R E2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2 , OR a1 , SR a1 , -S (O) r R a1 , -C (O) R a1 , C (O) OR a1 , -C (O) NR a1 R b1 and -S (O) r NR a1 R b1 , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted
  • each R a1 and each R b1 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y ;
  • R a1 and R b1 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R Y groups;
  • each R c1 and each R d1 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y ;
  • R c1 and R d1 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1, 2 or 3 R Y groups;
  • each R e1 is independently selected from hydrogen, deuterium, C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, CN, NO 2 , -OR a2 , -SR a2 , -S (O) r R a2 , -C (O) R a2 , -C (O) OR a2 , -S (O) r NR a2 R b2 and -C (O) NR a2 R b2 ;
  • each R a2 and each R b2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalkylamino,
  • R a2 and R b2 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
  • each R c2 and each R d2 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalky
  • R c2 and R d2 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
  • each R e2 is independently selected from hydrogen, deuterium, CN, NO 2 , C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, -C (O) C 1-4 alkyl, -C (O) C 3-10 cycloalkyl, -C (O) OC 1-4 alkyl, -C (O) OC 3-10 cycloalkyl, -C (O) N (C 1-4 alkyl) 2 , -C (O) N (C 3-10 cycloalkyl) 2 , -S (O) 2 C 1-4 alkyl, -S (O) 2 C 3-10 cycloalkyl, -S (O) 2 C 1-4 alkyl, -S (O) 2 C 3-10 cycloalkyl, -S (O) 2 N (C 1-4 alkyl) 2 and -
  • n is selected from 0, 1, 2, 3 and 4;
  • each r is independently selected from 0, 1 and 2;
  • each t is independently selected from 0, 1, 2, 3 and 4;
  • the invention provides a compound of Embodiment (1) or a pharmaceutically acceptable salt thereof, wherein X is N, Y is C, provides formula (Ia) ,
  • R 1 , R 2 , R 3 , R 4 and n are as defined in Formula (I) .
  • the invention provides a compound of Embodiment (1) or a pharmaceutically acceptable salt thereof, wherein X is C, Y is N, provides formula (Ib) ,
  • R 1 , R 2 , R 3 , R 4 and n are as defined in Formula (I) .
  • the invention provides a compound of any one of Embodiments (1) - (3) or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from 5-membered ring.
  • the invention provides a compound of any one of Embodiments (1) - (3) or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from 6-membered ring.
  • the invention provides a compound of Embodiment (4) or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from which are each unsubstituted or substituted with at least one substituent independently selected from R X .
  • the invention provides a compound of Embodiment (5) or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from which are each unsubstituted or substituted with at least one substituent independently selected from R X .
  • the invention provides a compound of any one of Embodiments (1) - (7) or a pharmaceutically acceptable salt thereof, wherein the substituent R X of R 3 is selected from halogen, CN, NO 2 , C 1-10 alkyl, C 3-10 cycloalkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, - (CR c1 R d1 ) t OR b1 , - (CR c1 R d1 ) t C (O) OR b1 , - (CR c1 R d1 ) t NR a1 C (O) OR b1 , - (CR c1 R d1 ) t NR a1 C (O) OR b1 , - (CR c1 R d1 ) t NR a1 C (O) R b1 , - (CR c1 R d1 ) t NR a1 C (O) NR a1 R
  • the invention provides a compound of Embodiment (8) or a pharmaceutically acceptable salt thereof, wherein each R a1 and each R b1 are independently selected from hydrogen, C 1-10 alkyl, C 3-10 cycloalkyl and heterocyclyl, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from R Y .
  • the invention provides a compound of Embodiment (8) or a pharmaceutically acceptable salt thereof, wherein R a1 and R b1 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 10 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R Y groups.
  • the invention provides a compound of Embodiment (8) or a pharmaceutically acceptable salt thereof, wherein t is independently selected from 0, 1, 2, 3, and each R c1 and each R d1 are independently selected from hydrogen, halogen, C 1-10 alkyl, C 3-10 cycloalkyl and heterocyclyl, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from R Y .
  • the invention provides a compound of Embodiment (8) or a pharmaceutically acceptable salt thereof, wherein R Y is selected from C 1-10 alkyl, C 3-10 cycloalkyl, heterocyclyl, halogen, CN, NO 2 , - (CR c2 R d2 ) t NR a2 R b2 , - (CR c2 R d2 ) t OR b2 , - (CR c2 R d2 ) t C (O) R a2 , - (CR c2 R d2 ) t S (O) r R b2 , - (CR c2 R d2 ) t OR b2 , wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl and C 1-10 alk
  • the invention provides a compound of Embodiment (12) or a pharmaceutically acceptable salt thereof, wherein each R a2 and each R b2 are independently selected from hydrogen, C 1-10 alkyl, C 3-10 cycloalkyl and heterocyclyl, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl and C 1-10 alkoxy.
  • the invention provides a compound of Embodiment (12) or a pharmaceutically acceptable salt thereof, wherein t is independently selected from 0, 1, 2, 3, and each R c2 and each R d2 are independently selected from hydrogen, halogen, C 1-10 alkyl, C 3-10 cycloalkyl and heterocyclyl, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl and C 1-10 alkoxy.
  • the invention provides a compound of any one of Embodiments (1) - (14) or a pharmaceutically acceptable salt thereof, wherein the substituent R X of R 3 is selected from -NH 2, -CN, -CO 2 ET, methyl, isopropyl, cyclopropyl,
  • the invention provides a compound of any one of Embodiments (1) - (15) or a pharmaceutically acceptable salt thereof, wherein R 1 is aryl, wherein aryl is unsubstituted or substituted with at least one substituent, independently selected from R X .
  • the invention provides a compound of Embodiment (16) or a pharmaceutically acceptable salt thereof, wherein R 1 is phenyl, wherein phenyl is substituted with halogen; preferably, R 1 is
  • the invention provides a compound of any one of Embodiments (1) - (17) or a pharmaceutically acceptable salt thereof, wherein each R 2 is independently selected from C 1-10 alkyl, C 3-10 cycloalkyl and halogen, wherein alkyl and cycloalkyl are each unsubstituted or substituted with at least one substituent independently selected from R X .
  • the invention provides a compound of any one of Embodiments (1) - (17) or a pharmaceutically acceptable salt thereof, wherein n is selected from 0 and 1.
  • the invention provides a compound of any one of Embodiments (1) - (19) or a pharmaceutically acceptable salt thereof, wherein R 4 is selected from hydrogen, halogen, -CN, -NR A2 R B2 and -C (O) NR A2 R B2 .
  • the invention provides a compound of Embodiment (20) or a pharmaceutically acceptable salt thereof, wherein R 4 is selected from hydrogen, Br, -NH 2 , -CN and -C (O) NH 2 .
  • the invention provides a compound selected from
  • the invention provides a compound selected from
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of any one of Embodiments (1) to (23) or a pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable carrier.
  • the invention provides a method of treating, ameliorating or preventing a condition, which responds to inhibition of TRK, comprising administering to a subject in need of such treatment an effective amount of a compound of any one of Embodiments (1) to (23) , or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof, and optionally in combination with a second therapeutic agent.
  • the invention provides a use of a compound of any one of Embodiments (1) to (23) or a pharmaceutically acceptable salt thereof in the preparation of a medicament for treating a condition mediated by TRK.
  • the invention provides a use of a compound of Embodiment (26) or a pharmaceutically acceptable salt thereof, the condition includes but not limited to, an autoimmune disease, a transplantation disease, pain, an infectious disease or a cell proliferative disorder.
  • the invention provides a use of a compound of Embodiment (27) or a pharmaceutically acceptable salt thereof, wherein the condition is includes but not limited to, brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, renal, kidney, ovarian, prostate, colorectal, epidermoid, esophageal, testicular, gynecological or thyroid cancer, benign hyperplasia of the skin, restenosis, and benign prostatic hypertrophy, pancreatitis, kidney disease, chronic and/or acute pain; preventing blastocyte implantation, psoriasis, exzema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, atherosclerosis, inhibition of keratinocyte responses to growth factor cocktails; chronic obstructive pulmonary disease
  • kits comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof; and instructions which comprise one or more forms of information selected from the group consisting of indicating a disease state for which the composition is to be administered, storage information for the composition, dosing information and instructions regarding how to administer the composition.
  • the kit comprises the compound in a multiple dose form.
  • an article of manufacture comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof; and packaging materials.
  • the packaging material comprises a container for housing the compound.
  • the container comprises a label indicating one or more members of the group consisting of a disease state for which the compound is to be administered, storage information, dosing information and/or instructions regarding how to administer the compound.
  • the article of manufacture comprises the compound in a multiple dose form.
  • a therapeutic method comprising administering a compound disclosed herein, or a pharmaceutically acceptable salt thereof.
  • a method of inhibiting a TRK comprising contacting the TRK with a compound disclosed herein, or a pharmaceutically acceptable salt thereof.
  • a method of inhibiting a TRK comprising causing a compound disclosed herein, or a pharmaceutically acceptable salt thereof to be present in a subject in order to inhibit the TRK in vivo.
  • a method of inhibiting TRK comprising administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound inhibits the TRK in vivo, the second compound being a compound according to any one of the above embodiments and variations.
  • a method of treating a disease state for which a TRK possesses activity that contributes to the pathology and/or symptomology of the disease state comprising causing a compound disclosed herein, or a pharmaceutically acceptable salt thereof to be present in a subject in a therapeutically effective amount for the disease state.
  • a method of treating a disease state for which a TRK possesses activity that contributes to the pathology and/or symptomology of the disease state comprising administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound inhibits the TRK in vivo.
  • the compounds of the present invention may be the first or second compounds.
  • the disease state is selected from the group consisting of cancerous hyperproliferative disorders (e.g., brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, renal, kidney, ovarian, prostate, colorectal, epidermoid, esophageal, testicular, gynecological or thyroid cancer) ; non-cancerous hyperproliferative disorders (e.g., benign hyperplasia of the skin (e.g., psoriasis) , restenosis, and benign prostatic hypertrophy (BPH) ) ; pancreatitis; kidney disease; pain; preventing blastocyte implantation; treating diseases related to vasculogenesis or angiogenesis (e.g., tumor angiogenesis, acute and chronic inflammatory disease such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, skin diseases such as psoriasis, exzema, and s
  • a method of treating a disease state for which a mutation in the TRK gene contributes to the pathology and/or symptomology of the disease state including, for example, melanomas, lung cancer, colon cancer and other tumor types.
  • the present invention relates to the use of a compound of any of the above embodiments and variations as a medicament. In yet another of its aspects, the present invention relates to the use of a compound according to any one of the above embodiments and variations in the manufacture of a medicament for inhibiting a TRK.
  • the present invention relates to the use of a compound according to any one of the above embodiments and variations in the manufacture of a medicament for treating a disease state for which a TRK possesses activity that contributes to the pathology and/or symptomology of the disease state.
  • compounds of the disclosure will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents.
  • a therapeutically effective amount may vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors known to those of ordinary skill in the art.
  • the required dosage will also vary depending on the mode of administration, the particular condition to be treated and the effect desired.
  • an indicated daily dosage in the larger mammal may be in the range from about 0.5 mg to about 2000 mg, or more particularly, from about 0.5 mg to about 1000 mg, conveniently administered, for example, in divided doses up to four times a day or in retard form.
  • Suitable unit dosage forms for oral administration comprise from ca. 1 to 50 mg active ingredient.
  • Compounds of the disclosure may be administered as pharmaceutical compositions by any conventional route; for example, enterally, e.g., orally, e.g., in the form of tablets or capsules; parenterally, e.g., in the form of injectable solutions or suspensions; or topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form.
  • enterally e.g., orally, e.g., in the form of tablets or capsules
  • parenterally e.g., in the form of injectable solutions or suspensions
  • topically e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form.
  • compositions comprising a compound of the present disclosure in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent may be manufactured in a conventional manner by mixing, granulating, coating, dissolving or lyophilizing processes.
  • pharmaceutical compositions comprising a compound of the disclosure in association with at least one pharmaceutical acceptable carrier or diluent may be manufactured in conventional manner by mixing with a pharmaceutically acceptable carrier or diluent.
  • Unit dosage forms for oral administration contain, for example, from about 0.1 mg to about 500 mg of active substance.
  • the pharmaceutical compositions are solutions of the active ingredient, including suspensions or dispersions, such as isotonic aqueous solutions.
  • suspensions or dispersions such as isotonic aqueous solutions.
  • dispersions or suspensions can be made up before use.
  • the pharmaceutical compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers.
  • Suitable preservatives include but are not limited to antioxidants such as ascorbic acid, or microbicides, such as sorbic acid or benzoic acid.
  • solutions or suspensions may further comprise viscosity-increasing agents, including but not limited to, sodium carboxymethylcellulose, carboxymethylcellulose, dextran, polyvinylpyrrolidone, gelatins, or solubilizers, e.g. Tween 80 (polyoxyethylene (20) sorbitan mono-oleate) .
  • viscosity-increasing agents including but not limited to, sodium carboxymethylcellulose, carboxymethylcellulose, dextran, polyvinylpyrrolidone, gelatins, or solubilizers, e.g. Tween 80 (polyoxyethylene (20) sorbitan mono-oleate) .
  • Suspensions in oil may comprise as the oil component the vegetable, synthetic, or semi-synthetic oils customary for injection purposes.
  • oils customary for injection purposes.
  • examples include but are not limited to liquid fatty acid esters that contain as the acid component a long-chained fatty acid having 8-22 carbon atoms, or in some embodiments, 12-22 carbon atoms.
  • Suitable liquid fatty acid esters include but are not limited to lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid or corresponding unsaturated acids, for example oleic acid, elaidic acid, erucic acid, brassidic acid and linoleic acid, and if desired, may contain antioxidants, for example vitamin E, 3-carotene or 3, 5-di-tert-butyl-hydroxytoluene.
  • the alcohol component of these fatty acid esters may have six carbon atoms and may be monovalent or polyvalent, for example a mono-, di-or trivalent, alcohol. Suitable alcohol components include but are not limited to methanol, ethanol, propanol, butanol or pentanol or isomers thereof; glycol and glycerol.
  • Suitable fatty acid esters include but are not limited ethyl-oleate, isopropyl myristate, isopropyl palmitate, M 2375, (polyoxyethylene glycerol) , M 1944 CS (unsaturated polyglycolized glycerides prepared by alcoholysis of apricot kernel oil and comprising glycerides and polyethylene glycol ester) , LABRASOL TM (saturated polyglycolized glycerides prepared by alcoholysis of TCM and comprising glycerides and polyethylene glycol ester; all available from GaKefosse, France) , and/or 812 (triglyceride of saturated fatty acids of chain length C8 to C12 from Hüls AG, Germany) , and vegetable oils such as cottonseed oil, almond oil, olive oil, castor oil, sesame oil, soybean oil, or groundnut oil.
  • vegetable oils such as cottonseed oil, almond oil, olive oil, castor oil, ses
  • compositions for oral administration may be obtained, for example, by combining the active ingredient with one or more solid carriers, and if desired, granulating a resulting mixture, and processing the mixture or granules by the inclusion of additional excipients, to form tablets or tablet cores.
  • Suitable carriers include but are not limited to fillers, such as sugars, for example lactose, saccharose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, and also binders, such as starches, for example corn, wheat, rice or potato starch, methylcellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone, and/or, if desired, disintegrators, such as the above-mentioned starches, carboxymethyl starch, crosslinked polyvinylpyrrolidone, alginic acid or a salt thereof, such as sodium alginate.
  • fillers such as sugars, for example lactose, saccharose, mannitol or sorbitol
  • cellulose preparations and/or calcium phosphates for example tricalcium phosphate or calcium hydrogen phosphate
  • binders such as starches, for example
  • Additional excipients include but are not limited to flow conditioners and lubricants, for example silicic acid, talc, stearic acid or salts thereof, such as magnesium or calcium stearate, and/or polyethylene glycol, or derivatives thereof.
  • flow conditioners and lubricants for example silicic acid, talc, stearic acid or salts thereof, such as magnesium or calcium stearate, and/or polyethylene glycol, or derivatives thereof.
  • Tablet cores may be provided with suitable, optionally enteric, coatings through the use of, inter alia, concentrated sugar solutions which may comprise gum arable, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, or coating solutions in suitable organic solvents or solvent mixtures, or, for the preparation of enteric coatings, solutions of suitable cellulose preparations, such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate. Dyes or pigments may be added to the tablets or tablet coatings, for example for identification purposes or to indicate different doses of active ingredient.
  • concentrated sugar solutions which may comprise gum arable, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, or coating solutions in suitable organic solvents or solvent mixtures, or, for the preparation of enteric coatings, solutions of suitable cellulose preparations, such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate.
  • Dyes or pigments may be added to the tablets or tablet coatings,
  • compositions for oral administration may also include hard capsules comprising gelatin or soft-sealed capsules comprising gelatin and a plasticizer, such as glycerol or sorbitol.
  • the hard capsules may contain the active ingredient in the form of granules, for example in admixture with fillers, such as corn starch, binders, and/or glidants, such as talc or magnesium stearate, and optionally stabilizers.
  • the active ingredient may be dissolved or suspended in suitable liquid excipients, such as fatty oils, paraffin oil or liquid polyethylene glycols or fatty acid esters of ethylene or propylene glycol, to which stabilizers and detergents, for example of the polyoxyethylene sorbitan fatty acid ester type, may also be added.
  • suitable liquid excipients such as fatty oils, paraffin oil or liquid polyethylene glycols or fatty acid esters of ethylene or propylene glycol, to which stabilizers and detergents, for example of the polyoxyethylene sorbitan fatty acid ester type, may also be added.
  • compositions suitable for rectal administration are, for example, suppositories comprising a combination of the active ingredient and a suppository base.
  • Suitable suppository bases are, for example, natural or synthetic triglycerides, paraffin hydrocarbons, polyethylene glycols or higher alkanols.
  • compositions suitable for parenteral administration may comprise aqueous solutions of an active ingredient in water-soluble form, for example of a water-soluble salt, or aqueous injection suspensions that contain viscosity-increasing substances, for example sodium carboxymethylcellulose, sorbitol and/or dextran, and, if desired, stabilizers.
  • the active ingredient optionally together with excipients, can also be in the form of a lyophilizate and can be made into a solution before parenteral administration by the addition of suitable solvents. Solutions such as are used, for example, for parenteral administration can also be employed as infusion solutions.
  • the manufacture of injectable preparations is usually carried out under sterile conditions, as is the filling, for example, into ampoules or vials, and the sealing of the containers.
  • the disclosure also provides for a pharmaceutical combination, e.g. a kit, comprising a) a first agent which is a compound of the disclosure as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent.
  • a pharmaceutical combination e.g. a kit, comprising a) a first agent which is a compound of the disclosure as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent.
  • the kit can comprise instructions for its administration.
  • the compounds or pharmaceutical acceptable salts of the disclosure may be administered as the sole therapy, or together with other therapeutic agent or agents.
  • the therapeutic effectiveness of one of the compounds described herein may be enhanced by administration of an adjuvant (i.e. by itself the adjuvant may only have minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the individual is enhanced) .
  • the benefit experienced by an individual may be increased by administering one of the compounds described herein with another therapeutic agent that also has therapeutic benefit.
  • increased therapeutic benefit may result by also providing the individual with another therapeutic agent for gout.
  • the additional therapy or therapies include, but are not limited to physiotherapy, psychotherapy, radiation therapy, application of compresses to a diseased area, rest, altered diet, and the like. Regardless of the disease, disorder or condition being treated, the overall benefit experienced by the individual may be additive of the two therapies or the individual may experience a synergistic benefit.
  • the compounds described herein may be administered in the same pharmaceutical composition as other therapeutic agents, or because of different physical and chemical characteristics, be administered by a different route.
  • the compounds described herein may be administered orally to generate and maintain good blood levels thereof, while the other therapeutic agent may be administered intravenously.
  • the compounds described herein may be administered concurrently, sequentially or dosed separately to other therapeutic agents.
  • Compounds having Formula (I) are expected to be useful when used with alkylating agents, angiogenesis inhibitors, antibodies, antimetabolites, antimitotics, antiproliferatives, antivirals, aurora kinase inhibitors, other apoptosis promoters (for example, Bcl-xL, Bcl-w and Bfl-1) inhibitors, activators of death receptor pathway, Bcr-Abl kinase inhibitors, BiTE (Bi-Specific T cell Engager) antibodies, antibody drug conjugates, biologic response modifiers, cyclin-dependent kinase inhibitors, cell cycle inhibitors, cyclooxygenase-2 inhibitors, DVDs, leukemia viral oncogene homolog (ErbB2) receptor inhibitors, growth factor inhibitors, heat shock protein (HSP) -90 inhibitors, histone deacetylase (HDAC) inhibitors, hormonal therapies, immunologicals, inhibitors of inhibitors of apoptosis proteins (IAPs) , intercal
  • a compound of formula (I) can also be prepared as a pharmaceutically acceptable acid addition salt by, for example, reacting the free base form of the at least one compound with a pharmaceutically acceptable inorganic or organic acid.
  • a pharmaceutically acceptable base addition salt of the at least one compound of formula (I) can be prepared by, for example, reacting the free acid form of the at least one compound with a pharmaceutically acceptable inorganic or organic base.
  • Inorganic and organic acids and bases suitable for the preparation of the pharmaceutically acceptable salts of compounds of formula (I) are set forth in the definitions section of this Application.
  • the salt forms of the compounds of formula (I) can be prepared using salts of the starting materials or intermediates.
  • the free acid or free base forms of the compounds of formula (I) can be prepared from the corresponding base addition salt or acid addition salt form.
  • a compound of formula (I) in an acid addition salt form can be converted to the corresponding free base thereof by treating with a suitable base (e.g., ammonium hydroxide solution, sodium hydroxide, and the like) .
  • a compound of formula (I) in a base addition salt form can be converted to the corresponding free acid thereof by, for example, treating with a suitable acid (e.g., hydrochloric acid, etc) .
  • N-oxides of a compound of formula (I) or a pharmaceutically acceptable salt thereof can be prepared by methods known to those of ordinary skill in the art.
  • N-oxides can be prepared by treating an unoxidized form of the compound of formula (I) with an oxidizing agent (e.g., trifluoroperacetic acid, permaleic acid, perbenzoic acid, peracetic acid, meta-chloroperoxybenzoic acid, or the like) in a suitable inert organic solvent (e.g., a halogenated hydrocarbon such as dichloromethane) at approximately 0 to 80 °C.
  • an oxidizing agent e.g., trifluoroperacetic acid, permaleic acid, perbenzoic acid, peracetic acid, meta-chloroperoxybenzoic acid, or the like
  • a suitable inert organic solvent e.g., a halogenated hydrocarbon such as dichloromethane
  • the N-oxides of the compounds of formula (I)
  • Compounds of formula (I) in an unoxidized form can be prepared from N-oxides of compounds of formula (I) by, for example, treating with a reducing agent (e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, and the like) in a suitable inert organic solvent (e.g., acetonitrile, ethanol, aqueous dioxane, and the like) at 0 to 80 °C.
  • a reducing agent e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, and the like
  • a suitable inert organic solvent e.g., acetonitrile, ethanol, aqueous dioxane, and the like
  • Protected derivatives of the compounds of formula (I) can be made by methods known to those of ordinary skill in the art. A detailed description of the techniques applicable to the creation of protecting groups and their removal can be found in T.W. Greene, Protecting Groups in Organic Synthesis, 3rd edition, John Wiley &Sons, Inc. 1999.
  • references to ether or Et 2 O are to diethyl ether; brine refers to a saturated aqueous solution of NaCl. Unless otherwise indicated, all temperatures are expressed in °C (degrees Centigrade) . All reactions were conducted under an inert atmosphere at RT unless otherwise noted.
  • MS mass spectra
  • ESI electrospray ionization
  • UV detector 220 and 254 nm
  • ELSD evaporative light scattering detector
  • Thin-layer chromatography was performed on 0.25 mm Superchemgroup silica gel plates (60F-254) , visualized with UV light, 5%ethanolic phosphomolybdic acid, ninhydrin, or p-anisaldehyde solution. Flash column chromatography was performed on silica gel (200-300 mesh, Branch of Qingdao Haiyang Chemical Co., Ltd) .
  • the compound of formula I of the present disclosure can be prepared as shown in Scheme 1.
  • the intermediates IV is prepared by the coupling of the heteroaryls of formula II with the fused heterocylces of formula III through a nucleophilic substitution reaction. Hydrolysis of ester IV gives carboxylic acid V.
  • the compounds of formula I can be obtained from V via further transformations.
  • one of the synthetic approaches to the compounds of formula I of the present disclosure is outlined in Scheme 4.
  • the intermediates boronic acid VIII is prepared by utilizing a metal-halogen exchange protocol with the intermediate of formula VII, followed by quenching with trimethyl borate or triisopropoxyborane.
  • the compounds of formula I can be obtained from boronic acid VIII under palladium catalyzed coupling reaction.
  • the order of carrying out the foregoing reaction schemes may be varied to facilitate the reaction or to avoid unwanted reaction products.
  • the following examples are provided so that the invention might be more fully understood. These examples are illustrative only and should not be construed as limiting the invention in any way.
  • tert-butyl (4- (6-bromopyridin-3-yl) -1-oxido-1 ⁇ 6 -thiomorpholin-1-ylidene) carbamate (10e) was prepared according to the synthetic method of 6a by replacing tert-butyl piperazine-1-carboxylate with tert-butyl (1-oxido-1 ⁇ 6 -thiomorpholin-1-ylidene) carbamate (10d) .
  • MS-ESI (m/z) 574 [M + 1] + .
  • Examples 11-199 listed in Table 1 were prepared from the appropriate starting materials which are commercially available or known in the literature. The structures and names of Examples 11-199 are given in Table 1.
  • MTS testing kit was purchased from Promega (Madison, WI, USA) .
  • the RPMI-1640, Fetal bovine serum and Penicillin-Streptomycin were purchased from Gibco (San Francisco, California, USA) .
  • Dimethyl sulfoxide (DMSO) and Puromycin were purchased from Sigma (St. Louis., MO, USA) .
  • Mouse interleukin-3 (IL-3) was purchased from Cell signaling Technology (Boston, Massachusetts, USA) .
  • KM12 cells were cultured in culture flasks to 40-80%confluence in RPMI-1640 plus 10%fetal bovine serum. Cells were collected and plated onto 96-well plates at 1000 cells/well. Plates were incubated at 37°C, with 5%CO 2 for 4 h. Compounds were added to the plates, the final compound concentrations were 10000, 3333.3, 1111.1, 270.4, 123.5, 41.2, 13.7, 4.6 and 1.5 nM.

Abstract

Provided are certain TRK inhibitors, pharmaceutical compositions thereof, and methods of use thereof.

Description

SUBSTITUTED (2-AZABICYCLO [3.1.0] HEXAN-2-YL) PYRAZOLO [1, 5-a] PYRIMIDINE AND IMIDAZO [1, 2-b] PYRIDAZINE COMPOUNDS AS TRK KINASES INHIBITORS
This application claims the priority to the U.S. provisional application No. 62/898,817, which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
Provided are certain compounds or pharmaceutically acceptable salts thereof which can inhibit TRK family protein tyrosine kinases and may be useful for the treatment of hyper-proliferative diseases like cancer and inflammation, or immune and autoimmune diseases.
BACKGROUND OF THE INVENTION
Hyper-proliferative diseases like cancer and inflammation are attracting the scientific community to provide therapeutic benefits. In this regard efforts have been made to identify and target specific mechanisms which play a role in proliferating the diseases.
The tropomyosin receptor kinases (TRKs) , also known as neurotrophic tyrosine kinase receptor (NTRK) , are the transmembrane tyrosine kinases activated by a group of soluble growth factors named neurotrophins (NT) . TRK family includes three different members, namely TRKA, TRKB and TRKC, respectively encoded by the NTRK1, NTRK2 and NTRK3 genes. The respective primary neurotrophic ligands for the three TRK isoforms are: nerve growth factor (NGF) which activates TRKA, brain-derived neurotrophic factor (BDNF) which activates TRKB, and neurotrophin-3 (NT-3) which activates TRKC. Extracellular recognition of neurotrophins to TRK proteins induces receptor dimerization, phosphorylation, and activation of the downstream signal transduction pathways via PI3K, RAS/MAPK/ERK, and PLC-gamma.
TRKs are expressed primarily in neuronal tissues and regulate neuronal survival and differentiation of neuronal cells. Dysregulation of TRK pathway, including gene fusions, protein overexpression, and single nucleotide alterations, potentiate many aberrant physiological processes that negatively impact human health. It has been demonstrated that the inhibitors of the NT/TRK signaling pathway serve as effective treatment for multiple pre-clinical animal model of inflammation and pain. In addition, altered TRK signaling pathway is associated with the poor prognosis of different solid malignancies, such as neuroblastoma, breast cancer, pancreatic cancer, melanoma, multiple myeloma, thyroid cancer, glioblastoma, colorectal cancer, sarcomas, cholangiocarcinoma, non-small cell lung cancer and etc. As such, NTRK gene alterations can serve as predictive biomarker for targeted therapy. The on-going clinical development of selective TRK inhibitors have been demonstrated to be beneficial among patients whose tumors harbor NTRK gene alterations.
Therefore, a compound having an inhibitory activity on TRK will be useful for the prevention or treatment of cancer. Although TRK inhibitors were disclosed in the arts, e.g. WO 2006082392, many suffer from having short half-life or toxicity. Therefore, there is a need for new TRK inhibitors that have at least one advantageous property selected from potency, stability, selectivity, toxicity and pharmacodynamics properties as an alternative for  the treatment of hyper-proliferative diseases. In this regard, a novel class of TRK inhibitors is provided herein.
DISCLOSURE OF THE INVENTION
Disclosed herein are certain novel compounds, pharmaceutically acceptable salts thereof, and pharmaceutical compositions thereof, and their use as pharmaceuticals.
In one aspect, disclosed herein is a compound of formula (I) ,
Figure PCTCN2020114472-appb-000001
or a pharmaceutically acceptable salt thereof, wherein:
when X is N, Y is C, provides formula (Ia) ,
Figure PCTCN2020114472-appb-000002
when X is C, Y is N, provides formula (Ib) ,
Figure PCTCN2020114472-appb-000003
R 1 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
each R 2 is independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, -NR A1R B1, -OR A1, -C (O) R A1, -C (=NR E1) R A1, -C (=N-OR B1) R A1, -C (O) OR A1, -OC (O) R A1, -C (O) NR A1R B1, -NR A1C (O) R B1, -C (=NR E1) NR A1R B1, -NR A1C (=NR E1) R B1, -OC (O) NR A1R B1, -NR A1C (O) OR B1, -NR A1C (O) NR A1R B1, -NR A1C (S) NR A1R B1, -NR A1C (=NR E1) NR A1R B1, -S (O)  rR A1, -S (O) (=NR E1) R B1, -N=S (O) R A1R B1, -S (O)  2OR A1, -OS (O)  2R A1, -NR A1S (O)  rR B1, -NR A1S (O) (=NR E1) R B1, -S (O)  rNR A1R B1, -S (O) (=NR E1) NR A1R B1, -NR A1S (O)  2NR A1R B1, -NR A1S (O) (=NR E1) NR A1R B1, -P (O) R A1R B1 and -P (O) (OR A1) (OR B1) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
R 3 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
R 4 is selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl,  aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, -NR A2R B2, -OR A2, -C (O) R A2, -C (=NR E2) R A2, -C (=N-OR B2) R A2, -C (O) OR A2, -OC (O) R A2, -C (O) NR A2R B2, -NR A2C (O) R B2, -C (=NR E2) NR A2R B2, -NR A2C (=NR E2) R B2, -OC (O) NR A2R B2, -NR A2C (O) OR B2, -NR A2C (O) NR A2R B2, -NR A2C (S) NR A2R B2, -NR A2C (=NR E2) NR A2R B2, -S (O)  rR A2, -S (O) (=NR E2) R B2, -N=S (O) R A2R B2, -S (O)  2OR A2, -OS (O)  2R A2, -NR A2S (O)  rR B2, -NR A2S (O) (=NR E2) R B2, -S (O)  rNR A2R B2, -S (O) (=NR E2) NR A2R B2, -NR A2S (O)  2NR A2R B2, -NR A2S (O) (=NR E2) NR A2R B2, -P (O) R A2R B2 and -P (O) (OR A2) (OR B2) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
each R A1, R A2, R B1 and R B2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
or each “R A1 and R B1” or “R A2 and R B2” together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1, or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R X groups;
each R E1 and R E2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, OR a1, SR a1, -S (O)  rR a1, -C (O) R a1, C (O) OR a1, -C (O) NR a1R b1 and -S (O)  rNR a1R b1, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
each R X is independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, halogen, CN, NO 2, - (CR c1R d1tNR a1R b1, - (CR c1R d1tOR b1, - (CR c1R d1tC (O) R a1, - (CR c1R d1tC (=NR e1) R a1, - (CR c1R d1tC (=N-OR b1) R a1, - (CR c1R d1tC (O) OR b1, - (CR c1R d1tOC (O) R b1, - (CR c1R d1tC (O) NR a1R b1, - (CR c1R d1tNR a1C (O) R b1, - (CR c1R d1tC (=NR e1) NR a1R b1, - (CR c1R d1tNR a1C (=NR e1) R b1, - (CR c1R d1tOC (O) NR a1R b1, - (CR c1R d1tNR a1C (O) OR b1, - (CR c1R d1tNR a1C (O) NR a1R b1, - (CR c1R d1tNR a1C (S) NR a1R b1, - (CR c1R d1tNR a1C (=NR e1) NR a1R b1, - (CR c1R d1tS (O)  rR b1, - (CR c1R d1tS (O) (=NR e1) R b1, - (CR c1R d1tN=S (O) R a1R b1, - (CR c1R d1tS (O)  2OR b1, - (CR c1R d1tOS (O)  2R b1, - (CR c1R d1tNR a1S (O)  rR b1, - (CR c1R d1tNR a1S (O) (=NR e1) R b1, - (CR c1R d1tS (O)  rNR a1R b1, - (CR c1R d1tS (O) (=NR e1) NR a1R b1, - (CR c1R d1tNR a1S (O)  2NR a1R b1, - (CR c1R d1tNR a1S (O) (=NR e1) NR a1R b1, - (CR c1R d1tP (O) R a1R b1 and - (CR c1R d1tP (O) (OR a1) (OR b1) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
each R a1 and each R b1 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
or R a1 and R b1 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R Y groups;
each R c1 and each R d1 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
or R c1 and R d1 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1, 2 or 3 R Y groups;
each R e1 is independently selected from hydrogen, deuterium, C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, CN, NO 2, -OR a2, -SR a2, -S (O)  rR a2, -C (O) R a2, -C (O) OR a2, -S (O)  rNR a2R b2 and -C (O) NR a2R b2;
each R Y is independently selected from C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, halogen, CN, NO 2, - (CR c2R d2tNR a2R b2, - (CR c2R d2tOR b2, - (CR c2R d2tC (O) R a2, - (CR c2R d2tC (=NR e2) R a2, - (CR c2R d2tC (=N-OR b2) R a2, - (CR c2R d2tC (O) OR b2, - (CR c2R d2tOC (O) R b2, - (CR c2R d2tC (O) NR a2R b2, - (CR c2R d2tNR a2C (O) R b2, - (CR c2R d2tC (=NR e2) NR a2R b2, - (CR c2R d2tNR a2C (=NR e2) R b2, - (CR c2R d2tOC (O) NR a2R b2, - (CR c2R d2tNR a2C (O) OR b2, - (CR c2R d2tNR a2C (O) NR a2R b2, - (CR c2R d2tNR a2C (S) NR a2R b2, - (CR c2R d2tNR a2C (=NR e2) NR a2R b2, - (CR c2R d2tS (O)  rR b2, - (CR c2R d2tS (O) (=NR e2) R b2, - (CR c2R d2tN=S (O) R a2R b2, - (CR c2R d2tS (O)  2OR b2, - (CR c2R d2tOS (O)  2R b2, - (CR c2R d2tNR a2S (O)  rR b2, - (CR c2R d2tNR a2S (O) (=NR e2) R b2, - (CR c2R d2tS (O)  rNR a2R b2, - (CR c2R d2tS (O) (=NR e2) NR a2R b2, - (CR c2R d2tNR a2S (O)  2NR a2R b2, - (CR c2R d2tNR a2S (O) (=NR e2) NR a2R b2, - (CR c2R d2tP (O) R a2R b2 and - (CR c2R d2tP (O) (OR a2) (OR b2) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
each R a2 and each R b2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalkylamino, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
or R a2 and R b2 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1 or 2  substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
each R c2 and each R d2 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalkylamino, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
or R c2 and R d2 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
each R e2 is independently selected from hydrogen, deuterium, CN, NO 2, C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, -C (O) C 1-4 alkyl, -C (O) C 3-10 cycloalkyl, -C (O) OC 1-4 alkyl, -C (O) OC 3-10 cycloalkyl, -C (O) N (C 1-4 alkyl)  2, -C (O) N (C 3-10 cycloalkyl)  2, -S (O)  2C 1-4 alkyl, -S (O)  2C 3-10 cycloalkyl, -S (O)  2N (C 1-4 alkyl)  2 and -S (O)  2N (C 3-10 cycloalkyl)  2;
n is selected from 0, 1, 2, 3 and 4;
each r is independently selected from 0, 1 and 2;
each t is independently selected from 0, 1, 2, 3 and 4;
provided that the compound is not selected from
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropyl-1, 3, 4-oxadiazole,
2- (tert-butyl) -5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyraz olo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-oxadiazole,
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropyl-1, 3, 4-thiadiazole,
2- (tert-butyl) -5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyraz olo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole,
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) isoindolin-1-one,
2-cyclopropyl-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole,
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5- (trifluoromethyl) -1, 3, 4-thiadiazole,
5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -2-isopropylthiazole,
2-cyclopropyl-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) thiazole,
5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -2- (trifluoromethyl) thiazole,
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropylthiazole, and
5-cyclopropyl-2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) thiazole.
In yet another aspect, the present disclosure provides pharmaceutical compositions comprising a compound of formula (I) or at least one pharmaceutically acceptable salt thereof and a pharmaceutically acceptable excipient.
In yet another aspect, the disclosure provides methods for modulating TRK, comprising administering to a system or a subject in need thereof, a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof or pharmaceutical compositions thereof, thereby modulating said TRK.
In yet another aspect, disclosed is a method to treat, ameliorate or prevent a condition which responds to inhibition of TRK comprising administering to a system or subject in need of such treatment an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof or pharmaceutical compositions thereof, and optionally in combination with a second therapeutic agent, thereby treating said condition.
Alternatively, the present disclosure provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating a condition mediated by TRK. In particular embodiments, the compounds of the disclosure may be used alone or in combination with a second therapeutic agent to treat a condition mediated by TRK.
Alternatively, disclosed is a compound of formula (I) or a pharmaceutically acceptable salt thereof for treating a condition mediated by TRK.
Specifically, the condition herein includes but not limited to, an autoimmune disease, a transplantation disease, an infectious disease or a cell proliferative disorder.
Furthermore, the disclosure provides methods for treating a cell proliferative disorder, comprising administering to a system or subject in need of such treatment an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof or pharmaceutical compositions thereof, and optionally in combination with a second therapeutic agent, thereby treating said condition.
Alternatively, the present disclosure provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating a cell-proliferative disorder. In particular examples, the compounds of the disclosure may be used alone or in combination with a chemotherapeutic agent to treat a cell proliferative disorder.
Specifically, the cell proliferative disorder disclosed herein includes but not limited to, lymphoma, osteosarcoma, melanoma, or a tumor of breast, renal, prostate, colorectal, thyroid, ovarian, pancreatic, neuronal, lung, uterine or gastrointestinal tumor.
In the above methods for using the compounds of the disclosure, a compound of formula (I) or a pharmaceutically acceptable salt thereof may be administered to a system  comprising cells or tissues, or to a subject including a mammalian subject such as a human or animal subject.
Certain Terminology
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which the claimed subject matter belongs. All patents, patent applications, published materials referred to throughout the entire disclosure herein, unless noted otherwise, are incorporated by reference in their entirety. In the event that there is a plurality of definitions for terms herein, those in this section prevail.
It is to be understood that the foregoing general description and the following detailed description are explanatory only and are not restrictive of any subject matter claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise. It must be noted that, as used in the specification and the appended claims, the singular forms “a” , “an” and “the” include plural referents unless the context clearly dictates otherwise. It should also be noted that use of “or” means “and/or” unless stated otherwise. Furthermore, use of the term “including” as well as other forms, such as “include” , “includes” , and “included” is not limiting. Likewise, use of the term “comprising” as well as other forms, such as “comprise” , “comprises” , and “comprised” is not limiting.
Unless otherwise indicated, conventional methods of mass spectroscopy, NMR, HPLC, IR and UV/Vis spectroscopy and pharmacology, within the skill of the art are employed. Unless specific definitions are provided, the nomenclature employed in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those known in the art. Standard techniques can be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients. Reactions and purification techniques can be performed e.g., using kits of manufacturer's specifications or as commonly accomplished in the art or as described herein. The foregoing techniques and procedures can be generally performed of conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. Throughout the specification, groups and substituents thereof can be chosen by one skilled in the field to provide stable moieties and compounds.
Where substituent groups are specified by their conventional chemical formulas, written from left to right, they equally encompass the chemically identical substituents that would result from writing the structure from right to left. As a non-limiting example, CH 2O is equivalent to OCH 2.
The term “substituted” means that a hydrogen atom is replaced by a substituent. It is to be understood that substitution at a given atom is limited by valency.
The term “C i-j” or “i-j membered” used herein means that the moiety has m-n carbon atoms or i-j atoms. For example, “C 1-6 alkyl” means said alkyl has 1-6 carbon atoms. Likewise, C 3-10 cycloalkyl means said cycloalkyl has 3-10 carbon atoms.
When any variable (e.g. R) occurs at the structure of a compound over one time, it is defined independently at each case. Therefore, for example, if a group is substituted by 0-2 R, the group may be optionally substituted by at most two R and R has independent option at each case. Additionally, a combination of substituents and/or the variants thereof are allowed only if such a combination will result in a stable compound.
The expression “one or more” or “at least one” refers to one, two, three, four, five, six, seven, eight, nine or more.
Unless stated otherwise, the term “hetero” means heteroatom or heteroatom radical (i.e. a radical containing heteroatom) , i.e. the atoms beyond carbon and hydrogen atoms or the radical containing such atoms. Preferably, the heteroatom (s) is independently selected from the group consisting of O, N, S, P and the like. In an embodiment wherein two or more heteroatoms are involved, the two or more heteroatoms may be the same, or part or all of the two or more heteroatoms may be different.
The term “alkyl” , employed alone or in combination with other terms, refers to branched or straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms. Unless otherwise specified, “alkyl” refers to C l-10 alkyl. For example, C 1-6, as in “C l-6 alkyl” is defined to include groups having 1, 2, 3, 4, 5, or 6 carbons in a linear or branched arrangement. For example, “C l-8 alkyl” includes but is not limited to methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, i-butyl, pentyl, hexyl, heptyl, and octyl.
The term “cycloalkyl” , employed alone or in combination with other terms, refers to a monocyclic or bridged saturated hydrocarbon ring system. The monocyclic cycloalkyl is a monocyclic hydrocarbon ring system containing 3-10 carbon atoms, zero heteroatoms and zero double bonds. Examples of monocyclic ring systems include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. The bridged cycloalkyl is a polycyclic ring system containing 3-10 carbon atoms, which contains one or two alkylene bridges, each alkylene bridge consisting of one, two, or three carbon atoms, each linking two non-adjacent carbon atoms of the ring system. Cycloalkyl can be fused with aryl or heteroaryl group. In some embodiments, cycloalkyl is benzocondensed. Representative examples of such bridged cycloalkyl ring systems include, but are not limited to, bicyclo [3.1.1] heptane, bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, bicyclo [3.2.2] nonane, bicyclo [3.3.1] nonane, bicyclo [4.2.1] nonane, tricyclo [3.3.1.03, 7] nonane and tricyclo [3.3.1.13, 7] decane (adamantane) . The monocyclic or bridged cycloalkyl can be attached to the parent molecular moiety through any substitutable atom contained within the ring system.
The term “alkenyl” , employed alone or in combination with other terms, refers to a non-aromatic hydrocarbon radical, straight, branched or cyclic, containing 2-10 carbon atoms and at least one carbon to carbon double bond. In some embodiments, one carbon to carbon double bond is present, and up to four non-aromatic carbon-carbon double bonds may be present. Thus, “C 2-6 alkenyl” means an alkenyl radical having 2-6 carbon atoms. Alkenyl groups include but are not limited to ethenyl, propenyl, butenyl, 2-methylbutenyl and cyclohexenyl. The straight, branched or cyclic portion of the alkenyl group may contain double bonds and may be substituted if a substituted alkenyl group is indicated.
The term “alkynyl” , employed alone or in combination with other terms, refers to a hydrocarbon radical, straight, branched or cyclic, containing 2-10 carbon atoms and at least one carbon to carbon triple bond. In some embodiments, up to three carbon-carbon triple bonds may be present. Thus, “C 2-6 alkynyl” means an alkynyl radical having 2-6 carbon atoms. Alkynyl groups include but are not limited to ethynyl, propynyl, butynyl, and 3-methylbutynyl. The straight, branched or cyclic portion of the alkynyl group may contain triple bonds and may be substituted if a substituted alkynyl group is indicated.
The term “halogen” (or “halo” ) refers to fluorine, chlorine, bromine and iodine.
The term “alkoxy” , employed alone or in combination with other terms, refers to an alkyl as defined above, which is single bonded to an oxygen atom. The attachment point of an alkoxy radical to a molecule is through the oxygen atom. An alkoxy radical may be depicted as -O-alkyl. The term “C 1-10 alkoxy” refers to an alkoxy radical containing 1-10 carbon atoms, having straight or branched moieties. Alkoxy group includes but is not limited to, methoxy, ethoxy, propoxy, isopropoxy, butoxy, pentyloxy, hexyloxy, and the like.
The term “cycloalkoxy” , employed alone or in combination with other terms, refers to cycloalkyl as defined above, which is single bonded to an oxygen atom. The attachment point of a cycloalkoxy radical to a molecule is through the oxygen atom. A cycloalkoxy radical may be depicted as -O-cycloalkyl. “C 3-10 cycloalkoxy” refers to a cycloalkoxy radical containing 3-10 carbon atoms. Cycloalkoxy can be fused with aryl or heteroaryl group. In some embodiments, cycloalkoxy is benzocondensed. Cycloalkoxy group includes but is not limited to, cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy, and the like.
The term “alkylthio” , employed alone or in combination with other terms, refers to an alkyl radical as defined above, which is single bonded to a sulfur atom. The attachment point of an alkylthio radical to a molecule is through the sulfur atom. An alkylthio radical may be depicted as -S-alkyl. The term “C 1-10 alkylthio” refers to an alkylthio radical containing 1-10 carbon atoms, having straight or branched moieties. Alkylthio group includes but is not limited to, methylthio, ethylthio, propylthio, isopropylthio, butylthio, hexylthio, and the like.
The term “cycloalkylthio” , employed alone or in combination with other terms, refers to cycloalkyl as defined above, which is single bonded to a sulfur atom. The attachment point of a cycloalkylthio radical to a molecule is through the sulfur atom. A cycloalkylthio radical may be depicted as -S-cycloalkyl. “C 3-10 cycloalkylthio” refers to a cycloalkylthio radical containing 3-10 carbon atoms. Cycloalkylthio can be fused with aryl or heteroaryl group. In some embodiments, cycloalkylthio is benzocondensed. Cycloalkylthio group includes but is not limited to, cyclopropylthio, cyclobutylthio, cyclohexylthio, and the like.
The term “alkylamino” , employed alone or in combination with other terms, refers to an alkyl as defined above, which is single bonded to a nitrogen atom. The attachment point of an alkylamino radical to a molecule is through the nitrogen atom. An alkylamino radical may be depicted as -NH (alkyl) . The term “C 1-10 alkylamino” refers to an alkylamino radical containing 1-10 carbon atoms, having straight or branched moieties. Alkylamino group includes but is not limited to, methylamino, ethylamino, propylamino, isopropylamino, butylamino, hexylamoino, and the like.
The term “cycloalkylamino” , employed alone or in combination with other terms, refers to cycloalkyl as defined above, which is single bonded to a nitrogen atom. The attachment point of a cycloalkylamino radical to a molecule is through the nitrogen atom. A cycloalkylamino radical may be depicted as -NH (cycloalkyl) . “C 3-10 cycloalkylamino” refers to a cycloalkylamino radical containing 3-10 carbon atoms. Cycloalkylamino can be fused with aryl or heteroaryl group. In some embodiments, cycloalkylamino is benzocondensed. Cycloalkylamino group includes but is not limited to, cyclopropylamino, cyclobutylamino, cyclohexylamino, and the like.
The term “di (alkyl) amino” , employed alone or in combination with other terms, refers to two alkyl as defined above, which are single bonded to a nitrogen atom. The attachment point of an di (alkyl) amino radical to a molecule is through the nitrogen atom. A  di (alkyl) amino radical may be depicted as -N (alkyl)  2. The term “di (C 1-10 alkyl) amino” refers to a di (C 1-10 alkyl) amino radical wherein the alkyl radicals each independently contains 1-10 carbon atoms, having straight or branched moieties.
The term “aryl” , employed alone or in combination with other terms, refers to a monovalent, monocyclic-, bicyclic-or tricyclic aromatic hydrocarbon ring system having 6, 7, 8, 9, 10, 11, 12, 13 or 14 carbon atoms (a “C 6-14 aryl” group) , particularly a ring having 6 carbon atoms (a “C 6 aryl” group) , e.g. a phenyl group; or a ring having 10 carbon atoms (a “C 10 aryl” group) , e.g. a naphthyl group; or a ring having 14 carbon atoms, (a “C 14 aryl” group) , e.g. an anthranyl group. Aryl can be fused with cycloalkyl or heterocycle group.
Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals. Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in “-yl” by removal of one hydrogen atom from the carbon atom with the free valence are named by removing “-yl” and adding “-idene” to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene.
The term “heteroaryl” , employed alone or in combination with other terms, refers to a monovalent, monocyclic-, bicyclic-or tricyclic aromatic ring system having 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 ring atoms (a “5-to 14-membered heteroaryl” group) , particularly 5 or 6 or 9 or 10 atoms, and which contains at least one heteroatom which may be identical or different, said heteroatom selected from N, O and S. Heteroaryl can be fused with cycloalkyl or heterocycle group. In some embodiments, “heteroaryl” refers to
a 5-to 8-membered monocyclic aromatic ring containing one or more, for example, from 1 to 4, or, in some embodiments, from 1 to 3, heteroatoms selected from N, O and S, with the remaining ring atoms being carbon; or
a 8-to 12-membered bicyclic aromatic ring system containing one or more, for example, from 1 to 6, or, in some embodiments, from 1 to 4, or, in some embodiments, from 1 to 3, heteroatoms selected from N, O and S, with the remaining ring atoms being carbon; or
a 11-to 14-membered tricyclic aromatic ring system containing one or more, for example, from 1 to 8, or, in some embodiments, from 1 to 6, or, in some embodiments, from 1 to 4, or in some embodiments, from 1 to 3, heteroatoms selected from N, O and S, with the remaining ring atoms being carbon.
When the total number of S and O atoms in the heteroaryl group exceeds 1, those heteroatoms are not adjacent to one another. In some embodiments, the total number of S and O atoms in the heteroaryl group is not more than 2. In some embodiments, the total number of S and O atoms in the aromatic heterocycle is not more than 1.
Examples of heteroaryl groups include, but are not limited to, pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, pyrazin-2-yl, pyrazin-3-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrimidin-6-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, pyridazinyl, triazinyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, triazolyl, tetrazolyl, thienyl, furyl.
Further heteroaryl groups include but are not limited to indolyl, benzothienyl, benzofuryl, benzoimidazolyl, benzotriazolyl, quinoxalinyl, quinolinyl, and isoquinolinyl. “Heteroaryl” is also understood to include the N-oxide derivative of any nitrogen-containing heteroaryl.
Bivalent radicals derived from univalent heteroaryl radicals whose names end in “-yl” by removal of one hydrogen atom from the atom with the free valence are named by adding “-idene” to the name of the corresponding univalent radical, e.g., a pyridyl group with two points of attachment is a pyridylidene.
The term “heterocycle” , employed alone or in combination with other terms, (and variations thereof such as “heterocyclic” , or “heterocyclyl” ) broadly refers to a saturated or unsartated mono-or multicyclic (e.g. bicyclic) aliphatic ring system, usually with 3 to 12 ring atoms, wherein at least one (e.g. 2, 3 or 4) ring atom is heteroatom independently selected from O, S, N and P (preferably O, S, N) . In a multicyclic heterocycle, two or more rings can be fused or bridged or spiro together. Heterocycle can be fused with aryl or heteroaryl group. In some embodiments, heterocycle is benzocondensed. Heterocycle also includes ring systems substituted with one or more oxo or imino moieties. In some embodiments, the C, N, S and P atoms in the heterocycle ring are optionally substituted by oxo. In some embodiments, the C, S and P atoms in the heterocycle ring are optionally substituted by imino, and imino can be unsubstituted or substituted. The point of the attachment may be carbon atom or heteroatom in the heterocyclic ring, provided that attachment results in the creation of a stable structure. When the heterocyclic ring has substituents, it is understood that the substituents may be attached to any atom in the ring, whether a heteroatom or a carbon atom, provided that a stable chemical structure result.
Suitable heterocycles include, for example, pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, imidazolidin-1-yl, imidazolidin-2-yl, imidazolidin-3-yl, imidazolidin-4-yl, imidazolidin-5-yl, pyrazolidin-1-yl, pyrazolidin-2-yl, pyrazolidin-3-yl, pyrazolidin-4-yl, pyrazolidin-5-yl, piperidin-1-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl, piperazin-2-yl, piperazin-3-yl, hexahydropyridazin-1-yl, hexahydropyridazin-3-yl and hexahydropyridazin-4-yl. Morpholinyl groups are also contemplated, such as morpholin-1-yl, morpholin-2-yl and morpholin-3-yl. Examples of heterocycle with one or more oxo moieties include but are not limited to, piperidinyl N-oxide, morpholinyl-N-oxide, 1-oxo-thiomorpholinyl and 1, 1-dioxo-thiomorpholinyl. Bicyclic heterocycles include, for example:
Figure PCTCN2020114472-appb-000004
Figure PCTCN2020114472-appb-000005
As used herein, “aryl-alkyl” refers to an alkyl moiety as defined above substituted by an aryl group as defined above. Exemplary aryl-alkyl groups include but are not limited to benzyl, phenethyl and naphthylmethyl groups. In some embodiments, aryl-alkyl groups have 7-20 or 7-11 carbon atoms. When used in the phrase “aryl-C l-4 alkyl” , the term “C 1-4” refers to the alkyl portion of the moiety and does not describe the number of atoms in the aryl portion of the moiety.
As used herein, “heterocyclyl-alkyl” refers to alkyl as defined above substituted by heterocyclyl as defined above. When used in the phrase “heterocyclyl-C 1-4 alkyl” , the term “C 1-4” refers to the alkyl portion of the moiety and does not describe the number of atoms in the heterocyclyl portion of the moiety.
As used herein, “cycloalkyl-alkyl” refers to alkyl as defined above substituted by cycloalkyl as defined above. When used in the phrase “C 3-10 cycloalkyl-C l-4 alkyl” , the term “C 3-10” refers to the cycloalkyl portion of the moiety and does not describe the number of atoms in the alkyl portion of the moiety, and the term “C 1-4” refers to the alkyl portion of the moiety and does not describe the number of atoms in the cycloalkyl portion of the moiety.
As used herein, “heteroaryl-alkyl” refers to alkyl as defined above substituted by heteroaryl as defined above. When used in the phrase “heteroaryl-C l-4 alkyl” , the term “C 1-4” refers to the alkyl portion of the moiety and does not describe the number of atoms in the heteroaryl portion of the moiety.
For avoidance of doubt, reference, for example, to substitution of alkyl, cycloalkyl, heterocyclyl, aryl and/or heteroaryl refers to substitution of each of those groups individually as well as to substitutions of combinations of those groups. That is, if R is aryl-C l-4 alkyl and may be unsubstituted or substituted with at least one substituent, such as one, two, three, or four substituents, independently selected from R X, it should be understood that the aryl portion may be unsubstituted or substituted with at least one substituent, such as one, two, three, or four substituents, independently selected from R X and the alkyl portion may also be unsubstituted or substituted with at least one substituent, such as one, two, three, or four substituents, independently selected from R X.
The term “pharmaceutically acceptable salts” refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases may be selected, for example, from aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium and zinc salts. Further, for example, the pharmaceutically  acceptable salts derived from inorganic bases may be selected from ammonium, calcium, magnesium, potassium and sodium salts. Salts in the solid form may exist in one or more crystalline forms, or polymorphs, and may also be in the form of solvates, such as hydrates. Salts derived from pharmaceutically acceptable organic non-toxic bases may be selected, for example, from salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N, N'-dibenzylethylene-diamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine and tripropylamine, tromethamine.
When the compound disclosed herein is basic, salts may be prepared using at least one pharmaceutically acceptable non-toxic acid, selected from inorganic and organic acids. Such acid may be selected, for example, from acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric and p-toluenesulfonic acids. In some embodiments, such acid may be selected, for example, from citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, fumaric and tartaric acids.
The terms “administration of” and or “administering” a compound or a pharmaceutically acceptable salt should be understood to mean providing a compound or a pharmaceutically acceptable salt thereof to the individual in recognized need of treatment.
The term “effective amount” means the amount of the a compound or a pharmaceutically acceptable salt that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.
The term “composition” as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. Such term in relation to a pharmaceutical composition is intended to encompass a product comprising the active ingredient (s) and the inert ingredient (s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
The term “pharmaceutically acceptable” it is meant compatible with the other ingredients of the formulation and not unacceptably deleterious to the recipient thereof.
The term “subject” as used herein in reference to individuals suffering from a disorder, a condition, and the like, encompasses mammals and non-mammals. Examples of mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like.  Examples of non-mammals include, but are not limited to, birds, fish and the like. In one embodiment of the methods and compositions provided herein, the mammal is a human.
The terms “treat, ” “treating” or “treatment, ” and other grammatical equivalents as used herein, include alleviating, abating or ameliorating a disease or condition, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, inhibiting the disease or condition, e.g., arresting the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or stopping the symptoms of the disease or condition, and are intended to include prophylaxis. The terms further include achieving a therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the patient, notwithstanding that the patient may still be afflicted with the underlying disorder. For prophylactic benefit, the compositions may be administered to a patient at risk of developing a particular disease, or to a patient reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.
The term “protecting group” or “Pg” refers to a substituent that can be commonly employed to block or protect a certain functionality while reacting other functional groups on the compound. For example, an “amino-protecting group” is a substituent attached to an amino group that blocks or protects the amino functionality in the compound. Suitable amino-protecting groups include but are not limited to acetyl, trifluoroacetyl, t-butoxycarbonyl (BOC) , benzyloxycarbonyl (CBZ) and 9-fluorenylmethylenoxycarbonyl (Fmoc) . Similarly, a “hydroxy-protecting group” refers to a substituent of a hydroxy group that blocks or protects the hydroxy functionality. Suitable protecting groups include but are not limited to acetyl and silyl. A “carboxy-protecting group” refers to a substituent of the carboxy group that blocks or protects the carboxy functionality. Common carboxy-protecting groups include -CH 2CH 2SO 2Ph, cyanoethyl, 2- (trimethylsilyl) ethyl, 2- (trimethylsilyl) ethoxymethyl, 2- (p-toluenesulfonyl) ethyl, 2- (p-nitrophenylsulfenyl) ethyl, 2- (diphenylphosphino) -ethyl, nitroethyl and the like. For a general description of protecting groups and their use, see T. W. Greene, Protective Groups in Organic Synthesis, John Wiley &Sons, New York, 1991.
The term “NH protecting group” as used herein includes, but not limited to, trichloroethoxycarbonyl, tribromoethoxycarbonyl, benzyloxycarbonyl, para-nitrobenzylcarbonyl, ortho-bromobenzyloxycarbonyl, chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl, phenylacetyl, formyl, acetyl, benzoyl, tert-amyloxycarbonyl, tert-butoxycarbonyl, para-methoxybenzyloxycarbonyl, 3, 4-dimethoxybenzyl-oxycarbonyl, 4- (phenylazo) -benzyloxycarbonyl, 2-furfuryloxycarbonyl, diphenylmethoxycarbonyl, 1, 1-dimethylpropoxy-carbonyl, isopropoxycarbonyl, phthaloyl, succinyl, alanyl, leucyl, 1-adamantyloxycarbonyl, 8-quinolyloxycarbonyl, benzyl, diphenylmethyl, triphenylmethyl, 2-nitrophenylthio, methanesulfonyl, para-toluenesulfonyl, N, N-dimethylaminomethylene, benzylidene, 2-hydroxybenzylidene, 2-hydroxy-5-chlorobenzylidene, 2-hydroxy-l-naphthylmethylene, 3-hydroxy-4-pyridylmethylene, cyclohexylidene, 2-ethoxycarbonylcyclohexylidene, 2-ethoxycarbonylcyclopentylidene, 2-acetylcyclohexylidene, 3, 3-dimethyl-5-oxycyclo-hexylidene, diphenylphosphoryl,  dibenzylphosphoryl, 5-methyl-2-oxo-2H-1, 3-dioxol-4-yl-methyl, trimethylsilyl, triethylsilyl and triphenylsilyl.
The term “C (O) OH protecting group” as used herein includes, but not limited to, methyl, ethyl, n-propyl, isopropyl, 1, 1-dimethylpropyl, n-butyl, tert-butyl, phenyl, naphthyl, benzyl, diphenylmethyl, triphenylmethyl, para-nitrobenzyl, para-methoxybenzyl, bis (para-methoxyphenyl) methyl, acetylmethyl, benzoylmethyl, para-nitrobenzoylmethyl, para-bromobenzoylmethyl, para-methanesulfonylbenzoylmethyl, 2-tetrahydropyranyl, 2-tetrahydrofuranyl, 2, 2, 2-trichloro-ethyl, 2- (trimethylsilyl) ethyl, acetoxymethyl, propionyloxymethyl, pivaloyloxymethyl, phthalimidomethyl, succinimidomethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methoxymethyl, methoxyethoxymethyl, 2- (trimethylsilyl) ethoxymethyl, benzyloxymethyl, methylthiomethyl, 2-methylthioethyl, phenylthiomethyl, 1, 1-dimethyl-2-propenyl, 3-methyl-3-butenyl, allyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, diethylisopropylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, diphenylmethylsilyl and tert-butylmethoxyphenylsilyl.
The term “OH or SH protecting group” as used herein includes, but not limited to, benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 3, 4-dimethoxybenzyloxycarbonyl, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, 1, 1-dimethylpropoxycarbonyl, isopropoxycarbonyl, isobutyloxycarbonyl, diphenylmethoxycarbonyl, 2, 2, 2-trichloroethoxycarbonyl, 2, 2, 2-tribromoethoxycarbonyl, 2- (trimethylsilyl) ethoxycarbonyl, 2- (phenylsulfonyl) ethoxycarbonyl, 2- (triphenylphosphonio) ethoxycarbonyl, 2-furfuryloxycarbonyl, 1-adamantyloxycarbonyl, vinyloxycarbonyl, allyloxycarbonyl, 4-ethoxy-1-naphthyloxycarbonyl, 8-quinolyloxycarbonyl, acetyl, formyl, chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl, methoxyacetyl, phenoxyacetyl, pivaloyl, benzoyl, methyl, tert-butyl, 2, 2, 2-trichloroethyl, 2-trimethylsilylethyl, 1, 1-dimethyl-2-propenyl, 3-methyl-3-butenyl, allyl, benzyl (phenylmethyl) , para-methoxybenzyl, 3, 4-dimethoxybenzyl, diphenylmethyl, triphenylmethyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, methoxymethyl, methylthiomethyl, benzyloxymethyl, 2-methoxyethoxymethyl, 2, 2, 2-trichloro-ethoxymethyl, 2- (trimethylsilyl) ethoxymethyl, 1-ethoxyethyl, methanesulfonyl, para-toluenesulfonyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, diethylisopropylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, diphenylmethylsilyl and tert-butylmethoxyphenylsilyl.
Geometric isomers may exist in the present compounds. Compounds of this invention may contain carbon-carbon double bonds or carbon-nitrogen double bonds in the E or Z configuration, wherein the term "E" represents higher order substituents on opposite sides of the carbon-carbon or carbon-nitrogen double bond and the term "Z" represents higher order substituents on the same side of the carbon-carbon or carbon-nitrogen double bond as determined by the Cahn-Ingold-Prelog Priority Rules. The compounds of this invention may also exist as a mixture of "E" and "Z" isomers. Substituents around a cycloalkyl or heterocycloalkyl are designated as being of cis or trans configuration. Furthermore, the invention contemplates the various isomers and mixtures thereof resulting from the disposal of substituents around an adamantane ring system. Two substituents around a single ring within an adamantane ring system are designated as being of Z or E relative configuration. For examples, see C.D. Jones, M. Kaselj, R.N. Salvatore, W.J. le Noble J. Org. Chem. 1998, 63, 2758-2760.
Compounds of this invention may contain asymmetrically substituted carbon atoms in the R or S configuration, in which the terms "R" and "S" are as defined by the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem. (1976) 45, 13-10. Compounds having asymmetrically substituted carbon atoms with equal amounts of R and S configurations are racemic at those carbon atoms. Atoms with an excess of one configuration over the other are assigned the configuration present in the higher amount, preferably an excess of about 85-90%, more preferably an excess of about 95-99%, and still more preferably an excess greater than about 99%. Accordingly, this invention includes racemic mixtures, relative and absolute stereoisomers, and mixtures of relative and absolute stereoisomers.
Isotope Enriched or Labeled Compounds.
Compounds of the invention can exist in isotope-labeled or -enriched form containing one or more atoms having an atomic mass or mass number different from the atomic mass or mass number most abundantly found in nature. Isotopes can be radioactive or non-radioactive isotopes. Isotopes of atoms such as hydrogen, carbon, nitrogen, oxygen, phosphorous, sulfur, fluorine, chlorine and iodine include, but are not limited to,  2H,  3H,  13C,  14C,  15N,  18O,  32P,  35S,  18F,  36Cl and  125I. Compounds that contain other isotopes of these and/or other atoms are within the scope of this invention.
In another embodiment, the isotope-labeled compounds contain deuterium ( 2H) , tritium ( 3H) or  14C isotopes. Isotope-labeled compounds of this invention can be prepared by the general methods well known to persons having ordinary skill in the art. Such isotope-labeled compounds can be conveniently prepared by carrying out the procedures disclosed in the Examples disclosed herein and Schemes by substituting a readily available isotope-labeled reagent for a non-labeled reagent. In some instances, compounds may be treated with isotope-labeled reagents to exchange a normal atom with its isotope, for example, hydrogen for deuterium can be exchanged by the action of a deuterated acid such as D 2SO 4/D 2O.
The isotope-labeled compounds of the invention may be used as standards to determine the effectiveness of TRK inhibitors in binding assays. Isotope containing compounds have been used in pharmaceutical research to investigate the in vivo metabolic fate of the compounds by evaluation of the mechanism of action and metabolic pathway of the nonisotope-labeled parent compound (Blake et al. J. Pharm. Sci. 64, 3, 367-391 (1975) ) . Such metabolic studies are important in the design of safe, effective therapeutic drugs, either because the in vivo active compound administered to the patient or because the metabolites produced from the parent compound prove to be toxic or carcinogenic (Foster et al., Advances in Drug Research Vol. 14, pp. 2-36, Academic press, London, 1985; Kato et al, J. Labelled Comp. Radiopharmaceut., 36 (10) : 927-932 (1995) ; Kushner et al., Can. J. Physiol. Pharmacol, 77, 79-88 (1999) .
In addition, non-radioactive isotope containing drugs, such as deuterated drugs called "heavy drugs" can be used for the treatment of diseases and conditions related to TRK activity. Increasing the amount of an isotope present in a compound above its natural abundance is called enrichment. Examples of the amount of enrichment include but are not limited to from about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21, 25, 29, 33, 37, 42, 46, 50, 54, 58, 63, 67, 71, 75, 79, 84, 88, 92, 96, to about 100 mol %.
Stable isotope labeling of a drug can alter its physico-chemical properties such as pKa and lipid solubility. These effects and alterations can affect the pharmacodynamic  response of the drug molecule if the isotopic substitution affects a region involved in a ligand-receptor interaction. While some of the physical properties of a stable isotope-labeled molecule are different from those of the unlabeled one, the chemical and biological properties are the same, with one important exception: because of the increased mass of the heavy isotope, any bond involving the heavy isotope and another atom will be stronger than the same bond between the light isotope and that atom. Accordingly, the incorporation of an isotope at a site of metabolism or enzymatic transformation will slow said reactions potentially altering the pharmacokinetic profile or efficacy relative to the non-isotopic compound.
In an Embodiment (1) , this invention provides to a compound of formula (I) ,
Figure PCTCN2020114472-appb-000006
or a pharmaceutically acceptable salt thereof, wherein:
when X is N, Y is C, provides formula (Ia) ,
Figure PCTCN2020114472-appb-000007
when X is C, Y is N, provides formula (Ib) ,
Figure PCTCN2020114472-appb-000008
R 1 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
each R 2 is independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, -NR A1R B1, -OR A1, -C (O) R A1, -C (=NR E1) R A1, -C (=N-OR B1) R A1, -C (O) OR A1, -OC (O) R A1, -C (O) NR A1R B1, -NR A1C (O) R B1, -C (=NR E1) NR A1R B1, -NR A1C (=NR E1) R B1, -OC (O) NR A1R B1, -NR A1C (O) OR B1, -NR A1C (O) NR A1R B1, -NR A1C (S) NR A1R B1, -NR A1C (=NR E1) NR A1R B1, -S (O)  rR A1, -S (O) (=NR E1) R B1, -N=S (O) R A1R B1, -S (O)  2OR A1, -OS (O)  2R A1, -NR A1S (O)  rR B1, -NR A1S (O) (=NR E1) R B1, -S (O)  rNR A1R B1, -S (O) (=NR E1) NR A1R B1, -NR A1S (O)  2NR A1R B1, -NR A1S (O) (=NR E1) NR A1R B1, -P (O) R A1R B1 and -P (O) (OR A1) (OR B1) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
R 3 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
R 4 is selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, -NR A2R B2, -OR A2, -C (O) R A2, -C (=NR E2) R A2, -C (=N-OR B2) R A2, -C (O) OR A2, -OC (O) R A2, -C (O) NR A2R B2, -NR A2C (O) R B2, -C (=NR E2) NR A2R B2, -NR A2C (=NR E2) R B2, -OC (O) NR A2R B2, -NR A2C (O) OR B2, -NR A2C (O) NR A2R B2, -NR A2C (S) NR A2R B2, -NR A2C (=NR E2) NR A2R B2, -S (O)  rR A2, -S (O) (=NR E2) R B2, -N=S (O) R A2R B2, -S (O)  2OR A2, -OS (O)  2R A2, -NR A2S (O)  rR B2, -NR A2S (O) (=NR E2) R B2, -S (O)  rNR A2R B2, -S (O) (=NR E2) NR A2R B2, -NR A2S (O)  2NR A2R B2, -NR A2S (O) (=NR E2) NR A2R B2, -P (O) R A2R B2 and -P (O) (OR A2) (OR B2) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
each R A1, R A2, R B1 and R B2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
or each “R A1 and R B1” or “R A2 and R B2” together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1, or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R X groups;
each R E1 and R E2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, OR a1, SR a1, -S (O)  rR a1, -C (O) R a1, C (O) OR a1, -C (O) NR a1R b1 and -S (O)  rNR a1R b1, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
each R X is independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, halogen, CN, NO 2, - (CR c1R d1tNR a1R b1, - (CR c1R d1tOR b1, - (CR c1R d1tC (O) R a1, - (CR c1R d1tC (=NR e1) R a1, - (CR c1R d1tC (=N-OR b1) R a1, - (CR c1R d1tC (O) OR b1, - (CR c1R d1tOC (O) R b1, - (CR c1R d1tC (O) NR a1R b1, - (CR c1R d1tNR a1C (O) R b1, - (CR c1R d1tC (=NR e1) NR a1R b1, - (CR c1R d1tNR a1C (=NR e1) R b1, - (CR c1R d1tOC (O) NR a1R b1, - (CR c1R d1tNR a1C (O) OR b1, - (CR c1R d1tNR a1C (O) NR a1R b1, - (CR c1R d1tNR a1C (S) NR a1R b1, - (CR c1R d1tNR a1C (=NR e1) NR a1R b1, - (CR c1R d1tS (O)  rR b1, - (CR c1R d1tS (O) (=NR e1) R b1, - (CR c1R d1tN=S (O) R a1R b1, - (CR c1R d1tS (O)  2OR b1, - (CR c1R d1tOS (O)  2R b1, - (CR c1R d1tNR a1S (O)  rR b1, - (CR c1R d1tNR a1S (O) (=NR e1) R b1, - (CR c1R d1tS (O)  rNR a1R b1, - (CR c1R d1tS (O) (=NR e1) NR a1R b1, - (CR c1R d1tNR a1S (O)  2NR a1R b1, - (CR c1R d1tNR a1S (O) (=NR e1) NR a1R b1, - (CR c1R d1tP (O) R a1R b1 and - (CR c1R d1tP (O) (OR a1) (OR b1) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
each R a1 and each R b1 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
or R a1 and R b1 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R Y groups;
each R c1 and each R d1 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
or R c1 and R d1 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1, 2 or 3 R Y groups;
each R e1 is independently selected from hydrogen, deuterium, C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, CN, NO 2, -OR a2, -SR a2, -S (O)  rR a2, -C (O) R a2, -C (O) OR a2, -S (O)  rNR a2R b2 and -C (O) NR a2R b2;
each R Y is independently selected from C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, halogen, CN, NO 2, - (CR c2R d2tNR a2R b2, - (CR c2R d2tOR b2, - (CR c2R d2tC (O) R a2, - (CR c2R d2tC (=NR e2) R a2, - (CR c2R d2tC (=N-OR b2) R a2, - (CR c2R d2tC (O) OR b2, - (CR c2R d2tOC (O) R b2, - (CR c2R d2tC (O) NR a2R b2, - (CR c2R d2tNR a2C (O) R b2, - (CR c2R d2tC (=NR e2) NR a2R b2, - (CR c2R d2tNR a2C (=NR e2) R b2, - (CR c2R d2tOC (O) NR a2R b2, - (CR c2R d2tNR a2C (O) OR b2, - (CR c2R d2tNR a2C (O) NR a2R b2, - (CR c2R d2tNR a2C (S) NR a2R b2, - (CR c2R d2tNR a2C (=NR e2) NR a2R b2, - (CR c2R d2tS (O)  rR b2, - (CR c2R d2tS (O) (=NR e2) R b2, - (CR c2R d2tN=S (O) R a2R b2, - (CR c2R d2tS (O)  2OR b2, - (CR c2R d2tOS (O)  2R b2, - (CR c2R d2tNR a2S (O)  rR b2, - (CR c2R d2tNR a2S (O) (=NR e2) R b2, - (CR c2R d2tS (O)  rNR a2R b2, - (CR c2R d2tS (O) (=NR e2) NR a2R b2, - (CR c2R d2tNR a2S (O)  2NR a2R b2, - (CR c2R d2tNR a2S (O) (=NR e2) NR a2R b2, - (CR c2R d2tP (O) R a2R b2 and - (CR c2R d2tP (O) (OR a2) (OR b2) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
each R a2 and each R b2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalkylamino, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10  cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
or R a2 and R b2 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
each R c2 and each R d2 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalkylamino, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
or R c2 and R d2 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
each R e2 is independently selected from hydrogen, deuterium, CN, NO 2, C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, -C (O) C 1-4 alkyl, -C (O) C 3-10 cycloalkyl, -C (O) OC 1-4 alkyl, -C (O) OC 3-10 cycloalkyl, -C (O) N (C 1-4 alkyl)  2, -C (O) N (C 3-10 cycloalkyl)  2, -S (O)  2C 1-4 alkyl, -S (O)  2C 3-10 cycloalkyl, -S (O)  2N (C 1-4 alkyl)  2 and -S (O)  2N (C 3-10 cycloalkyl)  2;
n is selected from 0, 1, 2, 3 and 4;
each r is independently selected from 0, 1 and 2;
each t is independently selected from 0, 1, 2, 3 and 4;
provided that the compound is not selected from
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropyl-1, 3, 4-oxadiazole,
2- (tert-butyl) -5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyraz olo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-oxadiazole,
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropyl-1, 3, 4-thiadiazole,
2- (tert-butyl) -5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyraz olo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole,
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) isoindolin-1-one,
2-cyclopropyl-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole,
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5- (trifluoromethyl) -1, 3, 4-thiadiazole,
5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -2-isopropylthiazole,
2-cyclopropyl-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) thiazole,
5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -2- (trifluoromethyl) thiazole,
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropylthiazole, and
5-cyclopropyl-2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) thiazole.
In another Embodiment (2) , the invention provides a compound of Embodiment (1) or a pharmaceutically acceptable salt thereof, wherein X is N, Y is C, provides formula (Ia) ,
Figure PCTCN2020114472-appb-000009
wherein R 1, R 2, R 3, R 4 and n are as defined in Formula (I) .
In another Embodiment (3) , the invention provides a compound of Embodiment (1) or a pharmaceutically acceptable salt thereof, wherein X is C, Y is N, provides formula (Ib) ,
Figure PCTCN2020114472-appb-000010
wherein R 1, R 2, R 3, R 4 and n are as defined in Formula (I) .
In another Embodiment (4) , the invention provides a compound of any one of Embodiments (1) - (3) or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from 5-membered ring.
In another Embodiment (5) , the invention provides a compound of any one of Embodiments (1) - (3) or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from 6-membered ring.
In another Embodiment (6) , the invention provides a compound of Embodiment (4) or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from
Figure PCTCN2020114472-appb-000011
Figure PCTCN2020114472-appb-000012
which are each unsubstituted or substituted with at least one substituent independently selected from R X.
In another Embodiment (7) , the invention provides a compound of Embodiment (5) or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from
Figure PCTCN2020114472-appb-000013
Figure PCTCN2020114472-appb-000014
which are each unsubstituted or substituted with at least one substituent independently selected from R X.
In another Embodiment (8) , the invention provides a compound of any one of Embodiments (1) - (7) or a pharmaceutically acceptable salt thereof, wherein the substituent R X of R 3 is selected from halogen, CN, NO 2, C 1-10 alkyl, C 3-10 cycloalkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, - (CR c1R d1tOR b1, - (CR c1R d1tC (O) OR b1, - (CR c1R d1tNR a1C (O) OR b1, - (CR c1R d1tNR a1C (O) R b1, - (CR c1R d1tNR a1C (O) NR a1R b1, - (CR c1R d1tNR a1S (O)  rR b1, - (CR c1R d1tNR a1R b1, - (CR c1R d1tOR b1, - (CR c1R d1tC (O) R a1, - (CR c1R d1tN=S (O) R a1R b1, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from R Y.
In another Embodiment (9) , the invention provides a compound of Embodiment (8) or a pharmaceutically acceptable salt thereof, wherein each R a1 and each R b1 are independently selected from hydrogen, C 1-10 alkyl, C 3-10 cycloalkyl and heterocyclyl, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from R Y.
In another Embodiment (10) , the invention provides a compound of Embodiment (8) or a pharmaceutically acceptable salt thereof, wherein R a1 and R b1 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 10 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R Y groups.
In another Embodiment (11) , the invention provides a compound of Embodiment (8) or a pharmaceutically acceptable salt thereof, wherein t is independently selected from 0, 1, 2, 3, and each R c1 and each R d1 are independently selected from hydrogen, halogen, C 1-10 alkyl, C 3-10 cycloalkyl and heterocyclyl, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from R Y.
In another Embodiment (12) , the invention provides a compound of Embodiment (8) or a pharmaceutically acceptable salt thereof, wherein R Y is selected from C 1-10 alkyl, C 3-10 cycloalkyl, heterocyclyl, halogen, CN, NO 2, - (CR c2R d2tNR a2R b2, - (CR c2R d2tOR b2, - (CR c2R d2tC (O) R a2, - (CR c2R d2tS (O)  rR b2, - (CR c2R d2tOR b2, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl and C 1-10 alkoxy.
In another Embodiment (13) , the invention provides a compound of Embodiment (12) or a pharmaceutically acceptable salt thereof, wherein each R a2 and each R b2 are independently selected from hydrogen, C 1-10 alkyl, C 3-10 cycloalkyl and heterocyclyl, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl and C 1-10 alkoxy.
In another Embodiment (14) , the invention provides a compound of Embodiment (12) or a pharmaceutically acceptable salt thereof, wherein t is independently selected from 0,  1, 2, 3, and each R c2 and each R d2 are independently selected from hydrogen, halogen, C 1-10 alkyl, C 3-10 cycloalkyl and heterocyclyl, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl and C 1-10 alkoxy.
In another Embodiment (15) , the invention provides a compound of any one of Embodiments (1) - (14) or a pharmaceutically acceptable salt thereof, wherein the substituent R X of R 3 is selected from -NH 2, -CN, -CO 2ET, methyl, isopropyl, cyclopropyl, 
Figure PCTCN2020114472-appb-000015
Figure PCTCN2020114472-appb-000016
In another Embodiment (16) , the invention provides a compound of any one of Embodiments (1) - (15) or a pharmaceutically acceptable salt thereof, wherein R 1 is aryl, wherein aryl is unsubstituted or substituted with at least one substituent, independently selected from R X.
In another Embodiment (17) , the invention provides a compound of Embodiment (16) or a pharmaceutically acceptable salt thereof, wherein R 1 is phenyl, wherein phenyl is substituted with halogen; preferably, R 1 is
Figure PCTCN2020114472-appb-000017
In another Embodiment (18) , the invention provides a compound of any one of Embodiments (1) - (17) or a pharmaceutically acceptable salt thereof, wherein each R 2 is independently selected from C 1-10 alkyl, C 3-10 cycloalkyl and halogen, wherein alkyl and cycloalkyl are each unsubstituted or substituted with at least one substituent independently selected from R X.
In another Embodiment (19) , the invention provides a compound of any one of Embodiments (1) - (17) or a pharmaceutically acceptable salt thereof, wherein n is selected from 0 and 1.
In another Embodiment (20) , the invention provides a compound of any one of Embodiments (1) - (19) or a pharmaceutically acceptable salt thereof, wherein R 4 is selected from hydrogen, halogen, -CN, -NR A2R B2 and -C (O) NR A2R B2.
In another Embodiment (21) , the invention provides a compound of Embodiment (20) or a pharmaceutically acceptable salt thereof, wherein R 4 is selected from hydrogen, Br, -NH 2, -CN and -C (O) NH 2.
In another Embodiment (22) , the invention provides a compound selected from
Figure PCTCN2020114472-appb-000018
Figure PCTCN2020114472-appb-000019
Figure PCTCN2020114472-appb-000020
Figure PCTCN2020114472-appb-000021
pharmaceutically acceptable salts thereof.
In another Embodiment (23) , the invention provides a compound selected from
Figure PCTCN2020114472-appb-000022
Figure PCTCN2020114472-appb-000023
Figure PCTCN2020114472-appb-000024
Figure PCTCN2020114472-appb-000025
and pharmaceutically acceptable salts thereof.
In another Embodiment (24) , the invention provides a pharmaceutical composition comprising a compound of any one of Embodiments (1) to (23) or a pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable carrier.
In another Embodiment (25) , the invention provides a method of treating, ameliorating or preventing a condition, which responds to inhibition of TRK, comprising administering to a subject in need of such treatment an effective amount of a compound of any one of Embodiments (1) to (23) , or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof, and optionally in combination with a second therapeutic agent.
In another Embodiment (26) , the invention provides a use of a compound of any one of Embodiments (1) to (23) or a pharmaceutically acceptable salt thereof in the preparation of a medicament for treating a condition mediated by TRK.
In an In another Embodiment (27) , the invention provides a use of a compound of Embodiment (26) or a pharmaceutically acceptable salt thereof, the condition includes but not limited to, an autoimmune disease, a transplantation disease, pain, an infectious disease or a cell proliferative disorder.
In an In another Embodiment (28) , the invention provides a use of a compound of Embodiment (27) or a pharmaceutically acceptable salt thereof, wherein the condition is includes but not limited to, brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, renal, kidney, ovarian, prostate, colorectal, epidermoid, esophageal, testicular, gynecological or thyroid cancer, benign hyperplasia of the skin, restenosis, and benign prostatic hypertrophy, pancreatitis, kidney disease, chronic and/or acute pain; preventing blastocyte implantation, psoriasis, exzema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma,  melanoma, atherosclerosis, inhibition of keratinocyte responses to growth factor cocktails; chronic obstructive pulmonary disease (COPD) and other diseases.
In yet another of its aspects, there is provided a kit comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof; and instructions which comprise one or more forms of information selected from the group consisting of indicating a disease state for which the composition is to be administered, storage information for the composition, dosing information and instructions regarding how to administer the composition. In one particular variation, the kit comprises the compound in a multiple dose form.
In still another of its aspects, there is provided an article of manufacture comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof; and packaging materials. In one variation, the packaging material comprises a container for housing the compound. In one particular variation, the container comprises a label indicating one or more members of the group consisting of a disease state for which the compound is to be administered, storage information, dosing information and/or instructions regarding how to administer the compound. In another variation, the article of manufacture comprises the compound in a multiple dose form.
In a further of its aspects, there is provided a therapeutic method comprising administering a compound disclosed herein, or a pharmaceutically acceptable salt thereof.
In another of its aspects, there is provided a method of inhibiting a TRK comprising contacting the TRK with a compound disclosed herein, or a pharmaceutically acceptable salt thereof.
In yet another of its aspects, there is provided a method of inhibiting a TRK comprising causing a compound disclosed herein, or a pharmaceutically acceptable salt thereof to be present in a subject in order to inhibit the TRK in vivo.
In a further of its aspects, there is provided a method of inhibiting TRK comprising administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound inhibits the TRK in vivo, the second compound being a compound according to any one of the above embodiments and variations.
In another of its aspects, there is provided a method of treating a disease state for which a TRK possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising causing a compound disclosed herein, or a pharmaceutically acceptable salt thereof to be present in a subject in a therapeutically effective amount for the disease state.
In a further of its aspects, there is provided a method of treating a disease state for which a TRK possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound inhibits the TRK in vivo. It is noted that the compounds of the present invention may be the first or second compounds.
In one variation of each of the above methods the disease state is selected from the group consisting of cancerous hyperproliferative disorders (e.g., brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, renal, kidney, ovarian, prostate, colorectal, epidermoid, esophageal, testicular, gynecological or thyroid cancer) ; non-cancerous hyperproliferative disorders (e.g., benign hyperplasia of the skin (e.g., psoriasis) , restenosis,  and benign prostatic hypertrophy (BPH) ) ; pancreatitis; kidney disease; pain; preventing blastocyte implantation; treating diseases related to vasculogenesis or angiogenesis (e.g., tumor angiogenesis, acute and chronic inflammatory disease such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, skin diseases such as psoriasis, exzema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi's sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer) ; asthma; neutrophil chemotaxis (e.g., reperfusion injury in myocardial infarction and stroke and inflammatory arthritis) ; septic shock; T-cell mediated diseases where immune suppression would be of value (e.g., the prevention of organ transplant rejection, graft versus host disease, lupus erythematosus, multiple sclerosis, and rheumatoid arthritis) ; atherosclerosis; inhibition of keratinocyte responses to growth factor cocktails; chronic obstructive pulmonary disease (COPD) and other diseases.
In another of its aspects, there is provided a method of treating a disease state for which a mutation in the TRK gene contributes to the pathology and/or symptomology of the disease state including, for example, melanomas, lung cancer, colon cancer and other tumor types.
In still another of its aspects, the present invention relates to the use of a compound of any of the above embodiments and variations as a medicament. In yet another of its aspects, the present invention relates to the use of a compound according to any one of the above embodiments and variations in the manufacture of a medicament for inhibiting a TRK.
In a further of its aspects, the present invention relates to the use of a compound according to any one of the above embodiments and variations in the manufacture of a medicament for treating a disease state for which a TRK possesses activity that contributes to the pathology and/or symptomology of the disease state.
Administration and Pharmaceutical Compositions
In general, compounds of the disclosure will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents. A therapeutically effective amount may vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors known to those of ordinary skill in the art. For example, for the treatment of neoplastic diseases and immune system disorders, the required dosage will also vary depending on the mode of administration, the particular condition to be treated and the effect desired.
In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about 0.001 to about 100 mg/kg per body weight, or particularly, from about 0.03 to 2.5 mg/kg per body weight. An indicated daily dosage in the larger mammal, e.g. humans, may be in the range from about 0.5 mg to about 2000 mg, or more particularly, from about 0.5 mg to about 1000 mg, conveniently administered, for example, in divided doses up to four times a day or in retard form. Suitable unit dosage forms for oral administration comprise from ca. 1 to 50 mg active ingredient.
Compounds of the disclosure may be administered as pharmaceutical compositions by any conventional route; for example, enterally, e.g., orally, e.g., in the form of tablets or  capsules; parenterally, e.g., in the form of injectable solutions or suspensions; or topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form.
Pharmaceutical compositions comprising a compound of the present disclosure in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent may be manufactured in a conventional manner by mixing, granulating, coating, dissolving or lyophilizing processes. For example, pharmaceutical compositions comprising a compound of the disclosure in association with at least one pharmaceutical acceptable carrier or diluent may be manufactured in conventional manner by mixing with a pharmaceutically acceptable carrier or diluent. Unit dosage forms for oral administration contain, for example, from about 0.1 mg to about 500 mg of active substance.
In one embodiment, the pharmaceutical compositions are solutions of the active ingredient, including suspensions or dispersions, such as isotonic aqueous solutions. In the case of lyophilized compositions comprising the active ingredient alone or together with a carrier such as mannitol, dispersions or suspensions can be made up before use. The pharmaceutical compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. Suitable preservatives include but are not limited to antioxidants such as ascorbic acid, or microbicides, such as sorbic acid or benzoic acid. The solutions or suspensions may further comprise viscosity-increasing agents, including but not limited to, sodium carboxymethylcellulose, carboxymethylcellulose, dextran, polyvinylpyrrolidone, gelatins, or solubilizers, e.g. Tween 80 (polyoxyethylene (20) sorbitan mono-oleate) .
Suspensions in oil may comprise as the oil component the vegetable, synthetic, or semi-synthetic oils customary for injection purposes. Examples include but are not limited to liquid fatty acid esters that contain as the acid component a long-chained fatty acid having 8-22 carbon atoms, or in some embodiments, 12-22 carbon atoms. Suitable liquid fatty acid esters include but are not limited to lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid or corresponding unsaturated acids, for example oleic acid, elaidic acid, erucic acid, brassidic acid and linoleic acid, and if desired, may contain antioxidants, for example vitamin E, 3-carotene or 3, 5-di-tert-butyl-hydroxytoluene. The alcohol component of these fatty acid esters may have six carbon atoms and may be monovalent or polyvalent, for example a mono-, di-or trivalent, alcohol. Suitable alcohol components include but are not limited to methanol, ethanol, propanol, butanol or pentanol or isomers thereof; glycol and glycerol.
Other suitable fatty acid esters include but are not limited ethyl-oleate, isopropyl myristate, isopropyl palmitate, 
Figure PCTCN2020114472-appb-000026
M 2375, (polyoxyethylene glycerol) , 
Figure PCTCN2020114472-appb-000027
M 1944 CS (unsaturated polyglycolized glycerides prepared by alcoholysis of apricot kernel oil and comprising glycerides and polyethylene glycol ester) , LABRASOL TM (saturated polyglycolized glycerides prepared by alcoholysis of TCM and comprising glycerides and polyethylene glycol ester; all available from GaKefosse, France) , and/or 
Figure PCTCN2020114472-appb-000028
812 (triglyceride of saturated fatty acids of chain length C8 to C12 from Hüls AG, Germany) , and vegetable oils such as cottonseed oil, almond oil, olive oil, castor oil, sesame oil, soybean oil, or groundnut oil.
Pharmaceutical compositions for oral administration may be obtained, for example, by combining the active ingredient with one or more solid carriers, and if desired, granulating  a resulting mixture, and processing the mixture or granules by the inclusion of additional excipients, to form tablets or tablet cores.
Suitable carriers include but are not limited to fillers, such as sugars, for example lactose, saccharose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, and also binders, such as starches, for example corn, wheat, rice or potato starch, methylcellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone, and/or, if desired, disintegrators, such as the above-mentioned starches, carboxymethyl starch, crosslinked polyvinylpyrrolidone, alginic acid or a salt thereof, such as sodium alginate. Additional excipients include but are not limited to flow conditioners and lubricants, for example silicic acid, talc, stearic acid or salts thereof, such as magnesium or calcium stearate, and/or polyethylene glycol, or derivatives thereof.
Tablet cores may be provided with suitable, optionally enteric, coatings through the use of, inter alia, concentrated sugar solutions which may comprise gum arable, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, or coating solutions in suitable organic solvents or solvent mixtures, or, for the preparation of enteric coatings, solutions of suitable cellulose preparations, such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate. Dyes or pigments may be added to the tablets or tablet coatings, for example for identification purposes or to indicate different doses of active ingredient.
Pharmaceutical compositions for oral administration may also include hard capsules comprising gelatin or soft-sealed capsules comprising gelatin and a plasticizer, such as glycerol or sorbitol. The hard capsules may contain the active ingredient in the form of granules, for example in admixture with fillers, such as corn starch, binders, and/or glidants, such as talc or magnesium stearate, and optionally stabilizers. In soft capsules, the active ingredient may be dissolved or suspended in suitable liquid excipients, such as fatty oils, paraffin oil or liquid polyethylene glycols or fatty acid esters of ethylene or propylene glycol, to which stabilizers and detergents, for example of the polyoxyethylene sorbitan fatty acid ester type, may also be added.
Pharmaceutical compositions suitable for rectal administration are, for example, suppositories comprising a combination of the active ingredient and a suppository base. Suitable suppository bases are, for example, natural or synthetic triglycerides, paraffin hydrocarbons, polyethylene glycols or higher alkanols.
Pharmaceutical compositions suitable for parenteral administration may comprise aqueous solutions of an active ingredient in water-soluble form, for example of a water-soluble salt, or aqueous injection suspensions that contain viscosity-increasing substances, for example sodium carboxymethylcellulose, sorbitol and/or dextran, and, if desired, stabilizers. The active ingredient, optionally together with excipients, can also be in the form of a lyophilizate and can be made into a solution before parenteral administration by the addition of suitable solvents. Solutions such as are used, for example, for parenteral administration can also be employed as infusion solutions. The manufacture of injectable preparations is usually carried out under sterile conditions, as is the filling, for example, into ampoules or vials, and the sealing of the containers.
The disclosure also provides for a pharmaceutical combination, e.g. a kit, comprising a) a first agent which is a compound of the disclosure as disclosed herein, in free  form or in pharmaceutically acceptable salt form, and b) at least one co-agent. The kit can comprise instructions for its administration.
Combination therapies
The compounds or pharmaceutical acceptable salts of the disclosure may be administered as the sole therapy, or together with other therapeutic agent or agents.
For example, the therapeutic effectiveness of one of the compounds described herein may be enhanced by administration of an adjuvant (i.e. by itself the adjuvant may only have minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the individual is enhanced) . Or, by way of example only, the benefit experienced by an individual may be increased by administering one of the compounds described herein with another therapeutic agent that also has therapeutic benefit. By way of example only, in a treatment for gout involving administration of one of the compounds described herein, increased therapeutic benefit may result by also providing the individual with another therapeutic agent for gout. Or, by way of example only, if one of the side effects experienced by an individual upon receiving one of the compounds described herein is nausea, then it may be appropriate to administer an anti-nausea agent in combination with the compound. Or, the additional therapy or therapies include, but are not limited to physiotherapy, psychotherapy, radiation therapy, application of compresses to a diseased area, rest, altered diet, and the like. Regardless of the disease, disorder or condition being treated, the overall benefit experienced by the individual may be additive of the two therapies or the individual may experience a synergistic benefit.
In the instances where the compounds described herein are administered in combination with other therapeutic agents, the compounds described herein may be administered in the same pharmaceutical composition as other therapeutic agents, or because of different physical and chemical characteristics, be administered by a different route. For example, the compounds described herein may be administered orally to generate and maintain good blood levels thereof, while the other therapeutic agent may be administered intravenously. Thus the compounds described herein may be administered concurrently, sequentially or dosed separately to other therapeutic agents.
Compounds having Formula (I) are expected to be useful when used with alkylating agents, angiogenesis inhibitors, antibodies, antimetabolites, antimitotics, antiproliferatives, antivirals, aurora kinase inhibitors, other apoptosis promoters (for example, Bcl-xL, Bcl-w and Bfl-1) inhibitors, activators of death receptor pathway, Bcr-Abl kinase inhibitors, BiTE (Bi-Specific T cell Engager) antibodies, antibody drug conjugates, biologic response modifiers, cyclin-dependent kinase inhibitors, cell cycle inhibitors, cyclooxygenase-2 inhibitors, DVDs, leukemia viral oncogene homolog (ErbB2) receptor inhibitors, growth factor inhibitors, heat shock protein (HSP) -90 inhibitors, histone deacetylase (HDAC) inhibitors, hormonal therapies, immunologicals, inhibitors of inhibitors of apoptosis proteins (IAPs) , intercalating antibiotics, kinase inhibitors, kinesin inhibitors, Jak2 inhibitors, mammalian target of rapamycin inhibitors, microRNA's, mitogen-activated extracellular signal-regulated kinase inhibitors, multivalent binding proteins, non-steroidal anti-inflammatory drugs (NSAIDs) , poly ADP (adenosine diphosphate) -ribose polymerase (PARP) inhibitors, platinum chemotherapeutics, polo-like kinase (Plk) inhibitors, phosphoinositide-3 kinase (PI3K) inhibitors, proteosome inhibitors, purine analogs,  pyrimidine analogs, receptor tyrosine kinase inhibitors, retinoids/deltoids plant alkaloids, small inhibitory ribonucleic acids (siRNAs) , topoisomerase inhibitors, ubiquitin ligase inhibitors, and the like, and in combination with one or more of these agents .
EXAMPLES
Various methods may be developed for synthesizing a compound of formula (I) or a pharmaceutically acceptable salt thereof. Representative methods for synthesizing a compound of formula (I) or a pharmaceutically acceptable salt thereof are provided in the Examples. It is noted, however, that a compound of formula (I) or a pharmaceutically acceptable salt thereof may also be synthesized by other synthetic routes that others may devise.
It will be readily recognized that certain compounds of formula (I) have atoms with linkages to other atoms that confer a particular stereochemistry to the compound (e.g., chiral centers) . It is recognized that synthesis of a compound of formula (I) or a pharmaceutically acceptable salt thereof may result in the creation of mixtures of different stereoisomers (enantiomers, diastereomers) . Unless a particular stereochemistry is specified, recitation of a compound is intended to encompass all of the different possible stereoisomers.
A compound of formula (I) can also be prepared as a pharmaceutically acceptable acid addition salt by, for example, reacting the free base form of the at least one compound with a pharmaceutically acceptable inorganic or organic acid. Alternatively, a pharmaceutically acceptable base addition salt of the at least one compound of formula (I) can be prepared by, for example, reacting the free acid form of the at least one compound with a pharmaceutically acceptable inorganic or organic base. Inorganic and organic acids and bases suitable for the preparation of the pharmaceutically acceptable salts of compounds of formula (I) are set forth in the definitions section of this Application. Alternatively, the salt forms of the compounds of formula (I) can be prepared using salts of the starting materials or intermediates.
The free acid or free base forms of the compounds of formula (I) can be prepared from the corresponding base addition salt or acid addition salt form. For example, a compound of formula (I) in an acid addition salt form can be converted to the corresponding free base thereof by treating with a suitable base (e.g., ammonium hydroxide solution, sodium hydroxide, and the like) . A compound of formula (I) in a base addition salt form can be converted to the corresponding free acid thereof by, for example, treating with a suitable acid (e.g., hydrochloric acid, etc) .
The N-oxides of a compound of formula (I) or a pharmaceutically acceptable salt thereof can be prepared by methods known to those of ordinary skill in the art. For example, N-oxides can be prepared by treating an unoxidized form of the compound of formula (I) with an oxidizing agent (e.g., trifluoroperacetic acid, permaleic acid, perbenzoic acid, peracetic acid, meta-chloroperoxybenzoic acid, or the like) in a suitable inert organic solvent (e.g., a halogenated hydrocarbon such as dichloromethane) at approximately 0 to 80 ℃. Alternatively, the N-oxides of the compounds of formula (I) can be prepared from the N-oxide of an appropriate starting material.
Compounds of formula (I) in an unoxidized form can be prepared from N-oxides of compounds of formula (I) by, for example, treating with a reducing agent (e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus  trichloride, tribromide, and the like) in a suitable inert organic solvent (e.g., acetonitrile, ethanol, aqueous dioxane, and the like) at 0 to 80 ℃.
Protected derivatives of the compounds of formula (I) can be made by methods known to those of ordinary skill in the art. A detailed description of the techniques applicable to the creation of protecting groups and their removal can be found in T.W. Greene, Protecting Groups in Organic Synthesis, 3rd edition, John Wiley &Sons, Inc. 1999.
As used herein the symbols and conventions used in these processes, schemes and examples are consistent with those used in the contemporary scientific literature, for example, the Journal of the American Chemical Society or the Journal of Biological Chemistry. Standard single-letter or three-letter abbreviations are generally used to designate amino acid residues, which are assumed to be in the L-configuration unless otherwise noted. Unless otherwise noted, all starting materials were obtained from commercial suppliers and used without further purification. For example, the following abbreviations may be used in the examples and throughout the specification: g (grams) ; mg (milligrams) ; L (liters) ; mL (milliliters) ; μL (microliters) ; psi (pounds per square inch) ; M (molar) ; mM (millimolar) ; i.v. (intravenous) ; Hz (Hertz) ; MHz (megahertz) ; mol (moles) ; mmol (millimoles) ; RT (room temperature) ; min (minutes) ; h (hours) ; mp (melting point) ; TLC (thin layer chromatography) ; Rt (retention time) ; RP (reverse phase) ; MeOH (methanol) ; i-PrOH (isopropanol) ; TEA (triethylamine) ; TFA (trifluoroacetic acid) ; TFAA (trifluoroacetic anhydride) ; THF (tetrahydrofuran) ; DMSO (dimethyl sulfoxide) ; EtOAc (ethyl acetate) ; DME (1, 2-dimethoxyethane) ; DCM (dichloromethane) ; DCE (dichloroethane) ; DMF (N, N-dimethylformamide) ; DMPU (N, N'-dimethylpropyleneurea) ; CDI (1, 1-carbonyldiimidazole) ; IBCF (isobutyl chloroformate) ; HOAc (acetic acid) ; HOSu (N-hydroxysuccinimide) ; HOBT (1-hydroxybenzotriazole) ; Et 2O (diethyl ether) ; EDCI (1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride) ; BOC (tert-butyloxycarbonyl) ; FMOC (9-fluorenylmethoxycarbonyl) ; DCC (dicyclohexylcarbodiimide) ; CBZ (benzyloxycarbonyl) ; Ac (acetyl) ; atm (atmosphere) ; TMSE (2- (trimethylsilyl) ethyl) ; TMS (trimethylsilyl) ; TIPS (triisopropylsilyl) ; TBS (t-butyldimethylsilyl) ; DMAP (4-dimethylaminopyridine) ; Me (methyl) ; OMe (methoxy) ; Et (ethyl) ; tBu (tert-butyl) ; HPLC (high pressure liquid chomatography) ; BOP (bis (2-oxo-3-oxazolidinyl) phosphinic chloride) ; TBAF (tetra-n-butylammonium fluoride) ; m-CPBA (meta-chloroperbenzoic acid) .
References to ether or Et 2O are to diethyl ether; brine refers to a saturated aqueous solution of NaCl. Unless otherwise indicated, all temperatures are expressed in ℃ (degrees Centigrade) . All reactions were conducted under an inert atmosphere at RT unless otherwise noted.
1H NMR spectra were recorded on a Varian Mercury Plus 400. Chemical shifts are expressed in parts per million (ppm) . Coupling constants are in units of hertz (Hz) . Splitting patterns describe apparent multiplicities and are designated as s (singlet) , d (doublet) , t (triplet) , q (quartet) , m (multiplet) and br (broad) .
Low-resolution mass spectra (MS) and compound purity data were acquired on a Shimadzu LC/MS single quadrapole system equipped with electrospray ionization (ESI) source, UV detector (220 and 254 nm) , and evaporative light scattering detector (ELSD) . Thin-layer chromatography was performed on 0.25 mm Superchemgroup silica gel plates (60F-254) , visualized with UV light, 5%ethanolic phosphomolybdic acid, ninhydrin, or  p-anisaldehyde solution. Flash column chromatography was performed on silica gel (200-300 mesh, Branch of Qingdao Haiyang Chemical Co., Ltd) .
Synthetic Schemes
Synthetic methods for preparing the compounds of the present invention are illustrated in the following Schemes and Examples. Starting materials are commercially available or may be made according to procedures known in the art or as illustrated herein.
The intermediates shown in the following schemes are either known in the literature or may be prepared by a variety of methods familiar to those skilled in the art.
As an illustration, the compound of formula I of the present disclosure can be prepared as shown in Scheme 1. As shown in the Scheme, the intermediates IV is prepared by the coupling of the heteroaryls of formula II with the fused heterocylces of formula III through a nucleophilic substitution reaction. Hydrolysis of ester IV gives carboxylic acid V. The compounds of formula I can be obtained from V via further transformations.
Figure PCTCN2020114472-appb-000029
As an illustration of the preparation of intermediates of formula III, one synthetic route of compounds of formula IIIa is shown in Scheme 4. Starting from IIIa-A, which is either commercially available or known in the literature, lactones of formula IIIa-B can be prepared by treating IIIa-A with (S) -2- (chloromethyl) oxirane. Hydrolysis of IIIa-B gives compounds of formula IIIa-C which can be further transformed into IIIa-D. Oxidation of IIIa-D gives aldehydes of formula IIIa-E. Intermediate IIIa-H can be prepared from aldehyde IIIa-E by reacting with Wittig reagent followed hydroboration-oxidation of alkene and hydrolysis of the ester. Protecting of free hydroxyl group of IIIa-H gives compounds of formula IIIa-I which can be further transformed into IIIa-J via Curtius rearrangement. Intermediates of formula IIIa-M can be obtained via a three-step sequence of cleavage of the protecting groups of IIIa-J, mesylation of hydroxyl group of IIIa-L, and intramolecular cyclization in the presence of a base. Finally, deprotection of Cbz in IIIa-M leads to compounds of formula IIIa.
Figure PCTCN2020114472-appb-000030
As an illustration, one of the synthetic approaches to the compounds of formula I of the present disclosure is outlined in Scheme 3. As shown in the Scheme, decarboxylation of the intermediates carboxylic acid V gives intermediate of formula VI. Halogenation of compound VI with N-iodosuccinimide gives the intermediates VII which can be used for the transition metal catalyzed cross coupling reaction to afford compounds of formula I.
Figure PCTCN2020114472-appb-000031
As a further illustration, one of the synthetic approaches to the compounds of formula I of the present disclosure is outlined in Scheme 4. As shown in the Scheme, the intermediates boronic acid VIII is prepared by utilizing a metal-halogen exchange protocol with the intermediate of formula VII, followed by quenching with trimethyl borate or triisopropoxyborane. The compounds of formula I can be obtained from boronic acid VIII under palladium catalyzed coupling reaction.
Figure PCTCN2020114472-appb-000032
In some cases, the order of carrying out the foregoing reaction schemes may be varied to facilitate the reaction or to avoid unwanted reaction products. The following  examples are provided so that the invention might be more fully understood. These examples are illustrative only and should not be construed as limiting the invention in any way.
Example 1
5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a ] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-amine (1)
Figure PCTCN2020114472-appb-000033
(1R, 5S) -1- (2, 5-difluorophenyl) -3-oxabicyclo [3.1.0] hexan-2-one (1a)
To a solution of 2- (2, 5-difluorophenyl) acetonitrile (5.00 g, 32.7 mmol) and (S) -2- (_chloromethyl) oxirane (4.50 g, 49.0 mmol) in THF (40 mL) was added NaHMDS (42.0 ml, 81.8 mmol) dropwise at -20℃. The mixture was stirred at -15℃ for 3 h. The reaction was quenched with water and concentrated. To the mixture was added EtOH (30 mL) and KOH (5.50 g, 38.2 mmol) and stirred at 80℃ overnight. The mixture was adjusted with conc. HCl to pH = 2~ 3 and then was stirred at 60℃ for 2 h. The mixture was extracted with EtOAc. The organic phase was washed with saturated NaHCO 3 aqueous solution, dried over Na 2SO 4, and concentrated. The residue was purified by column chromatography on silica gel to give title compound (1R, 5S) -1- (2, 5-difluorophenyl) -3-oxabicyclo [3.1.0] hexan-2-one (1a) . MS-ESI (m/z) : 211 [M + 1]  +.
(1R, 2S) -1- (2, 5-difluorophenyl) -2- (hydroxymethyl) cyclopropane-1-carboxylic acid  (1b)
To a solution of (1R, 5S) -1- (2, 5-difluorophenyl) -3-oxabicyclo [3.1.0] hexan-2-one (1a) (4.20 g, 20.0 mmol) in MeOH/THF/H 2O (16/16 /32 mL) at RT was added LiOH. H 2O (4.20 g, 100 mmol) . After stirred at RT for 3 h, the reaction was quenched with water and adjusted with 6 N HCl to pH = 4 ~ 5. The mixture was extracted with EtOAc (4 × 80 mL) . The extracts were washed with brine (100 mL) , dried over Na 2SO 4 and concentrated to give the crude product of (1R, 2S) -1- (2, 5-difluorophenyl) -2- (hydroxymethyl) cyclopropane-1-carboxylic acid (1b) , which was used for next step without further purification. MS-ESI (m/z) : 229 [M + 1]  +.
Ethyl (1R, 2S) -1- (2, 5-difluorophenyl) -2- (hydroxymethyl) cyclopropane-1- carboxylate (1c)
A mixture of (1R, 2S) -1- (2, 5-difluorophenyl) -2- (hydroxymethyl) cyclopropane-1-carboxylic acid (1b) (100 mg, 0.439 mmol) , KHCO 3 (57.0 mg, 0.570 mmol) and EtBr (144 mg, 1.32 mmol) in DMF (5 mL) was stirred at 23℃ for 4 h. The reaction was quenched with water and extracted with EtOAc. The extracts were washed with brine (30 mL) , dried over Na 2SO 4 and concentrated to give the crude product of ethyl (1R, 2S) -1- (2, 5-difluorophenyl) -2- (hydroxymethyl) cyclopropane-1-carboxylate (1c) , which was used for next step without further purification. MS-ESI (m/z) : 257 [M + 1]  +.
Ethyl (1R, 2S) -1- (2, 5-difluorophenyl) -2-formylcyclopropane-1-carboxylate (1d)
To a solution of ethyl (1R, 2S) -1- (2, 5-difluorophenyl) -2- (hydroxymethyl) -cyclopropane-1-carboxylate (1c) (98.0 mg, 0.380 mmol) in DCM (4 mL) was added DMP (243 mg, 0.570 mmol) at RT. The mixture was stirred at RT for 4 h and quenched with  saturated NaHCO 3 aqueous solution. The mixture was extracted with DCM. The extracts were washed with brine, dried over Na 2SO 4, and the solvent was concentrated. The residue was purified by column chromatography on silica gel, eluting with PE /EtOAc (10: 1) to give title compound ethyl (1R, 2S) -1- (2, 5-difluorophenyl) -2-formylcyclopropane-1-carboxylate (1d) . MS-ESI (m/z) : 255 [M + 1]  +.
Ethyl (1R, 2R) -1- (2, 5-difluorophenyl) -2-vinylcyclopropane-1-carboxylate (1e)
To a solution of ethyl (1R, 2S) -1- (2, 5-difluorophenyl) -2-formylcyclopropane-1-carboxylate (1d) (100 mg, 0.394 mmol) and methyltriphenylphosphonium iodide (207 mg, 0.512 mmol) in DCM (3 mL) was added t-BuOK (62.0 mg, 0.552 mmol) at 0℃. The mixture was stirred at 0℃ for 0.5 h. The mixture was evaporated to give the crude product of ethyl (1R, 2R) -1- (2, 5-difluorophenyl) -2-vinylcyclopropane-1-carboxylate (1e) , which was used for next step directly.
(1R, 2R) -1- (2, 5-difluorophenyl) -2-vinylcyclopropane-1-carboxylic acid (1f)
A mixture of ethyl (1R, 2R) -1- (2, 5-difluorophenyl) -2-vinylcyclopropane-1-carboxylate (1e) (99.3 mg, 0.394 mmol) and NaOH (158 mg, 3.94 mmol) in MeOH /H 2O (1 /1.5 mL) was stirred at 55℃ for 4 h. The reaction was quenched with water and washed with DCM. The aqueous layer was acidified with HCl to pH = 3~ 4. The mixture was extracted with EtOAc. The extracts were washed with brine (30 mL) , dried over Na 2SO 4, and the solvent was concentrated. The residue was purified by column chromatography on silica gel, eluting with PE /EtOAc (5: 1) to give the title compound (1R, 2R) -1- (2, 5-difluorophenyl) -2-vinylcyclopropane-1-carboxylic acid (1f) . MS-ESI (m/z) : 225 [M + 1]  +.
(1R, 2R) -1- (2, 5-difluorophenyl) -2- (2-hydroxyethyl) cyclopropane-1-carboxylic acid  (1g)
To a solution of (1R, 2R) -1- (2, 5-difluorophenyl) -2-vinylcyclopropane-1-carboxylic acid (1f) (30.0 mg, 0.134 mmol) in THF (1 mL) was added a solution of BH 3 in THF (0.33 mL, 0.33 mmol) dropwise at 0℃. The mixture was stirred at RT for 0.2 h. Then NaOH (6 N, 0.2 mL) and H 2O 2 (30%, 152 mg, 1.34 mmol) was added to the mixture at RT and stirred at RT for 20 min. The reaction was quenched with water and washed with DCM. The aqueous layer was acidified with HCl to pH = 3~ 4. The mixture was extracted with EtOAc. The extracts were washed with brine (100 mL) , dried over Na 2SO 4, and the solvent was concentrated to give the crude product of (1R, 2R) -1- (2, 5-difluorophenyl) -2- (2-hydroxyethyl) cyclopropane-1-carboxylic acid (1g) , which was used for next step directly. MS-ESI (m/z) : 243 [M + 1]  +.
(1R, 2R) -2- (2- ( (tert-butyldimethylsilyl) oxy) ethyl) -1- (2, 5-difluorophenyl) cyclopropa ne-1-carboxylic acid (1h)
To a solution of (1R, 2R) -1- (2, 5-difluorophenyl) -2- (2-hydroxyethyl) cyclopropane-1-carboxylic acid (1g) (385 mg, 1.60 mmol) in DCM/DMF (4 mL/2 mL) was added TBSCl (483 mg, 3.20 mmol) and imidazole (433 mg, 6.40 mmol) at 0℃. The mixture was stirred at 20℃ for overnight and concentrated. The mixture was diluted with saturated Na 2CO 3 aqueous solution (30 mL) , and the mixture was washed with EtOAc. The aqueous layer was acidified with HCl to pH = 3~ 4 and was extracted with EtOAc. The extracts were washed with brine (100 mL) , dried over Na 2SO 4 and concentrated to give the crude product of (1R, 2R) -2- (2- ( (tert-butyldimethylsilyl) oxy) ethyl) -1- (2, 5-difluorophenyl) cyclopropane-1-carbo xylic acid (1h) , which was used for next step directly. MS-ESI (m/z) : 357 [M + 1]  +.
Benzyl ( (1R, 2R) -2- (2- ( (tert-butyldimethylsilyl) oxy) ethyl) -1- (2, 5-difluorophenyl)  cyclopropyl) carbamate (1i)
To a solution of (1R, 2R) -2- (2- ( (tert-butyldimethylsilyl) oxy) ethyl) -1- (2, 5-difluorophenyl) cyclopropane-1-carboxylic acid (1h) (383 mg, 1.08 mmol) and BnOH (1.17 g, 10.8 mmol) in Toluene (8 mL) was added DPPA (446 mg, 1.62 mmol) and TEA (273 mg, 2.70 mmol) at RT. The mixture was stirred at 85℃ for overnight. The reaction was quenched with water and the mixture was extracted with EtOAc. The extracts were washed with brine (30 mL) , dried over Na 2SO 4, and the solvent was concentrated. The residue was purified by column chromatography on silica gel, eluting with PE /EtOAc (20: 1) to give the title compound benzyl ( (1R, 2R) -2- (2- ( (tert-butyldimethylsilyl) oxy) ethyl) -1- (2, 5-difluorophenyl) cyclopropyl) carbamate (1i) . MS-ESI (m/z) : 462 [M + 1]  +.
Benzyl ( (1R, 2R) -1- (2, 5-difluorophenyl) -2- (2-hydroxyethyl) cyclopropyl) carbamate  (1j)
To a solution of benzyl ( (1R, 2R) -2- (2- ( (tert-butyldimethylsilyl) oxy) ethyl) -1- (2, 5-difluorophenyl) cyclopropyl) carbamate (1i) (15.0 mg, 0.033 mmol) in THF (1 mL) was added TBAF (1M, 0.16 mL) at RT. The mixture was stirred at 25℃ for 1 h. The reaction was quenched with water and the mixture was extracted with EtOAc. The extracts were washed with brine (30 mL) , dried over Na 2SO 4 and concentrated to give the crude product of benzyl ( (1R, 2R) -1- (2, 5-difluorophenyl) -2- (2-hydroxyethyl) cyclopropyl) carbamate (1j) , which was used for next step directly. MS-ESI (m/z) : 348 [M + 1]  +.
2- ( (1R, 2R) -2- ( ( (benzyloxy) carbonyl) amino) -2- (2, 5-difluorophenyl) cyclopropyl) ethy l methanesulfonate (1k)
To a solution of benzyl ( (1R, 2R) -1- (2, 5-difluorophenyl) -2- (2-hydroxyethyl) cyclopropyl) carbamate (1j) (246 mg, 0.710 mmol) and MsCl (122 mg, 1.06 mmol) in DCM (2 mL) was added TEA (180 mg, 1.76 mmol) at 0℃. The mixture was stirred at 0℃ for 30 min. The reaction was quenched with water and the mixture was extracted with DCM. The extracts were washed sequentially with 1 N HCl, water and brine, dried over Na 2SO 4 and concentrated to give the crude product of 2- ( (1R, 2R) -2- ( ( (benzyloxy) carbonyl) amino) -2- (2, 5-difluorophenyl) -cyclopropyl) ethyl methanesulfonate (1k) , which was used for next step directly. MS-ESI (m/z) : 426 [M + 1]  +.
Benzyl (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexane-2-carboxylate  (1l)
To a solution of 2- ( (1R, 2R) -2- ( ( (benzyloxy) carbonyl) amino) -2- (2, 5-difluorophenyl) cyclopropyl) ethyl methanesulfonate (1k) (302 mg, 0.710 mmol) in DMF (6 mL) was added NaH (60%in oil, 43 mg) at 0℃. The mixture was stirred at 25℃ for 0.5 h. The reaction was quenched with water. The mixture was extracted with EtOAc and concentrated. The residue was purified by column chromatography on silica gel, eluting with PE /EtOAc (15: 1 ~ 10: 1) to give title compound benzyl (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexane-2-carboxylate (1l) . MS-ESI (m/z) : 330 [M + 1]  +.
(1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexane (1m)
A mixture of benzyl (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexane-2-carboxylate (1l) (40.0 mg, 0.122 mmol) and conc. HCl (1 mL) in MeOH/CH 3CN (0.1 mL/0.5 mL) was stirred at 60℃ for overnight. The mixture was basified with aq. NaOH to pH =  10, and the aqueous phase was extracted with DCM. The extracts were washed with brine (30 mL) , dried over Na 2SO 4 and concentrated to give the crude product of (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexane (1m) , which was used for next step directly. MS-ESI (m/z) : 196 [M + 1]  +.
Ethyl 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) - pyrazolo [1, 5-a] pyrimidine-3-carboxylate (1n)
To a solution of (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexane (1m) (27.0 mg, 0.138 mmol) and TEA (35.0 mg, 0.345 mmol) in DMF (1.5 mL) was added ethyl 5-chloropyrazolo [1, 5-a] pyrimidine-3-carboxylate (36.0 mg, 0.160 mmol) at RT. The mixture was stirred at 50℃ for 1.5 h under N 2 atmosphere. The reaction was quenched with water and the mixture was extracted with EtOAc. The extracts were washed with brine (30 mL) , dried over Na 2SO 4 and concentrated. The residue was purified by column chromatography on silica gel, eluting with PE /EtOAc (1.5: 1) to give the title compound ethyl 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] -hexan-2-yl) -pyrazolo [1, 5-a] pyrimidine-3-carboxylate (1n) . MS-ESI (m/z) : 358 [M + 1]  +.
5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] p yrimidine-3-carboxylic acid (1o)
A mixture of ethyl 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] -hexan-2-yl) -pyrazolo [1, 5-a] pyrimidine-3-carboxylate (1n) (1.22 g, 3.18 mmol) and LiOH. H 2O (763 mg, 31.8 mmol) in MeOH /H 2O (30 mL /3 mL) was stirred at 70℃ for overnight. The reaction mixture was diluted with water and acidified with 6N HCl to pH = 3~4. The mixture was extracted with DCM. The extracts were washed with brine, dried over Na 2SO 4 and concentrated to give 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine-3-carboxylic acid (1o) , which was used for next step directly. MS-ESI (m/z) : 357 [M + 1]  +.
2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a ] pyrimidine-3-carbonyl) hydrazine-1-carbothioamide (1p)
The mixture of 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine-3-carboxylic acid (1o) (500 mg, 1.40 mmol) , HATU (585 mg, 1.54 mmol) and Et 3N (300 μL, 2.10 mmol) in DMF (6 mL) was stirred at RT for 1.5 hours. Then hydrazinecarbothioamide (141 mg, 1.54 mmol) was added, the mixture was stirred at RT for overnight. The mixture was concentrated, then water (20 mL) was added. After being stirred for 1 h, the mixture was filtered. The filtered cake was washed with H 2O, this solid was the crude product of title compound 2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine-3-carbonyl) hydrazine-1-carbothioamide (1p) . MS-ESI (m/z) : 430 [M + 1]  +.
5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a ] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-amine (1)
The PPA (27 g) was preheated at 100℃, to this hot PPA was added 2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin e-3-carbonyl) hydrazine-1-carbothioamide (1p) (602 mg, 1.40 mmol) at 100℃. The mixture was stirred at 100℃ for 2 h. The reaction mixture was cooled to RT and poured into ice, the mixture was adjusted to pH = 9~10 using NH 3 . H 2O. Filtered, the residue was dissolved in DCM, dried (Na 2SO 4) , and concentrated to give 5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2- azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-amine (1) . MS-ESI (m/z) : 412 [M + 1]  +.
Example 2
4- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1,  5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-yl) morpholine (2)
Figure PCTCN2020114472-appb-000034
2-bromo-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyraz olo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole (2a)
To a mixture of 5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-amine (1) (41.1 mg, 0.10 mmol) and CuBr 2 (27.0 mg, 0.12 mmol) in CH 3CN (2 mL) at RT was added t-BuONO (12.4 mg, 0.12 mmol) . After addition, the mixture was warmed to 65℃ and stirred at 65℃ for 2 h. The reaction was cooled to RT, quenched with water and extracted with EtOAc. The extracts were washed with water and brine, dried over Na 2SO 4, and concentrated to give 2-bromo-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiaz ole (2a) as crude, which was used in next step without further purification. MS-ESI (m/z) : 475, 477 [M + 1]  +.
4- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1,  5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-yl) morpholine (2)
The mixture of 2-bromo-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole (2a) (23 mg, 0.049 mmol) , morpholine (6.3 mg, 0.072 mmol) and DIPEA (13 mg, 0.098 mmol) in DMF (1 mL) was stirred at 120℃ for overnight. The reaction was cooled to RT, concentrated and extracted with EtOAc. The extracts were washed with water and brine, dried over Na 2SO 4, and concentrated. The residue was purified by PTLC, eluting with DCM/MeOH (25: 1) to give the title compound 4- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimi din-3-yl) -1, 3, 4-thiadiazol-2-yl) morpholine (2) . MS-ESI (m/z) : 482 [M + 1]  +.
Example 3
methyl (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2- yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-yl) carbamate (3)
Figure PCTCN2020114472-appb-000035
To a solution of 5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-amine (1) (20 mg, 0.050 mmol) and DIPEA (8.4 mg, 0.065 mmol) in DCM (1 mL) was added methyl carbonochloridate (5.2 mg,  0.055 mmol) at 0℃. The mixture was stirred at RT for overnight. The mixture was extracted with DCM. The extracts were washed with brine, dried over Na 2SO 4, and concentrated. The residue was purified by PTLC, eluting with DCM/MeOH (25: 1) to give the title compound methyl (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidi n-3-yl) -1, 3, 4-thiadiazol-2-yl) carbamate (3) . MS-ESI (m/z) : 470 [M + 1]  +.
Example 4
2- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1,  5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-yl) propan-2-ol (4)
Figure PCTCN2020114472-appb-000036
5- ( (1R) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -N'- (2-hydroxy-2-me thylpropanoyl) pyrazolo [1, 5-a] pyrimidine-3-carbohydrazide (4a)
To a solution of 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine-3-carboxylic acid (1o) (50 mg, 0.14 mmol) and 2-hydroxy-2-methylpropanehydrazide (50 mg, 0.42 mmol) in DMF (1 mL) was added HATU (106 mg, 0.28 mmol) followed by DIPEA (54 mg, 0.42 mmol) . The mixture was stirred at RT for overnight. The mixture was diluted with EtOAc. The extracts were washed with water and brine, dried over Na 2SO 4 and concentrated to give 5- ( (1R) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -N'- (2-hydroxy-2-methylpropanoyl) pyrazolo [1, 5-a] pyrimidine-3-carbohydrazide (4a) . MS-ESI (m/z) : 457 [M + 1]  +.
N'- (2- ( (tert-butyldiphenylsilyl) oxy) -2-methylpropanoyl) -5- ( (1R) -1- (2, 5-difluorophe nyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine-3-carbohydrazide (4b)
To a solution of 5- ( (1R) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -N'- (2-hydroxy-2-methylpropanoyl) pyrazolo [1, 5-a] pyrimidine-3-carbohydrazide (4a) (64 mg, 0.14 mmol) and imidazole (15 mg, 0.21 mmol) in DMF (1 mL) was added TBDPSCl (46 mg, 0.17 mmol) at RT. The mixture was stirred at 50℃ for overnight. The mixture was diluted with EtOAc. The extracts were washed with water and brine, dried over Na 2SO 4 and concentrated. The residue was purified by PTLC, eluting with DCM/MeOH (20: 1) to give the title compound N'- (2- ( (tert-butyldiphenylsilyl) oxy) -2-methylpropanoyl) -5- ( (1R) -1- (2, 5-difluorophenyl) -2-aza bicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine-3-carbohydrazide (4b) . MS-ESI (m/z) : 695 [M + 1]  +.
2- (2- ( (tert-butyldiphenylsilyl) oxy) propan-2-yl) -5- (5- ( (1R) -1- (2, 5-difluorophenyl) -2  -azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole (4c)
A mixture of N'- (2- ( (tert-butyldiphenylsilyl) oxy) -2-methylpropanoyl) -5- ( (1R) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine-3-ca rbohydrazide (4b) (13 mg, 0.019 mmol) and Lawesson's Reagent (15 mg, 0.037 mmol) in Toluene (1 mL) was stirred at 65℃ for 3 h. The mixture was cooled to RT and concentrated. The residue was purified by column chromatography on silica gel, eluted with DCM/MeOH (20: 1) to give  2- (2- ( (tert-butyldiphenylsilyl) oxy) propan-2-yl) -5- (5- ( (1R) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole (4c) . MS-ESI (m/z) : 693 [M + 1]  +.
2- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1,  5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-yl) propan-2-ol (4)
A mixture of 2- (2- ( (tert-butyldiphenylsilyl) oxy) propan-2-yl) -5- (5- ( (1R) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thia diazole (4c) (11 mg, 0.016 mmol) in TBAF (1 M in THF, 1 mL) was stirred at RT for 3 h. The mixture was diluted with EtOAc. The extracts were washed with water and brine, dried over Na 2SO 4 and concentrated. The residue was purified by PTLC, eluting with DCM/MeOH (20: 1) to give the title compound 2- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazol-2-yl) propan-2-ol (4) . MS-ESI (m/z) : 455 [M + 1]  +.
Example 5
5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- ( (4-methylp iperazin-1-yl) methyl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (5)
Figure PCTCN2020114472-appb-000037
5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] p yrimidine (5a)
A mixture of 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine-3-carboxylic acid (1o) (310 mg, 0.87 mmol) in 6 N HCl (20 mL) was stirred at 90℃ for overnight. The mixture was cooled to RT and adjusted to pH = 9-10 using NaOH and extracted with EtOAc. The extracts were washed sequentially with water and brine, dried over Na 2SO 4, and concentrated to give the crude product of the title compound 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine (5a) . MS-ESI (m/z) : 313 [M + 1]  +.
5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3-iodopyrazolo [ 1, 5-a] pyrimidine (5b)
A mixture of 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine (5a) (129 mg, 0.410 mmol) and NIS (102 mg, 0.451 mmol) in DMF (2 mL) was stirred at RT for 1.5 h. The mixture was cooled to 0℃ and quenched with Na 2S 2O 3 aqueous solution and extracted with EtOAc. The extracts were washed sequentially with water and brine, dried over Na 2SO 4, and concentrated to give the crude product of the title compound 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3-iodopyrazolo [1, 5-a] pyrimidine (5b) . MS-ESI (m/z) : 439 [M + 1]  +.
(5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] p yrimidin-3-yl) boronic acid (5c)
To a solution of 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3-iodopyrazolo [1, 5-a] pyrimidine (5b) (51.5 mg, 0.120 mmol) in dry THF (1.5 mL) was added isopropylmagnesium chloride (2 M in THF, 120 μL, 0.240 mmol) dropwise at -78℃ and the resulting mixture was stirred at -30℃ ~ -40℃ for 30 min. The reaction mixture was warmed to -25℃, B (OMe)  3 was added to the mixture. After addition, the mixture was slowly warmed to RT and stirred at RT for 1.5 h. The mixture was cooled to 0℃ and quenched with NH 4Cl aqueous solution and extracted with EtOAc. The extracts were washed with brine, dried over Na 2SO 4, and concentrated to give the crude product of the title compound (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3 -yl) boronic acid (5c) . MS-ESI (m/z) : 357 [M + 1]  +.
1- ( (6-Bromopyridin-3-yl) methyl) -4-methylpiperazine (5d)
To a solution of 6-bromonicotinaldehyde (310 mg, 2.69 mmol) and 1-methylpiperazine (500 mg, 2.69 mmol) in DCM (20 mL) was added NaBH (OAc)  3 (860 mg, 4.06 mmol) at RT and stirred for overnight. The reaction was quenched with Na 2CO 3 aqueous solution, and the mixture was extracted with DCM. The extracts were washed with brine, dried over Na 2SO 4, and concentrated. The residue was purified by column chromatography on silica gel, eluting with DCM/MeOH (100: 1 ~ 30: 1) to give the title compound 1- ( (6-bromopyridin-3-yl) methyl) -4-methylpiperazine (5d) . MS-ESI (m/z) : 270, 272 [M + 1]  +.
5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- ( (4-methylp iperazin-1-yl) methyl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (5)
The mixture of 1- ( (6-bromopyridin-3-yl) methyl) -4-methylpiperazine (5d) (41 mg, 0.15 mmol) , (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) boronic acid (5c) (36 mg, 0.10 mmol) , PdCl 2 (dppf)  2 (7.5 mg, 0.010 mmol) and K 3PO 4 (2 M, 0.2 mL, 0.4 mmol) in 1, 4-Dioxane (3 mL) was stirred at 95℃ for 5 h. The mixture was cooled to RT and extracted with EtOAc. The extracts were washed with water and brine, dried over Na 2SO 4, and concentrated. The residue was purified by PTLC, eluting with DCM/MeOH (15: 1) to give the title compound 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- ( (4-methylpiperazin-1-yl) methyl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (5) . MS-ESI (m/z) : 502 [M + 1]  +.
Example 6
5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (4-methylpiper azin-1-yl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (6)
Figure PCTCN2020114472-appb-000038
tert-butyl 4- (6-bromopyridin-3-yl) piperazine-1-carboxylate (6a)
A mixture of 2-bromo-5-iodopyridine (1.70 g, 6.0 mmol) , tert-butyl piperazine-1-carboxylate (0.97 g, 5.0 mmol) , Pd 2 (dba)  3 (230 mg, 0.25 mmol) , Xantphos (434 mg, 0.75 mmol) and NaO tBu (1.40 g, 15 mmol) in Toluene was stirred at 90℃ for 3 h. The mixture was cooled to RT and diluted with H 2O, extracted with EtOAc, The extracts were  washed with brine, dried over Na 2SO 4. filtered and concentrated. The residue was purified by column chromatography on silica gel, eluting with PE/EA (10: 1 ~ 8: 1) to give the title compound tert-butyl 4- (6-bromopyridin-3-yl) piperazine-1-carboxylate (6a) . MS-ESI (m/z) : 342 [M + 1]  +.
tert-butyl 4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl)  pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) piperazine-1-carboxylate (6b)
The title compound tert-butyl 4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) piperazine-1-carboxylate (6b) was prepared according to the synthetic method of 5 by replacing 1- ( (6-bromopyridin-3-yl) methyl) -4-methylpiperazine with tert-butyl 4- (6-bromopyridin-3-yl) piperazine-1-carboxylate (6a) . MS-ESI (m/z) : 574 [M + 1]  +.
5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (piperazin-1-yl ) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidin (6c)
To a solution of The title compound tert-butyl 4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) pi perazine-1-carboxylate (6b) in DCM (1 mL) was added HCl/EtOAc (4 M, 3 mL) and stirred at RT for 0.5 h. The mixture was concentrated and diluted with H 2O, the mixture was adjusted to pH = 8 using NaHCO 3. Extracted with DCM/MeOH (10: 1) , dried over Na 2SO 4, and concentrated to give the title compound 5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (piperazin-1-yl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidin (6c) . MS-ESI (m/z) : 474 [M + 1]  +.
5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (4- methylpiperazin-1-yl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (6)
The title compound 5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (4-methylpiperazin-1-yl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (6) was prepared according to the synthetic method of 5d by replacing 6-bromonicotinaldehyde and 1-methylpiperazine with 5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (piperazin-1-yl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidin (6c) and HCHO (33%in H 2O) . MS-ESI (m/z) : 488 [M + 1]  +.
Example 7
1- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a ] pyrimidin-3-yl) pyridin-3-yl) piperidin-4-ol (7)
Figure PCTCN2020114472-appb-000039
8- (6-bromopyridin-3-yl) -1, 4-dioxa-8-azaspiro [4.5] decane (7a)
A mixture of 2-bromo-5-iodopyridine (852 mg, 3.0 mmol) , 1, 4-dioxa-8-azaspiro [4.5] decane (644 mg, 4.5 mmol) , Pd 2 (dba)  3 (137 mg, 0.15 mmol) , Xantphos (260 mg, 0.45 mmol) and NaO tBu (720 mg, 7.5 mmol) in Toluene was stirred at 80 ℃ for 2 h. The mixture was cooled to RT, The residue was purified by column chromatography on silica gel, eluting with PE/EA (20: 1 ~ 5: 1) to give the title compound  8- (6-bromopyridin-3-yl) -1, 4-dioxa-8-azaspiro [4.5] decane (7a) . MS-ESI (m/z) : 299, 301 [M + 1]  +.
1- (6-bromopyridin-3-yl) piperidin-4-one (7b)
To a solution of 8- (6-bromopyridin-3-yl) -1, 4-dioxa-8-azaspiro [4.5] decane (7a) (250 mg, 0.84 mmol) in dioxane (2 mL) was added HCl (3 N, 3 mL) and stirred at RT for 1 h. The mixture was diluted with H 2O and adjusted to ph = 9 using NaOH (20%in H 2O) , then extracted with DCM , dried over Na 2SO 4 and concentrated to give the title compound 1- (6-bromopyridin-3-yl) piperidin-4-one (7b) . MS-ESI (m/z) : 255, 257 [M + 1]  +.
1- (6-bromopyridin-3-yl) piperidin-4-ol (7c)
To a solution of 1- (6-bromopyridin-3-yl) piperidin-4-one (7b) (212 mg, 0.840 mmol) in THF/MeOH (5 mL/0.1 mL) was added NaBH 4 (64.0 mg, 1.67 mmol) at RT and the resulting mixture was stirred at RT for 1 h. The mixture was diluted with H 2O (10 mL) and extracted with DCM (3 × 10 mL) , dried over Na 2SO 4 and concentrated to give the title compound 1- (6-bromopyridin-3-yl) piperidin-4-ol (7c) . MS-ESI (m/z) : 257, 259 [M + 1]  +.
1- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a ] pyrimidin-3-yl) pyridin-3-yl) piperidin-4-ol (7)
The title compound 1- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) piperidin-4-ol (7) was prepared according to the synthetic method of 5 by replacing 1- ( (6-bromopyridin-3-yl) methyl) -4-methylpiperazine (5d) with 1- (6-bromopyridin-3-yl) piperidin-4-ol (7c) . MS-ESI (m/z) : 489 [M + 1]  +.
Example 8
5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (4- (oxetan- 3-yl) piperazin-1-yl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (8)
Figure PCTCN2020114472-appb-000040
1- (6-bromopyridin-3-yl) piperazine (8a)
To a solution of tert-butyl 4- (6-bromopyridin-3-yl) piperazine-1-carboxylate (6a) (0.50 g, 1.5 mmol) in EtOAc (2 mL) was added HCl/EtOAc (4 N, 5 mL) at RT and the resulting mixture was stirred at RT for 1 h. The mixture was concentrated and diluted with H 2O, the aqueous layer were adjusted to pH = 10 using saturated aqueous Na 2CO 3, extracted with DCM/MeOH (10: 1) . The extracts were washed with brine, dried over Na 2SO 4 and concentrated to give the title compound 1- (6-bromopyridin-3-yl) piperazine (8a) . MS-ESI (m/z) : 242, 244 [M + 1]  +.
1- (6-bromopyridin-3-yl) -4- (oxetan-3-yl) piperazine (8b)
The mixture of 1- (6-bromopyridin-3-yl) piperazine (8a) (320 mg, 1.33 mmol) , oxetan-3-one (384 mg, 5.32 mmol) and AcOH (240 mg, 3.99 mmol) in DCE (6 mL) was stirred at 55℃ for 2.5 hours. Then NaBH (OAc)  3 (564 mg, 2.66 mmol) was added, the mixture was heated to 65℃ and stirred for 2 h. The mixture was diluted with H 2O and extracted with DCM. The extracts were washed with brine, dried over Na 2SO 4 and concentrated. The residue  was purified by column chromatography on silica gel, eluting with DCM/MeOH (100: 1 ~ 50: 1) to give the title compound 1- (6-bromopyridin-3-yl) -4- (oxetan-3-yl) piperazine (8b) . MS-ESI (m/z) : 298, 300 [M + 1]  +.
5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (4- (oxetan- 3-yl) piperazin-1-yl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (8)
The title compound 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (5- (4- (oxetan-3-yl) piperazin-1-yl) pyridin-2-yl) pyrazolo [1, 5-a] pyrimidine (8) was prepared according to the synthetic method of 5 by replacing 1- ( (6-bromopyridin-3-yl) methyl) -4-methylpiperazine (5d) with 1- (6-bromopyridin-3-yl) -4- (oxetan-3-yl) piperazine (8b) . MS-ESI (m/z) : 530 [M + 1]  +.
Example 9
(R) -4- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazol o [1, 5-a] pyrimidin-3-yl) pyridin-2-yl) -2-methylmorpholine (9)
Figure PCTCN2020114472-appb-000041
5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (6-fluoropyridi n-3-yl) pyrazolo [1, 5-a] pyrimidine (9a)
The mixture of 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3-iodopyrazolo [1, 5-a] pyrimidine (5b) (2.00 g, 4.57 mmol) , (6-fluoropyridin-3-yl) boronic acid (1.20 g, 9.13 mmol) , PdCl 2 (dppf)  2 (334 mg, 0.456 mmol) and K 3PO 4 (2 M, 18.2 mmol) in 1, 4-Dioxane (90 mL) was stirred at 80℃ for 1.5 h. The mixture was cooled to RT, diluted with H 2O and extracted with EtOAc. The extracts were washed with water and brine, dried over Na 2SO 4, and concentrated. The residue was purified by PTLC, eluting with DCM/MeOH (15: 1) to give the title compound 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (6-fluoropyridin-3-yl) pyrazolo [1, 5-a] pyrimidine (9a) . MS-ESI (m/z) : 408 [M + 1]  +.
(R) -4- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazol o [1, 5-a] pyrimidin-3-yl) pyridin-2-yl) -2-methylmorpholine (9)
The mixture of 5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) -3- (6-fluoropyridin-3-yl) pyrazolo [1, 5-a] pyrimidine (9a) (12.0 mg, 0.03 mmol) , (R) -2-methylmorpholine hydrochloride (41 mg, 0.3 mmol) and K 2CO 3 (82 mg, 0.6 mmol) in DMSO (0.5 mL) was stirred at 150℃ for overnight. The mixture was cooled to RT, diluted with H 2O and extracted with EtOAc (2 × 5 mL) . The extracts were washed with water and brine, dried over Na 2SO 4, and concentrated. The residue was purified by PTLC, eluting with DCM/MeOH (20: 1) to give the title compound (R) -4- (5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-2-yl) -2-methylmorpholin e (9) . MS-ESI (m/z) : 489 [M + 1]  +.
Example 10
4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a ] pyrimidin-3-yl) pyridin-3-yl) -1-imino-1l6-thiomorpholine 1-oxide (10)
Figure PCTCN2020114472-appb-000042
Benzyl 1- (tosylimino) -1λ 6-thiomorpholine-4-carboxylate 1-oxide (10a)
The title compound benzyl 1- (tosylimino) -1λ 6-thiomorpholine-4-carboxylate 1-oxide (10a) was prepared according to to the method described in Tetrahedron 2014, 70, 6613-6622. MS-ESI (m/z) : 423 [M + 1]  +.
Benzyl 1-imino-1λ 6-thiomorpholine-4-carboxylate 1-oxide (10b)
To a solution of benzyl 1- (tosylimino) -1λ 6-thiomorpholine-4-carboxylate 1-oxide (10a) (422 mg, 1.00 mmol) in DME (10 mL) was added naphthalen-1-yl sodium (1.2 M, 3.2 mL) and stirred at –60℃ for 10 min. The mixture was diluted with MeOH and concentrated. The residue was purified by column chromatography on silica gel, eluting with DCM/MeOH (100: 1 ~ 40: 1) to give the title compound benzyl 1-imino-1λ 6-thiomorpholine-4-carboxylate 1-oxide (10b) . MS-ESI (m/z) : 269 [M + 1]  +.
Benzyl 1- ( (tert-butoxycarbonyl) imino) -1λ 6-thiomorpholine-4-carboxylate 1-oxide   (10c)
To a solution of benzyl 1-imino-1λ 6-thiomorpholine-4-carboxylate 1-oxide (10b) (500 mg, 1.86 mmol) and (Boc)  2O in DMF (10 mL) was added NaH (60 %, 223 mg, 5.58 mmol) slowly at 0℃ and stirred at RT for 2 h. The mixture was quenched with H 2O at 0℃. The mixture was extracted with EA. The extracts were washed with brine, dried over Na 2SO 4, and concentrated. The residue was purified by column chromatography on silica gel, eluting with PE/EA (10: 1 ~ 4: 1) to give the title compound benzyl 1- ( (tert-butoxycarbonyl) imino) -1λ 6-thiomorpholine-4-carboxylate 1-oxide (10c) . MS-ESI (m/z) : 369 [M + 1]  +.
Tert-butyl (1-oxido-1λ 6-thiomorpholin-1-ylidene) carbamate (10d)
A mixture of 1- ( (tert-butoxycarbonyl) imino) -1λ 6-thiomorpholine-4-carboxylate 1-oxide (10c) (570 mg) and Pd/C (10 %) in THF (10 mL) was stirred under H 2 at RT for 3 h. Filtered, and concentrated to give the title compound tert-butyl (1-oxido-1λ 6-thiomorpholin-1-ylidene) carbamate (10d) . MS-ESI (m/z) : 235 [M + 1]  +.
Tert-butyl (4- (6-bromopyridin-3-yl) -1-oxido-1λ 6-thiomorpholin-1-ylidene)   carbamate (10e)
The title compound tert-butyl (4- (6-bromopyridin-3-yl) -1-oxido-1λ 6-thiomorpholin-1-ylidene) carbamate (10e) was prepared according to the synthetic method of 6a by replacing tert-butyl piperazine-1-carboxylate with tert-butyl (1-oxido-1λ 6-thiomorpholin-1-ylidene) carbamate (10d) . MS-ESI (m/z) : 574 [M + 1]  +.
Tert-butyl (4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl)  pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) -1-oxido-1λ 6-thiomorpholin-1-ylidene) carbamate   (10f)
The title compound tert-butyl (4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) -1-oxido-1λ 6-thiomorpholin-1-y lidene) carbamate (10f) was prepared according to the synthetic method of 5 by replacing 1- ( (6-bromopyridin-3-yl) methyl) -4-methylpiperazine (5d) with tert-butyl (4- (6-bromopyridin-3-yl) -1-oxido-1λ 6-thiomorpholin-1-ylidene) carbamate (10e) . MS-ESI (m/z) : 622 [M + 1]  +.
4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a ] pyrimidin-3-yl) pyridin-3-yl) -1-imino-1λ 6-thiomorpholine 1-oxide (10)
The title compound 4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) -1-imino-1λ 6-thiomorpholine 1-oxide (10) was prepared according to the synthetic method of 6c by replacing tert-butyl 4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) piperazine-1-carboxylate (6b) with tert-butyl (4- (6- (5- ( (5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidin-3-yl) pyridin-3-yl) -1-oxido-1λ 6-thiomorpholin-1-ylidene) carbamate (10f) . MS-ESI (m/z) : 522 [M + 1]  +.
Following essentially the same procedures described for Examples 1-10, Examples 11-199 listed in Table 1 were prepared from the appropriate starting materials which are commercially available or known in the literature. The structures and names of Examples 11-199 are given in Table 1.
Table 1
Figure PCTCN2020114472-appb-000043
Figure PCTCN2020114472-appb-000044
Figure PCTCN2020114472-appb-000045
Figure PCTCN2020114472-appb-000046
Figure PCTCN2020114472-appb-000047
Figure PCTCN2020114472-appb-000048
Figure PCTCN2020114472-appb-000049
Figure PCTCN2020114472-appb-000050
Figure PCTCN2020114472-appb-000051
Figure PCTCN2020114472-appb-000052
Figure PCTCN2020114472-appb-000053
Figure PCTCN2020114472-appb-000054
Figure PCTCN2020114472-appb-000055
Figure PCTCN2020114472-appb-000056
Figure PCTCN2020114472-appb-000057
Figure PCTCN2020114472-appb-000058
Figure PCTCN2020114472-appb-000059
Figure PCTCN2020114472-appb-000060
Figure PCTCN2020114472-appb-000061
Biological Activity
MTS testing kit was purchased from Promega (Madison, WI, USA) . The RPMI-1640, Fetal bovine serum and Penicillin-Streptomycin were purchased from Gibco (San Francisco, California, USA) . Dimethyl sulfoxide (DMSO) and Puromycin were purchased from Sigma (St. Louis., MO, USA) . Mouse interleukin-3 (IL-3) was purchased from Cell signaling Technology (Boston, Massachusetts, USA) .
To investigate whether a compound is able to inhibit the activity of TRK in cells, a mechanism-based assay using KM12 cells was developed. In this assay, inhibition of TRK was detected by the inhibition of KM12 cells proliferation. KM12 cells were cultured in culture flasks to 40-80%confluence in RPMI-1640 plus 10%fetal bovine serum. Cells were collected and plated onto 96-well plates at 1000 cells/well. Plates were incubated at 37℃, with 5%CO 2 for 4 h. Compounds were added to the plates, the final compound concentrations were 10000, 3333.3, 1111.1, 270.4, 123.5, 41.2, 13.7, 4.6 and 1.5 nM. Place plates at 37℃, with 5%CO 2 for KM12 cells 72 h. 20 μl MTS /100 μl medium mixture solution were added to each well and incubate the plates for exactly 2 h. Stop the reaction by adding 25 μl 10%SDS per well. Measure absorbance at 490 nm and 650 nm (reference wavelength) . IC 50 was calculated using GraphPad Prism 5.0.
To investigate whether a compound is able to inhibit the activity of TRK fusion mutation in cells, a mechanism-based assay using engineered Ba/F3 cell lines stably overexpressing oncogenic rearrangement or gene mutation of TRK (TPM3-TRKA、 TPM3-TRKA-G595R、 AFAP1-TRKB、 ETV6-TRKC and ETV6-TRKC-G623R) were developed. In this assay, inhibition of TRK fusion mutation was detected by the cell proliferation inhibition of engineered Ba/F3 cells. Engineered Ba/F3 cells were cultured in culture flasks to 40-80 %confluence in RPMI-1640 supplemented with 10 %fetal bovine serum, 2 ug/mL puromycin. Cells were collected and plated onto 96-well plates at desired cell density (Ba/F3-TPM3-TRKA: 3 × 10 4/mL, Ba/F3-TPM3-TRKA-G595R: 1 × 10 5/mL, Ba/F3-AFAP1-TRKB: 1 × 10 5/mL, Ba/F3-ETV6-TRKC: 3 × 10 4/mL, Ba/F3-ETV6-TRKC-G623R: 3 × 10 4/mL) . Plates were incubated at 37℃, with 5 %CO 2 for 4 h. Compounds were then added to the plates with the final compound concentrations of 10000, 3333, 1111, 270, 123, 41.2, 13.7, 4.6 and 1.5 nM. Plates were incubated at 37℃, with 5 %CO 2 for 72 h. A mixture of 20 μl MTS/100 μl medium were added to each well and the plates were incubated at 37 ℃, with 5 %CO 2 for exactly 2 h. The reaction was stopped by adding 25 μl of 10 %SDS per well. The absorbance was measured at 490 nm and 650 nm (reference wavelength) . IC 50 was calculated using GraphPad Prism 5.0 software.
Select compounds prepared as described above were assayed according to the biological procedures described herein. The results are given in Table 2.
Table 2
Figure PCTCN2020114472-appb-000062
Figure PCTCN2020114472-appb-000063
Figure PCTCN2020114472-appb-000064
Figure PCTCN2020114472-appb-000065

Claims (23)

  1. A compound of formula (I) ,
    Figure PCTCN2020114472-appb-100001
    or a pharmaceutically acceptable salt thereof, wherein:
    when X is N, Y is C, provides formula (Ia) ,
    Figure PCTCN2020114472-appb-100002
    when X is C, Y is N, provides formula (Ib) ,
    Figure PCTCN2020114472-appb-100003
    R 1 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
    each R 2 is independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, -NR A1R B1, -OR A1, -C (O) R A1, -C (=NR E1) R A1, -C (=N-OR B1) R A1, -C (O) OR A1, -OC (O) R A1, -C (O) NR A1R B1, -NR A1C (O) R B1, -C (=NR E1) NR A1R B1, -NR A1C (=NR E1) R B1, -OC (O) NR A1R B1, -NR A1C (O) OR B1, -NR A1C (O) NR A1R B1, -NR A1C (S) NR A1R B1, -NR A1C (=NR E1) NR A1R B1, -S (O)  rR A1, -S (O) (=NR E1) R B1, -N=S (O) R A1R B1, -S (O)  2OR A1, -OS (O)  2R A1, -NR A1S (O)  rR B1, -NR A1S (O) (=NR E1) R B1, -S (O)  rNR A1R B1, -S (O) (=NR E1) NR A1R B1, -NR A1S (O)  2NR A1R B1, -NR A1S (O) (=NR E1) NR A1R B1, -P (O) R A1R B1 and -P (O) (OR A1) (OR B1) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
    R 3 is selected from aryl and heteroaryl, wherein aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
    R 4 is selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, -NR A2R B2, -OR A2, -C (O) R A2, -C (=NR E2) R A2, -C (=N-OR B2) R A2, -C (O) OR A2, -OC (O) R A2, -C (O) NR A2R B2, -NR A2C (O) R B2, -C (=NR E2) NR A2R B2, -NR A2C (=NR E2) R B2, -OC (O) NR A2R B2, -NR A2C (O) OR B2,  -NR A2C (O) NR A2R B2, -NR A2C (S) NR A2R B2, -NR A2C (=NR E2) NR A2R B2, -S (O)  rR A2, -S (O) (=NR E2) R B2, -N=S (O) R A2R B2, -S (O)  2OR A2, -OS (O)  2R A2, -NR A2S (O)  rR B2, -NR A2S (O) (=NR E2) R B2, -S (O)  rNR A2R B2, -S (O) (=NR E2) NR A2R B2, -NR A2S (O)  2NR A2R B2, -NR A2S (O) (=NR E2) NR A2R B2, -P (O) R A2R B2 and -P (O) (OR A2) (OR B2) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
    each R A1, R A2, R B1 and R B2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R X;
    or each “R A1 and R B1” or “R A2 and R B2” together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1, or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R X groups;
    each R E1 and R E2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, CN, NO 2, OR a1, SR a1, -S (O)  rR a1, -C (O) R a1, C (O) OR a1, -C (O) NR a1R b1 and -S (O)  rNR a1R b1, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
    each R X is independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, halogen, CN, NO 2, - (CR c1R d1tNR a1R b1, - (CR c1R d1tOR b1, - (CR c1R d1tC (O) R a1, - (CR c1R d1tC (=NR e1) R a1, - (CR c1R d1tC (=N-OR b1) R a1, - (CR c1R d1tC (O) OR b1, - (CR c1R d1tOC (O) R b1, - (CR c1R d1tC (O) NR a1R b1, - (CR c1R d1tNR a1C (O) R b1, - (CR c1R d1tC (=NR e1) NR a1R b1, - (CR c1R d1tNR a1C (=NR e1) R b1, - (CR c1R d1tOC (O) NR a1R b1, - (CR c1R d1tNR a1C (O) OR b1, - (CR c1R d1tNR a1C (O) NR a1R b1, - (CR c1R d1tNR a1C (S) NR a1R b1, - (CR c1R d1tNR a1C (=NR e1) NR a1R b1, - (CR c1R d1tS (O)  rR b1, - (CR c1R d1tS (O) (=NR e1) R b1, - (CR c1R d1tN=S (O) R a1R b1, - (CR c1R d1tS (O)  2OR b1, - (CR c1R d1tOS (O)  2R b1, - (CR c1R d1tNR a1S (O)  rR b1, - (CR c1R d1tNR a1S (O) (=NR e1) R b1, - (CR c1R d1tS (O)  rNR a1R b1, - (CR c1R d1tS (O) (=NR e1) NR a1R b1, - (CR c1R d1tNR a1S (O)  2NR a1R b1, - (CR c1R d1tNR a1S (O) (=NR e1) NR a1R b1, - (CR c1R d1tP (O) R a1R b1 and - (CR c1R d1tP (O) (OR a1) (OR b1) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
    each R a1 and each R b1 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
    or R a1 and R b1 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected  from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1, 2 or 3 R Y groups;
    each R c1 and each R d1 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from R Y;
    or R c1 and R d1 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1, 2 or 3 R Y groups;
    each R e1 is independently selected from hydrogen, deuterium, C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, CN, NO 2, -OR a2, -SR a2, -S (O)  rR a2, -C (O) R a2, -C (O) OR a2, -S (O)  rNR a2R b2 and -C (O) NR a2R b2;
    each R Y is independently selected from C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl, heteroaryl-C 1-4 alkyl, halogen, CN, NO 2, - (CR c2R d2tNR a2R b2, - (CR c2R d2tOR b2, - (CR c2R d2tC (O) R a2, - (CR c2R d2tC (=NR e2) R a2, - (CR c2R d2tC (=N-OR b2) R a2, - (CR c2R d2tC (O) OR b2, - (CR c2R d2tOC (O) R b2, - (CR c2R d2tC (O) NR a2R b2, - (CR c2R d2tNR a2C (O) R b2, - (CR c2R d2tC (=NR e2) NR a2R b2, - (CR c2R d2tNR a2C (=NR e2) R b2, - (CR c2R d2tOC (O) NR a2R b2, - (CR c2R d2tNR a2C (O) OR b2, - (CR c2R d2tNR a2C (O) NR a2R b2, - (CR c2R d2tNR a2C (S) NR a2R b2, - (CR c2R d2tNR a2C (=NR e2) NR a2R b2, - (CR c2R d2tS (O)  rR b2, - (CR c2R d2tS (O) (=NR e2) R b2, - (CR c2R d2tN=S (O) R a2R b2, - (CR c2R d2tS (O)  2OR b2, - (CR c2R d2tOS (O)  2R b2, - (CR c2R d2tNR a2S (O)  rR b2, - (CR c2R d2tNR a2S (O) (=NR e2) R b2, - (CR c2R d2tS (O)  rNR a2R b2, - (CR c2R d2tS (O) (=NR e2) NR a2R b2, - (CR c2R d2tNR a2S (O)  2NR a2R b2, - (CR c2R d2tNR a2S (O) (=NR e2) NR a2R b2, - (CR c2R d2tP (O) R a2R b2 and - (CR c2R d2tP (O) (OR a2) (OR b2) , wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
    each R a2 and each R b2 are independently selected from hydrogen, deuterium, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di(C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalkylamino, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
    or R a2 and R b2 together with the atom (s) to which they are attached form a heterocyclic ring of 4 to 12 members containing 0, 1 or 2 additional heteroatoms independently selected from oxygen, sulfur, nitrogen and phosphorus, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl,  C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
    each R c2 and each R d2 are independently selected from hydrogen, deuterium, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, C 1-10 alkylamino, C 3-10 cycloalkylamino, di (C 1-10 alkyl) amino, heterocyclyl, heterocyclyl-C 1-4 alkyl, aryl, aryl-C 1-4 alkyl, heteroaryl and heteroaryl-C 1-4 alkyl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, cycloalkoxy, alkylthio, cycloalkylthio, alkylamino, cycloalkylamino, heterocyclyl, aryl and heteroaryl are each unsubstituted or substituted with at least one substituent, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
    or R c2 and R d2 together with the carbon atom (s) to which they are attached form a ring of 3 to 12 members containing 0, 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 or 2 substituents, independently selected from halogen, CN, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-10 cycloalkyl, OH, C 1-10 alkoxy, C 3-10 cycloalkoxy, C 1-10 alkylthio, C 3-10 cycloalkylthio, amino, C 1-10 alkylamino, C 3-10 cycloalkylamino and di (C 1-10 alkyl) amino;
    each R e2 is independently selected from hydrogen, deuterium, CN, NO 2, C 1-10 alkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-C 1-4 alkyl, C 1-10 alkoxy, C 3-10 cycloalkoxy, -C (O) C 1-4 alkyl, -C (O) C 3-10 cycloalkyl, -C (O) OC 1-4 alkyl, -C (O) OC 3-10 cycloalkyl, -C (O) N (C 1-4 alkyl)  2, -C (O) N (C 3-10 cycloalkyl)  2, -S (O)  2C 1-4 alkyl, -S (O)  2C 3-10 cycloalkyl, -S (O)  2N (C 1-4 alkyl)  2 and -S (O)  2N (C 3-10 cycloalkyl)  2;
    n is selected from 0, 1, 2, 3 and 4;
    each r is independently selected from 0, 1 and 2;
    each t is independently selected from 0, 1, 2, 3 and 4;
    provided that the compound is not selected from
    2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropyl-1, 3, 4-oxadiazole,
    2- (tert-butyl) -5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyraz olo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-oxadiazole,
    2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropyl-1, 3, 4-thiadiazole,
    2- (tert-butyl) -5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyraz olo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole,
    2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) isoindolin-1-one,
    2-cyclopropyl-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) -1, 3, 4-thiadiazole,
    2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5- (trifluoromethyl) -1, 3, 4-thiadiazole,
    5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -2-isopropylthiazole,
    2-cyclopropyl-5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) thiazole,
    5- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -2- (trifluoromethyl) thiazole,
    2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyri midin-3-yl) -5-isopropylthiazole, and
    5-cyclopropyl-2- (5- ( (1R, 5S) -1- (2, 5-difluorophenyl) -2-azabicyclo [3.1.0] hexan-2-yl) pyra zolo [1, 5-a] pyrimidin-3-yl) thiazole.
  2. A compound of claim 1 or a pharmaceutically acceptable salt thereof, wherein X is N, Y is C, provides formula (Ia) ,
    Figure PCTCN2020114472-appb-100004
    wherein R 1, R 2, R 3, R 4 and n are as defined in Formula (I) .
  3. A compound of claim 1 or a pharmaceutically acceptable salt thereof, wherein X is C, Y is N, provides formula (Ib) ,
    Figure PCTCN2020114472-appb-100005
    wherein R 1, R 2, R 3, R 4 and n are as defined in Formula (I) .
  4. A compound of any one of claims 1-3 or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from 5-membered ring.
  5. A compound of any one of claims 1-3 or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from 6-membered ring.
  6. A compound of claim 4 or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from
    Figure PCTCN2020114472-appb-100006
    Figure PCTCN2020114472-appb-100007
    which are each unsubstituted or substituted with at least one substituent independently selected from R X.
  7. A compound of claim 5 or a pharmaceutically acceptable salt thereof, wherein R 3 is selected from
    Figure PCTCN2020114472-appb-100008
    which are each unsubstituted or substituted with at least one substituent independently selected from R X.
  8. A compound of any one of claims 1-7 or a pharmaceutically acceptable salt thereof, wherein the substituent R X of R 3 is selected from halogen, CN, NO 2, C 1-10 alkyl, C 3-10 cycloalkyl, heterocyclyl, heterocyclyl-C 1-4 alkyl, - (CR c1R d1tOR b1, - (CR c1R d1tC (O) OR b1, - (CR c1R d1tNR a1C (O) OR b1, - (CR c1R d1tNR a1C (O) R b1, - (CR c1R d1tNR a1C (O) NR a1R b1, - (CR c1R d1tNR a1S (O)  rR b1, - (CR c1R d1tNR a1R b1, - (CR c1R d1tOR b1, - (CR c1R d1tC (O) R a1, - (CR c1R d1tN=S (O) R a1R b1, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from R Y.
  9. A compound of claim 8 or a pharmaceutically acceptable salt thereof, wherein R Y is selected from C 1-10 alkyl, C 3-10 cycloalkyl, heterocyclyl, halogen, CN, NO 2, - (CR c2R d2tNR a2R b2, - (CR c2R d2tOR b2, - (CR c2R d2tC (O) R a2, - (CR c2R d2tS (O)  rR b2, - (CR c2R d2tOR b2, wherein alkyl, cycloalkyl and heterocyclyl are each unsubstituted or substituted with at least one substituent, independently selected from OH, CN, amino, halogen, C 1-10 alkyl and C 1-10 alkoxy.
  10. A compound of any one of claims 1-9 or a pharmaceutically acceptable salt thereof, wherein the substituent R X of R 3 is selected from -NH 2, -CN, -CO 2ET, methyl, isopropyl, cyclopropyl, 
    Figure PCTCN2020114472-appb-100009
    Figure PCTCN2020114472-appb-100010
  11. A compound of any one of claims 1-10 or a pharmaceutically acceptable salt thereof, wherein R 1 is aryl, wherein aryl is unsubstituted or substituted with at least one substituent, independently selected from R X.
  12. A compound of claim 11 or a pharmaceutically acceptable salt thereof, wherein R 1 is phenyl, wherein phenyl is substituted with halogen.
  13. A compound of any one of claims 1-12 or a pharmaceutically acceptable salt thereof, wherein each R 2 is independently selected from C 1-10 alkyl, C 3-10 cycloalkyl and halogen, wherein alkyl and cycloalkyl are each unsubstituted or substituted with at least one substituent independently selected from R X.
  14. A compound of any one of claims 1-12 or a pharmaceutically acceptable salt thereof, wherein n is selected from 0 and 1.
  15. A compound of any one of claims 1-14 or a pharmaceutically acceptable salt thereof, wherein R 4 is selected from hydrogen, halogen, -CN, -NR A2R B2 and -C (O) NR A2R B2.
  16. A compound of claim 15 or a pharmaceutically acceptable salt thereof, wherein R 4 is selected from hydrogen, Br, -NH 2, -CN and -C (O) NH 2.
  17. A compound of claim1, selected from
    Figure PCTCN2020114472-appb-100011
    Figure PCTCN2020114472-appb-100012
    Figure PCTCN2020114472-appb-100013
    Figure PCTCN2020114472-appb-100014
    Figure PCTCN2020114472-appb-100015
    and pharmaceutically acceptable salts thereof.
  18. A compound of claim 1, selected from
    Figure PCTCN2020114472-appb-100016
    Figure PCTCN2020114472-appb-100017
    Figure PCTCN2020114472-appb-100018
    Figure PCTCN2020114472-appb-100019
    Figure PCTCN2020114472-appb-100020
    and pharmaceutically acceptable salts thereof.
  19. A pharmaceutical composition, comprising a compound of any one of claims 1 to 18 or a pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable carrier.
  20. A method of treating, ameliorating or preventing a condition, which responds to inhibition of TRK, comprising administering to a subject in need of such treatment an effective amount of a compound of any one of claims 1 to 18, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof, and optionally in combination with a second therapeutic agent.
  21. Use of a compound of any one of claims 1 to 18 or a pharmaceutically acceptable salt thereof in the preparation of a medicament for treating a condition mediated by TRK.
  22. Use of a compound of claim 21 or a pharmaceutically acceptable salt thereof, the condition includes but not limited to, an autoimmune disease, a transplantation disease, pain, an infectious disease or a cell proliferative disorder.
  23. Use of a compound of claim 22 or a pharmaceutically acceptable salt thereof, wherein the condition is includes but not limited to, brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, renal, kidney, ovarian, prostate, colorectal, epidermoid, esophageal, testicular, gynecological or thyroid cancer, benign hyperplasia of the skin, restenosis, and benign prostatic hypertrophy, pancreatitis, kidney disease, chronic and/or acute pain; preventing blastocyte implantation, psoriasis, exzema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, atherosclerosis, inhibition of keratinocyte responses to growth factor cocktails; chronic obstructive pulmonary disease (COPD) and other diseases.
PCT/CN2020/114472 2019-09-11 2020-09-10 SUBSTITUTED (2-AZABICYCLO [3.1.0] HEXAN-2-YL) PYRAZOLO [1, 5-a] PYRIMIDINE AND IMIDAZO [1, 2-b] PYRIDAZINE COMPOUNDS AS TRK KINASES INHIBITORS WO2021047584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080063781.2A CN114630829A (en) 2019-09-11 2020-09-10 Substituted (2-azabicyclo [3.1.0] hex-2-yl) pyrazolo [1,5-a ] pyrimidine and imidazo [1,2-b ] pyridazine compounds as TRK kinase inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962898817P 2019-09-11 2019-09-11
US62/898,817 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021047584A1 true WO2021047584A1 (en) 2021-03-18

Family

ID=74865837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114472 WO2021047584A1 (en) 2019-09-11 2020-09-10 SUBSTITUTED (2-AZABICYCLO [3.1.0] HEXAN-2-YL) PYRAZOLO [1, 5-a] PYRIMIDINE AND IMIDAZO [1, 2-b] PYRIDAZINE COMPOUNDS AS TRK KINASES INHIBITORS

Country Status (2)

Country Link
CN (1) CN114630829A (en)
WO (1) WO2021047584A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056927A (en) * 2008-05-13 2011-05-11 Irm责任有限公司 Fused nitrogen containing heterocycles and compositions thereof as kinase inhibitors
CN102224153A (en) * 2008-09-22 2011-10-19 阵列生物制药公司 Substituted imidazo[1,2b]pyridazine compounds as trk kinase inhibitors
WO2012034091A1 (en) * 2010-09-09 2012-03-15 Irm Llc Imidazo [1, 2] pyridazin compounds and compositions as trk inhibitors
WO2012034095A1 (en) * 2010-09-09 2012-03-15 Irm Llc Compounds and compositions as trk inhibitors
WO2019174598A1 (en) * 2018-03-14 2019-09-19 Fochon Pharmaceuticals, Ltd. SUBSTITUTED (2-AZABICYCLO [3.1.0] HEXAN-2-YL) PYRAZOLO [1, 5-a] PYRIMIDINE AND IMIDAZO [1, 2-b] PYRIDAZINE COMPOUNDS AS TRK KINASES INHIBITORS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056927A (en) * 2008-05-13 2011-05-11 Irm责任有限公司 Fused nitrogen containing heterocycles and compositions thereof as kinase inhibitors
CN102224153A (en) * 2008-09-22 2011-10-19 阵列生物制药公司 Substituted imidazo[1,2b]pyridazine compounds as trk kinase inhibitors
WO2012034091A1 (en) * 2010-09-09 2012-03-15 Irm Llc Imidazo [1, 2] pyridazin compounds and compositions as trk inhibitors
WO2012034095A1 (en) * 2010-09-09 2012-03-15 Irm Llc Compounds and compositions as trk inhibitors
WO2019174598A1 (en) * 2018-03-14 2019-09-19 Fochon Pharmaceuticals, Ltd. SUBSTITUTED (2-AZABICYCLO [3.1.0] HEXAN-2-YL) PYRAZOLO [1, 5-a] PYRIMIDINE AND IMIDAZO [1, 2-b] PYRIDAZINE COMPOUNDS AS TRK KINASES INHIBITORS

Also Published As

Publication number Publication date
CN114630829A (en) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2022228387A1 (en) Compounds as parp inhibitors
AU2019233204B2 (en) Substituted (2-azabicyclo (3.1.0) hexan-2-yl) pyrazolo (1, 5-a) pyrimidine and imidazo (1, 2-b) pyridazine compounds as TRK kinases inhibitors
AU2019241260B2 (en) Macrocyclic compounds as TRK kinases inhibitors
WO2023078401A1 (en) Compounds as protein kinase inhibitors
TWI736578B (en) Certain protein kinase inhibitors
WO2021170076A1 (en) Compounds as cdk2/4/6 inhibitors
AU2021268845A1 (en) Compounds as Bcl-2 inhibitors
WO2021180107A1 (en) Compounds useful as kinase inhibitors
EP3856743A1 (en) Substituted imidazo [1, 2-a] pyridine and [1, 2, 4] triazolo [1, 5-a] pyridine compounds as ret kinase inhibitors
AU2017262155B2 (en) Certain protein kinase inhibitors
WO2023078398A1 (en) Compounds as bcl-2 inhibitors
AU2017280412A1 (en) Substituted pyrrolo (2, 3-D) pyridazin-4-ones and pyrazolo (3, 4-D) pyridazin-4-ones as protein kinase inhibitors
WO2020063659A1 (en) Substituted [1, 2, 4] triazolo [1, 5-a] pyridine compounds as ret kinase inhibitors
WO2021047584A1 (en) SUBSTITUTED (2-AZABICYCLO [3.1.0] HEXAN-2-YL) PYRAZOLO [1, 5-a] PYRIMIDINE AND IMIDAZO [1, 2-b] PYRIDAZINE COMPOUNDS AS TRK KINASES INHIBITORS
RU2781618C2 (en) Substituted (2-azabicyclo[3.1.0]hexane-2-yl)pyrazolo[1.5-a]pyrimidine and imidazo[1.2-b]pyridazine compounds as trk kinase inhibitors
WO2024032755A1 (en) Compounds as bcl-2 inhibitors
WO2021233227A1 (en) Compounds as protein kinase inhibitors
WO2020063860A1 (en) Naphthyridinone and pyridopyrimidinone compounds useful as kinases inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862662

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20862662

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20862662

Country of ref document: EP

Kind code of ref document: A1