WO2021047415A1 - 壳体及其制备方法和电子设备、焊接组合物及其应用 - Google Patents

壳体及其制备方法和电子设备、焊接组合物及其应用 Download PDF

Info

Publication number
WO2021047415A1
WO2021047415A1 PCT/CN2020/112750 CN2020112750W WO2021047415A1 WO 2021047415 A1 WO2021047415 A1 WO 2021047415A1 CN 2020112750 W CN2020112750 W CN 2020112750W WO 2021047415 A1 WO2021047415 A1 WO 2021047415A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
ceramic substrate
lens
connecting body
composition
Prior art date
Application number
PCT/CN2020/112750
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021047415A1 publication Critical patent/WO2021047415A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux

Definitions

  • the present invention relates to the technical field of electronic equipment, in particular to a housing, a preparation method thereof, electronic equipment, a welding composition and applications thereof.
  • ceramic mobile phones or smart wearable devices mainly use glue (dispensing or back glue) to bond the lens to the ceramic substrate.
  • glue is susceptible to aging and is susceptible to water erosion.
  • Some studies have used glass solder to connect the lens and the ceramic substrate by welding to avoid the problem of easy aging and corrosion of the glue.
  • the existing glass solder has poor wettability to the lens, resulting in poor bonding strength between the lens and the ceramic substrate, which is not conducive to the long-term use of the connected product.
  • a shell including:
  • a connector for fixedly connecting the ceramic substrate and the lens the chemical composition of the connector includes Al 2 O 3 , SiO 2 , La 2 O 3 and ZrO 2 , the Al 2 O 3 , the SiO 2
  • the mass ratio of the La 2 O 3 and the ZrO 2 is (20-50): (10-40): (5-20): (1-10).
  • a method for preparing a shell includes the following steps:
  • a connecting body is provided between the ceramic substrate and the lens to fix the ceramic substrate and the lens to obtain a shell.
  • the chemical composition of the connecting body includes Al 2 O 3 , SiO 2 , La 2 O 3 and ZrO 2 , the mass ratio of the Al 2 O 3 , the SiO 2 , the La 2 O 3 and the ZrO 2 is (20-50): (10-40): (5-20): (1 ⁇ 10).
  • An electronic device including:
  • the display module is connected to the housing and is enclosed with the housing to form a accommodating cavity
  • the circuit board is arranged in the accommodating cavity.
  • a welding composition includes a first component, and the first component in parts by weight includes:
  • a shell including:
  • a ceramic substrate, the ceramic substrate is provided with a receiving hole for receiving light;
  • the lens is arranged in the receiving hole
  • the connecting body is arranged between the ceramic substrate and the lens and fixedly connects the lens to the ceramic substrate.
  • the chemical composition of the connecting body includes Al 2 O 3 , SiO 2 , La 2 O 3 And ZrO 2 , the mass ratio of the Al 2 O 3 , the SiO 2 , the La 2 O 3 and the ZrO 2 is (20-50): (10-40): (5-20): ( 1 ⁇ 10).
  • An electronic device including:
  • the display module is arranged opposite to the housing, and the position of the display module is relatively fixed to the position of the housing;
  • the camera is arranged between the housing and the display module, and the lens covers at least part of the camera.
  • FIG. 1 is a schematic diagram of the structure of an electronic device according to an embodiment
  • FIG. 2 is a schematic diagram of the structure of a ceramic substrate, a connector and a lens in the electronic device shown in FIG. 1;
  • Fig. 3 is a partial cross-sectional view of the ceramic substrate, connector and lens shown in Fig. 2 along the line II-II.
  • an electronic device 10 includes a housing 100, a display module 200, and a circuit board (not shown).
  • the display module 200 is connected to the housing 100.
  • the display module 200 can display patterns.
  • the display module 200 and the casing 100 are jointly enclosed to form an accommodating cavity (not shown).
  • the circuit board control circuit can control the normal operation of the electronic device 10.
  • the circuit board is arranged in the accommodating cavity which is collectively enclosed.
  • the circuit board is electrically connected to the display module 200. Further, the circuit board is a main board.
  • the electronic device 10 is various devices that can obtain data from the outside and process the data, or various devices that have a built-in battery and can obtain current from the outside to charge the battery.
  • the electronic device 10 may be, for example, a mobile phone, a tablet computer, a computing device, or an information display device.
  • the electronic device 10 is a mobile phone.
  • the housing 100 is the back cover of the mobile phone.
  • the housing 100 includes a ceramic substrate 110, a lens 120 and a connecting body 130.
  • the connecting body 130 fixedly connects the ceramic substrate 110 and the lens 120.
  • the chemical composition of the linker 130 includes Al 2 O 3 , SiO 2 , La 2 O 3 and ZrO 2 .
  • the mass ratio of Al 2 O 3 , SiO 2 , La 2 O 3 and ZrO 2 is (20-50): (10-40): (5-20): (1-10).
  • the ceramic substrate 110 and the lens 120 are fixedly connected by the connecting body 130, and the chemical composition ratio of the connecting body 130 is reasonable, so that the connecting body 130 has a high wettability for the lens 120, so that the ceramic substrate 110 and the lens 120
  • the bonding strength of the lens 120 is relatively high. Tests have verified that the bonding strength of the ceramic substrate 110 and the lens 120 in the housing 100 is 16 MPa to 46 MPa.
  • the ceramic substrate 110 is a zirconia ceramic substrate.
  • the wettability of the zirconia ceramic substrate and the connecting body 130 is relatively high, which is beneficial to improve the bonding strength of the ceramic substrate 110 and the lens 120.
  • the ceramic substrate 110 is not limited to the aforementioned substrates, and may also be other ceramic substrates in the art, for example, it may be an alumina ceramic substrate.
  • the ceramic substrate 110 has ceramic holes (not shown).
  • the connecting body 130 is partially received in the ceramic hole of the ceramic substrate 110.
  • the bonding strength of the ceramic substrate 110 and the connecting body 130 can be increased, so as to increase the bonding strength of the ceramic substrate 110 and the lens 120.
  • the porosity (porosity) of the ceramic substrate 110 is 1% to 5%. That is, there are a plurality of ceramic pores in the ceramic substrate 110.
  • the porosity of the ceramic pores is 1% to 5%.
  • the connecting body 130 can be accommodated in the ceramic pores of the ceramic substrate 110 to enhance the bonding strength of the ceramic substrate 110 and the lens 120.
  • the lens 120 is a glass lens or a sapphire lens. It should be noted that the lens 120 is not limited to the above-mentioned lens, and may also be other commonly used lenses in the art. In the illustrated embodiment, the lens 120 is a lens of a mobile phone camera.
  • Al 2 O 3 can make the connecting body 130 have good mechanical strength, chemical stability and thermal stability, and improve the bonding strength of the connecting body 130 and the lens 120.
  • SiO 2 and Al 2 O 3 together form the "skeleton" of the connecting body 130, so that the welded body 400 has good mechanical strength, chemical stability and thermal stability.
  • the mass ratio of Al 2 O 3 and SiO 2 is 0.8:1 to 1.2:1. Such an arrangement can prevent deformation or cracking of the housing 100 due to the mismatch of the thermal expansion coefficients of the connecting body 130, the ceramic substrate 110 and the lens 120 during the forming process.
  • La 2 O 3 can improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 to La 2 O 3 is (25-35): (15-20). This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the ratio of the total mass of Al 2 O 3 and SiO 2 to the mass of La 2 O 3 is 3:1 to 4.5:1. This arrangement is beneficial to improve the wettability of the connecting body 130 and the lens 120, and is beneficial to improving the wettability of the connecting body 130 and the ceramic substrate 110.
  • ZrO 2 can improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 and ZrO 2 is (25-35): (2-5). This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the chemical composition of the connector 130 further includes at least one of Y 2 O 3 , TiO 2 , MgO, ZnO, BaO, and CaO.
  • the wettability of the connector 130 with the ceramic substrate 110 and the lens 120 can be improved, and the ceramic substrate 110 and the lens 120 can be strengthened. Bond strength.
  • Y 2 O 3 can improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 and Y 2 O 3 is (20-50): (0.01-10). This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. Further, the mass ratio of Al 2 O 3 and Y 2 O 3 is (25 to 35): (5 to 7). This arrangement is beneficial to increase the hardness of the connecting body 130 and increase the bonding strength of the lens 120 and the ceramic substrate 110.
  • TiO 2 can improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 and TiO 2 is (20-50): (0.01-10). This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. Further, the mass ratio of Al 2 O 3 and TiO 2 is (25 to 35): (2 to 5). This arrangement is beneficial to improve the bonding strength of the lens 120 and the ceramic substrate 110.
  • MgO manganesium oxide
  • the mass ratio of Al 2 O 3 and MgO is (20-50): (0.01-10). This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. Further, in the chemical composition of the linker 130, the mass ratio of Al 2 O 3 and MgO is (25-35): (2-5).
  • ZnO zinc oxide
  • the mass ratio of Al 2 O 3 and ZnO is (20-50): (0.01-10). This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 and ZnO is (25-35): (2-5).
  • BaO can help improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 and BaO is (20-50): (0.01-10). This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 and BaO is (25-35): (2-5).
  • CaO calcium oxide
  • the mass ratio of Al 2 O 3 and CaO is (20-50): (0.01-10). This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 and CaO is (25-35): (2-5).
  • the sum of the mass percentages of Y 2 O 3 , TiO 2 , MgO, ZnO, BaO, and CaO is greater than or equal to 15%. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. Further, the sum of the mass percentages of Y 2 O 3 , TiO 2 , MgO, ZnO, BaO and CaO is less than or equal to 25%.
  • the mass ratio of Al 2 O 3 , SiO 2 , La 2 O 3 , ZrO 2 , Y 2 O 3 , TiO 2 , MgO, ZnO, BaO and CaO is (25 ⁇ 35):(30 ⁇ 35):(15 ⁇ 20):(2 ⁇ 5):(5 ⁇ 7):(2 ⁇ 5):(2 ⁇ 5):(2 ⁇ 5):(2 ⁇ 5): (2 ⁇ 5).
  • This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass ratio of Al 2 O 3 , SiO 2 , La 2 O 3 , ZrO 2 , Y 2 O 3 , TiO 2 , MgO, ZnO, BaO and CaO is 27:31: 17:5:6:2:3:2:5:2.
  • the chemical composition of the connecting body 130 includes 20%-50% Al 2 O 3 , 10%-40% SiO 2 , 5%-20% La 2 O 3 , 1% by mass percentage. % ⁇ 10% ZrO 2 , 0% ⁇ 10% Y 2 O 3 , 0% ⁇ 10% TiO 2 , 0% ⁇ 10% MgO, 0% ⁇ 10% ZnO, 0% ⁇ 10% BaO and 0%-10% CaO. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the mass percentage of Al 2 O 3 is 25% to 35%. Such an arrangement is beneficial to increase the hardness and strength of the connecting body 130, and to improve the bonding strength of the connecting body 130 and the lens 120. In some of the embodiments, in the chemical composition of the connector 130, the mass percentage of Al 2 O 3 is 20%, 25%, 27%, 30%, 35%, 40%, 45%, or 50%.
  • the mass percentage of SiO 2 in the chemical composition of the connecting body 130, is 30% to 35%. This arrangement improves the bonding strength of the lens 120 and the ceramic substrate 110. In some embodiments, in the chemical composition of the connector 130, the mass percentage of SiO 2 is 10%, 15%, 20%, 25%, 30%, 32%, 35%, or 40%.
  • the mass percentage of La 2 O 3 is 15%-20%. This arrangement improves the bonding strength of the lens 120 and the ceramic substrate 110. In some embodiments, in the chemical composition of the linker 130, the mass percentage of La 2 O 3 is 15%, 16%, 17%, 18%, 19%, or 20%.
  • the mass percentage of ZrO 2 in the chemical composition of the linker 130, is 2% to 5%. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. In some of the embodiments, in the chemical composition of the linker 130, the mass percentage of ZrO 2 is 0.01%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% Or 10%.
  • the mass percentage of Y 2 O 3 in the chemical composition of the linker 130, is 5% to 7%. This arrangement is beneficial to increase the hardness of the connecting body 130 and increase the bonding strength of the lens 120 and the ceramic substrate 110. In some embodiments, in the chemical composition of the linker 130, the mass percentage of Y 2 O 3 is 0.01%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the mass percentage of TiO 2 in the chemical composition of the connecting body 130, is 2% to 5%. This arrangement is beneficial to improve the bonding strength of the lens 120 and the ceramic substrate 110. In some of the embodiments, in the chemical composition of the connector 130, the mass percentage of TiO 2 is 0.01%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% Or 10%.
  • the mass percentage of MgO in the chemical composition of the linker 130, is 2% to 5%. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. In some embodiments, in the chemical composition of the linker 130, the mass percentage of MgO is 0.01%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the mass percentage of ZnO in the chemical composition of the connector 130, is 2% to 5%. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. In some embodiments, in the chemical composition of the linker 130, the mass percentage of ZnO is 0.01%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the mass percentage of BaO in the chemical composition of the linker 130, is 2% to 5%. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. In some embodiments, in the chemical composition of the linker 130, the mass percentage of BaO is 0.01%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the mass percentage of CaO in the chemical composition of the linker 130, is 2% to 5%. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110. In some embodiments, in the chemical composition of the linker 130, the mass percentage of CaO is 0.01%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the chemical composition of the connector 130 includes 25% to 35% Al 2 O 3 , 30% to 35% SiO 2 , 15% to 20% La 2 O 3 , 2% by mass percentage. % ⁇ 5% ZrO 2 , 5% ⁇ 7% Y 2 O 3 , 2% ⁇ 5% TiO 2 , 2% ⁇ 5% MgO, 2% ⁇ 5% ZnO, 2% ⁇ 5% BaO and 2% to 5% CaO. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • the chemical composition of the connecting body 130 includes 27% Al 2 O 3 , 31% SiO 2 , 17% La 2 O 3 , 5% ZrO 2 , and 6% Y 2 in terms of mass percentage.
  • O 3 2% TiO 2 , 3% MgO, 2% ZnO, 5% BaO, and 2% CaO. This arrangement is beneficial to improve the bonding strength between the lens 120 and the ceramic substrate 110.
  • D The distance from the side of the ceramic substrate 110 close to the connecting body 130 to the side of the lens 120 close to the connecting body 130 is defined as D.
  • D is 0.1 mm to 0.2 mm.
  • the ceramic substrate 110 has a receiving hole 112.
  • the lens 120 is received in the receiving hole 112 and is spaced from the ceramic substrate 110.
  • the connecting body 130 is ring-shaped.
  • the connecting body 130 is located between the ceramic substrate 110 and the lens 120 and is arranged around the lens 120.
  • the connecting body 130 seamlessly connects the ceramic substrate 110 and the lens 120.
  • the lens 120 shields an opening of the receiving hole 112.
  • the housing 100 further includes a camera (not shown in the figure).
  • the camera is received in the receiving hole 112.
  • the connecting body 130 By providing the connecting body 130, the lens 120 and the ceramic substrate 110 are seamlessly combined, and the combination is stronger, so as to protect the camera.
  • the electronic device 10 is a mobile phone.
  • the housing 100 is the back cover of the mobile phone.
  • the display module 200 is opposite to and fixed to the ceramic substrate 110, and is jointly enclosed as an accommodating cavity.
  • the lens 120 is received in the receiving hole 112 and is located away from the display module 200.
  • the ceramic substrate 110 and the lens 120 are fixedly connected by the connecting body 130, and the chemical composition ratio of the connecting body 130 is reasonable, so that the connecting body 130 has a high wettability for the lens 120, so that the ceramic substrate 110 and the lens 120
  • the bonding strength of the lens 120 is relatively high. Tests have verified that the bonding strength of the ceramic substrate 110 and the lens 120 in the housing 100 is 16 MPa to 46 MPa.
  • the connecting body 130 of the housing 100 is made of a hard material, and the connecting body 130 is fixedly connected to the ceramic substrate 110 and the lens 120, which can realize the visual seamless combination of the ceramic substrate 110 and the lens 120, which is beneficial to improve the performance of the housing 100. Appearance and feel.
  • the connecting body 130 of the housing 100 is partially contained in the ceramic hole of the ceramic substrate 110, and is interlocked with the ceramic substrate 110 to form a structure with strong bonding strength, and has good wettability with the lens 120. It also has a strong bonding strength, which can better prevent the lens 120 from falling off, and the ceramic substrate 110 and the lens 120 are fixedly connected by the connecting body 130, which has good sealing performance and low risk of water seepage and dust.
  • the preparation method of the housing of one embodiment includes the following steps: a connecting body is arranged between the ceramic substrate and the lens to fix the ceramic substrate and the lens to obtain the housing, and the chemical composition of the connecting body includes Al 2 O 3 , SiO 2.
  • the mass ratio of La 2 O 3 and ZrO 2 , Al 2 O 3 , SiO 2 , La 2 O 3 and ZrO 2 is (20 ⁇ 50): (10 ⁇ 40): (5 ⁇ 20): (1 ⁇ 10).
  • connecting body, the ceramic substrate and the lens are the same as the above-mentioned connecting body 130, the ceramic substrate 110 and the lens 120, respectively.
  • connecting body 130, the ceramic substrate 110 and the lens 120 respectively.
  • the step of providing a connector between the ceramic substrate and the lens includes: placing a soldering composition between the ceramic substrate and the lens, and then sintering to form a connector between the ceramic substrate and the lens .
  • the welding composition includes a first component, and the first component includes 20-50 parts of Al 2 O 3 , 10-40 parts of SiO 2 , 5-20 parts of La 2 O 3 , in parts by weight. 1 part to 10 parts of ZrO 2 .
  • the above-mentioned welding composition uses Al 2 O 3 , SiO 2 , La 2 O 3 and ZrO 2 as the main material, and the distribution ratio of each component is reasonable. It has high wettability to the lens and the ceramic substrate, and can be used for the lens and the ceramic substrate. The bonding of the ceramic substrate makes the lens and the ceramic substrate have a higher bonding strength.
  • the material of the ceramic substrate is zirconia ceramics.
  • the porosity of the ceramic substrate is 1% to 5%. That is, the density of the ceramic substrate is 95% to 99%.
  • the welding composition can enter the pores of the ceramic substrate after being melted during the sintering process, and engage with the ceramic substrate to improve the bonding strength with the ceramic substrate.
  • the lens is a sapphire lens or a glass lens.
  • the above-mentioned soldering composition also has good wettability with sapphire or glass, so that the ceramic substrate and the lens have a strong bonding strength.
  • Al 2 O 3 (ie alumina) is the main material of the welding composition, which makes the welding composition have good mechanical strength, chemical stability and thermal stability, and improves the wettability of the welding composition with the lens under high temperature conditions .
  • the weight parts of Al 2 O 3 are 25 parts to 35 parts. This arrangement is beneficial to improve the hardness and strength of the connecting body formed by the welding composition, and to improve the wettability of the welding composition and the lens.
  • the weight parts of Al 2 O 3 in the first component are 20 parts, 25 parts, 27 parts, 30 parts, 35 parts, 40 parts, 45 parts, or 50 parts.
  • SiO 2 (that is, silicon dioxide) is the main material of the welding composition, and together with Al 2 O 3 form the "skeleton" of the welding composition, so that the welding composition has good mechanical strength, chemical stability and thermal stability, and The welding composition has a higher melting temperature and a lower coefficient of thermal expansion.
  • the weight parts of SiO 2 are 30 parts to 35 parts. This arrangement is beneficial to improve the mechanical strength, chemical stability and thermal stability of the welding composition.
  • the weight parts of SiO 2 in the first component are 10 parts, 15 parts, 20 parts, 25 parts, 30 parts, 32 parts, 35 parts, or 40 parts.
  • the mass ratio of Al 2 O 3 and SiO 2 is 0.8:1 to 1.2:1.
  • This setting makes the welding composition have a higher melting temperature, and makes the welding composition have a lower coefficient of thermal expansion that matches the lens and the ceramic substrate, so as to prevent the welding composition and the lens from cooling down after welding.
  • the thermal expansion coefficient is not matched or the thermal expansion coefficient of the welding composition and the ceramic substrate are not matched, which causes deformation or cracking of the ceramic substrate or the lens.
  • La 2 O 3 (namely lanthanum oxide) is the main material of the welding composition, which improves the wettability of the welding composition with the lens and ceramic substrate. Further, in the first component, the parts by weight of La 2 O 3 are 15-20 parts. This arrangement improves the wettability of the soldering composition with the lens and ceramic substrate. In some of the embodiments, the weight parts of La 2 O 3 in the first component are 15 parts, 16 parts, 17 parts, 18 parts, 19 parts, or 20 parts.
  • the ratio of the total mass of Al 2 O 3 and SiO 2 to the mass of La 2 O 3 is 3:1 to 4.5:1. This setting is beneficial to adjust the melting temperature of the soldering composition and improve the wettability of the soldering composition with the lens and ceramic substrate.
  • ZrO 2 (Zirconium Dioxide) can improve the bonding strength of the welding composition and the ceramic substrate.
  • the weight parts of ZrO 2 are 2 parts to 5 parts. This arrangement is beneficial to improve the bonding strength of the welding composition and the ceramic substrate.
  • the weight parts of ZrO 2 are 0.01 part, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts, 9 parts or 10 servings.
  • the first component also includes 10 parts by weight or less Y 2 O 3 , 10 parts by weight or less TiO 2 , 10 parts by weight or less MgO, 10 parts by weight or less ZnO, At least one of BaO with 10 parts by weight or less and CaO with 10 parts by weight or less.
  • Y 2 O 3 (yttrium oxide) can adjust the softening temperature of the first component and the viscosity of the first component after melting, so as to improve the bonding strength of the lens and the ceramic substrate.
  • the weight parts of Y 2 O 3 are 5 parts to 7 parts. This arrangement is beneficial to improve the bonding strength of the lens and the ceramic substrate.
  • the weight parts of Y 2 O 3 are 0.01 part, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts, 9 parts. Servings or 10 servings.
  • TiO 2 can adjust the softening temperature of the first component, and can adjust the viscosity of the first component after melting, so as to improve the bonding strength of the lens and the ceramic substrate.
  • the weight parts of TiO 2 are 2 parts to 5 parts. This arrangement is beneficial to improve the bonding strength of the lens and the ceramic substrate.
  • the weight parts of TiO 2 in the first component are 0.01 part, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts, 9 parts, or 10 servings.
  • MgO manganesium oxide
  • the weight parts of MgO are 2 parts to 5 parts. This arrangement is beneficial to improve the bonding strength of the lens and the ceramic substrate.
  • the weight parts of MgO in the first component are 0.01 part, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts, 9 parts or 10 parts by weight. Copies.
  • ZnO zinc oxide
  • the weight parts of ZnO are 2 parts to 5 parts. This arrangement is beneficial to improve the bonding strength of the lens and the ceramic substrate.
  • the weight parts of ZnO in the first component are 0.01 part, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts, 9 parts or 10 parts by weight. Copies.
  • BaO barium oxide
  • the weight parts of BaO are 2 parts to 5 parts. This arrangement is beneficial to improve the bonding strength of the lens and the ceramic substrate.
  • the weight parts of BaO in the first component are 0.01 part, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts, 9 parts or 10 parts by weight. Copies.
  • CaO calcium oxide
  • the weight parts of CaO is 2 parts to 5 parts. This arrangement is beneficial to improve the bonding strength of the lens and the ceramic substrate.
  • the weight parts of CaO in the first component are 0.01 part, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, 8 parts, 9 parts or 10 parts by weight. Copies.
  • the sum of the mass percentages of Y 2 O 3 , TiO 2 , MgO, ZnO, BaO, and CaO is greater than or equal to 15%. This setting is beneficial to ensure that the welding composition is fully melted within the range of 1100 to 1300 °C, and has a lower viscosity after melting, which is beneficial to improve the wettability of the molten welding composition with the lens and ceramic substrate, and to ensure that the lens and the ceramic substrate The bonding strength of the ceramic substrate. Further, the sum of the mass percentages of Y 2 O 3 , TiO 2 , MgO, ZnO, BaO and CaO is less than or equal to 25%.
  • the first component includes 25 parts to 35 parts of Al 2 O 3 , 30 parts to 35 parts of SiO 2 , 15 parts to 20 parts of La 2 O 3 , and 2 parts by weight. ⁇ 5 parts of ZrO 2 , 5 parts to 7 parts of Y 2 O 3 , 2 parts to 5 parts of TiO 2 , 2 parts to 5 parts of MgO, 2 parts to 5 parts of ZnO, 2 parts to 5 parts of BaO And 2 to 5 parts of CaO.
  • This arrangement is beneficial to improve the wettability of the soldering composition with the lens and the ceramic substrate, and is beneficial to improve the bonding strength of the lens and the ceramic substrate.
  • the first component includes 27 parts of Al 2 O 3 , 31 parts of SiO 2 , 17 parts of La 2 O 3 , 5 parts of ZrO 2 , 6 parts of Y 2 O 3 , 2 parts by weight.
  • the welding composition further includes a second component, and the second component includes 60% to 80% of solvent, 10% to 20% of adhesive and 10% to 20% of Plasticizer.
  • the second component includes 60% to 80% of solvent, 10% to 20% of adhesive and 10% to 20% of Plasticizer.
  • the solvent can dissolve the binder and the plasticizer, so that the soldering composition is in a slurry form, and can adjust the slurry-like soldering composition to a desired viscosity.
  • the mass percentage of the solvent is 65%-75%. Such an arrangement is beneficial to improve the dispersibility of the welding composition.
  • the mass percentage of the solvent in the second component is 60%, 65%, 70%, 75%, or 80%.
  • the solvent is terpineol. This arrangement can ensure that the binder and plasticizer can be fully dissolved in the solvent. It should be noted that the solvent is not limited to terpineol, and may also be other solvents that can be applied to the welding composition, for example, ethanol, acetone, toluene or xylene.
  • the binder has a dispersing effect, can promote the uniform dispersion of the components in the soldering composition, and can improve the bonding strength between the film layer formed by the dried soldering composition and the soldering base material.
  • the method of drying the soldering composition is baking.
  • the dried soldering composition is after baking and before sintering.
  • the mass percentage of the binder is 13%-17%. In some of the embodiments, the mass percentage of the binder in the second component is 10%, 13%, 15%, 17%, or 20%.
  • the adhesive includes at least one of epoxy resin and acrylic resin.
  • epoxy resin includes bisphenol A type epoxy resin.
  • the acrylic resin includes at least one of ethyl methacrylate, cyclohexyl methacrylate, and n-propyl methacrylate.
  • the plasticizer can improve the tensile strength, toughness, and extensibility of the film formed by the dried welding composition, and prevent the film from warping and cracking during the drying process. Further, in the second component, the mass percentage of the plasticizer is 13%-17%. In some embodiments, the mass percentage of the plasticizer in the second component is 10%, 13%, 15%, 17%, or 20%.
  • the plasticizer is dimethyl phthalate. This arrangement is beneficial to improve the tensile strength, toughness, and extensibility of the film formed by the dried welding composition, and prevents warping and cracking of the film during the drying process. It should be noted that the plasticizer is not limited to dimethyl phthalate, and may also be other plasticizers that can be applied to the welding composition, for example, polyethylene glycol.
  • the welding composition includes 60% to 70% of the first component and 30% to 40% of the second component in terms of mass percentage.
  • the soldering composition provided in this manner is easy to disperse, can improve the wettability of the soldering composition with the lens and the ceramic substrate, and can improve the bonding strength of the lens and the ceramic substrate.
  • the first component and the second component are mixed to obtain a welding composition. Furthermore, the step of mixing the first component and the second component to obtain the welding composition includes: mixing and grinding the first component and the second component to obtain the welding composition. Specifically, the D50 (median diameter or median diameter) of the welding composition is less than 10 ⁇ m.
  • the grinding method is ball milling or sand milling.
  • the second component can be omitted.
  • the soldering composition still has good wettability to the lens and can be used for joining the lens and the ceramic substrate.
  • the materials of the first component are mixed to obtain a welding composition.
  • the step of mixing the substances of the first component to obtain the welding composition includes: melting the first component to obtain a molten liquid; adding cold water to the molten liquid for quenching, and then grinding to obtain the welding composition.
  • the D50 (median diameter or median diameter) of the welding composition is less than 10 ⁇ m.
  • the grinding method is ball milling or sand milling.
  • the step of melting the first component includes: mixing the first component uniformly, and then melting it in a furnace crucible.
  • the ceramic substrate has a receiving hole.
  • the lens is accommodated in the receiving hole and separated from the ceramic substrate, and the welding composition is installed in the gap between the ceramic substrate and the lens.
  • the receiving hole is a through hole.
  • the receiving hole is not limited to a through hole, and may also be a stepped hole.
  • the accommodating hole is a stepped hole, the lens is accommodated in the accommodating hole and can be located on the steps of the accommodating hole.
  • the welding composition may be provided between the hole wall of the receiving hole and the lens, or between the step of the receiving hole and the lens.
  • the lens is not limited to being accommodated in the receiving hole of the ceramic substrate and then joined to the ceramic substrate.
  • the structure after the ceramic substrate and the lens are joined can be arranged as needed.
  • the ceramic substrate and the lens can be arranged opposite to each other.
  • a welding composition is set between the ceramic substrate and the lens, and then welded to join the ceramic substrate and the lens; at this time, the ceramic substrate and the lens clamp the welding composition.
  • the step of disposing a soldering composition between the ceramic substrate and the lens and sintering to join the ceramic substrate and the lens includes: disposing the soldering composition between the ceramic substrate and the lens, and at the first temperature It is sintered for 1h to 2h, and then sintered at a second temperature to join the ceramic substrate and the lens, wherein the first temperature is 1100°C to 1300°C, and the second temperature is higher than the first temperature.
  • the welding composition can be melted at 1100°C to 1300°C to be a liquid, penetrate into the pores of the ceramic substrate under capillary action or gravity, and engage with the ceramic substrate, and the welding composition can be combined with the lens , So that the ceramic substrate and the lens can be joined stably; after sintering at 1100°C ⁇ 1300°C for 1h ⁇ 2h, sintering at a second temperature higher than the first temperature can further sinter and shrink the ceramic substrate and improve the ceramic substrate
  • the density of the ceramic substrate is above 99% (that is, the porosity is below 1%) to further improve the strength of the ceramic substrate.
  • the second temperature is 1350°C to 1500°C.
  • the sintering time at the second temperature is 1h-2h. Furthermore, the soldering composition is filled between the ceramic substrate and the lens.
  • the method when the soldering composition includes the second component, before the step of disposing the soldering composition between the ceramic substrate and the lens, the method further includes the following step: in parts by weight, 60% to 70% The first component and 30%-40% of the second component are mixed to obtain a welding composition.
  • This arrangement enables the welding composition to be more evenly distributed, so as to improve the bonding strength after welding.
  • the method further includes the following step: drying the welding composition. This setting is beneficial to ensure the sintering effect. Further, the step of drying the welding composition includes: drying at 100° C. to 120° C. for 10 min to 40 min.
  • the width of the connecting body formed between the sintered ceramic substrate and the sintered lens is 0.1 mm to 0.2 mm. This arrangement can not only make the ceramic substrate and the lens be joined stably, but also avoid the excessively wide welding seam that affects the appearance and feel difference of the product obtained after sintering, so that the surface of the product obtained after sintering is smooth, beautiful and has no difference in feel. .
  • the method before the step of disposing the welding composition between the ceramic substrate and the lens, the method further includes the following step: pre-sintering the ceramic body at a third temperature to obtain a ceramic substrate, and the third temperature is low. ⁇ At the first temperature.
  • This arrangement can obtain a ceramic substrate with better strength, and can obtain a ceramic substrate with a porosity of 1% to 5%, so that the welding composition can penetrate into the voids of the ceramic substrate during the welding process to improve The bonding strength of the soldering composition and the ceramic substrate.
  • the ceramic body is a zirconia body.
  • the third temperature is 1300°C to 1400°C.
  • the pre-sintering time is 1h-2h. It should be noted that the ceramic substrate is not limited to be obtained by pre-sintering the zirconia green body at the third temperature, and a commercially available ceramic substrate with a porosity of 1% to 5% may also be used.
  • the step of pre-sintering the zirconia body at the third temperature it further includes a step of preparing the zirconia body.
  • the step of preparing the zirconia body includes: preparing the zirconia ceramic powder into a material to be molded, and forming the zirconia body to obtain the zirconia body.
  • the molding method is dry press molding, cast molding or injection molding.
  • the material to be molded is ceramic granulated powder, cast slurry or injection molding feed.
  • the material to be molded is ceramic granulated powder.
  • the molding method is dry press molding.
  • the step of making the zirconia ceramic powder into a material to be molded and forming a zirconia green body includes: making the zirconia ceramic powder into a ceramic granulated powder and dry pressing and forming to obtain the zirconia green body.
  • the step of making the zirconia ceramic powder into ceramic granulated powder includes: adding water and organic matter to the zirconia ceramic powder, grinding, drying, and granulating to obtain ceramic granulated powder.
  • the organic matter is a substance commonly used in the field to prepare ceramic granulated powder, and may be, for example, a defoamer, a plasticizer, an adhesive, or an organic solvent.
  • the drying method is spray drying. It should be noted that the drying method is not limited to spray drying, and may also be other drying methods, such as drying.
  • the material to be molded is a cast slurry.
  • the molding method is cast molding.
  • the step of making the zirconia ceramic powder into a material to be molded and molding to obtain a zirconia green body includes: making the zirconia ceramic powder into a casting slurry, and casting and molding to obtain a zirconia green body.
  • the step of preparing the zirconia ceramic powder into a casting slurry includes: adding organic matter to the zirconia ceramic powder and grinding to obtain a ceramic casting slurry.
  • the organic substance is a substance commonly used in the field to prepare casting slurry, and may be, for example, a defoamer, a plasticizer, an adhesive, or an organic solvent.
  • the material to be molded is an injection molding feed material.
  • the molding method is injection molding.
  • the steps of making the zirconia ceramic powder into a material to be molded and forming to obtain a zirconia green body include: making the zirconia ceramic powder into an injection molding feed, and injection molding to obtain a zirconia green body.
  • the step of making the zirconia ceramic powder into injection molding feedstock includes: adding organic matter to the zirconia ceramic powder, banburying, and granulating to obtain the injection molding feedstock.
  • the organic matter is a substance commonly used in the art for preparing injection molding feed, for example, it can be a binder, a plasticizer, a lubricant, a dispersant, and the like.
  • the zirconia ceramic powder is made into a material to be molded, and after the step of molding, the method further includes the following steps: sequentially isostatic pressing and degreasing treatment on the green body obtained by molding to obtain a zirconia body.
  • the step of degreasing treatment includes: performing degreasing treatment on the green body after isostatic pressing at 400°C to 900°C. It should be noted that by selecting suitable zirconia ceramic powder, a ceramic substrate with white, black, or colorful colors can be obtained.
  • the zirconia body in the step of pre-sintering the zirconia body at 1300°C to 1400°C is not limited to those prepared by the above-mentioned method, and zirconia ceramic bodies prepared by other methods may also be used. Commercially available zirconia bodies can be used. As long as it is ensured that the zirconia body can be pre-sintered at 1300°C to 1400°C to obtain a ceramic substrate with a porosity of 1% to 5%.
  • the method before the step of disposing the welding composition between the ceramic substrate and the lens, the method further includes the following step: rough processing the ceramic substrate.
  • rough processing the ceramic substrate so that the ceramic substrate has a 2D, 2.5D, or 3D shape, it is also possible to make the ceramic substrate have holes.
  • rough machining includes flat grinding, laser cutting, CNC machining and other operations.
  • the ceramic base material is rough processed so that the ceramic base material forms a receiving hole. The receiving hole is used for receiving the lens. It should be noted that if the ceramic substrate used already meets the requirements of having accommodating holes, etc., the step of rough machining the ceramic substrate is omitted.
  • the chemical composition ratio of the connecting body is reasonable, the wettability of the lens is good, and the bonding strength to the lens is good, which is beneficial to improve the bonding strength of the lens and the ceramic substrate.
  • the welding composition has a reasonable distribution ratio of each component, good wettability to the lens, and good bonding strength to the lens, which is beneficial to the combination of the lens and the ceramic substrate.
  • the connecting body formed by the welding composition after welding is a hard material, and the welding connection is located between the ceramic substrate and the lens, which can realize the visual seamless combination of the ceramic substrate and the lens, which is beneficial to Improve the appearance and feel of the shell.
  • the welding composition has good wettability with the ceramic substrate, and can penetrate into the pores of the ceramic substrate under capillary action and gravity during the welding process, and engage with the ceramic substrate. It forms a structure with strong bonding strength, and has good wettability with the lens, and also has a strong bonding strength with the lens, which can better prevent the lens from falling off, and the use of the above-mentioned welding composition for welding has good sealing performance. The risk of water seepage and ash is small.
  • the zirconia ceramic powder is a commercially available white zirconia ceramic powder.
  • the lens is a commercially available sapphire lens.
  • the epoxy resin is a bisphenol A type epoxy resin.
  • the acrylic resin is ethyl methacrylate.
  • the formula of the welding composition is shown in Table 1; wherein, the content of each component in the first component is parts by weight, and the unit is part; the content of each component in the second component is percentage by mass, the unit is%.
  • the process parameters of the joining process of the ceramic substrate and the lens are shown in Table 2.
  • the preparation process of the shell is as follows:
  • the zirconia ceramic powder is made into a material to be molded, molded, and then subjected to isostatic pressing and degreasing treatment in sequence to obtain a zirconia body.
  • the zirconia body is pre-sintered at T1°C for t1 to obtain a ceramic substrate. Rough processing is performed on the ceramic base material so that the ceramic base material forms a receiving hole.
  • the receiving hole is a through hole.
  • the lens is contained in the receiving hole, and is separated from the ceramic substrate.
  • the ceramic substrate partially shields an opening of the receiving hole.
  • Fill the gap between the ceramic substrate and the lens with the soldering composition then dry at T2°C for t2min, then sinter at T3°C for t3h, and then sinter at T4°C for t4h to obtain a shell.
  • the welding composition forms a connected body.
  • the distance between the ceramic substrate and the lens in the housing is Lmm.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 8 are the same.
  • the formula of the welding composition of this embodiment is approximately the same as that of Example 8, except that the weight part of Al 2 O 3 is 58 parts, and the weight part of SiO 2 is 0 parts.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 8 are the same.
  • the formula of the welding composition of this embodiment is approximately the same as that of Example 8, except that the weight part of Al 2 O 3 is 0 part, and the weight part of SiO 2 is 58 parts.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 8 are the same.
  • the formula of the welding composition of this embodiment is approximately the same as that of Example 8, except that the weight part of Al 2 O 3 is 45 parts, and the weight part of La 2 O 3 is 0 parts.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 8 are the same.
  • the formula of the welding composition of this embodiment is approximately the same as that of Example 8, except that the weight part of Al 2 O 3 is 0 part, and the weight part of La 2 O 3 is 45 parts.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 8 are the same.
  • the welding composition of this embodiment is PM-1000 glass powder produced by Xi'an Xinzheng Electronic Materials Co., Ltd.
  • the welding composition of this example is the same as the welding composition of Example 8.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 8 are approximately the same, except that t4 is 0h.
  • the welding composition of this example is the same as the welding composition of Example 8.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 8 are approximately the same, the difference is that T1 is 1500°C.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 5 are the same.
  • the welding composition of this embodiment is approximately the same as the welding composition of Example 5, except that the weight of Al 2 O 3 is 39 parts and the weight of SiO 2 is 26 parts.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 6 are the same.
  • the welding composition of this embodiment is approximately the same as the welding composition of Example 5, except that the weight part of Al 2 O 3 is 5 parts, and the weight part of SiO 2 is 50 parts.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 5 are the same.
  • the welding composition of this embodiment is approximately the same as that of Example 5, except that the weight of Al 2 O 3 is 38 parts, the weight of SiO 2 is 32 parts, and the weight of La 2 O 3 is The parts by weight are 10 parts.
  • the process parameters of the manufacturing process of the casing of this embodiment and the embodiment 6 are the same.
  • the welding composition of this embodiment is approximately the same as the welding composition of Example 5. The difference is that the weight parts of Al 2 O 3 is 17 parts, the weight parts of SiO 2 is 36 parts, and the weight parts of La 2 O 3 are The parts by weight are 27 parts.
  • a direct pressure air tightness tester (air pressure 20KPa) is used to determine the tightness.
  • the tightness is expressed by the leakage value. The smaller the leakage value, the better the tightness. Specifically: put the sample to be tested into the direct pressure air tightness test In the instrument, the inflation pressure is 20KPa, the pressure is maintained for 5s, and the direct pressure air tightness tester automatically detects the leakage value;
  • Example 14 It can be seen from Table 3 that the commercially available glass solder used in Example 14 is not suitable for joining the lens and the ceramic substrate; the bonding strength of the ceramic substrate and the lens in Examples 1-9 and 15-20 is higher than Example 14 illustrates that the soldering composition of the above embodiment is beneficial to improve the bonding strength of the ceramic substrate and the lens.
  • the bonding strength of the ceramic substrate and the lens of Examples 1 to 3 is higher than that of Example 4, and the sealing performance of the shells of Examples 1 to 3 at the connecting body is better than that of Example 4, indicating that Y 2 O is added 3.
  • At least one of TiO 2 , MgO, ZnO, BaO, and CaO is beneficial to improve the bonding strength of the ceramic substrate and the lens, and is beneficial to improve the sealing performance of the shell at the connecting body.
  • the porosity of the ceramic substrate of the shell in Example 8 is lower than that in Example 5.
  • the bending strength of the ceramic substrate in the shell in Example 8 is better than that in Example 5. It shows that the higher T4 is, the more beneficial it is to reduce the ceramic substrate.
  • the porosity of the ceramic substrate improves the flexural strength of the ceramic substrate.
  • the bonding strength of the ceramic substrate and the lens of Example 5 is better than that of Example 17, and the bonding strength of the ceramic substrate and the lens of Example 6 is better than that of Example 18, indicating that the mass ratio of Al 2 O 3 and SiO 2 is controlled at 0.8:1 to 1.2:1, which is more conducive to improving the bonding strength of the ceramic substrate and the lens.
  • the bonding strength of the ceramic substrate and the lens of Example 5 is better than that of Example 19, and the bonding strength of the ceramic substrate and the lens of Example 3 is better than that of Example 20, indicating that the total mass of Al 2 O 3 and SiO 2 is compared with La
  • the quality ratio of 2 O 3 is controlled at 3:1 to 4.5:1, which is more conducive to improving the bonding strength of the ceramic substrate and the lens.
  • the bonding strength between the ceramic substrate and the lens of Example 9 is better than that of Example 8, indicating that filling the soldering composition between the ceramic substrate and the lens in the form of a slurry is more conducive to improving the bonding strength between the ceramic substrate and the lens.
  • the bonding strength between the ceramic substrate and the lens in Example 8 is better than that in Examples 10-13, indicating that the synergy of Al 2 O 3 , SiO 2 and La 2 O 3 is beneficial to improve the bonding strength between the ceramic substrate and the lens; and the lack of Al Any one of 2 O 3 , SiO 2 and La 2 O 3 will reduce the performance of the welding composition, so that the ceramic substrate and the lens cannot be firmly bonded, resulting in poor airtightness of the housing.
  • the bonding strength of the ceramic substrate and the lens and the bending strength of the ceramic substrate of Example 8 are higher than those of Example 15.
  • the leakage value and porosity of Example 8 are lower than those of Example 15, indicating that the welding composition is at T3°C.
  • the bonding strength and flexural strength of the ceramic substrate and the lens of Example 8 are higher than those of Example 16, indicating that T1 temperature is too high, which will result in low porosity of the ceramic substrate, which is not conducive to the penetration of the soldering composition into the ceramic substrate. As a result, the bonding strength between the ceramic substrate and the lens is poor; and the ceramic substrate is sintered at T4°C for t4h, which causes the strength of the ceramic substrate to decrease due to over-sintering.
  • the ceramic substrate and the lens are fixedly connected by a connector
  • the chemical composition of the connector includes Al 2 O 3 , SiO 2 , La 2 O 3 and ZrO 2 , and Al 2 O 3 , SiO 2.
  • the mass ratio of La 2 O 3 and ZrO 2 is (20 ⁇ 50): (10 ⁇ 40): (5 ⁇ 20): (1 ⁇ 10), which makes the wettability of the connector to the lens higher, so that The bonding strength of the ceramic substrate and the lens is high, so that it can be applied to the preparation of electronic equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

一种壳体(100),包括陶瓷基材(110)、镜片(120)及连接体(130),连接体(130)固定连接陶瓷基材(110)和镜片(120),连接体(130)的化学组成包括A1 2O 3、SiO 2、La2O3和 ZrO2,A12O3、SiO2、La 2O3和 ZrO2的质量比为(20~50):(10~40):(5~20):(1~10)。

Description

壳体及其制备方法和电子设备、焊接组合物及其应用 技术领域
本本发明涉及电子设备技术领域,特别是涉及一种壳体及其制备方法和电子设备、焊接组合物及其应用。
背景技术
一般地,陶瓷手机或智能穿戴设备主要通过胶水(点胶或背胶)将镜片粘接在陶瓷基材上。然而,胶水易老化、易受水分侵蚀。一些研究通过玻璃焊料并以焊接的方式将镜片和陶瓷基材连接,以避免胶水易老化和腐蚀的问题。然而,现有的玻璃焊料对镜片的润湿性较差,导致镜片和陶瓷基材的结合强度较差,不利于连接后的产品能够长期使用。
发明内容
基于此,有必要提供一种壳体及其制备方法和电子设备、焊接组合物及其应用。
一种壳体,包括:
陶瓷基材;
镜片;及
连接体,固定连接所述陶瓷基材和所述镜片,所述连接体的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2,所述Al 2O 3、所述SiO 2、所述La 2O 3和所述ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10)。
一种壳体的制备方法,包括如下步骤:
在陶瓷基材和镜片之间设置连接体,以固定连接所述陶瓷基材和所述镜片,得到壳体,所述连接体的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2,所述Al 2O 3、所述SiO 2、所述La 2O 3和所述ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10)。
一种电子设备,包括:
上述壳体;
显示模组,与所述壳体连接,并与所述壳体共同围设成容置腔;及
电路板,设置在所述容置腔内。
一种焊接组合物,包括第一组分,所述第一组分以重量份数计包括:
Figure PCTCN2020112750-appb-000001
一种壳体,包括:
陶瓷基材,所述陶瓷基材开设有用于入光的收容孔;
镜片,设于所述收容孔;及
连接体,设于所述陶瓷基材和所述镜片之间且使所述镜片固定连接于所述陶瓷基材,所述连接体的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2,所述Al 2O 3、所述SiO 2、所述La 2O 3和所述ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10)。
一种电子设备,包括:
以上所述的壳体;
显示模组,与所述壳体相对设置,且所述显示模组的位置与所述壳体的位置相对固定;及
摄像头,设于所述壳体和所述显示模组之间,所述镜片覆盖所述摄像头的至少部分。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施方式的电子设备的结构示意图;
图2为图1所示的电子设备中陶瓷基材、连接体和镜片的结构示意图;
图3为图2所示的陶瓷基材、连接体和镜片沿II-II线的局部剖视图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
如图1所示,一实施方式的电子设备10包括壳体100、显示模组200和电路板(图未示)。显示模组200与壳体100连接。电子设备10正常运行时,显示模组200能够显示图案。显示模组200与壳体100共同围设成容置腔(图未示)。电路板控制电路能够控制电子设备10正常运行。电路板设置在共同围设成容置腔内。电路板与显示模组200电连接。进一步地,电路板为主板。
进一步地,电子设备10为各种能够从外部获取数据并对该数据进行处理的设备,或者,各种内置有电池,并能够从外部获取电流对该电池进行充电的设备。电子设备10例如可以为手机、平板电脑、计算设备或信息显示设备等。在图示实施方式中,电子设备10为手机。壳体100为手机后盖。
请结合参阅图2~3,壳体100包括陶瓷基材110、镜片120和连接体130。连接体130固定连接陶瓷基材110和镜片120。连接体130的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2。 Al 2O 3、SiO 2、La 2O 3和ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10)。
上述壳体100中,采用连接体130固定连接陶瓷基材110和镜片120,连接体130的化学组成配比合理,使得连接体130对镜片120的润湿性较高,使得陶瓷基材110和镜片120的结合强度较高。经试验验证,上述壳体100中陶瓷基材110和镜片120的结合强度为16MPa~46MPa。
在其中一个实施例中,陶瓷基材110为氧化锆陶瓷基材。氧化锆陶瓷基材与连接体130的润湿性较高,有利于提高陶瓷基材110与镜片120的结合强度。需要说明的是,陶瓷基材110不限于为上述指出的基材,也可以为本领域中其他的陶瓷基材,例如可以为氧化铝陶瓷基材。
在其中一个实施例中,陶瓷基材110具有陶瓷孔(图未示)。连接体130部分收容于陶瓷基材110的陶瓷孔中。通过使连接体130部分收容于陶瓷基材110的陶瓷孔中,能够提高陶瓷基材110与连接体130的结合强度,以提高陶瓷基材110和镜片120的结合强度。进一步地,陶瓷基材110的气孔率(孔隙率)为1%~5%。即陶瓷基材110的陶瓷孔有多个。陶瓷孔的气孔率为1%~5%。通过使陶瓷基材110的气孔率为1%~5%,使得连接体130能够更多地收容于陶瓷基材110的陶瓷孔中,以增强陶瓷基材110和镜片120的结合强度。
在其中一个实施例中,镜片120为玻璃镜片或者蓝宝石镜片。需要说明的是,镜片120不限于为上述指出的镜片,也可以为本领域中其他常用的镜片。在图示实施例中,镜片120为手机摄像头的镜片。
Al 2O 3能够使连接体130具有良好的机械强度、化学稳定性和热稳定性,并且提高连接体130与镜片120的结合强度。
SiO 2与Al 2O 3共同形成连接体130的“骨架”,使焊接体400具有良好的机械强度、化学稳定性和热稳定性。
在其中一个实施例中,Al 2O 3和SiO 2的质量比为0.8:1~1.2:1。此种设置能够防止连接体130在形成过程中由于连接体130与陶瓷基材110、镜片120的热膨胀系数不匹配而引起壳体100的变形或开裂。
La 2O 3能够提高镜片120与陶瓷基材110的结合强度。在其中一个实施例中,连接体130的化学组成中,Al 2O 3和La 2O 3的质量比为(25~35):(15~20)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。
在其中一个实施例中,Al 2O 3与SiO 2的总质量与La 2O 3的质量之比为3:1~4.5:1。此设置有利于提高连接体130与镜片120的润湿性,并且有利于提高连接体130与陶瓷基材110的润湿性。
ZrO 2能够提高镜片120与陶瓷基材110的结合强度。在其中一个实施例中,连接体130的化学组成中,Al 2O 3和ZrO 2的质量比为(25~35):(2~5)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。
在其中一个实施例中,连接体130的化学组成还包括Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO中的至少一种。通过添加Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO中的至少一种,能够提高连接体130与陶瓷基材110、镜片120的润湿性,增强陶瓷基材110和镜片120 的结合强度。
Y 2O 3能够提高镜片120与陶瓷基材110的结合强度。在其中一个实施例中,连接体130的化学组成中,Al 2O 3和Y 2O 3的质量比为(20~50):(0.01~10)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。进一步地,Al 2O 3和Y 2O 3的质量比为(25~35):(5~7)。此种设置有利于提高连接体130的硬度,并且提高镜片120与陶瓷基材110的结合强度。
TiO 2能够提高镜片120与陶瓷基材110的结合强度。在其中一个实施例中,连接体130的化学组成中,Al 2O 3和TiO 2的质量比为(20~50):(0.01~10)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。进一步地,Al 2O 3和TiO 2的质量比为(25~35):(2~5)。此种设置有利于有提高镜片120与陶瓷基材110的结合强度。
MgO(氧化镁)能够提高镜片120与陶瓷基材110的结合强度。在其中一个实施例中,连接体130的化学组成中,Al 2O 3和MgO的质量比为(20~50):(0.01~10)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。进一步地,连接体130的化学组成中,Al 2O 3和MgO的质量比为(25~35):(2~5)。
ZnO(氧化锌)能够提高镜片120与陶瓷基材110的结合强度。在其中一个实施例中,连接体130的化学组成中,Al 2O 3和ZnO的质量比为(20~50):(0.01~10)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。进一步地,连接体130的化学组成中,Al 2O 3和ZnO的质量比为(25~35):(2~5)。
BaO能够有利于提高镜片120与陶瓷基材110的结合强度。在其中一个实施例中,连接体130的化学组成中,Al 2O 3和BaO的质量比为(20~50):(0.01~10)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。进一步地,连接体130的化学组成中,Al 2O 3和BaO的质量比为(25~35):(2~5)。
CaO(氧化钙)能够提高镜片120与陶瓷基材110的结合强度。在其中一个实施例中,连接体130的化学组成中,Al 2O 3和CaO的质量比为(20~50):(0.01~10)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。进一步地,连接体130的化学组成中,Al 2O 3和CaO的质量比为(25~35):(2~5)。
在其中一个实施例中,Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO的质量百分比之和大于或者等于15%。此种设置有利于提高镜片120与陶瓷基材110的结合强度。进一步地,Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO的质量百分比之和小于或者等于25%。
在其中一个实施例中,连接体130的化学组成中,Al 2O 3、SiO 2、La 2O 3、ZrO 2、Y 2O 3、TiO 2、MgO、ZnO、BaO和CaO的质量比为(25~35):(30~35):(15~20):(2~5):(5~7):(2~5):(2~5):(2~5):(2~5):(2~5)。此种设置有利于提高镜片120与陶瓷基材110的结合强度。进一步地,连接体130的化学组成中,Al 2O 3、SiO 2、La 2O 3、ZrO 2、Y 2O 3、TiO 2、MgO、ZnO、BaO和CaO的质量比为27:31:17:5:6:2:3:2:5:2。
在其中一个实施例中,连接体130的化学组成以质量百分比计包括20%~50%的Al 2O 3、10%~40%的SiO 2、5%~20%的La 2O 3、1%~10%的ZrO 2、0%~10%的Y 2O 3、0%~10%的TiO 2、0%~10%的MgO、0%~10%的ZnO、0%~10%的BaO及0%~10%的CaO。此种设置有利于提高镜片120与陶瓷基材110的结合强度。
在其中一个实施例中,连接体130的化学组成中,Al 2O 3的质量百分比为25%~35%。此种设置有利于提高连接体130的硬度和强度,并且提高连接体130与镜片120的结合强度。在其中一些实施例中,连接体130的化学组成中,Al 2O 3的质量百分比为20%、25%、27%、30%、35%、40%、45%或者50%。
在其中一个实施例中,连接体130的化学组成中,SiO 2的质量百分比为30%~35%。此种设置提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,SiO 2的质量百分比为10%、15%、20%、25%、30%、32%、35%或者40%。
在其中一个实施例中,连接体130的化学组成中,La 2O 3的质量百分比为15%~20%。此种设置提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,La 2O 3的质量百分比为15%、16%、17%、18%、19%或者20%。
在其中一个实施例中,连接体130的化学组成中,ZrO 2的质量百分比为2%~5%。此种设置有利于提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,ZrO 2的质量百分比为0.01%、1%、2%、3%、4%、5%、6%、7%、8%、9%或者10%。
在其中一个实施例中,连接体130的化学组成中,Y 2O 3的质量百分比为5%~7%。此种设置有利于提高连接体130的硬度,并且提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,Y 2O 3的质量百分比为0.01%、1%、2%、3%、4%、5%、6%、7%、8%、9%或者10%。
在其中一个实施例中,连接体130的化学组成中,TiO 2的质量百分比为2%~5%。此种设置有利于有提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,TiO 2的质量百分比为0.01%、1%、2%、3%、4%、5%、6%、7%、8%、9%或者10%。
在其中一个实施例中,连接体130的化学组成中,MgO的质量百分比为2%~5%。此种设置有利于提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,MgO的质量百分比为0.01%、1%、2%、3%、4%、5%、6%、7%、8%、9%或者10%。
在其中一个实施例中,连接体130的化学组成中,ZnO的质量百分比为2%~5%。此种设置有利于提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,ZnO的质量百分比为0.01%、1%、2%、3%、4%、5%、6%、7%、8%、9%或者10%。
在其中一个实施例中,连接体130的化学组成中,BaO的质量百分比为2%~5%。此种设置有利于提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,BaO的质量百分比为0.01%、1%、2%、3%、4%、5%、6%、7%、8%、9%或者10%。
在其中一个实施例中,连接体130的化学组成中,CaO的质量百分比为2%~5%。此种设置有利于提高镜片120与陶瓷基材110的结合强度。在其中一些实施例中,连接体130的化学组成中,CaO的质量百分比为0.01%、1%、2%、3%、4%、5%、6%、7%、8%、 9%或者10%。
在其中一个实施例中,连接体130的化学组成以质量百分比计包括25%~35%的Al 2O 3、30%~35%的SiO 2、15%~20%的La 2O 3、2%~5%的ZrO 2、5%~7%的Y 2O 3、2%~5%的TiO 2、2%~5%的MgO、2%~5%的ZnO、2%~5%的BaO及2%~5%的CaO。此种设置有利于提高镜片120与陶瓷基材110的结合强度。
在一个具体示例中,连接体130的化学组成以质量百分比计包括27%的Al 2O 3、31%的SiO 2、17%的La 2O 3、5%的ZrO 2、6%的Y 2O 3、2%的TiO 2、3%的MgO、2%的ZnO、5%的BaO及2%的CaO。此种设置有利于提高镜片120与陶瓷基材110的结合强度。
定义陶瓷基材110的靠近连接体130的一侧到镜片120的靠近连接体130的一侧的距离为D。在其中一个实施例中,D为0.1mm~0.2mm。
在一个具体示例中,陶瓷基材110具有收容孔112。镜片120收容于收容孔112中,且与陶瓷基材110间隔。连接体130为环状。连接体130位于陶瓷基材110与镜片120之间,且环绕镜片120设置。连接体130无缝连接陶瓷基材110和镜片120。镜片120遮蔽收容孔112的一个开口。
进一步地,壳体100还包括摄像头(图未示)。摄像头收容于收容孔112中。通过设置连接体130,以使镜片120与陶瓷基材110无缝结合,且结合的更加牢固,以保护摄像头。
在图示实施例中,电子设备10为手机。壳体100为手机后盖。显示模组200与陶瓷基材110相对且固接,共同围设成容置腔。镜片120收容于收容孔112中,且远离显示模组200设置。
上述壳体100中,采用连接体130固定连接陶瓷基材110和镜片120,连接体130的化学组成配比合理,使得连接体130对镜片120的润湿性较高,使得陶瓷基材110和镜片120的结合强度较高。经试验验证,上述壳体100中陶瓷基材110和镜片120的结合强度为16MPa~46MPa。
一般地,采用胶水将镜片粘接在陶瓷基材上。然而,胶水质软,而陶瓷基材和镜片质硬,胶水处于陶瓷基材和镜片的间隙中,破坏壳体的连续性,并且用胶水将陶瓷基材和镜片贴合,陶瓷基材和镜片难以平齐,影响壳体的外观和手感。上述壳体100的连接体130为硬质材料,连接体130固定连接陶瓷基材110和镜片120,可以实现陶瓷基材110和镜片120在视觉上的无缝结合,有利于提高壳体100的外观效果和手感。
进一步地,胶水易老化、易受水分侵蚀,使用一段时间后结合强度下降,容易出现镜片120脱离、渗水和进灰的问题,不利于长期使用。上述壳体100的连接体130部分收容于陶瓷基材110的陶瓷孔中,与陶瓷基材110相互咬合,形成结合强度较强的结构,并且与镜片120具有良好的润湿性,与镜片120也具有较强的结合强度,能够较好地避免镜片120脱落,并且,通过连接体130固定连接陶瓷基材110和镜片120,密封性好,渗水、进灰风险小。
一实施方式的壳体的制备方法包括如下步骤:在陶瓷基材和镜片之间设置连接体,以固定连接陶瓷基材和镜片,得到壳体,连接体的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2, Al 2O 3、SiO 2、La 2O 3和ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10)。
需要说明的是,连接体、陶瓷基材和镜片分别与上述连接体130、陶瓷基材110和镜片120相同,具体详见上文,此处不再赘述。
在其中一个实施例中,在陶瓷基材和镜片之间设置连接体的步骤包括:在陶瓷基材和镜片之间设置焊接组合物,然后烧结,以在陶瓷基材和镜片之间形成连接体。焊接组合物包括第一组分,第一组分以重量份数计包括20份~50份的Al 2O 3、10份~40份的SiO 2、5份~20份的La 2O 3、1份~10份的ZrO 2
上述焊接组合物以Al 2O 3、SiO 2、La 2O 3和ZrO 2为主体材料,各组分配比合理,对镜片和陶瓷基材均具有较高的润湿性,能够用于镜片和陶瓷基材的接合,使得镜片和陶瓷基材具有较高的结合强度。
在其中一个实施例中,陶瓷基材的材料为氧化锆陶瓷。陶瓷基材的气孔率为1%~5%。即陶瓷基材的致密度为95%~99%。此种设置,使得上述焊接组合物在烧结过程中熔化后能够进入陶瓷基材的孔隙中,而与陶瓷基材相互咬合,提高与陶瓷基材的结合强度。镜片为蓝宝石镜片或者玻璃镜片。上述焊接组合物与蓝宝石或者玻璃也具有较好的润湿性,使得陶瓷基材和镜片具有较强的结合强度。
Al 2O 3(即氧化铝)为焊接组合物的主体材料,使得焊接组合物具有良好的机械强度、化学稳定性和热稳定性,并且提高焊接组合物在高温条件下与镜片的润湿性。进一步地,第一组分中,Al 2O 3的重量份数为25份~35份。此种设置有利于提高焊接组合物形成的连接体的硬度和强度,并且提高焊接组合物与镜片的润湿性。在其中一些实施例中,第一组分中,Al 2O 3的重量份数为20份、25份、27份、30份、35份、40份、45份或者50份。
SiO 2(即二氧化硅)为焊接组合物的主体材料,与Al 2O 3共同形成焊接组合物的“骨架”,使焊接组合物具有良好的机械强度、化学稳定性和热稳定性,并且使得焊接组合物具有较高的熔化温度和较低的热膨胀系数。进一步地,第一组分中,SiO 2的重量份数为30份~35份。此种设置有利于提高焊接组合物的机械强度、化学稳定性和热稳定性。在其中一些实施例中,第一组分中,SiO 2的重量份数为10份、15份、20份、25份、30份、32份、35份或者40份。
在其中一个实施例中,Al 2O 3和SiO 2的质量比为0.8:1~1.2:1。此设置使得焊接组合物具有较高的熔化温度,并且使得焊接组合物具有较低的、且与镜片和陶瓷基材匹配的热膨胀性系数,以防止焊接后降温过程中由于焊接组合物与镜片的热膨胀系数不匹配或者焊接组合物与陶瓷基材的热膨胀系数不匹配而引起陶瓷基材或者镜片的变形或开裂。
La 2O 3(即氧化镧)为焊接组合物的主体材料,提高焊接组合物与镜片、陶瓷基材的润湿性。进一步地,第一组分中,La 2O 3的重量份数为15份~20份。此种设置提高焊接组合物与镜片、陶瓷基材的润湿性。在其中一些实施例中,第一组分中,La 2O 3的重量份数为15份、16份、17份、18份、19份或者20份。
在其中一个实施例中,Al 2O 3与SiO 2的总质量与La 2O 3的质量之比为3:1~4.5:1。此设置有利于调整焊接组合物的熔化温度,提高焊接组合物与镜片、陶瓷基材的润湿性。
ZrO 2(二氧化锆)能够提高焊接组合物与陶瓷基材的结合强度。进一步地,第一组分 中,ZrO 2的重量份数为2份~5份。此种设置有利于提高焊接组合物与陶瓷基材的结合强度。在其中一些实施例中,第一组分中,ZrO 2的重量份数为0.01份、1份、2份、3份、4份、5份、6份、7份、8份、9份或者10份。
第一组分还包括重量份数在10份以下的Y 2O 3、重量份数在10份以下的TiO 2、重量份数在10份以下的MgO、重量份数在10份以下的ZnO、重量份数在10份以下的BaO及重量份数在10份以下的CaO中的至少一种。通过添加Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO中的至少一种,能够提高连接体与陶瓷基材、镜片的润湿性,增强陶瓷基材和镜片的结合强度。
Y 2O 3(氧化钇)能够调节第一组分的软化温度,并能够调节第一组分熔化后的黏度,以提高镜片和陶瓷基材的结合强度。进一步地,第一组分中,Y 2O 3的重量份数为5份~7份。此种设置有利于提高镜片和陶瓷基材的结合强度。在其中一些实施例中,第一组分中,Y 2O 3的重量份数为0.01份、1份、2份、3份、4份、5份、6份、7份、8份、9份或者10份。
TiO 2(氧化钛)能够调节第一组分的软化温度,并能够调节第一组分熔化后的黏度,以提高镜片和陶瓷基材的结合强度。进一步地,第一组分中,TiO 2的重量份数为2份~5份。此种设置有利于提高镜片和陶瓷基材的结合强度。在其中一些实施例中,第一组分中,TiO 2的重量份数为0.01份、1份、2份、3份、4份、5份、6份、7份、8份、9份或者10份。
MgO(氧化镁)能够调节第一组分的软化温度,并能够调节第一组分熔化后的黏度,以提高镜片和陶瓷基材的结合强度。进一步地,第一组分中,MgO的重量份数为2份~5份。此种设置有利于提高镜片和陶瓷基材的结合强度。在其中一些实施例中,第一组分中,MgO的重量份数为0.01份、1份、2份、3份、4份、5份、6份、7份、8份、9份或者10份。
ZnO(氧化锌)能够调节第一组分的软化温度,并能够调节第一组分熔化后的黏度,以提高镜片和陶瓷基材的结合强度。进一步地,第一组分中,ZnO的重量份数为2份~5份。此种设置有利于提高镜片和陶瓷基材的结合强度。在其中一些实施例中,第一组分中,ZnO的重量份数为0.01份、1份、2份、3份、4份、5份、6份、7份、8份、9份或者10份。
BaO(氧化钡)能够调节第一组分的软化温度,并能够调节第一组分熔化后的黏度,以提高镜片和陶瓷基材的结合强度。进一步地,第一组分中,BaO的重量份数为2份~5份。此种设置有利于提高镜片和陶瓷基材的结合强度。在其中一些实施例中,第一组分中,BaO的重量份数为0.01份、1份、2份、3份、4份、5份、6份、7份、8份、9份或者10份。
CaO(氧化钙)能够调节第一组分的软化温度,并能够调节第一组分熔化后的黏度,以提高镜片和陶瓷基材的结合强度。进一步地,第一组分中,CaO的重量份数为2份~5份。此种设置有利于提高镜片和陶瓷基材的结合强度。在其中一些实施例中,第一组分中,CaO的重量份数为0.01份、1份、2份、3份、4份、5份、6份、7份、8份、9份或者 10份。
在其中一个实施例中,Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO的质量百分比之和大于或者等于15%。此设置有利于保证焊接组合物在1100~1300℃范围内充分熔化,且熔化后具有较低的黏度,有利于提高熔融态的焊接组合物与镜片和陶瓷基材的润湿性,保证镜片和陶瓷基材的结合强度。进一步地,Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO的质量百分比之和小于或者等于25%。
在其中一个实施例中,第一组分以重量份数计包括25份~35份的Al 2O 3、30份~35份的SiO 2、15份~20份的La 2O 3、2份~5份的ZrO 2、5份~7份的Y 2O 3、2份~5份的TiO 2、2份~5份的MgO、2份~5份的ZnO、2份~5份的BaO及2份~5份的CaO。此种设置有利于提高焊接组合物与镜片、陶瓷基材的润湿性,并且有利于提高镜片和陶瓷基材的结合强度。进一步地,第一组分以重量份数计包括27份的Al 2O 3、31份的SiO 2、17份的La 2O 3、5份的ZrO 2、6份的Y 2O 3、2份的TiO 2、3份的MgO、2份的ZnO、5份的BaO及2份的CaO。
在其中一个实施例中,焊接组合物还包括第二组分,第二组分以质量百分比计包括60%~80%的溶剂、10%~20%的粘接剂和10%~20%的增塑剂。此种设置能够调节焊接组合物的分散性能,使得焊接组合物形成的连接体更加均一。
溶剂能够溶解粘结剂和塑化剂,使得焊接组合物呈浆料状,并能够调整浆料状的焊接组合物至所需的黏度。进一步地,第二组分中,溶剂的质量百分比为65%~75%。此种设置有利于提高焊接组合物的分散性。在其中一些实施例中,第二组分中,溶剂的质量百分比为60%、65%、70%、75%或者80%。
在其中一个实施例中,溶剂为松油醇。此种设置能够保证粘结剂和塑化剂能够充分溶于溶剂中。需要说明的是,溶剂不限于为松油醇,还可以为其他能够应用于焊接组合物的溶剂,例如可以为乙醇、丙酮、甲苯或者二甲苯。
粘结剂具有分散作用,能够促进焊接组合物中各组分的均匀分散,并且能够提高干燥后的焊接组合物形成的膜层与焊接基材的结合强度。其中,干燥焊接组合物的方式为烘烤。干燥后的焊接组合物即烘烤之后且烧结之前。进一步地,第二组分中,粘结剂的质量百分比为13%~17%。在其中一些实施例中,第二组分中,粘结剂的质量百分比为10%、13%、15%、17%或者20%。
在其中一个实施例中,粘结剂包括环氧树脂及丙烯酸树脂中的至少一种。此种设置能够促进焊接组合物中各组分的均匀分散,有利于提高干燥后的焊接组合物形成的膜层与焊接基材的结合强度。其中,环氧树脂包括双酚A型环氧树脂。丙烯酸树脂包括甲基丙烯酸乙酯、甲基丙烯酸环己酯及甲基丙烯酸正丙酯中的至少一种。
增塑剂能够提高干燥后的焊接组合物形成的膜层的张力强度、强韧性、延伸性,防止干燥过程中膜层翘曲开裂。进一步地,第二组分中,增塑剂的质量百分比为13%~17%。在其中一些实施例中,第二组分中,增塑剂的质量百分比为10%、13%、15%、17%或者20%。
在其中一个实施例中,增塑剂为邻苯二甲酸二甲酯。此种设置有利于提高干燥后的焊 接组合物形成的膜层的张力强度、强韧性、延伸性,防止干燥过程中膜层翘曲开裂。需要说明的是,增塑剂不限于为邻苯二甲酸二甲酯,还可以为其他能够应用于焊接组合物的增塑剂,例如可以为聚乙二醇。
在其中一个实施例中,焊接组合物以质量百分比计包括60%~70%的第一组分和30%~40%的第二组分。此种设置的焊接组合物易于分散,能够提高焊接组合物与镜片、陶瓷基材的润湿性,并且能够提高镜片和陶瓷基材的结合强度。
进一步地,将第一组分和第二组分混合,得到焊接组合物。更进一步地,将第一组分和第二组分混合,得到焊接组合物的步骤包括:将第一组分和第二组分混合并研磨,得到焊接组合物。具体地,焊接组合物的D50(中位径或中值粒径)小于10μm。研磨的方式为球磨或者砂磨。
需要说明的是,第二组分可以省略。此时,焊接组合物对镜片的润湿性仍然较好,能够用于镜片和陶瓷基材的接合。第二组分可以省略时,将第一组分的各物质混合,得到焊接组合物。进一步地,将第一组分的各物质混合,得到焊接组合物的步骤包括:将第一组份熔化,得到熔液;向熔液中加入冷水淬裂,然后研磨,得到焊接组合物。具体地,焊接组合物的D50(中位径或中值粒径)小于10μm。研磨的方式为球磨或者砂磨。将第一组份熔化的步骤包括:将第一组分混匀,然后在熔炉坩埚中熔化。
在其中一个实施例中,陶瓷基材具有收容孔。在陶瓷基材和镜片之间设置焊接组合物的步骤中,将镜片收容于收容孔,且与陶瓷基材间隔,在陶瓷基材和镜片的间隙中设置焊接组合物。在一个具体示例中,收容孔为直通孔。需要说明的是,收容孔不限于为直通孔,也可以为阶梯孔。收容孔为阶梯孔时,镜片收容于收容孔中,并能够位于收容孔的台阶上。此时,焊接组合物可以设置在收容孔的孔壁与镜片之间,也可以设置在收容孔的台阶与镜片之间。
需要说明的是,镜片不限于收容于陶瓷基材的收容孔后再与陶瓷基材接合,可以根据需要设置陶瓷基材和镜片接合后的结构,例如:可以将陶瓷基材与镜片相对设置,并在陶瓷基材和镜片之间设置焊接组合物,然后焊接,以接合陶瓷基材和镜片;此时,陶瓷基材和镜片夹持焊接组合物。
在其中一个实施例中,在陶瓷基材和镜片之间设置焊接组合物,烧结,以接合陶瓷基材和镜片的步骤包括:在陶瓷基材和镜片之间设置焊接组合物,在第一温度下烧结1h~2h,然后在第二温度下烧结,以接合陶瓷基材和镜片,其中,第一温度为1100℃~1300℃,第二温度高于第一温度。
此种设置中,焊接组合物能够在1100℃~1300℃下熔化呈液态,在毛细管作用或者重力作用下渗入陶瓷基材的孔隙中,与陶瓷基材相互咬合,并且焊接组合物能够与镜片结合,以使陶瓷基材和镜片稳定地接合;在1100℃~1300℃下烧结1h~2h后,在高于第一温度的第二温度下烧结能够使陶瓷基材进一步烧结收缩,提高陶瓷基材的致密度至99%以上(即气孔率在1%以下),以进一步提高陶瓷基材的强度。
进一步地,第二温度为1350℃~1500℃。在第二温度下烧结的时间为1h~2h。更进一步地,焊接组合物填充于陶瓷基材和镜片之间。
在其中一个实施例中,焊接组合物包括第二组分时,在陶瓷基材和镜片之间设置焊接组合物的步骤之前,还包括如下步骤:按照重量份数计,将60%~70%的第一组分和30%~40%的第二组分混合,得到焊接组合物。此种设置使得焊接组合物能够分布的更加均匀,以提高焊接后的结合强度。进一步地,在陶瓷基材和镜片之间设置焊接组合物的步骤之后,烧结的步骤之前,还包括如下步骤:对焊接组合物进行干燥。此种设置有利于保证烧结的效果。进一步地,对焊接组合物进行干燥的步骤包括:在100℃~120℃下干燥10min~40min。
在其中一个实施例中,烧结后的陶瓷基材和烧结后的镜片之间形成的连接体的宽度为0.1mm~0.2mm。此种设置既能够使陶瓷基材和镜片稳定接合,又能够避免焊缝过宽而影响烧结后得到的产品的外观效果和手感差异,使得烧结后得到的产品的表面平整、美观且无手感差异。
在其中一个实施例中,在陶瓷基材和镜片之间设置焊接组合物的步骤之前,还包括如下步骤:将陶瓷坯体在第三温度下进行预烧结,得到陶瓷基材,第三温度低于第一温度。此种设置能够得到具有较好强度的陶瓷基材,并且能够得到气孔率为1%~5%的陶瓷基材,以利于焊接组合物在焊接过程中能够渗入陶瓷基材的空隙中,以提高焊接组合物与陶瓷基材的结合强度。进一步地,陶瓷坯体为氧化锆坯体。第三温度为1300℃~1400℃。更进一步地,预烧结的时间为1h~2h。需要说明的是,陶瓷基材不限通过将氧化锆坯体在第三温度下进行预烧结得到,也可以采用市售的气孔率为1%~5%的陶瓷基材。
进一步地,将氧化锆坯体在第三温度下进行预烧结的步骤之前,还包括制备氧化锆坯体的步骤。具体地,制备氧化锆坯体的步骤包括:将氧化锆陶瓷粉制成待成型料,成型,得到氧化锆坯体。其中,成型的方式为干压成型、流延成型或者注塑成型等。待成型料为陶瓷造粒粉、流延浆料或者注塑喂料。
在其中一个实施例中,待成型料为陶瓷造粒粉。成型的方式为干压成型。进一步地,将氧化锆陶瓷粉制成待成型料,成型,得到氧化锆坯体的步骤包括:将氧化锆陶瓷粉制成陶瓷造粒粉,干压成型,得到氧化锆坯体。更进一步地,将氧化锆陶瓷粉制成陶瓷造粒粉的步骤包括:向氧化锆陶瓷粉中添加水和有机物,研磨,干燥,造粒,得到陶瓷造粒粉。其中,有机物为本领域中常用于制备陶瓷造粒粉的物质,例如可以为消泡剂、增塑剂、粘接剂或有机溶剂等。干燥的方式为喷雾干燥。需要说明的是,干燥的方式不限于为喷雾干燥,也可以为其他的干燥方式,例如可以为烘干。
在其中一个实施例中,待成型料为流延浆料。成型的方式为流延成型。进一步地,将氧化锆陶瓷粉制成待成型料,成型,得到氧化锆坯体的步骤包括:将氧化锆陶瓷粉制成流延浆料,流延成型,得到氧化锆坯体。更进一步地,将氧化锆陶瓷粉制成流延浆料的步骤包括:向氧化锆陶瓷粉中添加有机物,研磨,得到陶瓷流延浆料。其中,有机物为本领域中常用于制备流延浆料的物质,例如可以为消泡剂、增塑剂、粘接剂或有机溶剂等。
在其中一个实施例中,待成型料为注塑喂料。成型的方式为注塑成型。进一步地,将氧化锆陶瓷粉制成待成型料,成型,得到氧化锆坯体的步骤包括:将氧化锆陶瓷粉制成注塑喂料,注塑成型,得到氧化锆坯体。更进一步地,将氧化锆陶瓷粉制成注塑喂料的步骤 包括:向氧化锆陶瓷粉中添加有机物,密炼,造粒,得到注塑喂料。其中,有机物为本领域中常用于制备注塑喂料的物质,例如可以为粘结剂、增塑剂、润滑剂、分散剂等。
在其中一个实施例中,将氧化锆陶瓷粉制成待成型料,成型的步骤之后,还包括如下步骤:将成型得到的生坯依次进行等静压和脱脂处理,得到氧化锆坯体。其中,脱脂处理的步骤包括:将等静压后的生坯在400℃~900℃进行脱脂处理。需要说明的是,可以通过选择合适的氧化锆陶瓷粉,以得到具有白色、黑色或者彩色等颜色的陶瓷基材。
需要说明的是,将氧化锆坯体在1300℃~1400℃下进行预烧结的步骤中的氧化锆坯体不限于通过上述方法制备得到,也可以采用其他方法制备的氧化锆陶瓷坯体,还可以采用市售的氧化锆坯体。只要保证氧化锆坯体能够在1300℃~1400℃下进行预烧结得到气孔率为1%~5%的陶瓷基材即可。
在其中一个实施例中,在陶瓷基材和镜片之间设置焊接组合物的步骤之前,还包括如下步骤:对陶瓷基材进行粗加工。通过对陶瓷基材进行粗加工,以使陶瓷基材具有2D、2.5D或3D形状,也能够使陶瓷基材带有孔。其中,粗加工包括平磨、激光切割、CNC加工等操作。进一步地,对陶瓷基材进行粗加工,以使陶瓷基材形成收容孔。收容孔用于收容镜片。需要说明的是,若使用的陶瓷基材已满足具有收容孔等需求时,对陶瓷基材进行粗加工的步骤省略。
上述壳体的制备方法中,连接体的化学组成配比合理,对镜片的润湿性较好,对镜片的结合强度较好,有利于提高镜片和陶瓷基材的结合强度。
上述壳体的制备方法中,焊接组合物中,各组分配比合理,对镜片的润湿性较好,对镜片的结合强度较好,有利于镜片和陶瓷基材的结合。
上述壳体的制备方法中,焊接组合物焊接后形成的连接体为硬质材料,焊连接位于陶瓷基材和镜片之间,可以实现陶瓷基材和镜片在视觉上的无缝结合,有利于提高壳体的外观效果和手感。
上述壳体的制备方法中,焊接组合物与陶瓷基材的润湿性较好,在焊接的过程中能够在毛细管作用和重力作用下渗入陶瓷基材的孔隙中,与陶瓷基材相互咬合,形成结合强度较强的结构,并且与镜片具有良好的润湿性,与镜片也具有较强的结合强度,能够较好地避免镜片脱落,并且,使用上述焊接组合物进行焊接,密封性好,渗水、进灰风险小。
以下为具体实施例部分:
如无特别说明,氧化锆陶瓷粉为市售的、白色的氧化锆陶瓷粉。镜片为市售的蓝宝石镜片。环氧树脂为双酚A型环氧树脂。丙烯酸树脂为甲基丙烯酸乙酯。
实施例1~9
按照表1~2中的参数制备壳体。其中,焊接组合物的配方如表1所示;其中,第一组分中各组分的含量均为重量份数,单位为份;第二组分中各组分的含量均为质量百分比,单位为%。陶瓷基材和镜片的接合过程的工艺参数如表2所示。
具体地,壳体的制备过程如下:
(1)将氧化锆陶瓷粉制成待成型料,成型,依次进行等静压和脱脂处理,得到氧化 锆坯体。将氧化锆坯体在T1℃下预烧结t1,得到陶瓷基材。对陶瓷基材进行粗加工,以使陶瓷基材形成收容孔。收容孔为直通孔。
(2)将镜片收容于收容孔,且与陶瓷基材间隔。陶瓷基材部分遮蔽收容孔的一个开口。在陶瓷基材和镜片的间隙中填充焊接组合物,然后在T2℃下干燥t2min,接着于T3℃下烧结t3h,然后于T4℃下烧结t4h,得到壳体。烧结完成后,焊接组合物形成连接体。并且,壳体中,陶瓷基材和镜片的间距为Lmm。
表1焊接组合物的配方
Figure PCTCN2020112750-appb-000002
表2壳体的制备过程的工艺参数
Figure PCTCN2020112750-appb-000003
Figure PCTCN2020112750-appb-000004
实施例10
本实施例与实施例8的壳体的制备过程的工艺参数相同。本实施例的焊接组合物的配方与实施例8大致相同,不同之处在于,Al 2O 3的重量份数为58份,SiO 2的重量份数为0份。
实施例11
本实施例与实施例8的壳体的制备过程的工艺参数相同。本实施例的焊接组合物的配方与实施例8大致相同,不同之处在于,Al 2O 3的重量份数为0份,SiO 2的重量份数为58份。
实施例12
本实施例与实施例8的壳体的制备过程的工艺参数相同。本实施例的焊接组合物的配方与实施例8大致相同,不同之处在于,Al 2O 3的重量份数为45份,La 2O 3的重量份数为0份。
实施例13
本实施例与实施例8的壳体的制备过程的工艺参数相同。本实施例的焊接组合物的配方与实施例8大致相同,不同之处在于,Al 2O 3的重量份数为0份,La 2O 3的重量份数为45份。
实施例14
本实施例与实施例8的壳体的制备过程的工艺参数相同。本实施例的焊接组合物为西安信征电子材料有限责任公司的PM-1000玻璃粉。
实施例15
本实施例的焊接组合物与实施例8的焊接组合物相同。本实施例与实施例8的壳体的制备过程的工艺参数大致相同,不同之处在于,t4为0h。
实施例16
本实施例的焊接组合物与实施例8的焊接组合物相同。本实施例与实施例8的壳体的制备过程的工艺参数大致相同,不同之处在于,T1为1500℃。
实施例17
本实施例与实施例5的壳体的制备过程的工艺参数相同。本实施例的焊接组合物与实施例5的焊接组合物大致相同,不同之处在于,Al 2O 3的重量份数为39份,SiO 2的重量份数为26份。
实施例18
本实施例与实施例6的壳体的制备过程的工艺参数相同。本实施例的焊接组合物与实施例5的焊接组合物大致相同,不同之处在于,Al 2O 3的重量份数为5份,SiO 2的重量份数为50份。
实施例19
本实施例与实施例5的壳体的制备过程的工艺参数相同。本实施例的焊接组合物与实施例5的焊接组合物大致相同,不同之处在于,Al 2O 3的重量份数为38份,SiO 2的重量份数为32份,La 2O 3的重量份数为10份。
实施例20
本实施例与实施例6的壳体的制备过程的工艺参数相同。本实施例的焊接组合物与实施例5的焊接组合物大致相同,不同之处在于,Al 2O 3的重量份数为17份,SiO 2的重量份数为36份,La 2O 3的重量份数为27份。
测试:
测定实施例1~20的壳体中陶瓷基材与镜片的结合强度、壳体在连接体处的密封性、壳体中陶瓷基材(即制成壳体后陶瓷基材)的气孔率和抗弯强度、陶瓷基材在制备壳体前的气孔率。测定结果详见表3。表3表示的是实施例1~20的壳体中陶瓷基材与镜片的结合强度、壳体在连接体处的密封性、壳体中陶瓷基材的气孔率和抗弯强度、陶瓷基材在制备壳体前的气孔率。表3中,第一气孔率表示的是壳体中陶瓷基材的气孔率,第二气孔率表示的是陶瓷基材在制备壳体前的气孔率。
其中,按照“GB/T 31541-2015精细陶瓷界面拉伸和剪切粘结强度试验方法”,并采用万能试验机测试结合强度(剪切);
采用直压式气密性测试仪(气压20KPa)测定密封性,密封性以泄露值表示,泄露值越小,密封性越好,具体地:将待测样品放入直压式气密性测试仪中,充气压力20KPa,保压5s,直压式气密性测试仪自动检测泄露值;
按照“GB/T 6569-2006精细陶瓷弯曲强度试验方法”并采用万能试验机测定陶瓷基材的抗弯强度(以下简称抗弯强度)。
表3
Figure PCTCN2020112750-appb-000005
Figure PCTCN2020112750-appb-000006
从表3可以看出,实施例14中采用的市售玻璃焊料不适用于镜片和陶瓷基材的接合;实施例1~9和实施例15~20的陶瓷基材与镜片的结合强度高于实施例14,说明上述实施方式的焊接组合物有利于提高陶瓷基材和镜片的结合强度。
其中,实施例1~3的陶瓷基材与镜片的结合强度高于实施例4,并且,实施例1~3的壳体在连接体处的密封性优于实施例4,说明添加Y 2O 3、TiO 2、MgO、ZnO、BaO、CaO中的至少一种,有利于提高陶瓷基材和镜片的结合强度,并且有利于提高壳体在连接体处的密封性。
实施例8中壳体的陶瓷基材的气孔率低于实施例5,实施例8中壳体中陶瓷基材的抗弯强度优于实施例5,说明T4越高越有利于降低陶瓷基材的气孔率,提高陶瓷基材的抗弯强度。
实施例5的陶瓷基材与镜片的结合强度优于实施例17,实施例6的陶瓷基材与镜片的结合强度优于实施例18,说明将Al 2O 3和SiO 2的质量比控制在0.8:1~1.2:1,更有利于提高陶瓷基材与镜片的结合强度。
实施例5的陶瓷基材与镜片的结合强度优于实施例19,实施例3的陶瓷基材与镜片的结合强度优于实施例20,说明将Al 2O 3和SiO 2的总质量与La 2O 3的质量之比控制在3:1~4.5:1,更有利于提高陶瓷基材与镜片的结合强度。
实施例9的陶瓷基材与镜片的结合强度优于实施例8,说明将焊接组合物以浆料形式填入陶瓷基材和镜片之间更有利于提高陶瓷基材与镜片的结合强度。
实施例8的陶瓷基材与镜片的结合强度优于实施例10~13,说明Al 2O 3、SiO 2和La 2O 3的协同有利于提高陶瓷基材与镜片的结合强度;并且缺失Al 2O 3、SiO 2和La 2O 3中的任一 个均会降低焊接组合物的性能,使得陶瓷基材与镜片无法牢固结合,致使壳体的气密性较差。实施例8的陶瓷基材与镜片的结合强度、陶瓷基材的抗弯强度均高于实施例15,实施例8的泄露值和气孔率均低于实施例15,说明焊接组合物在T3℃下烧结t3h之后在T4℃下烧结t4h更有利于陶瓷基材的进一步收缩,提高陶瓷基材的强度、陶瓷基材与镜片的结合强度,保证壳体的密封性。在T3℃下烧结t3h之后未在T4℃下烧结t4h,会导致陶瓷基材无法进一步收缩致密,导致陶瓷基材的强度、陶瓷基材与镜片的结合强度均较低,影响壳体的密封性。
实施例8的陶瓷基材与镜片的结合强度、抗弯强度均高于实施例16,说明T1温度过高,会导致陶瓷基材气孔率较低,不利于焊接组合物渗入陶瓷基材中,致使陶瓷基材与镜片的结合强度差;并且陶瓷基材经过T4℃下烧结t4h,致使陶瓷基材因过烧而强度降低。
综上所述,上述壳体中,采用连接体固定连接陶瓷基材和镜片,连接体的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2,且Al 2O 3、SiO 2、La 2O 3和ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10),使得连接体对镜片的润湿性较高,使得陶瓷基材和镜片的结合强度较高,以能够应用于制备电子设备。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (33)

  1. 一种壳体,包括:
    陶瓷基材;
    镜片;及
    连接体,固定连接所述陶瓷基材和所述镜片,所述连接体的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2,所述Al 2O 3、所述SiO 2、所述La 2O 3和所述ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10)。
  2. 根据权利要求1所述的壳体,其特征在于,所述连接体的化学组成还包括Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO中的至少一种。
  3. 根据权利要求2所述的壳体,其特征在于,所述连接体的化学组成中,所述Al 2O 3和所述Y 2O 3的质量比为(20~50):(0.01~10);
    及/或;所述连接体的化学组成中,所述Al 2O 3和所述TiO 2的质量比为(20~50):(0.01~10);
    及/或;所述连接体的化学组成中,所述Al 2O 3和所述MgO的质量比为(20~50):(0.01~10);
    及/或;所述连接体的化学组成中,所述Al 2O 3和所述ZnO的质量比为(20~50):(0.01~10);
    及/或;所述连接体的化学组成中,所述Al 2O 3和所述BaO的质量比为(20~50):(0.01~10);
    及/或;所述连接体的化学组成中,所述Al 2O 3和所述CaO的质量比为(20~50):(0.01~10)。
  4. 根据权利要求2所述的壳体,其特征在于,所述连接体的化学组成中,所述Al 2O 3、所述SiO 2、所述La 2O 3、所述ZrO 2、所述Y 2O 3、所述TiO 2、所述MgO、所述ZnO、所述BaO和所述CaO的质量比为(25~35):(30~35):(15~20):(2~5):(5~7):(2~5):(2~5):(2~5):(2~5):(2~5)。
  5. 根据权利要求2所述的壳体,其特征在于,所述连接体中,所述Y 2O 3、所述TiO 2、所述MgO、所述ZnO、所述BaO及所述CaO的质量百分比之和大于或者等于15%。
  6. 根据权利要求1所述的壳体,其特征在于,所述连接体中,所述Al 2O 3和所述SiO 2的质量比为0.8:1~1.2:1。
  7. 根据权利要求1所述的壳体,其特征在于,所述连接体中,所述Al 2O 3与所述SiO 2的总质量与所述La 2O 3的质量之比为3:1~4.5:1。
  8. 根据权利要求1所述的壳体,其特征在于,所述陶瓷基材具有陶瓷孔,所述连接体部分收容于所述陶瓷基材的陶瓷孔中。
  9. 根据权利要求8所述的壳体,其特征在于,所述陶瓷基材的气孔率为1%~5%。
  10. 根据权利要求1~9任一项所述的壳体,其特征在于,所述陶瓷基材为氧化锆陶瓷基材,所述镜片为玻璃镜片或者蓝宝石镜片。
  11. 根据权利要求1~9任一项所述的壳体,其特征在于,所述陶瓷基材的靠近所述连 接体的一侧到所述镜片的靠近所述连接体的一侧的距离为0.1mm~0.2mm。
  12. 一种壳体的制备方法,包括如下步骤:
    在陶瓷基材和镜片之间设置连接体,以固定连接所述陶瓷基材和所述镜片,得到壳体,所述连接体的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2,所述Al 2O 3、所述SiO 2、所述La 2O 3和所述ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10)。
  13. 根据权利要求12所述的壳体的制备方法,其特征在于,所述在陶瓷基材和镜片之间设置连接体的步骤包括:在所述陶瓷基材和所述镜片之间设置焊接组合物,然后烧结,以在所述陶瓷基材和所述镜片之间形成所述连接体,其中,所述焊接组合物包括第一组分,所述第一组分以重量份数计包括20份~50份的Al 2O 3、10份~40份的SiO 2、5份~20份的La 2O 3、1份~10份的ZrO 2
  14. 根据权利要求12所述的壳体的制备方法,其特征在于,所述烧结的步骤包括:在第一温度下烧结1h~2h,然后在第二温度下烧结,所述第一温度为1100℃~1300℃,所述第二温度高于所述第一温度。
  15. 根据权利要求14所述的壳体的制备方法,其特征在于,所述在陶瓷基材和镜片之间设置焊接组合物的步骤之前,还包括制备所述陶瓷基材的步骤:将陶瓷坯体在第三温度下进行预烧结,得到所述陶瓷基材,所述第三温度低于所述第二温度。
  16. 根据权利要求15所述的壳体的制备方法,其特征在于,所述陶瓷坯体为氧化锆陶瓷坯体。
  17. 根据权利要求12~16任一项所述的壳体的制备方法,其特征在于,所述第一组分还包括重量份数在10份以下的Y 2O 3、重量份数在10份以下的TiO 2、重量份数在10份以下的MgO、重量份数在10份以下的ZnO、重量份数在10份以下的BaO及重量份数在10份以下的CaO中的至少一种。
  18. 根据权利要求12~16任一项所述的壳体的制备方法,其特征在于,所述焊接组合物还包括第二组分,所述第二组分以质量百分比计包括60%~80%的溶剂、10%~20%的粘接剂和10%~20%的增塑剂,所述在陶瓷基材和镜片之间设置焊接组合物的步骤之前,还包括如下步骤:按照质量百分比计,将60%~70%的所述第一组分和30%~40%的所述第二组分混合,得到所述焊接组合物。
  19. 根据权利要求18所述的壳体的制备方法,其特征在于,所述在陶瓷基材和镜片之间设置焊接组合物的步骤之后,所述烧结的步骤之前,还包括如下步骤:对所述焊接组合物进行干燥。
  20. 一种壳体,由权利要求12~19任一项所述的壳体的制备方法制备得到。
  21. 一种电子设备,包括:
    权利要求1~11和20任一项所述的壳体;
    显示模组,与所述壳体连接,并与所述壳体共同围设成容置腔;及
    电路板,设置在所述容置腔内。
  22. 一种焊接组合物,包括第一组分,所述第一组分以重量份数计包括:
    Figure PCTCN2020112750-appb-100001
    Figure PCTCN2020112750-appb-100002
  23. 根据权利要求22所述的焊接组合物,其特征在于,所述第一组分以重量份数计还包括0.01份~10份的Y 2O 3、0.01份~10份的TiO 2、0.01份~10份的MgO、0.01份~10份的ZnO、0.01份~10份的BaO及0.01份~10份的CaO中的至少一种。
  24. 根据权利要求22所述的焊接组合物,其特征在于,所述第一组分以重量份数计包括:
    Figure PCTCN2020112750-appb-100003
  25. 权利要求22~24任一项所述的焊接组合物在制备电子产品中的应用。
  26. 一种壳体,包括:
    陶瓷基材,所述陶瓷基材开设有用于入光的收容孔;
    镜片,设于所述收容孔;及
    连接体,设于所述陶瓷基材和所述镜片之间且使所述镜片固定连接于所述陶瓷基材,所述连接体的化学组成包括Al 2O 3、SiO 2、La 2O 3和ZrO 2,所述Al 2O 3、所述SiO 2、所述La 2O 3和所述ZrO 2的质量比为(20~50):(10~40):(5~20):(1~10)。
  27. 根据权利要求26所述的壳体,其特征在于,所述连接体的化学组成还包括Y 2O 3、TiO 2、MgO、ZnO、BaO及CaO中的至少一种。
  28. 根据权利要求27所述的壳体,其特征在于,所述连接体的化学组成中,所述Al 2O 3、所述SiO 2、所述La 2O 3、所述ZrO 2、所述Y 2O 3、所述TiO 2、所述MgO、所述ZnO、所述BaO和所述CaO的质量比为(25~35):(30~35):(15~20):(2~5):(5~7):(2~5):(2~5):(2~5):(2~5):(2~5)。
  29. 根据权利要求28所述的壳体,其特征在于,所述连接体中,所述Y 2O 3、所述TiO 2、所述MgO、所述ZnO、所述BaO及所述CaO的质量百分比之和大于或者等于15%。
  30. 根据权利要求26所述的壳体,其特征在于,所述陶瓷基材为氧化锆陶瓷基材或者氧化铝陶瓷基材,所述陶瓷基材的气孔率为1%~5%,所述镜片为玻璃镜片或者蓝宝石镜片。
  31. 根据权利要求26所述的壳体,其特征在于,所述连接体由焊接组合物烧结形成, 所述焊接组合物包括第一组分,所述第一组分以重量份数计包括20份~50份的Al 2O 3、10份~40份的SiO 2、5份~20份的La 2O 3、1份~10份的ZrO 2
  32. 根据权利要求31所述的壳体,其特征在于,所述焊接组合物还包括第二组分,所述第二组分以质量百分比计包括60%~80%的溶剂、10%~20%的粘接剂和10%~20%的增塑剂;所述焊接组合物以质量百分比计包括60%~70%的所述第一组分和30%~40%的所述第二组分。
  33. 一种电子设备,包括:
    权利要求26-32任一项所述的壳体;
    显示模组,与所述壳体相对设置,且所述显示模组的位置与所述壳体的位置相对固定;及
    摄像头,设于所述壳体和所述显示模组之间,所述镜片覆盖所述摄像头的至少部分。
PCT/CN2020/112750 2019-09-09 2020-09-01 壳体及其制备方法和电子设备、焊接组合物及其应用 WO2021047415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910848856.7A CN110498609B (zh) 2019-09-09 2019-09-09 壳体及其制备方法和电子设备、焊接组合物及其应用
CN201910848856.7 2019-09-09

Publications (1)

Publication Number Publication Date
WO2021047415A1 true WO2021047415A1 (zh) 2021-03-18

Family

ID=68591572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112750 WO2021047415A1 (zh) 2019-09-09 2020-09-01 壳体及其制备方法和电子设备、焊接组合物及其应用

Country Status (2)

Country Link
CN (1) CN110498609B (zh)
WO (1) WO2021047415A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498609B (zh) * 2019-09-09 2022-06-14 Oppo广东移动通信有限公司 壳体及其制备方法和电子设备、焊接组合物及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112777A (en) * 1991-01-09 1992-05-12 Corning Incorporated Glass-ceramic-bonded ceramic composites
CN101321415A (zh) * 2008-07-14 2008-12-10 王晨 基于氮化铝微晶陶瓷基板的稀土厚膜电路电热元件及其制备工艺
CN104193179A (zh) * 2014-07-04 2014-12-10 江苏博迁新材料有限公司 一种硅太阳能正面银浆纳米级玻璃粉及其制备方法
CN104744035A (zh) * 2015-03-04 2015-07-01 暨南大学 牙科玻璃部分渗透的功能梯度氧化锆陶瓷材料的制备方法
CN104774007A (zh) * 2015-03-04 2015-07-15 暨南大学 一种牙科玻璃部分渗透的功能梯度氧化锆陶瓷材料
CN204652444U (zh) * 2015-04-10 2015-09-16 广东欧珀移动通信有限公司 外壳及具有外壳的电子装置
CN208113144U (zh) * 2018-03-26 2018-11-16 广东欧珀移动通信有限公司 电子装置
CN208888593U (zh) * 2018-11-20 2019-05-21 湖北国瓷科技有限公司 一种美观的机械表壳
CN109928616A (zh) * 2017-12-15 2019-06-25 成都光明光电股份有限公司 玻璃组合物
WO2019121972A1 (en) * 2017-12-19 2019-06-27 Coorstek Membrane Sciences As Sealing compositions
CN110498609A (zh) * 2019-09-09 2019-11-26 Oppo广东移动通信有限公司 壳体及其制备方法和电子设备、焊接组合物及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811512B (zh) * 2015-04-10 2018-09-04 广东欧珀移动通信有限公司 外壳、外壳制造方法及具有外壳的电子装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112777A (en) * 1991-01-09 1992-05-12 Corning Incorporated Glass-ceramic-bonded ceramic composites
CN101321415A (zh) * 2008-07-14 2008-12-10 王晨 基于氮化铝微晶陶瓷基板的稀土厚膜电路电热元件及其制备工艺
CN104193179A (zh) * 2014-07-04 2014-12-10 江苏博迁新材料有限公司 一种硅太阳能正面银浆纳米级玻璃粉及其制备方法
CN104744035A (zh) * 2015-03-04 2015-07-01 暨南大学 牙科玻璃部分渗透的功能梯度氧化锆陶瓷材料的制备方法
CN104774007A (zh) * 2015-03-04 2015-07-15 暨南大学 一种牙科玻璃部分渗透的功能梯度氧化锆陶瓷材料
CN204652444U (zh) * 2015-04-10 2015-09-16 广东欧珀移动通信有限公司 外壳及具有外壳的电子装置
CN109928616A (zh) * 2017-12-15 2019-06-25 成都光明光电股份有限公司 玻璃组合物
WO2019121972A1 (en) * 2017-12-19 2019-06-27 Coorstek Membrane Sciences As Sealing compositions
CN208113144U (zh) * 2018-03-26 2018-11-16 广东欧珀移动通信有限公司 电子装置
CN208888593U (zh) * 2018-11-20 2019-05-21 湖北国瓷科技有限公司 一种美观的机械表壳
CN110498609A (zh) * 2019-09-09 2019-11-26 Oppo广东移动通信有限公司 壳体及其制备方法和电子设备、焊接组合物及其应用

Also Published As

Publication number Publication date
CN110498609A (zh) 2019-11-26
CN110498609B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
TWI441348B (zh) 光反射用材料、發光元件收納用封裝體、發光裝置及發光元件收納用封裝體之製造方法
WO2021047415A1 (zh) 壳体及其制备方法和电子设备、焊接组合物及其应用
CN104885213B (zh) 摄像元件安装用基板以及摄像装置
CN105459516B (zh) 一种陶瓷基板及其制备方法和一种功率模块
KR20130007538A (ko) 발광 소자 탑재용 기판 및 발광 장치
JP5784153B2 (ja) アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ
US20080171647A1 (en) Low temperature cofired ceramic materials
US20050082648A1 (en) Ceramic package and chip resistor, and method for manufacture thereof
JP2021176202A (ja) セラミック基板及び電子部品内蔵モジュール
KR20140053635A (ko) 고밀도와 고강도를 가진 그린시트의 제조방법, 그린시트 제조용 세라믹 슬러리, 및 그린시트
JP5644771B2 (ja) 発光素子用基板および発光装置
WO2021036666A1 (zh) 陶瓷后盖及其制作方法、壳体及移动终端
WO2020221069A1 (zh) 陶瓷结构件及其制备方法和终端
CN106255323A (zh) 一种3d打印制备玻璃基电路板的方法
TWI784000B (zh) 導體形成用組成物及其製造方法、導體及其製造方法、晶片電阻器
KR102105906B1 (ko) 고온 소결용 Cu 페이스트 조성물 및 이를 구비한 금속-세라믹기판의 제조방법
CN111268911B (zh) 焊接组合物、壳体组件及制备方法和电子设备
WO2023019852A1 (zh) 一种金属化玻璃及其制备方法
TW201242455A (en) Method for manufacturing substrate for light emitting element and substrate for light emitting element
JP5051131B2 (ja) セラミックグリーンシート用スラリー組成物の製造方法、セラミックグリーンシートの製造方法、および積層型セラミック電子部品の製造方法
JP2006310805A (ja) 電子部品の製造方法
JP2008184352A (ja) セラミック接合体及びその製造方法
CN113336543B (zh) 电子设备及其壳体、氧化锆陶瓷涂料的制备方法
CN111517811A (zh) 一种陶瓷pcb基板的快速等离子烧结制备方法
CN106378900A (zh) 一种用于制造虚拟现实设备的夹持件的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863749

Country of ref document: EP

Kind code of ref document: A1