WO2021047153A1 - 压缩机驱动装置、压缩机压力保护方法及空调器 - Google Patents

压缩机驱动装置、压缩机压力保护方法及空调器 Download PDF

Info

Publication number
WO2021047153A1
WO2021047153A1 PCT/CN2020/077829 CN2020077829W WO2021047153A1 WO 2021047153 A1 WO2021047153 A1 WO 2021047153A1 CN 2020077829 W CN2020077829 W CN 2020077829W WO 2021047153 A1 WO2021047153 A1 WO 2021047153A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
drive
pressure
chip
pressure switch
Prior art date
Application number
PCT/CN2020/077829
Other languages
English (en)
French (fr)
Inventor
刘凯
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP20862470.0A priority Critical patent/EP3936781B1/en
Publication of WO2021047153A1 publication Critical patent/WO2021047153A1/zh
Priority to US17/489,497 priority patent/US11933509B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of refrigeration equipment, and in particular to a compressor driving device, a compressor pressure protection method, and an air conditioner.
  • the main purpose of this application is to propose a compressor driving device, a compressor pressure protection method, and an air conditioner, aiming to realize the safe and reliable operation of the compressor.
  • this application proposes a compressor drive device for the compressor drive of a refrigeration system, characterized in that the compressor drive device includes a three-phase AC power input terminal, a relay module, and a rectifier connected in sequence. Circuit and drive control circuit;
  • the rectifier circuit is used to convert the connected alternating current into direct current and output it to the direct current bus;
  • a drive control circuit for converting the DC power output by the DC bus into compressor driving electric energy to drive the compressor to work
  • the compressor driving device further includes: a pressure switch connected in series with the power supply circuit of the relay module; the pressure switch is used to detect the pressure value in the refrigeration system, and the detected pressure value When the pressure is greater than the preset pressure threshold, disconnect the power supply circuit of the relay module;
  • the drive control circuit is also used to detect the on-off state of the pressure switch, and control the compressor to stop working when the pressure switch is off.
  • the detection end of the drive control circuit is connected to the DC bus, and the drive control circuit is also used to detect the DC bus voltage in real time, and to detect when the compressor is working When the DC bus voltage drops to a first preset voltage value, the compressor is controlled to stop working.
  • the drive control circuit is further configured to control the DC bus voltage after detecting that the pressure switch is turned off and when the detected DC bus voltage is greater than or equal to a second preset voltage value The compressor stops working.
  • the drive control circuit is also used to start timing when it is detected that the pressure switch is turned off, and to detect whether the voltage value on the DC bus is greater than the preset time.
  • the second preset voltage value is also used to start timing when it is detected that the pressure switch is turned off, and to detect whether the voltage value on the DC bus is greater than the preset time.
  • the drive control circuit includes a compressor drive chip
  • the compressor drive chip is used to control the compressor's work and detect the operating state of the compressor.
  • the drive control circuit further includes a detection control chip, and the detection control chip is connected to the compressor drive chip;
  • the detection control chip is used for detecting the on-off state of the pressure switch when the compressor is determined to be in a working state according to the compressor state signal output by the compressor driving chip.
  • the compressor driving device further includes an electric control board, the electric control board is provided with a slot, and the detection control chip is detachably installed in the slot.
  • the drive control circuit further includes an intelligent power module and a signal isolation module.
  • the input end of the signal isolation module is connected to the output end of the compressor drive chip.
  • the output terminal is connected to the input terminal of the smart power module;
  • the smart power module is configured to drive the compressor to run at a corresponding speed according to the control signal output by the compressor drive chip;
  • the detection control chip is also used to control the signal isolation module to stop working when detecting that the pressure switch is turned off, so as to stop outputting the compressor drive signal;
  • the detection control chip is further configured to control the compressor drive chip to stop outputting the compressor drive signal when detecting that the pressure switch is turned off.
  • the present application also proposes a compressor pressure protection method, which is suitable for use in a refrigeration system.
  • the refrigeration system includes a compressor drive device, and is characterized in that the compressor pressure protection method includes the following steps:
  • the power supply circuit of the compressor is disconnected and the driving device is controlled to stop outputting the compressor driving signal.
  • disconnecting the power supply circuit and controlling the driving device to stop outputting the compressor driving signal includes:
  • the compressor driving device When the voltage value on the DC bus is greater than or equal to the preset voltage value, the compressor driving device is controlled to stop outputting the compressor driving signal.
  • This application also proposes an air conditioner, which includes the compressor drive device described above, or uses the compressor pressure protection method described above.
  • the rectifier circuit and the relay module are set.
  • the rectifier circuit converts the alternating current connected to the relay module into direct current and outputs it to the direct current bus, so that the drive control circuit can convert the direct current according to the received control signal.
  • the direct current output from the bus is converted into compressor driving electric energy to drive the compressor to work.
  • This application also sets a pressure switch to detect the pressure value in the refrigeration system, and when the detected pressure value is greater than the preset pressure threshold, the relay is turned off The power supply circuit of the module, so that when the relay is disconnected, the power supply circuit of the compressor is disconnected, so that the compressor is powered off and stops working.
  • the drive control circuit controls the compressor to stop working when the pressure switch is off, thereby further ensuring that the compressor can be powered off and can stop receiving the drive signal, thereby ensuring that the compressor can operate safely and reliably.
  • the pressure of the refrigeration system is abnormal , It can also reliably control the compressor to stop.
  • FIG. 1 is a schematic diagram of functional modules of an embodiment of a compressor driving device according to the present application
  • FIG. 2 is a schematic diagram of the circuit structure of an embodiment of the compressor driving device of the present application.
  • FIG. 3 is a flowchart of an embodiment of a compressor pressure protection method according to the application.
  • Fig. 4 is a detailed flowchart of step S200 of the compressor pressure protection method of Fig. 3.
  • the present application proposes a compressor driving device suitable for use in a refrigeration system.
  • the refrigeration system may be a refrigerator, an air conditioner, or other refrigeration equipment provided with a compressor.
  • the following embodiments take an air conditioner as an example for description.
  • indoor units, outdoor units, etc. are usually installed.
  • the compressor is generally installed in the outdoor unit.
  • the compressor and outdoor unit heat exchanger, indoor unit heat exchanger, electronic expansion valve and other components form the refrigerant cycle of the refrigeration system Loop.
  • central air conditioners Compared with ordinary household air conditioners, central air conditioners have larger cooling/heating capacity. Generally, compressors with larger displacement are used. Especially in multi-line systems, the external units can be connected in parallel and provide multiple internal units. Use, the pressure in the control system is also high. For pressure equipment and components with pressure greater than a certain pressure value, safety control of the pressure equipment is required to ensure high safety during use. If the pressure is abnormal For example, if the pressure is too high and the compressor is not stopped in time, the pressure will continue to rise, which will damage the air conditioning system. This is absolutely not allowed.
  • the compressor driving device includes three-phase AC power input terminals (A, B, C), a relay module 10, a rectifier circuit 20, and a drive connected in sequence.
  • the rectifier circuit 20 is used to convert the connected alternating current into direct current and output it to the direct current bus;
  • the drive control circuit 30 is used to convert the DC power output by the DC bus into compressor COMP driving electric energy to drive the compressor COMP to work;
  • Pressure switch SW1 the pressure switch SW1 is connected in series with the power supply circuit of the relay module 10; the pressure switch SW1 is used to detect the pressure value in the refrigeration system, and when the detected pressure value is greater than a preset pressure threshold When, disconnect the power supply circuit of the relay module 10;
  • the drive control circuit 30 is also used to detect the switch state of the pressure switch SW1, and when the pressure switch SW1 is turned off, the compressor COMP is controlled to stop working.
  • the pressure switch SW1 can be implemented using two parts: a pressure detection sensor and a pressure control switch.
  • the pressure detection sensor is used to detect the pressure of the refrigeration system and control the on-off of the pressure control switch according to the pressure; wherein, The pressure detection sensor of the pressure switch SW1 can be installed on the exhaust pipe of the compressor COMP to detect the pressure of the refrigeration system.
  • the relay module 10 is located in the power supply circuit of the compressor COMP of the refrigeration system, and the pressure control switch is connected in series with the power supply circuit of the relay module 10. By controlling the power supply of the relay module 10, the on and off of the compressor COMP power supply circuit is controlled.
  • the pressure control switch can be opened when the pressure detection sensor detects that the refrigeration system pressure exceeds a preset pressure protection threshold (for example, 4.25 MPa), and closed when it is less than the preset reset threshold (for example, 3.6 MPa).
  • a preset pressure protection threshold for example, 4.25 MPa
  • the pressure control switch can be controlled to disconnect the power supply circuit of the compressor COMP of the refrigeration system, so that the compressor COMP stops running, so as to achieve the purpose of compressor COMP protection.
  • the number of relay modules 10 can be one or more, such as three. The three relays are respectively labeled as the first relay RY1, the second relay RY2, and the third relay RY3, the first relay RY1, the second relay RY2, and the second relay RY2.
  • the first relay RY1 is connected in series with the PTC relay. After setting the time, drive the MCU to control RY1 to pull in, and then drive the MCU to detect that the bus voltage reaches a certain threshold for a certain period of time, and then pull in the second relay RY2 and the third relay RY3.
  • the compressor COMP driving device is also provided with a thermistor. The thermistor is connected to the first relay RY1 (the first relay RY1 can be replaced by a contactor), and the contacts of the working circuit of the first relay RY1 are in an open state.
  • the PTC (Positive Temperature Coefficient) thermistor is output to the subsequent stage. After the first relay RY1 is closed, the current basically passes through the first relay RY1 to supply power to the subsequent stage.
  • the drive control circuit 30 further includes an electrolytic capacitor. When the second relay RY2 and the third relay RY3 are closed, the external AC power supply enters the rectifier circuit 20. After being rectified by the rectifier circuit 20, the large-capacity electrolytic capacitor E1 is rectified. It is charged to provide a stable DC power supply to the subsequent drive control circuit 30. The drive control circuit 30 inverts the stable DC power supply and converts it to an AC power supply to control the operation of the compressor COMP.
  • the pressure switch SW1 is arranged in series in the relay module 10, between the relay coil and the power supply 40, and the drive control circuit 30 may also be provided with a voltage detection circuit or a current detection circuit. It can be realized by using resistors and other components.
  • the switch state of the pressure switch SW1 is determined by detecting the voltage or current in the power supply circuit of the relay and converting it into the corresponding voltage value.
  • the pressure switch SW1 is closed under the normal pressure of the refrigeration system. When it is detected that the pressure of the system reaches the protection threshold, it will open.
  • the pressure switch SW1 is serially connected to the power supply 40. When it is closed, the drive control circuit 30 will detect a certain voltage value. When the pressure switch SW1 is open, the detection result is 0V or A voltage value tending to 0V, by detecting the voltage change of the power supply circuit of the relay module 10, it can be judged whether the pressure switch SW1 is in an open or closed state.
  • the relay module 10 is also disconnected due to the disconnection of the power supply 40, so that the power supply 40 of the compressor COMP is disconnected.
  • the compressor COMP stops due to the power failure.
  • the pressure of the refrigeration system will quickly recover, and the pressure switch SW1 is mostly completely mechanical.
  • the pressure switch SW1 will be closed, so that the coil of the relay module 10 will be closed.
  • the power supply returns to normal and the contacts are closed.
  • the PTC thermistor is still in a large resistance state, and the first relay RY1 is electrocuted and a large current will occur.
  • the drive control circuit 30 may also be provided with a delay circuit to delay a certain time after detecting that the pressure switch SW1 is closed, to ensure that the compressor COMP is normally powered, and then output the compressor drive. Signal and restore the normal operation of the compressor COMP.
  • the rectifier circuit 20 and the relay module 10 are provided.
  • the rectifier circuit 20 converts the alternating current connected to the relay module 10 into direct current and outputs it to the direct current bus, so that the drive control circuit 30 receives
  • the received control signal converts the DC power output by the DC bus into the compressor COMP driving electric energy to drive the compressor COMP to work.
  • This application also sets the pressure switch SW1 to detect the pressure value in the refrigeration system, and when the detected pressure value is greater than When the pressure threshold is preset, the power supply circuit of the relay module 10 is disconnected, so that when the relays are disconnected, the power supply circuit of the compressor COMP is disconnected, so that the compressor COMP is powered off and stops working.
  • the drive control circuit 30 controls the compressor COMP to stop working when the pressure switch SW1 is off, thereby further ensuring that the compressor COMP can be powered off and can stop receiving the drive signal, ensuring that the compressor COMP can operate safely and reliably, When the system pressure is abnormal, the compressor COMP can be reliably controlled to stop.
  • the detection terminal of the drive control circuit 30 is connected to the DC bus, and the drive control circuit 30 is also used to detect the DC bus voltage in real time, and set it in the compressor COMP During operation, when it is detected that the DC bus voltage drops to a first preset voltage value, the compressor COMP is controlled to stop working.
  • the DC bus voltage needs to be within the preset normal range to drive the compressor COMP normally. If it is too high or too low, the compressor COMP will be damaged. The AC power supply suddenly loses power or the relay module 10 When disconnected, the DC bus voltage will drop, which will eventually cause the compressor COMP to stop. When the power supply suddenly loses power and resumes, that is, when the power supply jitters, it may cause the PTC thermistor to remain in a large resistance state. The first relay RY1 is electrocuted and a large current occurs, which damages the relay and compressor COMP and other subsequent circuits and loads.
  • the drive control circuit 30 also includes a voltage detection circuit for detecting the DC bus voltage.
  • the voltage detection circuit can be implemented by a resistance divider detection circuit composed of resistors.
  • the resistance divider detection detects the voltage on the DC bus in real time, and when it detects that the DC bus drops to the first preset voltage value (the first preset voltage) If the voltage value can be the voltage value under the condition of undervoltage, or the voltage value that cannot maintain the normal operation of the compressor COMP, for example, 0V), the output of the compressor driving signal is stopped to control the compressor COMP to stop.
  • the relay when the relays in the relay module are normal, the relay can be disconnected when the power of the relay is turned off, thereby disconnecting the power of the compressor.
  • the relay module fails, for example, the contacts are stuck.
  • the relay module will still have power output even when the pressure switch is off.
  • the drive control circuit 30 is also used to detect that the pressure switch SW1 is turned off, and when the detected DC bus voltage is greater than or equal to the first 2.
  • the compressor is controlled to continuously stop working.
  • the drive control circuit 30 provides a stable DC power supply to the subsequent drive control circuit 30, and the drive control circuit 30 inverts the stable DC power supply to control the operation of the compressor COMP.
  • the compressor COMP is not powered off and continues to work, causing the pressure of the refrigeration system to continue to increase, which in turn leads to damage to the refrigeration system components or affects the long-term operational reliability.
  • the drive control circuit 30 is also used to start timing when it is detected that the pressure switch SW1 is turned off, and after a preset time is reached, detect the voltage on the DC bus Whether the voltage value is greater than the second preset voltage value;
  • the second preset voltage value may be the voltage value when the DC bus voltage is normally output, or slightly lower than the voltage value when the DC bus voltage is normally output.
  • this embodiment can start timing when it is detected that the pressure switch SW1 is turned off, and after reaching a preset time (the preset time is greater than the hysteresis separation time of the relay) , And then detect whether the voltage on the DC bus has dropped.
  • the drive signal for compressor stop is output to further ensure that the compressor COMP is stopped.
  • the compressor driving device may further include a fault alarm circuit, such as an audible and visual alarm circuit, or may also output a fault detection signal to the main controller of the indoor unit, outdoor unit, etc., so that the main controller can output corresponding Alarm signal to inform the user to overhaul the relay.
  • a fault alarm circuit such as an audible and visual alarm circuit
  • the drive control circuit 30 includes a compressor drive chip U1, the compressor drive chip U1, used to control the compressor COMP operation, and detect the operating state of the compressor COMP .
  • the compressor COMP drive device is usually provided with a compressor drive chip U1, a rectifier bridge circuit, a filter capacitor, and an inverter bridge circuit.
  • a PFC circuit may also be provided.
  • the PFC circuit is used for the input of the DC bus.
  • the waveform of the current follows the waveform of the input voltage, and after performing power factor correction on the connected DC bus voltage, it is output to the inverter bridge circuit.
  • the inverter bridge circuit can be implemented by using an intelligent power module 31.
  • the intelligent power module 31 IPM, Intelligent Power Module
  • HVIC high voltage integrated circuit, high voltage integrated circuit
  • LVIC low voltage integrated circuit, low voltage integrated circuit.
  • the three-phase bridge arm circuit composed of the intelligent power module 31 can also be integrated with a voltage detection circuit, a current detection circuit, a temperature sensor and other detection circuits for detecting the status of the compressor COMP. .
  • a signal isolation module 32 is also provided between the compressor drive chip U1 and the IPM.
  • the compressor drive chip U1 sends a control signal to the IPM through the signal isolation module 32.
  • the control signal may be, for example, PWM (Pulse Width Modulation). ) Signal, the control signal is used to control the on and off of the corresponding power switch tube inside the IPM, and then control the operation of the compressor COMP of the refrigeration system.
  • the power supply of the compressor driving chip U1, the intelligent power module 31 and the signal isolation module 32 can be realized by a switching power supply.
  • the compressor drive chip U1 can be based on the indoor unit The control of the main control chip, or based on the control of the main control chip of the outdoor unit, and according to the received control signal, outputs the compressor drive signal with adjustable frequency to realize the control of the compressor COMP. Specifically, after receiving the target speed sent by the main control chip, the compressor COMP is driven to reach the target speed based on the software algorithm.
  • the compressor driving chip U1 may also obtain the speed information of the compressor COMP through the detected signals such as the current and voltage of the compressor COMP, and then obtain the status information of the compressor COMP.
  • the drive control circuit 30 further includes a detection control chip U2, and the detection control chip U2 is connected to the compressor drive chip U1;
  • the detection control chip U2 is used to detect the switch state of the pressure switch SW1 when the compressor COMP is in the working state according to the operating state of the compressor COMP detected by the compressor drive chip U1.
  • the detection control chip U2 is in communication with the compressor drive chip U1, and when it is determined that the compressor COMP is in the working state, the switch state of the pressure switch SW1 is detected, and the DC bus voltage is detected in real time.
  • the detection control chip U2 stops working and maintains a dormant state, so as to reduce the self-generated power consumption of the drive control circuit 30 and realize energy conservation and environmental protection.
  • the switch state of the pressure switch SW1 is detected by setting the detection control chip U2, and the corresponding control is performed according to the switch state of the pressure switch SW1, thereby reducing the software algorithm of the compressor driving chip U1 and improving the compressor driving chip U1's data on the compressor COMP. Processing speed, in turn, can improve the driving efficiency of the compressor COMP.
  • the detection control chip U2 integrates a CPU (central processing unit) test register, flag bit, arithmetic unit, program flow monitoring, watchdog, IO (input and output), RAM (random access memory), ROM (read only memory) , AD (analog to digital) and other hardware and software perform safety function verification algorithms to realize self-diagnosis to prevent the accumulation of faults and improve the self-diagnostic coverage DC (Diagnostic Coverage) of the detection control chip U2.
  • CPU central processing unit
  • IO input and output
  • RAM random access memory
  • ROM read only memory
  • AD analog to digital
  • the compressor driving device further includes an electric control board (not shown in the figure), the electric control board is provided with a slot, and the detection control chip is detachably installed in the slot.
  • the detection control chip U2 is detachably arranged in the slot, that is, whether to set the detection control chip U2 can be selected according to actual application requirements.
  • the compressor COMP drive device can temporarily overpressure, the compressor COMP drive circuit has an accident such as overpressure, short circuit, or occasional component defects, and the possibility of failure is relatively high.
  • the compressor COMP can be shut down to protect the compressor COMP in a timely and effective manner, and the safety of the refrigeration system can be improved.
  • the detection control chip U2 may not be provided to reduce the production cost.
  • the detection control chip U2 to a card (slot) type, and selectively setting the detection control chip U2 according to actual requirements, the versatility of the electric control board of the compressor driving device can be improved.
  • the drive control circuit 30 further includes a smart power module 31 and a signal isolation module 32, the input of the signal isolation module 32 and the output of the compressor drive chip U1 Terminal connection, the output terminal of the signal isolation module 32 is connected to the input terminal of the smart power module 31;
  • the smart power module 31 is configured to drive the compressor COMP to run at a corresponding speed according to the control signal output by the compressor drive chip U1;
  • the detection control chip U2 is also used to control the signal isolation module 32 to stop working when detecting that the pressure switch SW1 is turned off, so as to stop outputting the compressor driving signal.
  • the detection control chip U2 can control the signal isolation module 32 to work according to the on/off of the pressure switch SW1 and the pressure switch SW1.
  • the control signal isolation module 32 operates to drive the compressor
  • the compressor drive signal output by the chip U1 is output to the intelligent power module 31, and the intelligent power module 31 converts the connected DC bus voltage into AC electrical energy according to the compressor drive signal, and then outputs it to the compressor COMP to drive the compressor COMP to work .
  • the control signal isolation module 32 stops working, thereby disconnecting the compressor drive signal output by the compressor drive chip U1.
  • the intelligent power module 31 stops when it does not receive the compressor drive signal.
  • the signal isolation module 32 can be realized by an optocoupler, and realizes the input/output isolation of the compressor drive signal when it is turned on.
  • an IO port can be added between the detection control chip U2 and the compressor drive chip U1 to transmit the state of the pressure switch.
  • the detection control chip U2 After the detection control chip U2 detects that the pressure switch is open/closed, it will send 0/ 1 signal to compressor drive chip U1, compressor drive chip U1 will also control 6 PWM outputs to turn off after receiving this signal to achieve the purpose of double protection.
  • the compressor driving chip U1 and the detection control chip U2 are integrated in the same chip.
  • the compressor drive chip U1 and the detection control chip U2 can be implemented by two independent microcontrollers, or the compressor drive chip U1 and the detection control chip U2 can be integrated into the same chip, that is, the integration
  • the chip can realize the functions of compressor drive and compressor shutdown protection at the same time, can improve the integration of the drive control circuit 30, and reduce the cost of the compressor COMP drive device.
  • the compressor drive chip U1 and the detection control chip U2 are integrated on the same chip
  • the highly integrated chip can not only realize the drive control of the compressor COMP according to the control signal output by the main control chip in the refrigeration system, but also can shut down the compressor COMP according to the switch state of the pressure switch SW1.
  • This application also proposes a compressor pressure protection method, which is suitable for refrigeration systems.
  • the refrigeration system includes a compressor driving device, and the compressor pressure protection method includes the following steps:
  • Step S100 Detect the pressure value in the refrigeration system when the compressor is working normally
  • a pressure switch can be set in the pipeline circuit on the high-pressure side of the refrigeration system to detect the pressure of the system.
  • the pressure switch will act to cut off the power supply of the compressor.
  • the compressor stops working; when the system pressure drops to the recovery threshold of the pressure switch, the pressure switch will reclose and turn on the compressor's power supply.
  • Step S200 When the pressure value in the refrigeration system is greater than a preset threshold, disconnect the power supply circuit of the compressor and control the compressor driving device to stop outputting the compressor driving signal.
  • the pressure switch when the pressure value in the refrigeration system is greater than the preset threshold value, the pressure switch can be controlled to open, thereby disconnecting the compressor power supply circuit, so that the compressor will not run under high pressure, thereby preventing the compressor from operating under high pressure. Play a protective role.
  • This embodiment can also stop outputting the compressor drive signal when the pressure disconnection is detected, thereby further ensuring that the compressor is stopped.
  • the present application detects the pressure value in the refrigeration system when the compressor is working normally, and when the detected pressure value is greater than the preset pressure threshold, disconnects the compressor's power supply circuit and controls the compressor drive device to stop outputting compression Motor drive signal to control the compressor to stop working, so as to further ensure that the compressor can be powered off and can stop receiving the drive signal, thereby ensuring the safe and reliable operation of the compressor, and reliably controlling the compressor when the pressure of the refrigeration system is abnormal Downtime.
  • disconnecting the power supply circuit of the compressor and controlling the compressor driving device to stop outputting the compressor driving signal includes:
  • Step S210 When the pressure value in the refrigeration system is greater than a preset threshold value, the power supply circuit of the compressor is disconnected and the voltage value on the DC bus in the power supply circuit of the compressor is detected;
  • Step S220 When the voltage value on the DC bus is greater than or equal to the preset voltage value, control the compressor drive device to stop outputting the compressor drive signal.
  • the control circuit provides a stable DC power supply to the subsequent drive control circuit, and the drive control circuit inverts the stable DC power supply to control the operation of the compressor.
  • the compressor continues to work without being powered off in time, causing the pressure of the refrigeration system to continue to increase, which in turn causes damage to the refrigeration system components or affects long-term operation reliability.
  • it is necessary to detect the state of the pressure switch through the drive control circuit after the compressor is stopped for protection.
  • the application also proposes an air conditioner, including the compressor driving device described above.
  • the detailed structure of the compressor driving device can refer to the above-mentioned embodiments, and will not be repeated here; it can be understood that, since the above-mentioned compressor driving device is used in the air conditioner of the present application, the embodiments of the air conditioner of the present application include All the technical solutions of all the embodiments of the above-mentioned compressor driving device, and the technical effects achieved are also completely the same, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种压缩机驱动装置、压缩机压力保护方法及空调器,压缩机驱动装置包括依次连接的三相交流电源输入端、继电器模组(10)、整流电路(20)及驱动控制电路(30);整流电路(20)用于将接入的交流电转换为直流电后输出至直流母线;驱动控制电路(30)用于将直流母线输出的直流电转换为压缩机(COMP)驱动电能;压力开关(SW1)用于检测制冷***内的压力值,并在检测的压力值大于预设压力阈值时断开继电器模组(10)的供电回路;驱动控制电路(30)还用于检测压力开关(SW1)的开关状态,在压力开关(SW1)断开时控制压缩机(COMP)停止工作。

Description

压缩机驱动装置、压缩机压力保护方法及空调器
相关申请的交叉引用
本申请基于申请号为201910855486.X,申请日为2019年9月9日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及制冷设备技术领域,特别涉及一种压缩机驱动装置、压缩机压力保护方法及空调器。
背景技术
空调***在运行过程中,需要保证***压力符合安全使用压力要求,如果在压力异常时,例如压力过大未及时停止压缩机运行进而导致压力继续上升,而损坏空调***,这是绝对不允许的。因此,如何能够确保压缩机安全可靠地运行,成为亟待解决的技术问题。
发明内容
本申请的主要目的是提出一种压缩机驱动装置、压缩机压力保护方法及空调器,旨在实现压缩机能够安全可靠的运行。
为实现上述目的,本申请提出一种压缩机驱动装置,用于制冷***的压缩机驱动,其特征在于,所述压缩机驱动装置包括依次连接的三相交流电源输入端、继电器模组、整流电路及驱动控制电路;
所述整流电路,用于将接入的交流电转换为直流电后输出至直流母线;
驱动控制电路,用于将所述直流母线输出的直流电转换为压缩机驱动电能,以驱动压缩机工作;
所述压缩机驱动装置还包括:压力开关,所述压力开关串联于所述继电器模组的供电回路;所述压力开关,用于检测所述制冷***内的压力值,并在检测的压力值大于预设压力阈值时,断开所述继电器模组的供电回路;
所述驱动控制电路,还用于检测所述压力开关的开关状态,在所述压力开关断开时,控制压缩机停止工作。
在本申请的一些实施例中,所述驱动控制电路的检测端与所述直流母线连接,所述 驱动控制电路还用于实时检测所述直流母线电压,并在所述压缩机工作时,检测到所述直流母线电压下降至第一预设电压值时,控制所述压缩机停止工作。
在本申请的一些实施例中,所述驱动控制电路还用于在检测到所述压力开关断开后,并在检测到的所述直流母线电压大于或等于第二预设电压值时,控制压缩机停止工作。
在本申请的一些实施例中,所述驱动控制电路,还用于在检测到所述压力开关断开时开始计时,并在达到预设时间后,检测所述直流母线上的电压值是否大于第二预设电压值;
在所述直流母线上的电压值大于或者等于第二预设电压值时,确定所述继电器模组出现故障,并输出故障检测信号。
在本申请的一些实施例中,所述驱动控制电路包括压缩机驱动芯片,
所述压缩机驱动芯片,用于控制压缩机工作,并检测压缩机的运行状态。
在本申请的一些实施例中,所述驱动控制电路还包括检测控制芯片,所述检测控制芯片与所述压缩机驱动芯片连接;
所述检测控制芯片,用于根据所述压缩机驱动芯片输出的压缩机状态信号,确定压缩机处于工作状态时,检测所述压力开关的开关状态。
在本申请的一些实施例中,所述压缩机驱动装置还包括电控板,所述电控板设置有插槽,所述检测控制芯片可拆卸的安装于所述插槽内。
在本申请的一些实施例中,所述驱动控制电路还包括智能功率模块及信号隔离模块,所述信号隔离模块的输入端与所述压缩机驱动芯片的输出端连接,所述信号隔离模块的输出端与所述智能功率模块的输入端连接;其中,
所述智能功率模块,用于根据所述压缩机驱动芯片输出的控制信号驱动压缩机以相应的转速运转;
所述检测控制芯片还用于在检测所述压力开关断开时,控制所述信号隔离模块停止工作,以停止输出压缩机驱动信号;
和/或,所述检测控制芯片还用于在检测所述压力开关断开时,控制所述压缩机驱动芯片停止输出压缩机驱动信号。
本申请还提出一种压缩机压力保护方法,适用于制冷***中,所述制冷***包括压缩机驱动装置,其特征在于,所述压缩机压力保护方法包括以下步骤:
在压缩机正常工作时,检测所述制冷***内的压力值;
在所述制冷***内的压力值大于预设阈值时,断开压缩机的供电回路以及控制所述 驱动装置停止输出压缩机驱动信号。
在本申请的一些实施例中,在所述制冷***内的压力值大于预设阈值时,断开的供电回路以及控制所述驱动装置停止输出压缩机驱动信号包括:
在所述制冷***内的压力值大于预设阈值时,断开压缩机的供电回路后检测压缩机的供电回路中直流母线上的电压值;
在直流母线上的电压值大于或等于预设电压值时,控制所述压缩机驱动装置停止输出压缩机驱动信号。
本申请还提出一种空调器,包括如上所述的压缩机驱动装置,或者,使用了如上所述的压缩机压力保护方法。
本申请通过设置整流电路和继电器模组,在继电器模组闭合时,整流电路将继电器模组接入的交流电转换为直流电后输出至直流母线,以使驱动控制电路根据接收到的控制信号将直流母线输出的直流电转换为压缩机驱动电能,以驱动压缩机工作,本申请还通过设置压力开关,以检测制冷***内的压力值,并在检测的压力值大于预设压力阈值时,断开继电器模组的供电回路,从而在继电器断开时,断开压缩机的供电回路,以使压缩机断电而停止工作。驱动控制电路则在所述压力开关断开时,控制压缩机停止工作,从而进一步保证压缩机能够断电且能够停止接收驱动信号,从而保证压缩机能够安全可靠的运行,在制冷***压力异常时,也能可靠的控制压缩机停机。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请压缩机驱动装置一实施例的功能模块示意图;
图2为本申请压缩机驱动装置一实施例的电路结构示意图;
图3为本申请压缩机压力保护方法一实施例的流程图;
图4为图3压缩机压力保护方法步骤S200一细化流程图。
附图标号说明:
标号 名称 标号 名称
10 继电器模组 SW1 压力开关
20 整流电路 U1 压缩机驱动芯片
30 驱动控制电路 U2 检测控制芯片
40 供电电源 31 智能功率模块
COMP 压缩机 32 信号隔离模块
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提出一种压缩机驱动装置,适用于制冷***中,该制冷***可以是冰箱,空调器等设置有压缩机的制冷设备,以下各实施例以空调器为例进行说明。空调器中,通常设置有室内机、室外机等,压缩机一般地设置于室外机内,压缩机与室外机换热器、室内机换热器、电子膨胀阀等器件组成制冷***的冷媒循环回路。
中央空调中相对于普通的家用空调都是具有较大制冷/制热能力,一般使用较大排量的压缩机,尤其是多联机***中,外机之间可以并联,并供多个内机使用,其控制***内的压力也较高,对于承受压力大于一定压力值的压力设备及组件,需要针对压力设备进行安全控制,保证在使用的过程中具有较高的安全性,如果在压力异常时,例如压力过大未及时停止压缩机运行进而导致压力继续上升,而损坏空调***,这是绝对不允许的。
为了解决上述问题,参照图1,在本申请一实施例中,该压缩机驱动装置包括依次连接的三相交流电源输入端(A、B、C)、继电器模组10、整流电路20及驱动控制电路30;
所述整流电路20,用于将接入的交流电转换为直流电后输出至直流母线;
驱动控制电路30,用于将所述直流母线输出的直流电转换为压缩机COMP驱动电能,以驱动压缩机COMP工作;
压力开关SW1,所述压力开关SW1串联于所述继电器模组10的供电回路;所述压力开关SW1,用于检测所述制冷***内的压力值,并在检测的压力值大于预设压力阈值时,断开所述继电器模组10的供电回路;
驱动控制电路30,还用于检测所述压力开关SW1的开关状态,在所述压力开关SW1断开时,控制压缩机COMP停止工作。
本实施例中,压力开关SW1可以采用压力检测传感器和压力控制开关两个部分来实现,其中压力检测传感器用于检测制冷***的压力,并根据所述压力控制压力控制开关的通断;其中,该压力开关SW1的压力检测传感器可以安装于压缩机COMP排气管道上,以检测制冷***的压力。继电器模组10位于制冷***的压缩机COMP的供电回路中,压力控制开关则串联于继电器模组10的供电回路中,通过控制继电器模组10的供电,实现控制压缩机COMP供电回路的通断,该压力控制开关可以在压力检测传感器检测到制冷***压力超过预设的压力保护阈值(例如4.25MPa)时断开,而在小于预设的复位阈值(例如3.6MPa)时闭合。当压力检测传感器检测到制冷***压力过高时,可以控制压力控制开关断开制冷***的压缩机COMP的供电回路,使压缩机COMP停止运行,从而达到压缩机COMP保护目的。继电器模组10的数量可以是一个也可以多个,例如三个,三个继电器分别标记为第一继电器RY1、第二继电器RY2和第三继电器RY3,第一继电器RY1、第二继电器RY2和第三继电器RY3,第二继电器RY2和第三继电器RY3串于三相输入的A、B端第一继电器RY1是串于PTC继电器,PTC继电器的作用是,上电给后端电容充电,上电预设时间后,驱动MCU控制RY1吸合,之后驱动MCU检测到母线电压达到某一阈值持续一定时间后,再吸合第二继电器RY2和第三继电器RY3。压缩机COMP驱动装置还设置有热敏电阻,热敏电阻与第一继电器RY1连接(该第一继电器RY1可以使用接触器替代),第一继电器RY1的工作电路的触点处于断开状态,先通过PTC(Positive Temperature Coefficient,正温度系数)热敏电阻输出至后级,待第一继电器RY1吸合,电流基本全通过第一继电器RY1来给后级供电。在一些实施例中,驱动控制电路30还包括电解电容,在第二继电器RY2和第三继电器RY3闭合时,外部交流电源进入到整流电路20,经整流电路20整流之后,给大容量电解电容E1充电,从而给后级驱动控制电路30提供稳定直流电源,驱动控制电路30将该稳定直流电源进行逆变后,转换为交流电源,以控制压缩机COMP运行。
可以理解的是,压力开关SW1串联设置于继电器模组10中,继电器线圈与供电电源40之间,驱动控制电路30还可以设置有电压检测电路或者电流检测电路,该电压检测电路或电流检测电路可以采用电阻等元件来实现。通过检测继电器供电回路中的电压或者电流,并转换成对应的电压值后来确定压力开关SW1的开关状态,压力开关SW1在制冷***的压力正常情况下是闭合的。当检测到***的压力达到保护阈值的时候会断开,压力开关SW1串入供电电源40中,闭合时驱动控制电路30会检测到一定电压值,而在压力开关SW1断开检测结果是0V或者趋于0V的一个电压值,通过检测到 继电器模组10的供电回路的电压变化时,则可以判断压力开关SW1是处于断开还是闭合状态。
一般地,在压力开关SW1断开后,继电器模组10也因供电电源40的断开而断开,使得压缩机COMP的供电电源40被断开,此时压缩机COMP因为断电而停机,在压缩机COMP停机后,制冷***的压力会很快恢复,而压力开关SW1大部分是完全机械式,一旦制冷***的压力恢复,压力开关SW1就会闭合,从而使继电器模组10的线圈的电源恢复正常而使触点吸合,而这时PTC热敏电阻还处于大电阻状态,第一继电器RY1触电吸合会出现大电流的情况。或者,在压力开关SW1断开后,可能会因为继电器的触点发生黏连、线圈失效等故障,使得压缩机COMP断电不及时,而继续工作,导致制冷***的压力持续增大,进而导致制冷***器件损坏或者影响长期运行可靠性。为此,需要在压缩机COMP停机保护后,通过驱动控制电路30检测压力开关SW1的状态,并在压力开关SW1处于断开状态的情况下,停止输出压缩机驱动信号,从而进一步确保压缩机COMP停机。并且,在进一步地实施例中,驱动控制电路30还可以设置延时电路,以在检测到压力开关SW1闭合后,延时一定的时间,确保压缩机COMP的供电正常后,再输出压缩机驱动信号,并恢复压缩机COMP的正常工作。
本申请通过设置整流电路20和继电器模组10,在继电器模组10闭合时,整流电路20将继电器模组10接入的交流电转换为直流电后输出至直流母线,以使驱动控制电路30根据接收到的控制信号将直流母线输出的直流电转换为压缩机COMP驱动电能,以驱动压缩机COMP工作,本申请还通过设置压力开关SW1,以检测制冷***内的压力值,并在检测的压力值大于预设压力阈值时,断开继电器模组10的供电回路,从而在各继电器断开时,断开压缩机COMP的供电回路,以使压缩机COMP断电而停止工作。驱动控制电路30则在所述压力开关SW1断开时,控制压缩机COMP停止工作,从而进一步保证压缩机COMP能够断电且能够停止接收驱动信号,保证压缩机COMP能够安全可靠的运行,在制冷***压力异常时,也能可靠的控制压缩机COMP停机。
参照图1,在一实施例中,所述驱动控制电路30的检测端与所述直流母线连接,所述驱动控制电路30还用于实时检测所述直流母线电压,并在所述压缩机COMP工作时,检测到所述直流母线电压下降至第一预设电压值时,控制所述压缩机COMP停止工作。
可以理解的是,直流母线电压需要在预设的正常范围才能正常的驱动压缩机COMP,如果过高或者过低均会造成压缩机COMP被损坏,在交流电源突然掉电或者在继电器模组10断开时,均会使直流母线电压的下降,最终导致压缩机COMP的停止在电源突然 掉电又恢复时,也即电源出现抖动时,可能会导致PTC热敏电阻还处于大电阻状态,而第一继电器RY1触电吸合出现大电流,从而损坏继电器和压缩机COMP等后级电路和负载。
为此,本实施例中,驱动控制电路30还包括用于检测直流母线电压的电压检测电路,该电压检测电路可以采用电阻组成的电阻分压检测电路来实现,在压缩机COMP工作时,也即压力开关SW1未断开,继电器仍处于闭合状态的情况下,电阻分压检测实时检测直流母线上的电压,并在检测到直流母线骤降至第一预设电压值时(该第一预设电压值可以是欠压情况下的电压值,或者不能维持压缩机COMP正常工作的电压值,例如0V),则停止输出压缩机驱动信号,以控制压缩机COMP停机。
可以理解的是,在继电器模组中各继电器均正常时,在断开继电器的电源既可以断开继电器,从而断开压缩机的电源,而在继电器模组出现故障时,例如触点发生黏连、线圈失效时,继电器模组在压力开关断开的情况下,继电器依然会有电源输出。
为了解决上述问题,参照图1,在一实施例中,所述驱动控制电路30还用于在检测到所述压力开关SW1断开后,并在检测到的所述直流母线电压大于或等于第二预设电压值时,控制压缩机持续停止工作。
本实施例中,在压力开关SW1断开后,可能会因为继电器的触点发生黏连、线圈失效等故障,使得在继电器的电源断开后,仍有电源输入,而使得直流母线电压输出至驱动控制电路30,并给后级驱动控制电路30提供稳定直流电源,驱动控制电路30将该稳定直流电源进行逆变,控制压缩机COMP运行。从而出现压缩机COMP断电不及时而继续工作,导致制冷***的压力持续增大,进而导致制冷***器件损坏或者影响长期运行可靠性。为了避免上述问题发生,需要在压缩机COMP停机保护后,通过驱动控制电路30检测压力开关SW1的状态,在压力开关SW1处于断开状态的情况下,当检测到直流母线电压大于或等于第二预设电压值时,则可以确定继电器故障,此时即便在压力开关SW1检测到制冷***的压力恢复到正常值而闭合时,驱动控制电路30继续输出压缩机停机控制信号,以确保压缩机COMP持续停机,直至继电器故障解除。
当然在一些实施例中,也可以通过在检测直流母线电压,确定继电器故障后再停止输出压缩机驱动信号,以控制压缩机停止工作。
参照图1,在进一步的实施例中,所述驱动控制电路30,还用于在检测到所述压力开关SW1断开时开始计时,并在达到预设时间后,检测所述直流母线上的电压值是否大于第二预设电压值;
在所述直流母线上的电压值大于或者等于第二预设电压值时,确定所述继电器模组10出现故障,并控制压缩机COMP停止工作。该第二预设电压值可以是直流母线电压正常输出时的电压值,或者略低于该直流母线电压正常输出时的电压值。
可以理解的是,在压力开关SW1断开使得继电器的供电电源40断开后,由于继电器会存在一定的迟滞分离时间,在继电器的迟滞分离时间内,继电器仍处于闭合状态,而使得直流母线上的电压会维持不变,因此,为了避免出现误判断,本实施例可以在检测到压力开关SW1断开时开始计时,并在达到预设时间后(该预设时间大于继电器的迟滞分离时间),再检测直流母线上的电压是否下降,若检测到未下降,仍然大于或者等于第二预设电压值,则可以确定继电器出现触点发生黏连、线圈失效等故障而未断开,进而持续输出压缩机停机的驱动信号,从而进一步确保压缩机COMP停机。
在一些实施例中,压缩机驱动装置还可以包括故障报警电路,例如声光报警电路,或者也可以输出故障检测信号至室内机、室外机等的主控制器,以使主控制器输出相应的报警信号,从而通知用户对继电器进行检修。
参照图1和图2,在一实施例中,所述驱动控制电路30包括压缩机驱动芯片U1,所述压缩机驱动芯片U1,用于控制压缩机COMP工作,并检测压缩机COMP的运行状态。
压缩机COMP的驱动装置中,通常设置有压缩机驱动芯片U1、整流桥电路、滤波电容、逆变桥电路、在一些实施例中,还可以设置有PFC电路,PFC电路用于直流母线的输入电流的波形跟随输入电压的波形,对接入的直流母线电压进行功率因素校正后,输出至逆变桥电路。逆变桥电路可以采用智能功率模块31来实现,智能功率模块31(IPM,Intelligent Power Module)内集成有HVIC(high voltage integrated circuit,高压集成电路)、LVIC(low voltage integrated circuit,低压集成电路)以及IGBT、MOS管等功率开关管,组成的三相桥臂电路,在智能功率模块31中,还可以集成有电压检测电路、电流检测电路、温度传感器等用于检测压缩机COMP状态的检测电路。在压缩机驱动芯片U1和IPM之间,还设置有信号隔离模块32,压缩机驱动芯片U1通过信号隔离模块32给IPM发送控制信号,该控制信号可以例如是PWM(Pulse Width Modulation,脉冲宽度调制)信号,该控制信号用于控制IPM内部对应的功率开关管的通断,进而控制制冷***压缩机COMP的运转。此外,压缩机驱动芯片U1、智能功率模块31和信号隔离模块32的供电可以通过开关电源来实现。
其中,压缩机驱动芯片U1的内部集成模数转换电路、计时器、比较器、运算放大器等硬件电路,以及用于实现压缩机COMP驱动的软件算法程序,压缩机驱动芯片U1可以基于室内机的主控芯片的控制,或者基于室外机主控芯片的控制,并根据接收到 的控制信号,输出频率可调的压缩机驱动信号,以实现压缩机COMP的控制。具体为,在接收到主控芯片发送过来的目标转速后,基于软件算法驱动压缩机COMP达到目标转速。在一些实施例中,压缩机驱动芯片U1也可以通过检测到的压缩机COMP电流、电压等检测信号获取压缩机COMP的转速信息,进而获取压缩机COMP的状态信息。
参照图1和图2,在一实施例中,所述驱动控制电路30还包括检测控制芯片U2,所述检测控制芯片U2与所述压缩机驱动芯片U1连接;
所述检测控制芯片U2,用于根据所述压缩机驱动芯片U1检测的压缩机COMP的运行状态,确定压缩机COMP处于工作状态时,检测所述压力开关SW1的开关状态。
本实施例中,检测控制芯片U2与压缩机驱动芯片U1通讯连接,在确定压缩机COMP处于工作状态时,检测压力开关SW1的开关状态,以及实时检测直流母线电压。而在确定压缩机COMP停机工作时,检测控制芯片U2则停止工作,并保持休眠状态,以降低驱动控制电路30自生的功耗,实现节能环保。通过设置检测控制芯片U2来压力开关SW1的开关状态,并根据压力开关SW1的开关状态做相应的控制,从而减少压缩机驱动芯片U1的软件算法,提高压缩机驱动芯片U1对压缩机COMP数据的处理速度,进而可以提高压缩机COMP的驱动效率。
检测控制芯片U2内集成有CPU(中央处理单元)测试寄存器、标志位、运算单元,程序流监控,看门狗,IO(输入输出),RAM(随机存取存储器),ROM(只读存储器),AD(模拟量转数字量)等硬件、软件进行安全功能校验的算法来实现自诊断,以防止故障累计,提高检测控制芯片U2自诊断覆盖率DC(Diagnostic Coverage)。实现对检测控制芯片U2的各部分硬件、软件及时地进行周期性检测,以确保检测控制芯片U2正常工作,从而在压缩机COMP驱动装置出现暂时的***压力过大、压缩机COMP的驱动回路出现过压、短路等事故或者偶发性的部件缺陷,引发故障可能性较高的情况下,能够及时、有效的对压缩机COMP进行停机保护,提高制冷***安全性。
在一实施例中,所述压缩机驱动装置还包括电控板(图未示出),所述电控板设置有插槽,所述检测控制芯片可拆卸的安装于所述插槽内。
本实施例中,检测控制芯片U2可拆卸的设置于插槽中,也即可以根据实际应用的需求选择是否设置检测控制芯片U2。本实施例通过设置检测控制芯片U2,可以在压缩机COMP驱动装置出现暂时的***压力过大、压缩机COMP的驱动回路出现过压、短路等事故或者偶发性的部件缺陷,引发故障可能性较高的情况下,能够及时、有效的对压缩机COMP进行停机保护,提高制冷***安全性。而在一些实施例中,也可以不设置 检测控制芯片U2,以降低生产成本。本实施例通过将检测控制芯片U2设置为插卡(插槽)式,根据实际需求选择性的设置检测控制芯片U2,可以提高压缩机驱动装置的电控板的通用性。
参照图1和图2,在一实施例中,所述驱动控制电路30还包括智能功率模块31及信号隔离模块32,所述信号隔离模块32的输入端与所述压缩机驱动芯片U1的输出端连接,所述信号隔离模块32的输出端与所述智能功率模块31的输入端连接;其中,
所述智能功率模块31,用于根据所述压缩机驱动芯片U1输出的控制信号驱动压缩机COMP以相应的转速运转;
所述检测控制芯片U2还用于在检测所述压力开关SW1断开时,控制所述信号隔离模块32停止工作,以停止输出压缩机驱动信号。
本实施例中,检测控制芯片U2可以根据压力开关SW1压力开关SW1的通断来控制信号隔离模块32工作,当检测到压力开关SW1闭合时,控制信号隔离模块32工作,以使将压缩机驱动芯片U1输出的压缩机驱动信号输出至智能功率模块31,智能功率模块31根据该压缩机驱动信号将接入的直流母线电压转换为交流电能后,输出至压缩机COMP,进而驱动压缩机COMP工作。而当检测到压力开关SW1断开时,控制信号隔离模块32停止工作,从而断开压缩机驱动芯片U1输出的压缩机驱动信号,智能功率模块31在未接收到压缩机驱动信号时,则停止工作,从而控制压缩机COMP停机。其中,信号隔离模块32可以采用光耦来实现,并在导通时实现压缩机驱动信号的输入/输出隔离。
在一些实施例中,检测控制芯片U2和压缩机驱动芯片U1之间还可以新增一个IO口,用于传递压力开关状态,检测控制芯片U2检测压力开关断开/闭合后,会发送0/1信号给压缩机驱动芯片U1,压缩机驱动芯片U1收到此信号后也会控制6路PWM输出关断,达到双重保护的目的。
参照图1和图2,在一实施例中,所述压缩机驱动芯片U1和所述检测控制芯片U2集成于同一芯片中。
可以理解的是,压缩机驱动芯片U1和检测控制芯片U2可以采用两个独立的微控制器来实现,也可以将压缩机驱动芯片U1和检测控制芯片U2集成于同一芯片中,也即该集成芯片可以同时实现压缩机驱动和压缩机停机保护的功能,可以提高驱动控制电路30的集成度,降低压缩机COMP驱动装置的成本,在压缩机驱动芯片U1和检测控制芯片U2集成于同一芯片时,该高集成芯片既可以根据制冷***中的主控芯片输出的控 制信号来实现对压缩机COMP的驱动控制,也可以根据压力开关SW1的开关状态来对压缩机COMP进行停机保护。
本申请还提出一种压缩机压力保护方法,适用于制冷***中。
参照图3,所述制冷***包括压缩机驱动装置,所述压缩机压力保护方法包括以下步骤:
步骤S100、在压缩机正常工作时,检测所述制冷***内的压力值;
本实施例中,可以在制冷***的高压侧的管道回路中设置一个压力开关,以检测***的压力,当***压力达到压力开关的保护阈值时,压力开关就会动作,以切断压缩机的电源,使压缩机停止工作;当***压力降到压力开关的恢复阈值时,压力开关会重新闭合,接通压缩机的电源。
步骤S200、在所述制冷***内的压力值大于预设阈值时,断开压缩机的供电回路以及控制所述压缩机驱动装置停止输出压缩机驱动信号。
本实施例中,在制冷***内的压力值大于预设阈值时,可以控制压力开关的断开,从而断开压缩机供电回路,使得压缩机不会在高压的状态下运行,从而对压缩机起到保护作用。本实施例还可以在检测到压力断开时,停止输出压缩机驱动信号,从而进一步确保压缩机停机。
本申请在压缩机正常工作时,检测所述制冷***内的压力值,并在检测的压力值大于预设压力阈值时,断开压缩机的供电回路并控制所述压缩机驱动装置停止输出压缩机驱动信号,以控制压缩机停止工作,从而进一步保证压缩机能够断电且能够停止接收驱动信号,从而保证压缩机能够安全可靠的运行,在制冷***压力异常时,也能可靠的控制压缩机停机。
参照图4,在一实施例中,在所述制冷***内的压力值大于预设阈值时,断开压缩机的供电回路以及控制所述压缩机驱动装置停止输出压缩机驱动信号包括:
步骤S210、在所述制冷***内的压力值大于预设阈值时,断开压缩机的供电回路后检测压缩机的供电回路中直流母线上的电压值;
步骤S220、在直流母线上的电压值大于或等于预设电压值时,控制所述压缩机驱动装置停止输出压缩机驱动信号。
本实施例中,在压力开关断开后,可能会因为继电器的触点发生黏连、线圈失效等故障,使得在继电器的电源断开后,仍有电源输入,而使得直流母线电压输出至驱动控制电路,并给后级驱动控制电路提供稳定直流电源,驱动控制电路将该稳定直流电 源进行逆变,控制压缩机运行。从而出现压缩机断电不及时而继续工作,导致制冷***的压力持续增大,进而导致制冷***器件损坏或者影响长期运行可靠性。为了避免上述问题发生,需要在压缩机停机保护后,通过驱动控制电路检测压力开关的状态,在压力开关处于断开状态的情况下,当检测到直流母线电压大于或等于预设电压值时,则可以确定,继电器故障,进而停止输出压缩机驱动信号,从而进一步确保压缩机停机。
本申请还提出一种空调器,包括如上所述的压缩机驱动装置。该压缩机驱动装置的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本申请空调器中使用了上述压缩机驱动装置,因此,本申请空调器的实施例包括上述压缩机驱动装置全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (11)

  1. 一种压缩机驱动装置,用于制冷***的压缩机驱动,其特征在于,所述压缩机驱动装置包括依次连接的三相交流电源输入端、继电器模组、整流电路及驱动控制电路;
    所述整流电路,用于将接入的交流电转换为直流电后输出至直流母线;
    所述驱动控制电路,用于将所述直流母线输出的直流电转换为压缩机驱动电能,以驱动压缩机工作;
    所述压缩机驱动装置还包括:压力开关,所述压力开关串联于所述继电器模组的供电回路;所述压力开关,用于检测所述制冷***内的压力值,并在检测的压力值大于预设压力阈值时,断开所述继电器模组的供电回路;
    所述驱动控制电路,还用于检测所述压力开关的开关状态,在所述压力开关断开时,控制压缩机停止工作。
  2. 如权利要求1所述的压缩机驱动装置,其特征在于,所述驱动控制电路的检测端与所述直流母线连接,所述驱动控制电路还用于实时检测所述直流母线电压,并在所述压缩机工作时,检测到所述直流母线电压下降至第一预设电压值时,控制所述压缩机停止工作。
  3. 如权利要求2所述的压缩机驱动装置,其特征在于,所述驱动控制电路还用于在检测到所述压力开关断开后,并在检测到的所述直流母线电压大于或等于第二预设电压值时,控制压缩机持续停止工作。
  4. 如权利要求3所述的压缩机驱动装置,其特征在于,所述驱动控制电路,还用于在检测到所述压力开关断开时开始计时,并在达到预设时间后,检测所述直流母线上的电压值是否大于第二预设电压值;
    在所述直流母线上的电压值大于或者等于第二预设电压值时,确定所述继电器模组出现故障,并输出故障检测信号。
  5. 如权利要求1所述的压缩机驱动装置,其特征在于,所述驱动控制电路包括压缩机驱动芯片,
    所述压缩机驱动芯片,用于控制压缩机工作,并检测压缩机的运行状态。
  6. 如权利要求5所述的压缩机驱动装置,其特征在于,所述驱动控制电路还包括检测 控制芯片,所述检测控制芯片与所述压缩机驱动芯片连接;
    所述检测控制芯片,用于根据所述压缩机驱动芯片输出的压缩机状态信号,确定压缩机处于工作状态时,检测所述压力开关的开关状态。
  7. 如权利要求6所述的压缩机驱动装置,其特征在于,所述压缩机驱动装置还包括电控板,所述电控板设置有插槽,所述检测控制芯片可拆卸的安装于所述插槽内。
  8. 如权利要求6所述的压缩机驱动装置,其特征在于,所述驱动控制电路还包括智能功率模块及信号隔离模块,所述信号隔离模块的输入端与所述压缩机驱动芯片的输出端连接,所述信号隔离模块的输出端与所述智能功率模块的输入端连接;其中,
    所述智能功率模块,用于根据所述压缩机驱动芯片输出的控制信号驱动压缩机以相应的转速运转;
    所述检测控制芯片还用于在检测所述压力开关断开时,控制所述信号隔离模块停止工作,以停止输出压缩机驱动信号;
    和/或,所述检测控制芯片还用于在检测所述压力开关断开时,控制所述压缩机驱动芯片停止输出压缩机驱动信号。
  9. 一种压缩机压力保护方法,适用于制冷***中,所述制冷***包括压缩机驱动装置,其特征在于,所述压缩机压力保护方法包括以下步骤:
    在压缩机正常工作时,检测所述制冷***内的压力值;
    在所述制冷***内的压力值大于预设阈值时,断开压缩机的供电回路以及控制所述驱动装置停止输出压缩机驱动信号。
  10. 如权利要求9所述的压缩机压力保护方法,其特征在于,在所述制冷***内的压力值大于预设阈值时,断开的供电回路以及控制所述驱动装置停止输出压缩机驱动信号包括:
    在所述制冷***内的压力值大于预设阈值时,断开压缩机的供电回路后检测压缩机的供电回路中直流母线上的电压值;
    在直流母线上的电压值大于或等于预设电压值时,控制所述压缩机驱动装置停止输出压缩机驱动信号。
  11. 一种空调器,其特征在于,包括如权利要求1至8任意一项所述的压缩机驱动装 置,或者,使用了如权利要求9或10所述的压缩机压力保护方法。
PCT/CN2020/077829 2019-09-09 2020-03-04 压缩机驱动装置、压缩机压力保护方法及空调器 WO2021047153A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20862470.0A EP3936781B1 (en) 2019-09-09 2020-03-04 Compressor driving device, compressor pressure protection method, and air conditioner
US17/489,497 US11933509B2 (en) 2019-09-09 2021-09-29 Compressor driving device, compressor pressure protection method, and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910855486.XA CN110594953A (zh) 2019-09-09 2019-09-09 压缩机驱动装置、压缩机压力保护方法及空调器
CN201910855486.X 2019-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/489,497 Continuation US11933509B2 (en) 2019-09-09 2021-09-29 Compressor driving device, compressor pressure protection method, and air conditioner

Publications (1)

Publication Number Publication Date
WO2021047153A1 true WO2021047153A1 (zh) 2021-03-18

Family

ID=68858980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077829 WO2021047153A1 (zh) 2019-09-09 2020-03-04 压缩机驱动装置、压缩机压力保护方法及空调器

Country Status (4)

Country Link
US (1) US11933509B2 (zh)
EP (1) EP3936781B1 (zh)
CN (1) CN110594953A (zh)
WO (1) WO2021047153A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186648A1 (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 空気調和機
CN110594953A (zh) 2019-09-09 2019-12-20 广东美的暖通设备有限公司 压缩机驱动装置、压缩机压力保护方法及空调器
CN110848125B (zh) * 2019-12-02 2021-04-27 广东美的暖通设备有限公司 控制电路、空调器和控制方法
CN111928427A (zh) * 2020-07-30 2020-11-13 海信(山东)空调有限公司 空调器控制***、空调器及其控制方法
CN112984739B (zh) * 2021-04-08 2022-03-18 珠海格力电器股份有限公司 空调控制方法、空调控制装置、空调及存储介质
WO2022218266A1 (zh) * 2021-04-16 2022-10-20 杭州先途电子有限公司 控制器、空调及高压保护电路
CN113871253A (zh) * 2021-10-15 2021-12-31 深圳英飞源技术有限公司 一种继电器抗拉弧电路及控制方法
CN117997144B (zh) * 2024-04-02 2024-06-07 珠海格力电器股份有限公司 主控驱动一体化电路、控制器主板及空调设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器
CN107084514A (zh) * 2017-06-26 2017-08-22 广东美的暖通设备有限公司 一种用于空调***压力保护的装置和空调***
KR20190072893A (ko) * 2017-12-18 2019-06-26 엘지전자 주식회사 압축기 보호 기능을 가지는 공기 조화기
CN110594953A (zh) * 2019-09-09 2019-12-20 广东美的暖通设备有限公司 压缩机驱动装置、压缩机压力保护方法及空调器
CN111005862A (zh) * 2019-12-16 2020-04-14 广东美的暖通设备有限公司 压力保护电路、控制方法和计算机可读存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277032A (en) * 1992-07-17 1994-01-11 Cfc Reclamation And Recycling Service, Inc. Apparatus for recovering and recycling refrigerants
WO1999022138A1 (en) * 1997-10-28 1999-05-06 Coltec Industries, Inc. Compressor system and method and control for same
WO2010119620A1 (ja) * 2009-04-17 2010-10-21 ダイキン工業株式会社 電源回路、及び電源回路の制御プログラムを記憶したコンピュータ読取可能な記憶媒体
CN205232076U (zh) * 2015-12-04 2016-05-11 重庆美的通用制冷设备有限公司 空调***以及离心机组及其变频控制装置
US10823444B2 (en) * 2017-03-31 2020-11-03 Johnson Controls Technology Company Pressure control device
CN107143985B (zh) * 2017-06-26 2020-01-31 广东美的暖通设备有限公司 一种用于空调***压力保护的装置和空调***
CN107091517B (zh) * 2017-06-30 2023-09-12 珠海格力电器股份有限公司 空调机组的保护控制方法、装置以及空调机组
CN108662730B (zh) * 2018-03-30 2021-02-12 广东美芝制冷设备有限公司 制冷设备的防护***和用于压缩机安全运行的保护方法
CN109545620B (zh) * 2018-11-08 2020-02-04 青岛海信日立空调***有限公司 一种继电器的保护电路及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器
CN107084514A (zh) * 2017-06-26 2017-08-22 广东美的暖通设备有限公司 一种用于空调***压力保护的装置和空调***
KR20190072893A (ko) * 2017-12-18 2019-06-26 엘지전자 주식회사 압축기 보호 기능을 가지는 공기 조화기
CN110594953A (zh) * 2019-09-09 2019-12-20 广东美的暖通设备有限公司 压缩机驱动装置、压缩机压力保护方法及空调器
CN111005862A (zh) * 2019-12-16 2020-04-14 广东美的暖通设备有限公司 压力保护电路、控制方法和计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936781A4 *

Also Published As

Publication number Publication date
US20220018563A1 (en) 2022-01-20
EP3936781A4 (en) 2022-06-29
US11933509B2 (en) 2024-03-19
EP3936781B1 (en) 2024-06-12
EP3936781A1 (en) 2022-01-12
CN110594953A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2021047153A1 (zh) 压缩机驱动装置、压缩机压力保护方法及空调器
CN101197532B (zh) 冷冻装置及用于冷冻装置的逆变装置
US8988836B2 (en) Power circuit, and computer-readable recording medium storing a control program for power circuits
CN104976731B (zh) 空调控制器及其安全控制电路
CN102032650B (zh) 空调监控***
CN101556069B (zh) 调速装置、空调***和空调***的调速方法
CN103512146B (zh) 空调控制方法及装置
CN104110780A (zh) 空调器及其电辅热的控制方法和***
AU2007236906B2 (en) Control Apparatus
CN104949269A (zh) 一种模块温度过高的***控制方法以及装置
CN105423484A (zh) 一种空调制冷剂不足的检测方法及检测电路
CN110044035A (zh) 变频空调控制器容错电路和控制方法
CN113328661A (zh) 一种变频空调器及一种直流母线电压的控制电路和方法
WO2023241199A1 (zh) 通信供电电路、控制方法、装置、存储介质和空调设备
JPH02230045A (ja) 空気調和装置
CN201518467U (zh) 单相电机软启动器及具有该软启动器的空调
CN114440300A (zh) 空调器、空调器的控制方法和可读存储介质
CN208316296U (zh) 一种过电压保护电路以及具有该电路的压缩机和空调器
CN219889732U (zh) 通讯故障检测电路及空调器
CN207196825U (zh) 空调***的控制电路
CN210039063U (zh) 冷干机跳闸报警装置
JP2002147906A (ja) 冷凍装置
CN114421429B (zh) 变频器保护装置、变频器及空调器
CN205507574U (zh) 一种变压器自动冷却***
JPH02272260A (ja) 空気調和装置の運転制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020862470

Country of ref document: EP

Effective date: 20211005

NENP Non-entry into the national phase

Ref country code: DE