WO2021046839A1 - Group indication of uplink resource allocation from a resource pool - Google Patents

Group indication of uplink resource allocation from a resource pool Download PDF

Info

Publication number
WO2021046839A1
WO2021046839A1 PCT/CN2019/105823 CN2019105823W WO2021046839A1 WO 2021046839 A1 WO2021046839 A1 WO 2021046839A1 CN 2019105823 W CN2019105823 W CN 2019105823W WO 2021046839 A1 WO2021046839 A1 WO 2021046839A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink resources
pool
ues
uplink
bit
Prior art date
Application number
PCT/CN2019/105823
Other languages
French (fr)
Inventor
Qiaoyu Li
Chao Wei
Hao Xu
Jing LEI
Wanshi Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/105823 priority Critical patent/WO2021046839A1/en
Publication of WO2021046839A1 publication Critical patent/WO2021046839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • aspects of the disclosure relate generally to wireless communications and to techniques and apparatuses for a group indication of an uplink resource allocation from a resource pool.
  • Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G networks) , a third-generation (3G) high speed data, Internet-capable wireless service, and a fourth-generation (4G) service (e.g., Long-Term Evolution (LTE) , WiMax) .
  • 1G first-generation analog wireless phone service
  • 2G second-generation
  • 3G third-generation
  • 4G fourth-generation
  • LTE Long-Term Evolution
  • WiMax Worldwide Interoperability for Microwave Access
  • a fifth generation (5G) mobile standard calls for higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements.
  • the 5G standard also referred to as “New Radio” or “NR”
  • NR Next Generation Mobile Networks Alliance
  • NR Next Generation Mobile Networks Alliance
  • 5G mobile communications should be significantly enhanced compared to the current 4G /LTE standard.
  • signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
  • UEs e.g., NR-Light UEs
  • mixed or time-sensitive resource requirements e.g., lower-resolution periodic traffic intermingled with aperiodic bursty and higher-resolution traffic
  • Embodiments of the disclosure are thereby directed to a resource utilization scheme to provide a more efficient downlink resource utilization via a group common (GC) -DCI.
  • GC group common
  • a group of UEs e.g., video cameras
  • the GC-DCI is used to convey an allocation of uplink resources among the pool of uplink resources to one or more UEs in the group of UEs.
  • the apparatus may be a UE.
  • the UE may transmit, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs.
  • the UE may further receive, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups.
  • GC group common
  • DCI downlink control information
  • Each of either the plurality of bits or the plurality of bit groups may correspond respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, may be configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs.
  • a method, a computer-readable medium, and an apparatus may be a UE.
  • the UE may transmit, on an uplink dedicated resource, a request for access to at least portion of a pool of uplink resources associated with a plurality of UEs.
  • the UE may further receive, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups.
  • GC group common
  • DCI downlink control information
  • Each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, and each of the plurality of bit groups may be configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  • the apparatus may be a base station.
  • the base station may receive, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs.
  • the base station may further determine, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs.
  • the base station may further transmit, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups.
  • GC group common
  • DCI downlink control information
  • Each of either the plurality of bits or the plurality of bit groups may correspond respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, may be configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE.
  • the apparatus may be a base station.
  • the base station may receive, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs.
  • the base station may further determine, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs.
  • the base station may further transmit, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups.
  • GC group common
  • DCI downlink control information
  • FIG. 1 is diagram illustrating an example of a wireless communication network.
  • FIG. 3 illustrates a communications system in accordance with an embodiment of the disclosure.
  • FIG. 4 illustrates an exemplary process of receiving an uplink resource allocation according to an aspect of the disclosure.
  • FIG. 5 illustrates an exemplary process of conveying an uplink resource allocation according to an aspect of the disclosure.
  • FIG. 6B illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure.
  • FIG. 6C illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure.
  • FIG. 7 illustrates an exemplary process of receiving an uplink resource allocation according to an aspect of the disclosure.
  • FIG. 8 illustrates an exemplary process of conveying an uplink resource allocation according to an aspect of the disclosure.
  • FIG. 9 illustrates an example implementation of the processes of FIGS. 4-5 and 7-8, respectively, in accordance with an embodiment of the disclosure.
  • FIG. 10 is a conceptual data flow diagram illustrating data flow between different means/components according to an aspect of the disclosure.
  • FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to an aspect of the disclosure.
  • FIG. 12 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to another aspect of the disclosure.
  • processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • One or more processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • magnetic disk storage magnetic disk storage or other magnetic storage devices
  • FIG. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a 5G BS, a Node B, a gNB, a 5G NB, an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • MTC machine-type communication
  • eMTC evolved or enhanced machine-type communication
  • MTC may refer to MTC or eMTC.
  • MTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT UEs, eMTC UEs, coverage enhancement (CE) mode UEs, bandwidth-limited (BL) UEs, and other types of UEs that operate using diminished power consumption relative to a baseline UE may be referred to herein as cellular IoT (cIoT) UEs.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Access to the air interface may be controlled, for example, using a unified access control (UAC) system in which UEs are associated with an access identity (e.g., an access class and/or the like) , which may aim to ensure that certain high-priority UEs (e.g., emergency response UEs, mission critical UEs, and/or the like) can access the air interface even in congested conditions.
  • UAC unified access control
  • Updates to the UAC parameters e.g., priority levels associated with access identities, which access identities are permitted to access the air interface, and/or the like
  • a message such as a paging message or a direct indication information, which may conserve battery power of cIoT UEs.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • FIG. 1 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 1.
  • FIG. 2 shows a block diagram 200 of a design of base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIG. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, may select a modulation and coding scheme (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding scheme
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive (RX) processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , a reference signal received quality (RSRQ) , a channel quality indicator (CQI) , and/or the like.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform one or more techniques associated with UAC parameter updating, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform or direct operations of, for example, process 500 of FIG. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 2 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 2.
  • UEs various device types may be characterized as UEs. Starting in 3GPP Rel. 17, a number of these UE types are being allocated a new UE classification denoted as ‘NR-Light’ . Examples of UE types that fall under the NR-Light classification include wearable devices (e.g., smart watches, etc. ) , industrial sensors, video cameras (e.g., surveillance cameras, etc. ) , and so on. Generally, the UE types grouped under the NR-Light classification are associated with lower communicative capacity.
  • wearable devices e.g., smart watches, etc.
  • video cameras e.g., surveillance cameras, etc.
  • NR-Light UEs may be limited in terms of maximum bandwidth (e.g., 5 MHz, 10 MHz, 20 MHz, etc. ) , maximum transmission power (e.g., 20 dBm, 14 dBm, etc. ) , number of receive antennas (e.g., 1 receive antenna, 2 receive antennas, etc. ) , and so on.
  • Some NR-Light UEs may also be sensitive in terms of power consumption (e.g., requiring a long battery life, such as several years) and may be highly mobile.
  • Protocols related to video surveillance via NR-Light have also been proposed for adoption by 3GPP Rel. 17.
  • One example of such a protocol is ‘large capacity MTC’ (e.g., 100 streams with 2 Mbps per square kilometer) tailored for specific services, such as video in public services (e.g. city surveillance, traffic monitoring, etc. ) or factory services (e.g., fish farm monitoring, mining supervising, etc. ) with low cost and high efficiency.
  • Another example of such a protocol is ‘Mbps everywhere’ (e.g., a large number of UEs or CPEs with fixed QoS uploading in the UL throughout a cell) . Examples of Mbps everywhere include supporting 100+ cameras with 2 Mbps each per square kilometer for public services, supporting 20+ cameras with 25 Mbps each per sector, 1.5 –2 times UL connection density /spectral efficiency (SE) improvement, and so on.
  • SE UL connection density /spectral efficiency
  • FIG. 3 illustrates a communications system 300 in accordance with an embodiment of the disclosure.
  • a plurality of video cameras 302a, 302b and 302c e.g., NR-Light UEs, which may be pluggable or stationary devices
  • the video camera controller 304 is in turn communicatively coupled to gNB 110A, which is in turn communicatively coupled to a control center 306.
  • one or more of the video cameras 302a, 302b and 302c may be implemented as artificial intelligence (AI) -driven video cameras (or smart cameras) whereby motion detection can trigger alarms to the control center 306 and/or can active remote monitoring and HD video uploading.
  • AI artificial intelligence
  • event-triggered video recording in this manner can reduce human effort associated with continuous video streaming and archiving.
  • the video cameras 302a, 302b and 302c may be characterized as providing periodic low-resolution traffic (e.g., when there is no motion detected) and bursty or aperiodic high-resolution traffic (e.g., when motion is detected) .
  • the video cameras 302a, 302b and 302c may also implement smart storage protocols.
  • recorded or archived video data can be structured (e.g., evidence videos may be labeled with metadata characterizing a vehicle plate ID and vehicle color) as opposed to large files of uncategorized video files being stored.
  • UEs such as the above-noted video cameras 302a, 302b and 302c
  • mixed or time-sensitive resource requirements e.g., lower-resolution periodic traffic intermingled with aperiodic bursty and higher-resolution traffic
  • multiple configured grant PUSCH configurations may be allocated to each UE, with each PUSCH configuration having a different throughput limit.
  • lower-resolution video traffic may stream through a lower-throughput PUSCH.
  • a higher-throughput PUSCH can be activated.
  • the additionally activated higher-throughput PUSCH may require deactivation of the UE’s lower-resolution PUSCH.
  • different UEs may request higher-throughput PUSCH concurrently or one following another. Therefore, allocating multiple PUSCHs to each UE may be inefficient in terms of DL resource utilization, since the deactivation and activation may only supported via UE-specific downlink control informations (DCIs) .
  • DCIs downlink control informations
  • a single configured grant PUSCH configuration may be allocated to each UE, whereby the single PUSCH is configured specifically for the lower-resolution video traffic. Then, if bursty and higher-resolution traffic arrives which cannot be handled by the single PUSCH, a separate dynamically scheduled PUSCH.
  • DL resource utilization e.g., especially considering that the bursty and higher-resolution video traffic may last for several minutes.
  • Embodiments of the disclosure are thereby directed to a resource utilization scheme to provide a more efficient DL resource utilization via a group common (GC) -DCI.
  • a group of UEs e.g., video cameras
  • the GC-DCI is used to convey an allocation of uplink resources among the pool of uplink resources to one or more UEs in the group of UEs.
  • FIG. 4 illustrates an exemplary process 400 of receiving an uplink resource allocation according to an aspect of the disclosure.
  • the process 400 of FIG. 4 is performed by UE 120.
  • the UE transmits, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs.
  • the pool of uplink resources may be shared between the plurality of UEs, such that different UEs (or combination of UEs) may access uplink resources from the pool of uplink resources at different times.
  • the uplink dedicated resource over which the request is transmitted at 402 may correspond to a PUCCH.
  • the request may specify a particular number of uplink resources being requested by the UE (or a particular portion of the pool of uplink resources) , while in other designs the request may request uplink resources without designation of a specific number (or amount) of uplink resources.
  • the UE receives, on a downlink control channel in response to the request, a GC-DCI comprising a plurality of bits or a plurality of bit groups.
  • a GC-DCI comprising a plurality of bits or a plurality of bit groups.
  • each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs.
  • the GC-DCI may allocate uplink resource (s) to the UE.
  • the base station may reject the UE’s request from 402, in which case the GC-DCI does not allocate uplink resource (s) to the UE.
  • the downlink control channel over which the GC-DCI is received corresponds to the PDCCH.
  • the UE optionally transmits data on at least one uplink resource allocated to the UE.
  • the transmission of 406 is optional in the sense that this transmission may occur conditionally based on whether the GC-DCI comprises a bit or bit group corresponding to the UE that indicates that the UE is allocated the at least one uplink resource. So, if the GC-DCI did not comprise such a bit or bit or bit group, the transmission at 406 could be omitted.
  • the data optionally transmitted at 406 may correspond to bursty and higher-resolution video traffic.
  • FIG. 5 illustrates an exemplary process 500 of conveying an uplink resource allocation according to an aspect of the disclosure.
  • the process 500 of FIG. 5 is performed by BS 110.
  • the BS receives, on one or more uplink dedicated resources from one or more UEs, one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs.
  • 502 may result from one or more executions of 402 of FIG. 4 at one or more UEs with respect to the same pool of resources.
  • the one or more uplink dedicated resources over which the request (s) are received at 502 may correspond to PUCCH (s) .
  • the request (s) may specify a particular number of uplink resources being requested by a respective UE (or a particular portion of the pool of uplink resources) , while in other designs the request (s) may request uplink resources without designation of a specific number (or amount) of uplink resources, or some combination thereof.
  • the BS determines in response to the one or more requests from 502, an allocation of the pool of uplink resources to at least one of the plurality of UEs.
  • the BS may grant each received request, such that the pool of uplink resources is divided up between each requesting UE.
  • the BS may grant at least one request while rejecting at least one other request, such that less than all requesting UEs receive an allocation from the pool of uplink resources. For example, requests from UEs lacking sufficient priority may be rejected. In another example, if too many UEs are concurrently requesting access to the pool of uplink resources, request (s) may be rejected so as not to over-utilize the pool of uplink resources.
  • the BS e.g., controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220
  • each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE.
  • the downlink control channel over which the GC-DCI is transmitted corresponds to the PDCCH.
  • the transmission at 506 may result in the reception of the GC-DCI at 404 of FIG. 4.
  • the GC-DCI may be configured either with a bit-specific UE association or a bit group-specific UE association.
  • a particular bit or group of bits may be associated with each UE in the plurality (or group) of UEs in the GC-DCI.
  • uplink resources among the pool of uplink resources are allocated in accordance with a UE-to-resource mapping rule that is based on a relative position of the bit or bit group corresponding to a respective UE in the GC-DCI. Implementation examples of this concept are described below with respect to FIGS. 6A-6D.
  • pools of uplink resources 600A-600B may each be characterized as having K resources shared by N UEs, whereby K > 1 and N > 1. Any of the N UEs may request one of the K resources.
  • a respective GC-DCI comprises a bitmap then indicates which uplink resources are actually allocated to particular UEs, whereby a location of a ‘1’ in the bitmap indicates the index of a scheduled UE (i.e., a UE allocated at least one resource from a respective pool of resources) .
  • FIG. 6A illustrates an example implementation of a UE-to-resource mapping rule in accordance with an embodiment of the disclosure.
  • a pool of uplink resources 600A comprises resources A, B, C and D
  • the GC-DCI comprises a bitmap 605A whereby a single bit in the GC-DCI is associated with each UE in a group of eight UEs (UEs 0...7) and an ordering field 610A in the GC-DCI designates the UE-to-resource mapping rule.
  • a UE bit set to “1” indicates that a default uplink resource amount (i.e., one of resources A, B, C or D) is allocated to that UE.
  • the UE-to-resource mapping rule is based on a relative position of the bit corresponding to a respective UE in the GC-DCI.
  • the UE-to-resource mapping rule is based on the ordering field 610A in the GC-DCI being set to “00” so as to indicate that the uplink resources among the pool of uplink resources 600A are to be allocated in a “natural” order that corresponds to an order of the plurality of UEs corresponding to the plurality of bits.
  • the first UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources 600A is UE 2, which is thereby allocated the first uplink resource A from the pool of uplink resources 600A
  • the second UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources is UE 3, which is thereby allocated the second uplink resource B from the pool of uplink resources 600A
  • the third UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources is UE 5, which is thereby allocated the third uplink resource C from the pool of uplink resources 600A.
  • resource D remains unallocated to any of UEs 0...7.
  • FIG. 6B illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure.
  • a pool of uplink resources 600B comprises resources A, B, C and D
  • the GC-DCI comprises a bitmap 605B whereby a single bit in the GC-DCI is associated with each UE in a group of eight UEs (UEs 0...7) and an ordering field 610B in the GC-DCI designates the UE-to-resource mapping rule.
  • a UE bit set to “1” indicates that a default uplink resource amount (i.e., one of resources A, B, C or D) is allocated to that UE.
  • the UE-to-resource mapping rule is based on a relative position of the bit corresponding to a respective UE in the GC-DCI.
  • the UE-to-resource mapping rule is based on the ordering field 610B in the GC-DCI being set to “10” so as to indicate that the uplink resources among the pool of uplink resources 600B are to be allocated in a “shifted” order that corresponds to an order of the plurality of UEs corresponding to either the plurality of bits or the plurality of bit groups.
  • resource C is mapped to the first UE allocated an uplink resource in the GC-DCI
  • resource D is mapped to the second UE allocated an uplink resource in the GC-DCI
  • the first UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources 600B is UE 2, which is thereby allocated the first shifted uplink resource C from the pool of uplink resources 600B
  • the second UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources is UE 3, which is thereby allocated the second shifted uplink resource D from the pool of uplink resources 600B
  • the third UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources is UE 5, which is thereby allocated the third shifted uplink resource A from the pool of uplink resources 600B.
  • resource B remains unallocated to any of UEs 0...7.
  • pools of uplink resources 600C-600D may each be characterized as having K resources shared by N UEs, whereby K > 1 and N > 1. Any of the N UEs may request access to k of the K resources, whereby 0 ⁇ k ⁇ K.
  • a respective GC-DCI comprises a bitmap then indicates which uplink resources are actually allocated to particular UEs, whereby a location of a non-zero bit group in the bitmap indicates the index of a scheduled UE (i.e., a UE allocated at least one resource from a respective pool of resources) .
  • n th bit group [log 2 (k max + 1) ] bits are used to indicate the number of assigned resources, whereby 0 ⁇ k max ⁇ K. So, each UE may request 0, 1, ...k max resources from the pool of uplink resources, whereby k max is the maximum number of uplink resources that can be requested by any particular UE associated with the pool of uplink resources.
  • the values of k max and/or K may be configurable via higher layer signaling (e.g., RRC signaling) .
  • FIG. 6C illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure.
  • a pool of uplink resources 600C comprises resources A, B, C, D, E and F
  • the GC-DCI comprises a bitmap 605C whereby a bit group in the GC-DCI is associated with each UE in a group of eight UEs (UEs 0...7) and an ordering field 610C in the GC-DCI designates the UE-to-resource mapping rule.
  • UEs 0...7 an ordering field 610C in the GC-DCI designates the UE-to-resource mapping rule.
  • a UE bit group set to “1” indicates that a single uplink resource (i.e., one of resources A, B, C, D, E or F) is allocated to that UE
  • a UE bit group set to “2” indicates that two uplink resources (i.e., two of resources A, B, C, D, E or F) are allocated to that UE, and so on.
  • the UE-to-resource mapping rule is based on a relative position of the bit group corresponding to a respective UE in the GC-DCI.
  • the UE-to-resource mapping rule is based on the ordering field 610C in the GC-DCI being set to “000” so as to indicate that the uplink resources among the pool of uplink resources 600C are to be allocated in a “natural” order that corresponds to an order of the plurality of UEs corresponding to the plurality of bit groups.
  • the first UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources 600C is UE 2, which is allocated the first two uplink resources (Aand B) from the pool of uplink resources 600C, and the second UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources is UE 6, which is allocated third uplink resource (C) from the pool of uplink resources 600C.
  • resources D, E and F remain unallocated to any of UEs 0...7.
  • FIG. 6D illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure.
  • a pool of uplink resources 600D comprises resources A, B, C, D, E and F
  • the GC-DCI comprises a bitmap 605D whereby a bit group in the GC-DCI is associated with each UE in a group of eight UEs (UEs 0...7) and an ordering field 610D in the GC-DCI designates the UE-to-resource mapping rule.
  • UEs 0...7 an ordering field 610D in the GC-DCI designates the UE-to-resource mapping rule.
  • a UE bit group set to “1” indicates that a single uplink resource (i.e., one of resources A, B, C, D, E or F) is allocated to that UE, a UE bit group set to “2” indicates that two uplink resources (i.e., two of resources A, B, C, D, E or F) are allocated to that UE, and so on.
  • resource E is mapped to the first resource allocated to any UE in the GC-DCI
  • resource F is mapped to the second resource allocated to any UE in the GC-DCI, and so on.
  • the first UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources 600C is UE 2, which is allocated the first two shifted uplink resources (E and F) from the pool of uplink resources 600D
  • the second UE among UEs 0...7 to be allocated any uplink resource from the pool of uplink resources is UE 6, which is allocated the third shifted uplink resource (A) from the pool of uplink resources 600D.
  • resources B, C and D remain unallocated to any of UEs 0...7.
  • the number of bits in any of the respective ordering fields and/or an association between particular ordering field bit patterns and the associated UE-to-resource mapping rule can be configurable via higher layer signaling (e.g., RRC signaling) .
  • a position of each UE’s bit or bit group in the GC-DCI may be defined by an offset index.
  • a UE assigned an offset index of 0 may correspond to the bit or bit group represented by UE 0 in FIGS. 6A-6D
  • a UE assigned an offset index of 1 may correspond to the bit or bit group represented by UE 1 in FIGS. 6A-6D
  • the offset index may be configurable via higher layer signaling (e.g., RRC signaling) . So, as UEs are added to or removed from the group of UEs associated with the pool of resources, the offset indexes can be updated accordingly.
  • UE-to-resource mapping rules can be implemented in other embodiments.
  • a ‘scrambled’ order UE-to-resource mapping rule can be implemented (e.g., resources A, B, C, D, E and F are scrambled pseudo-randomly or in accordance with a scrambling rule to B, E, F, D, C, A or D, C, F, A, E, B, etc. ) .
  • the manner in which the resource mappings are scrambled is configurable via higher layer signaling (e.g., RRC signaling) .
  • FIG. 7 illustrates an exemplary process 700 of receiving an uplink resource allocation according to an aspect of the disclosure.
  • the process 700 of FIG. 7 is performed by UE 120.
  • the UE transmits, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs.
  • the pool of uplink resources may be shared between the plurality of UEs, such that different UEs (or combination of UEs) may access uplink resources from the pool of uplink resources at different times.
  • the uplink dedicated resource over which the request is transmitted at 702 may correspond to a PUCCH.
  • the request may specify a particular number of uplink resources being requested by the UE (or a particular portion of the pool of uplink resources) , while in other designs the request may request uplink resources without designation of a specific number (or amount) of uplink resources.
  • the UE receives, on a downlink control channel in response to the request, a GC-DCI comprising a plurality of bit groups.
  • a GC-DCI comprising a plurality of bit groups.
  • each of the plurality of bit groups corresponds respectively to one of the plurality of UEs.
  • each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  • the GC-DCI may allocate uplink resource (s) to the UE.
  • the base station may reject the UE’s request from 702, in which case the GC-DCI does not allocate uplink resource (s) to the UE.
  • the downlink control channel over which the GC-DCI is received corresponds to the PDCCH.
  • the bitmap can be repeated (or propagated) at least in part to produce a repeated bitmap that spans the pool of uplink resources. Then, each ‘1’ in the repeated bitmap may indicate a particular uplink resource allocated to an associated UE. Accordingly, the determination of 706 may be conditional based on whether repeating of a bitmap is needed to derive a resource pattern associated with an uplink resource allocation from the pool of resources to the UE.
  • the UE optionally transmits data on at least one uplink resource allocated to the UE.
  • the transmission of 708 is optional in the sense that this transmission may occur conditionally based on whether the GC-DCI comprises a bit group corresponding to the UE that indicates that the UE is allocated the at least one uplink resource. So, if the GC-DCI did not comprise such a bit group (e.g., the UE’s resource pattern is all zeroes) , the transmission at 708 could be omitted.
  • the data optionally transmitted at 708 may correspond to bursty and higher-resolution video traffic.
  • FIG. 8 illustrates an exemplary process 800 of conveying an uplink resource allocation according to an aspect of the disclosure.
  • the process 800 of FIG. 8 is performed by BS 110.
  • the request (s) may specify a particular number of uplink resources being requested by a respective UE (or a particular portion of the pool of uplink resources) , while in other designs the request (s) may request uplink resources without designation of a specific number (or amount) of uplink resources, or some combination thereof.
  • the BS determines in response to the one or more requests from 802, an allocation of the pool of uplink resources to at least one of the plurality of UEs.
  • the BS may grant each received request, such that the pool of uplink resources is divided up between each requesting UE.
  • the BS may grant at least one request while rejecting at least one other request, such that less than all requesting UEs receive an allocation from the pool of uplink resources. For example, requests from UEs lacking sufficient priority may be rejected. In another example, if too many UEs are concurrently requesting access to the pool of uplink resources, request (s) may be rejected so as not to over-utilize the pool of uplink resources.
  • the BS e.g., controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220
  • each of either the plurality of bit groups corresponds respectively to one of the plurality of UEs, and each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  • the downlink control channel over which the GC-DCI is received corresponds to the PDCCH.
  • the BS e.g., controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238) optionally receives data on the one or more uplink resources from the at least one UE.
  • the reception of 808 is optional in the sense that the at least one UE may not actually perform any transmission despite being allocated one or more uplink resources on which to do so.
  • the data optionally received at 808 may correspond to bursty and higher-resolution video traffic.
  • the pool of uplink resources may comprise K resources be shared between (or associated with) N UEs, whereby K > 1 and N > 1.
  • the uplink resources may be assigned by the base station (or gNB) more flexibly than in FIGS. 5-6 where an ordering field is used in some designs.
  • the resource pattern may be indicated via a bitmap that either spans the entire pool or uplink resources or is configured as a ‘pattern’ to be repeated (at least in part) as described above with respect to FIG. 7.
  • the resource pattern may be indicated via an M-bit pattern that indicates a subset of resources in the pool of uplink resources.
  • the mapping between the M-bit patterns and the subset of resources can be fixed or configured via higher layer signaling (e.g., RRC signaling) .
  • a first bit in the M-bit pattern may indicate the first uplink resource (e.g., Resource A) in the pool of uplink resources (e.g., set to ‘1’ if allocated to an associated UE)
  • a second bit in the M-bit pattern may indicate the second uplink resource (e.g., Resource B) in the pool of uplink resources (e.g., set to ‘1’ if allocated to an associated UE) , and so on.
  • bitmap of (0, 1, 0, 1) is repeated four (4) times to produce a bitmap with 16 bits with one bit that maps to each resource, i.e., (0, 1, 0, 1; 0, 1, 0, 1; 0, 1, 0, 1; 0, 1, 0, 1) associated with the 16 resources of the pool of uplink resources.
  • the number of ‘1s’ in the repeated bitmap indicates a total number of resources assigned to the associated UE.
  • each 4-bit pattern need not be repeated at the corresponding UEs. However, if K > 4, then each 4-bit pattern may be repeated (at least in part) to produce a K-bit pattern that represents the resource pattern across the pool of uplink resources. Further, it will be appreciated from a review of Table 1 that per pattern index 15, a UE that is not allocated any resources from the pool of uplink resources can be associated with a 4-bit pattern that is (in this example) set to all zeroes. Of course, in other designs, the bit settings can be reversed such that ‘0’ indicates a resource allocation whereas ‘1’ indicates the lack of a resource allocation.
  • an association between each pattern index and a corresponding resource pattern is configurable based on higher layer signaling (e.g., RRC signaling) .
  • FIG. 9 illustrates an example implementation 900 of the processes 400-500 and 700-800 of FIGS. 4-5 and 7-8, respectively, in accordance with an embodiment of the disclosure.
  • NR-Light UE 902 NR-Light UE 904 and NR-Light UE 906 are being served by gNB 908 and belong to a group of UEs (e.g., video cameras) associated with a pool of uplink resources, as described above with respect to FIGS. 4-5 and 7-8.
  • NR-Light UEs 902 and 904 request access to at least a portion of the pool of uplink resources.
  • the requests of 910-912 may correspond to any of the requested noted above with respect to 402 of FIG. 4, 502 of FIG. 5, 702 of FIG. 7 or 802 of FIG. 8.
  • the requests of 910-912 may or may not specify a requested number of resources from the pool of uplink resources.
  • the gNB 908 determines an allocation of the pool of uplink resources to at least one of the requesting NR-Light UEs 902 and 904 in response to the requests from 910-912.
  • gNB 908 determines at 914 to grant the request of NR-Light UE 902 from 910 while rejecting the request of NR-Light UE 904 from 912.
  • gNB 908 transmits a GC-DCI that comprises a plurality of bits or bit groups that convey the grant of resource (s) from the pool of uplink resources to NR- Light UE 902 while also indicating the non-grant of resource (s) from the pool of uplink resources to NR-Light UE 904.
  • the GC-DCI transfer at 918 may correspond to any of the GC-DCI transfers from 404 of FIG. 4, 506 of FIG. 5, 704 of FIG. 7 or 806 of FIG. 8.
  • FIG. 10 is a conceptual data flow diagram 1000 illustrating the data flow between different means/components in exemplary apparatuses 1002 and 1050.
  • the apparatus 1002 may be a UE in communication with an apparatus 1050, which may be a cell (e.g., a gNB or base station) .
  • a cell e.g., a gNB or base station
  • the apparatus 1002 includes a transmission component 1004, which may correspond to transmitter circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, antenna (s) 252a . . . 252r, modulators (s) 254a . . . 254r, TX MIMO processor 266, TX processor 264.
  • the apparatus 1002 further includes an uplink scheduling component 1006, which may correspond to processor circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, TX MIMO processor 266, TX processor 264, etc.
  • the apparatus 1002 further includes a reception component 1008, which may correspond to receiver circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258.
  • the apparatus 1050 includes a reception component 1052, which may correspond to receiver circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238, etc.
  • the apparatus 1050 further a includes resource pool allocation determination component 1054, which may correspond to processor circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240.
  • the apparatus 1050 further includes a transmission component 1056, which may correspond to transmission circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220.
  • the transmission component 1004 of the apparatus 1002 may transmit a request for resources from a pool of uplink resources to the reception component 1052 of the apparatus 1050.
  • the reception component 1052 receives the request from the transmission component 1004 of the apparatus 1002 (and possibly, one or more similar requests from other apparatuses associated with the pool of uplink resources) and forwards the request (s) to the resource pool allocation determination component 1054.
  • the resource pool allocation determination component 1054 determines a manner by which one or more resources from the pool of uplink resources are to be allocated among the requesting apparatus (es) .
  • the resource pool allocation determination component 1054 forwards a result of the determination to the transmission component 1056, which transmits a GC-DCI indicating the resource allocation at least to the reception component 1008 of the apparatus 1002 (and possibly, to other apparatuses that are also associated with the pool of uplink resources) .
  • the reception component 1008 forwards the GC-DCI to the uplink scheduling component 1006, which optionally schedules uplink data for transmission by the transmission component 1004 on resources from the pool of uplink resources that are allocated to the apparatus 1002 by the GC-DCI.
  • One or more components of the apparatus 1002 and apparatus 1050 may perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGS. 4-5 and 7-9. As such, each block in the aforementioned flowcharts of FIGS. 4-5 and 7-9 may be performed by a component and the apparatus 1002 or apparatus 1050 may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation for an apparatus 1002 employing a processing system 1114.
  • the processing system 1114 may be implemented with a bus architecture, represented generally by the bus 1124.
  • the bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints.
  • the bus 1124 links together various circuits including one or more processors and/or hardware components, represented by the processor 1104, the components 1004, 1006 and 1008, and the computer-readable medium /memory 1106.
  • the bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 114 may be coupled to a transceiver 1110.
  • the transceiver 1110 is coupled to one or more antennas 1120.
  • the transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1110 receives a signal from the one or more antennas 1120, extracts information from the received signal, and provides the extracted information to the processing system 1114, specifically the reception component 1004.
  • the transceiver 1110 receives information from the processing system 1114, specifically the transmission component 1008, and based on the received information, generates a signal to be applied to the one or more antennas 1120.
  • the processing system 1114 includes a processor 1104 coupled to a computer-readable medium /memory 1106.
  • the processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1106.
  • the software when executed by the processor 1104, causes the processing system 1114 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1106 may also be used for storing data that is manipulated by the processor 1104 when executing software.
  • the processing system 1114 further includes at least one of the components 1004, 1006 and 1008.
  • the components may be software components running in the processor 1104, resident/stored in the computer readable medium /memory 1106, one or more hardware components coupled to the processor 1104, or some combination thereof.
  • the processing system 1114 may be a component of the UE 120 of FIG. 2 and may include the memory 282, and/or at least one of the TX processor 264, the RX processor 258, and the controller/processor 280.
  • the apparatus 1002 for wireless communication includes means for transmitting, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs, and means for receiving, on a downlink control channel in response to the request, a group common GC-DCI comprising a plurality of bits or a plurality of bit groups, wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs.
  • the apparatus 1002 for wireless communication includes means for transmitting, on an uplink dedicated resource, a request for access to at least portion of a pool of uplink resources associated with a plurality of UEs, and means for receiving, on a downlink control channel in response to the request, a GC-DCI comprising a plurality of bit groups, wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  • the apparatus 1002 may also optionally include means for transmitting data on the at least one uplink resource allocated to the UE in accordance with the associated resource pattern.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1002 and/or the processing system 1114 of the apparatus 1002 configured to perform the functions recited by the aforementioned means.
  • the processing system 1114 may include the TX processor 264, the RX processor 258, and the controller/processor 280.
  • FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1050 employing a processing system 1214.
  • the processing system 1214 may be implemented with a bus architecture, represented generally by the bus 1224.
  • the bus 1224 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1214 and the overall design constraints.
  • the bus 1224 links together various circuits including one or more processors and/or hardware components, represented by the processor 1204, the components 1052, 1054 and 1056, and the computer-readable medium /memory 1206.
  • the bus 1224 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1214 may be coupled to a transceiver 1210.
  • the transceiver 1210 is coupled to one or more antennas 1220.
  • the transceiver 1210 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1210 receives a signal from the one or more antennas 1220, extracts information from the received signal, and provides the extracted information to the processing system 1214, specifically the reception component 1052.
  • the transceiver 1210 receives information from the processing system 1214, specifically the transmission component 1056, and based on the received information, generates a signal to be applied to the one or more antennas 1220.
  • the processing system 1214 includes a processor 1204 coupled to a computer-readable medium /memory 1206.
  • the processor 1204 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1206.
  • the software when executed by the processor 1204, causes the processing system 1214 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1206 may also be used for storing data that is manipulated by the processor 1204 when executing software.
  • the processing system 1214 further includes at least one of the components 1052 and 1054.
  • the components may be software components running in the processor 1204, resident/stored in the computer readable medium /memory 1206, one or more hardware components coupled to the processor 1204, or some combination thereof.
  • the processing system 1214 may be a component of the BS 110 of FIG. 2 and may include the memory 242, and/or at least one of the TX processor 220, the RX processor 238, and the controller/processor 240.
  • the apparatus 1050 for wireless communication includes means for receiving, on one or more uplink dedicated resources from one or more UEs, one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs, means for determining, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs, means for transmitting, on a downlink control channel based on the determining, a group common GC-DCI comprising a plurality of bits or a plurality of bit groups, wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE.
  • the apparatus 1050 for wireless communication includes means for receiving, on one or more uplink dedicated resources from one or more UEs, one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs, means for determining, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs, means for transmitting, on a downlink control channel based on the determining, a GC-DCI comprising a plurality of bit groups, wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  • the apparatus 1050 for wireless communication further optionally includes means for receiving data on the one or more uplink resources from the at least one UE.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1050 and/or the processing system 1214 of the apparatus 1050 configured to perform the functions recited by the aforementioned means.
  • the processing system 1014 may include the TX processor 220, the RX processor 238, and the controller/processor 240.
  • Combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In one embodiment, UEs are associated with a pool of uplink resources. A BS conveys an allocation of resources from the pool of uplink resources via a GC-DCI with a plurality of bits or bit groups, whereby each bit or bit group is corresponds to a respective one of the UEs and indicates at least whether the corresponding UE is allocated one or more uplink resources from the pool of uplink resources. In some designs where bit groups are made part of the GC-DCI, each bit group may further indicate an amount (or number) of allocated uplink resources from the pool of uplink resources. In a further embodiment where bit groups are made part of the GC-DCI, each bit group may further include a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.

Description

GROUP INDICATION OF UPLINK RESOURCE ALLOCATION FROM A RESOURCE POOL
BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
Aspects of the disclosure relate generally to wireless communications and to techniques and apparatuses for a group indication of an uplink resource allocation from a resource pool.
2. Description of the Related Art
Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G networks) , a third-generation (3G) high speed data, Internet-capable wireless service, and a fourth-generation (4G) service (e.g., Long-Term Evolution (LTE) , WiMax) . There are presently many different types of wireless communication systems in use, including cellular and personal communications service (PCS) systems. Examples of known cellular systems include the cellular Analog Advanced Mobile Phone System (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
A fifth generation (5G) mobile standard calls for higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements. The 5G standard (also referred to as “New Radio” or “NR” ) , according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds of thousands of simultaneous connections should be supported in order to support large sensor deployments. Consequently, the spectral efficiency of 5G mobile communications should be significantly enhanced compared to the current 4G /LTE standard. Furthermore, signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
There are various ways in which UEs (e.g., NR-Light UEs) that have mixed or time-sensitive resource requirements (e.g., lower-resolution periodic traffic intermingled with aperiodic bursty and higher-resolution traffic) may be supported. However, such technically are generally inefficient in terms of downlink resource utilization. Embodiments of the disclosure are thereby directed to a resource utilization scheme to provide a more efficient downlink resource utilization via a group common (GC) -DCI. In particular, a group of UEs (e.g., video cameras) are associated with a pool of uplink resources, and the GC-DCI is used to convey an allocation of uplink resources among the pool of uplink resources to one or more UEs in the group of UEs.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE may transmit, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs. The UE may further receive, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups. Each of either the plurality of bits or the plurality of bit groups may correspond respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, may be configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs.
In another aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE may transmit, on an uplink dedicated resource, a request for access to at least portion of a pool of uplink resources associated with a plurality of UEs. The UE may further receive, on a downlink control channel in response to the request, a group common (GC) -downlink  control information (DCI) comprising a plurality of bit groups. Each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, and each of the plurality of bit groups may be configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a base station. The base station may receive, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs. The base station may further determine, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs. The base station may further transmit, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups. Each of either the plurality of bits or the plurality of bit groups may correspond respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, may be configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a base station. The base station may receive, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs. The base station may further determine, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs. The base station may further transmit, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups. Each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, cIoT user equipment, base station, wireless communication device, and/or processing system as substantially described with reference to and as illustrated by the drawings, specification, and appendix.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is diagram illustrating an example of a wireless communication network.
FIG. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless communication network.
FIG. 3 illustrates a communications system in accordance with an embodiment of the disclosure.
FIG. 4 illustrates an exemplary process of receiving an uplink resource allocation according to an aspect of the disclosure.
FIG. 5 illustrates an exemplary process of conveying an uplink resource allocation according to an aspect of the disclosure.
FIG. 6A illustrates an example implementation of a UE-to-resource mapping rule in accordance with an embodiment of the disclosure.
FIG. 6B illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure.
FIG. 6C illustrates an example implementation of a UE-to-resource mapping  rule in accordance with another embodiment of the disclosure.
FIG. 6D illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure.
FIG. 7 illustrates an exemplary process of receiving an uplink resource allocation according to an aspect of the disclosure.
FIG. 8 illustrates an exemplary process of conveying an uplink resource allocation according to an aspect of the disclosure.
FIG. 9 illustrates an example implementation of the processes of FIGS. 4-5 and 7-8, respectively, in accordance with an embodiment of the disclosure.
FIG. 10 is a conceptual data flow diagram illustrating data flow between different means/components according to an aspect of the disclosure.
FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to an aspect of the disclosure.
FIG. 12 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to another aspect of the disclosure.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purposes of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends  upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including 5G technologies.
FIG. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G network. The wireless network 100 may  include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a 5G BS, a Node B, a gNB, a 5G NB, an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “5G BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in FIG. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A  relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. “MTC” may refer to MTC or eMTC. MTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be  considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. IoT UEs, eMTC UEs, coverage enhancement (CE) mode UEs, bandwidth-limited (BL) UEs, and other types of UEs that operate using diminished power consumption relative to a baseline UE may be referred to herein as cellular IoT (cIoT) UEs. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, 5G RAT networks may be deployed.
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within the scheduling entity’s service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Access to the air interface may be controlled, for example, using a unified access control (UAC) system in which UEs are associated with an access identity (e.g., an access class and/or the like) , which may aim to ensure that certain high-priority UEs (e.g., emergency response UEs, mission critical UEs, and/or the like) can access the air interface even in congested conditions. Updates to the UAC parameters (e.g., priority levels associated with access identities, which access identities are permitted to access the air interface, and/or the like) may be provided for cIoT UEs using a message, such as a paging message or a direct indication information, which may conserve battery power of cIoT UEs.
Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources  scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
As indicated above, FIG. 1 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 1.
FIG. 2 shows a block diagram 200 of a design of base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIG. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, may select a modulation and coding scheme (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via  T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive (RX) processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , a reference signal received quality (RSRQ) , a channel quality indicator (CQI) , and/or the like.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE  120, and/or any other component (s) of FIG. 2 may perform one or more techniques associated with UAC parameter updating, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform or direct operations of, for example, process 500 of FIG. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
As indicated above, FIG. 2 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 2.
As noted above, various device types may be characterized as UEs. Starting in 3GPP Rel. 17, a number of these UE types are being allocated a new UE classification denoted as ‘NR-Light’ . Examples of UE types that fall under the NR-Light classification include wearable devices (e.g., smart watches, etc. ) , industrial sensors, video cameras (e.g., surveillance cameras, etc. ) , and so on. Generally, the UE types grouped under the NR-Light classification are associated with lower communicative capacity. For example, relative to ‘normal’ UEs (e.g., UEs not classified as NR-Light) , NR-Light UEs may be limited in terms of maximum bandwidth (e.g., 5 MHz, 10 MHz, 20 MHz, etc. ) , maximum transmission power (e.g., 20 dBm, 14 dBm, etc. ) , number of receive antennas (e.g., 1 receive antenna, 2 receive antennas, etc. ) , and so on. Some NR-Light UEs may also be sensitive in terms of power consumption (e.g., requiring a long battery life, such as several years) and may be highly mobile. Moreover, in some designs, it is generally desirable for NR-Light UEs to co-exist with UEs implementing protocols such as eMBB, URLLC, LTE NB-IoT/MTC, and so on.
Protocols related to video surveillance via NR-Light have also been proposed for adoption by 3GPP Rel. 17. One example of such a protocol is ‘large capacity MTC’ (e.g., 100 streams with 2 Mbps per square kilometer) tailored for specific services, such as video in public services (e.g. city surveillance, traffic monitoring, etc. ) or factory services (e.g., fish farm monitoring, mining supervising, etc. ) with low cost and high efficiency. Another example of such a protocol is ‘Mbps everywhere’ (e.g., a large number of UEs or CPEs with fixed QoS uploading in the UL throughout a cell) . Examples of Mbps everywhere include supporting 100+ cameras with 2 Mbps each per square kilometer for public services, supporting 20+ cameras with 25 Mbps each per  sector, 1.5 –2 times UL connection density /spectral efficiency (SE) improvement, and so on.
FIG. 3 illustrates a communications system 300 in accordance with an embodiment of the disclosure. Referring to FIG. 3, a plurality of  video cameras  302a, 302b and 302c (e.g., NR-Light UEs, which may be pluggable or stationary devices) are communicatively coupled to a video camera controller 304. The video camera controller 304 is in turn communicatively coupled to gNB 110A, which is in turn communicatively coupled to a control center 306.
Referring to FIG. 3, one or more of the  video cameras  302a, 302b and 302c may be implemented as artificial intelligence (AI) -driven video cameras (or smart cameras) whereby motion detection can trigger alarms to the control center 306 and/or can active remote monitoring and HD video uploading. For example, event-triggered video recording in this manner can reduce human effort associated with continuous video streaming and archiving. So, the  video cameras  302a, 302b and 302c may be characterized as providing periodic low-resolution traffic (e.g., when there is no motion detected) and bursty or aperiodic high-resolution traffic (e.g., when motion is detected) .
In addition to intelligent video streaming, the  video cameras  302a, 302b and 302c may also implement smart storage protocols. For example, recorded or archived video data can be structured (e.g., evidence videos may be labeled with metadata characterizing a vehicle plate ID and vehicle color) as opposed to large files of uncategorized video files being stored.
There are various ways in which UEs (such as the above-noted  video cameras  302a, 302b and 302c) that have mixed or time-sensitive resource requirements (e.g., lower-resolution periodic traffic intermingled with aperiodic bursty and higher-resolution traffic) may be supported.
In one example, multiple configured grant PUSCH configurations may be allocated to each UE, with each PUSCH configuration having a different throughput limit. In this case, lower-resolution video traffic may stream through a lower-throughput PUSCH. Then, when bursty and higher-resolution traffic arrives, a higher-throughput PUSCH can be activated. However, if the lower-resolution video traffic already consumes significant resources, the additionally activated higher-throughput PUSCH may require deactivation of the UE’s lower-resolution PUSCH. In addition, there may be scenarios where different UEs may request higher-throughput PUSCH concurrently  or one following another. Therefore, allocating multiple PUSCHs to each UE may be inefficient in terms of DL resource utilization, since the deactivation and activation may only supported via UE-specific downlink control informations (DCIs) .
In another example, a single configured grant PUSCH configuration may be allocated to each UE, whereby the single PUSCH is configured specifically for the lower-resolution video traffic. Then, if bursty and higher-resolution traffic arrives which cannot be handled by the single PUSCH, a separate dynamically scheduled PUSCH. However, such an approach is also inefficient in terms of DL resource utilization (e.g., especially considering that the bursty and higher-resolution video traffic may last for several minutes) .
Embodiments of the disclosure are thereby directed to a resource utilization scheme to provide a more efficient DL resource utilization via a group common (GC) -DCI. In particular, a group of UEs (e.g., video cameras) are associated with a pool of uplink resources, and the GC-DCI is used to convey an allocation of uplink resources among the pool of uplink resources to one or more UEs in the group of UEs.
FIG. 4 illustrates an exemplary process 400 of receiving an uplink resource allocation according to an aspect of the disclosure. The process 400 of FIG. 4 is performed by UE 120.
At 402, the UE (e.g., controller/processor 280, antenna (s) 252a ... 252r, modulators (s) 254a ... 254r, TX MIMO processor 266, TX processor 264) transmits, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs. In an example, the pool of uplink resources may be shared between the plurality of UEs, such that different UEs (or combination of UEs) may access uplink resources from the pool of uplink resources at different times. In some designs, the uplink dedicated resource over which the request is transmitted at 402 may correspond to a PUCCH. In some designs, the request may specify a particular number of uplink resources being requested by the UE (or a particular portion of the pool of uplink resources) , while in other designs the request may request uplink resources without designation of a specific number (or amount) of uplink resources.
At 404, the UE (e.g., controller/processor 280, antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258) , receives, on a downlink control channel in response to the request, a GC-DCI comprising a plurality of bits or a plurality of bit groups. In particular, each of either the plurality of bits or the  plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs. In some scenarios, the GC-DCI may allocate uplink resource (s) to the UE. However, in other scenarios, the base station may reject the UE’s request from 402, in which case the GC-DCI does not allocate uplink resource (s) to the UE. In some designs, the downlink control channel over which the GC-DCI is received corresponds to the PDCCH.
At 406, the UE (e.g., controller/processor 280, antenna (s) 252a ... 252r, modulators (s) 254a ... 254r, TX MIMO processor 266, TX processor 264) optionally transmits data on at least one uplink resource allocated to the UE. The transmission of 406 is optional in the sense that this transmission may occur conditionally based on whether the GC-DCI comprises a bit or bit group corresponding to the UE that indicates that the UE is allocated the at least one uplink resource. So, if the GC-DCI did not comprise such a bit or bit or bit group, the transmission at 406 could be omitted. In some designs, the data optionally transmitted at 406 may correspond to bursty and higher-resolution video traffic.
FIG. 5 illustrates an exemplary process 500 of conveying an uplink resource allocation according to an aspect of the disclosure. The process 500 of FIG. 5 is performed by BS 110.
At 502, the BS (e.g., controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238) receives, on one or more uplink dedicated resources from one or more UEs, one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs. In some designs, 502 may result from one or more executions of 402 of FIG. 4 at one or more UEs with respect to the same pool of resources. In some designs, the one or more uplink dedicated resources over which the request (s) are received at 502 may correspond to PUCCH (s) . In some designs, the request (s) may specify a particular number of uplink resources being requested by a respective UE (or a particular portion of the pool of uplink resources) , while in other designs the request (s) may request uplink resources without designation of a specific number (or amount) of uplink resources, or some combination thereof.
At 504, the BS (e.g., controller/processor 240) determines in response to the one  or more requests from 502, an allocation of the pool of uplink resources to at least one of the plurality of UEs. In some designs, the BS may grant each received request, such that the pool of uplink resources is divided up between each requesting UE. In other designs, the BS may grant at least one request while rejecting at least one other request, such that less than all requesting UEs receive an allocation from the pool of uplink resources. For example, requests from UEs lacking sufficient priority may be rejected. In another example, if too many UEs are concurrently requesting access to the pool of uplink resources, request (s) may be rejected so as not to over-utilize the pool of uplink resources.
At 506, the BS (e.g., controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220) transmits, on a downlink control channel based on the determination from 504, a GC-DCI comprising a plurality of bits or a plurality of bit groups. In particular, each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE. In some designs, the downlink control channel over which the GC-DCI is transmitted corresponds to the PDCCH. In an example, the transmission at 506 may result in the reception of the GC-DCI at 404 of FIG. 4.
At 508, the BS (e.g., controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238) optionally receives data on the one or more uplink resources from the at least one UE. The reception of 508 is optional in the sense that the at least one UE may not actually perform any transmission despite being allocated one or more uplink resources on which to do so. In some designs, the data optionally received at 508 may correspond to bursty and higher-resolution video traffic.
As noted above with respect to FIGS. 4-5, the GC-DCI may be configured either with a bit-specific UE association or a bit group-specific UE association. In other words, a particular bit or group of bits may be associated with each UE in the plurality (or group) of UEs in the GC-DCI. In some designs, uplink resources among the pool of uplink resources are allocated in accordance with a UE-to-resource mapping rule that is based on a relative position of the bit or bit group corresponding to a respective UE in  the GC-DCI. Implementation examples of this concept are described below with respect to FIGS. 6A-6D.
In FIGS. 6A-6B, pools of uplink resources 600A-600B may each be characterized as having K resources shared by N UEs, whereby K > 1 and N > 1. Any of the N UEs may request one of the K resources. A respective GC-DCI comprises a bitmap then indicates which uplink resources are actually allocated to particular UEs, whereby a location of a ‘1’ in the bitmap indicates the index of a scheduled UE (i.e., a UE allocated at least one resource from a respective pool of resources) .
FIG. 6A illustrates an example implementation of a UE-to-resource mapping rule in accordance with an embodiment of the disclosure. In FIG. 6A, a pool of uplink resources 600A comprises resources A, B, C and D, and the GC-DCI comprises a bitmap 605A whereby a single bit in the GC-DCI is associated with each UE in a group of eight UEs (UEs 0…7) and an ordering field 610A in the GC-DCI designates the UE-to-resource mapping rule. In FIG. 6A, a UE bit set to “1” indicates that a default uplink resource amount (i.e., one of resources A, B, C or D) is allocated to that UE.
In the embodiment of FIG. 6A, the UE-to-resource mapping rule is based on a relative position of the bit corresponding to a respective UE in the GC-DCI. In particular, the UE-to-resource mapping rule is based on the ordering field 610A in the GC-DCI being set to “00” so as to indicate that the uplink resources among the pool of uplink resources 600A are to be allocated in a “natural” order that corresponds to an order of the plurality of UEs corresponding to the plurality of bits.
So, in accordance with the natural order UE-to-resource mapping rule of FIG. 6A, the first UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources 600A is UE 2, which is thereby allocated the first uplink resource A from the pool of uplink resources 600A, the second UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources is UE 3, which is thereby allocated the second uplink resource B from the pool of uplink resources 600A, and the third UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources is UE 5, which is thereby allocated the third uplink resource C from the pool of uplink resources 600A. In this case, resource D remains unallocated to any of UEs 0…7.
FIG. 6B illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure. In FIG. 6B, a pool of  uplink resources 600B comprises resources A, B, C and D, and the GC-DCI comprises a bitmap 605B whereby a single bit in the GC-DCI is associated with each UE in a group of eight UEs (UEs 0…7) and an ordering field 610B in the GC-DCI designates the UE-to-resource mapping rule. In FIG. 6B, a UE bit set to “1” indicates that a default uplink resource amount (i.e., one of resources A, B, C or D) is allocated to that UE.
In the embodiment of FIG. 6B, the UE-to-resource mapping rule is based on a relative position of the bit corresponding to a respective UE in the GC-DCI. In particular, the UE-to-resource mapping rule is based on the ordering field 610B in the GC-DCI being set to “10” so as to indicate that the uplink resources among the pool of uplink resources 600B are to be allocated in a “shifted” order that corresponds to an order of the plurality of UEs corresponding to either the plurality of bits or the plurality of bit groups. In this case, assume that resources A, B, C and D are shifted such that resource C is mapped to the first UE allocated an uplink resource in the GC-DCI, resource D is mapped to the second UE allocated an uplink resource in the GC-DCI, and so on.
So, in accordance with the shifted order UE-to-resource mapping rule of FIG. 6B, the first UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources 600B is UE 2, which is thereby allocated the first shifted uplink resource C from the pool of uplink resources 600B, the second UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources is UE 3, which is thereby allocated the second shifted uplink resource D from the pool of uplink resources 600B, and the third UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources is UE 5, which is thereby allocated the third shifted uplink resource A from the pool of uplink resources 600B. In this case, resource B remains unallocated to any of UEs 0…7.
In FIGS. 6C-6D, pools of uplink resources 600C-600D may each be characterized as having K resources shared by N UEs, whereby K > 1 and N > 1. Any of the N UEs may request access to k of the K resources, whereby 0 ≤ k ≤ K. A respective GC-DCI comprises a bitmap then indicates which uplink resources are actually allocated to particular UEs, whereby a location of a non-zero bit group in the bitmap indicates the index of a scheduled UE (i.e., a UE allocated at least one resource from a respective pool of resources) . For an n th bit group, [log 2 (k max + 1) ] bits are used to indicate the number of assigned resources, whereby 0 ≤ k max ≤ K. So, each UE may  request 0, 1, …k max resources from the pool of uplink resources, whereby k max is the maximum number of uplink resources that can be requested by any particular UE associated with the pool of uplink resources. In some designs, the values of k max and/or K may be configurable via higher layer signaling (e.g., RRC signaling) .
FIG. 6C illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure. In FIG. 6C, a pool of uplink resources 600C comprises resources A, B, C, D, E and F, the GC-DCI comprises a bitmap 605C whereby a bit group in the GC-DCI is associated with each UE in a group of eight UEs (UEs 0…7) and an ordering field 610C in the GC-DCI designates the UE-to-resource mapping rule. In FIG. 6C, a UE bit group set to “1” indicates that a single uplink resource (i.e., one of resources A, B, C, D, E or F) is allocated to that UE, a UE bit group set to “2” indicates that two uplink resources (i.e., two of resources A, B, C, D, E or F) are allocated to that UE, and so on.
In the embodiment of FIG. 6C, the UE-to-resource mapping rule is based on a relative position of the bit group corresponding to a respective UE in the GC-DCI. In particular, the UE-to-resource mapping rule is based on the ordering field 610C in the GC-DCI being set to “000” so as to indicate that the uplink resources among the pool of uplink resources 600C are to be allocated in a “natural” order that corresponds to an order of the plurality of UEs corresponding to the plurality of bit groups.
So, in accordance with the natural order UE-to-resource mapping rule of FIG. 6C, the first UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources 600C is UE 2, which is allocated the first two uplink resources (Aand B) from the pool of uplink resources 600C, and the second UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources is UE 6, which is allocated third uplink resource (C) from the pool of uplink resources 600C. In this case, resources D, E and F remain unallocated to any of UEs 0…7.
FIG. 6D illustrates an example implementation of a UE-to-resource mapping rule in accordance with another embodiment of the disclosure. In FIG. 6D, a pool of uplink resources 600D comprises resources A, B, C, D, E and F, the GC-DCI comprises a bitmap 605D whereby a bit group in the GC-DCI is associated with each UE in a group of eight UEs (UEs 0…7) and an ordering field 610D in the GC-DCI designates the UE-to-resource mapping rule. In FIG. 6D, a UE bit group set to “1” indicates that a single uplink resource (i.e., one of resources A, B, C, D, E or F) is allocated to that UE,  a UE bit group set to “2” indicates that two uplink resources (i.e., two of resources A, B, C, D, E or F) are allocated to that UE, and so on.
In the embodiment of FIG. 6D, the UE-to-resource mapping rule is based on a relative position of the bit group corresponding to a respective UE in the GC-DCI. In particular, the UE-to-resource mapping rule is based on the ordering field 610D in the GC-DCI being set to “100” so as to indicate that the uplink resources among the pool of uplink resources 600D are to be allocated in a “shifted” order that corresponds to an order of the plurality of UEs corresponding to the plurality of bit groups. In this case, assume that resources A, B, C, D, E and F are shifted such that resource E is mapped to the first resource allocated to any UE in the GC-DCI, resource F is mapped to the second resource allocated to any UE in the GC-DCI, and so on.
So, in accordance with the shifted order UE-to-resource mapping rule of FIG. 6D, the first UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources 600C is UE 2, which is allocated the first two shifted uplink resources (E and F) from the pool of uplink resources 600D, and the second UE among UEs 0…7 to be allocated any uplink resource from the pool of uplink resources is UE 6, which is allocated the third shifted uplink resource (A) from the pool of uplink resources 600D. In this case, resources B, C and D remain unallocated to any of UEs 0…7.
Referring to FIGS. 6A-6D, in some designs, the number of bits in any of the respective ordering fields and/or an association between particular ordering field bit patterns and the associated UE-to-resource mapping rule can be configurable via higher layer signaling (e.g., RRC signaling) .
Referring to FIGS. 6A-6D, in some designs, a position of each UE’s bit or bit group in the GC-DCI may be defined by an offset index. For example, a UE assigned an offset index of 0 may correspond to the bit or bit group represented by UE 0 in FIGS. 6A-6D, a UE assigned an offset index of 1 may correspond to the bit or bit group represented by UE 1 in FIGS. 6A-6D, and so on. In an example, the offset index may be configurable via higher layer signaling (e.g., RRC signaling) . So, as UEs are added to or removed from the group of UEs associated with the pool of resources, the offset indexes can be updated accordingly.
While natural and shifted order UE-to-resource mapping rules are described above with respect to FIGS. 6A-6D, it will be readily appreciated that other UE-to-resource mapping rules can be implemented in other embodiments. For example, a  ‘scrambled’ order UE-to-resource mapping rule can be implemented (e.g., resources A, B, C, D, E and F are scrambled pseudo-randomly or in accordance with a scrambling rule to B, E, F, D, C, A or D, C, F, A, E, B, etc. ) . In some designs, the manner in which the resource mappings are scrambled is configurable via higher layer signaling (e.g., RRC signaling) .
FIG. 7 illustrates an exemplary process 700 of receiving an uplink resource allocation according to an aspect of the disclosure. The process 700 of FIG. 7 is performed by UE 120.
At 702, the UE (e.g., controller/processor 280, antenna (s) 252a ... 252r, modulators (s) 254a ... 254r, TX MIMO processor 266, TX processor 264) transmits, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs. In an example, the pool of uplink resources may be shared between the plurality of UEs, such that different UEs (or combination of UEs) may access uplink resources from the pool of uplink resources at different times. In some designs, the uplink dedicated resource over which the request is transmitted at 702 may correspond to a PUCCH. In some designs, the request may specify a particular number of uplink resources being requested by the UE (or a particular portion of the pool of uplink resources) , while in other designs the request may request uplink resources without designation of a specific number (or amount) of uplink resources.
At 704, the UE (e.g., controller/processor 280, antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258) , receives, on a downlink control channel in response to the request, a GC-DCI comprising a plurality of bit groups. In particular, each of the plurality of bit groups corresponds respectively to one of the plurality of UEs. Further, each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE. In some scenarios, the GC-DCI may allocate uplink resource (s) to the UE. However, in other scenarios, the base station may reject the UE’s request from 702, in which case the GC-DCI does not allocate uplink resource (s) to the UE. In some designs, the downlink control channel over which the GC-DCI is received corresponds to the PDCCH.
At 706, the UE (e.g., controller/processor 280) optionally determines a repeated bitmap by repeating at least some part of a bitmap that is included in the bit group  corresponding to the UE. For example, the resource pattern in each of the plurality of bit groups may be indicated via a bitmap. In some designs, each bitmap may be equal to a number of uplink resources in the pool of uplink resources, and each ‘1’ in the bitmap may indicate a particular uplink resource allocated to an associated UE. In other designs, to reduce overhead and improve transport efficiency, a number of bits in each bitmap is less than a number of uplink resources in the pool of uplink resources. In this case, the bitmap can be repeated (or propagated) at least in part to produce a repeated bitmap that spans the pool of uplink resources. Then, each ‘1’ in the repeated bitmap may indicate a particular uplink resource allocated to an associated UE. Accordingly, the determination of 706 may be conditional based on whether repeating of a bitmap is needed to derive a resource pattern associated with an uplink resource allocation from the pool of resources to the UE.
At 708, the UE (e.g., controller/processor 280, antenna (s) 252a ... 252r, modulators (s) 254a ... 254r, TX MIMO processor 266, TX processor 264) optionally transmits data on at least one uplink resource allocated to the UE. The transmission of 708 is optional in the sense that this transmission may occur conditionally based on whether the GC-DCI comprises a bit group corresponding to the UE that indicates that the UE is allocated the at least one uplink resource. So, if the GC-DCI did not comprise such a bit group (e.g., the UE’s resource pattern is all zeroes) , the transmission at 708 could be omitted. In some designs, the data optionally transmitted at 708 may correspond to bursty and higher-resolution video traffic.
FIG. 8 illustrates an exemplary process 800 of conveying an uplink resource allocation according to an aspect of the disclosure. The process 800 of FIG. 8 is performed by BS 110.
At 802, the BS (e.g., controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238) receives, on one or more uplink dedicated resources from one or more UEs, one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs. In some designs, 802 may result from one or more executions of 702 of FIG. 7 at one or more UEs with respect to the same pool of resources. In some designs, the one or more uplink dedicated resources over which the request (s) are received at 802 may correspond to PUCCH (s) . In some designs, the request (s) may specify a particular number of uplink resources being requested by a respective UE (or a particular portion  of the pool of uplink resources) , while in other designs the request (s) may request uplink resources without designation of a specific number (or amount) of uplink resources, or some combination thereof.
At 804, the BS (e.g., controller/processor 240) determines in response to the one or more requests from 802, an allocation of the pool of uplink resources to at least one of the plurality of UEs. In some designs, the BS may grant each received request, such that the pool of uplink resources is divided up between each requesting UE. In other designs, the BS may grant at least one request while rejecting at least one other request, such that less than all requesting UEs receive an allocation from the pool of uplink resources. For example, requests from UEs lacking sufficient priority may be rejected. In another example, if too many UEs are concurrently requesting access to the pool of uplink resources, request (s) may be rejected so as not to over-utilize the pool of uplink resources.
At 806, the BS (e.g., controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220) transmits, on a downlink control channel based on the determination from 804, a GC-DCI comprising a plurality of bit groups. In particular, each of either the plurality of bit groups corresponds respectively to one of the plurality of UEs, and each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE. In some designs, the downlink control channel over which the GC-DCI is received corresponds to the PDCCH.
At 808, the BS (e.g., controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238) optionally receives data on the one or more uplink resources from the at least one UE. The reception of 808 is optional in the sense that the at least one UE may not actually perform any transmission despite being allocated one or more uplink resources on which to do so. In some designs, the data optionally received at 808 may correspond to bursty and higher-resolution video traffic.
Referring to FIGS. 7-8, in some designs, the pool of uplink resources may comprise K resources be shared between (or associated with) N UEs, whereby K > 1 and N > 1. Moreover, by specifying an actual resource pattern of the uplink resource  allocation, the uplink resources may be assigned by the base station (or gNB) more flexibly than in FIGS. 5-6 where an ordering field is used in some designs. In an example, the resource pattern may be indicated via a bitmap that either spans the entire pool or uplink resources or is configured as a ‘pattern’ to be repeated (at least in part) as described above with respect to FIG. 7. For example, the resource pattern may be indicated via an M-bit pattern that indicates a subset of resources in the pool of uplink resources. The mapping between the M-bit patterns and the subset of resources can be fixed or configured via higher layer signaling (e.g., RRC signaling) . For example, a first bit in the M-bit pattern may indicate the first uplink resource (e.g., Resource A) in the pool of uplink resources (e.g., set to ‘1’ if allocated to an associated UE) , a second bit in the M-bit pattern may indicate the second uplink resource (e.g., Resource B) in the pool of uplink resources (e.g., set to ‘1’ if allocated to an associated UE) , and so on.
In one example, if the length of the bitmap (or M-bit pattern) is less than the total number of resources in the pool of uplink resources, the bitmap (or M-bit pattern) may be repeated (at least in part) until the overall length of the repeated bitmap is equal to the number of overall resources in the pool of uplink resources, as described above with respect to 706 of FIG. 7. For example, assume K=16 and a bit group for a particular UE comprises a bitmap of (0, 1, 0, 1) . In this case, the bitmap of (0, 1, 0, 1) is repeated four (4) times to produce a bitmap with 16 bits with one bit that maps to each resource, i.e., (0, 1, 0, 1; 0, 1, 0, 1; 0, 1, 0, 1; 0, 1, 0, 1) associated with the 16 resources of the pool of uplink resources. In this configuration, the number of ‘1s’ in the repeated bitmap indicates a total number of resources assigned to the associated UE.
An example configuration of 4-bit patterns (b1, b2, b3, b4) is shown in Table 1, as follows:
Figure PCTCN2019105823-appb-000001
Figure PCTCN2019105823-appb-000002
Accordingly, if K = 4 with respect to Table 1, then each 4-bit pattern need not be repeated at the corresponding UEs. However, if K > 4, then each 4-bit pattern may be repeated (at least in part) to produce a K-bit pattern that represents the resource pattern across the pool of uplink resources. Further, it will be appreciated from a review of Table 1 that per pattern index 15, a UE that is not allocated any resources from the pool of uplink resources can be associated with a 4-bit pattern that is (in this example) set to all zeroes. Of course, in other designs, the bit settings can be reversed such that ‘0’ indicates a resource allocation whereas ‘1’ indicates the lack of a resource allocation.
Referring to Table 1, in some designs, an association between each pattern index and a corresponding resource pattern is configurable based on higher layer signaling (e.g., RRC signaling) .
FIG. 9 illustrates an example implementation 900 of the processes 400-500 and 700-800 of FIGS. 4-5 and 7-8, respectively, in accordance with an embodiment of the disclosure. With respect to FIG. 9, assume that NR-Light UE 902, NR-Light UE 904 and NR-Light UE 906 are being served by gNB 908 and belong to a group of UEs (e.g., video cameras) associated with a pool of uplink resources, as described above with respect to FIGS. 4-5 and 7-8.
Referring to FIG. 9, at 910-912, NR- Light UEs  902 and 904 request access to at least a portion of the pool of uplink resources. The requests of 910-912 may correspond to any of the requested noted above with respect to 402 of FIG. 4, 502 of FIG. 5, 702 of FIG. 7 or 802 of FIG. 8. The requests of 910-912 may or may not specify a requested number of resources from the pool of uplink resources. At 914 (e.g., as in 504 of FIG . 5 or 704 of FIG. 7) , the gNB 908 determines an allocation of the pool of uplink resources to at least one of the requesting NR- Light UEs  902 and 904 in response to the requests from 910-912. In this example, assume that gNB 908 determines at 914 to grant the request of NR-Light UE 902 from 910 while rejecting the request of NR-Light UE 904 from 912. At 918, gNB 908 transmits a GC-DCI that comprises a plurality of bits or bit groups that convey the grant of resource (s) from the pool of uplink resources to NR- Light UE 902 while also indicating the non-grant of resource (s) from the pool of uplink resources to NR-Light UE 904. The GC-DCI transfer at 918 may correspond to any of the GC-DCI transfers from 404 of FIG. 4, 506 of FIG. 5, 704 of FIG. 7 or 806 of FIG. 8. At 920, NR-Light UE 902 transmits uplink data on its allocated uplink resource (s) as indicated by the GC-DCI of 918. The uplink data transfer at 920 may correspond to any of the optional uplink data transfers from 406 of FIG. 4, 508 of FIG. 5, 706 of FIG. 7 or 808 of FIG. 8.
It should be understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
FIG. 10 is a conceptual data flow diagram 1000 illustrating the data flow between different means/components in  exemplary apparatuses  1002 and 1050. The apparatus 1002 may be a UE in communication with an apparatus 1050, which may be a cell (e.g., a gNB or base station) .
The apparatus 1002 includes a transmission component 1004, which may correspond to transmitter circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, antenna (s) 252a . . . 252r, modulators (s) 254a . . . 254r, TX MIMO processor 266, TX processor 264. The apparatus 1002 further includes an uplink scheduling component 1006, which may correspond to processor circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, TX MIMO processor 266, TX processor 264, etc. The apparatus 1002 further includes a reception component 1008, which may correspond to receiver circuitry in UE 120 as depicted in FIG. 2, including controller/processor 280, antenna (s) 252a ... 252r, demodulators (s) 254a ... 254r, MIMO detector 256, RX processor 258.
The apparatus 1050 includes a reception component 1052, which may correspond to receiver circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240, antenna (s) 234a ... 234r, demodulators (s) 232a ... 232r, MIMO detector 236, RX processor 238, etc. The apparatus 1050 further a includes resource pool allocation determination component 1054, which may correspond to processor  circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240. The apparatus 1050 further includes a transmission component 1056, which may correspond to transmission circuitry in BS 110 as depicted in FIG. 2, including controller/processor 240, antenna (s) 234a ... 234r, modulators (s) 232a ... 232r, Tx MIMO processor 230, TX processor 220.
Referring to FIG. 10, the transmission component 1004 of the apparatus 1002 may transmit a request for resources from a pool of uplink resources to the reception component 1052 of the apparatus 1050. The reception component 1052 receives the request from the transmission component 1004 of the apparatus 1002 (and possibly, one or more similar requests from other apparatuses associated with the pool of uplink resources) and forwards the request (s) to the resource pool allocation determination component 1054. The resource pool allocation determination component 1054 determines a manner by which one or more resources from the pool of uplink resources are to be allocated among the requesting apparatus (es) . The resource pool allocation determination component 1054 forwards a result of the determination to the transmission component 1056, which transmits a GC-DCI indicating the resource allocation at least to the reception component 1008 of the apparatus 1002 (and possibly, to other apparatuses that are also associated with the pool of uplink resources) . The reception component 1008 forwards the GC-DCI to the uplink scheduling component 1006, which optionally schedules uplink data for transmission by the transmission component 1004 on resources from the pool of uplink resources that are allocated to the apparatus 1002 by the GC-DCI.
One or more components of the apparatus 1002 and apparatus 1050 may perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGS. 4-5 and 7-9. As such, each block in the aforementioned flowcharts of FIGS. 4-5 and 7-9 may be performed by a component and the apparatus 1002 or apparatus 1050 may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation for an apparatus 1002 employing a processing system 1114. The processing system  1114 may be implemented with a bus architecture, represented generally by the bus 1124. The bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints. The bus 1124 links together various circuits including one or more processors and/or hardware components, represented by the processor 1104, the  components  1004, 1006 and 1008, and the computer-readable medium /memory 1106. The bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 114 may be coupled to a transceiver 1110. The transceiver 1110 is coupled to one or more antennas 1120. The transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1110 receives a signal from the one or more antennas 1120, extracts information from the received signal, and provides the extracted information to the processing system 1114, specifically the reception component 1004. In addition, the transceiver 1110 receives information from the processing system 1114, specifically the transmission component 1008, and based on the received information, generates a signal to be applied to the one or more antennas 1120. The processing system 1114 includes a processor 1104 coupled to a computer-readable medium /memory 1106. The processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1106. The software, when executed by the processor 1104, causes the processing system 1114 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1106 may also be used for storing data that is manipulated by the processor 1104 when executing software. The processing system 1114 further includes at least one of the  components  1004, 1006 and 1008. The components may be software components running in the processor 1104, resident/stored in the computer readable medium /memory 1106, one or more hardware components coupled to the processor 1104, or some combination thereof. The processing system 1114 may be a component of the UE 120 of FIG. 2 and may include the memory 282, and/or at least one of the TX processor 264, the RX processor 258, and the controller/processor 280.
In one configuration, the apparatus 1002 for wireless communication includes means for transmitting, on an uplink dedicated resource, a request for access to at least a  portion of a pool of uplink resources associated with a plurality of UEs, and means for receiving, on a downlink control channel in response to the request, a group common GC-DCI comprising a plurality of bits or a plurality of bit groups, wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs. In another configuration, the apparatus 1002 for wireless communication includes means for transmitting, on an uplink dedicated resource, a request for access to at least portion of a pool of uplink resources associated with a plurality of UEs, and means for receiving, on a downlink control channel in response to the request, a GC-DCI comprising a plurality of bit groups, wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.The apparatus 1002 may also optionally include means for transmitting data on the at least one uplink resource allocated to the UE in accordance with the associated resource pattern. The aforementioned means may be one or more of the aforementioned components of the apparatus 1002 and/or the processing system 1114 of the apparatus 1002 configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1114 may include the TX processor 264, the RX processor 258, and the controller/processor 280.
FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1050 employing a processing system 1214. The processing system 1214 may be implemented with a bus architecture, represented generally by the bus 1224. The bus 1224 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1214 and the overall design constraints. The bus 1224 links together various circuits including one or more processors and/or hardware components, represented by the processor 1204, the  components  1052, 1054 and 1056, and the computer-readable medium /memory 1206. The bus 1224 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art,  and therefore, will not be described any further.
The processing system 1214 may be coupled to a transceiver 1210. The transceiver 1210 is coupled to one or more antennas 1220. The transceiver 1210 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1210 receives a signal from the one or more antennas 1220, extracts information from the received signal, and provides the extracted information to the processing system 1214, specifically the reception component 1052. In addition, the transceiver 1210 receives information from the processing system 1214, specifically the transmission component 1056, and based on the received information, generates a signal to be applied to the one or more antennas 1220. The processing system 1214 includes a processor 1204 coupled to a computer-readable medium /memory 1206. The processor 1204 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1206. The software, when executed by the processor 1204, causes the processing system 1214 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1206 may also be used for storing data that is manipulated by the processor 1204 when executing software. The processing system 1214 further includes at least one of the  components  1052 and 1054. The components may be software components running in the processor 1204, resident/stored in the computer readable medium /memory 1206, one or more hardware components coupled to the processor 1204, or some combination thereof. The processing system 1214 may be a component of the BS 110 of FIG. 2 and may include the memory 242, and/or at least one of the TX processor 220, the RX processor 238, and the controller/processor 240.
In one configuration, the apparatus 1050 for wireless communication includes means for receiving, on one or more uplink dedicated resources from one or more UEs, one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs, means for determining, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs, means for transmitting, on a downlink control channel based on the determining, a group common GC-DCI comprising a plurality of bits or a plurality of bit groups, wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one  or more uplink resources from the pool of uplink resources to the at least one UE. In another configuration, the apparatus 1050 for wireless communication includes means for receiving, on one or more uplink dedicated resources from one or more UEs, one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs, means for determining, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs, means for transmitting, on a downlink control channel based on the determining, a GC-DCI comprising a plurality of bit groups, wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE. The apparatus 1050 for wireless communication further optionally includes means for receiving data on the one or more uplink resources from the at least one UE. The aforementioned means may be one or more of the aforementioned components of the apparatus 1050 and/or the processing system 1214 of the apparatus 1050 configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1014 may include the TX processor 220, the RX processor 238, and the controller/processor 240.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A,  B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (52)

  1. A method of operating a user equipment (UE) , comprising:
    transmitting, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs; and
    receiving, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups,
    wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs.
  2. The method of claim 1, wherein the bit or bit group corresponding to the UE in the GC-DCI indicates that the UE is allocated at least one uplink resource.
  3. The method of claim 2, further comprising:
    transmitting data on the at least one uplink resource allocated to the UE.
  4. The method of claim 1, wherein the bit or bit group corresponding to the UE in the GC-DCI indicates that the UE is not allocated any uplink resource.
  5. The method of claim 1, wherein uplink resources among the pool of uplink resources are allocated in accordance with a UE-to-resource mapping rule that is based on a relative position of the bit or bit group corresponding to a respective UE in the GC-DCI.
  6. The method of claim 5, wherein the UE-to-resource mapping rule is based in part upon an ordering field in the GC-DCI.
  7. The method of claim 6, wherein the ordering field indicates that the uplink resources among the pool of uplink resources are allocated in a natural order that corresponds to an order of the plurality of UEs corresponding to either the plurality of bits or the plurality of bit groups.
  8. The method of claim 6, wherein the ordering field indicates that the uplink resources among the pool of uplink resources are allocated in an order that is shifted relative to an order of the plurality of UEs corresponding to either the plurality of bits or the plurality of bit groups.
  9. The method of claim 6, wherein the ordering field indicates that the uplink resources among the pool of uplink resources are allocated in an order that is scrambled relative to an order of the plurality of UEs corresponding to either the plurality of bits or the plurality of bit groups.
  10. The method of claim 6, wherein a number of bits in the ordering field is configurable via higher layer signaling.
  11. The method of claim 1, wherein the GC-DCI comprises the plurality of bits.
  12. The method of claim 1, wherein the GC-DCI comprises the plurality of bit groups.
  13. The method of claim 12,
    wherein the request specifies a requested number of uplink resources, and
    wherein a number of uplink resources allocated to the UE is equal to or less than the requested number of uplink resources.
  14. The method of claim 12,
    wherein a number of uplink resources allocated to the UE is equal to or less than a maximum number of resources permitted to be assigned to any of the plurality of UEs, and
    wherein the maximum number is configurable via higher layer signaling.
  15. The method of claim 1, wherein a position of the bit or bit group corresponding to the UE in the GC-DCI is configurable via higher layer signaling.
  16. A method of operating a user equipment (UE) , comprising:
    transmitting, on an uplink dedicated resource, a request for access to at least portion of a pool of uplink resources associated with a plurality of UEs; and
    receiving, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups,
    wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate:
    (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and
    (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  17. The method of claim 16, wherein a bit group corresponding to the UE in the GC-DCI is set to indicate that the UE is allocated at least one uplink resource of the pool of uplink resources with an associated resource pattern.
  18. The method of claim 17, further comprising:
    transmitting data on the at least one uplink resource allocated to the UE in accordance with the associated resource pattern.
  19. The method of claim 16, herein a bit group corresponding to the UE in the GC-DCI is set to indicate that the UE is not allocated any uplink resource of the pool of uplink resources.
  20. The method of claim 16, wherein the resource pattern in each of the plurality of bit groups is indicated via a bitmap.
  21. The method of claim 20,
    wherein a number of bits in each respective bitmap is equal to a number of uplink resources in the pool of uplink resources, and
    wherein each bit in each respective bitmap indicates whether an uplink resource is allocated to a respective UE such that a total number of resources allocated to the respective UE is indicated via the respective bitmap.
  22. The method of claim 20,
    wherein a number of bits in the bitmap is less than a number of uplink resources in the pool of uplink resources, further comprising:
    determining a repeated bitmap by repeating at least some part of the bitmap, and
    wherein each bit in the repeated bitmap indicates whether an uplink resource is allocated to a respective UE such that a total number of resources allocated to the respective UE is indicated via the repeated bitmap.
  23. A method of operating a base station (BS) , comprising:
    receiving, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs;
    determining, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs; and
    transmitting, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups,
    wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE.
  24. The method of claim 23, further comprising:
    receiving data on the one or more uplink resources from the at least one UE.
  25. The method of claim 23, wherein uplink resources among the pool of uplink resources are allocated in accordance with a UE-to-resource mapping rule that is based on a relative position of a respective bit or bit group corresponding to a respective UE in the GC-DCI.
  26. The method of claim 25, wherein the UE-to-resource mapping rule is based in part upon an ordering field in the GC-DCI.
  27. The method of claim 26, wherein the ordering field indicates that the uplink resources among the pool of uplink resources are allocated in a natural order that corresponds to an order of the plurality of UEs corresponding to either the plurality of bits or the plurality of bit groups.
  28. The method of claim 26, wherein the ordering field indicates that the uplink resources among the pool of uplink resources are allocated in an order that is shifted relative to an order of the plurality of UEs corresponding to either the plurality of bits or the plurality of bit groups.
  29. The method of claim 26, wherein the ordering field indicates that the uplink resources among the pool of uplink resources are allocated in an order that is scrambled relative to an order of the plurality of UEs corresponding to either the plurality of bits or the plurality of bit groups.
  30. The method of claim 26, wherein a number of bits in the ordering field is configurable via higher layer signaling.
  31. The method of claim 23, wherein the GC-DCI comprises the plurality of bits.
  32. The method of claim 23, wherein the GC-DCI comprises the plurality of bit groups.
  33. The method of claim 32,
    wherein at least one request from the one or more requests specifies a requested number of uplink resources, and
    wherein a number of uplink resources allocated in response to the at least one request is equal to or less than the requested number of uplink resources.
  34. The method of claim 32,
    wherein a number of uplink resources allocated to each UE among the at least one UE is equal to or less than a maximum number of resources permitted to be assigned to any of the plurality of UEs, and
    wherein the maximum number is configurable via higher layer signaling.
  35. The method of claim 23, wherein a position of the bit or bit group corresponding to the UE in the GC-DCI is configurable via higher layer signaling.
  36. A method of operating a base station (BS) , comprising:
    receiving, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs;
    determining, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs; and
    transmitting, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups,
    wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate:
    (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and
    (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  37. The method of claim 36, further comprising:
    receiving data on at least one uplink resource from the at least one UE in accordance with at least one respective resource pattern.
  38. The method of claim 36, wherein the resource pattern in each of the plurality of bit groups is indicated via a bitmap.
  39. The method of claim 38,
    wherein a number of bits in each respective bitmap is equal to a number of uplink resources in the pool of uplink resources, and
    wherein each bit in each respective bitmap indicates whether an uplink resource is allocated to a respective UE such that a total number of resources allocated to the respective UE is indicated via the respective bitmap.
  40. The method of claim 36,
    wherein a number of bits in each respective bitmap is less than a number of uplink resources in the pool of uplink resources,
    wherein each respective bitmap is configured to be repeated at least in part, and
    wherein each bit in each respective repeated bitmap indicates whether an uplink resource is allocated to a respective UE such that a total number of resources allocated to the respective UE is indicated via the respective repeated bitmap.
  41. A user equipment (UE) , comprising:
    means for transmitting, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs; and
    means for receiving, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups,
    wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs.
  42. A user equipment (UE) , comprising:
    means for transmitting, on an uplink dedicated resource, a request for access to at least portion of a pool of uplink resources associated with a plurality of UEs; and
    means for receiving, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups,
    wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate:
    (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and
    (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  43. A method of operating a base station (BS) , comprising:
    means for receiving, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs;
    means for determining, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs; and
    means for transmitting, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups,
    wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE.
  44. A base station (BS) , comprising:
    means for receiving, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs;
    means for determining, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs; and
    means for transmitting, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups,
    wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate:
    (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and
    (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  45. A user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    transmit, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs; and
    receive, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups,
    wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs.
  46. A user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    transmit, on an uplink dedicated resource, a request for access to at least portion of a pool of uplink resources associated with a plurality of UEs; and
    receive, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups,
    wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate:
    (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and
    (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  47. A base station (BS) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs;
    determine, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs; and
    transmit, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups,
    wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE.
  48. A base station (BS) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs;
    determine, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs; and
    transmit, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups,
    wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate:
    (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and
    (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  49. A non-transitory computer-readable medium containing instructions stored thereon, for causing at least one processor in a user equipment (UE) to:
    transmit, on an uplink dedicated resource, a request for access to at least a portion of a pool of uplink resources associated with a plurality of UEs; and
    receive, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups,
    wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to at least one of the plurality of UEs.
  50. A non-transitory computer-readable medium containing instructions stored thereon, for causing at least one processor in a user equipment (UE) to:
    transmit, on an uplink dedicated resource, a request for access to at least portion of a pool of uplink resources associated with a plurality of UEs; and
    receive, on a downlink control channel in response to the request, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups,
    wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate:
    (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and
    (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
  51. A non-transitory computer-readable medium containing instructions stored thereon, for causing at least one processor in a base station (BS) to:
    receive, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs;
    determine, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs; and
    transmit, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bits or a plurality of bit groups,
    wherein each of either the plurality of bits or the plurality of bit groups corresponds respectively to one of the plurality of UEs, and at least one bit or bit group of either the plurality of bits or the plurality of bit groups, respectively, is configured to allocate one or more uplink resources from the pool of uplink resources to the at least one UE.
  52. A non-transitory computer-readable medium containing instructions stored thereon, for causing at least one processor in a base station (BS) to:
    receive, on one or more uplink dedicated resources from one or more user equipments (UEs) , one or more requests for access to at least part of a pool of uplink resources associated with a plurality of UEs;
    determine, in response to the one or more requests, an allocation of the pool of uplink resources to at least one of the plurality of UEs; and
    transmit, on a downlink control channel based on the determining, a group common (GC) -downlink control information (DCI) comprising a plurality of bit groups,
    wherein each of the plurality of bit groups corresponds respectively to one of the plurality of UEs, each of the plurality of bit groups configured to indicate:
    (i) whether the corresponding UE is being allocated some part of the pool of uplink resources, and
    (ii) a resource pattern that specifies which uplink resources among the pool of uplink resources are allocated to the corresponding UE.
PCT/CN2019/105823 2019-09-13 2019-09-13 Group indication of uplink resource allocation from a resource pool WO2021046839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105823 WO2021046839A1 (en) 2019-09-13 2019-09-13 Group indication of uplink resource allocation from a resource pool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105823 WO2021046839A1 (en) 2019-09-13 2019-09-13 Group indication of uplink resource allocation from a resource pool

Publications (1)

Publication Number Publication Date
WO2021046839A1 true WO2021046839A1 (en) 2021-03-18

Family

ID=74867032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105823 WO2021046839A1 (en) 2019-09-13 2019-09-13 Group indication of uplink resource allocation from a resource pool

Country Status (1)

Country Link
WO (1) WO2021046839A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615067A (en) * 2022-01-18 2023-08-02 Airspan Ip Holdco Llc Technique for scheduling downlink data allocations and uplink data allocations in a wireless network
GB2615066A (en) * 2022-01-18 2023-08-02 Airspan Ip Holdco Llc Technique for scheduling downlink data allocations and uplink data allocations in a wireless network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886453A (en) * 2016-04-01 2018-11-23 高通股份有限公司 Down link control information for multilayer transmission
WO2019062674A1 (en) * 2017-09-29 2019-04-04 Jrd Communication (Shenzhen) Ltd Improvements in or relating to transmission without grant in new radio
EP3480977A1 (en) * 2017-05-03 2019-05-08 LG Electronics Inc. -1- Method for transmitting or receiving signal in wireless communication system and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886453A (en) * 2016-04-01 2018-11-23 高通股份有限公司 Down link control information for multilayer transmission
EP3480977A1 (en) * 2017-05-03 2019-05-08 LG Electronics Inc. -1- Method for transmitting or receiving signal in wireless communication system and apparatus therefor
WO2019062674A1 (en) * 2017-09-29 2019-04-04 Jrd Communication (Shenzhen) Ltd Improvements in or relating to transmission without grant in new radio

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "On bandwidth adaptation", 3GPP DRAFT; R1-1711424, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051300612 *
SAMSUNG: "Functionalities of UE-Group Common PDCCH", 3GPP DRAFT; R1-1713617 GC-PDCCH CONTENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051316417 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615067A (en) * 2022-01-18 2023-08-02 Airspan Ip Holdco Llc Technique for scheduling downlink data allocations and uplink data allocations in a wireless network
GB2615066A (en) * 2022-01-18 2023-08-02 Airspan Ip Holdco Llc Technique for scheduling downlink data allocations and uplink data allocations in a wireless network

Similar Documents

Publication Publication Date Title
KR102408882B1 (en) wake-up signal grouping
US11743814B2 (en) Cell selection based on class of user equipments
US11737094B2 (en) Slot position offsets associated with a downlink control information in a physical downlink shared channel
WO2021046839A1 (en) Group indication of uplink resource allocation from a resource pool
JP7177790B2 (en) Techniques and apparatus for configuring battery recovery time periods for user equipment
US20210243789A1 (en) Physical downlink shared channel including part of a downlink control information
US20230397111A1 (en) Wake-up signals and dormancy status signals for selected physical channel identifiers
US11792810B2 (en) Determination of physical downlink control channel receive time based on physical downlink shared channel reference symbol
WO2021114069A1 (en) Rach procedures based upon downlink receive capability level of a user equipment
EP4042778A1 (en) Synchronizing a user equipment identifier for preconfigured uplink resources
WO2021227019A1 (en) Managing a new radio mode at a user equipment based on throughput
US11375362B2 (en) Indicating user equipment capability for a communication feature with both frequency range and duplex mode differentiation
WO2021159443A1 (en) Pdcch with preemption indication
WO2021068238A1 (en) Managing dmrs based on an uplink grant cancellation
US11432260B2 (en) Unified access control parameter update
WO2023137739A1 (en) Indication of preferred scheduling mode for energy harvesting
WO2021226911A1 (en) Monitoring occasions for repetition levels associated with control channel messages
WO2021046837A1 (en) Event-based paging, event-based notifications and paging resource coordination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945205

Country of ref document: EP

Kind code of ref document: A1