WO2021045011A1 - 折返判定装置 - Google Patents

折返判定装置 Download PDF

Info

Publication number
WO2021045011A1
WO2021045011A1 PCT/JP2020/032912 JP2020032912W WO2021045011A1 WO 2021045011 A1 WO2021045011 A1 WO 2021045011A1 JP 2020032912 W JP2020032912 W JP 2020032912W WO 2021045011 A1 WO2021045011 A1 WO 2021045011A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
determination
unit
observation point
axis deviation
Prior art date
Application number
PCT/JP2020/032912
Other languages
English (en)
French (fr)
Inventor
近藤 勝彦
卓也 ▲高▼山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112020004235.9T priority Critical patent/DE112020004235T5/de
Priority to CN202080062530.2A priority patent/CN114365011A/zh
Publication of WO2021045011A1 publication Critical patent/WO2021045011A1/ja
Priority to US17/653,437 priority patent/US20220187422A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/4034Antenna boresight in elevation, i.e. in the vertical plane
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a technique for determining the phase turnaround of the direction observed by the radar device.
  • the azimuth measurement range corresponding to the range in which the phase difference ⁇ is ⁇ ⁇ ⁇ + ⁇ [rad]
  • the azimuth can be detected correctly.
  • the target exists outside the angle measurement range, that is, in the range where the phase difference ⁇ is ⁇ or ⁇ > ⁇
  • the orientation of the target is set within the angle measurement range by so-called phase folding. It will be falsely detected as something.
  • Patent Document 1 uses a technique of tracking an object depending on the presence or absence of a history connection, extracts an observation value having a history connection with a folded-back corrected predicted value when the predicted value deviates from the measurement range, and extracts the observed value.
  • a technique for obtaining the correct orientation by folding back and correcting the extracted observed values has been proposed.
  • the predicted value is a value predicted from the detection result in the previous processing cycle, and the observed value is a value actually observed in the current processing cycle.
  • One aspect of the present disclosure is to provide a technique for correctly detecting the orientation of a target detected without a tracking history even if the radar device has an axis misalignment.
  • One aspect of the present disclosure is a folding back determination device, which includes an information acquisition unit, an axis deviation acquisition unit, a folding back calculation unit, and an instantaneous determination unit.
  • the information acquisition unit repeatedly acquires observation point information including the observation direction, which is an observation value for the direction in the specified direction, from the radar device mounted on the vehicle.
  • the designated direction is at least one of the horizontal direction and the vertical direction.
  • the axis deviation acquisition unit uses the orientation of the radar device when the radar device is mounted at the reference position as the mounting reference direction, the actual orientation of the radar device as the actual mounting direction, and the designated direction of the actual mounting direction with respect to the mounting reference direction. Acquires the amount of misalignment of.
  • the turnaround calculation unit calculates the turnaround direction, which is an estimated direction when there is a phase turnaround in the observation direction included in the observation point information.
  • the instantaneous determination unit determines that the direction closer to the observation direction and the turnaround direction associated with the observation direction, which is closer to the mounting reference direction estimated from the amount of axial deviation and the actual mounting direction, is the actual direction.
  • the presence or absence of phase folding is determined by setting the correct orientation among the observation direction and the turning direction, whichever is closer to the mounting reference direction. Therefore, by determining the presence or absence of phase folding without using the history of the observation direction, it is possible to improve the detection accuracy of the direction of the observation point existing in the original detection range centered on the mounting reference direction.
  • It is explanatory drawing which shows the result of having calculated the amount of axis deviation from the observation direction in each of the case where the observation direction is not corrected based on the determination result of the turnaround determination, and the case where the observation direction is corrected. It is explanatory drawing about a parameter and the like used in the folding back determination process in a vertical direction. It is explanatory drawing concerning the determination whether or not there is a target in front in the folding back determination process in a vertical direction. It is explanatory drawing about the directivity of a radar apparatus in a vertical direction. It is explanatory drawing which shows the relationship between the angle measurement range, the observation direction, and the turn-back direction in the turn-back determination process in the vertical direction. It is a flowchart of the return determination process in 2nd Embodiment. It is a flowchart of a reference update process.
  • the turnaround determination system 1 of the present embodiment is mounted on a vehicle and includes a radar device 2, a camera 3, an adjusting device 4, an in-vehicle communication device 5, and a control device 6, as shown in FIG.
  • the radar device 2 is installed at the front end of the vehicle VH equipped with the turn-back determination system 1. Then, the radar device 2 transmits the radar wave toward the front of the vehicle VH and receives the reflected radar wave to detect an object existing in the detection range Rf in front of the vehicle VH.
  • the radar device 2 employs, for example, the FMCW method, and alternately transmits the radar wave in the uplink modulation section and the radar wave in the downlink modulation section at a preset modulation cycle, and receives the reflected radar wave.
  • FMCW is an abbreviation for Frequency Modulated Continuous Wave.
  • the radar device 2 has, for each modulation cycle, the received power P of the received radar wave, the distance R to the point (hereinafter, the observation point) on the object reflecting the radar wave, and the relative velocity Vr with respect to the observation point.
  • the horizontal azimuth angle ⁇ x of the observation point is detected. Further, the radar device 2 outputs observation point information indicating the detected received power P, distance R, relative velocity Vr, and horizontal azimuth ⁇ x to the control device 6.
  • the horizontal azimuth angle ⁇ x of the observation point is detected by using the phase difference between the received signals received by the plurality of receiving antennas of the radar device 2.
  • the detection range Rf is set to at least an angle range narrower than the angle measurement range, with the azimuth angle region where phase folding does not occur in the radar device 2 as the angle measurement range.
  • the camera 3 is attached to the front end of the vehicle VH or near the rear-view mirror, and continuously captures the situation in front of the vehicle VH including the detection range Rf.
  • the adjusting device 4 includes a motor and gears attached to the radar device 2.
  • the adjusting device 4 adjusts the mounting angle of the radar device 2 by rotating the motor according to the drive signal output from the control device 6. That is, the rotational force of the motor is transmitted to the gears, so that the radar device 2 rotates about an axis along the vehicle height direction of the vehicle VH.
  • the in-vehicle communication device 5 executes communication via an in-vehicle LAN that connects various devices mounted on the vehicle to each other.
  • the LAN is a local area network.
  • the in-vehicle communication device 5 acquires detection signals from various sensors that detect the behavior of the vehicle via the in-vehicle LAN.
  • the behavior of the vehicle to be detected includes at least the speed Vs and the steering angle ⁇ .
  • the control device 6 includes a microcomputer having a CPU 6a and, for example, a semiconductor memory (hereinafter, memory) 6b such as a RAM or a ROM. Each function of the control device 6 is realized by the CPU 6a executing a program stored in a non-transitional substantive recording medium.
  • the memory 6b corresponds to a non-transitional substantive recording medium in which a program is stored. Moreover, when this program is executed, the method corresponding to the program is executed.
  • the functions realized by the control device 6 executing the program include at least an axis deviation detection unit 61, an image analysis unit 62, a folding determination unit 63, and an axis deviation adjustment unit 64.
  • the axis deviation detection unit 61 detects the amount of axis deviation ⁇ in the designated direction of the actual mounting direction with respect to the mounting reference direction based on the information of the observation points detected by the radar device 2.
  • the mounting reference direction is the direction of the radar device 2 when the radar device 2 is mounted at the reference position, which is the position where the radar device 2 should be originally mounted.
  • the actual mounting direction is the actual orientation of the radar device 2 mounted on the vehicle.
  • the front direction of the radar device 2 is the direction of the radar device 2
  • the front direction of the vehicle is the mounting reference direction. That is, as shown in FIG. 4, the axis deviation amount ⁇ refers to the angle formed by the front direction of the radar device 2 with reference to the front direction of the vehicle.
  • the image analysis unit 62 detects the situation within the detection range Rf by analyzing the front image obtained from the camera 3. Specifically, as the analysis result, at least information such as the position of the lane drawn on the road and the presence or absence of a vehicle in front traveling in the same lane as the own vehicle is included.
  • the folding determination unit 63 determines whether or not the directional information of the observation point detected by the radar device 2 is phase-folded information, and corrects the directional information. The details will be described later.
  • the corrected directional information is also used in the processing of the axis misalignment detection unit 61.
  • the shaft misalignment adjusting unit 64 adjusts the mounting angle of the radar device 2 by driving the adjusting device 4 according to the detection result of the shaft misalignment detecting unit 61.
  • the memory 6b stores at least information representing the directivity of the antenna possessed by the radar device 2, that is, information in which the direction and the gain in that direction are associated (hereinafter, directivity information).
  • the return determination process is repeatedly executed when the return determination system 1 is started.
  • control device 6 acquires the observation point information from the radar device 2.
  • control device 6 acquires the axis deviation amount ⁇ , which is the processing result in the axis deviation angle calculation process.
  • the control device 6 acquires the own vehicle state via the in-vehicle communication device 5.
  • the own vehicle state to be acquired includes at least the own vehicle speed Vs and the steering angle ⁇ .
  • control device 6 acquires the analysis result in the image analysis process.
  • the analysis result to be acquired includes at least the information of the target existing in the same lane as the own vehicle.
  • the control device 6 determines whether or not the own vehicle is traveling in a straight line, and if it is determined that the vehicle is traveling in a straight line, the process shifts to S160 and it is determined that the vehicle is not in a straight line. Shifts the process to S260. It should be noted that the determination as to whether or not the vehicle is traveling in a straight line may be performed based on, for example, the steering angle ⁇ of the own vehicle state acquired in S130, or the shape of the white line in the analysis result acquired in S140. If is included, it may be performed based on the shape of the white line.
  • the control device 6 determines whether or not a target exists in front, and if it determines that it exists, shifts the process to S170, and if it determines that it does not exist, shifts the process to S260. .. It should be noted that the determination as to whether or not the target is present on the front surface may be performed based on, for example, the analysis result of the front image acquired in S140. That is, as shown in FIG. 5, it may be determined based on the analysis result whether or not the preceding vehicle exists in the own lane.
  • the control device 6 selects one of the observation point information acquired in S110.
  • the observation point corresponding to this observation point information shall be identified by Mi, and the direction of the observation point included in the observation point information (hereinafter referred to as the observation direction) ⁇ i.
  • the observation direction ⁇ i is represented by an angle in which the clockwise direction is positive and the counterclockwise direction is negative from the front direction with the front direction of the radar device 2 as a reference (that is, 0 °).
  • the control device 6 determines whether or not the observation point Mi selected in S170 is a moving body, and if it is determined to be a moving body, the process shifts to S190 and is not a moving body. If it is determined, the process shifts to S240. Whether or not it is a moving body is determined by the absolute value of the difference between the relative speed (hereinafter referred to as the observation speed) Vri shown in the observation point information of the selected observation point Mi and the own vehicle speed Vs acquired in S130. If it is equal to or more than the threshold value, it is determined to be a moving body.
  • the observation speed the relative speed
  • the control device 6 calculates the turnaround direction ⁇ i, which is the direction in which the observation point Mi is presumed to exist, assuming that the observation direction ⁇ i has a phase turnaround. Specifically, as shown in FIG. 4, the azimuth angle width of the entire measurement range of the radar device 2 is set as the FOV, and the calculation is performed using the equations (1) and (2).
  • the control device 6 determines whether or not the turning direction ⁇ i is included in the range in which the gain is equal to or greater than the threshold value (hereinafter, the directivity range) based on the radiation pattern representing the directivity of the radar device 2.
  • the control device 6 determines that the folding direction ⁇ i is within the directional range, the control device 6 determines that phase wrapping may have occurred, shifts the processing to S210, and determines that the foldback direction ⁇ i is outside the directional range. , Assuming that the possibility that phase wrapping has occurred is low, the process is shifted to S240.
  • the turning direction ⁇ i when the main lobe and the side lobe are present in the radiation pattern, if the turning direction ⁇ i is in the side lobe, the actual observation point Mi may be present in the turning direction ⁇ i. There is. If the turning direction ⁇ i is in the direction between the main lobe and the side lobe, it is unlikely that the actual observation point Mi exists in the turning direction ⁇ i, and it can be determined that the observation direction ⁇ i is the correct direction.
  • the control device 6 sets the front difference values d ⁇ i and d ⁇ i, which are the differences with respect to the front direction (that is, the mounting reference direction) of the vehicle, for each of the observation direction ⁇ i and the turn-back direction ⁇ i, according to the equations (3) and (4). Calculate using. That is, in this step, as shown in FIG. 4, ⁇ i and ⁇ i expressed by the angle with respect to the front direction of the radar device 2 are set to the angle with reference to the front direction of the vehicle by using the axis deviation amount ⁇ . Performs the process of converting to an absolute value. In FIG. 4, ⁇ is assumed to have a negative value.
  • the control device 6 determines which of the observation direction ⁇ i and the turn-back direction ⁇ i is closer to the front direction. Specifically, it is determined whether or not d ⁇ i> d ⁇ i is based on the difference values d ⁇ i and d ⁇ i calculated in S210.
  • the control device 6 determines that d ⁇ i> d ⁇ i, that is, the turning direction ⁇ i is closer to the front direction of the vehicle than the observation direction ⁇ i
  • the control device 6 shifts the process to S230. Further, when the control device 6 determines that d ⁇ i ⁇ d ⁇ i, that is, the observation direction ⁇ i is closer to the front direction of the vehicle than the turning direction ⁇ i, the process shifts to S240.
  • control device 6 assumes that the observation direction ⁇ i of the observation point Mi has phase folding, sets the folding direction ⁇ i to the definite direction ⁇ i of the observation point Mi, and proceeds to the process in S250.
  • control device 6 sets the observation direction ⁇ i to the definite direction ⁇ i of the observation point Mi, assuming that the observation direction ⁇ i of the observation point Mi has no phase turnover, and proceeds to the process in S250.
  • control device 6 determines whether or not the processes of S170 to S240 have been executed for all the observation point information acquired in S110. When the control device 6 determines that there is unprocessed observation point information, the process returns to S170, and when it is determined that all the observation point information has been processed, the control device 6 ends the return determination process.
  • control device 6 sets the observation direction ⁇ to the definite direction ⁇ of the observation point M for all the observation point information acquired in S110 without determining the presence or absence of phase folding, and performs the folding determination processing. finish.
  • the definite direction ⁇ of the observation point M is supplied to the subsequent processing together with the axis deviation amount ⁇ .
  • the fixed direction ⁇ is also used for the axis deviation amount calculation process.
  • S110 corresponds to the information acquisition unit
  • S120 corresponds to the axis deviation acquisition unit
  • S150 corresponds to the travel determination unit
  • S160 corresponds to the target determination unit
  • S180 corresponds to the movement determination unit
  • S190 corresponds to the turnaround calculation unit
  • S200 corresponds to the directivity determination unit
  • S210 to S220 correspond to the instantaneous determination unit
  • S230 to S240 correspond to the processing execution unit.
  • the control device 6 that executes the turn-back determination process corresponds to the turn-back determination device.
  • the turn-back determination system 1 executes the turn-back determination of the observation direction ⁇ i when the own vehicle is traveling in a straight line and a target is present in front of the own vehicle. That is, as shown in FIG. 7, by utilizing the fact that the target is present in front of the own vehicle, the correct direction is the observation direction ⁇ i and the turning direction ⁇ i, whichever is closer to the front direction of the vehicle. Then, the presence or absence of phase folding is determined. Therefore, according to the folding determination system 1, the presence or absence of phase folding can be determined without using the observation history regarding the orientation of the observation point Mi, and the correct orientation of the observation point Mi can be obtained.
  • the turnaround determination system 1 uses a radiation pattern indicating the directivity of the antenna of the radar device 2, and when the turnaround direction ⁇ i is within the directivity range in which a gain equal to or larger than the threshold value can be obtained in the radiation pattern, the phase is Assuming that there is a possibility of wrapping, the wrapping judgment is executed. That is, since the received power of the reflected wave from the target outside the directional range is very small and unlikely to be detected, it can be determined that there is no phase fold back when the foldback direction ⁇ i is outside the directional range.
  • the folding back determination system 1 since the fixed direction ⁇ obtained by the folding back determination process is used in the axis deviation amount calculation process, the calculation accuracy of the axis deviation amount ⁇ can be improved. For example, consider the case where the axis is deviated in the positive direction of the angle ⁇ . In this case, if the axis deviation amount ⁇ is estimated by using the observation point direction ⁇ i as it is without considering the phase folding, the observation point Mi that should be originally detected in the positive direction has the phase as shown in the upper part of FIG. It is detected in the negative direction by turning back.
  • the axis deviation amount ⁇ When the axis deviation amount ⁇ is estimated using such an observation point Mi, the axis deviation amount ⁇ shifted to the minus side from the true value indicating the front direction of the vehicle is calculated.
  • the fixed direction ⁇ i As shown in the lower part of FIG. 8, the fixed direction ⁇ i is a true value. It is distributed almost evenly on the plus side and the minus side. As a result, the amount of axis deviation ⁇ closer to the true value is calculated.
  • the folding determination is performed for the horizontal direction, but as shown in FIG. 9, the folding determination may be performed for the vertical direction.
  • FIG. 10 it is determined whether or not there is a target in front of S160 based on whether or not it exists at the same height of the own vehicle in the vertical direction.
  • the directivity is also determined in consideration of the directivity in the vertical direction.
  • the observation direction ⁇ i and the turning direction ⁇ i are closer to the front direction of the vehicle by utilizing the fact that the target is present in front of the own vehicle as in the horizontal direction.
  • the presence or absence of phase folding is determined. Therefore, according to the folding determination system 1, the presence or absence of phase folding can be determined without using the observation history regarding the orientation of the observation point Mi, and the correct vertical orientation of the observation point Mi can be obtained. Further, it is possible to improve the detection accuracy of the axial deviation amount ⁇ of the radar device 2 in the vertical direction.
  • the second embodiment is different from the first embodiment in that history information is used in the return determination process.
  • observation points Mi based on the same target are detected on both sides of the boundary of the detection range by phase folding every processing cycle. In some cases. In the second embodiment, such a case is also dealt with.
  • the control device 6 determines whether or not the received power Pi of the selected observation point Mi is equal to or higher than the maximum power maxPi stored at that time.
  • the process shifts to S320, and when it determines that Pi ⁇ maxPi, the control device 6 shifts the process to S400.
  • control device 6 updates the maximum power maxPi with the received power Pi.
  • the control device 6 determines whether or not the observation direction ⁇ i and the reference direction f ⁇ i can be regarded as being in the same direction. Specifically, if the absolute value of the difference between ⁇ i and f ⁇ i is equal to or less than the threshold value TH ⁇ , it is considered to be in the same direction. If the control device 6 determines that they are in the same direction, the process shifts to S340, and if it determines that they are not in the same direction, the control device 6 shifts the process to S360.
  • control device 6 updates the reference direction f ⁇ i with the observation direction ⁇ i.
  • control device 6 counts up the count value Ci and ends the process.
  • the control device 6 determines whether or not the count value Ci is equal to or less than the first threshold value TH1c. If Ci ⁇ TH1c, the process shifts to S370, and if Ci> TH1c, the process is performed in S390. Move to. TH1c is set to a relatively small value of, for example, about 2 to 5.
  • control device 6 updates the reference direction f ⁇ i with the observation direction ⁇ i.
  • control device 6 initializes the count value Ci to 1 and ends the process.
  • control device 6 counts down the count value Ci and ends the process.
  • the control device 6 determines whether or not the observation direction ⁇ i and the reference direction f ⁇ i can be regarded as being in the same direction as in S330. If the control device 6 determines that it can be regarded as being in the same direction, it shifts the process to S410, and if it determines that it is not in the same direction, it shifts the process to S420.
  • control device 6 counts up the count value Ci and ends the process.
  • the control device 6 determines whether or not the count value Ci is equal to or higher than the second threshold value TH2c. If Ci ⁇ TH2c, the process shifts to S430, and if Ci ⁇ TH2c, the process is performed in S440. Move to.
  • the second threshold value TH2c may be the same value as or different from the first threshold value TH1c.
  • control device 6 counts down the count value Ci and ends the process.
  • control device 6 initializes the parameters Ci, f ⁇ i, and maxPi used in the reference update process, and ends the process.
  • both the reference direction f ⁇ i and the count value Ci are operated. Specifically, in S330 to S390, when the observation direction ⁇ i of the observation point Mi having the maximum received power Pi can be regarded as the same as the current reference direction f ⁇ i, the reference direction f ⁇ i is updated by the observation direction ⁇ i. , Count up the count value Ci. Further, when the observation direction ⁇ i is different from the current reference direction f ⁇ i, if the count value Ci is larger than the first threshold value THc1, the count value Ci is counted down without updating the reference direction f ⁇ i. If the count value Ci is equal to or less than the first threshold value THc1, the reference direction f ⁇ i is updated to initialize the count value Ci to 1.
  • the reference direction f ⁇ i is not updated and only the count value Ci is operated. Specifically, in S400 to S440, when the observation direction ⁇ i can be regarded as the same as the current reference direction f ⁇ i, the count value Ci is counted up. Further, when the observation direction ⁇ i is different from the current reference direction f ⁇ i, the count value Ci is counted down when the count value Ci is equal to or higher than the second threshold value TH2c. Further, when the count value Ci is smaller than the second threshold value TH2c, it means that the detection frequency of the observation point Mi in the direction in which the maximum power maxPi is detected is decreasing. Therefore, the parameter Ci is used to restart the observation from the beginning. , F ⁇ i, maxPi are initialized. Specifically, for example, Ci is set to 1, f ⁇ i and maxPi are set to 0.
  • the reference update process processes the time series of observation points. Then, as a result of the reference update processing, the direction in which the observation point Mi having the maximum received power is detected is set as the reference direction f ⁇ i, and the observation point Mi is detected in the direction in which the count value Ci can be regarded as the same as the reference direction f ⁇ i. The higher the frequency, the larger the value.
  • the control device 6 determines whether or not the count value Ci is equal to or higher than the threshold value THc and the observation direction ⁇ i can be regarded as the same as the reference direction f ⁇ i based on the processing result in S202. judge.
  • the threshold value THc is set to a value of 1 or more and smaller than the second threshold value TH2c. If the control device 6 determines affirmatively, the process shifts to S240, and if it determines negatively, the control device 6 shifts the process to S210.
  • the observation direction ⁇ i is determined assuming that there is no phase foldback.
  • the direction is ⁇ i.
  • the return determination is performed based on the frontal differences d ⁇ i and d ⁇ i.
  • control device 6 In S255, which is executed when a negative determination is made in either S150 or S160, the control device 6 initializes all the parameters f ⁇ i, maxPi, and Ci used in the reference update process, and shifts the process to S260.
  • S202 corresponds to the reference direction setting unit
  • S204 corresponds to the series determination unit
  • the return determination is performed using the received power Pi for a series of observation points Mi detected over a plurality of processing cycles, so that the determination accuracy can be improved. That is, when the phase folding occurs, the target exists at the boundary portion of the detection range deviating from the center of the radiation pattern.
  • the received power Pi of the observation point Mi detected when there is phase folding is smaller than the received power Pi detected at the same place when there is no phase folding.
  • the count value Ci is increased / decreased by using the received power Pi of the observation point Mi and the observation direction ⁇ i, but the relative velocity Vri of the observation point Mi is used instead of the received power Pi.
  • the relative speed detected for the observation point Mi is a component of the speed of the observation point Mi in the range direction
  • the maximum value is the maximum value when the observation point Mi is located in front of the own vehicle even if the speed is constant. Therefore, the larger the angle from the front of the own vehicle, the smaller the value.
  • the relative velocity Vri of the observation point Mi detected when there is phase folding is smaller than the relative velocity Vri detected at the same place when there is no phase folding.
  • the radar device 2 transmits the radar wave toward the front of the vehicle VH, but the transmission direction of the radar wave is not limited to the front of the vehicle VH.
  • the radar device 2 transmits radar waves toward at least one of the front, right front, left front, rear, right rear, left rear, right side, and left side of the vehicle VH. You may do so.
  • the radar wave may be transmitted toward at least one of the front and the rear of the vehicle VH.
  • the radar device 2 adopts the FMCW method, but the radar method of the radar device 2 is not limited to the FMCW, and is, for example, a dual frequency CW, FCM, or the like.
  • a pulse may be adopted.
  • FCM is an abbreviation for Fast-Chirp Modulation.
  • the steady axis deviation amount ⁇ based on the mounting state of the radar device 2 is calculated by the axis deviation amount calculation process executed by the control device 6, but the present disclosure is based on the above embodiment. It is not limited.
  • a tilt sensor or the like may be used to include a temporary tilt of the vehicle body based on the pitching or roll of the vehicle body in the axis deviation amount ⁇ .
  • control device 6 and its method described in the present disclosure are dedicated provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by a computer. Alternatively, the control device 6 and its method described in the present disclosure may be realized by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control device 6 and its method described in the present disclosure is a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by.
  • the computer program may also be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the method for realizing the functions of each part included in the control device 6 does not necessarily include software, and all the functions may be realized by using one or a plurality of hardware.
  • a plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or one function possessed by one component may be realized by a plurality of components. .. Further, a plurality of functions possessed by the plurality of components may be realized by one component, or one function realized by the plurality of components may be realized by one component. Further, a part of the configuration of the above embodiment may be omitted. In addition, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

情報取得部(S110)は、レーダ装置から観測方位を含んだ観測点情報を繰り返し取得する。軸ずれ取得部(S120)は、レーダ装置の搭載基準方向に対するレーダ装置の実際の向きを表す搭載実方向の軸ずれ量を取得する。折返算出部(S190)は、観測点情報に含まれる観測方位についての折返方位を算出する。瞬時判定部(S210~S220)は、観測方位および折返方位のうち、軸ずれ量および搭載実方向から推定される搭載基準方向により近い方を、実際の方位であると判定する。

Description

折返判定装置 関連出願の相互参照
 本国際出願は、2019年9月5日に日本国特許庁に出願された日本国特許出願第2019-162006号に基づく優先権を主張するものであり、日本国特許出願第2019-162006号の全内容を本国際出願に参照により援用する。
 本開示は、レーダ装置により観測された方位の位相折返しを判定する技術に関する。
 レーダ波を反射した物標からの反射波をアレーアンテナで受信し、各アンテナからの受信信号間に生じる位相差Δθを利用して、物標の方位を検出するレーダ装置では、位相の周期性からΔθ=θと、Δθ=θ±2nπとを区別することができない。なお、|θ|<π、n=1,2,…とする。
 例えば、位相差Δθが-π<Δθ≦+π[rad]となる範囲に対応する方位角度領域(以下、測角範囲)内に物標が存在すれば、その方位を正しく検出することができる。しかし、測角範囲外、即ち、位相差Δθが、Δθ≦-πまたはΔθ>πとなる範囲に物標が存在する場合に、いわゆる位相折返しによって、物標の方位を、測角範囲内にあるものとして誤検出してしまう。
 特許文献1には、履歴接続の有無によって物体を追跡する技術を利用し、予測値が測角範囲から外れる場合に、折返し補正された予測値との履歴接続がある観測値を抽出し、その抽出された観測値を折返し補正することで、正しい方位を得る技術が提案されている。なお、予測値とは、前回の処理サイクルでの検出結果から予測される値であり、観測値とは今回の処理サイクルで実際に観測された値である。
特開2018-91785号公報
 しかしながら、発明者の詳細な検討の結果、特許文献1に記載の従来技術では、以下の課題が見出された。すなわち、レーダ装置に軸ずれがある場合に、軸ずれがない場合の本来の測角範囲内にある物体が、折返し方位で検知されてしまう。このような物体が、追跡履歴がない状態でいきなり検出されると、折返し方位がその物体の正しい方位であるとして検出され続け、補正ができないというという課題が見出された。
 本開示の1つの局面は、レーダ装置に軸ずれがあっても、追跡履歴がない状態で検出される物標の方位を正しく検出する技術を提供することにある。
 本開示の一態様は、折返判定装置であって、情報取得部と、軸ずれ取得部と、折返算出部と、瞬時判定部と、を備える。
 情報取得部は、車両に搭載されるレーダ装置から、指定方向の方位についての観測値である観測方位を含んだ観測点情報を繰り返し取得する。指定方向は、水平方向および垂直方向のうち少なくとも一方である。軸ずれ取得部は、レーダ装置が基準位置に搭載されたときのレーダ装置の向きを搭載基準方向とし、レーダ装置の実際の向きを搭載実方向として、搭載基準方向に対する搭載実方向の指定方向への軸ずれ量を取得する。折返算出部は、観測点情報に含まれる観測方位に位相折返しがあるとした場合に推定される方位である折返方位を算出する。瞬時判定部は、観測方位および観測方位に対応づけられる折返方位のうち、軸ずれ量および搭載実方向から推定される搭載基準方向により近い方を、実際の方位であると判定する。
 このような構成によれば、観測方位と折返方位とのうち、搭載基準方向により近い方を正しい方位とすることで、位相折返しの有無を判定する。従って、観測方位についての履歴を用いることなく位相折返しの有無を判定することで、搭載基準方向を中心とした本来の検知範囲内に存在する観測点の方位の検出精度を向上させることができる。
折返判定システムの構成を示すブロック図である。 物体検知範囲Rfを例示する説明図である。 第1実施形態における折返判定処理のフローチャートである。 水平方向の折返判定処理で使用するパラメータ等に関する説明図である。 水平方向の折返判定処理において、正面に物標があるか否かの判定に関する説明図である。 水平方向におけるレーダ装置の指向性および軸ずれ量に関する説明図である。 水平方向の折返判定処理において、測角範囲と観測方位および折返方位との関係等を示す説明図である。 折返判定の判定結果に基づく観測方位の補正を行わない場合、および観測方位の補正を行う場合のそれぞれについて、観測方位から軸ずれ量を算出した結果を示す説明図である。 垂直方向の折返判定処理で使用するパラメータ等に関する説明図である。 垂直方向の折返判定処理において、正面に物標があるか否かの判定に関する説明図である。 垂直方向におけるレーダ装置の指向性等に関する説明図である。 垂直方向の折返判定処理において、測角範囲と観測方位および折返方位との関係等を示す説明図である。 第2実施形態における折返判定処理のフローチャートである。 基準更新処理のフローチャートである。
 以下、図面を参照しながら、本開示の実施形態を説明する。
 [1.第1実施形態]
 [1-1.構成]
 本実施形態の折返判定システム1は、車両に搭載され、図1に示すように、レーダ装置2と、カメラ3と、調整装置4と、車内通信装置5と、制御装置6とを備える。
 レーダ装置2は、図2に示すように、折返判定システム1を搭載した車両VHの前端部に設置される。そしてレーダ装置2は、レーダ波を車両VHの前方に向けて送信し、反射したレーダ波を受信することにより、車両VHの前方の検知範囲Rf内に存在する物体を検出する。
 レーダ装置2は、例えば、FMCW方式を採用しており、上り変調区間のレーダ波と下り変調区間のレーダ波を予め設定された変調周期で交互に送信し、反射したレーダ波を受信する。FMCWは、Frequency Modulated Continuous Waveの略である。レーダ装置2は、変調周期毎に、受信したレーダ波の受信電力Pと、レーダ波を反射した物体上の点(以下、観測点)までの距離Rと、観測点との相対速度Vrと、観測点の水平方位角φxとを検出する。またレーダ装置2は、検出した受信電力P、距離R、相対速度Vrおよび水平方位角φxを示す観測点情報を制御装置6へ出力する。なお、観測点の水平方位角φxは、レーダ装置2が有する複数の受信アンテナが受信する受信信号間の位相差を利用して検出される。レーダ装置2にて位相折返しが発生しない方位角度の領域を測角範囲として、検知範囲Rfは、少なくとも測角範囲より狭い角度範囲に設定される。
 カメラ3は、車両VHの前端部またはバックミラー付近等に取り付けられ、検知範囲Rfを含む車両VHの前方の状況を連続して撮影する。
 調整装置4は、モータと、レーダ装置2に取り付けられた歯車とを備える。調整装置4は、制御装置6から出力される駆動信号に従ってモータを回転させることにより、レーダ装置2の搭載角を調整する。つまり、モータの回転力が歯車に伝達されることで、車両VHの車高方向に沿った軸を中心にレーダ装置2が回転する。
 車内通信装置5は、車両に搭載された様々な装置を相互に接続する車載LANを介した通信を実行する。LANは、ローカルエリアネットワークである。車内通信装置5は、車載LANを介して、車両の挙動を検出する様々なセンサからの検出信号を取得する。検出対象となる車両の挙動には、少なくとも速度Vsおよび操舵角θが含まれる。
 制御装置6は、CPU6aと、例えば、RAMまたはROM等の半導体メモリ(以下、メモリ)6bと、を有するマイクロコンピュータを備える。制御装置6の各機能は、CPU6aが非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、メモリ6bが、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムが実行されることで、プログラムに対応する方法が実行される。
 制御装置6がプログラムを実行することで実現される機能として、軸ずれ検出部61、画像解析部62、折返判定部63および軸ずれ調整部64が少なくとも含まれる。
 軸ずれ検出部61は、レーダ装置2にて検出される観測点の情報を基づいて、搭載基準方向に対する搭載実方向の指定方向への軸ずれ量γを検出する。搭載基準方向とは、レーダ装置2が本来取り付けられるべき位置である基準位置に搭載されたときのレーダ装置2の向きである。搭載実方向とは、車両に搭載されたレーダ装置2の実際の向きである。ここでは、レーダ装置2の正面方向をレーダ装置2の向きとし、車両の正面方向を搭載基準方向とする。つまり、軸ずれ量γは、図4に示すように、車両の正面方向を基準として、レーダ装置2の正面方向がなす角度をいう。
 画像解析部62は、カメラ3から得られる前方画像を解析することで、検知範囲Rf内の状況を検出する。具体的には、解析結果として、道路に描かれた車線の位置、および自車両と同一車線を走行する前方車両の有無等の情報が少なくとも含まれる。
 折返判定部63は、レーダ装置2にて検出される観測点の方位情報が、位相折返しされた情報であるか否かを判定し、方位情報を補正する。その詳細については後述する。なお、補正された方位情報は、軸ずれ検出部61の処理にも用いられる。
 軸ずれ調整部64は、軸ずれ検出部61での検出結果に従って、調整装置4を駆動することでレーダ装置2の取り付け角度を調整する。
 なお、軸ずれ検出部61、画像解析部62、および軸ずれ調整部64の詳細について、ここでの説明は省略する。
 メモリ6bには、レーダ装置2が有するアンテナの指向性を表す情報、すなわち、方位とその方位でのゲインとを対応づけた情報(以下、指向性情報)が少なくとも記憶される。
 [1-2.処理]
 折返判定部63としての機能を実現するために、制御装置6が実行する折返判定処理を、図3に示すフローチャートを用いて説明する。
 折返判定処理は、折返判定システム1が起動すると繰り返し実行される。
 S110では、制御装置6は、レーダ装置2から観測点情報を取得する。
 続くS120では、制御装置6は、軸ずれ角算出処理での処理結果である軸ずれ量γを取得する。
 続くS130では、制御装置6は、車内通信装置5を介して、自車状態を取得する。取得する自車状態には、自車速Vsおよび操舵角θが少なくとも含まれる。
 続くS140では、制御装置6は、画像解析処理での解析結果を取得する。取得する解析結果には、自車両と同一車線上に存在する物標の情報が少なくとも含まれる。
 続くS150では、制御装置6は、自車両が直線走行中であるか否かを判定し、直線走行中であると判定した場合は、処理をS160に移行し、直線走行中でないと判定した場合は、処理をS260に移行する。なお、直線走行中であるか否かの判定は、例えば、S130にて取得される自車状態の操舵角θに基づいて行われてもよいし、S140にて取得した解析結果に白線の形状が含まれている場合には、その白線の形状に基づいて行われてもよい。
 S160では、制御装置6は、正面に物標が存在するか否かを判定し、存在すると判定した場合は、処理をS170に移行し、存在しないと判定した場合は、処理をS260に移行する。なお、正面に物標が存在するか否かの判定は、例えば、S140にて取得した前方画像の解析結果に基づいて行ってもよい。つまり、図5に示すように、解析結果により、自車線上に先行車両が存在するか否かによって判定してもよい。
 S170では、制御装置6は、S110にて取得した観測点情報の一つを選択する。この観測点情報に対応する観測点をMiで識別するものとし、観測点情報に含まれる観測点の方位(以下、観測方位)αiとする。観測方位αiは、レーダ装置2の正面方向を基準(すなわち0°)として、正面方向から右回りをプラス、左回りをマイナスとする角度で表す。
 続くS180では、制御装置6は、S170で選択された観測点Miが移動体であるか否かを判定し、移動体であると判定した場合は処理をS190に移行し、移動体ではないと判定した場合は処理をS240に移行する。なお、移動体であるか否かは、選択された観測点Miの観測点情報に示された相対速度(以下、観測速度)Vriと、S130で取得した自車速Vsとの差の絶対値が閾値以上である場合に移動体であると判定する。
 S190では、制御装置6は、観測方位αiに位相折返しが生じていると仮定した場合に、観測点Miが存在すると推定される方位である折返方位βiを算出する。具体的には、図4に示すように、レーダ装置2の測角範囲全体の方位角度幅をFOVとして、(1)(2)式を用いて算出する。
  βi=αi-FOV (αi≧0の場合) (1)
  βi=αi+FOV (αi<0の場合) (2)
 続くS200では、制御装置6は、レーダ装置2の指向性を表す放射パターンに基づき、ゲインが閾値以上となる範囲(以下、指向範囲)内に折返方位βiが含まれるか否かを判定する。制御装置6は、折返方位βiが指向範囲内にあると判定した場合は、位相折返しが発生している可能性があるとして、処理をS210に移行し、指向範囲外にあると判定した場合は、位相折り返しが発生している可能性は低いとして、処理をS240に移行する。例えば、図6に示すように、放射パターンにメインローブとサイドローブとが存在する場合、折返方位βiがサイドローブ内にあれば、実際の観測点Miは、その折返方位βiに存在する可能性がある。折返方位βiがメインローブとサイドローブとの間の方位にあれば、実際の観測点Miが折返方位βiに存在する可能性が低く、観測方位αiが正しい方位であると判定できる。
 S210では、制御装置6は、観測方位αiおよび折返方位βiのそれぞれについて、車両の正面方向(すなわち、搭載基準方向)に対する差分である正面差分値dαi,dβiを、(3)(4)式を用いて算出する。つまり、このステップでは、図4に示すように、レーダ装置2の正面方向を基準とする角度で表現されるαi,βiを、軸ずれ量γを用いて車両の正面方向を基準とする角度の絶対値に変換する処理を行う。図4において、γは負の値をとるものとする。
  dαi=|αi-γ|   (3)
  dβi=|βi-γ|   (4)
 続くS220では、制御装置6は、観測方位αiおよび折返方位βiのうちいずれが正面方向に近いかを判定する。具体的には、S210で算出された差分値dαi,dβiに基づき、dαi>dβiであるか否かを判定する。制御装置6は、dαi>dβiである場合、すなわち、折返方位βiの方が観測方位αiより車両の正面方向に近いと判定した場合、処理をS230に移行する。また、制御装置6は、dαi≦dβiである場合、すなわち、観測方位αiの方が折返方位βiより車両の正面方向に近いと判定した場合、処理をS240に移行する。
 S230では、制御装置6は、観測点Miの観測方位αiは位相折返しがあるとして、折返方位βiを観測点Miの確定方位ψiに設定して、処理をS250に進める。
 S240では、制御装置6は、観測点Miの観測方位αiは位相折返しがないとして、観測方位αiを観測点Miの確定方位ψiに設定して、処理をS250に進める。
 S250では、制御装置6は、S110で取得した全ての観測点情報について、S170~S240の処理を実行済みであるか否かを判定する。制御装置6は、未処理の観測点情報があると判定した場合、処理をS170に戻し、全ての観測点情報について処理済みであると判定した場合、当該折返判定処理を終了する。
 S260では、制御装置6は、S110で取得した全ての観測点情報について、位相折返しの有無を判定することなく、観測方位αを観測点Mの確定方位ψに設定して、当該折返判定処理を終了する。
 観測点Mの確定方位ψは、軸ずれ量γと共に、後段の処理に供給される。
 また、確定方位ψ、特に、S230およびS240で設定された確定方位ψは、軸ずれ量算出処理にも使用される。
 なお、S110が情報取得部に相当し、S120が軸ずれ取得部に相当し、S150が走行判定部に相当し、S160が物標判定部に相当し、S180が移動判定部に相当し、S190が折返算出部に相当する。また、S200が指向性判定部に相当し、S210~S220が瞬時判定部に相当し、S230~S240が処理実行部に相当する。また、折返判定処理を実行する制御装置6が折返判定装置に相当する。
 [1-3.効果]
 以上詳述した第1実施形態によれば、以下の効果を奏する。
 (1a)折返判定システム1では、自車両が直線走行中かつ自車両の正面に物標が存在する場合に、観測方位αiの折返判定を実行する。つまり、図7に示すように、自車両の正面に物標が存在していることを利用し、観測方位αiと折返方位βiとのうち、車両の正面方向により近い方を正しい方位とすることで、位相折返しの有無を判定する。従って、折返判定システム1によれば、観測点Miの方位についての観測履歴を用いることなく位相折返しの有無を判定して、観測点Miの正しい方位を得ることができる。
 (1b)折返判定システム1では、レーダ装置2のアンテナの指向性を示す放射パターンを用いて、折返方位βiが放射パターン内で閾値以上のゲインが得られる指向範囲内に存在する場合に、位相折返しの可能性があるとして、折返判定を実行する。つまり、指向範囲外の物標のからの反射波の受信電力は非常に小さく検知される可能性は低いため、折返方位βiが指向範囲外にある場合、位相折返しはないと判定できる。
 (1c)折返判定システム1では、観測点Miが移動体である場合に、折返し判定を行う。つまり、路側物等の静止物は、自車両の正面に位置していない可能性が高いため、静止物を除くことによって、折返判定の精度を向上させることができる。
 (1d)折返判定システム1では、軸ずれ量算出処理において、折返判定処理によって得られる確定方位ψが用いられるため、軸ずれ量γの算出精度を向上させることができる。例えば、角度φのプラス方向に軸ずれしている場合を考える。この場合、位相折返しを考慮することなく、観測点方位αiをそのまま用いて軸ずれ量γを推定すると、図8の上段に示すように、本来プラス方向で検出されるべき観測点Miが、位相折返しによってマイナス方向で検出される。このような観測点Miを用いて軸ずれ量γを推定すると、車両の正面方向を示す真値よりマイナス側にシフトした軸ずれ量γが算出される。これに対して、折返判定により位相折返しがあると判定された観測点Miの確定方位ψiとして折返方位βiを採用することによって、図8の下段に示すように、確定方位ψiは、真値のプラス側およびマイナス側にほぼ均等に分布する。その結果、より真値に近い軸ずれ量γが算出される。
 [1-4.変形例]
 上記実施形態では、水平方向の方位について折返判定を実施する例を示したが、図9に示すように、垂直方向の方位について折返判定を実施してもよい。この場合、S160の正面に物標があるか否かの判定は、図10に示すように、垂直方向で自車両の同じ高さに存在するか否かによって判定する。また、指向性についても、図11に示すように垂直方向の指向性を考慮して判定を実行する。
 この場合、水平方位と同様に、図12に示すように、自車両の正面に物標が存在していることを利用し、観測方位αiと折返方位βiとのうち、車両の正面方向により近い方を正しい方位とすることで、位相折返しの有無を判定する。従って、折返判定システム1によれば、観測点Miの方位についての観測履歴を用いることなく位相折返しの有無を判定して、観測点Miの正しい垂直方位を得ることができる。更には、レーダ装置2の垂直方向への軸ずれ量γの検出精度を向上させることができる。
 [2.第2実施形態]
 [2-1.第1実施形態との相違点]
 第2実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第2実施形態では、折返判定処理において履歴情報を用いる点で、第1実施形態と相違する。
 [2-2.処理]
 次に、第2実施形態の制御装置6が、図3に示した第1実施形態の折返判定処理に代えて実行する折返判定処理について、図13のフローチャートを用いて説明する。なお、S202、S204、S255が追加されている以外は、第1実施形態と同様であるため、この相違点について説明する。
 なお、レーダ装置2の検知範囲の境界付近に物標が存在する場合に、処理サイクル毎に、位相折返しによって、検知範囲の境界の両側にて、同一物標に基づく観測点Miが検出される場合がある。第2実施形態では、このような場合にも対処する。
 S200にて肯定判定された場合に移行するS202では、制御装置6は、基準更新処理を実行する。
 基準更新処理の詳細を、図14のフローチャートを用いて説明する。
 S310では、制御装置6は、選択した観測点Miの受信電力Piが、その時点で記憶されている最大電力maxPi以上であるか否かを判定する。制御装置6は、Pi≧maxPiであると判定した場合、処理をS320に移行し、Pi<maxPiであると判定した場合、処理をS400に移行する。
 S320では、制御装置6は、最大電力maxPiを、受信電力Piで更新する。
 続くS330では、制御装置6は、観測方位αiと基準方位fαiとが同一方位にあるとみなせるか否かを判定する。具体的には、αiとfαiの差分の絶対値が、閾値THα以下であれば同一方位にあるとみなす。制御装置6は、同一方位にあると判定した場合は、処理をS340に移行し、同一方位にはないと判定した場合は、処理をS360に移行する。
 S340では、制御装置6は、基準方位fαiを観測方位αiで更新する。
 続くS350では、制御装置6は、カウント値Ciをカウントアップして処理を終了する。
 S360では、制御装置6は、カウント値Ciが第1閾値TH1c以下であるか否かを判定し、Ci≦TH1cであれば、処理をS370に移行し、Ci>TH1cであれば、処理をS390に移行する。TH1cは、例えば、2~5程度の比較的小さな値に設定される。
 S370では、制御装置6は、基準方位fαiを観測方位αiで更新する。
 続くS380では、制御装置6は、カウント値Ciを1に初期化して処理を終了する。
 S390では、制御装置6は、カウント値Ciをカウントダウンして処理を終了する。
 S400では、制御装置6は、S330と同様に、観測方位αiと基準方位fαiとが同一方位にあるとみなせるか否かを判定する。制御装置6は、同一方位にあるとみなせると判定した場合は、処理をS410に移行し、同一方位にはないと判定した場合は、処理をS420に移行する。
 S410では、制御装置6は、カウント値Ciをカウントアップして処理を終了する。
 S420では、制御装置6は、カウント値Ciが第2閾値TH2c以上であるか否かを判定し、Ci≧TH2cであれば、処理をS430に移行し、Ci<TH2cであれば、処理をS440に移行する。第2閾値TH2cは、第1閾値TH1cと同じ値でもよいし異なる値でもよい。
 S430では、制御装置6は、カウント値Ciをカウントダウンして処理を終了する。
 S440では、制御装置6は、当該基準更新処理で用いるパラメータCi、fαi、maxPiを初期化して処理を終了する。
 つまり、観測点Miの受信電力Piが最大電力maxPi以上の場合には、基準方位fαiおよびカウント値Ciをいずれも操作する。具体的には、S330~S390では、受信電力Piが最大となる観測点Miの観測方位αiが、現在の基準方位fαiと同じとみなせる場合は、その観測方位αiによって基準方位fαiを更新すると共に、カウント値Ciをカウントアップする。また、観測方位αiが、現在の基準方位fαiと異なる場合は、カウント値Ciが第1閾値THc1より大きければ、基準方位fαiを更新せずに、カウント値Ciをカウントダウンする。また、カウント値Ciが第1閾値THc1以下であれば、基準方位fαiを更新して、カウント値Ciを1に初期化する。
 また、観測点Miの受信電力Piが最大電力maxPiより小さい場合には、基準方位fαiを更新せず、カウント値Ciのみ操作する。具体的には、S400~S440では、観測方位αiが、現在の基準方位fαiと同じとみなせる場合は、カウント値Ciをカウントアップする。また、観測方位αiが、現時点の基準方位fαiと異なる場合は、カウント値Ciが第2閾値TH2c以上である場合、カウント値Ciをカウントダウンする。また、カウント値Ciが第2閾値TH2cより小さい場合、最大電力maxPiが検出された方位での観測点Miの検出頻度が低下していることを意味するため、観測を最初からやり直すためにパラメータCi、fαi、maxPiを初期化する。具体的には、例えば、Ciを1、fαiおよびmaxPiを0に設定する。
 このように、基準更新処理では、観測点の時系列を処理する。そして、基準更新処理の結果、受信電力が最大となる観測点Miが検出された方位が基準方位fαiとされ、カウント値Ciは、基準方位fαiと同じとみなせる方向で観測点Miが検出される頻度が高いほど大きな値となる。
 図13に戻り、S202に続くS204では、制御装置6は、S202での処理結果に基づき、カウント値Ciが閾値THc以上であり、且つ観測方位αiが基準方位fαiと同じとみなせるか否かを判定する。なお、閾値THcは、1以上かつ第2閾値TH2cより小さな値に設定される。制御装置6は、肯定判定した場合は、処理をS240に移行し、否定判定した場合は、処理をS210に移行する。
 つまり、観測方位αiが基準方位fαiと同一方向であるとみなせ、かつ、基準方位fαiにて観測点Miが検出される頻度がある程度大きい場合は、位相折返しがないものとして、観測方位αiを確定方位ψiとする。それ以外の場合は、正面差分dαi,dβiによる折返判定を実施する。
 S150またはS160のいずれかで否定判定された場合に実施されるS255では、制御装置6は、基準更新処理で用いる全てのパラメータfαi,maxPi,Ciを初期化して、処理をS260に移行する。
 なお、S202が基準方位設定部に相当し、S204が系列判定部に相当する。
 [2-3.効果]
 以上詳述した第2実施形態によれば、上述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
 (2a)第2実施形態では、複数の処理サイクルに渡って検出される一連の観測点Miについて受信電力Piを利用して折返判定を行うため、判定精度を向上させることができる。つまり、位相折返しが生じている場合、放射パターンの中心から外れた検知範囲の境界部分に物標が存在する。位相折返しがある場合に検出される観測点Miの受信電力Piは、位相折返しがない場合に、同じ場所で検出される受信電力Piより小さくなる。この事実を利用することで判定精度を向上させることができる。
 [2-4.変形例]
 第2実施形態では、基準更新処理において、観測点Miの受信電力Piと観測方位αiを用いてカウント値Ciを増減しているが、受信電力Piの代わりに観測点Miの相対速度Vriを用いてもよい。つまり、観測点Miについて検出される相対速度は、観測点Miの速度のレンジ方向の成分であるため、観測点Miが一定の速度であっても、自車の正面に位置する場合に最大値となり、自車の正面からの角度が大きくなるほど、小さくなる。位相折返しがある場合に検出される観測点Miの相対速度Vriは、位相折返しがない場合に、同じ場所で検出される相対速度Vriより小さくなる。この事実を利用することで判定精度を向上させることができる。
 [3.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 (3a)上記実施形態では、レーダ装置2がレーダ波を車両VHの前方に向けて送信する形態を示したが、レーダ波の送信方向は車両VHの前方に限定されるものではない。例えば、レーダ装置2は、第1実施形態の場合は、車両VHの前方、右前方、左前方、後方、右後方、左後方、右側方および左側方の少なくとも一方に向けてレーダ波を送信するようにしてもよい。第2実施形態の場合は、車両VHの前方および後方の少なくとも一方に向けてレーダ波を送信するようにしてもよい。
 (3b)上記実施形態では、レーダ装置2がFMCW方式を採用している形態を示したが、レーダ装置2のレーダ方式は、FMCWに限定されるものではなく、例えば、2周波CW、FCMまたはパルスを採用するようにしてもよい。FCMは、Fast-Chirp Modulationの略である。
 (3c)上記実施形態では、制御装置6が実行する軸ずれ量算出処理によって、レーダ装置2の取り付け状態に基づく定常的な軸ずれ量γを算出しているが、本開示は上記実施形態に限定されるものではない。例えば、傾斜センサ等によって、車体のピッチングやロールに基づく一時的な車体の傾斜を、軸ずれ量γに含ませるようにしてもよい。
 (3d)上記実施形態では、処理実行部に相当するS230およびS240にて、位相折返しの有無の判定結果に従って観測方位を補正する補正処理を行っているが、本開示は上記実施形態に限定されるものではない。例えば、補正処理に代えて、または補正処理と共に、判定結果を報知する報知処理を行ってもよい。
 (3e)本開示に記載の制御装置6およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御装置6およびその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御装置6およびその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されてもよい。制御装置6に含まれる各部の機能を実現する手法には、必ずしもソフトウェアが含まれている必要はなく、その全部の機能が、一つあるいは複数のハードウェアを用いて実現されてもよい。
 (3f)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。
 (3g)上述した折返判定装置の他、当該折返判定装置を構成要素とするシステム、当該折返判定装置としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、折返判定方法など、種々の形態で本開示を実現することもできる。

Claims (8)

  1.  車両に搭載されるレーダ装置から、あらかじめ設定された検知範囲内に存在する物体について、水平方向および垂直方向のうち少なくとも一方を指定方向として、前記指定方向の方位についての観測値である観測方位を含んだ観測点情報を繰り返し取得するように構成された情報取得部(6:S110)と、
     前記レーダ装置が基準位置に搭載されたときの前記レーダ装置の向きを搭載基準方向とし、前記レーダ装置の実際の向きを搭載実方向として、前記搭載基準方向に対する前前記搭載実方向の前記指定方向への軸ずれ量を取得するように構成された軸ずれ取得部(6:S120)と、
     前記観測点情報に含まれる前記観測方位に位相折返しがあるとした場合に推定される方位である折返方位を算出するように構成された折返算出部(6:S190)と、
     前記観測方位および該観測方位に対応づけられる前記折返方位のうち、前記軸ずれ量および前記搭載実方向から推定される前記搭載基準方向により近い方を、実際の方位であると判定するように構成された瞬時判定部(6:S210~S220)と、
     を備える折返判定装置。
  2.  請求項1に記載の折返判定装置であって、
     前記瞬時判定部での判定結果に従った処理を実行するように構成された処理実行部(6:S230~S240)を更に備え、
     前記処理実行部は、前記判定結果を報知する報知処理または前記判定結果に従って前記観測方位を補正する補正処理のうち少なくとも一方を実行する
     折返判定装置。
  3.  請求項1または請求項2に記載の折返判定装置であって、前記観測方位の時系列に、同一方向とみなすことができない複数の前記観測方位が含まれる場合、受信電力または前記移動体との相対速度のうち少なくとも一方が最大となる前記観測点情報が検出される前記観測方位を基準方位に設定するように構成された基準方位設定部(6:S202)と、
     前記情報取得部で取得された前記観測点情報に含まれる前記観測方位が前記基準方位設定部で設定された前記基準方位と同一方向であるとみなせる場合は、前記観測方位を、実際の方位であると判定するように構成された系列判定部(6:S204)と、
     を更に備える折返判定装置。
  4.  請求項1から請求項3までのいずれか1項に記載の折返判定装置であって、
     前記観測点情報により示される物体が移動体であるか否かを判定するように構成された移動判定部(6:S180)を更に備え、
     前記瞬時判定部は、前記観測点情報により示される物体が移動体であると判定された場合に判定を実施する
     折返判定装置。
  5.  請求項1から請求項4までのいずれか1項に記載の折返判定装置であって、
     前記観測点情報により示される物体が前記レーダ装置の放射パターンにおいて予め設定された閾値以上のゲインが得られる指向範囲内に位置するか否かを判定するように構成された指向性判定部(6:200)を更に備え、
     前記瞬時判定部は、前記折返方位が指向範囲内に位置する場合に判定を実施する
     折返判定装置。
  6.  請求項1から請求項5までのいずれか1項に記載の折返判定装置であって、
     前記移動体が直線走行中であるか否かを判定するように構成された走行判定部(6:S150)を更に備え、
     前記瞬時判定部は、前記移動体が直線走行中である場合に判定を実施する
     折返判定装置。
  7.  請求項1から請求項6までのいずれか1項に記載の折返判定装置であって、
     前記移動体の前記搭載基準方向に物標が存在するか否かを判定するように構成された物標判定部(6:S160)を更に備え、
     前記瞬時判定部は、前記移動体の前記搭載基準方向に物標が存在する場合に判定を実施する
     折返判定装置。
  8.  請求項1から請求項7までのいずれか1項に記載の折返判定装置であって、
     前記観測点情報から前記レーダ装置の前記軸ずれ量を検出するように構成された軸ずれ検出部(61)を更に備え、
     前記軸ずれ取得部は、前記軸ずれ検出部から前記軸ずれ量を取得し、
     前記軸ずれ検出部は、前記瞬時判定部での判定結果に従って前記観測方位が補正された前記観測点情報を用いて前記軸ずれ量を検出する
     折返判定装置。
PCT/JP2020/032912 2019-09-05 2020-08-31 折返判定装置 WO2021045011A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020004235.9T DE112020004235T5 (de) 2019-09-05 2020-08-31 Vorrichtung zur bestimmung von aliasing
CN202080062530.2A CN114365011A (zh) 2019-09-05 2020-08-31 混叠判定装置
US17/653,437 US20220187422A1 (en) 2019-09-05 2022-03-03 Aliasing determination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019162006A JP7197447B2 (ja) 2019-09-05 2019-09-05 折返判定装置
JP2019-162006 2019-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/653,437 Continuation US20220187422A1 (en) 2019-09-05 2022-03-03 Aliasing determination device

Publications (1)

Publication Number Publication Date
WO2021045011A1 true WO2021045011A1 (ja) 2021-03-11

Family

ID=74847002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032912 WO2021045011A1 (ja) 2019-09-05 2020-08-31 折返判定装置

Country Status (5)

Country Link
US (1) US20220187422A1 (ja)
JP (1) JP7197447B2 (ja)
CN (1) CN114365011A (ja)
DE (1) DE112020004235T5 (ja)
WO (1) WO2021045011A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023113203A (ja) * 2022-02-03 2023-08-16 ソニーセミコンダクタソリューションズ株式会社 速度検出装置、情報処理装置及び情報処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935574A (en) * 1974-04-15 1976-01-27 The United States Of America As Represented By The Secretary Of The Navy Signal source position-determining process
JP2014002053A (ja) * 2012-06-19 2014-01-09 Honda Elesys Co Ltd 車載用のレーダ装置、車載用のレーダ方法及び車載用のレーダプログラム
JP2016075524A (ja) * 2014-10-03 2016-05-12 株式会社デンソー レーダ装置
JP2016085125A (ja) * 2014-10-27 2016-05-19 富士通テン株式会社 レーダ装置、および、信号処理方法
US20170212205A1 (en) * 2016-01-22 2017-07-27 GM Global Technology Operations LLC Angle of arrival estimation
JP2017227510A (ja) * 2016-06-21 2017-12-28 株式会社デンソーテン レーダ装置および物標検知方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265149B2 (ja) * 2014-08-27 2018-01-24 株式会社デンソー 検出装置
JP6303956B2 (ja) * 2014-09-24 2018-04-04 株式会社デンソー 軸ずれ量推定装置
JP6475543B2 (ja) * 2015-03-31 2019-02-27 株式会社デンソー 車両制御装置、及び車両制御方法
JP2018091785A (ja) 2016-12-06 2018-06-14 株式会社デンソーテン レーダ装置および物標検知方法
EP3415948B1 (en) * 2017-06-12 2021-11-10 Aptiv Technologies Limited A method of determining the de-aliased range rate of a target
US10809355B2 (en) * 2017-07-18 2020-10-20 Veoneer Us, Inc. Apparatus and method for detecting alignment of sensor and calibrating antenna pattern response in an automotive detection system
JP7060422B2 (ja) 2018-03-16 2022-04-26 古河電気工業株式会社 プロテクタ及びプロテクタ付ワイヤーハーネス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935574A (en) * 1974-04-15 1976-01-27 The United States Of America As Represented By The Secretary Of The Navy Signal source position-determining process
JP2014002053A (ja) * 2012-06-19 2014-01-09 Honda Elesys Co Ltd 車載用のレーダ装置、車載用のレーダ方法及び車載用のレーダプログラム
JP2016075524A (ja) * 2014-10-03 2016-05-12 株式会社デンソー レーダ装置
JP2016085125A (ja) * 2014-10-27 2016-05-19 富士通テン株式会社 レーダ装置、および、信号処理方法
US20170212205A1 (en) * 2016-01-22 2017-07-27 GM Global Technology Operations LLC Angle of arrival estimation
JP2017227510A (ja) * 2016-06-21 2017-12-28 株式会社デンソーテン レーダ装置および物標検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAZAWA, TOSHIYUKI, TAKAHASHI, MASAHARU, ABE, MINORU: "Estimating angle of arrival with non-uniformly spaced array", PROCEEDINGS OF IEICE, vol. J83-B, no. 6, 25 June 2000 (2000-06-25), pages 845 - 851, ISSN: 1344-4697 *

Also Published As

Publication number Publication date
JP7197447B2 (ja) 2022-12-27
CN114365011A (zh) 2022-04-15
JP2021039057A (ja) 2021-03-11
DE112020004235T5 (de) 2022-06-23
US20220187422A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP4265803B2 (ja) レーダシステム
US7924215B2 (en) Radar apparatus and mobile object
EP0825454A2 (en) A scan-type radar apparatus for a vehicle to accurately detect an object in a lane of the radar equipped vehicle moving in a curve
WO2021070916A1 (ja) 軸ずれ推定装置
US7463185B2 (en) Radar apparatus having wide-angle detection
JP2009229374A (ja) レーダ装置、及び方位角検出方法
JP4747883B2 (ja) 物標検出装置および物標検出方法
JP5312493B2 (ja) 車載用レーダ装置
WO2021045011A1 (ja) 折返判定装置
KR20150034349A (ko) 차량용 탐지 센서 보정 장치 및 방법
JP3844429B2 (ja) 走査型レーダ装置
JP7028722B2 (ja) 軸ずれ角検出装置
JP6294853B2 (ja) レーダ装置およびレーダ装置の制御方法
JP2009128016A (ja) レーダ装置、レーダ制御装置およびレーダ装置の制御方法
US20220228862A1 (en) Axial deviation estimating device
JP2021025945A (ja) 物標検出装置
JP6716666B2 (ja) 通信装置、通信方法、車両及びプログラム
WO2020230755A1 (ja) 軸ずれ推定装置
WO2021070684A1 (ja) 推定装置
WO2024080202A1 (ja) 角度誤差推定装置および角度誤差推定方法
JP7087767B2 (ja) 移動物体検出装置
JP2022134598A (ja) 軸ずれ推定装置
JP2022115411A (ja) 軸ずれ推定装置
JPH1062527A (ja) 速度観測レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859739

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20859739

Country of ref document: EP

Kind code of ref document: A1